
 SEP User Guide
Intel Corporation

www.intel.com

Legal Information

Contents
Notices and Disclaimers... 4
Revision History... 5

Chapter 1: About This Document
Intended Audience...6
Related Information...6

Chapter 2: Event-Based Sampling
Core Data Collection ..7

Processor Event-Based Sampling (PEBS) Collection................................7
-apc [[basic],[mem],[gpr],[lbr:[# of entries]],[xmm]]...................7
Example Adaptive PEBS Commands...8

Last Branch Record (LBR) Collection ..8
Collection on Hybrid Platforms ..8
Collect Data with Intel® Resource Director Technology 13

Uncore Data Collection ... 15

Chapter 3: Using SEP
Internals of Data Collection... 16
Launch and Control SEP Collection ... 16

Launching SEP Collection.. 16
Launching with an Application... 17
Launching a Delayed Collection ... 17
Launching Collection Indefinitely ... 17
Pausing Collection ... 17
Resuming Collection .. 17
Stopping Collection.. 18
Cancelling Collection.. 18

Chapter 4: SEP Commands

Chapter 5: SEP Options
Event Configuration Options.. 21

-atype <atype name1>, <atype name2>, …....................................... 21
-atypelist [-config] [-details] [<atype1>, <atype2>,...] 21
-ec | -event-config [-dc | -data-config <optional-data1>,<optional-

data2>…] "<event-name1>":modifier1=val:modifier2=val/
constraint1={:modifier3=val:modifier4=val}, "<event-name2>"... ... 22

-em | -event-multiplexing [trigger=<fixed counter> factor=<value>].... 26
-experimental ... 26

Collection Options ... 27
-app <full-path-to-the-application>[-args <"list of application

arguments">]... 27
-cm | -cpu-mask <processor numbers> ... 27
-cp | -continuous-profiling.. 27
-d | -duration <in seconds> ... 27
-ebc | -event-based-counts ... 27
-mr | -multi-run.. 28
-nb | -non-blocking ... 28

SEP User Guide

2

-osm | -os-mode .. 29
-sam | -sample-after-multiplier <value> .. 29
-sd | -sampling-delay <delay in seconds> .. 29
-sp | -start-paused.. 29
-uem | -uncore-event-multiplexing [factor=<value>][timer=<value in

ms>]... 29
-um | -user-mode ... 30
-rdt-auto-rmid .. 30

Processor Event Based Sampling (PEBS) Options ... 30
-apc [[basic],[mem],[gpr],[lbr:[# of entries]],[xmm]] 30
Example Adaptive PEBS Commands... 30
-fpc | -full-pebs-capture... 30
-multipebs <# of PEBS records>... 31
-virt-phys-translation... 31

Last Branch Records (LBRs) and Callstack Options 31
-apc lbr[:depth=# of entries] [-lbr <filter_name>] [-lbr-filter

<filter1>:<filter2>...] ... 31
-callstacks.. 31
-lbr <capture_mode>.. 31
-lbr-filter <filter1>:<filter2>:<filter3> .. 32

P-STATE Options ... 32
Output Options ... 32

-of | -options-from-file <file name> .. 33
-out | -output-file <file name> ... 33
-verbose .. 33

Chapter 6: Use Intel® VTune™ Profiler with SEP
Hotspots Analysis in Hardware Event-based Sampling Mode 34
Microarchitecture Analysis .. 36
Custom Analysis Type .. 36
Viewing SEP Results in Intel® VTune™ Profiler ... 36

Contents

3

Notices and Disclaimers

 SEP User Guide

4

Revision History
Revision
Number

Description Revision Date

1.0 Completed major documentation changes on previous
version of the Sampling Enabling Product User’s Guide and
reset the document revision level from 3.12 to 1.0.

Added commands for pausing, stopping, and resuming
collection.

Removed obsolete options.

Added the -atypes and -fpc options.

November 2015

1.1 Removed obsolete option. December 2015

1.2 Added Installation chapter. February 2016

1.3 Upgraded version to SEP 4.0.

Added Using Intel® VTune™ Amplifier with SEP chapter.

March 2016

1.4 Replaced obsolete –atypes option with new –atypelist
option.

September 2016

1.5 Fixed location of drivers for FreeBSD*. October 2016

1.6 Added new event modifiers for IA32/Intel® 64 architectures. February 2017

1.7 Upgraded version to SEP 4.1.

Updated with support for Intel® VTune™ Amplifier 2018 Beta.

April 2017

1.8 Removed obsolete examples. Fixed -cpu-mask and -lbr-
filter examples.

June 2017

1.9 Updated -pmu-types description. November 2017

2.0 Updated the guide with missing options and added
description where required.

June 2018

2.1 Updated Using Intel® VTune™ Amplifier with SEP section to
match changes made to analysis type names for the Intel
VTune Amplifier 2019 product release:
• General Exploration analysis is now known as

Microarchitecture Analysis
• Advanced Hotspots merged with Basic Hotspots, previous

Advanced Hotspots are enabled by selecting Hardware
Event-based Sampling mode

September 2018

2.2 Minor updates to commands. February 2019

2.3 Updates to reflect the product name change from the Intel®
VTune™ Amplifier to Intel® VTune™ Profiler.

November, 2019

Revision History

5

About This Document 1
SEP is a standalone command-line tool that performs hardware event-based sampling (EBS) on a given
system. Hardware-based sampling is a low-overhead, system-wide profiling that identifies hotspots, giving a
detailed look at the operating system and applications. SEP enables users to configure data collection,
perform system-wide profiling, and store results in a binary (*.tb) file. You can import the output *.tb file
into Intel® VTune™ Profiler and visualize the information graphically.

When installing SEP automatically with Intel® VTune™ Profiler, the drivers may need to be manually installed if
the auto-installation fails. The following links provide information about manually installing sampling drivers
for Windows*, Linux*, and Android* operating systems if auto-installation fails:

• Windows* target
• Linux* target
• Android* target

Intended Audience
This document is intended for all developers who use SEP to analyze performance data.

Related Information
For Intel® VTune™ Profiler information, go to https://software.intel.com/en-us/intel-vtune-profiler-support/
documentation.

For Performance Monitoring Unit (PMU) counters information, go to Intel Software Developers Manual:
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html.

 1 SEP User Guide

6

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/windows-targets/install-sampling-drivers-for-windows-targets.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/linux-targets/build-install-sampling-drivers-for-linux-targets.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/set-up-analysis-target/android-targets/build-install-sampling-drivers-for-android-targets.html
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/documentation
https://software.intel.com/en-us/intel-vtune-amplifier-xe-support/documentation
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html

Event-Based Sampling 2
SEP is a performance data collector that uses event-based sampling, leveraging the counter overflow feature
of the hardware Performance Monitoring Unit (PMU). The tool captures the processor’s execution state
(Instruction Pointer, Process ID, Thread ID, CPU number, etc.) each time a performance counter overflow
raises an interrupt.

The number of events that can be monitored simultaneously in a single run is limited by the number of
hardware performance counters available in the PMU of a processor. Some events can have limitations that
allow them to be programmed only in certain counters. To overcome the limitation of available performance
counters on the hardware, SEP splits events in to multiple event groups. Each group consists of events that
can be collected simultaneously.

Core Data Collection
SEP enables PMI as non-maskable (NMI) for Linux*, Android*, and FreeBSD* operating systems. All other
operating systems use maskable PMI; in this case, the sampling mechanism cannot accurately capture the
profiling data from masked regions (usually found in kernel or driver code).

In case of core data collection, the tool employs one of the following techniques to collect data for multiple
event groups:

• Event multiplexing (default): SEP multiplexes the use of physical counters within a single sampling run
and avoids the need for multiple runs of data collection at the cost of lower precision of the sampling
data. SEP switches groups every few samples of a chosen trigger event. The default trigger event is
CPU_CLK_UNHALTED.REF_TSC, and the default swap frequency is 50 samples. Refer to –em option to
override the default options for core event multiplexing.

• Multiple runs: SEP runs a separate data collection on each event group. This mode can be enabled using –
mroption of the tool.

Sample After Value (SAV) is the number of events after which the tool collects a sample. SEP internally
defines an event-specific SAV that can be overridden by the user. For more information, see :sa modifier.

Processor Event-Based Sampling (PEBS) Collection
Hardware PEBS enables capturing architectural state information of the processor upon counter overflow on
applicable events. The Instruction Pointer and other hardware state captured in the PEBS mode are more
accurate than regular sampling.

SEP provides the capability to program events to collect PEBS data in the output *.tb file. To program PEBS
collection, see the -fpc option.

