
Regularization and Feature 

Selection



Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS 
OR IMPLIED, IN THIS SUMMARY. 

Intel technologies’ features and benefits depend on system configuration and may require 
enabled hardware, software or service activation. Performance varies depending on system 
configuration. Check with your system manufacturer or retailer or learn more at intel.com. 

This sample source code is released under the Intel Sample Source Code License Agreement. 

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. 

*Other names and brands may be claimed as the property of others. 

Copyright © 2021, Intel Corporation. All rights reserved. 

http://www.intel.com/
https://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement


Learning Objectives

• Explain cost functions, regularization, feature selection, 
and hyper-parameters

• Summarize complex statistical optimization algorithms 
like gradient descent and its application to linear 
regression

• Apply Intel® Extension for Scikit-learn* to leverage 

underlying compute capabilities of hardware

•

https://intel.github.io/scikit-learn-intelex/


Model Complexity vs Error

e
rr

o
r

𝐽𝑐𝑣 𝜃
cross validation error

𝐽𝑡𝑟𝑎𝑖𝑛 𝜃
training error



Preventing Under- and Overfitting

• How to use a degree 9 polynomial and prevent overfitting?

X

Y

Model

True Function

Samples

X

Y

X

Y

Polynomial Degree = 1 Polynomial Degree = 3 Polynomial Degree = 9



Preventing Under- and Overfitting

𝐽 𝛽0, 𝛽1 =
1

2𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2
X

Y

Model

True Function

Samples

X

Y

X

Y

Polynomial Degree = 1 Polynomial Degree = 3 Polynomial Degree = 9



Regularization

𝐽 𝛽0, 𝛽1 =
1

2𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

+ 𝜆෍

𝑗=1

𝑘

𝛽𝑗
2

X

Y

Model

True Function

Samples

X

Y

X

Y

Poly Degree=9, 𝜆=0.1Poly Degree=9, 𝜆=1e-5Poly Degree=9, 𝜆=0.0



𝐽 𝛽0, 𝛽1 =
1

2𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

+ 𝜆෍

𝑗=1

𝑘

𝛽𝑗
2

Ridge Regression (L2)

• Penalty shrinks magnitude of all coefficients

• Larger coefficients strongly penalized because of the 

squaring



Effect of Ridge Regression on Parameters

𝐽 𝛽0, 𝛽1 =
1

2𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

+ 𝜆෍

𝑗=1

𝑘

𝛽𝑗
2

X

Model

True Function

Samples

XX

Y

Poly=9, 𝜆=0.1Poly=9, 𝜆=1e-5Poly=9, 𝜆=0.0

1

a
b

s(
co

e
ff

ic
ie

nt
)

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

100

102

104

106

108



𝐽 𝛽0, 𝛽1 =
1

2𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

+ 𝜆෍

𝑗=1

𝑘

𝛽𝑗

Lasso Regression (L1)

• Penalty selectively shrinks some coefficients

• Can be used for feature selection

• Slower to converge than Ridge regression



Effect of Lasso Regression on Parameters

𝐽 𝛽0, 𝛽1 =
1

2𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

+ 𝜆෍

𝑗=1

𝑘

𝛽𝑗

X

Model

True Function

Samples

XX

Y

Poly=9, 𝜆=0.1Poly=9, 𝜆=1e-5Poly=9, 𝜆=0.0

1

a
b

s(
co

e
ff

ic
ie

nt
)

2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

100

102

104

106

108



𝐽 𝛽0, 𝛽1 =
1

2𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

+ 𝜆1෍

𝑗=1

𝑘

𝛽𝑗 + 𝜆2෍

𝑗=1

𝑘

𝛽𝑗
2

Elastic Net Regularization

• Compromise of both Ridge and Lasso regression

• Requires tuning of additional parameter that distributes 

regularization penalty between L1 and L2



𝐽 𝛽0, 𝛽1 =
1

2𝑚
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

+ 𝜆1෍

𝑗=1

𝑘

𝛽𝑗 + 𝜆2෍

𝑗=1

𝑘

𝛽𝑗
2

X

Y

Model

True Function

Samples

X

Y

X

Y

Poly=9, 𝜆1=𝜆2=0.1Poly=9, 𝜆1=𝜆2=1e-5Poly=9, 𝜆1=𝜆2=0.0

Elastic Net Regularization



Hyperparameters and Their Optimization

• Regularization coefficients (𝜆1 and 𝜆2) 

