
Naïve Bayes

Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, IN THIS SUMMARY.

Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

http://www.intel.com/
https://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement

Learning Objectives

• Recognize basics of probability theory and its application
to the Naïve Bayes classifier

• The different types of Naïve Bayes classifiers and how to
train a model using this algorithm

• Apply Intel® Extension for Scikit-learn* to leverage

underlying compute capabilities of hardware

•

https://intel.github.io/scikit-learn-intelex/

Probability Basics

• Single event probability:

𝑃 𝑋 , 𝑃 𝑌

𝑃 𝑋 𝑃 𝑌

Probability Basics

• Single event probability:

𝑃 𝑋 , 𝑃 𝑌

𝑃 𝑋 𝑃 𝑌

Probability Basics

𝑃 𝑋, 𝑌

• Single event probability:

• Joint event probability:

• Conditional probability:

• Joint and conditional relationship:

𝑃 𝑋 , 𝑃 𝑌

𝑃 𝑋, 𝑌

𝑃 𝑋|𝑌 , 𝑃(𝑌|𝑋)

Probability Basics

• Single event probability:

• Joint event probability:

• Conditional probability:

𝑃 𝑋 , 𝑃 𝑌

𝑃 𝑋, 𝑌

𝑃 𝑋|𝑌 , 𝑃(𝑌|𝑋)

𝑃 𝑋|𝑌

Probability Basics

• Single event probability:

• Joint event probability:

• Conditional probability:

• Joint and conditional relationship:

𝑃 𝑋 , 𝑃 𝑌

𝑃 𝑋, 𝑌

𝑃 𝑋|𝑌 , 𝑃(𝑌|𝑋)

𝑃 𝑌|𝑋

Probability Basics

• Single event probability:

• Joint event probability:

• Conditional probability:

• Joint and conditional relationship:

𝑃 𝑋 , 𝑃 𝑌

𝑃 𝑋, 𝑌

𝑃 𝑋|𝑌 , 𝑃(𝑌|𝑋)

𝑃 𝑋, 𝑌 = 𝑃 𝑌 𝑋 ∗ 𝑃 𝑋 = 𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

Bayes Theorem Derivation

• By conditional and joint relationship:

• To invert conditional probability:

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑋

𝑃 𝑋 =෍

𝑌

𝑃(𝑋, 𝑌) =෍

𝑌

𝑃(𝑋|𝑌)

𝑃 𝑌 𝑋 ∗ 𝑃 𝑋 = 𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

Bayes Theorem Derivation

• Use conditional and joint relationship:

• To invert conditional probability:

𝑃 𝑌 𝑋 ∗ 𝑃 𝑋 = 𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑋

Bayes Theorem Derivation

• Use conditional and joint relationship:

• To invert conditional probability:

𝑃 𝑌 𝑋 ∗ 𝑃 𝑋 = 𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑋

𝑃 𝑋 =෍

𝑍

𝑃(𝑋, 𝑍) =෍

𝑍

𝑃 𝑋 𝑍 ∗ 𝑃(𝑍)

Bayes Theorem

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑋

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

Bayes Theorem

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑋

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

Naïve Bayes Classification

𝑃 𝑌 𝑋 =
𝑃 𝑋 𝑌 ∗ 𝑃 𝑌

𝑃 𝑋

𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∗ 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

Training Naïve Bayes

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 ∗ 𝑃 𝐶

Class Features

• For each class (𝐶), calculate

probability given features (𝑋)

• Class assignment is selected

from the one with maximum

probability

𝑎𝑟𝑔𝑚𝑎𝑥

𝑘 ∈ {1,…𝐾}
𝑃 𝐶𝑘 ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖 𝐶𝑘

Training Naïve Bayes: The Naïve Assumption

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 ∗ 𝑃 𝐶

𝑃 𝐶 𝑋 = 𝑃 𝑋1, 𝑋2, … , 𝑋𝑛 𝐶 ∗ 𝑃 𝐶
𝑃 𝐶 𝑋 = 𝑃 𝑋1 𝑋2, … , 𝑋𝑛, 𝐶 ∗ 𝑃 𝑋2, … , 𝑋𝑛 𝐶 ∗ 𝑃 𝐶
𝑃 𝐶 𝑋 =…

• For each class (𝐶),

calculate probability given

features (𝑋)

