intel.

Intel® QuickAssist Technology

API Programmer's Guide

Revision 012

December 2022

Document Number: 330684-012US

intel

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis You may not
use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which
includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with
your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
*Other names and brands may be claimed as the property of others.
Copyright © 2021, Intel Corporation. All rights reserved.

2 API Programmer’s Guide

http://intel.com/

Contents

1 o /o Yo 6T [o 9
1.1 Intended AUdIENCE ... ciiiiii e e e e e e 9
1.2 Related Documents and REfEreNCES.......vviiuiiiiiiiiii e 9
1.3 USING ThiS DOCUMENE. ..ttt e e e e ae s 10
1.4 BIC=1 2 211 0T Lo T A PR 10

2 Base API and API CONVENTIONS. .. ittt iere it e e serae e e aeeaneane e annennanes 12
2.1 Intel® QAT Technology Base APL.......c.iiuiiuiiiiiiiiiiiie e aees 12

2.1.1 Data Buffer Modelscoviviiiiii i 12

2.1.1.1 Flat BUffers v e 12

2.1.1.2 Scatter-Gather ListSccvviiiiiiiii e 13

2.2 Intel® QuickAssist Technology API CoONVENtioNSccuvvviviiiiiniiniiieeinianeaann, 14
2.2.1 INStANCE DiSCOVEIY .iiiiiiiiii i i e e e a e aeeas 14

2.2.2 [\ oTa [=-o] @] 7= =Y o] o AP 16

2.2.2.1 Asynchronous Operationccoiciiiiiiiiiiiiiiic e 16

2.2.2.2 Synchronous Operationcccoevveiiiiiiienniiiiiieneeeaes 17

2.2.3 Memory Allocation and OwWnershipcovviiiiiiiiiii e 18

2.2.4 Data Plane APIS ...ttt 19

3 Intel® QuickAssist Technology CryptographiC APL.......ccovuviiiiiiiiiiiiiiinciee e, 21

3.1 L@ Y= V1 P 21
3.1.1 Y71 [0 =P 22

3.1.2 [0] /1 0 PR 22

3.2 Using the Symmetric Cryptography API ..ot 22
3.2.1 General CONCEPES ..uviieiiiii i e 22

3.2.1.1 SESSION titiiiiii e 23

3.2.1.2 In-Place and Out-of-Place Support........cccoevviiiinininnnnn. 23

3.2.1.3 Partial SUPPOrt ..o 23

3.2.2 LT = 24

3.2.2.1 symCallback......couvieiniiiii i 24

3.2.2.2 cCipherSample ... 24

3.2.3 HaSh oot 29

3.2.4 Hash @ File. ..o e 30

3.2.5 Chained Cipher and Hash........ccooiiiiiiiii e 32

3.2.6 Chained Cipher and Hash - IPSec Like Use Case........ccccvevvivnnnnnn. 33

3.2.7 Chained Cipher and Hash - SSL Like Use Casecccovvviniiiiinnnnen. 36

3.2.8 Chained Cipher and Hash = CCM Use Case......coovivvirviniineinninnnnnns 41

3.2.9 Chained Cipher and Hash — GCM Use Cas€......c.ccvvvviiviniiiiiininnnnnns 44

3.2.10 Chained Cipher and Hash Using the Symmetric Data Plane APL...... 46

3.2.11 TLS Key and MGF Mask Generationcocoviiiiiiiiiiiiiiiiic e 51
3.2.11.1 Setting CpaCyKeyGenTIsOpData Structure Fields........... 51

3.2.12 Session Update for Chained Cipher and Hash Operation................ 53
3.2.12.1 Create and Initialize @ SeSSION: ...civvvviiiiiiiiiiiieieane 53

3.2.13 HKDF USE CaSE ...uiiiiiiiiiiiiiti it it sieeraee s ea e snesanesaneesnneraneenes 55
3.2.13.1 Instance Configuration and Memory Allocation.............. 56

3.2.13.2 HKDF Extract Expand Operation.........c.ccoeviiiiiiiniinnnnne. 56

3.2.13.3 HKDF Extract Expand Label Operationccceevevnnnne 56

3.2.13.4 HKDF Extract Expand Label and Sublabels operation 57

3.2.14 Perform HKDF Operationccvceieiiiiiiiiiiieiie e e e 58

3.3 Using the Diffie-Hellman AP ... 58

API Programmer’s Guide 3

intel

Figures

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.

Tables

Table 1.
Table 2.

Listing

Listing 1.
Listing 2.
Listing 3.
Listing 4.
Listing 5.
Listing 6.
Listing 7.
Listing 8.
Listing 9.
Listing 10.
Listing 11.
Listing 12.
Listing 13.

3.3.1 Prime Number Testing.......coooviiiiiii e 60
3.4 USING the SM2 API ... e 61

3.4.1 SM2 Digital Signature Generation and Verification 61

3.4.2 SM2 Public Key ENCrypltionccoiiiiiiiiiiiiiii e 62

3.4.3 SM2 Key EXChange ..o e 64

3.4.4 SM2 Elliptic Curve PoiNt.....ccoiiiiiiii 67
Intel® QuickAssist Technology Data Compression APL.......cccivveiiiviiiieieienerieienenennns 70
4.1 L@ YT Y 3 PP 70

4.1.1 T T7 =1 [0 o 70
4.2 Sample — Stateful Data CompPreSSIiON.....ivviiii i e eaas 71

4.2.1 Session Establishment.......ccooiiiiiii e 71

4.2.2 Sample — Stateless Data Compression......c.ccvvviiiiiiiiiiiiie i 79
4.3 Sample - Stateless Data Compression Using Multiple Compress Operations . 82
4.4 Sample - Data Compression Data Plane API........ccocvoiiiiiiiiiiiinininnas 83
4.5 Sample - Chained Hash and Stateless Compression..........c.cvviiiiiinniinennss 86
[L 103 £ ol DI T=Te | =T o [PP 13
Scatter-Gather List Diagram......coc i e 14
ASYNChIroNOUS OPEratioN ..uiviii i e e e e 17
SYNChIONOUS O PIatioN .iuiiiii i e e e aes 18
LS =Tl T8 Yo] U1 e 33
| Y=ol] s Yo] U o o [OO 34
SSL OUEDOUNG ..t e 37
Secure Sockets Layer INboUNd ..ot 38
Related Documents and REfEreNCEScoviiiiiiiii i 9
JLICS0.01 1 a0} [T 1P 10
Getling @n INSTANCEiiii i 14
Querying and Starting an INStanCe........oe i 15
(01 | o= Yol 1 1T [o ot o] o FAFS PP 24
Getling @n INSEANCE ..o e 25
Set Address Translation FUNCHION ... e 25
] 1= v o 25
Create and Initialize Cipher SESSIONiiiiiiiei e e aas 26
[\(=T0 g Vo] VY| (o T o o [N PP 27
Set Up Cipher Operational Data........covieiiiiiiiiiii et e s 28
Perform Cipher Operation ..o e 28
Wait for ComPpletion ... 28
Wait for Outstanding REQUESEScuieiiiiiiie e 29
ReMOVE CIPher SESSION .iuvieiitiiii i e e e e e e raaaens 29

API Programmer’s Guide

Listing 14.
Listing 15.
Listing 16.
Listing 17.
Listing 18.
Listing 19.
Listing 20.
Listing 21.
Listing 22.
Listing 23.
Listing 24.
Listing 25.
Listing 26.
Listing 27.
Listing 28.
Listing 29.
Listing 30.
Listing 31.
Listing 32.
Listing 33.
Listing 34.
Listing 35.
Listing 36.
Listing 37.
Listing 38.
Listing 39.
Listing 40.
Listing 41.
Listing 42.
Listing 43.
Listing 44.
Listing 45.
Listing 46.
Listing 47.
Listing 48.
Listing 49.
Listing 50.
Listing 51.
Listing 52.
Listing 53.
Listing 54.
Listing 55.
Listing 56.
Listing 57.
Listing 58.
Listing 59.
Listing 60.
Listing 61.
Listing 62.
Listing 63.
Listing 64.
Listing 65.
Listing 66.
Listing 67.
Listing 68.

