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Types of Machine Learning

data points have known outcomeSupervised

Unsupervised data points have unknown outcome
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Dimensionality Reduction: Simplifying Structure
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Introduction to Unsupervised Learning
Users of a web application:

One feature (age)
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K-Means Algorithm
K = 2 (find two clusters)



Age

Income

K-Means Algorithm
K = 2, Randomly assign cluster centers
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K = 2, Each point belongs to closest center
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K-Means Algorithm
K = 2, Points don't change → Converged
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K = 2, Each point belongs to closest center
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K = 3
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K-Means Algorithm
K = 3, Results depend on initial cluster assignment
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Which Model is the Right One?

• Inertia: sum of squared distance from each point (𝑥𝑖) 
to its cluster (𝐶𝑘)

෍

𝑖=1

𝑛

(𝑥𝑖 − 𝐶𝑘)
2

• Smaller value corresponds to tighter clusters

• Other metrics can also be used
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Which Model is the Right One?
Initiate multiple times, 

take model with the best score
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Which Model is the Right One?
Inertia = 12.645
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Which Model is the Right One?
Inertia = 12.943
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Which Model is the Right One?
Inertia = 13.112 
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Smarter Initialization of K-Means Clusters
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Smarter Initialization of K-Means Clusters
Pick one point at random as initial point
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Smarter Initialization of K-Means Clusters
Pick next point with 1/distance2 probability
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Smarter Initialization of K-Means Clusters
Pick next point with 1/distance2 probability
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Smarter Initialization of K-Means Clusters
Assign clusters



Choosing the Right Number of Clusters



• Sometimes the question has a K
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• Clustering similar jobs on 4 CPU cores (K=4)
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• Sometimes the question has a K

• Clustering similar jobs on 4 CPU cores (K=4)

• A clothing design in 10 different sizes to cover most 
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• Sometimes the question has a K

• Clustering similar jobs on 4 CPU cores (K=4)

• A clothing design in 10 different sizes to cover most 

people (K=10)

• A navigation interface for browsing scientific papers

with 20 disciplines (K=20)

Choosing the Right Number of Clusters
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K

Choosing the Right Number of Clusters

• Inertia measures distance of 

point to cluster

• Value decreases with 

increasing K as long as cluster 

density increases

2 4 6 8 10
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K-Means: The Syntax

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

kmeans = KMeans(n_clusters=3, 

init='k-means++')

Fit the instance on the data and then transform the data

X_trans = kmeans.fit_transform(X_sparse)

Can also be used in batch mode with MiniBatchKMeans.
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K-Means: The Syntax

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

kmeans = KMeans(n_clusters=3, 

init='k-means++')

Fit the instance on the data and then transform the data
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K-Means: The Syntax

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

kmeans = KMeans(n_clusters=3, 

init='k-means++')

Fit the instance on the data and then predict clusters for new data

kmeans = kmeans.fit(X1)

Can also be used in batch mode with MiniBatchKMeans.



K-Means: The Syntax

Import the class containing the clustering method

from sklearn.cluster import KMeans

Create an instance of the class

kmeans = KMeans(n_clusters=3, 

init='k-means++')

Fit the instance on the data and then predict clusters for new data

kmeans = kmeans.fit(X1)

y_predict = kmeans.predict(X2)

Can also be used in batch mode with MiniBatchKMeans.
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Distance Metric Choice

• Choice of distance metric is extremely 

important to clustering success

• Each metric has strengths and most 

appropriate use-cases…

• …but sometimes choice of distance metric is 

also based on empirical evaluation
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Euclidean Distance (L2 Distance)

∆ Income
d

∆ Age

𝑑 = ∆𝐴𝑔𝑒2 + ∆𝐼𝑛𝑐𝑜𝑚𝑒2
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Manhattan Distance (L1 or City Block Distance)

∆ Income

∆ Age

𝑑 = ∆𝐴𝑔𝑒 + ∆𝐼𝑛𝑐𝑜𝑚𝑒
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Cosine Distance

cos(𝜃) =
𝐴 ∙ 𝐵

𝐴 𝐵

𝜃
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Euclidean vs Cosine Distance

• Euclidean is useful for coordinate based 

measurements

• Cosine is better for input data such as text where 

location of occurrence is less important

• Euclidean distance is more sensitive to curse of 

dimensionality (see lesson 12)
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Jaccard Distance

1 −
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
= 1 −

𝑙𝑒𝑛(𝑠ℎ𝑎𝑟𝑒𝑑)

𝑙𝑒𝑛(𝑢𝑛𝑖𝑞𝑢𝑒)

Applies to sets (like word occurrence)

• Sentence A: “I like chocolate ice cream.”

• set A = {I, like, chocolate, ice, cream}

• Sentence B: “Do I want chocolate cream or vanilla cream?”

• set B = {Do, I, want, chocolate, cream, or, vanilla}



Jaccard Distance

1 −
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
= 1 −

3
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• Sentence A: “I like chocolate ice cream.”

• set A = {I, like, chocolate, ice, cream}

• Sentence B: “Do I want chocolate cream or vanilla cream?”