-apc [[basic],[mem],[gpr],[lbr:[# of entries]],[xmm]]
Adaptive PEBS capture on capable platforms. For PEBS-capable events provided by the user in the command
line, SEP collects PEBS records in the sampling data. Users can select zero or more fields. Sampling data for
each selection type contains related PEBS fields. For multiple selection types, sampling data will contain all
relevant fields. For information on events that are PEBS capable for a given platform, see the Intel Software
Developers Manual.

• -apc without any selection type, the sampling data contains basic PEBS record which includes record
layout, applicable counters, PEBS eventing IP, PEBS TSC.

• -apc mem includes memory latency fields
• -apc gpr includes general purpose register fields
• -apc lbr[:depth=<# of lbr entries>] includes last branch record fields. By default, the tool collects

maximum available lbr records for the platform. Optionally, when number of lbr entries is given, the
tool programs PEBS control register to only fetch requested number of entries (min# - 1, max# - 32. # of
entries is recommended to be a power of 2).

Event-Based Sampling 2

7

• -apc xmm includes XMM register fields.

If the user selects PEBS-capable events in the command line without using the -apc option, the tool still
performs PEBS collection on those events and replaces non-PEBS eventing IP and TSC in sampling data with
PEBS evening IP and TSC. No other fields added to the *.tb file.

Example Adaptive PEBS Commands
The following examples demonstrate a few combinations of the -apc command:

sep –start –apc -ec "INST_RETIRED.ANY,BR_INST_RETIRED.ALL_BRANCHES"
sep –start –apc basic,mem,gpr,xmm,lbr -ec "INST_RETIRED.ANY,BR_INST_RETIRED.ALL_BRANCHES"

Last Branch Record (LBR) Collection
The hardware LBR facility stores branch records in the LBR stack MSRs for the most recently taken branches,
interrupts, and/or exceptions. A branch record consists of "from-instruction-pointer" and "to-instruction-
pointer" addresses. The depth of the LBR stack can vary across processor families.

SEP can program branch events to collect LBR records and output them into the *.tb file. To program LBR
collection, see the -lbr option and -lbr-filter option.

Collection on Hybrid Platforms
Introduction to Hybrid Platforms

The recent Intel client architectures are based on a hybrid model with Performance Cores (P-Core) and
Efficiency Cores (E-Core). Depending on the application, hybrid CPU architectures can distribute core usage
more efficiently than non-hybrid architectures. P-Cores are designed to handle complex workloads while E-
Cores are better suited for multi-threaded throughput and power-limited scenarios. At higher power
envelopes, P-Cores can provide better performance than E-Cores. At lower power envelopes, E-Cores are
more desirable. Each core type has different specifications and system configurations.

For these reasons, the P-cores are preferred for

• Priority tasks
• Limited threading applications

while E-Cores are better suited for:

• Power-limited scenarios
• Background applications that can meet their QOS (Quality of Service) requirements on that performance

Supported Core Types
To collect samples using SEP on hybrid platforms, you must first identify the core types that are supported on
your system. To do this, run:

sep -pmu-types
For example, this output indicates that two core types supported by SEP tool on the system: bigcore and
smallcore
$ sep -pmu-types
PMU Types supported on this platform:
bigcore
smallcore
imc
cbo
hac_cbo
ncu
hac_ncu
ufibridge
power

 2 SEP User Guide

8

NOTE SEP notates P-Core as bigcore and E-Core as smallcore.

Available Core Types
Once you have identified the core types supported by your system, find out the core types that are available.
Run:

sep -pmu-types available
In this example, there are two core types available on the system: bigcore and smallcore.

$ sep -pmu-types available
PMU Types available on this machine:
bigcore
smallcore
imc
cbo
hac_cbo
ncu
hac_ncu
ufibridge
power

Note that a core type supported by your system will not display in this output unless it is actually available
on your system.

Core Type Specifications on Hybrid Platforms
Each core type has different specifications (such as cache, number of PerfMon counters etc) and system
configurations on hybrid platforms.

To see the core type specification, run:

sep -platform-info
This command displays the following types of information about supported core types:
Number of Processors per Core Type

$ sep -platform-info
......
total_number_of_processors 22
number_of_online_processors 22
number_of_processors (bigcore) 12
number_of_online_processors (bigcore) 12
number_of_processors (smallcore) 10
number_of_online_processors (smallcore) 10
......

Cache Info per Core Type

$ sep -platform-info
......
Cache Info (bigcore):
L1 Data Cache 48KB, 12-way, 64-byte line size
 2 HW threads share this cache, No SW Init Required
L1 Code Cache 64KB, 16-way, 64-byte line size
 2 HW threads share this cache, No SW Init Required
L2 Unified Cache 2MB, 16-way, 64-byte lin size
 8 HW threads share this cache, No SW Init Required
64-byte Prefetching

Event-Based Sampling 2

9

Cache Info (smallcore):
L1 Data Cache 32KB, 8-way, 64-byte line size
 No SW Init Required
L1 Code Cache 64KB, 8-way, 64-byte line size
 No SW Init Required
L2 Unified Cache 2MB, 16-way, 64-byte line size
 8 HW threads share this cache, No SW Init Required
64-byte Prefetching
......

Specs and Configurations per Core Type

$ sep -platform-info
......
Processor Features (bigcore):
number_of_selectors 8
number_of_var_counters 8
number_of_fixed_ctrs 4
Fixed Counter Events:
counter 0 INST_RETIRED.ANY
counter 1 CPU_CLK_UNHALTED.THREAD
counter 2 CPU_CLK_UNHALTED.REF_TSC
counter 3 TOPDOWN.SLOTS
number of devices 1
number_of_events 595
 (Thermal Throttling) (Enabled)
 (Hyper-Threading) (Enabled)
 (DCU IP Prefetching) (Enabled)
 (DCU Streamer Prefetching) (Enabled)
 (MLC AMP Prefetching) (Enabled)
 (MLC Spatial Prefetching) (Enabled)
 (MLC Streamer Prefetching) (Enabled)
 (Cores Per Package: 6)
 (Threads Per Package: 12)
 (Threads Per COre: 2)

Processor Features (smallcore):
number_of_selectors 8
number_of_var_counters 8
number_of_fixed_ctrs 3
Fixed Counter Events:
counter 0 INST_RETIRED.ANY
counter 1 CPU_CLK_UNHALTED.CORE
counter 2 CPU_CLK_UNHALTED.REF_TSC
number of devices 1
number_of_events 422
 (Thermal Throttling) (Enabled)
 (DCU IP Prefetching) (Enabled)
 (DCU Streamer Prefetching) (Enabled)
 (DCU Next Page Prefetching) (Enabled)
 (MLC Streamer Prefetching) (Enabled)
 (Cores Per Package: 5)
 (Threads Per Package: 10)
 (Threads Per Core: 1)
......

The information is displayed per core type with the each PMU name, such as bigcore and smallcore.

Mapping Core Type to Processors

 2 SEP User Guide

10

SEP collects samples for perfmon events only from applicable core types. To understand the collection result,
you must first understand the core type to which each processor is mapped.

$ sep -platform-info
.......
OS Processor <-> Physical/Logical Mapping

OS Processor Phys.Package Core Logical Processor Core Type Module
 0 0 0 0 bigcore 2
 1 0 0 1 bigcore 2
 2 0 0 0 bigcore 3
 3 0 0 1 bigcore 3
 4 0 0 0 bigcore 4
 5 0 0 1 bigcore 4
 6 0 0 0 bigcore 5
 7 0 0 1 bigcore 5
 8 0 0 0 bigcore 6
 9 0 0 1 bigcore 6
 10 0 0 0 bigcore 7
 11 0 0 1 bigcore 7
 12 0 0 0 smallcore 0
 13 0 1 0 smallcore 0
 14 0 2 0 smallcore 0
 15 0 3 0 smallcore 0
 16 0 0 0 smallcore 1
 17 0 1 0 smallcore 1
 18 0 2 0 smallcore 1
 19 0 3 0 smallcore 1
 20 0 0 0 smallcore 8
 21 0 1 0 smallcore 8
.......

The output indicates that processors 0-11 are bigcore and processors 12-21 are smallcore.

When the tb7 file is generated from the collection, the samples from CPU 0-11 are for bigcore and the
samples from CPU 12-21 are for smallcore.

The -platform-info command also provides Module ID mapping to the processor if the module exists on
the system.

Event Specifications
Each core type has a different perfmon event list. These events can be defined as common events or core-
type specific events depends on the number of core types that have these events.
Common Events

There are events supported in multiple core types. Those events are considered as common events and are
collected on all applicable processors.

