
Bagging

Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, IN THIS SUMMARY.

Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

http://www.intel.com/
https://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement

Learning Objectives

• Associate concepts of bootstrapping and aggregating
(commonly known as “bagging”) to reduce variance

• Apply Random Forest algorithm that further reduces the
correlation seen in bagging models

• Apply Intel® Extension for Scikit-learn* to leverage

underlying compute capabilities of hardware

https://intel.github.io/scikit-learn-intelex/

Decision Trees are High Variance

• Problem: decision trees tend to

overfit

• Pruning helps reduce variance

to a point

• Often not significant for model

to generalize well

Decision Trees are High Variance

• Problem: decision trees tend to

overfit

• Pruning helps reduce variance

to a point

• Often not significant for model

to generalize well

Decision Trees are High Variance

• Problem: decision trees tend to

overfit

• Pruning helps reduce variance

to a point

• Often not significant for model

to generalize well

Improvement: Use Many Trees

Create many different trees

Improvement: Use Many Trees

Create many different trees

Improvement: Use Many Trees

Create many different trees

Improvement: Use Many Trees

Combine predictions to reduce variance

How to Create Multiple Trees?

Use bootstrapping: sample data with replacement

How to Create Multiple Trees?

Create multiple bootstrapped samples

Grow decision tree from each bootstrapped sample

How to Create Multiple Trees?

Distribution of Data in Bootstrapped Samples

• Given a dataset, create n

bootstrapped samples

• For a given record x,

𝑃 𝑟𝑒𝑐 𝑥 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 =(1 − ൗ1 𝑛)
𝑛

• Each bootstrap sample contains

approximately Τ2 3 of the records

(1
-1

/
n)

n

0 20 40 60 80 100

0.25

0.30

0.35

0.40

Number of Bootstrapped Samples (n)

Distribution of Data in Bootstrapped Samples

• Given a dataset, create n

bootstrapped samples

• For a given record x,

𝑃 𝑟𝑒𝑐 𝑥 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 =(1 − ൗ1 𝑛)
𝑛

• Each bootstrap sample contains

approximately Τ2 3 of the records

(1
-1

/
n)

n

0 20 40 60 80 100

0.25

0.30

0.35

0.40

Number of Bootstrapped Samples (n)

Distribution of Data in Bootstrapped Samples

• Given a dataset, create n

bootstrapped samples

• For a given record x,

𝑃 𝑟𝑒𝑐 𝑥 𝑛𝑜𝑡 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 =(1 − ൗ1 𝑛)
𝑛

• Each bootstrap sample contains

approximately Τ2 3 of the records

(1
-1

/
n)

n

0 20 40 60 80 100

0.25

0.30

0.35

0.40

Number of Bootstrapped Samples (n)

Aggregate Results

Vote to Form

a Single

Classifier

Trees vote on or average result for each data point

Aggregate Results

Data

Point

Vote to Form

a Single

Classifier

Trees vote on or average result for each data point

Aggregate Results

Vote to Form

a Single

Classifier

Results

Trees vote on or average result for each data point

Aggregate Results
Trees vote on or average result for each data point

Vote to Form

a Single

Classifier

Aggregate Results

Vote to Form

a Single

Classifier

Bagging = Bootstrap Aggregating

Trees vote on or average result for each data point

Bagging error calculations

• Bootstrapped samples provide built-

in error estimate for each tree

• Create tree based on subset of

data

• Measure error for that tree on

unused samples

• Called "Out-of-Bag" error

Bagging error calculations

• Bootstrapped samples provide built-

in error estimate for each tree

• Create tree based on subset of

data

• Measure error for that tree on

unused samples

• Called "Out-of-Bag" error

Bagging error calculations

• Bootstrapped samples provide built-

in error estimate for each tree

• Create tree based on subset of

data

• Measure error for that tree on

unused samples

• Called "Out-of-Bag" error

Bagging error calculations

• Bootstrapped samples provide built-

in error estimate for each tree

• Create tree based on subset of

data

• Measure error for that tree on

unused samples

• Called "Out-of-Bag" error

Bagging error calculations

• Bootstrapped samples provide built-

in error estimate for each tree

• Create tree based on subset of

data

• Measure error for that tree on

unused samples

• Called "Out-of-Bag" error

• Fitting a bagged model doesn't

produce coefficients like logistic

regression

• Instead, feature importances are

estimated using oob error

• Randomly permute data for

particular feature and measure

change in accuracy

Calculation of Feature Importance

• Fitting a bagged model doesn't

produce coefficients like logistic

regression

• Instead, feature importances are

estimated using oob error

• Randomly permute data for

particular feature and measure

change in accuracy

Calculation of Feature Importance

Calculation of Feature Importance

• Fitting a bagged model doesn't

produce coefficients like logistic

regression

• Instead, feature importances are

estimated using oob error

• Randomly permute data for

particular feature and measure

change in accuracy

How Many Trees to Fit?

• Bagging performance

improvements increase with

more trees

• Maximum improvement

generally reached ~50 trees R
M

S
E

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500

How Many Trees to Fit?