• Difficult to calculate joint

probabilities produced by

expanding for all features

Training Naïve Bayes: The Naïve Assumption

𝑃 𝐶 𝑋 = 𝑃 𝑋1 𝐶 ∗ 𝑃 𝑋2 𝐶 ∗ 𝑃 𝑋𝑛 𝐶 ∗ 𝑃 𝐶

• For each class (𝐶),

calculate probability

given features (𝑋)

• Solution: assume all

features independent of

each other

• This is the "naïve"

assumption

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 ∗ 𝑃 𝐶

𝑃 𝐶 𝑋 = 𝑃 𝐶 ෑ
𝑖=1

𝑛

𝑃 𝑋𝑖 𝐶

Training Naïve Bayes: The Naïve Assumption

𝑃 𝐶 𝑋 = 𝑃 𝑋1 𝐶 ∗ 𝑃 𝑋2 𝐶 ∗ 𝑃 𝑋𝑛 𝐶 ∗ 𝑃 𝐶

• For each class (𝐶),

calculate probability

given features (𝑋)

• Solution: assume all

features independent of

each other

• This is the "naïve"

assumption

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 ∗ 𝑃 𝐶

𝑃 𝐶 𝑋 = 𝑃 𝐶 ෑ
𝑖=1

𝑛

𝑃 𝑋𝑖 𝐶

• For each class (𝐶), calculate

probability given features (𝑋)

• Class assignment is selected

based on maximum a posteriori

(MAP) rule

Training Naïve Bayes

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 ∗ 𝑃 𝐶

𝑎𝑟𝑔𝑚𝑎𝑥

𝑘 ∈ {1,…𝐾}
𝑃 𝐶𝑘 ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖 𝐶𝑘

• For each class (𝐶), calculate

probability given features (𝑋)

• Class assignment is selected

based on maximum a posteriori

(MAP) rule

Training Naïve Bayes

𝑃 𝐶 𝑋 = 𝑃 𝑋 𝐶 ∗ 𝑃 𝐶

𝑎𝑟𝑔𝑚𝑎𝑥

𝑘 ∈ {1,…𝐾}
𝑃 𝐶𝑘 ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖 𝐶𝑘

Means select potential class

with largest value

The Log Trick

• Multiplying many values

together causes computational

instability (underflows)

• Work with log values and sum

the results

𝑎𝑟𝑔𝑚𝑎𝑥

𝑘 ∈ {1,…𝐾}
𝑃 𝐶𝑘 ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖 𝐶𝑘

log(𝑃 𝐶𝑘)෍

𝑖=1

𝑛

log(𝑃 𝑋𝑖 𝐶𝑘)

The Log Trick

• Multiplying many values

together causes computational

instability (underflows)

• Work with log values and sum

the results

𝑎𝑟𝑔𝑚𝑎𝑥

𝑘 ∈ {1,…𝐾}
𝑃 𝐶𝑘 ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖 𝐶𝑘

log(𝑃 𝐶𝑘)෍

𝑖=1

𝑛

log(𝑃 𝑋𝑖 𝐶𝑘)