are empirically determined 

• Want value that generalizes—do not use 

test data for tuning

• Create additional split of data to tune 

hyperparameters—validation set

• Cross validation can also be used on 

training data

Training Data

Test Data

Use Test Data to Tune 𝜆?



Hyperparameters and Their Optimization

• Regularization coefficients (𝜆1 and 𝜆2) 

are empirically determined 

• Want value that generalizes—do not use 

test data for tuning

• Create additional split of data to tune 

hyperparameters—validation set

• Cross validation can also be used on 

training data

Training Data

Test Data

NO!

Use Test Data to Tune 𝜆?



Hyperparameters and Their Optimization

• Regularization coefficients (𝜆1 and 𝜆2) 

are empirically determined 

• Want value that generalizes—do not use 

test data for tuning

• Create additional split of data to tune 

hyperparameters—validation set

• Cross validation can also be used on 

training data

Training Data

Test Data

Tune 𝜆 with Cross Validation

Validation Data



Import the class containing the regression method

from sklearn.linear_model import Ridge

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

Ridge Regression: The Syntax

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc


Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

RR = Ridge(alpha=1.0)

Fit the instance on the data and then predict the expected value

RR = RR.fit(X_train, y_train)

y_predict = RR.predict(X_test)

The RidgeCV class will perform cross validation on a set of values for alpha.

Ridge Regression: The Syntax



Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

RR = Ridge(alpha=1.0)

Fit the instance on the data and then predict the expected value

RR = RR.fit(X_train, y_train)

y_predict = RR.predict(X_test)

The RidgeCV class will perform cross validation on a set of values for alpha.

Ridge Regression: The Syntax



Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

RR = Ridge(alpha=1.0)

Fit the instance on the data and then predict the expected value

RR = RR.fit(X_train, y_train)

y_predict = RR.predict(X_test)

The RidgeCV class will perform cross validation on a set of values for alpha.

Ridge Regression: The Syntax

regularization

parameter



Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

RR = Ridge(alpha=1.0)

Fit the instance on the data and then predict the expected value

RR = RR.fit(X_train, y_train)

y_predict = RR.predict(X_test)

The RidgeCV class will perform cross validation on a set of values for alpha.

Ridge Regression: The Syntax



Ridge Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

RR = Ridge(alpha=1.0)

Fit the instance on the data and then predict the expected value

RR = RR.fit(X_train, y_train)

y_predict = RR.predict(X_test)

The RidgeCV class will perform cross validation on a set of values for alpha.



Lasso Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import Lasso

Create an instance of the class

LR = Lasso(alpha=1.0)

Fit the instance on the data and then predict the expected value

LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)

The LassoCV class will perform cross validation on a set of values for alpha.



Lasso Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import Lasso

Create an instance of the class

LR = Lasso(alpha=1.0)

Fit the instance on the data and then predict the expected value

LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)

The LassoCV class will perform cross validation on a set of values for alpha.

regularization

parameter



Elastic Net Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import ElasticNet

Create an instance of the class

EN = ElasticNet(alpha=1.0, l1_ratio=0.5)

Fit the instance on the data and then predict the expected value

EN = EN.fit(X_train, y_train)

y_predict = EN.predict(X_test)

The ElasticNetCV class will perform cross validation on a set of values for l1_ratio 

and alpha.



Elastic Net Regression: The Syntax

alpha is the

regularization

parameter

Import the class containing the regression method

from sklearn.linear_model import ElasticNet

Create an instance of the class

EN = ElasticNet(alpha=1.0, l1_ratio=0.5)

Fit the instance on the data and then predict the expected value

EN = EN.fit(X_train, y_train)

y_predict = EN.predict(X_test)

The ElasticNetCV class will perform cross validation on a set of values for l1_ratio 

and alpha.