To check the list of supported events per core type for all core types, run this command:

sel -el [pmu name]
For example,

$ sep -el bigcore
INST_RETIRED.ANY
INST_RETIRED.PREC_DIST
BR_INST_RETIRED.ALL_bRANCHESLONGEST_LAT_CACHE.MISS

Event-Based Sampling 2

11

TLB_FLUSH.DTLB_THREAD
L2_RQSTS.HIT
.......
$ sep -el smallcore
INST_RETIRED.ANY
MACHINE_CLEARS.PAGE_FAULT
SERIALIZATION.NON_C01_MS_SCB
BR_INST_RETIRED.ALL_BRANCHES
LONGEST_LAT_CACHE.MISS
ICACHE.MISSES
ICACHE.ACCESSES
.......

Events that are found in events lists for both core types are common events such as
INST_RETIRED.ANY,BR_INST_RETIRED.ALL_BRANCHES, or LONGEST_LAT_CATCHE.MISS.

Core-Type specific events

If the events are applicable only to certain core types, those events are considered as core-type specific
events and are collected only on applicable core type processors.

To check the supported event list per core type for all core types, run this command:

sep -el [pmu name]
For example,

$ sep -el bigcore
INST_RETIRED.ANY
INST_RETIRED.PREC_DIST
BR_INST_RETIRED.ALL_bRANCHES
LONGEST_LAT_CACHE.MISS
TLB_FLUSH.DTLB_THREAD
L2_RQSTS.HIT
.......
$ sep -el smallcore
INST_RETIRED.ANY
MACHINE_CLEARS.PAGE_FAULT
SERIALIZATION.NON_C01_MS_SCB
BR_INST_RETIRED.ALL_BRANCHES
LONGEST_LAT_CACHE.MISS
ICACHE.MISSES
ICACHE.ACCESSES
.......

Those events which are found only in the event list for a single core type are treated as core-type specific
events.

For example, the following events are exclusively bigcore events:

• INST_RETIRED.PREC_DIST
• TLB_FLUSH.DTLB_THREAD
• L2_RQSTS.HIT

These events will be collected on bigcore processors only.

The following events are smallcore events:

• MACHINE_CLEARS_PAGE_FAULT
• SERIALIZATION.NON_C01_MS_SCB
• ICACHE.MISSES

 2 SEP User Guide

12

• ICACHE.ACCESSES

These events are collected on smallcore processors only.

Event Collection
This section describes how you collect common and core-type events.

Collect Common Events

To specify common events from the event list and collect these events using SEP, run:

$ sep -start -d <duration> -ec <events> -out common_event_collection.tb7

for example>
$ sep -start -d 5 -ec INST_RETIRED.ANY,LONGEST_LAT_CACHE.MISS

Collect Core-Type Specific Events

To specify bigcore-specific events from the event list and collect these events using SEP, run:

$ sep -start -d <duration> -ec <events> -out big_core_collection.tb7

for example>
$ sep -start -d 5 -ec TOPDOWN.SLOTS,CORE_POWER.LICENSE_1

To specify smallcore-specific events from the event list and collect these events using SEP, run:

$ sep -start -d <duration> -ec <events> -out small_core_collection.tb7

for example>
$ sep -start -d 5 -ec ICACHE.MISSES,ICACHE.ACCESSES

Collect Combination of Common and Core-Type Specific Events

To collect a combination of common events, bigcore-specific events, and smallcore-specific events, run:

$ sep -start -d <duration> -ec <events> -out common_big_small_collection.tb7

for example>
$ sep -start -d 5 -ec
INST_RETIRED.ANY,LONGEST_LAT_CACHE.MISS,TOPDOWN.SLOTS,CORE_POWER.LICENSE_1,ICACHE.MISSES,ICACHE.A
CCESSES

Collect Data with Intel® Resource Director Technology

Introduction
Intel® Resource Director Technology (Intel® RDT) is a set of monitoring capabilities that you can use to
measure shared resource metrics such as L3 cache occupancy in each logical processor.

The Resource Monitoring ID (RMID) is used to monitor the shared resources. The RMID provides a layer of
abstraction between the software thread and logical processors. Each software thread is assigned to a unique
RMID. The RMID can be assigned to a single logical processor or multiple logical processors (through
IA32_PQR_ASSOC_MSR) for monitoring.

Operating Technologies
The operations of Intel® RDT are governed by two technologies:

• Cache Monitoring Technology (CMT): This allows an operating system, hypervisor, or similar system
management agent to determine the usage of cache by applications running on the platform. The
associated event in SEP is UNC_CMT_L3_CACHE_OCCUPANCY.

Event-Based Sampling 2

13

• Memory Bandwidth Monitoring (MBM): This is used to monitor the bandwidth from one level of the
cache hierarchy to the next. The associated event in SEP is UNC_MBM_TOTAL_EXTERNAL_BW,
UNC_MBM_LOCAL_EXTERNAL_BW.

You can find more information about these technologies in Chapter 17.16 of the Intel® Software Developer
Manual.

Additionally, SEP provides the RMID association and RDT allocation through these events:

• UNC_RDT_PQR_ASSOC - bit 0:9 represents RMID and bit 32:63 represents CLOS
• UNC_CAT_L2_MASK - represents L2 cache allocation capacity associated with the COS on each logical

processors.
• UNC_CAT_L3_MASK - represents L3 cache allocation capacity associated with the COS on each logical

processors.

For more information, see these chapters in the Intel® Software Developer Manual:

• Monitoring Resource (RMID) Association - Chapter 17.16.6
• Cache Allocation Technology Architecture - Chapter 17.17.1

RDT Support Information
To see support information for Intel RDT on your system, run:

sep -platform-info
For example,

$ sep -platform-info
.......
RDT HW Support:
 L3 Cache Occupancy : Yes
 Total Memory Bandwidth : Yes
 Local Memory Bandwidth : Yes
 L3 Cache Allocation : Yes
 L2 Cache Allocation : No
 Highest Available RMID : 175
 Sample Multiplier : 90112
.......

Supported RDT Events
SEP determines the support for each RDT event. To see a list of these events, run:

sep -el rdt
For example,

$ sep -el rdt
UNC_CMT_L3_CACHE_OCCUPANCY
UNC_MBM_TOTAL_EXTERNAL_BW
UNC_MBM_LOCAL_EXTERNAL_BW
UNC_RDT_PQR_ASSOC
UNC_CAT_L3_MASK

Collect RDT Events
To collect RDT events, run:

sep -start -d <duration> -ec <RDT Event List>

 2 SEP User Guide

14

For example,

$ sep -start -d <duration> -ec <RDT Event List>

$ sep -start -d 5 -ec
UNC_CMT_L3_CACHE_OCCUPANCY,UNC_MBM_TOTAL_EXTERNAL_BW,UNC_MBM_LOCAL_EXTERNAL_BW,UNC_RDT_PQR_ASSOC,
UNC_CAT_L3_MASK

RDT Standalone Mode
To profile cache usage by hardware core, include the -rdt-auto-rmid option. The SEP tool assigns the core
ID for each core as the RMID.

sep -start -d <duratoin> -ec <RDT Event List> -rdt-auto-rmid

Uncore Data Collection
The uncore subsystem is shared by more than one physical core in a processor package. Its components
vary across platforms. Some of them include the Last Level Cache (LLC), Intel® QuickPath Interconnect
(Intel® QPI) link logic, and Integrated Memory Controllers (IMC). SEP can leverage the performance
monitoring capabilities that these uncore components sometimes provide. Certain uncore types have more
than one unit present in the die. For example, there can be more than one IMC in a package. In such a case,
SEP can collect performance data on each uncore unit.

To list all core and uncore PMU types supported and available on the current machine, use the following
command:

sep –pmu-types available
To list events from a specific PMU type available in the system, provide the name of the PMU following –el
command.

For example:

sep –el <pmu-type>
SEP polls uncore counters periodically (every 10 ms by default) to collect uncore performance data. The
default time to poll can be changed using -uem option. In the following example, SEP polls counters every 20
ms:

sep -start –d 10 -uem timer=20 -ec
"UNC_CBO_CACHE_LOOKUP.READ_I,UNC_CBO_CACHE_LOOKUP.WRITE_I"

In case of uncore data collection, the tool uses time-trigger based multiplexing to collect data for multiple
event groups. SEP alternates uncore groups every 1 s. Refer to the -uem option to override default options
for uncore event multiplexing.

