
White Paper

Comparing IP Integration Approaches for FPGA Implementation
Introduction
Since the early days of computers and telephony, interconnection networks have been a critical part of electrical 
engineering (1). This has become even more critical in the era of very large-scale integration (VLSI) circuitry because 
of the drive characteristics of MOS transistors (2) combined with the relatively high capacitance of on-chip 
interconnects (3).

The interconnection networks used to connect functional units within a chip can have a significant—indeed, a 
dominating—effect on the chip's performance. Buses, although the simplest form of interconnect, are a poor choice 
from a density or power standpoint because the power and space required to drive them at maximum speed grow 
exponentially with the capacitance of the bus (4). Furthermore, multi-point connection networks are a poor choice 
because the entire length of the bus must be driven even when only a single conversation may be going on at a time, 
or where the communication is between direct neighbors. A crossbar is an optimal solution, up to a maximum size 
determined by the underlying device and wiring technology. In general, the optimal solution to multi-party 
communication is a network built out of crossbars (5).

Status Quo
On-chip buses as seen today are a simple and straightforward outgrowth (shrinkage, actually) of system-wide buses 
used in computer systems. Although we have obvious proof that such buses are functional, they are just as obviously 
designed for the commercial and technical limitations of their day. That is, wires were cheap, circuits were expensive, 
and interconnect was faster than logic.

Today, none of that is true. Modern large-scale ICs are routinely speed-limited by their interconnect, not by their 
logic. The evidence is everywhere in chips with multiple clock domains and/or exotic wave-propagation techniques. 
Logic gates are now plentiful, with the proverbial (and generally misquoted) “Moore’s Law” delivering more gate 
density than most engineers know what to do with. This embarrassment of riches has turned circuit and system design 
on its head: logic and interconnect are cheap and conserving wires is counter-productive.

Buses led to the development of bus standards—again, a natural outgrowth of the contemporary commercial and 
technical climate. Discrete ICs from different manufacturers needed to communicate over printed-circuit boards, so 
standards for logic levels, current drive, and signaling polarity were desirable. Standards for individual pins and 
signals (e.g., transistor-to-transistor logic, or TTL) led to standards for groups of pins, or buses. Signaling standards 
made it easy to connect unrelated parts, and bus standards made it easy to connect unrelated microprocessors, 
peripherals, and memories. These, in turn, led to board-level standards (e.g., VME, S-100, Futurebus, PCI, etc.) that 
treated entire circuit boards as plug-in modules. In many—in fact, most—cases these board-level standards were little 
more than extensions of vendors’ proprietary chip-level pseudo-standards.

Although pin-level, chip-level, or board-level buses ensure electrical compatibility, they don’t guarantee that the 
parties can actually talk to one another. The current is willing, but the protocol is weak, so to speak. Bus standards 
don’t solve the big problems of system architecture and data flow, but they do a fine job of sweeping away the trivial 
problems, like exactly how to signal a successive string of ones and zeros.

Like many laws, policies, and regulations, bus standards have a way of outliving their usefulness. No sooner is a bus 
adopted than it starts to become obsolete. The very rigor the bus enforces becomes its weakness. Bus standards are 
intolerant of changes in signaling, protocol, bandwidth, or usage model. Buses are by nature slow to change and quick 
to stifle the unexpected. They deter innovation; they impede originality. Yet buses have a tenacious staying power; 
they’re nothing if not consistent. They remain steadfast beacons of standardization in a sea of ever-present change 
and progress. Without fixed specifications, how would component makers adhere to the standard?
February 2007, ver. 1.1 1

WP-01032-1.1



Comparing IP Integration Approaches for FPGA Implementation Altera Corporation
Alternatives Considered
The alternatives to buses are many, and all have been used successfully in various computers, chips, boards, ASICs, 
and FPGAs. These alternatives are no panacea, just as buses aren’t a cure-all for every interconnection ailment. 
Avoiding the fixed routing and timetable of a standard bus can open up new avenues for design, and restore a bit of 
glamour and creativity to an otherwise mundane project.

