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Learning Objectives

• Explain and Apply Principal Component Analysis (PCA)

• Explain Multidimensional Scaling (MDS)

• Apply Intel® Extension for Scikit-learn* to leverage 

underlying compute capabilities of hardware

•

https://intel.github.io/scikit-learn-intelex/


Curse of Dimensionality

• Theoretically, increasing features 

should improve performance

• In practice, more features leads to 

worse performance

• Number of training examples 

required increases exponentially with 

dimensionality

1 dimension: 

10 positions
2 dimensions: 

100 positions

3 dimensions: 

1000 positions
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Solution: Dimensionality Reduction

• Data can be represented by 

fewer dimensions (features)

• Reduce dimensionality by 

selecting subset (feature 

elimination)

• Combine with linear and non-

linear transformations
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Solution: Dimensionality Reduction

• Two features: height and 

cigarettes per day

• Both features increase 

together (correlated)

• Can we reduce number of 

features to one?
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Solution: Dimensionality Reduction

• Create single feature that 

is combination of height 

and cigarettes

• This is Principal Component 

Analysis (PCA)
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Dimensionality Reduction

Given an 𝑁-dimensional data set (𝑥), find a 𝑁 × 𝐾 matrix (𝑈):

𝑦 = 𝑈𝑇𝑥, where 𝑦 has 𝐾 dimensions and 𝐾 < 𝑁

𝑥 =

𝑥1
𝑥2
⋯
𝑥𝑛

𝑈𝑇

𝑦 =

𝑦1
𝑦2
⋯
𝑦𝑘

(𝐾 < 𝑁)
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Principal Component Analysis (PCA)
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Direction: 𝑣1
Length: 𝜆1

Direction: 𝑣2
Length: 𝜆2



• SVD is a matrix 

factorization method 

normally used for PCA 

• Does not require a square 

data set

• SVD is used by Scikit-learn 

for PCA

Single Value Decomposition (SVD)
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• How can SVD be used for 

dimensionality reduction?

• Principal components are 

calculated from 𝑈𝑆

• "Truncated SVD" used for 

dimensionality reduction 

(𝑛 → 𝑘)

Truncated Single Value Decomposition
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• PCA and SVD seek to find 

the vectors that capture the 

most variance

• Variance is sensitive to axis 

scale

• Must scale data!

Importance of Feature Scaling
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Import the class containing the dimensionality reduction method

from sklearn.decomposition import PCA

To use the Intel® Extension for Scikit-learn* variant of this algorithm:

• Install Intel® oneAPI AI Analytics Toolkit (AI Kit)

• Add the following two lines of code after the above code:

import patch_sklearn
patch_sklearn()

PCA: The Syntax

https://software.intel.com/content/www/us/en/develop/tools/oneapi/ai-analytics-toolkit.html#gs.c02kwc


Import the class containing the dimensionality reduction method

from sklearn.decomposition import PCA

Create an instance of the class

PCAinst = PCA(n_components=3, whiten=True)

Fit the instance on the data and then transform the data

X_trans = PCAinst.fit_transform(X_train)

Does not work with sparse matrices

PCA: The Syntax
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Import the class containing the dimensionality reduction method

from sklearn.decomposition import PCA

Create an instance of the class

PCAinst = PCA(n_components=3, whiten=True)
whiten = scale 

and center data

PCA: The Syntax
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Truncated SVD: The Syntax

Import the class containing the dimensionality reduction method

from sklearn.decomposition import TruncatedSVD

Create an instance of the class

SVD = TruncatedSVD(n_components=3)

Fit the instance on the data and then transform the data

X_trans = SVD.fit_transform(X_sparse)

Works with sparse matrices—used with text data for Latent Semantic Analysis (LSA)
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• Transformations calculated with 

PCA/SVD are linear

• Data can have non-linear features 

• This can cause dimensionality 

reduction to fail

Moving Beyond Linearity

Original Space Projection by PCA
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dimensionality 
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• Solution: kernels can be used 

to perform non-linear PCA

• Like the kernel trick 

introduced for SVMs

Kernel PCA

Original Space Projection by KPCA



Kernel PCA
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Kernel PCA: The Syntax

Import the class containing the dimensionality reduction method

from sklearn.decomposition import KernelPCA

Create an instance of the class

kPCA = KernelPCA(n_components=3, kernel='rbf', gamma=1.0)

Fit the instance on the data and then transform the data

X_trans = kPCA.fit_transform(X_train)



• Non-linear transformation

• Doesn't focus on maintaining overall 

variance

• Instead, maintains geometric distances 

between points

Multi-Dimensional Scaling (MDS)
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MDS: The Syntax

Import the class containing the dimensionality reduction method

from sklearn.manifold import MDS

Create an instance of the class

mdsMod = MDS(n_components=2)

Fit the instance on the data and then transform the data

X_trans = mdsMod.fit_transform(X_sparse)

Many other manifold dimensionality methods exist: Isomap, TSNE.



Uses of Dimensionality Reduction

Image Source: https://commons.wikimedia.org/wiki/File:Monarch_In_May.jpg

• Frequently used for high 

dimensionality data

• Natural language processing 

(NLP)—many word combinations

• Image-based data sets—pixels 

are features



Uses of Dimensionality Reduction

• Divide image into 12 x 12 pixel 

sections

• Flatten section to create row of 

data with 144 features

• Perform PCA on all data points
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PCA Compression: 144 → 60 Dimensions

144 Dimensions 60 Dimensions



PCA Compression: 144 → 16 Dimensions

144 Dimensions 16 Dimensions



Sixteen Most Important Eigenvectors



PCA Compression: 144 → 4 Dimensions

144 Dimensions 4 Dimensions



L2 Error and PCA Dimension
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Four Most Important Eigenvectors
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PCA Compression: 144 → 1 Dimension

144 Dimensions 1 Dimension




