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Learning Objectives

• Explain cost functions, regularization, feature selection, 
and hyper-parameters

• Summarize complex statistical optimization algorithms 
like gradient descent and its application to linear 
regression

• Apply Intel® Extension for Scikit-learn* to leverage 

underlying compute capabilities of hardware

•

https://intel.github.io/scikit-learn-intelex/
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Preventing Under- and Overfitting

• How to use a degree 9 polynomial and prevent overfitting?
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Regularization
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Ridge Regression (L2)

• Penalty shrinks magnitude of all coefficients

• Larger coefficients strongly penalized because of the 

squaring



Effect of Ridge Regression on Parameters
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Lasso Regression (L1)

• Penalty selectively shrinks some coefficients

• Can be used for feature selection

• Slower to converge than Ridge regression



Effect of Lasso Regression on Parameters
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Elastic Net Regularization

• Compromise of both Ridge and Lasso regression

• Requires tuning of additional parameter that distributes 

regularization penalty between L1 and L2
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Hyperparameters and Their Optimization

• Regularization coefficients (𝜆1 and 𝜆2) 

are empirically determined 

• Want value that generalizes—do not use 

test data for tuning

• Create additional split of data to tune 

hyperparameters—validation set

• Cross validation can also be used on 

training data

Training Data

Test Data

Use Test Data to Tune 𝜆?



Hyperparameters and Their Optimization

• Regularization coefficients (𝜆1 and 𝜆2) 

are empirically determined 

• Want value that generalizes—do not use 

test data for tuning

• Create additional split of data to tune 

hyperparameters—validation set

• Cross validation can also be used on 

training data

Training Data

Test Data

NO!

Use Test Data to Tune 𝜆?



Hyperparameters and Their Optimization

• Regularization coefficients (𝜆1 and 𝜆2) 

are empirically determined 

• Want value that generalizes—do not use 

test data for tuning

• Create additional split of data to tune 

hyperparameters—validation set

• Cross validation can also be used on 

training data

Training Data

Test Data

Tune 𝜆 with Cross Validation

Validation Data



Import the class containing the regression method

from sklearn.linear_model import Ridge

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

Ridge Regression: The Syntax

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc


Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

RR = Ridge(alpha=1.0)

Fit the instance on the data and then predict the expected value

RR = RR.fit(X_train, y_train)

y_predict = RR.predict(X_test)

The RidgeCV class will perform cross validation on a set of values for alpha.

Ridge Regression: The Syntax
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Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

RR = Ridge(alpha=1.0)

Fit the instance on the data and then predict the expected value

RR = RR.fit(X_train, y_train)

y_predict = RR.predict(X_test)

The RidgeCV class will perform cross validation on a set of values for alpha.

Ridge Regression: The Syntax

regularization

parameter



Import the class containing the regression method
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Ridge Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import Ridge

Create an instance of the class

RR = Ridge(alpha=1.0)

Fit the instance on the data and then predict the expected value

RR = RR.fit(X_train, y_train)

y_predict = RR.predict(X_test)

The RidgeCV class will perform cross validation on a set of values for alpha.



Lasso Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import Lasso

Create an instance of the class

LR = Lasso(alpha=1.0)

Fit the instance on the data and then predict the expected value

LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)

The LassoCV class will perform cross validation on a set of values for alpha.



Lasso Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import Lasso

Create an instance of the class

LR = Lasso(alpha=1.0)

Fit the instance on the data and then predict the expected value

LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)

The LassoCV class will perform cross validation on a set of values for alpha.

regularization

parameter



Elastic Net Regression: The Syntax

Import the class containing the regression method

from sklearn.linear_model import ElasticNet

Create an instance of the class

EN = ElasticNet(alpha=1.0, l1_ratio=0.5)

Fit the instance on the data and then predict the expected value

EN = EN.fit(X_train, y_train)

y_predict = EN.predict(X_test)

The ElasticNetCV class will perform cross validation on a set of values for l1_ratio 

and alpha.



Elastic Net Regression: The Syntax

alpha is the

regularization

parameter

Import the class containing the regression method

from sklearn.linear_model import ElasticNet

Create an instance of the class

EN = ElasticNet(alpha=1.0, l1_ratio=0.5)

Fit the instance on the data and then predict the expected value

EN = EN.fit(X_train, y_train)

y_predict = EN.predict(X_test)

The ElasticNetCV class will perform cross validation on a set of values for l1_ratio 

and alpha.