Buses and Networks
The alternative to current bus architectures is merely a different kind of bus. To be precise, it’s a different interconnect 
topology, such as a network, switch fabric, or crossbar. These interconnect topologies have been used successfully in 
many chip-, board-, and system-level products, and their popularity is growing. As chip- and system-level 
architectures change, it’s logical that interconnect strategies should change with them.

A bus topology, like that shown in Figure 1, generally favors one-to-one or one-to-many communications. These 
buses were, again, outgrowths of the need to standardize pin- or board-level interfaces so that various vendors’ chips 
could interoperate. Buses may have multiple masters (participants that originate a transaction and source or sink 
data), but only one master can be active at a time. Inherent in the definition of a bus is its exclusive nature. Only one 
master can use the bus at a time; all other potential masters must wait. Bus arbitration (i.e., the sharing mechanisms) 
thus becomes a significant part of any bus specification.

Figure 1. Traditional Bus Topology

Most buses support multiple masters, although, again, only one master can be active at a time. The master competes 
for access to the bus, initiates a transaction, waits for the slave (or in the case of a “broadcall” transaction, multiple 
slaves) to respond, and then relinquishes the bus. The master may then initiate a second transaction or, through 
arbitration, lose control of the bus to another master. This arrangement can lead to system bottlenecks where the 
waiting for access slows the system performance significantly.

Somewhat more advanced buses support split transactions where the overhead of arbitration or transaction delays are 
mitigated by overlapping the beginning of the next transaction with the end of the previous one. Although these shave 
a few precious cycles from overall transaction times, they do nothing to alleviate the basic one-master problem that is 
inherent in all buses (6).

In an ASIC or FPGA, chip-level buses are easily implemented using on-chip wiring resources. Standard chip 
fabrication techniques provide relatively long, straight metal layers on the top of the chip that are convenient for 
implementing buses (as well as for distributing power and global clock signals).

Network topology is quite similar to that of a traditional bus. Networks also are designed for one-to-one or 
one-to-many transactions over a shared medium. They also arbitrate control of the bus (often using 

System CPU
(Master 1)

System CPU
(Master 1)

I/O
1Program

Memory
Slaves

Shared BusShared Bus

Data
Memory

ArbiterArbiter

Data
Memory

DSP
(Master 2)

DSP
(Master 2)Masters

Slaves

I/O CPU
(Master 3)
I/O CPU

(Master 3)

I/O
2

I/O
2 Program

Memory

Custom
Accelerator
Peripheral

System
Bottleneck
2



Altera Corporation Comparing IP Integration Approaches for FPGA Implementation
collision-detection and retry algorithms). In addition, they can slightly overlap adjoining transactions to save time. 
Apart from their physical embodiments, networks and buses are quite similar.

Switch Fabrics
Crossbar switches and their more generalized siblings, switch fabrics, are at once both simpler and more complex 
than standard buses. Crossbar switches provide a many-to-many communications mechanism for chips or systems 
with multiple masters and multiple slaves. Unlike a bus or network, crossbars and switch fabrics support multiple 
simultaneous transactions. This offers obvious improvements in bandwidth, except in the case where only one master 
wants to conduct a transaction at a time. In that case, a conventional bus or network would work just as well. In the 
more common case of multiple masters initiating transactions at unpredictable intervals (and often simultaneously), a 
switch fabric (shown in Figure 2) yields better results (7).

Figure 2. Typical Switch Fabric Topology

The multi-master scenario is quite common, even in systems with a single microprocessor or processor core. 
According to a Gartner/Dataquest study, the average number of processors in a system-on-chip (SoC) was about 
3.5—and growing. In other words, most chips include more than one processor, where “processor” is defined as a 
RISC, CISC, video, or network processor that executes software.