Elastic Net Regression: The Syntax

l1_ratio 

distributes alpha 

to L1/L2

Import the class containing the regression method

from sklearn.linear_model import ElasticNet

Create an instance of the class

EN = ElasticNet(alpha=1.0, l1_ratio=0.5)

Fit the instance on the data and then predict the expected value

EN = EN.fit(X_train, y_train)

y_predict = EN.predict(X_test)

The ElasticNetCV class will perform cross validation on a set of values for l1_ratio 

and alpha.



Feature Selection

• Regularization performs feature selection by shrinking the 

contribution of features

• For L1-regularization, this is accomplished by driving some 

coefficients to zero

• Feature selection can also be performed by removing 

features 



Feature Selection

• Regularization performs feature selection by shrinking the 

contribution of features

• For L1-regularization, this is accomplished by driving some 

coefficients to zero

• Feature selection can also be performed by removing 

features 



Feature Selection

• Regularization performs feature selection by shrinking the 

contribution of features

• For L1-regularization, this is accomplished by driving some 

coefficients to zero

• Feature selection can also be performed by removing 

features 



Why is Feature Selection Important?

• Reducing the number of features is another way to prevent 

overfitting (similar to regularization)

• For some models, fewer features can improve fitting time 

and/or results

• Identifying most critical features can improve model 

interpretability



Why is Feature Selection Important?

• Reducing the number of features is another way to prevent 

overfitting (similar to regularization)

• For some models, fewer features can improve fitting time 

and/or results

• Identifying most critical features can improve model 

interpretability



Why is Feature Selection Important?

• Reducing the number of features is another way to prevent 

overfitting (similar to regularization)

• For some models, fewer features can improve fitting time 

and/or results

• Identifying most critical features can improve model 

interpretability



Recursive Feature Elimination: The Syntax

Import the class containing the feature selection method

from sklearn.feature_selection import RFE

Create an instance of the class

rfeMod = RFE(est, n_features_to_select=5)

Fit the instance on the data and then predict the expected value

rfeMod = rfeMod.fit(X_train, y_train)

y_predict = rfeMod.predict(X_test)

The RFECV class will perform feature elimination using cross validation.



Recursive Feature Elimination: The Syntax

est is an instance 

of the model to 

use

Import the class containing the feature selection method

from sklearn.feature_selection import RFE

Create an instance of the class

rfeMod = RFE(est, n_features_to_select=5)

Fit the instance on the data and then predict the expected value

rfeMod = rfeMod.fit(X_train, y_train)

y_predict = rfeMod.predict(X_test)

The RFECV class will perform feature elimination using cross validation.



Recursive Feature Elimination: The Syntax

Import the class containing the feature selection method

from sklearn.feature_selection import RFE

Create an instance of the class

rfeMod = RFE(est, n_features_to_select=5)

Fit the instance on the data and then predict the expected value

rfeMod = rfeMod.fit(X_train, y_train)

y_predict = rfeMod.predict(X_test)

The RFECV class will perform feature elimination using cross validation.

final number of 

features





Gradient Descent



𝐽 𝛽

Gradient Descent

𝛽

Start with a cost function J(𝛽):



Then gradually move towards the minimum.

𝐽 𝛽

Gradient Descent

𝛽

Start with a cost function J(𝛽):

Global Minimum



Gradient Descent with Linear Regression

• Now imagine there are two parameters 

(𝛽0, 𝛽1)

• This is a more complicated surface on 

which the minimum must be found

• How can we do this without knowing what 

𝐽 𝛽0, 𝛽1 looks like?

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0



Gradient Descent with Linear Regression

• Now imagine there are two parameters 

(𝛽0, 𝛽1)

• This is a more complicated surface on 

which the minimum must be found

• How can we do this without knowing what 

𝐽 𝛽0, 𝛽1 looks like?