Create and Initialize Hash S@SSiONooviiiiiiiii 29
Set up Hash Operational Dataooiiiiiiiii e 30
Hash Session Setup Data.......oovveiiiiiiiiiii e 30
HasShing @ File .o e e e s 31
Create and Initialize Session Cipher and Hash ..o 32
Set up Operational Data Cipher and Hash ... 32
Session Setup Data IPSec OUtbOUNdiiuiiiiiii e 34
Operational Data IPSec OutbouNnd........c.cciiiiiiiii e 35
Session Setup Data IPSec INboUNdot e 35
Operational Data IPSec INDOUNdc.iiiiiiiiiii e 36
Session Data SSL OUDOUNG......iiiiiiiiii i e eanes 38
Buffer Size SSL OULDOUNG......iiiii e e 39
Buffer Setup SSL OUTbOUNd ..o e 39
BufferList Setup SSL OUtbOoUNd. ..ot e 39
Operational Data SSL Outboundcoiiiiii e 40
Session Data SSL INbOUNd ...t 40
Calculating padLen SSL INDOUNd.......ccoviiiiiiii e 41
Operational Data SSL INboUNd ..o e 41
Session Data CCM Generate-ENnCrypt.....ccoviiiiiiiiiiiiii e 42
Session Data CCM DeCrypt-Verify ... e e e e aenns 42
CCM Allocate IV and AAD BUFfersS ...uiiiiiiii i e na e e anes 43
CCM Operational Dataccouiiiiiiiii e e e 43
Session Data GCM AUth-ENCrypl..c i e 44
Session Data GCM AULh-DeCrypt.o iuiiiii i e 45
GCM Allocate IV and AAD BUf IS . uuii it e enaanes 45
GCM Operational Data......covoiiiiiiiiiiiii e e 46
Register Callback FUNCHION ... e 47
Create and Initialize Data Plane SeSSIiONccvviiiiiiiiii i e e reaas 47
Data Plane Operational Dataccoviiieiiiiiiiiiii e e e 48
Data Plang ENQUEUE ... ittt e et e ettt 50
(D L= I o =T Lo I =T o o] o o 50
Wait for Outstanding REQUESESiuiiiiiiiiiii i a e eanes 50
Data Plane REMOVE SESSION ...viiuiiiiitiitiee it ettt ae e et eae s s e e anearerarannannanes 50
Register Callback FUNCHION ... e 53
Create and Initialize Data Plane SeSSiONcvvrviiiiiiiiii i e aes 53
Data Plane Operational Dataccveviiiiiiiiiiiiiii e e e e aeaens 54
Data Plane ENQUEUE ... it et e ettt 55
(D Lo I o =T Lo I =T o o] o o PP 55
SESSION UPAAtE 1ttt e 55
HKDF Operation Data — Memory AlloCation........cciviiiiiiii e 56
HKDF Extract EXpand Operationoooeieieiiiieiiiiiiiie e ie e e s eeaaeraeaens 56
HKDF Extract Expand Label Operationccocoiiiiiiiiiiii e 57
HKDF Extract Expand Label and Sublabels Operation...........cccocoviiiiiiiiiiiiiiienns 57
[| D T @] o =] o= o] o [P 58
Allocate Memory and Populate Operational Data..........cccooeieiiiiiiiiiiie e 58
Perform Phase 1 Operation ...c.ciiiiiiiiii i e e s 59
Perform Phase 2 Operationc.ciiiieie i e e e e e ns 60
Setup Operational Data and Test Primecociiiiii e 60
Create and Initialize Stateful SESSIONcciviiiiiii i 72
Stateful Compression Memory AIlOCatIoNcovviiiiiii e 73
(O - ol o 1= T o [T PP 74
Perform Stateful Compression Operationcovieiiiiiiiiii e 75
CrEate F OO B e 76
Perform Stateful Decompression Operationocovieiiieiiiiiiii e 77
RemMOVE STatefUl SESSION ..iviiti ittt eaeanes 79

API Programmer’s Guide 5

intel

Listing 69.
Listing 70.
Listing 71.
Listing 72.
Listing 73.
Listing 74.
Listing 75.
Listing 76.
Listing 77.
Listing 78.
Listing 79.
Listing 80.
Listing 81.
Listing 82.
Listing 83.
Listing 84.

Querying and Starting a Compression INStancCeccvvviiiiii i e 79
Create and Initialize Stateless SeSSiON.....icvi i e 81
Data Plane Remove Compression SESSIONi.iieiiieiiiiiieieiiirsre i seseraseraeaens 82
Setting the Initial Value of the Checksumc.ciiiiiiii e 82
Register Compression Callback FUNCEIONviiiiiiiii s 83
Create and Initialize Compression Data Plane Sessionc.ccvviviiiiiiiiiiiiic i 83
SEtUP SOUICE BUI I .ttt e 84
Compression Data Plane Operational Datacocoviiiiiiiiii e 85
Data Plane Enqueue and SUbMIt......oiiiiiiiii i e 85
Data Plane Remove Compression SESSIONi.iieiiieiiiiiieitiiiasiie s rasraaseraaaens 86
Querying and Starting a Compression INStancCeccovvviiiiiiiiiiii e 86
Create and Initialize Session Hash and COmMPpressioncoovveiiiiiiiiiiiiniieneeaes 87
Chained Hash and Stateless Compression Memory Allocationccocvvviiiiiinnnnnnn. 89
Set Up Operational Data Hash and CompresSionvvviiiiiiiiiiiiicce e e 90
Verify the Output of Chained Hash and Stateless Compressionccccvvvvevvieininenn. 90
Remove Chained Hash and Stateless Compression SesSionccccvvvviiiiiiiiiiiinnenns. 92

API Programmer’s Guide

Revision History

intel

Document
Number

Revision
Number

Description

Revision Date

330684

012

In this release:

e Section 2.1.1: Added a note that source and
destination buffer types must match.

