
Boosting and Stacking

Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, IN THIS SUMMARY.

Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

http://www.intel.com/
https://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement

Learning Objectives

• Explain how the boosting algorithm helps reduce
variance and bias.

• Apply Intel® Extension for Scikit-learn* to leverage

underlying compute capabilities of hardware

https://intel.github.io/scikit-learn-intelex/

Grow decision tree from multiple bootstrapped samples

Review of Bagging

Vote to Form

a Single

Classifier

Vote on or average result from each tree for each data point

Review of Bagging

Data

Point

Vote to Form

a Single

Classifier

Vote on or average result from each tree for each data point

Review of Bagging

Vote to Form

a Single

Classifier

Results

Vote on or average result from each tree for each data point

Review of Bagging

Vote to Form

a Single

Classifier

Vote on or average result from each tree for each data point

Review of Bagging

Decision Stump: the Boosting Base Learner

Temperature >50ºFTemperature >50ºF

Decision Stump: the Boosting Base Learner

Temperature >50ºF Temperature

Decision Stump: the Boosting Base Learner

Temperature >50ºF

Humidity

< 30%

Temperature

Decision Stump: the Boosting Base Learner

TemperatureTemperature >50ºF

Humidity

< 30%

H
um

id
it
y

Overview of Boosting

Create initial

decision stump

Overview of Boosting

Fit to data and

calculate

residuals

x

x

x
x

x
x

x

xx

x

x

Overview of Boosting

Adjust weight

of points
x

x

x
x

x
x

x

xx

x

x

Overview of Boosting

Find new

decision stump

to fit weighted

residuals

x

x

x
x

x
x

x

xx

x

x

+

Overview of Boosting

Fit new decision

stump to current

residuals

x

x

x
x

x
x

x

xx

x

x

+
x

x

x
x

x
x

x

xx

x

x

Overview of Boosting

Calculate errors

and weight

data points

x

x

x
x

x
x

x

xx

x

x

+
x

x

x
x

x
x

x

xx

x

x

Overview of Boosting

Find new

decision stump

to fit weighted

residuals

x

x

x
x

x
x

x

xx

x

x

+
x

x

x
x

x
x

x

xx

x

x

+

Overview of Boosting

Fit new decision

stump to current

residuals

x

x

x
x

x
x

x

xx

x

x

+
x

x

x
x

x
x

x

xx

x

x

+
x

x

x
x

x
x

x

xx

x

x

Overview of Boosting

x

x

x
x

x
x

x

xx

x

x

Combine to form a single

classifier

+
x

x

x
x

x
x

x

xx

x

x

+
x

x

x
x

x
x

x

xx

x

x

=

Overview of Boosting

x

x

x
x

x
x

x

xx

x

x

+
x

x

x
x

x
x

x

xx

x

x

+
x

x

x
x

x
x

x

xx

x

x

x

x

x
x

x
x

x

xx

x

x

=

Combine to form a single

classifier

Overview of Boosting

+ 𝜆

=

+ 𝜆

Result is weighted sum of

all classifiers

Overview of Boosting

+ 𝜆

=

+ 𝜆

Successive classifiers are

weighted by learning rate

(𝜆)

Overview of Boosting

+ 𝜆

=

+ 𝜆

Successive classifiers are

weighted by learning rate

(𝜆)

Overview of Boosting

+ 𝜆

=

+ 𝜆

Using a learning rate

< 1.0 helps prevent

overfitting (regularization)