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0



Gradient Descent with Linear Regression

• Now imagine there are two parameters 

(𝛽0, 𝛽1)

• This is a more complicated surface on 

which the minimum must be found

• How can we do this without knowing what 

𝐽 𝛽0, 𝛽1 looks like?

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0



• Compute the gradient, 𝛻𝐽 𝛽0, 𝛽1 , which 

points in the direction of the biggest 

increase!

• -𝛻𝐽 𝛽0, 𝛽1 (negative gradient) points to 

the biggest decrease at that point!

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Gradient Descent with Linear Regression



• The gradient is the a vector whose 

coordinates consist of the partial derivatives 

of the parameters

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Gradient Descent with Linear Regression

𝛻𝐽 𝛽0, … , 𝛽𝑛 =<
𝜕𝐽

𝜕𝛽0
, … ,

𝜕𝐽

𝜕𝛽𝑛
>



• Then use the gradient (𝛻) and the cost 

function to calculate the next point (𝜔1) from 

the current one (𝜔0):

• The learning rate (𝛼) is a tunable parameter 

that determines step size

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Gradient Descent with Linear Regression

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

𝜔0

𝜔1



• Then use the gradient (𝛻) and the cost 

function to calculate the next point (𝜔1) from 

the current one (𝜔0):

• The learning rate (𝛼) is a tunable parameter 

that determines step size

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Gradient Descent with Linear Regression

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2

𝜔0

𝜔1



• Each point can be iteratively calculated from 

the previous one

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Gradient Descent with Linear Regression

𝜔2 = 𝜔1 − 𝛼𝛻
1

2
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2 𝜔0

𝜔1
𝜔2

𝜔3 = 𝜔2 − 𝛼𝛻
1

2
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2



• Each point can be iteratively calculated from 

the previous one

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Gradient Descent with Linear Regression

𝜔2 = 𝜔1 − 𝛼𝛻
1

2
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2 𝜔0

𝜔1
𝜔2

𝜔3 = 𝜔2 − 𝛼𝛻
1

2
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2 𝜔3



• Use a single data point to determine the 

gradient and cost function instead of all the 

data

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Stochastic Gradient Descent

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
𝛽0 + 𝛽1𝑥𝑜𝑏𝑠

(0)
− 𝑦𝑜𝑏𝑠

(0)
2

𝜔0

𝜔1
𝜔1 = 𝜔0 − 𝛼𝛻

1

2
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2



• Use a single data point to determine the 

gradient and cost function instead of all the 

data

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Stochastic Gradient Descent

𝜔0

𝜔1
𝜔1 = 𝜔0 − 𝛼𝛻

1

2
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2



• Use a single data point to determine the 

gradient and cost function instead of all the 

data

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Stochastic Gradient Descent

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
𝛽0 + 𝛽1𝑥𝑜𝑏𝑠

(0)
− 𝑦𝑜𝑏𝑠

(0)
2

𝜔0

𝜔1
𝜔1 = 𝜔0 − 𝛼𝛻

1

2
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2



𝜔4 = 𝜔3 − 𝛼𝛻
1

2
𝛽0 + 𝛽1𝑥𝑜𝑏𝑠

(3)
− 𝑦𝑜𝑏𝑠

(3)
2

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Stochastic Gradient Descent

𝜔0

𝜔1

𝜔2 𝜔3 𝜔4

• Use a single data point to determine the 

gradient and cost function instead of all the 

data

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
𝛽0 + 𝛽1𝑥𝑜𝑏𝑠

(0)
− 𝑦𝑜𝑏𝑠

(0)
2

…



𝜔4 = 𝜔3 − 𝛼𝛻
1

2
𝛽0 + 𝛽1𝑥𝑜𝑏𝑠

(3)
− 𝑦𝑜𝑏𝑠

(3)
2

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Stochastic Gradient Descent

𝜔0

𝜔1

𝜔2 𝜔3 𝜔4

• Use a single data point to determine the 

gradient and cost function instead of all the 

data

• Path is less direct due to noise in single data 

point—"stochastic"

