
Dimensionality Reduction



Legal Notices and Disclaimers

This presentation is for informational purposes only. INTEL MAKES NO WARRANTIES, EXPRESS 
OR IMPLIED, IN THIS SUMMARY. 

Intel technologies’ features and benefits depend on system configuration and may require 
enabled hardware, software or service activation. Performance varies depending on system 
configuration. Check with your system manufacturer or retailer or learn more at intel.com. 

This sample source code is released under the Intel Sample Source Code License Agreement. 

Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries. 

*Other names and brands may be claimed as the property of others. 

Copyright © 2021, Intel Corporation. All rights reserved. 

http://www.intel.com/
https://software.intel.com/en-us/articles/intel-sample-source-code-license-agreement


Learning Objectives

• Explain and Apply Principal Component Analysis (PCA)

• Explain Multidimensional Scaling (MDS)

• Apply Intel® Extension for Scikit-learn* to leverage 

underlying compute capabilities of hardware

•

https://intel.github.io/scikit-learn-intelex/


Curse of Dimensionality

• Theoretically, increasing features 

should improve performance

• In practice, more features leads to 

worse performance

• Number of training examples 

required increases exponentially with 

dimensionality

1 dimension: 

10 positions
2 dimensions: 

100 positions

3 dimensions: 

1000 positions



Curse of Dimensionality

• Theoretically, increasing features 

should improve performance

• In practice, too many features leads 

to worse performance

1 dimension: 

10 positions
2 dimensions: 

100 positions

3 dimensions: 

1000 positions



Curse of Dimensionality

• Theoretically, increasing features 

should improve performance

• In practice, too many features leads 

to worse performance

• Number of training examples 

required increases exponentially with 

dimensionality

1 dimension: 

10 positions
2 dimensions: 

100 positions

3 dimensions: 

1000 positions



Solution: Dimensionality Reduction

• Data can be represented by 

fewer dimensions (features)

• Reduce dimensionality by 

selecting subset (feature 

elimination)

• Combine with linear and non-

linear transformations

Height

Cigarettes/Day



Solution: Dimensionality Reduction

• Data can be represented by 

fewer dimensions (features)

• Reduce dimensionality by 

selecting subset (feature 

elimination)

• Combine with linear and non-

linear transformations

Height

Cigarettes/Day



Solution: Dimensionality Reduction

• Data can be represented by 

fewer dimensions (features)

• Reduce dimensionality by 

selecting subset (feature 

elimination)

• Combine with linear and non-

linear transformations

Height

Cigarettes/Day



Solution: Dimensionality Reduction

• Two features: height and 

cigarettes per day

• Both features increase 

together (correlated)

• Can we reduce number of 

features to one?

Height

Cigarettes/Day



Solution: Dimensionality Reduction

• Two features: height and 

cigarettes per day

• Both features increase 

together (correlated)

• Can we reduce number of 

features to one?

Height

Cigarettes/Day



Solution: Dimensionality Reduction

• Two features: height and 

cigarettes per day

• Both features increase 

together (correlated)

• Can we reduce number of 

features to one?

Height

Cigarettes/Day



Solution: Dimensionality Reduction

• Two features: height and 

cigarettes per day

• Both features increase 

together (correlated)

• Can we reduce number of 

features to one?

Height

Cigarettes/Day



Solution: Dimensionality Reduction

• Create single feature that 

is combination of height 

and cigarettes

• This is Principal Component 

Analysis (PCA)

Height

Cigarettes/Day



Solution: Dimensionality Reduction

• Create single feature that 

is combination of height 

and cigarettes

• This is Principal Component 

Analysis (PCA)



Dimensionality Reduction

Given an 𝑁-dimensional data set (𝑥), find a 𝑁 × 𝐾 matrix (𝑈):

𝑦 = 𝑈𝑇𝑥, where 𝑦 has 𝐾 dimensions and 𝐾 < 𝑁

𝑥 =

𝑥1
𝑥2
⋯
𝑥𝑛

𝑈𝑇

𝑦 =

𝑦1
𝑦2
⋯
𝑦𝑘

(𝐾 < 𝑁)



Principal Component Analysis (PCA)