Boosting Specifics

• Boosting utilizes different loss

functions

• At each stage, the margin is

determined for each point

• Margin is positive for correctly

classified points and negative for

misclassifications

• Value of loss function is calculated

from margin
Margin

Incorrectly

Classified

Points

Correctly

Classified

Points

Loss

0

Boosting Specifics

• Boosting utilizes different loss

functions

• At each stage, the margin is

determined for each point

• Margin is positive for correctly

classified points and negative for

misclassifications

• Value of loss function is calculated

from margin
Margin

Incorrectly

Classified

Points

Correctly

Classified

Points

Loss

0

0 – 1 Loss Function

• The 0 – 1 Loss multiplies

misclassified points by 1

• Correctly classified points are

ignored

• Theoretical "ideal" loss function

• Difficult to optimize—non-smooth

and non-convex

Misclassified Correct

0-1 Loss

Loss

Margin

0 – 1 Loss Function

• The 0 – 1 Loss multiplies

misclassified points by 1

• Correctly classified points are

ignored

• Theoretical "ideal" loss function

• Difficult to optimize—non-smooth

and non-convex

Misclassified Correct

0-1 Loss

Loss

Margin

0 – 1 Loss Function

• The 0 – 1 Loss multiplies

misclassified points by 1

• Correctly classified points are

ignored

• Theoretical "ideal" loss function

• Difficult to optimize—non-smooth

and non-convex

Misclassified Correct

0-1 Loss

Loss

Margin

0 – 1 Loss Function

• The 0 – 1 Loss multiplies

misclassified points by 1

• Correctly classified points are

ignored

• Theoretical "ideal" loss function

• Difficult to optimize—non-smooth

and non-convex

Misclassified Correct

0-1 Loss

Loss

Margin

• AdaBoost = Adaptive Boosting

• Loss function is exponential:

𝑒(−𝑚𝑎𝑟𝑔𝑖𝑛)

• Makes AdaBoost more sensitive to

outliers than other types of

boosting

AdaBoost Loss Function

Misclassified Correct

0-1 Loss

Loss

Margin

• AdaBoost = Adaptive Boosting

• Loss function is exponential:

𝑒(−𝑚𝑎𝑟𝑔𝑖𝑛)

• Makes AdaBoost more sensitive to

outliers than other types of

boosting

AdaBoost Loss Function

Misclassified Correct

AdaBoost

0-1 Loss

Loss

Margin

AdaBoost Loss Function

• AdaBoost = Adaptive Boosting

• Loss function is exponential:

𝑒(−𝑚𝑎𝑟𝑔𝑖𝑛)

• Makes AdaBoost more sensitive to

outliers than other types of

boosting

Misclassified Correct

AdaBoost

0-1 Loss

Loss

Margin

• Generalized boosting method that

can use different loss functions

• Common implementation uses

binomial log likelihood loss function

(deviance):

log(1 + 𝑒(−𝑚𝑎𝑟𝑔𝑖𝑛))

• More robust to outliers than

AdaBoost

Gradient Boosting Loss Function

Misclassified Correct

0-1 Loss

AdaBoost

Loss

Margin

• Generalized boosting method that

can use different loss functions

• Common implementation uses

binomial log likelihood loss function

(deviance):

log(1 + 𝑒(−𝑚𝑎𝑟𝑔𝑖𝑛))

• More robust to outliers than

AdaBoost

Gradient Boosting Loss Function

Misclassified Correct

0-1 Loss

AdaBoost

Deviance

(Gradient

Boosting)

Loss

Margin

Gradient Boosting Loss Function

• Generalized boosting method that

can use different loss functions

• Common implementation uses

binomial log likelihood loss function

(deviance):

log(1 + 𝑒(−𝑚𝑎𝑟𝑔𝑖𝑛))

• More robust to outliers than

AdaBoost
Misclassified Correct

0-1 Loss

AdaBoost

Deviance

(Gradient

Boosting)

