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Learning Obijectives

* Describe Logistic regression and how it differs from linear

regression
* |dentify metrics for classification errors and scenarios in

which they can be used
* Apply Intel® Extension for Scikit-learn* to leverage

underlying compute capabilities of hardware



https://intel.github.io/scikit-learn-intelex/

Introduction to Logistic Regression
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Linear Regression for Classification?
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Linear Regression for Classification?
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Linear Regression for Classification?
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If model result > 0.5: predict lost

If model result < 0.5: predict survived




Linear Regression for Classification?
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If model result > 0.5: predict lost
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What is this Function?




The Decision Boundary
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Logistic Regression
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The Decision Boundary
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Relationship of Logistic to Linear Regression
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Relationship of Logistic to Linear Regression
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Relationship of Logistic to Linear Regression
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Relationship of Logistic to Linear Regression
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Relationship of Logistic to Linear Regression
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Relationship of Logistic to Linear Regression
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Classification with Logistic Regression

One feature (nodes)
Two labels (survived, lost)
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Classification with Logistic Regression

Two features (nodes, age)
Two labels (survived, lost)
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Classification with Logistic Regression

Two features (nodes, age)
Two labels (survived, lost)
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Classification with Logistic Regression

Two features (nodes, age)
Two labels (survived, lost)
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Multiclass Classification with Logistic Regression

Two features (nodes, age)
Three labels (survived, complications, lost)
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One vs All: Survived vs All
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One vs All: Complications vs All
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One vs All: Loss vs All




Multiclass Decision Boundary

Assign most probable class to each region
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Logistic Regression: The Syntax

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

To use the Intel® Extension for Scikit-learn* variant of this algorithm:
* Install Intel® oneAPl Al Analytics Toolkit (Al Kit)

* Add the following two lines of code after the code above:
from sklearnex import patch_sklearn
patch_sklearn()



https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc

Logistic Regression: The Syntax

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression




Logistic Regression: The Syntax

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

LR = LogisticRegression(penalty='12', ¢=10.0)




Logistic Regression: The Syntax

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

LR = LogisticRegression(penalty='12', ¢=10.0)

¢

regularization

parameters



Logistic Regression: The Syntax

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

LR = LogisticRegression(penalty='12', ¢=10.0)

Fit the instance on the data and then predict the expected value

LR = LR.fit(X_train, y_train)

y_predict = LR.predict(X_test)




Logistic Regression: The Syntax

Import the class containing the classification method

from sklearn.linear_model import LogisticRegression

Create an instance of the class

LR = LogisticRegression(penalty='12', ¢=10.0)

Fit the instance on the data and then predict the expected value
LR = LR.fit(X_train, y_train)
y_predict = LR.predict(X_test)

Tune regularization parameters with cross-validation: LogisticRegressionCV.
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Software

Classification Error Metrics



Choosing the Right Error Measurement

* You are asked to build a classifier for leukemia

* Training data: 1% patients with leukemia, 99% healthy

* Measure accuracy: total % of predictions that are correct




Choosing the Right Error Measurement

* You are asked to build a classifier for leukemia
* Training data: 1% patients with leukemia, 99% healthy
* Measure accuracy: total % of predictions that are correct

* Build a simple model that always predicts "healthy"

* Accuracy will be 99%...




Confusion Matrix
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Accuracy: Predicting Correctly

Predicted
Positive

Predicted Negative

Actual True Positive
Positive (TP)
Actual True Negative
Negative (TN)
_ TP + TN
Accuracy =

TP + FN + FP + TN




Recall: Identifying All Positive Instances
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Precision: Identifying Only Positive Instances
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Specificity: Avoiding False Alarms
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Error Measurements
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Error Measurements

Predicted
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Actual True Positive
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Actual True Negative
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Error Measurements

Predicted
Positive

Predicted Negative

Actual True Positive
Positive (TP)
Actual True Negative
Negative (TN)
Accuracy = P+ ™ Recall or _ TP
TP+ FN+FP + TN Sensitivity TP+FN o _ s
Precision = TP Specificity = ™
TP + FP FP + TN

Precision * Recall

Precision + Recall
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Receiver Operating Characteristic (ROC)
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Area Under Curve (AUCQ)
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Measures total area under ROC curve




Precision Recall Curve (PR Curve)
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Multiple Class Error Metrics
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Multiple Class Error Metrics

Predicted Predicted Predicted
Class 1 Class 2 Class 3

_ TP1 + TP2 + TP3
Accuracy =
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Multiple Class Error Metrics

Predicted Predicted Predicted

Class 1 Class 2 Class 3
_ TP1 + TP2 + TP3
Accuracy =
Class 1
Actual .
TP2 Most multi-class error
Class 2 . . .
metrics are similar to
binary versions—
Actual .
TP
Class 3 3 just expand elements as
a sum
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Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score




Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Calculate the error on the test and predicted data sets

accuracy_value = accuracy_score(y_test, y_pred)




Classification Error Metrics: The Syntax

Import the desired error function

from sklearn.metrics import accuracy_score

Calculate the error on the test and predicted data sets

accuracy_value = accuracy_score(y_test, y_pred)

Lots of other error metrics and diagnostic tools:
from sklearn.metrics import precision_score, recall_score,
f1_score, roc_auc_score,

confusion_matrix, roc_curve,

precision_recall_curve
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