X2

X1



Principal Component Analysis (PCA)

X2

X1



Principal Component Analysis (PCA)

X2

X1



Principal Component Analysis (PCA)

X2

X1

Direction: 𝑣1
Length: 𝜆1

Direction: 𝑣2
Length: 𝜆2



• SVD is a matrix 

factorization method 

normally used for PCA 

• Does not require a square 

data set

• SVD is used by Scikit-learn 

for PCA

Single Value Decomposition (SVD)

𝐴𝑚×𝑛 𝑈𝑚×𝑚 𝑆𝑚×𝑛 𝑉𝑛×𝑛
𝑇

⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

=

⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆

⋆ 0 0
0 ⋆ 0
0 0 ⋆
0 0 0
0 0 0

⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆



• How can SVD be used for 

dimensionality reduction?

• Principal components are 

calculated from 𝑈𝑆

• "Truncated SVD" used for 

dimensionality reduction 

(𝑛 → 𝑘)

Truncated Single Value Decomposition

𝐴𝑚×𝑛 𝑈𝑚×𝑘 𝑆𝑘×𝑘 𝑉𝑘×𝑛
𝑇

⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆

≈

⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆
⋆ ⋆ ⋆ ⋆ ⋆

𝟗 0 0
0 𝟕 0
0 0 𝟏
0 0 0
0 0 0

⋆ ⋆ ⋆
⋆ ⋆ ⋆
⋆ ⋆ ⋆



• PCA and SVD seek to find 

the vectors that capture the 

most variance

• Variance is sensitive to axis 

scale

• Must scale data!

Importance of Feature Scaling

X2

X1

100

200

300

400

500

10 20 30 40 50

Unscaled



• PCA and SVD seek to find 

the vectors that capture the 

most variance

• Variance is sensitive to axis 

scale

• Must scale data!

X2

X1

10

20

30

40

50

10 20 30 40 50

Unscaled
Scaled

Importance of Feature Scaling



Import the class containing the dimensionality reduction method

from sklearn.decomposition import PCA

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

PCA: The Syntax

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc


Import the class containing the dimensionality reduction method

from sklearn.decomposition import PCA

Create an instance of the class

PCAinst = PCA(n_components=3, whiten=True)

Fit the instance on the data and then transform the data

X_trans = PCAinst.fit_transform(X_train)

Does not work with sparse matrices

PCA: The Syntax



Import the class containing the dimensionality reduction method

from sklearn.decomposition import PCA

Create an instance of the class

PCAinst = PCA(n_components=3, whiten=True)

PCA: The Syntax



Import the class containing the dimensionality reduction method

from sklearn.decomposition import PCA

Create an instance of the class

PCAinst = PCA(n_components=3, whiten=True)
final number of 

dimensions

PCA: The Syntax



Import the class containing the dimensionality reduction method

from sklearn.decomposition import PCA

Create an instance of the class

PCAinst = PCA(n_components=3, whiten=True)
whiten = scale 

and center data

PCA: The Syntax



Import the class containing the dimensionality reduction method

from sklearn.decomposition import PCA

Create an instance of the class

PCAinst = PCA(n_components=3, whiten=True)

Fit the instance on the data and then transform the data

X_trans = PCAinst.fit_transform(X_train)

Does not work with sparse matrices

PCA: The Syntax



Import the class containing the dimensionality reduction method

from sklearn.decomposition import PCA

Create an instance of the class

PCAinst = PCA(n_components=3, whiten=True)

Fit the instance on the data and then transform the data

X_trans = PCAinst.fit_transform(X_train)

Does not work with sparse matrices

PCA: The Syntax



Truncated SVD: The Syntax

Import the class containing the dimensionality reduction method

from sklearn.decomposition import TruncatedSVD

Create an instance of the class

SVD = TruncatedSVD(n_components=3)

Fit the instance on the data and then transform the data

X_trans = SVD.fit_transform(X_sparse)

Works with sparse matrices—used with text data for Latent Semantic Analysis (LSA)



Import the class containing the dimensionality reduction method

from sklearn.decomposition import TruncatedSVD

Create an instance of the class

SVD = TruncatedSVD(n_components=3)

