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Learning Objectives

• Recognize basics of probability theory and its application 
to the Naïve Bayes classifier

• The different types of Naïve Bayes classifiers and how to 
train a model using this algorithm

• Apply Intel® Extension for Scikit-learn* to leverage 

underlying compute capabilities of hardware

•

https://intel.github.io/scikit-learn-intelex/


Probability Basics

• Single event probability:
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Probability Basics

• Single event probability:

• Joint event probability:

• Conditional probability:

• Joint and conditional relationship:

𝑃 𝑋 , 𝑃 𝑌

𝑃 𝑋, 𝑌

𝑃 𝑋|𝑌 , 𝑃(𝑌|𝑋)
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Bayes Theorem Derivation

• By conditional and joint relationship:

• To invert conditional probability:

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑋

𝑃 𝑋 =෍

𝑌

𝑃(𝑋, 𝑌) =෍

𝑌
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Bayes Theorem Derivation

• Use conditional and joint relationship:

• To invert conditional probability:
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Bayes Theorem

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑋
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Naïve Bayes Classification

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑋

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒



Training Naïve Bayes

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 ∗ 𝑃 𝐶

Class Features

• For each class (𝐶), calculate 

probability given features (𝑋)

• Class assignment is selected 

from the one with maximum 

probability

𝑎𝑟𝑔𝑚𝑎𝑥

𝑘 ∈ {1,…𝐾}
𝑃 𝐶𝑘 ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖 𝐶𝑘



Training Naïve Bayes: The Naïve Assumption

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 ∗ 𝑃 𝐶

𝑃 𝐶 𝑋 = 𝑃 𝑋1, 𝑋2, … , 𝑋𝑛 𝐶 ∗ 𝑃 𝐶
𝑃 𝐶 𝑋 = 𝑃 𝑋1 𝑋2, … , 𝑋𝑛, 𝐶 ∗ 𝑃 𝑋2, … , 𝑋𝑛 𝐶 ∗ 𝑃 𝐶
𝑃 𝐶 𝑋 =…

• For each class (𝐶), 

calculate probability given 

features (𝑋)

• Difficult to calculate joint 

probabilities produced by 

expanding for all features 
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• For each class (𝐶), calculate 

probability given features (𝑋)

• Class assignment is selected 

based on maximum a posteriori

(MAP) rule

Training Naïve Bayes

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 ∗ 𝑃 𝐶
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• For each class (𝐶), calculate 

probability given features (𝑋)

• Class assignment is selected 

based on maximum a posteriori

(MAP) rule

Training Naïve Bayes

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 ∗ 𝑃 𝐶

𝑎𝑟𝑔𝑚𝑎𝑥

𝑘 ∈ {1,…𝐾}
𝑃 𝐶𝑘 ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖 𝐶𝑘

Means select potential class 

with largest value



The Log Trick

• Multiplying many values 

together causes computational 

instability (underflows)

• Work with log values and sum 

the results

𝑎𝑟𝑔𝑚𝑎𝑥

𝑘 ∈ {1,…𝐾}
𝑃 𝐶𝑘 ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖 𝐶𝑘

log(𝑃 𝐶𝑘 )෍

𝑖=1

𝑛

log(𝑃 𝑋𝑖 𝐶𝑘 )



The Log Trick

• Multiplying many values 

together causes computational 

instability (underflows)

• Work with log values and sum 
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Example: Predicting Tennis With Naïve Bayes



Example: Training Naïve Bayes Tennis Model

Create probability lookup tables based on training data

Outlook Play=Yes Play=No

Sunny 2/9 3/5

Overcast 4/9 0/5

Rain 3/9 2/5

Temperature Play=Yes Play=No

Hot 2/9 2/5

Mild 4/9 2/5

Cool 3/9 1/5

Humidity Play=Yes Play=No

High 3/9 4/5

Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5

Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14



Example: Training Naïve Bayes Tennis Model

Create probability lookup tables based on training data

Humidity Play=Yes Play=No

High 3/9 4/5

Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5

Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14

Outlook Play=Yes Play=No

Sunny 2/9 3/5

Overcast 4/9 0/5

Rain 3/9 2/5

Temperature Play=Yes Play=No

Hot 2/9 2/5

Mild 4/9 2/5

Cool 3/9 1/5
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Example: Predicting Tennis With Naïve Bayes