Even standalone microprocessor chips often include more than one processor “core.” Intel's well-known Core 2 Duo 
and similar processors famously include two or more heterogeneous processors within a single silicon chip. Freescale 
(née Motorola) has produced dual-processor QUICC and PowerQUICC communications chips for more than a 
decade. Fabless chip companies in the networking and communications markets routinely produce devices with four, 
ten, or dozens of processors in each chip. Not incidentally, these devices also use switch fabrics internally.

Crossbar switches are so named because they were once made literally from crossed metal bars placed at right angles 
to one another. Switches or relays connected orthogonal pairs of bars to create electrical connections. Because any bar 
in the X direction can connect to any bar in the Y direction, they are sometimes known as X-Y crossbars. Crossbar 
switches were (and still are) quite common in telecommunications equipment and are particularly valuable for their 
ability to make any-to-any connections.

Apart from increasing overall system bandwidth, switch fabrics also avoid many of the arbitration delays and 
overhead of buses. The bus is a single resource, whereas switch fabrics are shared. Any number of transactions may 
proceed simultaneously so long as two masters are not addressing the same slave (or vice versa). When resource 
conflicts occur, switch fabrics arbitrate like any other shared resource; barring any such conflicts, arbitration is 
unnecessary.

Switch fabrics thus provide both better bandwidth and lower latency. Memory latency is particularly important in 
many high-performance designs where processors are fetching code, storing data, or retrieving data and do not wish 

System CPU
(Master 1)

System CPU
(Master 1)

I/O
1

Switch Fabric

Data
Memory

ArbiterArbiter

Data
Memory

DSP
(Master 2)

DSP
(Master 2)Masters

Slaves

I/O CPU
(Master 3)
I/O CPU

(Master 3)

I/O
2

I/O
2 Program

Memory

ArbiterArbiter

Custom
Accelerator
Peripheral

Program
Memory
3



Comparing IP Integration Approaches for FPGA Implementation Altera Corporation
to incur the time penalties inherent in a shared bus. Total bandwidth (that is, the number of simultaneous master/slave 
transactions) also improves when multiple masters can address multiple slaves at once.

Amdahl’s Law says that memory bandwidth must increase as the number of processors increases (8). Yet 
semiconductor memory bandwidth has not increased as rapidly as processors' appetite for that bandwidth. Memory is 
often the bottleneck preventing higher performance, and this mismatch has led to various workarounds, including 
multi-level caches, wide data paths, writable code stores, and different instruction sets. Opening the bottleneck to 
memory would seem to be every chip designer’s first order of business. Squeezing all that traffic over a shared bus 
runs counter to that goal.

Implementing Interconnects
As with any interconnect, switch fabrics must be implemented with an eye toward the underlying silicon's strengths. 
Early crossbar switches were just that, crossed bars. Modern switch fabrics use semiconductor gates and metal 
routing layers. Compared to buses, switch fabrics rely less on long metal traces and more on logic gates. This makes 
them ill suited for printed-circuit boards but ideally suited for logic-rich chips like FPGAs. “Hard” ASICs fall 
somewhere in between, as they tend to be metal-rich but comparatively logic-poor, making them better candidates for 
buses unless specifically designed around a switch fabric, as many are.

In the logic-rich environment of an FPGA, switch fabrics make perfect sense. They play to FPGAs’ strengths as well 
as to the larger trends in the industry. As designers move to “soft” hardware IP (intellectual property), switch fabrics 
are inherently softer in nature, working well with other soft IP that will likely be included in the design. Buses, in 
contrast, are tightly defined and carefully controlled. Switch fabrics are therefore easier to synthesize and easier to 
adapt to existing (and future) functional blocks.

Without a fixed bus interface, functional blocks or components can evolve more quickly and not be constrained by a 
bus definition. This is good news for the IP designer, IP user, and the IP itself. The switch fabric becomes an “IP 
integration backbone” instead of a bus; it connects various areas of the chip, but does so in a more flexible manner 
(9).

