
Introduction to Unsupervised 

Learning



Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS 
OR IMPLIED, IN THIS SUMMARY. 

Intel technologies’ features and benefits depend on system configuration and may require 
enabled hardware, software or service activation. Performance varies depending on system 
configuration. Check with your system manufacturer or retailer or learn more at intel.com. 

This sample source code is released under the Intel Sample Source Code License Agreement. 

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. 

*Other names and brands may be claimed as the property of others. 

Copyright © 2021, Intel Corporation. All rights reserved. 

http://www.intel.com/
https://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement


Types of Machine Learning

data points have known outcomeSupervised

Unsupervised data points have unknown outcome



Types of Machine Learning

data points have known outcomeSupervised

Unsupervised data points have unknown outcome



Dimensionality 

Reduction

Clustering

Types of Unsupervised Learning

identify unknown structure in data

use structural characteristics to simplify data



Dimensionality 

Reduction

Types of Unsupervised Learning

identify unknown structure in data

use structural characteristics to simplify data

Clustering



Unsupervised Learning Overview

unlabeled data 

(no answers)

map new 

data to 

structure

new 

unlabeled 

data 

fit

+

structure

predict
model



text articles of 

unknown topics model

predict similar 

articles

text articles of 

unknown topics

fit

+

+

predict

Clustering: Finding Distinct Groups

model

model



high resolution 

images model

compressed 

images

high resolution 

images

fit

+

+

model

model

predict

Dimensionality Reduction: Simplifying Structure



Introduction to Unsupervised Learning
Users of a web application:

One feature (age)

Age



Introduction to Unsupervised Learning
Users of a web application:

One feature (age)

Two clusters

Age



Introduction to Unsupervised Learning
Users of a web application:

One feature (age)

Three clusters

Age



Introduction to Unsupervised Learning
Users of a web application:

One feature (age)

Five clusters

Age



Age

Income

K-Means Algorithm
K = 2 (find two clusters)



Age

Income

K-Means Algorithm
K = 2, Randomly assign cluster centers



Age

Income

K-Means Algorithm
K = 2, Each point belongs to closest center



Age

Income

K-Means Algorithm
K = 2, Move each center to cluster's mean



Age

Income

K-Means Algorithm
K = 2, Each point belongs to closest center



Age

Income

K-Means Algorithm
K = 2, Move each center to cluster's mean



Age

Income

K-Means Algorithm
K = 2, Points don't change → Converged



Age

Income

K-Means Algorithm
K = 2, Each point belongs to closest center



Age

Income

K-Means Algorithm
K = 3



Age

Income

K-Means Algorithm
K = 3, Results depend on initial cluster assignment



Age

Income

Which Model is the Right One?



Which Model is the Right One?

• Inertia: sum of squared distance from each point (𝑥𝑖) 
to its cluster (𝐶𝑘)

෍

𝑖=1

𝑛

(𝑥𝑖 − 𝐶𝑘)
2

• Smaller value corresponds to tighter clusters

• Other metrics can also be used



Age

Income

Which Model is the Right One?
Initiate multiple times, 

take model with the best score



Age

Income

Which Model is the Right One?
Inertia = 12.645



Age

Income

Which Model is the Right One?
Inertia = 12.943



Age

Income

Which Model is the Right One?
Inertia = 13.112 



Age

Income

Smarter Initialization of K-Means Clusters



Age

Income

Smarter Initialization of K-Means Clusters
Pick one point at random as initial point



Age

Income

Smarter Initialization of K-Means Clusters
Pick next point with 1/distance2 probability



Age

Income

Smarter Initialization of K-Means Clusters
Pick next point with 1/distance2 probability



Age

Income

Smarter Initialization of K-Means Clusters
Pick next point with 1/distance2 probability



Age

Income

Smarter Initialization of K-Means Clusters
Assign clusters



Choosing the Right Number of Clusters



• Sometimes the question has a K

Choosing the Right Number of Clusters



• Sometimes the question has a K

• Clustering similar jobs on 4 CPU cores (K=4)

Choosing the Right Number of Clusters



• Sometimes the question has a K

• Clustering similar jobs on 4 CPU cores (K=4)

• A clothing design in 10 different sizes to cover most 

people (K=10)

Choosing the Right Number of Clusters



• Sometimes the question has a K

• Clustering similar jobs on 4 CPU cores (K=4)

• A clothing design in 10 different sizes to cover most 

people (K=10)

• A navigation interface for browsing scientific papers

with 20 disciplines (K=20)

Choosing the Right Number of Clusters



Inertia

K

Choosing the Right Number of Clusters

• Inertia measures distance of 

point to cluster

• Value decreases with 

increasing K as long as cluster 

density increases

2 4 6 8 10



Inertia

K

Choosing the Right Number of Clusters

• Inertia measures distance of 

point to cluster

• Value decreases with 

increasing K as long as cluster 

density increases

2 4 6 8 10



K-Means: The Syntax

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

kmeans = KMeans(n_clusters=3, 

init='k-means++')

Fit the instance on the data and then transform the data

X_trans = kmeans.fit_transform(X_sparse)

Can also be used in batch mode with MiniBatchKMeans.