Example: Predicting Tennis With Naïve Bayes

Example: Training Naïve Bayes Tennis Model

Create probability lookup tables based on training data

Outlook Play=Yes Play=No

Sunny 2/9 3/5

Overcast 4/9 0/5

Rain 3/9 2/5

Temperature Play=Yes Play=No

Hot 2/9 2/5

Mild 4/9 2/5

Cool 3/9 1/5

Humidity Play=Yes Play=No

High 3/9 4/5

Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5

Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14

Example: Training Naïve Bayes Tennis Model

Create probability lookup tables based on training data

Humidity Play=Yes Play=No

High 3/9 4/5

Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5

Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14

Outlook Play=Yes Play=No

Sunny 2/9 3/5

Overcast 4/9 0/5

Rain 3/9 2/5

Temperature Play=Yes Play=No

Hot 2/9 2/5

Mild 4/9 2/5

Cool 3/9 1/5

Example: Training Naïve Bayes Tennis Model

Create probability lookup tables based on training data

Outlook Play=Yes Play=No

Sunny 2/9 3/5

Overcast 4/9 0/5

Rain 3/9 2/5

Temperature Play=Yes Play=No

Hot 2/9 2/5

Mild 4/9 2/5

Cool 3/9 1/5

Humidity Play=Yes Play=No

High 3/9 4/5

Normal 6/9 1/5

Wind Play=Yes Play=No

Strong 3/9 3/5

Weak 6/9 2/5

P(Play=Yes) = 9/14 P(Play=No) = 5/14

Example: Predicting Tennis With Naïve Bayes

Predict outcome for the following:

x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Feature Play=Yes Play=No

Outlook=Sunny 2/9 3/5

Temperature=Cool 3/9 1/5

Humidity=High 3/9 4/5

Wind=Strong 3/9 3/5

Overall Label 9/14 5/14

Probability 0.0053 0.0206

𝑃 𝑦𝑒𝑠 𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔 = 𝑃 𝑠𝑢𝑛𝑛𝑦 𝑦𝑒𝑠 ∗ 𝑃 𝑐𝑜𝑜𝑙 𝑦𝑒𝑠 *
𝑃 ℎ𝑖𝑔ℎ 𝑦𝑒𝑠 * 𝑃 𝑠𝑡𝑟𝑜𝑛𝑔 𝑦𝑒𝑠 * 𝑃 𝑦𝑒𝑠

𝑃 𝑛𝑜 𝑠𝑢𝑛𝑛𝑦, 𝑐𝑜𝑜𝑙, ℎ𝑖𝑔ℎ, 𝑠𝑡𝑟𝑜𝑛𝑔 = 𝑃 𝑠𝑢𝑛𝑛𝑦 𝑛𝑜 ∗ 𝑃 𝑐𝑜𝑜𝑙 𝑛𝑜 *
𝑃 ℎ𝑖𝑔ℎ 𝑛𝑜 * 𝑃 𝑠𝑡𝑟𝑜𝑛𝑔 𝑛𝑜 * 𝑃 𝑛𝑜

Example: Predicting Tennis With Naïve Bayes

Predict outcome for the following:

x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Feature Play=Yes Play=No

Outlook=Sunny 2/9 3/5

Temperature=Cool 3/9 1/5

Humidity=High 3/9 4/5

Wind=Strong 3/9 3/5

Overall Label 9/14 5/14

Probability 0.0053 0.0206

Example: Predicting Tennis With Naïve Bayes

Predict outcome for the following:

x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Feature Play=Yes Play=No

Outlook=Sunny 2/9 3/5

Temperature=Cool 3/9 1/5

Humidity=High 3/9 4/5

Wind=Strong 3/9 3/5

Overall Label 9/14 5/14

Probability 0.0053 0.0206

Example: Predicting Tennis With Naïve Bayes

Predict outcome for the following:

x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Feature Play=Yes Play=No

Outlook=Sunny 2/9 3/5

Temperature=Cool 3/9 1/5

Humidity=High 3/9 4/5

Wind=Strong 3/9 3/5

Overall Label 9/14 5/14

Probability 0.0053 0.0206

Example: Predicting Tennis With Naïve Bayes

Predict outcome for the following:

x’=(Outlook=Sunny, Temperature=Cool, Humidity=High, Wind=Strong)

