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Learning Obijectives

* Explain how the boosting algorithm helps reduce
variance and bias.

« Apply Intel® Extension for Scikit-learn* to leverage

underlying compute capabilities of hardware



https://intel.github.io/scikit-learn-intelex/

Review of Bagging

Grow decision tree from multiple bootstrapped samples
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Review of Bagging

Vote on or average result from each tree for each data point
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Review of Bagging

Vote on or average result from each tree for each data point

Vote to Form
a Single
Classifier




Decision Stump: the Boosting Base Learner

Temperature >50°F
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Decision Stump: the Boosting Base Learner

Temperature >50°F Temperature

x‘ Humidity
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Overview of Boosting

Create initial
decision stump




Overview of Boosting

Fit to data and
calculate
residuals




Overview of Boosting

Adjust weight
of points




Overview of Boosting

Find new
decision stump
to fit weighted

residuals




Overview of Boosting

Fit new decision
stump to current
residuals




Overview of Boosting

Calculate errors
and weight
data points




Overview of Boosting

Find new
decision stump
to fit weighted

residuals




Overview of Boosting

Fit new decision
stump to current
residuals




Overview of Boosting

Combine to form a single
classifier



Overview of Boosting

Combine to form a single
classifier



Overview of Boosting

Result is weighted sum of
all classifiers



Overview of Boosting

Successive classifiers are
weighted by learning rate

(4)



Overview of Boosting

Successive classifiers are
weighted by learning rate

(4)



Overview of Boosting

Using a learning rate
< 1.0 helps prevent
overfitting (regularization)



Boosting Specifics

* Boosting utilizes different loss
functions

* At each stage, the margin is

determined for each point




Boosting Specifics

* Boosting utilizes different loss
functions

* At each stage, the margin is
determined for each point

* Margin is positive for correctly
classified points and negative for
misclassifications

* Value of loss function is calculated
from margin

Loss
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O — 1 Loss Function

* The O — 1 Loss multiplies
Loss
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O — 1 Loss Function

* The O — 1 Loss multiplies

misclassified points by 1 Loss

* Correctly classified points are
ignored

* Theoretical "ideal" loss function
0-1 Loss
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O — 1 Loss Function

* The O — 1 Loss multiplies

misclassified points by 1 Loss

* Correctly classified points are
ignored

* Theoretical "ideal" loss function
0-1 Loss

* Difficult to optimize—non-smooth

and non-convex T i >
~ ~

Misclassified Correct
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AdaBoost Loss Function

* AdaBoost = Adaptive Boosting
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AdaBoost Loss Function

AdaBoost 4

* AdaBoost = Adaptive Boosting
Loss
* Loss function is exponential:
e (—margin)
0-1 Loss
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AdaBoost Loss Function

AdaBoost 4
* AdaBoost = Adaptive Boosting
Loss
* Loss function is exponential:
e (—margin)

* Makes AdaBoost more sensitive to

outliers than other types of 0-1 Loss

boosting
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Gradient Boosting Loss Function

AdaBoost 4

* Generalized boosting method that
can use different loss functions Loss
e Common implementation uses
|
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Gradient Boosting Loss Function
AdaBoost

* Generalized boosting method that
can use different loss functions

Deviance

* Common implementation uses .
(Gradient

binomial log likelihood loss function

Loss

Boosting)
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Gradient Boosting Loss Function
AdaBoost

* Generalized boosting method that
can use different loss functions

Deviance
(Gradient
Boosting)

* Common implementation uses
binomial log likelihood loss function
(deviance):

log(1 + e(~margin))

0-1 Loss

* More robust to outliers than

Loss

T

AdaBoost '
Misclassified

Margin

Correct




Bagging vs Boosting

* Bootstrapped samples * Fit entire data set




Bagging vs Boosting

* Bootstrapped samples * Fit entire data set

* Base trees created * Base trees created successively

independently




Bagging vs Boosting

ST TR

* Bootstrapped samples * Fit entire data set
* Base trees created * Base trees created successively
independently

* Only data points considered * Use residuals from previous
models




Bagging vs Boosting
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* Bootstrapped samples * Fit entire data set
* Base trees created * Base trees created successively
independently
* Only data points considered * Use residuals from previous
models
* No weighting used * Up-weight misclassified points

e FExcess trees will not overfit e Beware of overfittina




Bagging vs Boosting

ST TR

* Bootstrapped samples * Fit entire data set
* Base trees created * Base trees created successively
independently
* Only data points considered * Use residuals from previous
models
* No weighting used * Up-weight misclassified points

* Excess trees will not overfit * Beware of overfitting




Tuning a Gradient Boosted Model

* Boosting is additive, so possible to

G Random Forest ove rflt
@ Boosting

Test Set Error

0] 200 400 600 800 1000 ]

Boosting Iterations




Tuning a Gradient Boosted Model

* Boosting is additive, so possible to

G Random Forest ove rflt
@ Boosting

Use cross validation to set number
of trees

Test Set Error

0] 200 400 600 800 1000 ]

Boosting Iterations

Software




Tuning a Gradient Boosted Model

* Learning rate (4): set to <1.0 for

regularization. That’s also called
“shrinkage”

Test Set Error
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Boosting Iterations




Tuning a Gradient Boosted Model

* Learning rate (1): set to <1.0 for
= Base
— J=0.1 regularization. That’s also called
— subsample=0.5
" “shrinkage”

