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Learning Objectives

• Associate concepts of bootstrapping and aggregating 
(commonly known as “bagging”) to reduce variance

• Apply Random Forest algorithm that further reduces the 
correlation seen in bagging models

• Apply Intel® Extension for Scikit-learn* to leverage 

underlying compute capabilities of hardware

https://intel.github.io/scikit-learn-intelex/
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• Problem: decision trees tend to 
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Improvement: Use Many Trees

Combine predictions to reduce variance



How to Create Multiple Trees?

Use bootstrapping: sample data with replacement



How to Create Multiple Trees?

Create multiple bootstrapped samples



Grow decision tree from each bootstrapped sample

How to Create Multiple Trees?



Distribution of Data in Bootstrapped Samples
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Aggregate Results

Vote to Form 

a Single 

Classifier 

Bagging = Bootstrap Aggregating

Trees vote on or average result for each data point
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estimated using oob error

• Randomly permute data for 
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change in accuracy

Calculation of Feature Importance
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Same as decision trees:

• Easy to interpret and implement

• Heterogeneous input data 

allowed, no preprocessing 

required

Specific to bagging:

• Less variability than decision 

trees

• Can grow trees in parallel

Strengths of Bagging
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Import the class containing the classification method

from sklearn.ensemble import BaggingClassifier

Create an instance of the class

BC = BaggingClassifier(n_estimators=50, max_features=10)

Fit the instance on the data and then predict the expected value

BC = BC.fit(X_train, y_train)

y_predict = BC.predict(X_test)

Tune parameters with cross-validation. Use BaggingRegressor for regression.

BaggingClassifier: The Syntax
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BaggingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import BaggingClassifier

Create an instance of the class

BC = BaggingClassifier(n_estimators=50)

Fit the instance on the data and then predict the expected value

BC = BC.fit(X_train, y_train)

y_predict = BC.predict(X_test)

Tune parameters with cross-validation. Use BaggingRegressor for regression.



Reduction in Variance Due to Bagging

• For 𝑛 independent trees, each 

with variance σ2, the bagged 

variance is:

σ2

𝑛

• However, bootstrap samples 

are correlated (𝜌):

𝜌σ2 +
1 − 𝜌

𝑛
σ2

R
M

S
E 

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500



Reduction in Variance Due to Bagging

• For 𝑛 independent trees, each 

with variance σ2, the bagged 

variance is:

σ2

𝑛

• However, bootstrap samples 

are correlated (𝜌):

𝜌σ2 +
1 − 𝜌

𝑛
σ2

R
M

S
E 

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500



• Solution: further de-correlate 

trees

• Use random subset of features 

for each tree

• Classification: 𝑛
• Regression: Τ𝑛 3

• Called "Random Forest"

Introducing More Randomness
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How Many Random Forest Trees?

• Errors are further reduced for 

Random Forest relative to 

Bagging

• Grow enough trees until error 

settles down

• Additional trees won't improve 

results
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RandomForest: The Syntax

Import the class containing the classification method

from sklearn.ensemble import RandomForestClassifier

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc


RandomForest: The Syntax

Import the class containing the classification method

from sklearn.ensemble import RandomForestClassifier

Create an instance of the class

RC = RandomForestClassifier(n_estimators=100, max_features=10)

Fit the instance on the data and then predict the expected value

RC = RC.fit(X_train, y_train)

y_predict = RC.predict(X_test)

Tune parameters with cross-validation. Use RandomForestRegressor for regression.



Introducing Even More Randomness

• Sometimes additional randomness is desired beyond Random Forest

• Solution: select features randomly and create splits randomly—

don't choose greedily

• Called "Extra Random Trees"
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ExtraTreesClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import ExtraTreesClassifier

Create an instance of the class

EC = ExtraTreesClassifier(n_estimators=100, max_features=10)

Fit the instance on the data and then predict the expected value

EC = EC.fit(X_train, y_train)

y_predict = EC.predict(X_test)

Tune parameters with cross-validation. Use ExtraTreesRegressor for regression.