Feature Play=Yes Play=No

Outlook=Sunny 2/9 3/5

Temperature=Cool 3/9 1/5

Humidity=High 3/9 4/5

Wind=Strong 3/9 3/5

Overall Label 9/14 5/14

Probability 0.0053 0.0206

Laplace Smoothing

• Problem: categories with no

entries result in a value of "0" for

conditional probability

• Solution: add "1" to numerator

and denominator of empty

categories

𝑃 𝐶 𝑋 = 𝑃 𝑋1 𝐶 ∗ 𝑃 𝑋2 𝐶 ∗ 𝑃 𝐶

𝑃 𝑋1 𝐶 =
1

𝐶𝑜𝑢𝑛𝑡(𝐶) + 1

Laplace Smoothing

• Problem: categories with no

entries result in a value of "0" for

conditional probability

• Solution: add "1" to numerator

and denominator of empty

categories

𝑃 𝐶 𝑋 = 𝑃 𝑋1 𝐶 ∗ 𝑃 𝑋2 𝐶 ∗ 𝑃 𝐶

𝑃 𝑋1 𝐶 =
1

𝐶𝑜𝑢𝑛𝑡(𝐶) + 1

0

Laplace Smoothing

• Problem: categories with no

entries result in a value of "0" for

conditional probability

• Solution: add "1" to numerator

and denominator of empty

categories

𝑃 𝐶 𝑋 = 𝑃 𝑋1 𝐶 ∗ 𝑃 𝑋2 𝐶 ∗ 𝑃 𝐶

𝑃 𝑋1 𝐶 =
1

𝐶𝑜𝑢𝑛𝑡(𝐶) + 𝑛

0

𝑃 𝑋2 𝐶 =
𝐶𝑜𝑢𝑛𝑡 𝑋2 & 𝐶 + 1

𝐶𝑜𝑢𝑛𝑡(𝐶) + 𝑚

Types of Naïve Bayes

Naïve Bayes Model Data Type

Bernoulli Binary (T/F)

Bernoulli Count

Gaussian Continuous

Naïve Bayes Model Data Type

Bernoulli Binary (T/F)

Multinomial Discrete (e.g. count)

Gaussian Continuous

Types of Naïve Bayes

Naïve Bayes Model Data Type

Bernoulli Binary (T/F)

Multinomial Discrete (e.g. count)

Gaussian Continuous

Types of Naïve Bayes

• Model features contain different data types (continuous

and categorical)

• Option 1: Bin continuous features to create categorical

ones and fit multinomial model

• Option 2: Fit Gaussian model on continuous features and

multinomial on categorical features; combine to create

"meta model" (week 10)

Combining Feature Types

Problem

Solutions

Combining Feature Types

• Model features contain different data types (continuous

and categorical)

• Option 1: Bin continuous features to create categorical

ones and fit multinomial model

• Option 2: Fit Gaussian model on continuous features and

multinomial on categorical features; combine to create

"meta model" (week 10)

Problem

Solutions

• Model features contain different data types (continuous

and categorical)

• Option 1: Bin continuous features to create categorical

ones and fit multinomial model

• Option 2: Fit Gaussian model on continuous features and

multinomial on categorical features; combine to create

"meta model" (week 10)

Combining Feature Types

Problem

Solutions

Distributed Computing with Naïve Bayes

• Well-suited for large data and distributed computing—limited

parameters and log probabilities are a summation

• Scikit-Learn implementations contain a "partial_fit" method

designed for out-of-core calculations

Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

eate an instance of the class

BNB = BernoulliNB(alpha=1.0)

Fit the instance on the data and then predict the expected value

BNB = BNB.fit(X_train, y_train)

y_predict = BNB.predict(X_test)

Other naïve Bayes models: , .

Naïve Bayes: The Syntax

Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the code above:

from sklearnex import patch_sklearn
patch_sklearn()

Naïve Bayes: The Syntax
from sklearnex import patch_sklearnpatch_sklearn()

Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

Create an instance of the class

BNB = BernoulliNB(alpha=1.0)

Fit the instance on the data and then predict the expected value

BNB = BNB.fit(X_train, y_train)

y_predict = BNB.predict(X_test)

Other naïve Bayes models: MultinomialNB, GaussianNB.

Naïve Bayes: The Syntax

Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

Create an instance of the class

BNB = BernoulliNB(alpha=1.0)

Fit the instance on the data and then predict the expected value

BNB = BNB.fit(X_train, y_train)

y_predict = BNB.predict(X_test)

Other naïve Bayes models: MultinomialNB, GaussianNB.

Naïve Bayes: The Syntax

Laplace smoothing

parameter

Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

Create an instance of the class

BNB = BernoulliNB(alpha=1.0)

Fit the instance on the data and then predict the expected value

BNB = BNB.fit(X_train, y_train)

y_predict = BNB.predict(X_test)

Other naïve Bayes models: MultinomialNB, GaussianNB.