* Subsample: set to <1.0 to use
fraction of data for base learners
(stochastic gradient boosting)

Test Set Error
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Tuning a Gradient Boosted Model

* Learning rate (1): set to <1.0 for
= Base
— J=0.1 regularization. That’s also called
— subsample=0.5

A=0.1, subsample=0.5

“shrinkage”

* Subsample: set to <1.0 to use
fraction of data for base learners
(stochastic gradient boosting)

Test Set Error

0 200 400 600 800 1000 ]

Boosting Iterations




Tuning a Gradient Boosted Model

Test Set Error

= Base
= 1=0.
— subsample=0.5

A=0.1, subsample=0.5
— 1=0.1, max_features=2

400 600

Boosting Iterations

800

1000

Learning rate (A1): set to <1.0 for
regularization. That’s also called
“shrinkage”

Subsample: set to <1.0 to use
fraction of data for base learners
(stochastic gradient boosting)

Max_features: number of features

to consider in base learners when
splitting.

Software



GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier




GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

Create an instance of the class
GBC = GradientBoostingClassifier(learning_rate=0.1,

max_features=1, subsample=0.5,

n_estimators=200)

Software



GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

Create an instance of the class
GBC = GradientBoostingClassifier(learning_rate=0.1,
max_features=1, subsample=0.5,

n_estimators=200)

Fit the instance on the data and then predict the expected value

GBC = GBC.fit (X_train, y_train)
y_predict = GBC.predict(X_test)

Software



GradientBoostingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import GradientBoostingClassifier

Create an instance of the class
GBC = GradientBoostingClassifier(learning_rate=0.1,
max_features=1, subsample=0.5,

n_estimators=200)

Fit the instance on the data and then predict the expected value

GBC = GBC.fit (X_train, y_train)
y_predict = GBC.predict(X_test)

Tune with cross-validation. Use GradientBoostingRegressor for regression.
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AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

* Install (Al Kit)

* Add the following two lines of code after the above code:
import patch_sklearn
patch_sklearn()

Software



https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc

AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier

from sklearn.tree import DecisionTreeClassifier

Software




AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

Software



AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

base learner can

' be set manually

Software



AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

can also set max

' depth here

Software



AdaBoostClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier

Create an instance of the class

ABC = AdaBoostClassifier(base_estimator=DecisionTreeClassifier(),

learning_rate=0.1, n_estimators=200)

Fit the instance on the data and then predict the expected value

ABC = ABC.fit(X_train, y_train)
v_predict = ABC.predict(X_test)

Tune parameters with cross-validation. Use AdaBoostRegressor for regression.
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Stacking: Combining Heterogeneous Classifiers

Train Test * Models of any kind
Base Learners Meta Learner combined to create stacked
4 ) model
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Stacking: Combining Heterogeneous Classifiers

Train

Test

Labeled
Data

Base Learners

4 N
Logistic

Regression
\, J

( )

SVM

\ S

( N
Random

Forest

\

-

7

\ S

Meta Learner

Meta
Features

H

Final
Prediction

J

* Models of any kind
combined to create stacked
model

* Like bagging but not limited
to decision trees



Stacking: Combining Heterogeneous Classifiers

Train Test
Base Learners Meta Learner
4 N I
Logistic [
Regression [
\. _J I
4 N I
Labeled SVM Meta | Fil.ld.l
Data Features I Prediction
[

Forest

\ J
Random

]

* Models of any kind
combined to create stacked
model

* Like bagging but not limited
to decision trees

* Output of base learners
creates features, can
recombine with data



Stacking: Combining Heterogeneous Classifiers

Train Test
Base Learners Meta Learner
4 N I
Logistic [
Regression [
\. _J I
4 N I
Labeled SVM Meta | Fil.ld.l
Data Features I Prediction
[

Forest

\ J
Random

J

Output of base learners can
be combined via majority
vote or weighted



Stacking: Combining Heterogeneous Classifiers

Train Test
Base Learners Meta Learner
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Output of base learners can
be combined via majority
vote or weighted

Additional hold-out data
needed if meta learner
parameters are used



Stacking: Combining Heterogeneous Classifiers

Train Test
Base Learners Meta Learner
4 N I
Logistic [
Regression [
\. _J I
4 N I
Labeled SVM Meta | Fil.ld.l
Data Features I Prediction
[

Forest

\ J
Random

]

Output of base learners can
be combined via majority
vote or weighted

Additional hold-out data
needed if meta learner
parameters are used

Be aware of increasing
model complexity



VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Software




VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class

VC = VotingClassifier(estimator_list, voting="hard',

weights=estimator_weight_list)

Software




VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class list of fitted
VC = VotingClassifier(estimator_list, voting="hard', « models and
how to

weights=estimator_weight_list)

combine

Software




VotingClassifier: The Syntax

Import the class containing the classification method

from sklearn.ensemble import VotingClassifier

Create an instance of the class
VC = VotingClassifier(estimator_list, voting="hard',

weights=estimator_weight_list)

Fit the instance on the data and then predict the expected value

VC = VC.fit(X_train, y_train)
y_predict = VC.predict(X_test)

Tune with an ADDITIONAL LEVEL of cross-validation or hold-out set.

Software
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