K-Means: The Syntax

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

kmeans = KMeans(n_clusters=3, 

init='k-means++')

Fit the instance on the data and then transform the data

X_trans = kmeans.fit_transform(X_sparse)

Can also be used in batch mode with MiniBatchKMeans.



K-Means: The Syntax

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

kmeans = KMeans(n_clusters=3, 

init='k-means++')

Fit the instance on the data and then transform the data

X_trans = kmeans.fit_transform(X_sparse)

Can also be used in batch mode with MiniBatchKMeans.

final number of 

clusters



K-Means: The Syntax

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

kmeans = KMeans(n_clusters=3, 

init='k-means++')

Fit the instance on the data and then transform the data

X_trans = kmeans.fit_transform(X_sparse)

Can also be used in batch mode with MiniBatchKMeans.

kmeans++ 

cluster 

initiation



K-Means: The Syntax

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

kmeans = KMeans(n_clusters=3, 

init='k-means++')

Fit the instance on the data and then predict clusters for new data

kmeans = kmeans.fit(X1)

Can also be used in batch mode with MiniBatchKMeans.



K-Means: The Syntax

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

kmeans = KMeans(n_clusters=3, 

init='k-means++')

Fit the instance on the data and then predict clusters for new data

kmeans = kmeans.fit(X1)

y_predict = kmeans.predict(X2)

Can also be used in batch mode with MiniBatchKMeans.





Distance Metrics



Distance Metric Choice

• Choice of distance metric is extremely 

important to clustering success

• Each metric has strengths and most 

appropriate use-cases…

• …but sometimes choice of distance metric is 

also based on empirical evaluation



Age

Income

Euclidean Distance



Age

Income

Euclidean Distance



Age

Income

Euclidean Distance (L2 Distance)

∆ Income
d

∆ Age

𝑑 = ∆𝐴𝑔𝑒2 + ∆𝐼𝑛𝑐𝑜𝑚𝑒2



Age

Income

Manhattan Distance (L1 or City Block Distance)

∆ Income

∆ Age

𝑑 = ∆𝐴𝑔𝑒 + ∆𝐼𝑛𝑐𝑜𝑚𝑒



Age

Income

Cosine Distance

cos(𝜃) =
𝐴 ∙ 𝐵

𝐴 𝐵

𝜃



Age

Income

Cosine Distance

cos(𝜃) =
𝐴 ∙ 𝐵

𝐴 𝐵

𝜃



Euclidean vs Cosine Distance

• Euclidean is useful for coordinate based 

measurements

• Cosine is better for input data such as text where 

location of occurrence is less important

• Euclidean distance is more sensitive to curse of 

dimensionality (see lesson 12)



Euclidean vs Cosine Distance

• Euclidean is useful for coordinate based 

measurements

• Cosine is better for data such as text where 

location of occurrence is less important

• Euclidean distance is more sensitive to curse of 

dimensionality (see lesson 12)



Euclidean vs Cosine Distance

• Euclidean is useful for coordinate based 

measurements

• Cosine is better for data such as text where 

location of occurrence is less important

• Euclidean distance is more sensitive to curse of 

dimensionality (see lesson 12)



Jaccard Distance

1 −
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
= 1 −

𝑙𝑒𝑛(𝑠ℎ𝑎𝑟𝑒𝑑)

𝑙𝑒𝑛(𝑢𝑛𝑖𝑞𝑢𝑒)

Applies to sets (like word occurrence)

• Sentence A: “I like chocolate ice cream.”

• set A = {I, like, chocolate, ice, cream}

• Sentence B: “Do I want chocolate cream or vanilla cream?”

• set B = {Do, I, want, chocolate, cream, or, vanilla}



Jaccard Distance

1 −
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
= 1 −

3

9

• Sentence A: “I like chocolate ice cream.”

• set A = {I, like, chocolate, ice, cream}

• Sentence B: “Do I want chocolate cream or vanilla cream?”

• set B = {Do, I, want, chocolate, cream, or, vanilla}

Applies to sets (like word occurrence)



Distance Metrics: The Syntax

Import the general pairwise distance function

from sklearn.metrics import pairwise_distances

Calculate the distances

dist = pairwise_distances(X, Y, 

metric='euclidean')

Other distance metric choices are: cosine, manhattan, jaccard, etc.

Distance metric methods can also be imported specifically, e.g.:

from sklearn.metrics import euclidean_distances



Distance Metrics: The Syntax

Import the general pairwise distance function

from sklearn.metrics import pairwise_distances

Calculate the distances

dist = pairwise_distances(X, Y, 

metric='euclidean')

Other distance metric choices are: cosine, manhattan, jaccard, etc.

Distance metric methods can also be imported specifically, e.g.:

from sklearn.metrics import euclidean_distances



Distance Metrics: The Syntax

Import the general pairwise distance function

from sklearn.metrics import pairwise_distances

Calculate the distances

dist = pairwise_distances(X, Y, 

metric='euclidean')

Other distance metric choices are: cosine, manhattan, jaccard, etc.