December 2022

330684

011

In this release:

e Updated Section 3.1 - added cpa_cy_ecsm2.h
file reference as the API for SM2

October 2021

330684

010

e Updated Section 3.2.11 - TLS Key and MGF
Mask Generation

e Updated Section 3.4 - Using the SM2 API

June 2021

330684

009

o Updated cpaDcGenerateFooter Content

April 2021

330684

008

e Updated Section 1.3 Using this Document

e Updated Section 3.2.2, Cipher AES-256

e Listing 7, Updated to use newer cipher function
in place of occurrence 3DES

e Updated Section 3.2.3, Hash with SHA-256

o Listing 14, Updated to use a newer hash
function in place of occurrence of MD5

e Listing 18, Updated to use newer cipher
function in place of occurrence 3DES

e Updated Section 3.2.10 Chained Cipher and
Hash using the Symmetric Data Plane API

o Listing 41 and 42, updated to use newer cipher
function in place of occurrence 3DES

e Section 3.2.11.2, Setting
CpaCyKeyGenTlsOpsData updated code

May 2020

330684

007

e Added Section 3.2.13, HKDF Use Case

February 2020

330684

006

e Added Section 4.5 Chained Hash and Stateless
Compression

March 2019

330684

005

e Updated Section 3.1 Overview

December 2018

330684

004

e Updated Listing 13. Remove Cipher Session
o Updated Section 4.0 Note

e Updated Section 4.2 Sample - Stateful Data
Compression

e Updated Listing 56. Remove Stateful Session

June 2018

330684

003

o Added requirement that customers using Static
or Dynamic Compression must decompress
data and verify that it matches original source
data.

February 2018

330684

002

e Updates to code samples.

September 2017

330684

001

e First public version of the document. Based on
Intel® Confidential document number 442844-

June 2014

API Programmer’s Guide

intel

Document Revision Description Revision Date
Number Number
330684 012 In this release: December 2022
e Section 2.1.1: Added a note that source and
destination buffer types must match.
330684 011 In this release: October 2021
e Updated Section 3.1 - added cpa_cy_ecsm2.h
file reference as the API for SM2
1.3 with the revision history of that document
retained for reference purposes.
330684 1.3 o Added new API function,
cpaCySymSessionCtxGetDynamicSize (), to May 2014
Section 3.2.2.2, plus other minor updates.
330684 1.2 e Updated Listing 26, 27, and 30 in Section 3.2 January 2014
330684 1.1 Updates for stateless data compression samples:
e Updated Section 4.3 March 2013
e Added Section 4.4
330684 1.0 o Initial release of the document September 2012

API Programmer’s Guide

i)
I n te I® Introduction

1 Introduction

This API programmer's guide describes the sample code that demonstrates how to use
the Intel® QuickAssist Technology (Intel® QAT) APIs.

1.1 Intended Audience

This document is intended to be used by software engineers who wish to develop
application software that uses the Intel® QAT APIs to accelerate the supported
workloads and/or services.

1.2 Related Documents and References

Table 1. Related Documents and References

Document Document Number /Location
Intel® QuickAssist Technology Cryptographic API 330685
Reference Manual
Intel® QuickAssist Technology Data Compression API 330686
Reference Manual
Intel® QuickAssist Technology Performance Optimization 330687
Guide
Intel® QuickAssist Technology Programmer's Guide for 336210
Linux* - Hardware Version 1.7
Intel® Communications Chipset 8925 to 8955 Series 330751
Software Programmer's Guide
Intel® Communications Chipset 8900 to 8920 Series 330753
Software Programmer's Guide
Intel Atom® Processor C2000 Product Family for 330755
Communications Infrastructure Software Programmer's
Guide
Intel® QuickAssist Technology Software for Linux* 336211
Release Notes
NIST publication SP800-38C _ https://nvipubs.nist.gov/nistpubs/I
Recommendation for Block Cipher Modes of Operation: eqgacy/sp/nistspecialpublication800
The CCM Mode for Authentication and Confidentiality -38c.pdf
NIST publication SP800-38D) https://nvipubs.nist.gov/nistpubs/
Recommendation for Block Cipher Modes of Operation: Legacy/SP/nistspecialpublication80
Galois/Counter Mode (GCM) and GMAC 0-38d.pdf

API Programmer’s Guide 9

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-38c.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

i)
I n te I® Introduction

1.3

1.4

Table 2.

10

Document Document Number /Location
Eignfr';gr?c?a_ggh T:rrg:‘:\rfgc?; Number Generation Using https://csrce.tnaiﬁt(.sqgo{\é/opou_blications/d
Deterministic Random Bit Generators (Revised) 90/revised/archive/2007-03-14
GZIP file format specification v4.3 RFC 1952
GZIP file format specification v3.3 RFC 1950
The Transport Layer Security (TLS) Protocol Version 1.0 RFC 2246
The Transport Layer Security (TLS) Protocol Version 1.1 RFC 4346
The Transport Layer Security (TLS) Protocol Version 1.2 RFC 5246
The Secure Sockets Layer (SSL) Protocol Version 3.0 RFC 6106

Using This Document

This document is structured as follows:

Section 2 Base API and API Conventions describes aspects common to all Intel®
QuickAssist Technology APIs

e Section 3 Intel® QuickAssist Technology Cryptographic API describes the Intel®

QuickAssist Technology Cryptographic API

e Section 4 Intel® QuickAssist Technology Data Compression API describes the Intel®

QuickAssist Technology Data Compression API

Code for all the examples in this document is contained in the software
package and, after installation, can be found in a sub-directory of the
following directory:

quickassist/lookaside/access layer/src/sample code/functional

Refer to Table 2 for a list of terms and acronyms used in this manual.

Terminology
Terminology
Term Description
AAD Additional Authenticated Data
AES Advanced Encryption Standard
API Application Programming Interface
CBC Cipher Block Chaining
CCM Counter mode with Cipher-block chaining Message authentication code

API Programmer’s Guide

https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://csrc.nist.gov/publications/detail/sp/800-90/revised/archive/2007-03-14
https://tools.ietf.org/html/rfc1952
https://tools.ietf.org/html/rfc1950
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc4346
http://www.rfc-base.org/rfc-5246.html
https://tools.ietf.org/html/rfc6101

Introduction I n te I ®

Term Description
CPM Content Processing Module
cY Cryptographic
DC Data Compression
DRBG Deterministic Random Bit Generator
DSA Digital Signature Algorithm
ECDH Elliptic Diffie-Hellman
EC Elliptic Curve
ESP Encapsulating Security Payload
GCD Greatest Common Divisor
GCM Galois Counter Mode
HKDF HMAC Key Derivation Function
HMAC Hashed Message Authenticate Code
Icv Integrity Check Value
IPSec Internet Protocol Security
MAC Message Authentication Code
NRBG Non-Deterministic Random Bit Generator
PKE Public Key Encryption
PV Pubic Value
Intel® QAT | Intel® QuickAssist Technology
RBG Random Bit Generation
RSA A public-key encryption algorithm created by Rivest, Shamir, and Adleman
SSL Secure Sockets Layer
TLS Transport Layer Security (SSL successor)

API Programmer’s Guide 11

s}
I n te I® Base API and API Conventions

2

Base API and API Conventions

2.1

2.1.1

2.1.1.1

12

This chapter describes aspects common to all Intel® QAT Technology APIs, starting
with the base API and followed by conventions.

Intel® QAT Technology Base API

The Base API is a top-level API definition for Intel® QAT Technology. It contains
structures, data types, and definitions that are common across the interface.

Data Buffer Models

Data buffers are passed across the API interface in one of the following formats:

o Flat Buffers represent a single region of physically contiguous memory and are
described in detail in Section 2.1.1.1, Flat Buffers.

e Scatter-Gather Lists are essentially an array of flat buffers, for cases where the
memory is not all physically contiguous. These are described in detail in Section
2.1.1.2, Scatter-Gather Lists.

o Note: The source and destination buffer types must match. For example, if
the source buffer type is set to flat buffer, the destination buffer type must also be
a flat buffer.

