Software

cking

Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS
OR IMPLIED, IN THIS SUMMARY.

Intel technologies’ features and benefits depend on system configuration and may require
enabled hardware, software or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at

This sample source code is released under the
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

Software

http://www.intel.com/
https://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement

Learning Obijectives

* Explain how the boosting algorithm helps reduce
variance and bias.

« Apply Intel® Extension for Scikit-learn* to leverage

underlying compute capabilities of hardware

https://intel.github.io/scikit-learn-intelex/

Review of Bagging

Grow decision tree from multiple bootstrapped samples

Date. Title Budget DomesticTotalGross | Director
0 [2013-1122 T Fumger Gares:Cotng Fre_| 30000000 23000047 Franis ovrenos Poma v
b an3 200000000 ow0rawes Srane Bk vora [
2 [20r5-1122 Fozen 15000000 sa0r3e008 O Bkl o [7G_[108
3 Me 2 76000000 | 368061265 Pierre CottinCvis Reneud | PG 98
4 [zorsoe 25000000 2an0sss1a Zack Sy =
B 10000000 274082708 Atorea Goron Poa o
o (201300 21 Worston vy | smasseres Don S o | B
7 |2013-12-13 | The Hobbit: The Desolation of Smaug | NaN 258366855 Peter Jackson PG-13 | 161 .:
o (20190524 [Fat Furcs s 1600000 30873850 St Fora 130 :
D T Gt Poverts 215000000 a1 1625 Samram [B
15,0516 st Tr i O 19000000 z677eee1 T Aorare = el nerlomn
; o) A Tapor 7o e e
1220130621 iord War 2 19000000 zuzssart Ware Forstr Fora 110 g >
13|2013-03-22 | The Croods. 135000000 | 187168425 Kirk Da MiccoChris Sanders | PG 98 g
oot 000000 | egcezien Paatog R
1520130507 viere e i 7000000 | ecanerra Ravson tara o |7 110
Arscan st 000000 50117607 Do 0. el R e
17]2013.05-10 T et Gty 105000000 144340413 ez pvmarn Poa 143

355308 21 vorerms rowry e v Bowion o |
2 Tt censss o i G

g
A
o[22 54 [ormer ssomoomn ruers ey P o
a

Software

Review of Bagging

Vote on or average result from each tree for each data point

A A A
TAATH

—~—

Vote to Form
a Single

Classifier

Review of Bagging

Vote on or average resul’r from each tree for each data pom’r

e @ !\ é?\ ©@ f\
Point G G G

—~—

Vote to Form .
a Single .
||
[]

Classifier

Review of Bagging

Vote on or average result from each tree for each data point

A A A
TAATH

—~—

Vote to Form
a Single

|
|
Classifier .
[]

Review of Bagging

Vote on or average result from each tree for each data point

Vote to Form
a Single
Classifier

Decision Stump: the Boosting Base Learner

Temperature >50°F

A

@ ©

Decision Stump: the Boosting Base Learner

Temperature >50°F Temperature

A

@ ©

Decision Stump: the Boosting Base Learner

Temperature >50°F Temperature

A Humidity

e < 30%
-

Decision Stump: the Boosting Base Learner

Temperature >50°F Temperature

x‘ Humidity

e < 30%
-

Humidity

Overview of Boosting

Create initial
decision stump

Overview of Boosting

Fit to data and
calculate
residuals

Overview of Boosting

Adjust weight
of points

Overview of Boosting

Find new
decision stump
to fit weighted

residuals

Overview of Boosting

Fit new decision
stump to current
residuals

Overview of Boosting

Calculate errors
and weight
data points

Overview of Boosting

Find new
decision stump
to fit weighted

residuals

Overview of Boosting

Fit new decision
stump to current
residuals

Overview of Boosting

Combine to form a single
classifier

Overview of Boosting

Combine to form a single
classifier

Overview of Boosting

Result is weighted sum of
all classifiers

Overview of Boosting

Successive classifiers are
weighted by learning rate

(4)

Overview of Boosting

Successive classifiers are
weighted by learning rate

(4)

Overview of Boosting

Using a learning rate
< 1.0 helps prevent
overfitting (regularization)

Boosting Specifics

* Boosting utilizes different loss
functions

* At each stage, the margin is

determined for each point

Boosting Specifics

* Boosting utilizes different loss
functions

* At each stage, the margin is
determined for each point

* Margin is positive for correctly
classified points and negative for
misclassifications

* Value of loss function is calculated
from margin

Loss

v

S

Margin

O — 1 Loss Function

* The O — 1 Loss multiplies
Loss

misclassified points by 1

0-1 Loss

T i >
~ ~"