Naïve Bayes: The Syntax

Naïve Bayes: The Syntax

Import the class containing the classification method

from sklearn.naive_bayes import BernoulliNB

Create an instance of the class

BNB = BernoulliNB(alpha=1.0)

Fit the instance on the data and then predict the expected value

BNB = BNB.fit(X_train, y_train)

y_predict = BNB.predict(X_test)

Other naïve Bayes models: MultinomialNB, GaussianNB.

Grid Search

and Pipelines

Generalized Hyperparameter Grid Search

• Hyperparameter selection for

regularization / better models

requires cross validation on training

data

• Linear and logistic regression

methods have classes devoted to

grid search (e.g. LassoCV)

Parameter A

Pa
ra

m
e
te

r
B

Generalized Hyperparameter Grid Search

• Grid search can be useful for other

methods too, so a generalized method is

desirable

• Scikit-learn contains GridSearchCV, which

performs a grid search with parameters

using cross validation

Parameter A

Pa
ra

m
e
te

r
B

Grid Search with Cross Validation: The Syntax

Import the class containing the grid search method

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the code above:

from sklearnex import patch_sklearn
patch_sklearn()

Grid Search with Cross Validation: The Syntax

Import the class containing the grid search method

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

Create an instance of the estimator and grid search class

LR = LogisticRegression(penalty='l2')

GS = GridSearchCV(LR, param_grid={'c':[0.001, 0.01, 0.1]},

scoring='accuracy', cv=4)

Fit the instance on the data to find the best model and then predict

GS = GS.fit(X_train, y_train)

y_train = GS.predict(X_test)

Grid Search with Cross Validation: The Syntax

Import the class containing the grid search method

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

Create an instance of the estimator and grid search class

LR = LogisticRegression(penalty='l2')

GS = GridSearchCV(LR, param_grid={'c':[0.001, 0.01, 0.1]},

scoring='accuracy', cv=4)

Fit the instance on the data to find the best model and then predict

GS = GS.fit(X_train, y_train)

y_train = GS.predict(X_test)

Grid Search with Cross Validation: The Syntax

Import the class containing the grid search method

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

Create an instance of the estimator and grid search class

LR = LogisticRegression(penalty='l2')

GS = GridSearchCV(LR, param_grid={'c':[0.001, 0.01, 0.1]},

scoring='accuracy', cv=4)

Fit the instance on the data to find the best model and then predict

GS = GS.fit(X_train, y_train)

y_train = GS.predict(X_test)

Grid Search with Cross Validation: The Syntax

Import the class containing the grid search method

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

Create an instance of the estimator and grid search class

LR = LogisticRegression(penalty='l2')

GS = GridSearchCV(LR, param_grid={'c':[0.001, 0.01, 0.1]},

scoring='accuracy', cv=4)

Fit the instance on the data to find the best model and then predict

GS = GS.fit(X_train, y_train)

y_train = GS.predict(X_test)

logistic regression

method

Grid Search with Cross Validation: The Syntax

Import the class containing the grid search method

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import GridSearchCV

Create an instance of the estimator and grid search class

LR = LogisticRegression(penalty='l2')

GS = GridSearchCV(LR, param_grid={'c':[0.001, 0.01, 0.1]},

scoring='accuracy', cv=4)

Fit the instance on the data to find the best model and then predict

GS = GS.fit(X_train, y_train)

y_train = GS.predict(X_test)

Optimizing the Rest of the Pipeline

• Grid searches enable model

parameters to be optimized

• How can this be incorporated with

other steps of the process (e.g.

feature extraction and

transformation)?

Pipelines!

Optimizing the Rest of the Pipeline

• Grid searches enable model

parameters to be optimized

• How can this be incorporated with

other steps of the process (e.g.

feature extraction and

transformation)?

Pipelines!

Optimizing the Rest of the Pipeline

• Grid searches enable model

parameters to be optimized

• How can this be incorporated with

other steps of the process (e.g.

feature extraction and

transformation)?

Pipelines!