Flat Buffers

Flat buffers are represented by the type CpaFlatBuffer, defined in the file cpa.h. It
consists of two fields:

o Data pointer pData: points to the start address of the data or payload. The data
pointer is a virtual address; however, the actual data pointed to is required to be in
contiguous and DMAable physical memory. This buffer type is typically used when
simple, unchained buffers are needed.

e Length of this buffer: dataLenInBytes specified in bytes.

For data plane APIs (cpa sym dp.h and cpa dc dp.h), a flat buffer is represented by
the type CpaPhysFlatBuffer, also defined in cpa.h. This is similar to the
CpaFlatBuffer structure; the difference is that, in this case, the data pointer,
bufferPhysAddr, is a physical address rather than a virtual address.

Figure 1 shows the layout of a flat buffer.

API Programmer’s Guide

o
Base API and API Conventions I n te I @

Figure 1. Flat Buffer Diagram

dataLeninBytes

bufferPhysAddr / Buffer

(physically contiguous)

2.1.1.2 Scatter-Gather Lists

A scatter-gather list is defined by the type cpaBufferList, also defined in the file
cpa.h. This buffer structure is typically used where more than one flat buffer can be
provided to a particular API. The buffer list contains four fields, as follows:

The number of buffers in the list.

Pointer to an unbounded array of flat buffers.

User Data: an opaque field; is not read or modified internally by the API.

This field could be used to provide a pointer back into an application data structure,
providing the context of the call.

Pointer to metadata required by the API:

The metadata is required for internal use by the API. The memory for this
buffer needs to be allocated by the client as contiguous data. The size of this
metadata buffer is obtained by calling cpaCyBufferListGetMetaSize for
crypto, cpaBufferLists, and cpaDcBufferlListGetMetaSize for data
compression.

The memory required to hold the cpaBufferList structure and the array of
flat buffers is not required to be physically contiguous. However, the flat buffer
data pointers and the metadata pointer are required to reference physically
contiguous DMAable memory.

There is a performance impact when using scatter-gather lists instead of flat
buffers. Refer to Table 1, Intel® QAT Performance Optimization Guide for
additional information.

Figure 2 shows a graphical representation of a scatter-gather buffer list.

API Programmer’s Guide 13

s}
I n te I® Base API and API Conventions

Figure 2. Scatter-Gather List Diagram

2.2

2.2.1

Listing 1.

14

#Buffers
pBuffers leninBytes,
UserData pData,
pMetaData leninBytes,
pData, \

Buffer 1

User must also allocate this data

For data plane APIs (cpa sym dp.h and cpa dc dp.h) a region of memory that is not
physically contiguous is described using the CpaPhysBufferList structure. This is
similar to the cpaBufferList structure; the difference, in this case, the individual flat
buffers are represented using physical rather than virtual addresses.

Intel® QuickAssist Technology API Conventions

Instance Discovery

Intel® QAT API supports multiple instances. An instance represents a "channel" to a
specific hardware accelerator. Multiple instances can access the same hardware
accelerator (that is, the relationship between instances and a hardware accelerator is
N:1). The instance is identified using the cpainstanceHandle handle type. This handle
type represents a specific instance within the system and is passed as a parameter to
all API functions that operate on instances.

Instance discovery is achieved through service-specific API invocations. This section
describes the instance discovery for data compression (dc); however, the flow of the
calls is similar for the cryptographic service.

Getting an Instance

void sampleDcGetInstance (CpalnstanceHandle *pDcInstHandle)

{
CpalInstanceHandle dcInstHandles[MAX INSTANCES];

Cpal6U numlInstances = 0;
CpaStatus status = CPA STATUS SUCCESS;

*pDcInstHandle = NULL;

status = cpaDcGetNumInstances (&numInstances) ;

API Programmer’s Guide

]
Base API and API Conventions I n te 4

In this example, the number of dc instances available to the Application is queried via
the cpabcGetNumInstances call. The Application obtains the instance handle of the
first instance.

The next example shows the Application querying the capabilities of the data
compression implementation, and verifying the required functionality is present. Each
service implementation exposes the capabilities that have been implemented and are
available. Capabilities include algorithms, common features, and limits to variables.
Each service has a unique capability matrix, and each implementation identifies and
describes its particular implementation through its capability’s API.

Listing 2. Querying and Starting an Instance

API Programmer’s Guide 15

=
I n te I ® Base API and API Conventions

2.2.2

2.2.2.1

16

In the example, the application requires stateless deflate compression with dynamic
Huffman encoding and stateful decompression with support for CRC32 checksums. The
example also sets the address translation function for the instance. The specified
function is used by the API to perform any required translation of a virtual address to
a physical address. Finally, the instance is started.

Modes of Operation

The Intel® QAT API supports both synchronous and asynchronous modes of operation.
For optimal performance, the Application should be capable of submitting multiple
outstanding requests to the acceleration engines. Submitting multiple outstanding
requests minimizes the processing latency on the acceleration engines. This can be
done by submitting requests asynchronously or by submitting requests in synchronous
mode using multi-threading in the Application.

Developers can select the mode of operation that best aligns with their Application and
system architecture.

Asynchronous Operation

To invoke the API asynchronously, the user supplies a callback function to the API, as
shown in Figure 3. Control returns to the client once the request has been sent to the
hardware accelerator, and the callback is invoked when the engine completes the
operation. The mechanism used to invoke the callback is implementation-dependent.
For some implementations, the callback is invoked as part of an interrupt handler
bottom half. For other implementations, the callback is invoked in the context of a
polling thread. In this case, the user application is responsible for creating and
scheduling this polling thread. Refer to Table 1 for the implementation of specific
documentation for more details.

API Programmer’s Guide

i)
Base API and API Conventions I n te I@

Figure 3. Asynchronous Operation

2.2.2.2

Control is immediately
returned to the calling
application

/, Some time
later, the
Application Application application
calls y c callback is
perform / Quick Assist invoked.

T
e o 6/
Y

Service

Access

Layers
::szacgs | celeration Driver Framework
onto the
ring

3

Intel® QuickAssist Technology Firmware

Synchronous Operation

Synchronous operation is specified by supplying a NULL function pointer in the
callback parameter of the perform API, as shown in Figure 4. In this case, the function
does not return until the operation is complete. The calling thread may spend on a
semaphore or other synchronization primitive after sending the request to the
execution engine.

Upon the completion of the operation, the synchronization primitive unblocks, and
execution resumes. Synchronous mode is therefore blocking and should not be used
when invoking the function from a context in which sleeping is not allowed (for
example, an interrupt context on Linux*).

API Programmer’s Guide 17

I n te I ® Base API and API Conventions

Figure 4. Synchronous Operation

2.2.3

18

Control is
returned to
the calling
operation

/

Applicatio
Application pp l/
calls

perform é
operation
\‘\o Quick Assist APls Signal

L completion
of the
reguest

Wit For Completion

Service Access

Layers

Message is leration Driver Framework
placed onto

the ring \T .1,

Intel® QuickAssist Technology Firmware

Memory Allocation and Ownership

The convention is that all memory needed by an API implementation is allocated
outside of that implementation. In other words, the APIs are defined such that the
memory needed to execute operations is supplied by a client or platform control entity
rather than having memory allocated internally.

Memory used for parameters is owned by the side (caller or callee) that allocated the
memory. An owner is responsible for de-allocating the memory when it is no longer
needed.

Generally, memory ownership does not change. For example, if a program allocates
memory and then passes a pointer to the memory as a parameter to a function call,
the caller retains ownership and is still responsible for the de-allocation of the
memory. Default behavior and any function which deviates from this behavior clearly
state so in the function definition.