Misclassified Correct

Margin

O — 1 Loss Function

ﬂk

* The O — 1 Loss multiplies

misclassified points by 1 Loss
* Correctly classified points are

ignored

0-1 Loss
T T >
N v
Misclassified Correct

Margin

O — 1 Loss Function

* The O — 1 Loss multiplies

misclassified points by 1 Loss

* Correctly classified points are
ignored

* Theoretical "ideal" loss function
0-1 Loss

e Difficult to ontimize—non-smooth

T i >
~ ~"

Misclassified Correct

Margin

O — 1 Loss Function

* The O — 1 Loss multiplies

misclassified points by 1 Loss

* Correctly classified points are
ignored

* Theoretical "ideal" loss function
0-1 Loss

* Difficult to optimize—non-smooth

and non-convex T i >
~ ~

Misclassified Correct

Margin

AdaBoost Loss Function

* AdaBoost = Adaptive Boosting

Loss

0-1 Loss

T i >
~ ~"

Misclassified Correct

Margin

AdaBoost Loss Function

AdaBoost 4

* AdaBoost = Adaptive Boosting
Loss
* Loss function is exponential:
e (—margin)
0-1 Loss
T T >
N g
Misclassified Correct

Margin

AdaBoost Loss Function

AdaBoost 4
* AdaBoost = Adaptive Boosting
Loss
* Loss function is exponential:
e (—margin)

* Makes AdaBoost more sensitive to

outliers than other types of 0-1 Loss

boosting

T PN >
N N
Misclassified Correct

Margin

Gradient Boosting Loss Function

AdaBoost 4

* Generalized boosting method that
can use different loss functions Loss
e Common implementation uses
|
0-1 Loss
T i >
~ ~
Misclassified Correct

Margin

Gradient Boosting Loss Function
AdaBoost

* Generalized boosting method that
can use different loss functions

Deviance

* Common implementation uses .
(Gradient

binomial log likelihood loss function

Loss

Boosting)
(deviance):
(—margin)
log(l T e) O-1 Loss
T N
N N
Misclassified Correct

Margin

Gradient Boosting Loss Function
AdaBoost

* Generalized boosting method that
can use different loss functions

Deviance
(Gradient
Boosting)

* Common implementation uses
binomial log likelihood loss function
(deviance):

log(1 + e(~margin))

0-1 Loss

* More robust to outliers than

Loss

T

AdaBoost '
Misclassified

Margin

Correct

Bagging vs Boosting

* Bootstrapped samples * Fit entire data set

Bagging vs Boosting

* Bootstrapped samples * Fit entire data set

* Base trees created * Base trees created successively

independently

Bagging vs Boosting

ST TR

* Bootstrapped samples * Fit entire data set
* Base trees created * Base trees created successively
independently

* Only data points considered * Use residuals from previous
models

Bagging vs Boosting

ST TR

* Bootstrapped samples * Fit entire data set
* Base trees created * Base trees created successively
independently
* Only data points considered * Use residuals from previous
models
* No weighting used * Up-weight misclassified points

e FExcess trees will not overfit e Beware of overfittina

Bagging vs Boosting

ST TR

* Bootstrapped samples * Fit entire data set
* Base trees created * Base trees created successively
independently
* Only data points considered * Use residuals from previous
models
* No weighting used * Up-weight misclassified points

* Excess trees will not overfit * Beware of overfitting

Tuning a Gradient Boosted Model

* Boosting is additive, so possible to

G Random Forest ove rflt
@ Boosting

Test Set Error

0] 200 400 600 800 1000]

Boosting Iterations

Tuning a Gradient Boosted Model

* Boosting is additive, so possible to

G Random Forest ove rflt
@ Boosting

Use cross validation to set number
of trees

Test Set Error

0] 200 400 600 800 1000]

Boosting Iterations

Software

Tuning a Gradient Boosted Model

* Learning rate (4): set to <1.0 for

regularization. That’s also called
“shrinkage”

Test Set Error

0 200 400 600 800 1000]

Boosting Iterations

Tuning a Gradient Boosted Model

* Learning rate (1): set to <1.0 for
= Base
— J=0.1 regularization. That’s also called
— subsample=0.5
" “shrinkage”

* Subsample: set to <1.0 to use
fraction of data for base learners
(stochastic gradient boosting)

Test Set Error

0 200 400 600 800 1000]

Boosting Iterations

Tuning a Gradient Boosted Model

* Learning rate (1): set to <1.0 for
= Base
— J=0.1 regularization. That’s also called
— subsample=0.5

A=0.1, subsample=0.5

“shrinkage”

* Subsample: set to <1.0 to use
fraction of data for base learners
(stochastic gradient boosting)

Test Set Error

0 200 400 600 800 1000]

Boosting Iterations

Tuning a Gradient Boosted Model

Test Set Error

= Base
= 1=0.
— subsample=0.5

A=0.1, subsample=0.5
— 1=0.1, max_features=2

400 600

Boosting Iterations

800

1000

Learning rate (A1): set to <1.0 for
regularization. That’s also called
“shrinkage”

Subsample: set to <1.0 to use
fraction of data for base learners
(stochastic gradient boosting)

Max_features: number of features

to consider in base learners when
splitting.