• set B = {Do, I, want, chocolate, cream, or, vanilla}

Applies to sets (like word occurrence)



Distance Metrics: The Syntax

Import the general pairwise distance function

from sklearn.metrics import pairwise_distances

Calculate the distances

dist = pairwise_distances(X, Y, 

metric='euclidean')

Other distance metric choices are: cosine, manhattan, jaccard, etc.

Distance metric methods can also be imported specifically, e.g.:

from sklearn.metrics import euclidean_distances
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Distance Metrics: The Syntax

Import the general pairwise distance function

from sklearn.metrics import pairwise_distances

Calculate the distances

dist = pairwise_distances(X, Y, 

metric='euclidean')

Other distance metric choices are: cosine, manhattan, jaccard, etc.

Distance metric methods can also be imported specifically, e.g.:

from sklearn.metrics import euclidean_distances

distance metric 

choice



Distance Metrics: The Syntax

Import the general pairwise distance function

from sklearn.metrics import pairwise_distances

Calculate the distances

dist = pairwise_distances(X, Y, 

metric='euclidean')

Other distance metric choices are: cosine, manhattan, jaccard, etc.

Distance metric methods can also be imported specifically, e.g.:

from sklearn.metrics import euclidean_distances



Distance Metrics: The Syntax

Import the general pairwise distance function

from sklearn.metrics import pairwise_distances

Calculate the distances

dist = pairwise_distances(X, Y, 

metric='euclidean')

Other distance metric choices are: cosine, manhattan, jaccard, etc.
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from sklearn.metrics import euclidean_distances





Hierarchical Agglomerative 

Clustering
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Hierarchical Agglomerative Clustering
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Hierarchical Agglomerative Clustering
Find closest pair, merge into a cluster
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Hierarchical Agglomerative Clustering
Find next closest pair and merge
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Hierarchical Agglomerative Clustering
Find next closest pair and merge
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Hierarchical Agglomerative Clustering
Keep merging closest pairs
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Hierarchical Agglomerative Clustering
If the closest pair is two clusters, merge them
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Hierarchical Agglomerative Clustering
Keep merging closest pairs and clusters
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Hierarchical Agglomerative Clustering
Keep merging closest pairs and clusters
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Hierarchical Agglomerative Clustering
Current number of clusters = 6
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Hierarchical Agglomerative Clustering
Current number of clusters = 5



Age

Income

Hierarchical Agglomerative Clustering
Current number of clusters = 4
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Hierarchical Agglomerative Clustering
Current number of clusters = 3
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Hierarchical Agglomerative Clustering
Current number of clusters = 2
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Hierarchical Agglomerative Clustering
Current number of clusters = 1



Agglomerative Clustering Stopping Conditions

the correct number of clusters is reached
Condition 1

Condition 2
minimum cluster distance reaches a set 

value 



Agglomerative Clustering Stopping Conditions

the correct number of clusters is reached
Condition 1

Condition 2
minimum average cluster distance 

reaches a set value
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Hierarchical Agglomerative Clustering
Current number of clusters = 5
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Current number of clusters = 5
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Hierarchical Agglomerative Clustering
Current number of clusters = 4
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Hierarchical Agglomerative Clustering
Current number of clusters = 3
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Hierarchical Agglomerative Clustering
Current number of clusters = 2
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Hierarchical Linkage Types
Single linkage: minimum pairwise distance between clusters
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Hierarchical Linkage Types
Complete linkage: maximum pairwise distance between clusters
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Hierarchical Linkage Types
Complete linkage: maximum pairwise distance between clusters
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Hierarchical Linkage Types
Average linkage: average pairwise distance between clusters
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Hierarchical Linkage Types
Average linkage: average pairwise distance between clusters
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Hierarchical Linkage Types
Ward linkage: merge based on best inertia
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Hierarchical Linkage Types
Ward linkage: merge based on best inertia



Agglomerative Clustering: The Syntax

Import the class containing the clustering method

from sklearn.cluster import AgglomerativeClustering

Create an instance of the class

agg = AgglomerativeClustering(n_clusters=3, 

affinity='euclidean',

linkage='ward')

Fit the instance on the data and then predict clusters for new data

agg = agg.fit(X1)

y_predict = agg.predict(X2)
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Agglomerative Clustering: The Syntax

Import the class containing the clustering method

from sklearn.cluster import AgglomerativeClustering

Create an instance of the class

agg = AgglomerativeClustering(n_clusters=3, 

affinity='euclidean',

linkage='ward')

Fit the instance on the data and then predict clusters for new data

agg = agg.fit(X1)

y_predict = agg.predict(X2)

cluster affinity 

and 

aggregation



Mini-Batch

K-Means

Affinity 

Propagation

Mean 

Shift

Spectral 

Clustering
Ward DBSCAN

.01s 8.17s .02s .31s .21s .10s

0.1s 8.17s .03s .03s .26s .10s

.01s 8.45s .03s .04s .31s .11s

.02s 8.53s .06s .08s .21s .10s

Other Types of Clustering

Reference: http://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html