Fit the instance on the data and then transform the data

X_trans = SVD.fit_transform(X_sparse)

Works with sparse matrices—used with text data for Latent Semantic Analysis (LSA)

does not center 

data

Truncated SVD: The Syntax



• Transformations calculated with 

PCA/SVD are linear

• Data can have non-linear features 

• This can cause dimensionality 

reduction to fail

Moving Beyond Linearity

Original Space Projection by PCA



• Transformations calculated with 

PCA/SVD are linear

• Data can have non-linear features 

• This can cause dimensionality 

reduction to fail

Moving Beyond Linearity

Original Space Projection by PCA



• Transformations calculated with 

PCA/SVD are linear

• Data can have non-linear features 

• This can cause dimensionality 

reduction to fail

Moving Beyond Linearity

Original Space Projection by PCA

dimensionality 

reduction fails



• Solution: kernels can be used 

to perform non-linear PCA

• Like the kernel trick 

introduced for SVMs

Kernel PCA

Original Space Projection by KPCA



Kernel PCA

Linear PCA

𝑅2 𝑅2

Φ
𝐹

Kernel PCA• Solution: kernels can be used 

to perform non-linear PCA

• Like the kernel trick 

introduced for SVMs



Kernel PCA: The Syntax

Import the class containing the dimensionality reduction method

from sklearn.decomposition import KernelPCA

Create an instance of the class

kPCA = KernelPCA(n_components=3, kernel='rbf', gamma=1.0)

Fit the instance on the data and then transform the data

X_trans = kPCA.fit_transform(X_train)



• Non-linear transformation

• Doesn't focus on maintaining overall 

variance

• Instead, maintains geometric distances 

between points

Multi-Dimensional Scaling (MDS)

X

Y

Z



MDS: The Syntax

Import the class containing the dimensionality reduction method

from sklearn.manifold import MDS

Create an instance of the class

mdsMod = MDS(n_components=2)

Fit the instance on the data and then transform the data

X_trans = mdsMod.fit_transform(X_sparse)

Many other manifold dimensionality methods exist: Isomap, TSNE.



Uses of Dimensionality Reduction

Image Source: https://commons.wikimedia.org/wiki/File:Monarch_In_May.jpg

• Frequently used for high 

dimensionality data

• Natural language processing 

(NLP)—many word combinations

• Image-based data sets—pixels 

are features



Uses of Dimensionality Reduction

• Divide image into 12 x 12 pixel 

sections

• Flatten section to create row of 

data with 144 features

• Perform PCA on all data points

Image Source: https://commons.wikimedia.org/wiki/File:Monarch_In_May.jpg



Uses of Dimensionality Reduction

• Divide image into 12 x 12 pixel 

sections

• Flatten section to create row of 

data with 144 features

• Perform PCA on all data points

Image Source: https://commons.wikimedia.org/wiki/File:Monarch_In_May.jpg

12 x 12

1 2 3 …
14
2

14
3

14
4



Uses of Dimensionality Reduction

• Divide image into 12 x 12 pixel 

sections

• Flatten section to create row of 

data with 144 features

• Perform PCA on all data points

Image Source: https://commons.wikimedia.org/wiki/File:Monarch_In_May.jpg

1 2 3 …
14
2

14
3

14
4

1 2 3 …
14
2

14
3

14
4

1 2 3 …
14
2

14
3

14
4

1 2 3 …
14
2

14
3

14
4

1 2 3 …
14
2

14
3

14
4

1 2 3 …
14
2

14
3

14
4



PCA Compression: 144 → 60 Dimensions

144 Dimensions 60 Dimensions



PCA Compression: 144 → 16 Dimensions

144 Dimensions 16 Dimensions



Sixteen Most Important Eigenvectors



PCA Compression: 144 → 4 Dimensions

144 Dimensions 4 Dimensions



L2 Error and PCA Dimension

PCA Dimension

0.2

4020

R
e
la

ti
ve

 E
rr

o
r

0.8

1.0

0.6

0.4

60 80 100 120 140



Four Most Important Eigenvectors



Four Most Important Eigenvectors



PCA Compression: 144 → 1 Dimension

144 Dimensions 1 Dimension