Distance metric methods can also be imported specifically, e.g.:

from sklearn.metrics import euclidean_distances

distance metric 

choice



Distance Metrics: The Syntax

Import the general pairwise distance function

from sklearn.metrics import pairwise_distances

Calculate the distances

dist = pairwise_distances(X, Y, 

metric='euclidean')

Other distance metric choices are: cosine, manhattan, jaccard, etc.

Distance metric methods can also be imported specifically, e.g.:

from sklearn.metrics import euclidean_distances



Distance Metrics: The Syntax

Import the general pairwise distance function

from sklearn.metrics import pairwise_distances

Calculate the distances

dist = pairwise_distances(X, Y, 

metric='euclidean')

Other distance metric choices are: cosine, manhattan, jaccard, etc.

Distance metric methods can also be imported specifically, e.g.:

from sklearn.metrics import euclidean_distances





Hierarchical Agglomerative 

Clustering



Age

Income

Hierarchical Agglomerative Clustering



Age

Income

Hierarchical Agglomerative Clustering
Find closest pair, merge into a cluster



Age

Income

Hierarchical Agglomerative Clustering
Find next closest pair and merge



Age

Income

Hierarchical Agglomerative Clustering
Find next closest pair and merge



Age

Income

Hierarchical Agglomerative Clustering
Keep merging closest pairs



Age

Income

Hierarchical Agglomerative Clustering
If the closest pair is two clusters, merge them



Age

Income

Hierarchical Agglomerative Clustering
Keep merging closest pairs and clusters



Age

Income

Hierarchical Agglomerative Clustering
Keep merging closest pairs and clusters



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 6



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 5



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 4



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 3



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 2



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 1



Agglomerative Clustering Stopping Conditions

the correct number of clusters is reached
Condition 1

Condition 2
minimum cluster distance reaches a set 

value 



Agglomerative Clustering Stopping Conditions

the correct number of clusters is reached
Condition 1

Condition 2
minimum average cluster distance 

reaches a set value



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 5



Hierarchical Agglomerative Clustering
Current number of clusters = 5

C
lu

s
te

r 
d

is
ta

n
c
e



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 4



Hierarchical Agglomerative Clustering
Current number of clusters = 4

C
lu

s
te

r 
d

is
ta

n
c
e



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 3



Hierarchical Agglomerative Clustering
Current number of clusters = 3

C
lu

s
te

r 
d

is
ta

n
c
e



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 2



Hierarchical Agglomerative Clustering
Current number of clusters = 2

C
lu

s
te

r 
d

is
ta

n
c
e



Age

Income

Hierarchical Linkage Types
Single linkage: minimum pairwise distance between clusters



Age

Income

Hierarchical Linkage Types
Single linkage: minimum pairwise distance between clusters



Age

Income

Hierarchical Linkage Types
Complete linkage: maximum pairwise distance between clusters



Age

Income

Hierarchical Linkage Types
Complete linkage: maximum pairwise distance between clusters



Age

Income

Hierarchical Linkage Types
Average linkage: average pairwise distance between clusters



Age

Income

Hierarchical Linkage Types
Average linkage: average pairwise distance between clusters



Age

Income

Hierarchical Linkage Types
Ward linkage: merge based on best inertia



Age

Income

Hierarchical Linkage Types
Ward linkage: merge based on best inertia



Agglomerative Clustering: The Syntax

Import the class containing the clustering method

from sklearn.cluster import AgglomerativeClustering

Create an instance of the class

agg = AgglomerativeClustering(n_clusters=3, 

affinity='euclidean',

linkage='ward')

Fit the instance on the data and then predict clusters for new data

agg = agg.fit(X1)

y_predict = agg.predict(X2)



Agglomerative Clustering: The Syntax

Import the class containing the clustering method

from sklearn.cluster import AgglomerativeClustering

Create an instance of the class

agg = AgglomerativeClustering(n_clusters=3, 

affinity='euclidean',

linkage='ward')

Fit the instance on the data and then predict clusters for new data

agg = agg.fit(X1)

y_predict = agg.predict(X2)

final number of 

clusters



Agglomerative Clustering: The Syntax

Import the class containing the clustering method

from sklearn.cluster import AgglomerativeClustering

Create an instance of the class

agg = AgglomerativeClustering(n_clusters=3, 

affinity='euclidean',

linkage='ward')

Fit the instance on the data and then predict clusters for new data

agg = agg.fit(X1)

y_predict = agg.predict(X2)

cluster affinity 

and 

aggregation



Mini-Batch

K-Means

Affinity 

Propagation

Mean 

Shift

Spectral 

Clustering
Ward DBSCAN

.01s 8.17s .02s .31s .21s .10s

0.1s 8.17s .03s .03s .26s .10s

.01s 8.45s .03s .04s .31s .11s

.02s 8.53s .06s .08s .21s .10s

Other Types of Clustering

Reference: http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html