Software

GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

Create an instance of the class
GBC = GradientBoostingClassifier(learning_rate=0.1,

max_features=1, subsample=0.5,

n_estimators=200)

Software

GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

Create an instance of the class
GBC = GradientBoostingClassifier(learning_rate=0.1,
max_features=1, subsample=0.5,

n_estimators=200)

Fit the instance on the data and then predict the expected value

GBC = GBC.fit (X_train, y_train)
y_predict = GBC.predict(X_test)

Software

GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

Create an instance of the class
GBC = GradientBoostingClassifier(learning_rate=0.1,
max_features=1, subsample=0.5,

n_estimators=200)

Fit the instance on the data and then predict the expected value

GBC = GBC.fit (X_train, y_train)
y_predict = GBC.predict(X_test)

Tune with cross-validation. Use GradientBoostingRegressor for regression.

Software

AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

* Install (Al Kit)

* Add the following two lines of code after the above code:
import patch_sklearn
patch_sklearn()

Software

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc

AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

Software

AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

Software

AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

base learner can

' be set manually

Software

AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

can also set max

' depth here

Software

AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

Fit the instance on the data and then predict the expected value

ABC = ABC.fit(X_train, y_train)
v_predict = ABC.predict(X_test)

Tune parameters with cross-validation. Use AdaBoostRegressor for regression.

Software

Stacking: Combining Heterogeneous Classifiers

Train Test * Models of any kind
Base Learners Meta Learner combined to create stacked
4) model

Logistic

|
[
Regression [
\ J
|
) \ | |
[
SVM — :
\ J I
(N
Random

[
|
Forest I
[

\ S

Stacking: Combining Heterogeneous Classifiers

Train

Test

Labeled
Data

Base Learners

4 N
Logistic

Regression
\, J

()

SVM

\ S

(N
Random

Forest

\

-

7

\ S

Meta Learner

Meta
Features

H

Final
Prediction

J

* Models of any kind
combined to create stacked
model

* Like bagging but not limited
to decision trees

Stacking: Combining Heterogeneous Classifiers

Train Test
Base Learners Meta Learner
4 N I
Logistic [
Regression [
\. _J I
4 N I
Labeled SVM Meta | Fil.ld.l
Data Features I Prediction
[

Forest

\ J
Random

]

* Models of any kind
combined to create stacked
model

* Like bagging but not limited
to decision trees

* Output of base learners
creates features, can
recombine with data

Stacking: Combining Heterogeneous Classifiers

Train Test
Base Learners Meta Learner
4 N I
Logistic [
Regression [
\. _J I
4 N I
Labeled SVM Meta | Fil.ld.l
Data Features I Prediction
[

Forest

\ J
Random

J

Output of base learners can
be combined via majority
vote or weighted

Stacking: Combining Heterogeneous Classifiers

Train Test
Base Learners Meta Learner

4 N I
Logistic [
Regression [
\. _J I
4 N :

Labeled Meta Final

SVM —
[Data [Features l I l Prediction

[

Forest

\ J
Random

J

Output of base learners can
be combined via majority
vote or weighted

Additional hold-out data
needed if meta learner
parameters are used

Stacking: Combining Heterogeneous Classifiers

Train Test
Base Learners Meta Learner
4 N I
Logistic [
Regression [
\. _J I
4 N I
Labeled SVM Meta | Fil.ld.l
Data Features I Prediction
[

Forest

\ J
Random

]

Output of base learners can
be combined via majority
vote or weighted

Additional hold-out data
needed if meta learner
parameters are used

Be aware of increasing
model complexity

VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Software

VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class

VC = VotingClassifier(estimator_list, voting="hard',

weights=estimator_weight_list)

Software

VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class list of fitted
VC = VotingClassifier(estimator_list, voting="hard', « models and
how to

weights=estimator_weight_list)

combine

Software

VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class
VC = VotingClassifier(estimator_list, voting="hard',

weights=estimator_weight_list)

Fit the instance on the data and then predict the expected value

VC = VC.fit(X_train, y_train)
y_predict = VC.predict(X_test)

Tune with an ADDITIONAL LEVEL of cross-validation or hold-out set.

Software

S
O
ftw
a
re

