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Learning Objectives

• Apply support vector machines (SVMs)—a popular algorithm used 
for classification problems

• Recognize SVM similarity to logistic regression

• Compute the cost function of SVMs

• Apply regularization in SVMs and some tips to obtain non-linear 
classifications with SVMs

• Apply Intel® Extension for Scikit-learn* to leverage underlying 

compute capabilities of hardware

https://intel.github.io/scikit-learn-intelex/


Relationship to Logistic Regression

Number of Positive Nodes

Survived: 0.0
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Support Vector Machines (SVM)

Number of Positive Nodes
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Maximize the region between classes



Similarity Between Logistic Regression and SVM
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Logistic Regression vs SVM Cost Functions
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Logistic Regression vs SVM Cost Functions
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The SVM Cost Function

Number of Positive Nodes

Survived: 0.0

Lost: 1.0Patient

Status

After Five 

Years

0.5

3

2

1

-3 -2 -1 0 1 2 3

SVM

Cost Function

for Lost Class



The SVM Cost Function

Number of Positive Nodes

Survived: 0.0

Lost: 1.0Patient

Status

After Five 

Years

0.5

3

2

1

-3 -2 -1 0 1 2 3

SVM

Cost Function

for Lost Class



The SVM Cost Function

Number of Positive Nodes

Survived: 0.0

Lost: 1.0Patient

Status

After Five 

Years

0.5

3

2

1

-3 -2 -1 0 1 2 3

SVM

Cost Function

for Lost Class



The SVM Cost Function

Number of Positive Nodes

Survived: 0.0

Lost: 1.0Patient

Status

After Five 

Years

0.5

3

2

1

-3 -2 -1 0 1 2 3

SVM

Cost Function

for Lost Class



The SVM Cost Function

Number of Positive Nodes

Survived: 0.0

Lost: 1.0Patient

Status

After Five 

Years

0.5

3

2

1

-3 -2 -1 0 1 2 3

SVM

Cost Function

for Lost Class



Number of Malignant Nodes

0

Age

60

40

20

10 20

Outlier Sensitivity in SVMs



Number of Malignant Nodes

0

Age

60

40

20

10 20

Outlier Sensitivity in SVMs



Number of Malignant Nodes

0

Age

60

40

20

10 20

Outlier Sensitivity in SVMs



Number of Malignant Nodes

0

Age

60

40

20

10 20

Outlier Sensitivity in SVMs



Number of Malignant Nodes

0

Age

60

40

20

10 20
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This is probably still the correct 
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Regularization in SVMs

𝐽(𝛽𝑖) = 𝑆𝑉𝑀𝐶𝑜𝑠𝑡(𝛽𝑖) + 
1

𝐶
σ𝑖 𝛽𝑖

Slightly Higher

Much Smaller



Interpretation of SVM Coefficients 
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Interpretation of SVM Coefficients 

𝐽(𝛽𝑖) = 𝑆𝑉𝑀𝐶𝑜𝑠𝑡(𝛽𝑖) + 
1

𝐶
σ𝑖 𝛽𝑖

Number of Malignant Nodes

0

Age

60

40

20

10 20

𝛽1
𝛽2
𝛽3

Vector orthogonal

to the hyperplane



Linear SVM: The Syntax

Import the class containing the classification method

from sklearn.svm import LinearSVC

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc


Linear SVM: The Syntax

Import the class containing the classification method

from sklearn.svm import LinearSVC



Linear SVM: The Syntax

Import the class containing the classification method

from sklearn.svm import LinearSVC

Create an instance of the class

LinSVC = LinearSVC(penalty='l2', C=10.0)



Linear SVM: The Syntax

Import the class containing the classification method

from sklearn.svm import LinearSVC

Create an instance of the class

LinSVC = LinearSVC(penalty='l2', C=10.0)
regularization

parameters



Linear SVM: The Syntax

Import the class containing the classification method

from sklearn.svm import LinearSVC

Create an instance of the class

LinSVC = LinearSVC(penalty='l2', C=10.0)

Fit the instance on the data and then predict the expected value

LinSVC = LinSVC.fit(X_train, y_train)

y_predict = LinSVC.predict(X_test)



Linear SVM: The Syntax

Import the class containing the classification method

from sklearn.svm import LinearSVC

Create an instance of the class

LinSVC = LinearSVC(penalty='l2', C=10.0)

Fit the instance on the data and then predict the expected value

LinSVC = LinSVC.fit(X_train, y_train)

y_predict = LinSVC.predict(X_test)

Tune regularization parameters with cross-validation.
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Non-Linear Decision Boundaries with SVM
Non-linear data can be made linear 

with higher dimensionality

𝜙



The Kernel Trick
Transform data so it is 

linearly separable

𝜙
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Palme d’Or Winners at Cannes

SVM Gaussian Kernel

IMDB User Rating

Budget

Approach 1:

Create higher order 

features to transform 

the data.