• Bagging performance

improvements increase with

more trees

• Maximum improvement

generally reached ~50 trees R
M

S
E

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500

Same as decision trees:

• Easy to interpret and implement

• Heterogeneous input data

allowed, no preprocessing

required

Specific to bagging:

• Less variability than decision

trees

• Can grow trees in parallel

Strengths of Bagging

Same as decision trees:

• Easy to interpret and implement

• Heterogeneous input data

allowed, no preprocessing

required

Specific to bagging:

• Less variability than decision

trees

• Can grow trees in parallel

Strengths of Bagging

Same as decision trees:

• Easy to interpret and implement

• Heterogeneous input data

allowed, no preprocessing

required

Specific to bagging:

• Less variability than decision

trees

• Can grow trees in parallel

Strengths of Bagging

Same as decision trees:

• Easy to interpret and implement

• Heterogeneous input data

allowed, no preprocessing

required

Specific to bagging:

• Less variability than decision

trees

• Can grow trees in parallel

Strengths of Bagging

Import the class containing the classification method

from sklearn.ensemble import BaggingClassifier

Create an instance of the class

BC = BaggingClassifier(n_estimators=50, max_features=10)

Fit the instance on the data and then predict the expected value

BC = BC.fit(X_train, y_train)

y_predict = BC.predict(X_test)

Tune parameters with cross-validation. Use BaggingRegressor for regression.

BaggingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import BaggingClassifier

Create an instance of the class

BC = BaggingClassifier(n_estimators=50)

Fit the instance on the data and then predict the expected value

BC = BC.fit(X_train, y_train)

y_predict = BC.predict(X_test)

Tune parameters with cross-validation. Use BaggingRegressor for regression.

BaggingClassifier: The Syntax

BaggingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import BaggingClassifier

Create an instance of the class

BC = BaggingClassifier(n_estimators=50)

Fit the instance on the data and then predict the expected value

BC = BC.fit(X_train, y_train)

y_predict = BC.predict(X_test)

Tune parameters with cross-validation. Use BaggingRegressor for regression.

Reduction in Variance Due to Bagging

• For 𝑛 independent trees, each

with variance σ2, the bagged

variance is:

σ2

𝑛

• However, bootstrap samples

are correlated (𝜌):

𝜌σ2 +
1 − 𝜌

𝑛
σ2

R
M

S
E

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500

Reduction in Variance Due to Bagging

• For 𝑛 independent trees, each

with variance σ2, the bagged

variance is:

σ2

𝑛

• However, bootstrap samples

are correlated (𝜌):

𝜌σ2 +
1 − 𝜌

𝑛
σ2

R
M

S
E

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500

• Solution: further de-correlate

trees

• Use random subset of features

for each tree

• Classification: 𝑛
• Regression: Τ𝑛 3

• Called "Random Forest"

Introducing More Randomness

R
M

S
E

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500

• Solution: further de-correlate

trees

• Use random subset of features

for each tree

• Classification: 𝑚
• Regression: Τ𝑚 3

• Called "Random Forest"

Introducing More Randomness

R
M

S
E

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500

• Solution: further de-correlate

trees

• Use random subset of features

for each tree

• Classification: 𝑚
• Regression: Τ𝑚 3

• Called "Random Forest"

Introducing More Randomness

R
M

S
E

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500

Bagging

Random Forest

How Many Random Forest Trees?

• Errors are further reduced for

Random Forest relative to

Bagging

• Grow enough trees until error

settles down

• Additional trees won't improve

results

R
M

S
E

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500

Bagging

Random Forest

How Many Random Forest Trees?

• Errors are further reduced for

Random Forest relative to

Bagging

• Grow enough trees until error

settles down

• Additional trees won't improve

results

R
M

S
E

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500

Bagging

Random Forest

How Many Random Forest Trees?

• Errors are further reduced for

Random Forest relative to

Bagging

• Grow enough trees until error

settles down

• Additional trees won't improve

results

R
M

S
E

(C
ro

ss
-V

a
lid

a
te

d
)

Number of Bagged Trees

0 100 200 300 400 500

Bagging

Random Forest

RandomForest: The Syntax

Import the class containing the classification method

from sklearn.ensemble import RandomForestClassifier

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc

RandomForest: The Syntax

Import the class containing the classification method

from sklearn.ensemble import RandomForestClassifier

Create an instance of the class

RC = RandomForestClassifier(n_estimators=100, max_features=10)

Fit the instance on the data and then predict the expected value

RC = RC.fit(X_train, y_train)

y_predict = RC.predict(X_test)

Tune parameters with cross-validation. Use RandomForestRegressor for regression.

Introducing Even More Randomness

• Sometimes additional randomness is desired beyond Random Forest

• Solution: select features randomly and create splits randomly—

don't choose greedily

• Called "Extra Random Trees"

Introducing Even More Randomness

• Sometimes additional randomness is desired beyond Random Forest

• Solution: select features randomly and create splits randomly—

don't choose greedily

• Called "Extra Random Trees"

Introducing Even More Randomness

• Sometimes additional randomness is desired beyond Random Forest

• Solution: select features randomly and create splits randomly—

don't choose greedily

• Called "Extra Random Trees"

ExtraTreesClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import ExtraTreesClassifier

Create an instance of the class

EC = ExtraTreesClassifier(n_estimators=100, max_features=10)

Fit the instance on the data and then predict the expected value

EC = EC.fit(X_train, y_train)

y_predict = EC.predict(X_test)

Tune parameters with cross-validation. Use ExtraTreesRegressor for regression.