Switch fabrics also leverage progress in EDA tools. They are a more abstract form of interconnection, defined at a 
higher level of abstraction than a Verilog bus model would provide, for example. The details of the connection are 
abstracted away while the designer concentrates on data flow and architecture, not bus timing and latency.

Raising the Level of Abstraction
Software developers have become accustomed to delegating the details of their craft to their tools. Instead of toggling 
ones and zeroes, they use instruction mnemonics, and then instead of mnemonics, they use high-level languages like 
C or Java. Instead of specifying exactly where every variable is stored and how it’s aligned, they leave those details to 
the compiler. By delegating the details, programmers are able to concentrate on flow control, calculation, and logic 
while the compiler correctly implements all the variables, registers, arithmetic operations, storage, and so forth. C 
programmers don’t even know whether a “word” is 16 or 64 bits—and it doesn’t matter.

Good hardware-development tools, like good compilers, can map the designer’s wishes onto the target hardware with 
a minimum of handholding. And like good compilers, they do it with an understanding of the underlying platform’s 
structure and resources. By doing so, the tool accomplishes two things: it relieves the burden of detail from the 
designer and it produces a better mapping than the designer himself could have done. Over-specifying or 
over-constraining the implementation often leads to worse hardware (or software) because the compiler isn’t allowed 
to do its job. Good compilers are not mere translators, they’re optimizers.

In today’s terms, bus specifications over-constrain the “solution space” that a hardware tool can provide. Freeing the 
tools to explore the more appropriate solution for the underlying silicon is not only easier, it’s better. Particularly in 
the logic-rich environment of an FPGA, buses are a poor complement to the device’s strengths. An interconnect 
might not ever be perfect, but it’s always necessary. Whether it’s made with a bus, a switch fabric, a network, or some 
other topology, it will be the foundation upon which the rest of the chip (and perhaps the rest of the system) is 
4



Altera Corporation Comparing IP Integration Approaches for FPGA Implementation
designed. Done well, it will support the system’s many goals. Done poorly (or inappropriately), designers will battle 
its limitations instead of doing productive work.

A Solution
Altera’s SOPC Builder software offers a solution that addresses the need for designers to work at a higher level of 
abstraction by automating the integration of IP and design blocks. SOPC Builder provides a system design 
interconnect fabric that has the capability of integrating both the data plane and the control plane of a design, by 
supporting components with streaming and memory-mapped interfaces. The interconnect fabric supports slave-side 
arbitration enabling simultaneous multi-master bus access, which improves system performance over master-side 
arbitration schemes.

Further capabilities exist to manage topology and improve performance with bridges. These enable the designer or 
system architect to isolate system domains requiring more performance and throughput from domains with lower 
performance requirements. SOPC Builder’s streaming interface provides a high-throughput, low-latency connection 
for high-bandwidth applications like packet processing, multiplexed streams, and DSP data. The memory-mapped 
system interconnect fabric uses minimal FPGA logic resources to support datapath multiplexing, address decoding, 
wait-state generation, peripheral address alignment (including support for native or dynamic-bus sizing alignments), 
and interrupt-priority assigning. Figure 3 shows an example of a system design using the System Interconnect Fabric.

Figure 3. System Interconnect Fabric Example

Processor

M

DMA Controller

SDRAM
Controller

SDRAM Chip

S

Arbitrator

Data
Memory

SS

Tri-State Bridge

S

Instruction
M

Data

MM

Control

Read Write

Arbitrator

Instruction
Memory

System
Interconnect

Fabric

Write Data & Control Signals

Read Data

Interface to Off-Chip Device

M

S

Avalon-MM Master Port

Avalon-MM Slave Port

MUX

Flash
Memory

Chip

S
Ethernet

MAC/PHY
Chip

S

5



Comparing IP Integration Approaches for FPGA Implementation Altera Corporation
Figure 4 shows an example of a system with both the Memory-Mapped System Interconnect Fabric and the 
Streaming System Interconnect Fabric.