Budget2 + 

Rating2 + 

Budget * Rating +

…



Palme d’Or Winners at Cannes

SVM Gaussian Kernel

IMDB User Rating

Budget

Approach 2:

Transform the space 

to a different

coordinate system.
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Palme d’Or Winners at Cannes

SVM Gaussian Kernel

IMDB User Rating

Budget

Define Feature 3:

Similarity to 

"Transformers"



Palme d’Or Winners at Cannes

SVM Gaussian Kernel

IMDB User Rating

Budget

Create a 

Gaussian function at 

feature 1

𝑎1(𝑥
𝑜𝑏𝑠) = 𝑒𝑥𝑝

−σ(𝑥𝑖
𝑜𝑏𝑠 − 𝑥𝑖

𝑃𝑢𝑙𝑝 𝐹𝑖𝑐𝑡𝑖𝑜𝑛
)2

2𝜎2



Palme d’Or Winners at Cannes

SVM Gaussian Kernel

IMDB User Rating

Budget

Create a 

Gaussian function at 

feature 2

𝑎1(𝑥
𝑜𝑏𝑠) = 𝑒𝑥𝑝

−σ(𝑥𝑖
𝑜𝑏𝑠 − 𝑥𝑖

𝐵𝑙𝑎𝑐𝑘 𝑆𝑤𝑎𝑛)2

2𝜎2



Palme d’Or Winners at Cannes

SVM Gaussian Kernel

IMDB User Rating

Budget Create a 

Gaussian function at 

feature 3

𝑎1(𝑥
𝑜𝑏𝑠) = 𝑒𝑥𝑝

−σ(𝑥𝑖
𝑜𝑏𝑠 − 𝑥𝑖

𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟𝑠
)2

2𝜎2
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SVM Gaussian Kernel

IMDB User Rating

Budget

a1=0.90
a2=0.92
a3=0.30

Transformation: 

[x1, x2] → [0.7a1 , 0.9a2 , -0.6a3]

a3

a2

a1



SVM Gaussian Kernel

IMDB User Rating

Budget

a1=0.50
a2=0.60
a3=0.70 Transformation: 

[x1, x2] → [0.7a1 , 0.9a2 , -0.6a3]

a3 a1

a2



SVM Gaussian Kernel

x2 (IMDB Rating)

x 1
(B

u
d

ge
t)

a1 (Pulp Fiction)

a3 (Transformers)

a2 (Black Swan)

Transformation: 

[x1, x2] → [0.7a1 , 0.9a2 , -0.6a3]



Classification in the New Space

a1 (Pulp Fiction)

a3 (Transformers)

a2 (Black Swan)

Transformation: 

[x1, x2] → [0.7a1 , 0.9a2 , -0.6a3]
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Palme d’Or Winners at Cannes

SVM Gaussian Kernel

IMDB User Rating

Budget

Radial Basis Function

(RBF) Kernel



Import the class containing the classification method

from sklearn.svm import SVC

SVMs with Kernels: The Syntax



Import the class containing the classification method

from sklearn.svm import SVC

Create an instance of the class

rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)

SVMs with Kernels: The Syntax



Import the class containing the classification method

from sklearn.svm import SVC

Create an instance of the class

rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)

Fit the instance on the data and then predict the expected value

rbfSVC = rbfSVC.fit(X_train, y_train)

y_predict = rbfSVC.predict(X_test)

Tune kernel and associated parameters with cross-validation.

SVMs with Kernels: The Syntax

set kernel and 

associated 

coefficient 

(gamma)



Import the class containing the classification method

from sklearn.svm import SVC

Create an instance of the class

rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)

Fit the instance on the data and then predict the expected value

rbfSVC = rbfSVC.fit(X_train, y_train)

y_predict = rbfSVC.predict(X_test)

Tune kernel and associated parameters with cross-validation.

SVMs with Kernels: The Syntax

"C" is penalty 

associated with 

the error term



Import the class containing the classification method

from sklearn.svm import SVC

Create an instance of the class

rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)

Fit the instance on the data and then predict the expected value

rbfSVC = rbfSVC.fit(X_train, y_train)

y_predict = rbfSVC.predict(X_test)

Tune kernel and associated parameters with cross-validation.