Event-Based Sampling 2

15

Using SEP 3
To analyze system or application performance with SEP, follow this usage model:

sep <SEP Commands> [SEP Options]
where:

• <command> - SEP command controlling data collection (start, stop, pause, cancel collection, and so on)
and providing help information.

• [options] - collection options of the following types:

• Generic collector options: to specify an application to analyze if any, configure collection-wide
parameters as applicable, input/output options, etc.

• Event-specific options: To configure event-specific parameters, event modifiers are used.

For example, in the SEP command below, -lbr option is applied to all events while :OS=YES is applied
only to the BR_INST_RETIRED.ALL_BRANCHES event.

sep –start –lbr no_filter –ec
"BR_INST_RETIRED.ALL_BRANCHES:OS=YES,LONGEST_LAT_CACHE.REFERENCE"

Internals of Data Collection
When the data collection starts, SEP does the following:

• Executes the specified application, if any, and collects performance data
• Resolves symbol information for user and system modules
• Outputs performance data into a binary *.tb file

To view data collected with SEP, use the graphical interface of Intel® VTune™ Profiler. For more information,
see Use Intel® VTune™ Profiler with SEP.

SEP generates temporary files during data collection and deletes them at the end of collection. The
temporary directory location varies between operating systems. They include the following:

• Linux*/FreeBSD*/Android*: By default, SEP uses the system environment variable TMPDIR. If this
variable is unavailable, /data directory is used to create temporary files in Android* and /tmp in the rest.

• Windows*: By default, SEP uses the system environment variable TEMP.

To override the default temporary location used by SEP, configure the environment variable SEP_TMP_DIR
with the desired location.

Launch and Control SEP Collection
This section describes how to launch and control SEP data collection.

Launching SEP Collection
To launch a data collection, use SEP in the following format:

sep –start <collection_options>
where:

• -start is the command to launch the sampling data collector.
• <collection_options> are sampling collector configuration options.

When a sampling collection is started, the default behavior of this call is blocking, which means that the
control is returned back to the user only after the sampling collection finishes.

 3 SEP User Guide

16

You can control the duration of a sampling data collection using one of the following methods, but not both:

• Specify duration: SEP runs for the duration specified with the –d collector option. You can start an
asynchronous session by specifying 0 run duration.

• Exit collection when application terminates: SEP runs while the application is running. SEP session
stops only when the application terminates. You can stop the sampling session explicitly using the -stop
command.

The following subsections list the basic tool usage scenarios.

Launching with an Application
SEP enables launching an application using the -app option and an optional -args switch to specify
application arguments.

For example:

sep –start –app <full-path-to-application> –args "<list of arguments>"
SEP starts the workload and collects data until the application finishes or SEP is stopped using the -stop
command as follows:

sep –stop

Launching a Delayed Collection
Start delay is a separate time interval that is not a part of duration. For example, if you have an activity with
duration of 60 s and a start delay of 10 s, SEP will start collecting samples after 10 s and run for 60 s, taking
a total time of 70 s.

To have the sampling collection delayed, use the –sd collector option.

For example, to start a standard 20 s sampling session with a 10 s delay, enter:

sep –start –sd 10

Launching Collection Indefinitely
Set the duration to 0 s to run sampling indefinitely and optionally use –nb to run SEP in the background:

sep –start –d 0 -nb
This option cannot be used with –mr to schedule multiple sampling runs, but it is available in the default
event multiplexing mode.

You may stop the sampling activity using the -stop command as follows:

sep -stop

Pausing Collection
This command pauses collection while a sampling run is in progress.

To pause a sampling collection, use the following command:

sep –pause
When a SEP run is paused, the duration of the run does not change. For example, if a SEP run is started for
duration of 60 s and it is paused after approximately 20 s, then the sampling activity will still complete after
60 s, but the data is only collected during the first 20 s before it was paused.

Resuming Collection
This command resumes sampling collection that was previously paused.

Using SEP 3

17

To resume a sampling collection, use the following command:

sep –resume
When the SEP resume command is issued, the collection that was previously paused is resumed, and the
sampling data is collected from that time.

Stopping Collection
This command stops the collection and generates the *.tb file.

To stop a sampling collection that was previously started, use the following command:

sep –stop

Cancelling Collection
This command cancels the collection and discards the data collected.

To cancel a sampling collection that was previously started, use the following command:

sep –cancel

 3 SEP User Guide

18

SEP Commands 4
This chapter details the SEP collection, informative, and logging commands.

The following table describes the actions associated with collection commands:

Command Action

-start [SEP Options] Start collection with given options. For more information, see
SEP Options.

-pause Pause the current collection.

-resume Resume the current collection that is paused.

-stop Stop the current collection.

-flush Flush out and generate an intermediary *.tb in the middle of a
continuous profiling collection

-cancel Cancel the current collection.

-mark Insert a mark during sampling.

-mark-off Insert an end marker during sampling.

-reserve Reserve PMU resources and block usage by other processes.

-release Release PMU resources previously reserved.

The following table describes the actions associated with informative commands:

Command Action

-atypelist [-config] [-
details] [atype1, atype2,
…]

Get a list of predefined analysis types (atypes). When
specified without any other options, the -atypelist command
lists all available atypes. Add the -config option to provide a
path to the atype configuration file in the SEP installation
directory. Add the -details option to also list related events.
Specify a comma-separated list of atypes along with the sub-
options -config or -details to get information on specific
atypes.

-pmu-types [available] Display the PMU types supported by the platform. Add the
‘available’ parameter to display PMU types available on the
current system.

Use the output from this command with -el to generate a list
of events supported on the system for the given PMU type.

-version [-display-
features]

Display version and build information. Add -display-
features option to display supported capabilities in this
version of driver.

-platform-info Display version and build information of the tool along with
details about the hardware platform.

SEP Commands 4

19

Command Action

-help [-list-event-
modifiers] | /?

Display help information. Add -list-event-modifiers to get
a list of tool supported event modifiers.

The following table describes the actions associated with logging commands:

Command Action

-dump-driver-log
[file_name]

Dump the contents of the sampling driver’s internal log to the
given file in binary format. Default file name is
driver_log.dump if none specified.

Example command: sep-dump-driver-log [file_name]

-decode-driver-log
[file_name]]

Decode the log buffer dump to text format. Default file to
decode would be driver_log.dump if none specified.

Example command: sep -decode-driver-log [file_name]

-extract-driver-log
<core_dump_input> [out
file]

Identifies and extracts the most recent instance of the driver
log from the specified uncompressed core dump into the output
file. Default output file is driver_log.dump if none specified.

Example command: sep -extract-driver-log
<core_dump_input> [out_file]

 4 SEP User Guide

20

SEP Options 5
This chapter lists all SEP options and how to use them.

Event Configuration Options
This section lists all event configuration SEP options and how to use them.

-atype <atype name1>, <atype name2>, …
Pre-defined set of events. atypes are tool-defined analysis types that group events related to a given type.
Do not use -ec when using -atype. Only one atype can be specified per Performance Monitoring Unit (PMU)
type, such as core or imc.

For example, to collect sampling data related to memory bandwidth use:

sep -start -atype memory_bandwidth

-atypelist [-config] [-details] [<atype1>, <atype2>,...]
Lists the available pre-defined analysis types (atype). This command is used to obtain the list of available
atypes. The -atype option can then be used with one or many atypes to run a specific profiles.

• -config: provides the path to the atype configuration file located in the SEP installation directory.
• -details: lists all atypes with related events.
• -details <atype1>, <atype2>: Lists events for the specified comma-separated list of atypes provided

with the command.

Example Analysis Type List Commands
Use the following examples to run atypelist commands.

List of Available Analysis Types
Provide a list of available analysis types with the following command:

sep -atypelist
Example output:

Atype: bandwidth
Atype: general_exploration

List of Available Analysis Types and the Location of the Analysis Type Configuration File
Provide a list of available analysis types and the location of the analysis type configuration file with the
following command:

sep -atypelist -config
Example output:

Atype: bandwidth
Config_File:
/home/.../install/sep/release_posix/bin32/./../config/sampling/../atypes/ivybridge_atype.txt

SEP Options 5

21

Atype: general_exploration
Config_File:
/home/.../install/sep/release_posix/bin32/./../config/sampling/../atypes/ivybridge_atype.txt

List of Events for a Specific Analysis Type
Provide a list of events for a specific analysis type with the following command:

sep -atypelist -details general_exploration
Example output:

Atype: general_exploration
INST_RETIRED.PREC_DIST
BACLEARS.ANY
OFFCORE_RESPONSE.DEMAND_RFO.LLC_HIT.HITM_OTHER_CORE_0
MACHINE_CLEARS.COUNT
LD_BLOCKS.NO_SR

-ec | -event-config [-dc | -data-config <optional-data1>,<optional-data2>…] "<event-
name1>":modifier1=val:modifier2=val/constraint1={:modifier3=val:modifier4=val},
"<event-name2>"...
Configure events to sample. Event configuration options begin with -ec switch. Specify the events to monitor
and embed the event names within double quotes ("). If no events are specified, the platform’s fixed events
are collected.