Elastic Net Regression: The Syntax

l1_ratio 

distributes alpha 

to L1/L2

Import the class containing the regression method

from sklearn.linear_model import ElasticNet

Create an instance of the class

EN = ElasticNet(alpha=1.0, l1_ratio=0.5)

Fit the instance on the data and then predict the expected value

EN = EN.fit(X_train, y_train)

y_predict = EN.predict(X_test)

The ElasticNetCV class will perform cross validation on a set of values for l1_ratio 

and alpha.



Feature Selection

• Regularization performs feature selection by shrinking the 

contribution of features

• For L1-regularization, this is accomplished by driving some 

coefficients to zero

• Feature selection can also be performed by removing 

features 
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coefficients to zero

• Feature selection can also be performed by removing 
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Why is Feature Selection Important?

• Reducing the number of features is another way to prevent 

overfitting (similar to regularization)

• For some models, fewer features can improve fitting time 

and/or results

• Identifying most critical features can improve model 

interpretability
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Why is Feature Selection Important?

• Reducing the number of features is another way to prevent 

overfitting (similar to regularization)

• For some models, fewer features can improve fitting time 

and/or results

• Identifying most critical features can improve model 

interpretability



Recursive Feature Elimination: The Syntax

Import the class containing the feature selection method

from sklearn.feature_selection import RFE

Create an instance of the class

rfeMod = RFE(est, n_features_to_select=5)

Fit the instance on the data and then predict the expected value

rfeMod = rfeMod.fit(X_train, y_train)

y_predict = rfeMod.predict(X_test)

The RFECV class will perform feature elimination using cross validation.



Recursive Feature Elimination: The Syntax

est is an instance 

of the model to 

use

Import the class containing the feature selection method

from sklearn.feature_selection import RFE

Create an instance of the class

rfeMod = RFE(est, n_features_to_select=5)

Fit the instance on the data and then predict the expected value

rfeMod = rfeMod.fit(X_train, y_train)

y_predict = rfeMod.predict(X_test)

The RFECV class will perform feature elimination using cross validation.



Recursive Feature Elimination: The Syntax

Import the class containing the feature selection method

from sklearn.feature_selection import RFE

Create an instance of the class

rfeMod = RFE(est, n_features_to_select=5)

Fit the instance on the data and then predict the expected value

rfeMod = rfeMod.fit(X_train, y_train)

y_predict = rfeMod.predict(X_test)

The RFECV class will perform feature elimination using cross validation.

final number of 

features





Gradient Descent
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Gradient Descent
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Start with a cost function J(𝛽):



Then gradually move towards the minimum.

𝐽 𝛽

Gradient Descent

𝛽

Start with a cost function J(𝛽):
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Gradient Descent with Linear Regression

• Now imagine there are two parameters 

(𝛽0, 𝛽1)

• This is a more complicated surface on 

which the minimum must be found

• How can we do this without knowing what 

𝐽 𝛽0, 𝛽1 looks like?

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0
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Gradient Descent with Linear Regression

• Now imagine there are two parameters 

(𝛽0, 𝛽1)

• This is a more complicated surface on 

which the minimum must be found

• How can we do this without knowing what 
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• Compute the gradient, 𝛻𝐽 𝛽0, 𝛽1 , which 

points in the direction of the biggest 

increase!

• -𝛻𝐽 𝛽0, 𝛽1 (negative gradient) points to 

the biggest decrease at that point!

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Gradient Descent with Linear Regression



• The gradient is the a vector whose 

coordinates consist of the partial derivatives 

of the parameters

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Gradient Descent with Linear Regression

𝛻𝐽 𝛽0, … , 𝛽𝑛 =<
𝜕𝐽

𝜕𝛽0
, … ,

𝜕𝐽
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>



• Then use the gradient (𝛻) and the cost 

function to calculate the next point (𝜔1) from 

the current one (𝜔0):

• The learning rate (𝛼) is a tunable parameter 

that determines step size
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𝛽1 𝛽0

Gradient Descent with Linear Regression
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• Then use the gradient (𝛻) and the cost 

function to calculate the next point (𝜔1) from 

the current one (𝜔0):
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• Each point can be iteratively calculated from 

the previous one
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Gradient Descent with Linear Regression
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• Each point can be iteratively calculated from 

the previous one
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• Use a single data point to determine the 

gradient and cost function instead of all the 

data

𝐽 𝛽0, 𝛽1

𝛽1 𝛽0

Stochastic Gradient Descent

𝜔1 = 𝜔0 − 𝛼𝛻
1

2
𝛽0 + 𝛽1𝑥𝑜𝑏𝑠

(0)
− 𝑦𝑜𝑏𝑠

(0)
2

𝜔0

𝜔1
𝜔1 = 𝜔0 − 𝛼𝛻

1

2
෍

𝑖=1

𝑚

𝛽0 + 𝛽1𝑥𝑜𝑏𝑠
(𝑖)