SVMs with Kernels: The Syntax



SVMs with Kernels: The Syntax

Import the class containing the classification method

from sklearn.svm import SVC

Create an instance of the class

rbfSVC = SVC(kernel='rbf', gamma=1.0, C=10.0)

Fit the instance on the data and then predict the expected value

rbfSVC = rbfSVC.fit(X_train, y_train)

y_predict = rbfSVC.predict(X_test)

Tune kernel and associated parameters with cross-validation.



Feature Overload

SVMs with RBF Kernels are very slow to train 

with lots of features or data
Problem

Solution
Construct approximate kernel map with SGD 

using Nystroem or RBF sampler
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Feature Overload

SVMs with RBF Kernels are very slow to train 

with lots of features or data
Problem

Solution
Construct approximate kernel map with SGD 

using Nystroem or RBF sampler.

Fit a linear classifier.



Faster Kernel Transformations: The Syntax

Import the class containing the classification method

from sklearn.kernel_approximation import Nystroem

Create an instance of the class

nystroemSVC = Nystroem(kernel='rbf', gamma=1.0, 

n_components=100)

Fit the instance on the data and transform

X_train = nystroemSVC.fit_transform(X_train)

X_test = nystroemSVC.transform(X_test)

Tune kernel parameters and components with cross-validation.



Faster Kernel Transformations: The Syntax

Import the class containing the classification method

from sklearn.kernel_approximation import Nystroem

Create an instance of the class

nystroemSVC = Nystroem(kernel='rbf', gamma=1.0, 

n_components=100)

Fit the instance on the data and transform

X_train = nystroemSVC.fit_transform(X_train)

X_test = nystroemSVC.transform(X_test)

Tune kernel parameters and components with cross-validation.

multiple non-linear 

kernels can be 

used



Faster Kernel Transformations: The Syntax

Import the class containing the classification method

from sklearn.kernel_approximation import Nystroem

Create an instance of the class

nystroemSVC = Nystroem(kernel='rbf', gamma=1.0, 

n_components=100)

Fit the instance on the data and transform

X_train = nystroemSVC.fit_transform(X_train)

X_test = nystroemSVC.transform(X_test)

Tune kernel parameters and components with cross-validation.

kernel and 

gamma are 

identical to SVC



Faster Kernel Transformations: The Syntax

Import the class containing the classification method

from sklearn.kernel_approximation import Nystroem

Create an instance of the class

nystroemSVC = Nystroem(kernel='rbf', gamma=1.0, 

n_components=100)

Fit the instance on the data and transform

X_train = nystroemSVC.fit_transform(X_train)

X_test = nystroemSVC.transform(X_test)

Tune kernel parameters and components with cross-validation.

n_components is 

number of 

samples



Faster Kernel Transformations: The Syntax

Import the class containing the classification method

from sklearn.kernel_approximation import RBFsampler

Create an instance of the class

rbfSample = RBFsampler(gamma=1.0, 

n_components=100)

Fit the instance on the data and transform

X_train = rbfSample.fit_transform(X_train)

X_test = rbfSample.transform(X_test)

Tune kernel parameters and components with cross-validation.



Faster Kernel Transformations: The Syntax

Import the class containing the classification method

from sklearn.kernel_approximation import RBFsampler

Create an instance of the class

rbfSample = RBFsampler(gamma=1.0, 

n_components=100)

Fit the instance on the data and transform

X_train = rbfSample.fit_transform(X_train)

X_test = rbfSample.transform(X_test)

Tune kernel parameters and components with cross-validation.

RBF is only kernel 

that can be used



Faster Kernel Transformations: The Syntax

Import the class containing the classification method

from sklearn.kernel_approximation import RBFsampler

Create an instance of the class

rbfSample = RBFsampler(gamma=1.0, 

n_components=100)

Fit the instance on the data and transform

X_train = rbfSample.fit_transform(X_train)

X_test = rbfSample.transform(X_test)

Tune kernel parameters and components with cross-validation.

parameter names 

are identical to 

previous



When to Use Logistic Regression vs SVC

Features Data Model Choice

Many (~10K Features)

Few (<100 Features)

Few (<100 Features)

Small (1K rows)

Medium (~10k rows)

Many (>100K Points)

Simple, Logistic or LinearSVC

SVC with RBF

Add features, Logistic, LinearSVC or 

Kernel Approx.