Both core and uncore events can be specified to be monitored. However, when user specifies only uncore
events in the command line, SEP collects all the fixed core events along with the specified uncore events.

Individual core/uncore event behavior can be modified using event modifiers. The [:modifier=val] option
enables you to specify individual event modifiers along with the respective values for a given platform. Each
event specification is delimited by a comma (,).

For example:

sep -start -d 10 -out outfile -ec "CPU_CLK_UNHALTED.THREAD","UNC_IMC_NORMAL_READS.ANY"
All event modifiers supported by SEP are listed in the following sections.

Event Modifiers
Event modifiers are attached to event names delimited by colon (:). They may or may not take values.
Where applicable, values are of the following format: <yes/no>, <0/1>, <dec/hex values>. In some
special cases explicitly mentioned they can take string values.

:sa | sample-after = <sample after value>
The Sample After Value (SAV) for an event indicates the number of events after which a sample is collected
(lower the SAV for an event higher the sampling rate).

To calculate the sample after value for any event:

1. Calculate the targeted (or expected) number of samples:

Targeted Number of Samples = (Sampling Duration / Sampling Interval) * Number of processors
2. Calculate the average number of event counts for a single processor:

Avg. number of event counts = Total event counts across all CPUs / Number of CPUs
3. Finally, compute the SAV:

SAV = Average number of event counts (as in 2) / Targeted number of samples (as in 1).

 5 SEP User Guide

22

The minimum value for SAV varies between events. If SAV specified by the user is lower than the default SAV
computed by tool, the user specified value gets overridden with the tool computed SAV. The sample after
value should not be zero or a negative value.

To specify the sample after value for your sampling collection, use the :sa event modifier option. For
example, to collect samples after 1000000 CPU_CLK_UNHALTED.THREAD events, enter:

sep -start -ec CPU_CLK_UNHALTED.THREAD:sa=1000000

Basic Event Modifiers
The following table lists the basic event modifiers and provides a short description of each modifier.

Modifier Description

:USR=<yes/no> Specifies that events are counted only when the processor is
operating at privilege levels 1, 2, or 3. This flag can be used in
conjunction with the OS flag.

:OS=<yes/no> Specifies that events are counted only when the processor is
operating at privilege level 0. This flag can be used in
conjunction with the USR flag.

:PRECISE=<yes/no> Enable PEBS capability for suitable events.

:pdir Forces the collection of reduced skid PEBS on capable events.
Append the :pdir modifier to the event name.

For example,

sep -start -ec "MEM_UOPS_RETIRED.ALL:pdir"
Use the sep -el -desc command to show the pdir status of
each event.

:mg Available only for core events. It enables the specified event to
be collected in all the event groups.

For example,

sep -start -ec "MEM_UOPS_RETIRED.ALL:mg,
UOPS_ISSUED.ANY,UOPS_ISSUED.STALL_CYCLES,L2_RQSTS.REFERENC
ES,LONGEST_LAT_CACHE.MISS"
In the example above, MEM_UOPS_RETIRED.ALL will be collected
in all event groups.

NOTE
The modifier can be specified with a maximum of 2 events only. Rest
of the events will discard this modifier.

:sample Use this modifier to configure an event in sampling mode to
override the default counting mode in -ebccollection.

:perf_metrics Enable hardware based top-down metrics. This modifier is
ignored on all events except for the fixed event TOPDOWN.SLOTS.

:ocr_msr_val=<value> Override the default offcore MSR programming with the user
specified value for the event.

SEP Options 5

23

Event Modifiers for Intel® Transactional Synchronization Extensions (Intel® TSX)
The following table lists the event modifiers for supporting Intel® Transactional Synchronization Extensions
(Intel® TSX) and provides a short description of each modifier. The Intel® TSX feature is supported on 4th
Generation Intel processors and newer.

Modifier Description

:tx In Transaction - When this modifier is specified, the sampling data will
only include samples that occurred inside an Intel® TSX region,
regardless of whether that region was aborted or committed.

For example,

sep -start -d 10 -ec "INST_RETIRED.ANY":tx

:cp In Check Point - When this modifier is specified, the sampling data will
not include samples that occurred inside of an aborted Intel® TSX
region.

For example,

sep -start -d 10 -ec "INST_RETIRED.ANY":cp

Advanced Event Modifiers
The following table lists the event modifiers for more advanced users having an understanding on hardware
PMU.

Modifier Description

:ANYTHR=<yes/no> Sets (yes) or clears (no) the event’s Any Thread control bit. A value
of "no" causes the event to be counted on a per logical core basis
when applicable. A value of "yes" causes the event to be counted on
a per physical core basis.

Please note that this feature is not supported on 10th generation
Intel Core Processors and 3rd generation Intel Xeon Scalable
Processors or newer.

:CMASK=<mask value> Value that will be compared to the count of the specified event
during a single cycle per core. If the event count is greater than or
equal to this value, the counter is incremented by one. Otherwise the
counter is not incremented. The value must be in the range of 0x0 to
0xff.

:e=<yes/no> Enables (when set) edge detection of the selected microarchitectural
condition. The logical processor counts the number of deasserted to asserted
transitions for any condition that can be expressed by the other fields.

For example,

sep -start -ec
"MACHINE_CLEARS.COUNT:cmask=1:e=yes"

:inv=<yes/no> When the invert flag is set, inverts :c <cmask> comparison, so that
both greater than or equal to and less than comparisons can be
made (<0>: greater than equal to comparison, <1>: less than
comparison).

 5 SEP User Guide

24

Modifier Description

Invert flag is ignored when :c<cmask> is programmed to 0. A value
of 0 disables invert, and 1 enables it.

:en=<yes/no> Enable or disable performance counter using yes/no values,
respectively.

:event_select=<value> Input event code to program an event counter for collection.

:int=<yes/no> Enable to disable interrupt flag using yes/no values, respectively.

:pc=<yes/no> When set, enables toggling of PMi pin for each event occurrence
rather than during counter overflow.

:request=<request name
as string>

Programming request type in the off-core response facility for a
transaction request to the uncore. The request type specification
must be accompanied by a response type.

:response=<response
name as string>

Programming response type in the off-core response facility for a
transaction request to the uncore. The response type specification
must be accompanied by a request type.

:freq=<value> Applicable to PCU events. When given, the PCU filter register is
programmed with this frequency value.

:link=<value> Applicable to server uncore CBO/CHA units to program filter links.

:occ_inv=<0/1> Applicable to uncore PCU events. Sets or unsets inversion of uncore
PMON_CTLx register for occupancy events.

:occ_e=<0/1> Applicable to uncore PCU events. When set counter registers
transitions from no event to an incoming event for PCU’s occupancy
events each cycle.

:port=qpi<port number> Applicable to uncore Intel QPI events to configure port number.

:t=<threshold value> Threshold programming for uncore PMON_CTLx register. For events
that increment more than 1 per cycle, if the threshold value is
greater than 1, the data register will accumulate instances in which
the event increment is >= threshold.

:rx_match=<value>
:rx_mask=<value>
:tx_match=<value>
:tx_mask=<value>

Modifiers are all applicable to uncore Intel QPI for programming filter
registers.

:state=<value> Applicable to uncore CHA device to program state bit field of filter
MSR_0.

:tid=<value> Applicable to uncore CBO device to program tid bit field of filter
MSR_0.

:filter0=<value> Applicable to Uncore CBO/CHA devices to program filter MSR_0.

SEP Options 5

25

Modifier Description

:filter1=<value> Applicable to Uncore CBO/CHA devices to program filter MSR_1.

:nc=<value> Applicable to uncore CBO/CHA devices to filter non-coherent
requests by programming nc bit field of filter MSR_1.

:opc=<value> Applicable to uncore CBO/CHA devices to filter events based on their
OPCODE by programming opc bit field of filter MSR_1.

:nid=<value> Applicable to uncore CBO/CHA devices to filter events by
programming nid bit field of filter MSR_1.

:ccst_debug=<value> Applicable to PCU for programming debug MSR.

:umask_ext=<value> Enables setting extended umask bits in the counter control register when
used with applicable uncore events.