Loss

Margin

Bagging vs Boosting

• Bootstrapped samples • Fit entire data set

• Base trees created

independently

• Base trees created successively

• Only data points considered • Use residuals from previous

models

• No weighting used • Up-weight misclassified points

• Excess trees will not overfit • Beware of overfitting

Bagging Boosting

Bagging vs Boosting

• Bootstrapped samples • Fit entire data set

• Base trees created

independently

• Base trees created successively

• Only data points considered • Use residuals from previous

models

• No weighting used • Up-weight misclassified points

• Excess trees will not overfit • Beware of overfitting

Bagging Boosting

Bagging vs Boosting

• Bootstrapped samples • Fit entire data set

• Base trees created

independently

• Base trees created successively

• Only data points considered • Use residuals from previous

models

• No weighting used • Up-weight misclassified points

• Excess trees will not overfit • Beware of overfitting

Bagging Boosting

Bagging vs Boosting

• Bootstrapped samples • Fit entire data set

• Base trees created

independently

• Base trees created successively

• Only data points considered • Use residuals from previous

models

• No weighting used • Up-weight misclassified points

• Excess trees will not overfit • Beware of overfitting

Bagging Boosting

Bagging vs Boosting

• Bootstrapped samples • Fit entire data set

• Base trees created

independently

• Base trees created successively

• Only data points considered • Use residuals from previous

models

• No weighting used • Up-weight misclassified points

• Excess trees will not overfit • Beware of overfitting

Bagging Boosting

• Boosting is additive, so possible to

overfit

• Use cross validation to set number

of treesTe
st

 S
e
t
Er

ro
r

Boosting Iterations

0 200 400 600 800 1000

Random Forest

Boosting

Tuning a Gradient Boosted Model

• Boosting is additive, so possible to

overfit

• Use cross validation to set number

of trees

Tuning a Gradient Boosted Model
Te

st
 S

e
t
Er

ro
r

Boosting Iterations

0 200 400 600 800 1000

Random Forest

Boosting

• Learning rate (𝝀): set to <1.0 for

regularization. That’s also called

“shrinkage”

Tuning a Gradient Boosted Model
Te

st
 S

e
t
Er

ro
r

Boosting Iterations

0 200 400 600 800 1000

Base

𝜆=0.1

shrinkage=0.5

𝜆=0.1, shrinkage=0.5

𝜆=0.1, max_features=2

• Learning rate (𝝀): set to <1.0 for

regularization. That’s also called

“shrinkage”

• Subsample: set to <1.0 to use

fraction of data for base learners

(stochastic gradient boosting)

Tuning a Gradient Boosted Model
Te

st
 S

e
t
Er

ro
r

Boosting Iterations

0 200 400 600 800 1000

Base

𝜆=0.1

subsample=0.5

𝜆=0.1, shrinkage=0.5

𝜆=0.1, max_features=2

Tuning a Gradient Boosted Model
Te

st
 S

e
t
Er

ro
r

Boosting Iterations

0 200 400 600 800 1000

Base

𝜆=0.1

subsample=0.5

𝜆=0.1, subsample=0.5

𝜆=0.1, max_features=2

• Learning rate (𝝀): set to <1.0 for

regularization. That’s also called

“shrinkage”

• Subsample: set to <1.0 to use

fraction of data for base learners

(stochastic gradient boosting)

• Learning rate (𝝀): set to <1.0 for

regularization. That’s also called

“shrinkage”

• Subsample: set to <1.0 to use

fraction of data for base learners

(stochastic gradient boosting)

• Max_features: number of features

to consider in base learners when

splitting.

Tuning a Gradient Boosted Model
Te

st
 S

e
t
Er

ro
r

Boosting Iterations

0 200 400 600 800 1000

Base

𝜆=0.1

subsample=0.5

𝜆=0.1, subsample=0.5

𝜆=0.1, max_features=2

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

Create an instance of the class

GBC = GradientBoostingClassifier(learning_rate=0.1,

max_features=1, subsample=0.5,

n_estimators=200)

GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

Create an instance of the class

GBC = GradientBoostingClassifier(learning_rate=0.1,

max_features=1, subsample=0.5,

n_estimators=200)

Fit the instance on the data and then predict the expected value

GBC = GBC.fit (X_train, y_train)

y_predict = GBC.predict(X_test)

GradientBoostingClassifier: The Syntax

GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

Create an instance of the class

GBC = GradientBoostingClassifier(learning_rate=0.1,

max_features=1, subsample=0.5,

n_estimators=200)

Fit the instance on the data and then predict the expected value

GBC = GBC.fit (X_train, y_train)

y_predict = GBC.predict(X_test)

Tune with cross-validation. Use GradientBoostingRegressor for regression.

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

AdaBoostClassifier: The Syntax

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

Fit the instance on the data and then predict the expected value

ABC = ABC.fit(X_train, y_train)

y_predict = ABC.predict(X_test)

Tune parameters with cross-validation. Use AdaBoostRegressor for regression.

AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

Fit the instance on the data and then predict the expected value

ABC = ABC.fit(X_train, y_train)

y_predict = ABC.predict(X_test)

Tune parameters with cross-validation. Use AdaBoostRegressor for regression.

AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

AdaBoostClassifier: The Syntax

base learner can

be set manually

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

AdaBoostClassifier: The Syntax

can also set max

depth here

AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

Fit the instance on the data and then predict the expected value

ABC = ABC.fit(X_train, y_train)

y_predict = ABC.predict(X_test)

Tune parameters with cross-validation. Use AdaBoostRegressor for regression.

Stacking: Combining Heterogeneous Classifiers

• Models of any kind

combined to create stacked

model

• Like bagging but not limited

to decision trees

• Output of base learners

creates features, can

recombine with data

Base Learners

TestTrain

Labeled

Data

Meta

Features

Logistic

Regression

SVM

Random

Forest

Final

Prediction

Meta Learner

Stacking: Combining Heterogeneous Classifiers

• Models of any kind

combined to create stacked

model

• Like bagging but not limited

to decision trees

• Output of base learners

creates features, can

recombine with data

Base Learners

TestTrain

Labeled

Data

Meta

Features

Logistic

Regression

SVM

Random

Forest

Final

Prediction

Meta Learner

Stacking: Combining Heterogeneous Classifiers

• Models of any kind

combined to create stacked

model

• Like bagging but not limited

to decision trees

• Output of base learners

creates features, can

recombine with data

Base Learners

TestTrain

Labeled

Data

Meta

Features

Logistic

Regression

SVM

Random

Forest

Final

Prediction

Meta Learner

Stacking: Combining Heterogeneous Classifiers

• Output of base learners can

be combined via majority

vote or weighted

• Additional hold-out data

needed if meta learner

parameters are used

• Be aware of increasing

model complexity

Base Learners

TestTrain

Labeled

Data

Meta

Features

Logistic

Regression

SVM

Random

Forest

Final

Prediction

Meta Learner

Stacking: Combining Heterogeneous Classifiers

• Output of base learners can

be combined via majority

vote or weighted

• Additional hold-out data

needed if meta learner

parameters are used

• Be aware of increasing

model complexity

Base Learners

TestTrain

Labeled

Data

Meta

Features

Logistic

Regression

SVM

Random

Forest

Final

Prediction

Meta Learner

Stacking: Combining Heterogeneous Classifiers

• Output of base learners can

be combined via majority

vote or weighted

• Additional hold-out data

needed if meta learner

parameters are used

• Be aware of increasing

model complexity

Base Learners

TestTrain

Labeled

Data

Meta

Features

Logistic

Regression

SVM

Random

Forest

Final

Prediction

Meta Learner

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class

VC = VotingClassifier(estimator_list, voting='hard',

weights=estimator_weight_list)

Fit the instance on the data and then predict the expected value

VC = VC.fit(X_train, y_train)

y_predict = VC.predict(X_test)

Tune with an ADDITIONAL LEVEL of cross-validation or hold-out set.

VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class

VC = VotingClassifier(estimator_list, voting='hard',

weights=estimator_weight_list)

Fit the instance on the data and then predict the expected value

VC = VC.fit(X_train, y_train)

y_predict = VC.predict(X_test)

Tune with an ADDITIONAL LEVEL of cross-validation or hold-out set.

VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class

VC = VotingClassifier(estimator_list, voting='hard',

weights=estimator_weight_list)

Fit the instance on the data and then predict the expected value

VC = VC.fit(X_train, y_train)

y_predict = VC.predict(X_test)

Tune with an ADDITIONAL LEVEL of cross-validation or hold-out set.

VotingClassifier: The Syntax

list of fitted

models and

how to

combine

VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class

VC = VotingClassifier(estimator_list, voting='hard',

weights=estimator_weight_list)

Fit the instance on the data and then predict the expected value

VC = VC.fit(X_train, y_train)

y_predict = VC.predict(X_test)

Tune with an ADDITIONAL LEVEL of cross-validation or hold-out set.