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
𝛽0 + 𝛽1𝑥𝑜𝑏𝑠

(0)
− 𝑦𝑜𝑏𝑠

(0)
2

…



• Perform an update for every 𝑛 training 

examples 

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Mini Batch Gradient Descent

𝜔0

𝜔1
𝜔1 = 𝜔0 − 𝛼𝛻

1

2
෍

𝑖=1

𝑛

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2



• Perform an update for every 𝑛 training 

examples 

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Mini Batch Gradient Descent

𝜔0

𝜔1
𝜔1 = 𝜔0 − 𝛼𝛻

1

2
෍

𝑖=1

𝑛

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2



• Perform an update for every 𝑛 training 

examples 

Best of both worlds:

• Reduced memory relative to "vanilla" 

gradient descent

• Less noisy than stochastic gradient descent

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Mini Batch Gradient Descent

𝜔0

𝜔1
𝜔1 = 𝜔0 − 𝛼𝛻

1

2
෍

𝑖=1

𝑛

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2



• Mini batch implementation typically used for neural nets

• Batch sizes range from 50-256 points

• Trade off between batch size and learning rate (α)

• Tailor learning rate schedule: gradually reduce learning rate during 

a given epoch

Mini Batch Gradient Descent



• Mini batch implementation typically used for neural nets

• Batch sizes range from 50-256 points

• Trade off between batch size and learning rate (α)

• Tailor learning rate schedule: gradually reduce learning rate during 

a given epoch

Mini Batch Gradient Descent



• Mini batch implementation typically used for neural nets

• Batch sizes range from 50-256 points

• Trade off between batch size and learning rate (𝛼)

• Tailor learning rate schedule: gradually reduce learning rate during 

a given epoch

Mini Batch Gradient Descent



• Mini batch implementation typically used for neural nets

• Batch sizes range from 50–256 points

• Trade off between batch size and learning rate (𝛼)

• Tailor learning rate schedule: gradually reduce learning rate during 

a given epoch

Mini Batch Gradient Descent



Stochastic Gradient Descent Regression: Syntax

Import the class containing the regression model

from sklearn.linear_model import SGDRegressor



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')

Stochastic Gradient Descent Regression: Syntax



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')

squared_loss = 

linear regression

Stochastic Gradient Descent Regression: Syntax



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')
regularization

parameters

Stochastic Gradient Descent Regression: Syntax



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDreg = SGDreg.fit(X_train, y_train)

y_pred = SGDreg.predict(X_test)

Stochastic Gradient Descent Regression: Syntax



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDreg = SGDreg.partial_fit(X_train, y_train)

y_pred = SGDreg.predict(X_test)

Stochastic Gradient Descent Regression: Syntax

mini-batch version



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDreg = SGDreg.fit(X_train, y_train)

y_pred = SGDreg.predict(X_test)

Other loss methods exist: epsilon_insensitive, huber, etc.

Stochastic Gradient Descent Regression: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Stochastic Gradient Descent Classification: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Stochastic Gradient Descent Classification: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDclass = SGDclass.fit(X_train, y_train)

y_pred = SGDclass.predict(X_test)

Other loss methods exist: hinge, squared_hinge, etc.

log loss = 

logistic regression

Stochastic Gradient Descent Classification: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDclass = SGDclass.fit(X_train, y_train)

y_pred = SGDclass.predict(X_test)

Stochastic Gradient Descent Classification: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDclass = SGDclass.partial_fit(X_train, y_train)

y_pred = SGDclass.predict(X_test)

Stochastic Gradient Descent Classification: The Syntax

mini-batch version



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDclass = SGDclass.fit(X_train, y_train)

y_pred = SGDclass.predict(X_test)

Other loss methods exist: hinge, squared_hinge, etc.

Stochastic Gradient Descent Classification: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDclass = SGDclass.fit(X_train, y_train)

y_pred = SGDclass.predict(X_test)

Other loss methods exist: hinge, squared_hinge, etc.
See SVM lecture 

(week 7)

Stochastic Gradient Descent Classification: The Syntax