-em | -event-multiplexing [trigger=<fixed counter> factor=<value>]
Enabling core event multiplexing. The -em option is used to enable event multiplexing on core. Event
multiplexing is the ability to sample multiple groups of events within a single sampling run.

When the number of specified events in the command line cannot be programmed in a single run using
available counters on the platform, SEP performs event multiplexing. The tool splices the time of event
groups on counters for the duration of collection. The events are grouped such that all events in a group can
be scheduled for collection simultaneously. SEP uses a trigger event to swap groups and the default trigger
event is CPU_CLK_UNHALTED.REF_TSC.

The trigger event name can be changed using trigger option and must be an architectural fixed event. With
factor option, user can control frequency of swapping groups. The default swap frequency is every 50
samples of the trigger event. Collection continues with each group swapped in a round-robin fashion until
workload terminates or until end of specified sampling duration.

In the following example, SEP schedules two groups with events:

UOPS_ISSUED.ANY,UOPS_ISSUED.STALL_CYCLES,L2_RQSTS.REFERENCES,LONGEST_LAT_CACHE.MISS,LON
GEST_LAT_CACHE.REFERENCE in group 1 and SW_PREFETCH_ACCESS.NTA in group 2.

The two groups are multiplexed every 50 samples of the default trigger event:

sep -start -d 20 -em -ec
"UOPS_ISSUED.ANY,UOPS_ISSUED.STALL_CYCLES,L2_RQSTS.REFERENCES,LONGEST_LAT_CACHE.MISS,LONGEST_LAT_
CACHE.REFERENCE,SW_PREFETCH_ACCESS.NTA"

In the following example, SEP schedules same two groups, and they are multiplexed every 75 samples of the
INST_RETIRED.ANY:

sep -start -d 20 -em trigger=INST_RETIRED.ANY factor=75 -ec
"UOPS_ISSUED.ANY,UOPS_ISSUED.STALL_CYCLES,L2_RQSTS.REFERENCES,LONGEST_LAT_CACHE.MISS,LONGEST_LAT_
CACHE.REFERENCE,SW_PREFETCH_ACCESS.NTA"

Event multiplexing is enabled by default on all platforms.

-experimental
Collect experimental event data. Experimental events are those events that have not been validated in
hardware. When used with sep -el, all available experimental events are displayed along with regular
events. Use -experimental with sep -start command to collect data for experimental events:

sep -start -d 10 -ec "LONGEST_LAT_CACHE.MISS" -experimental

 5 SEP User Guide

26

Collection Options
This section lists all collection SEP event options and how to use them.

-app <full-path-to-the-application>[-args <"list of application arguments">]
Specify the application to be launched for data collection with SEP. You need to specify the full path to the
application. If the application takes arguments, optionally the list of arguments can be specified using -args
option.

For example, on Windows*:

sep -start -app C:\Users\test\sample.exe
sep -start -app C:\Users\test\sample.exe -args "1 10 5"

The -d | -duration option is not supported with this option. The SEP data collection continues indefinitely
until the launched application terminates or SEP is stopped explicitly with the sep -stop command.

-cm | -cpu-mask <processor numbers>
Specify processors from which data is collected. Use the -cm option to specify a CPU mask that defines the
processors from which you want to collect data. Enter the processor numbers or processor ranges separated
by commas (,).

For example:

sep -start -cm 2-5,10,12-14
In this example the only following processors are sampled: 2, 3, 4, 5, 10, 12, 13, 14.

-cp | -continuous-profiling
Enable continuous profiling mode. SEP is run indefinitely, but the tool does not save all sampling data
generated from the start of the collection. Data snapshot worth more recent few seconds (~10 s) can be
obtained at any time using the sep -flush command, which generates an intermediary *.tb file. Use the
sep -stop command to stop collection and generate a final *.tb file.

For example:

sep -start -cp -ec "LONGEST_LAT_CACHE.REFERENCE,LONGEST_LAT_CACHE.MISS" -nb
To flush out a *.tb file, use (can be invoked any number of times in an on-going continuous profiling
session):

sep -flush
To stop collection use:

sep -stop

-d | -duration <in seconds>
Specify duration for the sampling collection. Use the -d option to specify duration for the sampling collection.
The default is 20 s. Set duration to 0 s to run collection for an indefinite amount of time until it is stopped
explicitly with the sep -stop command.

-ebc | -event-based-counts
This option is used to collect event-based sampling data and event counts data for the list of events specified
in -ebc option. The event count information is collected and added at the end of each sample.

SEP Options 5

27

When the -ebc option is specified along with -em -trigger <event_name>:

• The trigger event specified in -em trigger="<trigger-event>" is used to trigger the interrupt.
• No other events interrupt or overflow. The counts for all events are recorded when the trigger event

overflows along with other sampling profile data.

For example:

sep -start -d 10 -ec
"BR_INST_RETIRED.MISPRED","L1D_SPLIT.LOADS","L1D_SPLIT.STORES","MUL","DIV","L1D_ALL_REF","L1D_REP
L" -ebc -em trigger="INST_RETIRED.ANY" factor=1 -out data1

You can configure the -ebc option to generate sampling data for some events and counts for others. In this
mixed mode:

• The trigger event is configured to overflow and interrupt. The counts for EBC events are recorded from
the trigger event interrupt.

• Apart from the trigger event that is sampled by default, the core events that are specified with :sample
modifier in the command line are configured to interrupt and generate sample records.

For example:

sep -start -d 5 -ebc -em trigger=CPU_CLK_UNHALTED.REF_TSC -ec
"BR_INST_RETIRED.ALL_BRANCHES:sample,DTLB_LOAD_MISSES.MISS_CAUSES_A_WALK,L2_RQSTS.DEMAND_DATA_RD_
HIT -out data1

In the regular and mixed EBC modes:

• Event multiplexing (EM) groups are scheduled in round-robin fashion. The group swaps follow the general
multiplexing rules specified in the introduction to event based sampling.

• Only fixed counter events can be used as trigger events in EM mode.
• The data is available in the *.tb file.
• Event group id is added as a separate column before the event counts column for each sample.

NOTE In the mixed EBC mode, only the trigger event sample record has valid counts for -ebc events.
Other samples show zero counts for -ebc events.

-mr | -multi-run
When there are multiple event groups,-mr is used to schedule one sampling run for each group. This option
overrides the default event multiplexing in case of multiple event groups and does a separate application run
per event-group.

For example:

sep -start -d 20 -mr -ec "INST_RETIRED.ANY:sa=2000000",
"CPU_CLK_UNHALTED.CORE","CPU_CLK_UNHALTED.REF_TSC","INST_RETIRED.ANY_P","UOPS_RETIRED.ANY"

NOTE

• The -em and -mr options cannot be specified together.
• -mr cannot be specified with indefinite SEP runs that use -d0.

-nb | -non-blocking
Enable non-blocking mode. SEP starts in the background. You regain control after data collection starts.
When SEP is in background the default behavior is "blocking."

 5 SEP User Guide

28

-osm | -os-mode
Enable sampling for operating system processes only. This option is used to configure sampling operating
system processes only.

-sam | -sample-after-multiplier <value>
Specify sample after value multiplier. Use the -sam option to specify a value between 0.01 and 100.0 by
which the Sample After Values (SAV) coming in from the event files of the platform are scaled/multiplied.

-sd | -sampling-delay <delay in seconds>
Specify delay of data collection. Use the -sd option to specify the number of seconds to delay sampling while
your application executes. The default is 0 s.

The sampling delay is a separate time value that is not a part of collection. For example, if you have an
activity with duration of 60 s and a start delay of 10 s, SEP starts collecting samples after 10 s and runs for
60 s, taking a total time of 70 s.

-sp | -start-paused
Start data collection in paused mode. Use the -sp option to start data collection in pause mode. To start
collection, use the -resume command.

-uem | -uncore-event-multiplexing [factor=<value>][timer=<value in ms>]
Enable uncore event multiplexing. Use the -uem option to enable event multiplexing for uncore. Event
multiplexing is the ability to sample multiple groups of events within a single sampling run.

The uncore event multiplexing is time-trigger based. SEP switches groups in each uncore unit every 1 s when
needed. Multiplexing can be configured using factor and/or timer options. The group switches happen at
the rate of factor_value*timer_value.

With factor option, user can specify the number of times each uncore group polls the performance counters
before switching over to the next group. In this case, frequency of polling is the default value of 10 ms.
When not specified, the default factor value used by SEP is 100.

With timer option, user can specify the frequency of polling and override the default value of 10 ms.