For optimal performance, data pointers should be 8-byte aligned. In some cases, this
is a requirement, while in most other cases, it is a recommendation for performance.
Refer to Table 1 for the service-specific API manual for optimal usage of the particular
APL.

API Programmer’s Guide

Base API and API Conventions I n te I @;

2.2.4 Data Plane APIs

The Intel® QAT APIs for symmetric cryptography and for data compression supports
both “traditional” (cpa cy sym.h and cpa dc.h) and “data plane” APIs

(cpa _cy sym dp.h and cpa dc dp.h)!. The data plane APIs are recommended for
applications running in a data plane environment where the cost of offload (that is,
the cycles consumed by the driver sending requests to the accelerator) needs to be
minimized. Several constraints have been placed on these APIs to minimize the cost of
offload. If these constraints are too restrictive for a given application, the more
general-purpose "traditional" APIs can be used (at an increased cost of offload).

The data plane APIs can be used if the following constraints are acceptable:
e There is no support for partial packets or stateful requests.

e Thread safety is not supported. Each software thread should have access to its
unique instance (CpaInstanceHandle).

e Only asynchronous invocation is supported.

e Polling is used, rather than interrupts, to dispatch callback functions. Callbacks are
invoked in the context of a polling thread.

— The user application is responsible for creating and scheduling this polling
thread.
Polling functions are not defined by the Intel® QAT API. Implementations
provide their polling functions.
Refer to Table 1 for Implementation Specific Documentation containing further
information on polling functions.

e Buffers and buffer lists are passed using physical addresses to avoid virtual-to-
physical-address translation costs.

¢ Alignment restrictions may be placed on the operation data (that is,
CpaCySymDpOpData and CpaDcDpOpData) and buffer list (that is,
CpaPhysBufferList) structures passed to the data plane APIs. For example, the
operation data may need to be at least 8-byte aligned, contiguous, resident, DMA-
accessible memory. Refer to Table 1 for Implementation Specific Documentation
for more details.

e For CCM and GCM modes of the AES, when performing decryption and verification,
if the verification fails, then the message buffer is not zeroed.

The data plane APIs distinguish between enqueuing a request and submitting that
request to the accelerator to be performed. This allows the cost of submitting a
request (which can be expensive, in terms of cycles, for some hardware-based
implementations) to be amortized over all enqueued requests on that instance
(CpaInstanceHandle).

e To enqueue one request and to optionally submit all previously enqueued
requests, the function cpaCySymbpEnqueueOp (Or cpaDcDpEnqueueOp for data
compression service) can be used.

e To enqueue multiple requests and to optionally submit all previously enqueued
requests, the function cpaCySymbpEnqueueOpBatch (Or cpaDcDpEnqueueOpBatch
for data compression service) can be used.

" There is no “data plane” support for asymmetric cryptography services.

API Programmer’s Guide 19

s}
I n te I® Base API and API Conventions

e Use the function cpaCySymbpPerformOpNow (OrF cpaDcDpPerformOpNow for data
compression service) that can be used to submit all previously enqueued requests.

¢ Different implementations of this API may have different performance trade-offs.
Refer to Table 1 for documentation for implementation details.

20 API Programmer’s Guide

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

3 Intel® QuickAssist Technology
Cryptographic API

This chapter describes the sample code for the Intel® QuickAssist Technology
Cryptographic API, beginning with an API overview, and followed by descriptions of
various scenarios to illustrate the usage of the API.

3.1 Overview

The Intel® QuickAssist Technology Cryptographic API can be categorized into the
following broad areas:

¢ Common: This is defined by the file cpa cy common.h. This includes the
functionality for the initialization and shutdown of the service.

¢ Instance Management: The file cpa cy im.h defines the functions for managing
instances. A given implementation of the API can present multiple instances of the
cryptographic service, each representing a logical or virtual "device". Request order
is guaranteed within a given instance of the service.

o Symmetric: The following files constitute the symmetric API:

- The cpa cy sym.h file contains the symmetric API, used for ciphers,
hashing/message digests, "algorithm chaining" (combining cipher and hash
into a single call), and authenticated ciphers.

— The cpa sy sym dp.h file also contains the symmetric API, used for ciphers,
hashing/message digest, "algorithm chaining" (combining cipher and hash into
a single call) and authenticated ciphers. This API is recommended for data
plane applications, in which the cost of offload (i.e. the cycles consumed by
the API in sending requests to the hardware and processing the responses)
needs to be minimized. Several constraints need to be acceptable to the
Application. To use this API, these are listed in Section 2.2.4, Data Plane APIs.

— The cpa cy key.h file contains the API for key generation for Secure Sockets
Layer (SSL) and Transport Layer Security (TLS).

¢ Asymmetric: The following files constitute the asymmetric API:

— The cpa cy rsa.h file defines the API for RSA.

— The cpa cy dsa.h file defines the API for Digital Signature Algorithm (DSA).

— The cpa cy dh.h file defines the API for Diffie-Hellman.

— The cpa cy ec.h file defines the API for "base" elliptic curve cryptography.

— The cpa cy ecdsa.h file defines the API for Elliptic Diffie (EC) DSA.

— The cpa cy ecdh.h file defines the API for Elliptic Diffie-Hellman (ECDH).

— The cpa cy prime.h file defines the API for prime number testing.

— The cpa cy 1n.h file defines the API for a large number of math operations,
such as modular exponentiation, etc.

— The cpa cy ecsm2.h file defines the API for SM2 algorithm which is based on
Elliptic Curves Cryptography (ECC)

« Random Bit Generation (RBG): The following files constitute the RBG API and
have been deprecated because random bit generation can be handled in the CPU:
— The cpa cy drbg.h file defines the API for deterministic random bit
generation.

API Programmer’s Guide 21

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

— The cpa cy nrbg.h file defines the API for a non-deterministic random bit
generation.

The Cryptographic API uses the base API, which defines base data types used across
all services of the Intel® QAT API.

3.1.1 Sessions

The symmetric API is the only API with the concept of sessions. The meaning of a
session within the symmetric API is defined below.

3.1.2 Priority

The Cryptographic symmetric API has support for priorities. Priority can be specified
on a per-session basis. Two levels of priority are supported: high priority and normal
priority. Implementations may use a strict priority order or a weighted round robin-

based priority scheme.

3.2 Using the Symmetric Cryptography API

This section contains examples of how to use the symmetric API. It describes general
concepts and how to use the symmetric API to perform various types of cipher and
hash.

Note: Examples are simplified and demonstrate how to use the APIs and build the structures
required for various use cases.

These examples may not demonstrate the optimal way to use the API to get
maximum performance for a particular implementation. Refer to Table 1 for
Implementation Specific Documentation and performance sample code for a guide on
how to use the API for best performance.

Note: All of the symmetric examples follow the same basic steps:
e Define a callback function (if the API is to be invoked asynchronously)
e Discover and start up the cryptographic service instance
e Create and initialize a session
¢ Invoke multiple symmetric operations (cipher and/or hash) on the session
e Tear down the session

e Stop the Cryptographic service instance

3.2.1 General Concepts

This section describes the following concepts:
e Session

e Place and Out-of-Place Support

22 API Programmer’s Guide

Intel® QuickAssist Technology Cryptographic API I n te I "

3.2.1.1

3.2.1.2

3.2.1.3

Note:

e Partial Support

Session

In case of the symmetric API, a session is a handle that describes the cryptographic
parameters to be applied to several buffers. This might be the buffers within a single
file or all the packets associated with a particular Internet Protocol Security (IPSec)
tunnel or security association. The data within a session handle includes the following:

e The operation (cipher, hash, or both, and if both, the order in which the algorithms
should be applied).

e The cipher setup data, including the cipher algorithm and mode, the key and its
length, and the direction (encrypt or decrypt).

e The hash setup data, including the hash algorithm, mode (plain, nested or
authenticated), and digest result length (to allow for truncation).