Figure 4. System Example Showing the Memory-Mapped and Streaming System Interconnect Fabrics

SOPC Builder can automatically generate a new optimized system interconnect fabric each time you add a new 
component or change the peripheral access priorities in your system. Because SOPC Builder automatically generates 
the system interconnect fabric, you can quickly and easily modify your system to improve performance or add 
capabilities. SOPC Builder is included with the subscription and web editions of Altera® Quartus® II design software.

Streaming System Interconnect Fabric

Frame
Buffer

Manager
(DMA)

Video
Decoder

Nios II 
Processor

Memory Mapped System Interconnect Fabric 

Video
Decoder

Video
Decoder

Video
Decoder

Avalon Master Port Avalon Source Port Data Plane

snksrc

src

src

src

src

src

snk

snk

snk

M M

M

DDR
SDRAM

S

S

2D Filter

snk src

Flash

S

UART

S

USB 2.0

S

SRIO

MS S

S

Compression

snk src

S

DMA

snk

M

M

M

6



Altera Corporation Comparing IP Integration Approaches for FPGA Implementation
Copyright © 2008 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the stylized Altera logo, specific device
designations, and all other words and logos that are identified as trademarks and/or service marks are, unless noted otherwise, the trademarks and service
marks of Altera Corporation in the U.S. and other countries. All other product or service names are the property of their respective holders. Altera products
are protected under numerous U.S. and foreign patents and pending applications, maskwork rights, and copyrights. Altera warrants performance of its
semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any products and
services at any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any information, product, or service
described herein except as expressly agreed to in writing by Altera Corporation. Altera customers are advised to obtain the latest version of device
specifications before relying on any published information and before placing orders for products or services.

101 Innovation Drive
San Jose, CA 95134
www.altera.com

Cited References
1. V.E. Benes, “Mathematical Theory of Connecting Networks and Telephone Traffic,” Academic Press, 1965.
2. Foty, “MOSFET Modeling With Spice,” Prentice Hall, 1996.
3. Sung-Mo Kang, “CMOS Digital Integrated Circuits,” McGraw-Hill, 2003.
4. Johnson and Graham, “High Speed Digital Design: a Handbook of Black Magic,” Prentice Hall, 1993.
5. A. Brinkmann, J.-C. Niemann, I. Hehemann, D. Langen, M. Porrmann, U. Rückert, “On-Chip Interconnects for 

Next-Generation System-on-Chips,” in Proceedings of the 15th Annual IEEE International ASIC/SoC 
Conference, IEEE, 2002.

6. David J. Kuck, “The Structure of Computers and Computations, Volume 4,” Wiley, 1978.
7. Brinkmann, et al.
8. Gene Amdahl, “Validity of the Single Processor Approach to Achieving Large-Scale Computing Capabilities,” 

AFIPS Conference Proceedings, pp. 483-485, 1967.
9. Weste, Eshraghian, “Principles of CMOS VLSI Design,” Addision Wesley, 1992.

Further Information
■ SOPC Builder:

www.altera.com/products/software/products/sopc/sop-index.html
■ Quartus II Handbook, Volume 4: SOPC Builder:

www.altera.com/literature/quartus2/lit-qts-sopc.jsp

Acknowledgements
■ Chris Balough, Director of Software and Embedded Marketing, Altera Corporation
■ Jarrod Blackburn, Senior Embedded Applications Engineer, Embedded Applications, Altera Corporation
■ Kent Orthner, Senior Manager of SOPC Builder, Altera Corporation
■ Ying Sosic, Senior Manager of Embedded Partners, Software and Embedded Marketing, Altera Corporation
■ Richard Venia, Senior Product Marketing Engineer, Software and Embedded Marketing, Altera Corporation
7


	Introduction
	Status Quo
	Alternatives Considered
	Buses and Networks
	Switch Fabrics

	Implementing Interconnects
	Raising the Level of Abstraction
	A Solution
	Cited References
	Further Information
	Acknowledgements