• Machine learning models often selected empirically

• By trying different processing methods and tuning multiple

models

Automating Machine Learning with Pipelines

Data
Log

Transform

Standard

Scaler
KNN Prediction

• Machine learning models often selected empirically

• By trying different processing methods and tuning multiple

models

Automating Machine Learning with Pipelines

Data
Log

Transform

Min-Max

Scaler

Logistic

Regression

Best

Prediction

• Machine learning models often selected empirically

• By trying different processing methods and tuning multiple

models

Automating Machine Learning with Pipelines

Data
Log

Transform

Min-Max

Scaler

Logistic

Regression

Best

Prediction

How to automate this process?

• Pipelines in Scikit-Learn allow feature transformation steps

and models to be chained together

• Successive steps perform 'fit' and 'transform' before sending

data to the next step

Automating Machine Learning with Pipelines

Data
Log

Transform

Min-Max

Scaler

Logistic

Regression

Best

Prediction

• Pipelines in Scikit-Learn allow feature transformation steps

and models to be chained together

• Successive steps perform 'fit' and 'transform' before sending

data to the next step

Automating Machine Learning with Pipelines

Data
Log

Transform

Min-Max

Scaler

Logistic

Regression

Best

Prediction

• Pipelines in Scikit-Learn allow feature transformation steps

and models to be chained together

• Successive steps perform 'fit' and 'transform' before sending

data to the next step

Automating Machine Learning with Pipelines

Data
Log

Transform

Min-Max

Scaler

Logistic

Regression

Best

Prediction

Pipelines make automation and reproducibility easier!

Pipelines: The Syntax

Import the class containing the pipeline method

from sklearn.pipeline import Pipeline

Create an instance of the class with estimators

estimators = [('scaler', MinMaxScaler()), ('lasso', Lasso())]

Pipe = Pipeline(estimators)

Fit the instance on the data and then predict the expected value

Pipe = Pipe.fit(X_train, y_train)

y_predict = Pipe.predict(X_test)

Features can be combined from different transform method using FeatureUnion

Pipelines: The Syntax

Import the class containing the pipeline method

from sklearn.pipeline import Pipeline

Create an instance of the class with estimators

estimators = [('scaler', MinMaxScaler()), ('lasso', Lasso())]

Pipe = Pipeline(estimators)

Fit the instance on the data and then predict the expected value

Pipe = Pipe.fit(X_train, y_train)

y_predict = Pipe.predict(X_test)

Features can be combined from different transform method using FeatureUnion

Pipelines: The Syntax

Import the class containing the pipeline method

from sklearn.pipeline import Pipeline

Create an instance of the class with estimators

estimators = [('scaler', MinMaxScaler()), ('lasso', Lasso())]

Pipe = Pipeline(estimators)

Fit the instance on the data and then predict the expected value

Pipe = Pipe.fit(X_train, y_train)

y_predict = Pipe.predict(X_test)

Features can be combined from different transform method using FeatureUnion

feature scaler

class

Pipelines: The Syntax

Import the class containing the pipeline method

from sklearn.pipeline import Pipeline

Create an instance of the class with estimators

estimators = [('scaler', MinMaxScaler()), ('lasso', Lasso())]

Pipe = Pipeline(estimators)

Fit the instance on the data and then predict the expected value

Pipe = Pipe.fit(X_train, y_train)

y_predict = Pipe.predict(X_test)

Features can be combined from different transform method using FeatureUnion

lasso model class

Pipelines: The Syntax

Import the class containing the pipeline method

from sklearn.pipeline import Pipeline

Create an instance of the class with estimators

estimators = [('scaler', MinMaxScaler()), ('lasso', Lasso())]

Pipe = Pipeline(estimators)

Fit the instance on the data and then predict the expected value

Pipe = Pipe.fit(X_train, y_train)

y_predict = Pipe.predict(X_test)

Features can be combined from different transform method using FeatureUnion

Pipelines: The Syntax

Import the class containing the pipeline method

from sklearn.pipeline import Pipeline

Create an instance of the class with estimators

estimators = [('scaler', MinMaxScaler()), ('lasso', Lasso())]

Pipe = Pipeline(estimators)

Fit the instance on the data and then predict the expected value

Pipe = Pipe.fit(X_train, y_train)

y_predict = Pipe.predict(X_test)

Features can be combined from different transform method using FeatureUnion