In the following examples, SEP schedules two groups for CBO and one group for IMC, assuming the total
available counters are both for CBO and IMC. In the following example, SEP uses default factor and timer,
switching groups for CBO every 1 s:

sep -start -d 10 -uem -ec
"UNC_IMC_DRAM_GT_REQUESTS,UNC_IMC_DRAM_IA_REQUESTS,UNC_CBO_CACHE_LOOKUP.READ_I,UNC_CBO_CACHE_LOOK
UP.WRITE_I,UNC_CBO_CLOCKTICKS"

In the following example, SEP uses a factor of 200 and default timer of 10 ms, switching groups for CBO
every 2 s:

sep -start -d 10 -uem factor=200 -ec
"UNC_IMC_DRAM_GT_REQUESTS,UNC_IMC_DRAM_IA_REQUESTS,UNC_CBO_CACHE_LOOKUP.READ_I,UNC_CBO_CACHE_LOOK
UP.WRITE_I,UNC_CBO_CLOCKTICKS"

In the following example, SEP uses a timer value of 20 ms and default factor of 100, again switching groups
for CBO every 2 s:

sep -start -d 10 -uem timer=20 -ec
"UNC_IMC_DRAM_GT_REQUESTS,UNC_IMC_DRAM_IA_REQUESTS,UNC_CBO_CACHE_LOOKUP.READ_I,UNC_CBO_CACHE_LOOK
UP.WRITE_I,UNC_CBO_CLOCKTICKS"

SEP Options 5

29

-um | -user-mode
Enable sampling data collection for user-mode processes only. This option is supported on Windows* and
Linux* operating systems only.

-rdt-auto-rmid
Use the -rdt-auto-rmid option to run SEP in the RDT standalone mode. This action sets the RMID to all
cores.

Specify an RDT monitoring event with this option.

Processor Event Based Sampling (PEBS) Options
This section lists all options supported by SEP for PEBS collection. The tool performs PEBS collection by
default on PEBS-capable events and replaces regular sampling data with accurate Instruction Pointer (IP) and
Time Stamp Counter (TSC) from PEBS fields. By default, the tool collects and reports data latency fields for
applicable memory events.

-apc [[basic],[mem],[gpr],[lbr:[# of entries]],[xmm]]
Adaptive PEBS capture on capable platforms. For PEBS-capable events provided by the user in the command
line, SEP collects PEBS records in the sampling data. Users can select zero or more fields. Sampling data for
each selection type contains related PEBS fields. For multiple selection types, sampling data will contain all
relevant fields. For information on events that are PEBS capable for a given platform, see the Intel Software
Developers Manual.

• -apc without any selection type, the sampling data contains basic PEBS record which includes record
layout, applicable counters, PEBS eventing IP, PEBS TSC.

• -apc mem includes memory latency fields
• -apc gpr includes general purpose register fields
• -apc lbr[:depth=<# of lbr entries>] includes last branch record fields. By default, the tool collects

maximum available lbr records for the platform. Optionally, when number of lbr entries is given, the
tool programs PEBS control register to only fetch requested number of entries (min# - 1, max# - 32. # of
entries is recommended to be a power of 2).

• -apc xmm includes XMM register fields.

If the user selects PEBS-capable events in the command line without using the -apc option, the tool still
performs PEBS collection on those events and replaces non-PEBS eventing IP and TSC in sampling data with
PEBS evening IP and TSC. No other fields added to the *.tb file.

Example Adaptive PEBS Commands
The following examples demonstrate a few combinations of the -apc command:

sep –start –apc -ec "INST_RETIRED.ANY,BR_INST_RETIRED.ALL_BRANCHES"
sep –start –apc basic,mem,gpr,xmm,lbr -ec "INST_RETIRED.ANY,BR_INST_RETIRED.ALL_BRANCHES"

-fpc | -full-pebs-capture
Capturing all applicable PEBS information. For PEBS-able events provided in command line, SEP collects full
PEBS record in the sampling data. The PEBS data collected includes all the fields relevant to the hardware
platform. The sampling fields may include eventing IP, Time Stamp Counter value, General Purpose Registers
(GPRs), etc:

sep –start -d 10 –fpc –ec "BR_INST_RETIRED.ALL_BRANCHES"

 5 SEP User Guide

30

If this option is used in Adaptive PEBS capable platforms, SEP collects the basic PEBS record and general
purpose register fields. Refer to the -apc section for more information on Adaptive PEBS collection.

-multipebs <# of PEBS records>
Multiple PEBS mode. Configure PEBS buffer threshold to cause an interrupt(PMi) after accumulating specified
number of PEBS records as opposed to interrupting for each event overflow. When used with -fpc or -apc
option, SEP generates all PEBS fields relevant to the given platform.

For example:

sep –start -d 10 –multipebs 10 –fpc –ec "BR_INST_RETIRED.ALL_BRANCHES"

-virt-phys-translation
Virtual to physical address translation of DataLA field of PEBS record. The data linear address field in PEBS
record contains the source address of the load or the destination address of the store. With this option, the
virtual address obtained in PEBS record is translated to physical address by SEP and made available in the
*.tb file.

Last Branch Records (LBRs) and Callstack Options
This section lists all options supported by SEP for LBR collection.

-apc lbr[:depth=# of entries] [-lbr <filter_name>] [-lbr-filter <filter1>:<filter2>...]
Adaptive PEBS-based LBR capture. In adaptive PEBS capable platforms, branch records can be collected
using PEBS flow. To configure collection of LBRs with an optional entry of number of records, use -apc
lbr[:depth=# of branch records]. To filter lbr records use the -lbr or -lbr-filter options. Refer
above for available filter modes.

For example:

sep –start –apc lbr:depth=16 –lbr no_filter -ec "BR_INST_RETIRED.ALL_BRANCHES"

-callstacks
Collect execution callstack information (FreeBSD* only). This option is used to capture callstack execution
path in case of FreeBSD*. The tool programs the hardware LBR facility to collect callstacks. Use option -lbr
call_stack to capture callstacks in all operating systems.

In the following example, SEP collects LBR callstacks along with sampling data:

sep -start –callstacks –ec "BR_INST_RETIRED.ALL_BRANCHES"
Another way to obtain callstacks would be to use:

sep -start –lbr call_stack –ec "BR_INST_RETIRED.ALL_BRANCHES"

-lbr <capture_mode>
Collect LBR information with given mode. SEP defines a set of predefined modes that capture specific set of
branches.

The following LBR capture modes are supported in SEP:

• no_filter - Captures all branches
• near_call - Captures near relative and near indirect calls
• near_call_ret - Captures near_call branches along with near return calls (available only on Intel

Atom® processors)
• call_stack - Captures call stack information

SEP Options 5

31

In addition to the capture mode, you can also filter by the following:

• :usr - Captures only user mode branches
• :os - Captures only operating system mode branches

For example:

-lbr call_stack:os captures only operating system mode call stack information.

The supported capture modes depend on the architecture. SEP will print a warning message if a user-
specified capture mode is not supported on the platform that is running SEP. This option cannot be used with
-lbr-filter

-lbr-filter <filter1>:<filter2>:<filter3>
Enable LBR Filtering in sampling. With this option, the user can control which set of branches are filtered out
from the collection. The user can specify one or more filter names separated with a colon (:).

SEP supports the following filter modes:

• JCC - Filter conditional branches
• NEAR_REL_CALL - Filter near relative calls
• NEAR_IND_CALL - Filter near indirect calls
• NEAR_RET - Filter near returns
• NEAR_IND_JMP - Filter near unconditional indirect jumps except near indirect calls and near returns
• NEAR_REL_JMP - Filter near unconditional relative branches except near relative calls
• FAR_BRANCH - Filter far branches

For example:

sep –start –ec "CPU_CLK_UNHALTED.CORE" –lbr-filter JCC:FAR_BRANCH
This filters out conditional and far branches from the LBR information. SEP does not support collecting LBR
information on Fixed Counter events. Be sure to specify at least one General Purpose event in the event
configuration to trigger LBR collection.

P-STATE Options

-p-state
Collects MPERF, APERF, and all fixed register counts on PMI trigger. This option can be used independently of
all other options.

The APERF/MPERF ratio provides actual CPU performance over marked (rated) performance, which is useful
in performance and power measurements.

This option also counts fixed counter events CPU_CLK_UNHALTED.THREAD/CORE and INST_RETIRED.ANY on
PMI trigger of CPU_CLK_UNHALTED.REF_TSC event.

This feature provides an accurate P-State/Turbo-State frequency Profile and CPI value.

