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Learning Objectives

• Recognize Decision trees and how to use them for classification 
problems

• Recognize how to identify the best split and the factors for splitting

• Explain strengths and weaknesses of decision trees

• Explain how regression trees help with classifying continuous values

• Apply Intel® Extension for Scikit-learn* to leverage underlying 
compute capabilities of hardware

https://intel.github.io/scikit-learn-intelex/
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• Want to predict whether to 

play tennis based on 

temperature, humidity, wind, 

outlook

• Segment data based on 

features to predict result

• Trees that predict categorical 

results are decision trees

No Tennis

Introduction to Decision Trees
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48.50 in.13.67 in.

Nodes

Leaves

Elevation: 

< 7900 ft.

• Example: use slope an 

elevation in Himalayas 

• Predict average precipitation 

(continuous value)

• Values at leaves are averages 

of members
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Import the class containing the classification method

from sklearn.tree import DecisionTreeClassifier

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn().

DecisionTreeClassifier: The Syntax

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc
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max_features=10, max_depth=5)

Fit the instance on the data and then predict the expected value

DTC = DTC.fit(X_train, y_train)

y_predict = DTC.predict(X_test)

Tune parameters with cross-validation. Use DecisionTreeRegressor for regression.

DecisionTreeClassifier: The Syntax



Import the class containing the classification method

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

DTC = DecisionTreeClassifier(criterion='gini', 

max_features=10, max_depth=5)

Fit the instance on the data and then predict the expected value

DTC = DTC.fit(X_train, y_train)

y_predict = DTC.predict(X_test)

Tune parameters with cross-validation. Use DecisionTreeRegressor for regression.

DecisionTreeClassifier: The Syntax



Import the class containing the classification method

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

DTC = DecisionTreeClassifier(criterion='gini', 

max_features=10, max_depth=5)

Fit the instance on the data and then predict the expected value

DTC = DTC.fit(X_train, y_train)

y_predict = DTC.predict(X_test)

Tune parameters with cross-validation. Use DecisionTreeRegressor for regression.

DecisionTreeClassifier: The Syntax

tree 

parameters



Import the class containing the classification method

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

DTC = DecisionTreeClassifier(criterion='gini', 

max_features=10, max_depth=5)

Fit the instance on the data and then predict the expected value

DTC = DTC.fit(X_train, y_train)

y_predict = DTC.predict(X_test)

Tune parameters with cross-validation. Use DecisionTreeRegressor for regression.

DecisionTreeClassifier: The Syntax



DecisionTreeClassifier: The Syntax

Import the class containing the classification method

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

DTC = DecisionTreeClassifier(criterion='gini', 

max_features=10, max_depth=5)

Fit the instance on the data and then predict the expected value
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