Predict outcome for the following:

x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Feature Play=Yes Play=No

Outlook=Sunny 2/9 3/5

Temperature=Cool 3/9 1/5

Humidity=High 3/9 4/5

Wind=Strong 3/9 3/5

Overall Label 9/14 5/14

Probability 0.0053 0.0206

𝑃 𝑦𝑒𝑠 𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔 = 𝑃 𝑠𝑢𝑛𝑛𝑦 𝑦𝑒𝑠 ∗ 𝑃 𝑐𝑜𝑜𝑙 𝑦𝑒𝑠 *
𝑃 ℎ𝑖𝑔ℎ 𝑦𝑒𝑠 * 𝑃 𝑠𝑡𝑟𝑜𝑛𝑔 𝑦𝑒𝑠 * 𝑃 𝑦𝑒𝑠

𝑃 𝑛𝑜 𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔 = 𝑃 𝑠𝑢𝑛𝑛𝑦 𝑛𝑜 ∗ 𝑃 𝑐𝑜𝑜𝑙 𝑛𝑜 *
𝑃 ℎ𝑖𝑔ℎ 𝑛𝑜 * 𝑃 𝑠𝑡𝑟𝑜𝑛𝑔 𝑛𝑜 * 𝑃 𝑛𝑜
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Example: Predicting Tennis With Naïve Bayes

Predict outcome for the following:

x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Feature Play=Yes Play=No

Outlook=Sunny 2/9 3/5

Temperature=Cool 3/9 1/5

Humidity=High 3/9 4/5

Wind=Strong 3/9 3/5

Overall Label 9/14 5/14

Probability 0.0053 0.0206



Laplace Smoothing

• Problem: categories with no 

entries result in a value of "0" for 

conditional probability

• Solution: add "1" to numerator 

and denominator of empty 

categories

𝑃 𝐶 𝑋 = 𝑃 𝑋1 𝐶 ∗ 𝑃 𝑋2 𝐶 ∗ 𝑃 𝐶

𝑃 𝑋1 𝐶 =
1

𝐶𝑜𝑢𝑛𝑡(𝐶) + 1



Laplace Smoothing

• Problem: categories with no 

entries result in a value of "0" for 

conditional probability

• Solution: add "1" to numerator 

and denominator of empty 

categories
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Laplace Smoothing

• Problem: categories with no 

entries result in a value of "0" for 

conditional probability

• Solution: add "1" to numerator 

and denominator of empty 

categories

𝑃 𝐶 𝑋 = 𝑃 𝑋1 𝐶 ∗ 𝑃 𝑋2 𝐶 ∗ 𝑃 𝐶

𝑃 𝑋1 𝐶 =
1

𝐶𝑜𝑢𝑛𝑡(𝐶) + 𝑛

0

𝑃 𝑋2 𝐶 =
𝐶𝑜𝑢𝑛𝑡 𝑋2 & 𝐶 + 1

𝐶𝑜𝑢𝑛𝑡(𝐶) + 𝑚



Types of Naïve Bayes

Naïve Bayes Model Data Type

Bernoulli Binary (T/F)

Bernoulli Count

Gaussian Continuous



Naïve Bayes Model Data Type

Bernoulli Binary (T/F)

Multinomial Discrete (e.g. count)

Gaussian Continuous

Types of Naïve Bayes



Naïve Bayes Model Data Type

Bernoulli Binary (T/F)

Multinomial Discrete (e.g. count)

Gaussian Continuous

Types of Naïve Bayes



• Model features contain different data types (continuous 

and categorical)

• Option 1: Bin continuous features to create categorical 

ones and fit multinomial model

• Option 2: Fit Gaussian model on continuous features and 

multinomial on categorical features; combine to create 

"meta model" (week 10)

Combining Feature Types

Problem

Solutions
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• Model features contain different data types (continuous 

and categorical)

• Option 1: Bin continuous features to create categorical 

ones and fit multinomial model

• Option 2: Fit Gaussian model on continuous features and 

multinomial on categorical features; combine to create 

"meta model" (week 10)

Combining Feature Types

Problem

Solutions



Distributed Computing with Naïve Bayes

• Well-suited for large data and distributed computing—limited 

parameters and log probabilities are a summation

• Scikit-Learn implementations contain a "partial_fit" method 

designed for out-of-core calculations



Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

eate an instance of the class

BNB = BernoulliNB(alpha=1.0)

Fit the instance on the data and then predict the expected value

BNB = BNB.fit(X_train, y_train)

y_predict = BNB.predict(X_test)

Other naïve Bayes models: , .