Sample run:

sep -start -d 10 -ec <event_list> -p-state -out test
Sample output:

SampleID <…> Module Name Process Name <…> Time (msec)
INST_RETIRED.ANY CPU_CLK_UNHALTED.THREAD MPERF APERF

Output Options
The following options are used to configure SEP output.

 5 SEP User Guide

32

-of | -options-from-file <file name>
Read SEP options from a file. This option is used to specify a file from which the SEP options are read. SEP
reads the options from the specified file and applies them. The options can be specified in the same line or
multiple lines.

For example, this is the content of the my_clocks.txt:

-d 10
-ec CPU_CLK_UNHALTED.THREAD:sa=1000000
-out clock_out

You can get the same results using either of the following command lines:

sep –start –of my_clocks.txt
or

sep –start –d 10 –ec CPU_CLK_UNHALTED.THREAD:sa=1000000 –out clock_out
Command-line options will override options from a file.

-out | -output-file <file name>
Specify the file name for the output file. This option is used to specify the name of the output file where the
data is written. For a sampling run, the extension is *.tb.

If the option is not specified, the base file name of the output file begins with tbs followed by a string of ten
random digits.

In the case of multiple runs, an output file is generated for each run and the specified file name is appended
with a unique identifier to generate distinct file names.

For example, the name foo is saved as foo_001.tb7, foo_002.tb7.

-verbose
Display information on actions performed during collection.

SEP Options 5

33

Use Intel® VTune™ Profiler with
SEP 6
Intel® VTune™ Profiler includes hardware event-based sampling analysis types that provide a way to run a SEP
collection using a graphical user interface (GUI). These Intel® VTune™ Profiler analysis types are relevant to
SEP:

• Hotspots (hardware event-based sampling mode): Event-based sampling analysis that monitors all the
software executing on your system, including the operating system modules.

• Microarchitecture Exploration: Event-based analysis that helps identify the most significant hardware
issues affecting the performance of your application.

• Memory Access: Event-based analysis that measures a set of metrics to identify memory access related
issues (for example, specific to NUMA architectures).

• Custom Analysis: User-created analysis types that can be based on the available collection types or
based on the existing predefined analysis configurations.

See additional information about each analysis type in the Intel® VTune™ Profiler help.

The SEP drivers are automatically installed with Intel® VTune™ Profiler. If the driver installation was
unsuccessful, installation steps are available in the Intel® VTune™ Profiler Installation Guide for your operating
system.

You can import the *.tb result files generated by a SEP command into Intel® VTune™ Profiler to view in a
GUI.

Hotspots Analysis in Hardware Event-based Sampling
Mode
To view the default events selected in Intel® VTune™ Profiler:

1. Click Configure Analysis from the VTune Profiler toolbar.
2. In the HOW pane, select the Hotspots analysis type.
3. Select Hardware Event-based Sampling mode.
4. Expand the Details section to view the default events selected for the configured analysis type.

For Hotspots with hardware event-based sampling mode enabled, the default events include
CPU_CLK_UNHALTED.REF_TSC,CPU_CLK_UNHALTED.THREAD, and INST_RETIRED.ANY.

 6 SEP User Guide

34

Click the Start button to start the collection or the Start Paused button to restart the collection if collection
has been paused. After collection begins, it can be paused, resumed, or stopped.

The Hotspots with hardware event-based sampling analysis type is equivalent to running a SEP collection in a
non-blocking mode.

For example:

sep -start -out test -d 0 -nb
While the SEP collection is running, you can pause and resume the collection using the -pause and -resume
commands.

For example:

sep -pause
sep -resume

The collection can be stopped using the -stop option.

For example:

sep -stop

Use Intel® VTune™ Profiler with SEP 6

35

Microarchitecture Analysis
The Microarchitecture Analysis category includes Microarchitecture Exploration and Memory Access, which are
related to the -atypelist option in SEP. As with Hotspots, the Details section of each of these analysis
types lists the events collected by the type. For example, the Microarchitecture Exploration analysis type lists
all hardware events related to general performance issues.

The available analysis types for the current platform can be listed using the following command:

sep -atypelist
After determining the available analysis types, you can run a command to analyze the types. For example,
the following command would be the same as the Microarchitecture Exploration analysis type in Intel® VTune™
Profiler:

sep –start –atype microarchitecture_exploration –out test
You can collect more than one type of microarchitecture analysis type at once by separating each type with a
comma (,). For example, the following command would be the same as both Microarchitecture Exploration
and Memory Access:

sep –start –atype microarchitecture_exploration, memory_bandwidth –out test

Custom Analysis Type
Users can create custom analysis types in Intel® VTune™ Profiler that use hardware event-based sampling.
Additional information and instructions for creating a custom analysis type are available in the Custom
Analysis topic in the Intel® VTune™ Profiler help.

A custom analysis type is equivalent to customized events in SEP using the following option:

-ec "<event1>, <event2>, ..."
For example, the following command starts a collection using the default duration of 20 s with two custom
events:

sep –start –ec "BR_INST_EXEC.ALL_BRANCHES, CYCLE_ACTIVITY.CYCLES_NO_EXECUTE" –out test

Viewing SEP Results in Intel® VTune™ Profiler
The *.tb result files generated by a SEP collection can be imported and viewed in Intel® VTune™ Profiler.

Click the Import button () on the toolbar or select the Import Result action from the action drop-down
list to open the Import page. Click Browse, select the *.tb or *.tb file, and then click Import.

The result file opens in the Hardware Events viewpoint. Additional information about this viewpoint, as well
as information about interpreting result data, is available in the Intel® VTune™ Profiler help.

 6 SEP User Guide

36

https://software.intel.com/en-us/vtune-help
https://software.intel.com/en-us/vtune-help

Use Intel® VTune™ Profiler with SEP 6

37

	Contents
	Notices and Disclaimers
	Revision History
	About This Document
	Intended Audience
	Related Information

	Event-Based Sampling
	Core Data Collection
	Processor Event-Based Sampling (PEBS) Collection
	-apc [[basic],[mem],[gpr],[lbr:[# of entries]],[xmm]]
	Example Adaptive PEBS Commands

	Last Branch Record (LBR) Collection
	Collection on Hybrid Platforms
	Collect Data with Intel® Resource Director Technology

	Uncore Data Collection

	Using SEP
	Internals of Data Collection
	Launch and Control SEP Collection
	Launching SEP Collection
	Launching with an Application
	Launching a Delayed Collection
	Launching Collection Indefinitely
	Pausing Collection
	Resuming Collection
	Stopping Collection
	Cancelling Collection

	SEP Commands
	SEP Options
	Event Configuration Options
	-atype <atype name1>, <atype name2>, …
	-atypelist [-config] [-details] [<atype1>, <atype2>,...]
	-ec | -event-config [-dc | -data-config <optional-data1>,<optional-data2>…] "<event-name1>":modifier1=val:modifier2=val/constraint1={:modifier3=val:modifier4=val}, "<event-name2>"...
	-em | -event-multiplexing [trigger=<fixed counter> factor=<value>]
	-experimental

	Collection Options
	-app <full-path-to-the-application>[-args <"list of application arguments">]
	-cm | -cpu-mask <processor numbers>
	-cp | -continuous-profiling
	-d | -duration <in seconds>
	-ebc | -event-based-counts
	-mr | -multi-run
	-nb | -non-blocking
	-osm | -os-mode
	-sam | -sample-after-multiplier <value>
	-sd | -sampling-delay <delay in seconds>
	-sp | -start-paused
	-uem | -uncore-event-multiplexing [factor=<value>][timer=<value in ms>]
	-um | -user-mode
	-rdt-auto-rmid

	Processor Event Based Sampling (PEBS) Options
	-apc [[basic],[mem],[gpr],[lbr:[# of entries]],[xmm]]
	Example Adaptive PEBS Commands
	-fpc | -full-pebs-capture
	-multipebs <# of PEBS records>
	-virt-phys-translation

	Last Branch Records (LBRs) and Callstack Options
	-apc lbr[:depth=# of entries] [-lbr <filter_name>] [-lbr-filter <filter1>:<filter2>...]
	-callstacks
	-lbr <capture_mode>
	-lbr-filter <filter1>:<filter2>:<filter3>

	P-STATE Options
	Output Options
	-of | -options-from-file <file name>
	-out | -output-file <file name>
	-verbose

	Use Intel® VTune™ Profiler with SEP
	Hotspots Analysis in Hardware Event-based Sampling Mode
	Microarchitecture Analysis
	Custom Analysis Type
	Viewing SEP Results in Intel® VTune™ Profiler