— The authenticated mode can refer to Hashed Message Authenticate Code
(HMAC), which requires that the key and its length are also specified. It is also
used for Galois Counter Mode (GCM), and Counter mode with Cipher-block
Chaining Message authentication code (CCM) authenticated encryption, in
which case the Additional Authenticated Data (AAD) length is also specified.

— For nested mode, the inner and outer prefix data and length are specified, as
well as the outer hash algorithm.

In-Place and Out-of-Place Support

An In-Place operation means that the destination buffer is the same as the source
buffer. An Out-of-Place operation means that the destination buffer is different from
the source buffer.

Partial Support

Most of the examples in this chapter operate on full packets, as indicated by the
packetType of CPA CY SYM PACKET TYPE FULL. The API also supports operating in
partial mode, where, for example, state (e.g., cipher state) needs to be carried
forward from one packet/record to the next. In Section 3.2.4, Hash a File, there is an
example of hashing a file that uses the partial API.

1. The size of the data to be hashed or ciphered must be a multiple of the block size
of the algorithm for all partial packets.

2. For hash/authentication, the digest verify flag only applies to the last partial
packet.

3. For algorithm chaining, only the cipher state is maintained between calls. The
hash state is not maintained between calls; instead, the hash digest is
generated/verified for each call. The size of the data to be ciphered must be a
multiple of the block size of the algorithm for all partial packets. The size of the
data to be hashed does not have this restriction. If both the cipher state and the
hash state need to be maintained between calls, then algorithm chaining cannot
be used.

API Programmer’s Guide 23

I n te I Intel® QuickAssist Technology
® Cryptographic API

3.2.2

3.2.2.1

Listing 3.

3.2.2.2

24

Cipher

This example demonstrates the usage of the symmetric API, specifically using this API
to perform a cipher operation. It encrypts some sample text using the AES-256
algorithm in Cipher Block Chaining (CBC) mode.

These samples are located in:

quickassist/lookaside/access layer/src/sample code/functional/sym/cipher
sample

The following subsections describe the main functions in this file.

symCallback

A callback function must be supplied to use the API in asynchronous mode, and this
function is called back (that is, invoked by the implementation of the API) when the
asynchronous operation has completed. The context in which it is invoked depends on
the implementation. For example, it could be invoked in the context of a Linux*
interrupt handler's bottom half or in the context of a user created polling thread. The
context in which this function is invoked places restrictions on what processing can be
done in the callback function. On the API, it states that this function should not sleep
(since it may be called in a context that does not permit sleeping, for example, a
Linux* bottom half).

This function can perform whatever processing is appropriate for the Application. For
example, it may free memory, continue the processing of a decrypted packet, etc. In
this example, the function only sets the complete variable to indicate it has been
called, as illustrated below.

Callback Function

static void symCallback (void *pCallbackTag,
CpaStatus status,
const CpaCySymOp operationType,
void *pOpData,
CpaBufferList *pDstBuffer,
CpaBoolean verifyResult)

PRINT DBG("Callback called with status = %d.\n", status);

if (NULL != pCallbackTag) {
/* indicate that the function has been called */

COMPLETE ((struct COMPLETION STRUCT *)pCallbackTag) ;

cipherSample
This is the main entry point for the sample cipher code. It demonstrates the sequence

of calls to be made to the API to create a session, perform one or more cipher
operations, and then tear down the session. The following is performed:

API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

e Call the instance discovery utility function - sampleCyGetInstance - which is a
simplified version of instance discovery, in which exactly one instance of a crypto
service is discovered. It does this by querying the API for all instances, and
returning the first instance, as illustrated in Listing 4.

e This step is described in Section 2.2.1, Instance Discovery, but is repeated here for
convenience.

Listing 4. Getting an Instance

Set the address translation function for the instance. This function will be used by the
API to convert virtual addresses to physical addresses.

Listing 5. Set Address Translation Function

Start the crypto service running as shown below.

Listing 6. Start up

API Programmer’s Guide 25

B
I n te I Intel® QuickAssist Technology
® Cryptographic API

26

Note:

The next step is to create and initialize a session. First, populate the fields of the
session initialization operational data structure.

The size required to store a session is implementation-dependent, so you must query

the API first to determine how much memory to allocate, and then allocate that memory.

Note:

Note:

One of two available queries can be used:

e cpaCySymSessionCtxGetSize (const CpalnstanceHandle instanceHandle in,
const CpaCySymSessionSetupData *pSessionSetupData, Cpa32U
*pSessionCtxSizeInBytes)

e This will always return the maximum session context size (i.e., the full size of the
session including padding and other session state information) (see Listing 7
below).

e cpaCySymSessionCtxGetDynamicSize (const CpalnstanceHandle
instanceHandle in, const CpaCySymSessionSetupData *pSessionSetupData,
Cpa32U *pSessionCtxSizelnBytes)

e This query can be used instead to return a reduced memory size, based on whether
the use case meets certain session setup criteria (see Listing 7 below).

e This query will return one of three values for psessionCtxSizeInBytes as follows:

— If partial packets are not being used and the Symmetric operation is Auth-
Encrypt (i.e., the cipher and hash algorithms are either CCM or GCM), the size
returned will be approximately half of the standard size.

— If partial packets are not being used and the cipher algorithm is not arc4,
Snow3g UEA2, AES CCM or AES GCM, and the hash algorithm is not
Snow3G _UIA2, AES CCM or AES GCM, and Hash Mode is not Auth, the size
returned will be between half and one third of the standard size.

— In all other cases, the standard size is returned.

The following parameter exists in the CpaCySymSessionSetupData structure:

CpaBoolean partialsNotRequired

This flag indicates if partial packet processing is required for the session. If partial
packets are not being used and the preference is to use one of the reduced session
memory sizes, set this flag to cpA TRUE before calling the
cpaCySymSessionCtxGetDynamicSize () function.

The equivalent reduced memory context query for Data Plane API (Refer to Section

3.2.10, Chained Cipher and Hash Using the Symmetric Data Plane API is:

Listing 7.

cpaCySymDpSessionCtxGetDynamicSize (const CpalnstanceHandle
instanceHandle in, const CpaCySymSessionSetupData *pSessionSetupData,
Cpa32U *pSessionCtxSizeInBytes)

Create and Initialize Cipher Session

/* Populate the session setup structure for the operation required */
sessionSetupData.sessionPriority = CPA CY PRIORITY NORMAL;
sessionSetupData.symOperation = CPA CY SYM OP CIPHER;

sessionSetupData.cipherSetupData.cipherAlgorithm =
CPA CY SYM CIPHER AES CBC;

API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

e Call the function cipherrerformOp, which actually performs the cipher operation.
This in turn performs the following steps:

Memory Allocation: Different implementations of the API require different
amounts of space to store metadata associated with buffer lists. Query the API to
find out how much space the current implementation needs, and then allocate space
for the buffer metadata, the buffer list, and for the buffer itself. You must also
allocate memory for the initialization vector.

