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Learning Objectives

• Explain how the boosting algorithm helps reduce 
variance and bias.

• Apply Intel® Extension for Scikit-learn* to leverage 

underlying compute capabilities of hardware

https://intel.github.io/scikit-learn-intelex/
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Overview of Boosting
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Using a learning rate  

< 1.0 helps prevent 

overfitting (regularization)



Boosting Specifics
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functions
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0 – 1 Loss Function
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• AdaBoost = Adaptive Boosting

• Loss function is exponential:
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• Generalized boosting method that 
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Gradient Boosting Loss Function
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Bagging vs Boosting

• Bootstrapped samples • Fit entire data set

• Base trees created 

independently

• Base trees created successively

• Only data points considered • Use residuals from previous 

models

• No weighting used • Up-weight misclassified points

• Excess trees will not overfit • Beware of overfitting
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Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

GradientBoostingClassifier: The Syntax
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GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

Create an instance of the class

GBC = GradientBoostingClassifier(learning_rate=0.1,

max_features=1, subsample=0.5, 

n_estimators=200)

Fit the instance on the data and then predict the expected value

GBC = GBC.fit (X_train, y_train)

y_predict = GBC.predict(X_test)

Tune with cross-validation. Use GradientBoostingRegressor for regression.



Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

AdaBoostClassifier: The Syntax

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc
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Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

AdaBoostClassifier: The Syntax
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AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

Fit the instance on the data and then predict the expected value

ABC = ABC.fit(X_train, y_train)

y_predict = ABC.predict(X_test)

Tune parameters with cross-validation. Use AdaBoostRegressor for regression.
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Stacking: Combining Heterogeneous Classifiers
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Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class

VC = VotingClassifier(estimator_list, voting='hard',

weights=estimator_weight_list)

Fit the instance on the data and then predict the expected value

VC = VC.fit(X_train, y_train)

y_predict = VC.predict(X_test)

Tune with an ADDITIONAL LEVEL of cross-validation or hold-out set.

VotingClassifier: The Syntax
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weights=estimator_weight_list)
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VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class

VC = VotingClassifier(estimator_list, voting='hard',

weights=estimator_weight_list)

Fit the instance on the data and then predict the expected value

VC = VC.fit(X_train, y_train)

y_predict = VC.predict(X_test)

Tune with an ADDITIONAL LEVEL of cross-validation or hold-out set.