Naïve Bayes: The Syntax



Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the code above:

from sklearnex import patch_sklearn
patch_sklearn()

Naïve Bayes: The Syntax
from sklearnex import patch_sklearnpatch_sklearn()



Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

Create an instance of the class

BNB = BernoulliNB(alpha=1.0)

Fit the instance on the data and then predict the expected value

BNB = BNB.fit(X_train, y_train)

y_predict = BNB.predict(X_test)

Other naïve Bayes models: MultinomialNB, GaussianNB.

Naïve Bayes: The Syntax



Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

Create an instance of the class

BNB = BernoulliNB(alpha=1.0)

Fit the instance on the data and then predict the expected value

BNB = BNB.fit(X_train, y_train)

y_predict = BNB.predict(X_test)

Other naïve Bayes models: MultinomialNB, GaussianNB.

Naïve Bayes: The Syntax

Laplace smoothing 

parameter



Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

Create an instance of the class

BNB = BernoulliNB(alpha=1.0)

Fit the instance on the data and then predict the expected value

BNB = BNB.fit(X_train, y_train)

y_predict = BNB.predict(X_test)

Other naïve Bayes models: MultinomialNB, GaussianNB.

Naïve Bayes: The Syntax



Naïve Bayes: The Syntax

Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

Create an instance of the class

BNB = BernoulliNB(alpha=1.0)

Fit the instance on the data and then predict the expected value

BNB = BNB.fit(X_train, y_train)

y_predict = BNB.predict(X_test)

Other naïve Bayes models: MultinomialNB, GaussianNB.





Grid Search 

and Pipelines



Generalized Hyperparameter Grid Search

• Hyperparameter selection for 

regularization / better models 

requires cross validation on training 

data

• Linear and logistic regression 

methods have classes devoted to 

grid search (e.g. LassoCV)

Parameter A

Pa
ra

m
e
te

r 
B



Generalized Hyperparameter Grid Search

• Grid search can be useful for other 

methods too, so a generalized method is 

desirable

• Scikit-learn contains GridSearchCV, which 

performs a grid search with parameters 

using cross validation

Parameter A

Pa
ra

m
e
te

r 
B



Grid Search with Cross Validation: The Syntax

Import the class containing the grid search method

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the code above:

from sklearnex import patch_sklearn
patch_sklearn()



Grid Search with Cross Validation: The Syntax

Import the class containing the grid search method

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

Create an instance of the estimator and grid search class

LR = LogisticRegression(penalty='l2')

GS = GridSearchCV(LR, param_grid={'c':[0.001, 0.01, 0.1]}, 

scoring='accuracy', cv=4)

Fit the instance on the data to find the best model and then predict

GS = GS.fit(X_train, y_train)

y_train = GS.predict(X_test)



Grid Search with Cross Validation: The Syntax

Import the class containing the grid search method

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

Create an instance of the estimator and grid search class

LR = LogisticRegression(penalty='l2')

GS = GridSearchCV(LR, param_grid={'c':[0.001, 0.01, 0.1]}, 

scoring='accuracy', cv=4)

Fit the instance on the data to find the best model and then predict

GS = GS.fit(X_train, y_train)

y_train = GS.predict(X_test)



Grid Search with Cross Validation: The Syntax

Import the class containing the grid search method

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

Create an instance of the estimator and grid search class
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Pipelines make automation and reproducibility easier!



Pipelines: The Syntax

Import the class containing the pipeline method

from sklearn.pipeline import Pipeline

Create an instance of the class with estimators

estimators = [('scaler', MinMaxScaler()), ('lasso', Lasso())]

Pipe = Pipeline(estimators)

Fit the instance on the data and then predict the expected value

Pipe = Pipe.fit(X_train, y_train)

y_predict = Pipe.predict(X_test)

Features can be combined from different transform method using FeatureUnion
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