Listing 8. Memory Allocation

API Programmer’s Guide 27

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

¢ Memory Allocation: The memory for the source buffer and initialization vector is
populated with the required data.

o Set Up Operational Data: Populate the structure containing the operational data
that is needed to run the algorithm as shown below.

Listing 9. Set Up Cipher Operational Data

o Perform Operation: Initialize the completion variable, which is used by the
callback function to indicate that the operation is complete, then perform the
operation.

Listing 10. Perform Cipher Operation

o Wait for Completion: Because the asynchronous API is used in this example, the
callback function must be handled. This example uses a macro that can be defined
differently for different operating systems. In a typical real-world application, the
calling thread would not block, and the callback would essentially re-inject the
(decrypted, decapsulated) packet into the stack.

Listing 11. Wait for Completion

In a normal usage scenario, the session would be reused multiple times to encrypt
multiple buffers or packets. In this example, however, the session is torn down.

28 API Programmer’s Guide

Intel® QuickAssist Technology Cryptographic API I n te I "

Listing 12. Wait for Outstanding Requests

symSessionWaitForInflightReqg(sessionCtx)

Since cryptographic API v2.2 before removing the symmetric session context it is
recommended to wait for the completion of any outstanding request using
cpaCySymSessionInUse.

It is executed in the symSessionWaitForInflightReq call which polls for the in-flight
requests.

Listing 13. Remove Cipher Session

3.2.3

sessionStatus = cpaCySymRemoveSession (cyInstHandle, sessionCtx);
e Query statistics at this point, which can be useful for debugging.

Some implementations may also make the statistics available through other
mechanisms, such as the /proc virtual filesystem.

e Finally, clean up by freeing up memory, stopping the instance, etc.

e Since Cryptographic API v2.2 two new functions have been implemented:
cpaCySymUpdateSession and cpaCySymSessionInUse

e The function cpaCySymUpdateSession can be used to update certain parameters of
a session like the cipher key, the cipher direction, and the authentication key.
cpaCySymSessionInUse, indicates whether there are outstanding requests on a
given session.

As a result of the implementation of this feature, the behavior of
cpaCySymRemoveSession has been changed. cpaCcysymRemoveSession will fail if
there are outstanding request for the session that the user is trying to remove.

As a result, it is recommended to wait for the completion of any outstanding request,

using cpaCySymSessionInUse, before removing a session.

Hash

This example demonstrates the usage of the symmetric API, specifically using this API
to perform a hash operation. It performs an SHA-256 hash operation on some sample
data.

These samples are located in /sym/hash sample

The example is very similar to the cipher example, so only the differences are
highlighted:

When creating and initializing a session, some of the fields of the session initialization
operational data structure are different from the cipher case, as shown below.

Listing 14. Create and Initialize Hash Session

/* populate symmetric session data structure

* for a plain hash operation */
sessionSetupData.sessionPriority = CPA CY PRIORITY NORMAL;
sessionSetupData.symOperation = CPA CY SYM OP HASH;

API Programmer’s Guide 29

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

When calling the function to perform the hash operation, some of the fields of the
operational data structure are again different from the cipher case, as shown below.

Listing 15. Set up Hash Operational Data

3.2.4 Hash a File

This example demonstrates the usage of the symmetric API for partial mode,
specifically using this API to perform hash operations. It performs a SHA1 hash
operation on a file.

These samples are located in /sym/hash file sample

The example is very similar to the cipher example, so only the differences are
highlighted:

When creating and initializing a session, some of the fields of the session initialization
operational data structure are different from the cipher case, as shown below.

Listing 16. Hash Session Setup Data

e Memory is allocated for the source buffer in a similar way to the cipher case.

e To perform the operation data is read from the file to the source buffer and the
symmetric API is called repeatedly with packetType set to
CPA CY SYM PACKET TYPE PARTIAL. When the end of the file is reached the API is

30 API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I 4

called with packetType set to CPA CY SYM PACKET TYPE PARTIAL LAST. The digest
is produced only on the last call to the API.

Listing 17. Hashing a File

API Programmer’s Guide 31

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

3.2.5

Chained Cipher and Hash

This example demonstrates the usage of the symmetric API, specifically using this API
to perform a "chained" cipher and hash operation. It encrypts some sample text using
the AES-256 algorithm in CBC mode, and then performs an SHA-256 Hashed Message
Authenticate Code (HMAC) operation on the ciphertext, writing the Message
Authentication Code (MAC) to the buffer immediately after the ciphertext.

These samples are located in /sym/alg chaining sample

The example is very similar to the cipher and hash examples, above, so only the
differences are highlighted:

When creating and initializing a session, some of the fields of the session initialization
operational data structure are different, as shown below.

Listing 18. Create and Initialize Session Cipher and Hash

When calling the function to perform the chained cipher and hash operation, some of
the fields of the operational data structure are again different from the cipher case, as
shown below.

Listing 19. Set up Operational Data Cipher and Hash

32

API Programmer’s Guide

B
Intel® QuickAssist Technology Cryptographic API I n te I@

3.2.6

pOpData->sessionCtx = sessionCtx;
pOpData->packetType = CPA CY SYM PACKET TYPE FULL;
pOpData->pIv = pIvBuffer;

pOpData->ivLenInBytes = sizeof (sampleCipherlv) ;
pOpData->cryptoStartSrcOffsetInBytes = 0;
pOpData->hashStartSrcOffsetInBytes = 0;

pOpData->messagelenToCipherInBytes = sizeof (sampleAlgChainingSrc) ;
pOpData->messagelLenToHashInBytes = sizeof (sampleAlgChainingSrc) ;

Notice the digestIsAppended is set in the session; therefore, the MAC is placed
immediately after the region to hash, and the ppigestResult parameter of the
operational data is ignored.

Chained Cipher and Hash - IPSec Like Use Case

This example demonstrates the usage of the symmetric API for IPSec-like use cases,
as described in Figure 5 and Figure 6. For the outbound direction, this example uses
the symmetric API to perform a "chained" cipher and hash operation. It encrypts some
plaintext using the Advanced Encryption Standard (AES) algorithm in CBC mode, and
then performs a SHA1 HMAC operation on the ciphertext, initialization vector, and
header, writing the Integrity Check Value (ICV) to the buffer immediately after the
ciphertext. For the inbound direction, this example again uses the symmetric API to
perform a "chained" hash and cipher operation. It performs a SHA1 HMAC operation
on the ciphertext, initialization vector, and Header and compares the Result with the
input ICV. Then it decrypts the ciphertext using the AES algorithm in CBC mode.

Figure 5. IPSec Outbound

Cipher Offset
Hash Length

Cipher Length

ESP v Packet ESP Space for
HDR Trailer Icv

\
Encryptand Generate ICV N /

ESP v Ciphertext

ESP

HDR v Ciphertext Icv

API Programmer’s Guide 33

]
I n te I Intel® QuickAssist Technology
®

Cryptographic API

Figure 6. IPSec Inbound

Cipher Offset
Hash Length

Cipher Length

These samples are located in /sym/ipsec sample.
Again, only the differences compared to previous examples are highlighted:

When creating and initializing a session in the outbound direction, the session
initialization operational data structure is shown below.

Listing 20. Session Setup Data IPSec Outbound

34 API Programmer’s Guide

o
Intel® QuickAssist Technology Cryptographic API I n te I@

When calling the function to perform the chained cipher and hash operation, the fields
of the operational data structure are shown below.