− 𝑦𝑜𝑏𝑠
(𝑖)

2



• Use a single data point to determine the 

gradient and cost function instead of all the 

data
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• Use a single data point to determine the 

gradient and cost function instead of all the 

data
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• Perform an update for every 𝑛 training 

examples 
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• Perform an update for every 𝑛 training 

examples 
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• Perform an update for every 𝑛 training 

examples 

Best of both worlds:

• Reduced memory relative to "vanilla" 

gradient descent

• Less noisy than stochastic gradient descent
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𝛽1 𝛽0

Mini Batch Gradient Descent
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• Mini batch implementation typically used for neural nets

• Batch sizes range from 50-256 points

• Trade off between batch size and learning rate (α)

• Tailor learning rate schedule: gradually reduce learning rate during 

a given epoch

Mini Batch Gradient Descent



• Mini batch implementation typically used for neural nets

• Batch sizes range from 50-256 points

• Trade off between batch size and learning rate (α)

• Tailor learning rate schedule: gradually reduce learning rate during 

a given epoch
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• Mini batch implementation typically used for neural nets

• Batch sizes range from 50-256 points

• Trade off between batch size and learning rate (𝛼)

• Tailor learning rate schedule: gradually reduce learning rate during 

a given epoch

Mini Batch Gradient Descent



• Mini batch implementation typically used for neural nets

• Batch sizes range from 50–256 points

• Trade off between batch size and learning rate (𝛼)

• Tailor learning rate schedule: gradually reduce learning rate during 

a given epoch

Mini Batch Gradient Descent



Stochastic Gradient Descent Regression: Syntax

Import the class containing the regression model

from sklearn.linear_model import SGDRegressor



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')

Stochastic Gradient Descent Regression: Syntax



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')

squared_loss = 

linear regression

Stochastic Gradient Descent Regression: Syntax



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')
regularization

parameters

Stochastic Gradient Descent Regression: Syntax



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDreg = SGDreg.fit(X_train, y_train)

y_pred = SGDreg.predict(X_test)

Stochastic Gradient Descent Regression: Syntax



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDreg = SGDreg.partial_fit(X_train, y_train)

y_pred = SGDreg.predict(X_test)

Stochastic Gradient Descent Regression: Syntax

mini-batch version



Import the class containing the regression model

from sklearn.linear_model import SGDRegressor

Create an instance of the class

SGDreg = SGDRregressor(loss='squared_loss',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDreg = SGDreg.fit(X_train, y_train)

y_pred = SGDreg.predict(X_test)

Other loss methods exist: epsilon_insensitive, huber, etc.

Stochastic Gradient Descent Regression: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Stochastic Gradient Descent Classification: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Stochastic Gradient Descent Classification: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDclass = SGDclass.fit(X_train, y_train)

y_pred = SGDclass.predict(X_test)

Other loss methods exist: hinge, squared_hinge, etc.

log loss = 

logistic regression

Stochastic Gradient Descent Classification: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDclass = SGDclass.fit(X_train, y_train)

y_pred = SGDclass.predict(X_test)

Stochastic Gradient Descent Classification: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDclass = SGDclass.partial_fit(X_train, y_train)

y_pred = SGDclass.predict(X_test)

Stochastic Gradient Descent Classification: The Syntax

mini-batch version



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDclass = SGDclass.fit(X_train, y_train)

y_pred = SGDclass.predict(X_test)

Other loss methods exist: hinge, squared_hinge, etc.

Stochastic Gradient Descent Classification: The Syntax



Import the class containing the classification model

from sklearn.linear_model import SGDClassifier

Create an instance of the class

SGDclass = SGDClassifier(loss='log',

alpha=0.1, penalty='l2')

Fit the instance on the data and then transform the data

SGDclass = SGDclass.fit(X_train, y_train)

y_pred = SGDclass.predict(X_test)

Other loss methods exist: hinge, squared_hinge, etc.
See SVM lecture 

(week 7)

Stochastic Gradient Descent Classification: The Syntax