Listing 21. Operational Data IPSec Outbound

In this example samplePayload is the packet data plus the Encapsulating Security
Payload (ESP) trailer.

When creating and initializing a session in the inbound direction, the session
initialization operational data structure is shown below.

Listing 22. Session Setup Data IPSec Inbound

API Programmer’s Guide 35

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

When calling the function to perform the chained hash and cipher operation, the fields
of the operational data structure are listed below.

Listing 23. Operational Data IPSec Inbound

In the example above, buffersize is the size of the data input (header, iv, ciphertext,
and ICV).

3.2.7 Chained Cipher and Hash - SSL Like Use Case

This example demonstrates the usage of the symmetric API for SSL-like use cases, as
described in Figure 7 and Figure 8. For the outbound direction, this example employs
the symmetric API to perform a "chained" hash and cipher operation. It performs a

SHA1 HMAC2 operation on a sequence number, part of the header, and the plaintext.

36 API Programmer’s Guide

Intel® QuickAssist Technology Cryptographic API I n te I "

The resultant MAC is placed immediately after the plaintext. Then it encrypts the
plaintext, MAC, and padding using the AES algorithm in CBC mode.?

For the inbound direction, this example again employs the use of the symmetric API to
perform a "chained" cipher and hash operation. It decrypts the ciphertext using the
AES algorithm in CBC mode. Then it performs a SHA1 HMAC operation on the
resultant plaintext, sequence number, and part of the Header and compares the
Result with the input MAC.

Note: For the inbound direction to use the "chained" API, the length of the plaintext needs to
be known before the ciphertext is decrypted to set messagelLenToHashInBytes and the length
field in the Header correctly.

For stream ciphers (e.g., ARC4), there is no padding added in the outbound direction,
so the length of the plaintext is simply the length of the ciphertext minus the length of
the MAC. However, for block ciphers in CBC mode (as used in this example), the
padlen is required to calculate the plaintext length. The final block of the ciphertext
needs to be decrypted to discover the padlen. In this example, before calling the
"chained" API, the final block of the ciphertext is decrypted to discover the padlen.

Figure 7. SSL Outbound

Hash Offset Cipher Offset
L Hash Length o
l Cipher Length -
hdr* Plaintext Space for | Pad &
MAC Len
N, s
Generaté 4JAC and Encrypt -
\\ ‘r //

a Pad &
Plaintext MAC Lem

o

* hdr = type, version len fields of the header

2 Not all SSL use cases use HMAC. For example, The Secure Sockets Layer (SSL)
Protocol Version 3.0 (SSL)v3 (RFC 6106) does not use HMAC (in this case the nested
hash functionality on the API can be used). However, The Transport Layer Security
(TLS) Protocol (TLS) V1.2 (Table 1) , for example, does use the HMAC algorithm.

API Programmer’s Guide 37

intel

Figure 8. Secure Sockets Layer Inbound

Intel® QuickAssist Technology
Cryptographic API

Hash Length ~
/

CipherLength

H -

N
Decrypt final block only to gel\\ .

length

e —

Decrypt and Verify MAC =

Plaintext

MAC

Pad & Len

Some
MAC

Pad &
Len

38

Listing 24.

If using a block cipher in CBC mode, then the last ciphertext block is used as the IV
for subsequent packets (or records) in Secure Sockets Layer (SSL) and TLSv1.0,
whereas in TLSv1.1 and 1.2 an explicit IV is used. However, if using a stream cipher
that does not use a synchronization vector (such as ARC4), the stream cipher state
from the end of one packet is used to process the subsequent packets. If using the QA
API in this case, then partial mode should be used to ensure the stream cipher state is
maintained across multiple calls to the API.

Again, these examples are very similar to previous examples, so only the differences
are highlighted:

When creating and initializing a session in the outbound direction, the session setup
data structure is shown below.

Session Data SSL Outbound

sessionSetupData.symOperation = CPA CY SYM OP ALGORITHM CHAINING;

sessionSetupData.algChainOrder =
CPA CY SYM ALG CHAIN ORDER HASH THEN CIPHER;

sessionSetupData.cipherSetupData.cipherAlgorithm =
CPA CY SYM CIPHER AES CBC;

sessionSetupData.cipherSetupData.pCipherKey = sampleCipherKey;

sessionSetupData.cipherSetupData.cipherKeyLenInBytes =
sizeof (sampleCipherKey) ;

sessionSetupData.cipherSetupData.cipherDirection =
CPA CY SYM CIPHER DIRECTION ENCRYPT;

sessionSetupData.hashSetupData.hashAlgorithm = CPA CY SYM HASH SHAIL;

API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

A buffer large enough to hold the plaintext, MAC and padding is required. The size of
this buffer will be.

Listing 25. Buffer Size SSL Outbound

This buffer is filled with plaintext and padding leaving room for the “chained” API
operation to add the MAC.

Listing 26. Buffer Setup SSL Outbound

The session sequence number, the header and the buffer with the plaintext are
described using a CpaBufferList:

Listing 27. BufferList Setup SSL Outbound

API Programmer’s Guide 39

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

When calling the function to perform the chained hash and cipher operation, the fields
of the operational data structure are shown below.

Listing 28. Operational Data SSL Outbound

When creating and initializing a session in the inbound direction, the session setup
data structure is shown below.

Listing 29. Session Data SSL Inbound

40 API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

In this case the length of the ciphertext is buffersize to calculate the padlLen the
final block is decrypted.

Listing 30. Calculating padLen SSL Inbound

When calling the function to perform the chained cipher and hash operation, the fields
of the operational data structure are.

Listing 31. Operational Data SSL Inbound

3.2.8 Chained Cipher and Hash - CCM Use Case
This example demonstrates the usage of the symmetric API to perform a CCM
operation as described in NIST publication SP800-38C (Recommendation for Block

Cipher Modes of Operation: the CCM Mode for Authentication and Confidentiality, refer
to Table 1).

This sample is located in /sym/ccm sample

The example is very similar to the cipher example, so only the differences are
highlighted:

API Programmer’s Guide 41

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

For the generation-encryption process the session setup data is shown below:

Listing 32. Session Data CCM Generate-Encrypt

For the decryption-verification process the session setup data is:

Listing 33. Session Data CCM Decrypt-Verify

42 API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

The IV and AAD buffers are allocated as shown below:

Listing 34. CCM Allocate IV and AAD Buffers

The operational data needed to perform the generate-encrypt or decrypt-verify
operation is shown below:

Listing 35. CCM Operational Data

API Programmer’s Guide 43

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

3.2.9 Chained Cipher and Hash - GCM Use Case

This example demonstrates the usage of the symmetric API to perform a GCM
operation as described in NIST publication SP800-38D (Recommendation for Block
Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC, refer to Table 1).

These samples are located in /sym/gcm sample

An example of the session setup data and operational data for GCM authenticated
encryption and decryption is shown below.

For authenticated encryption the session setup data is:

Listing 36. Session Data GCM Auth-Encrypt

a4 API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

For authenticated decryption the session setup data is:

Listing 37. Session Data GCM Auth-Decrypt

The IV and AAD buffers are allocated as shown below:

Listing 38. GCM Allocate IV and AAD Buffers

API Programmer’s Guide 45

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

The operational data needed to perform the encrypt or decrypt operation is:

Listing 39. GCM Operational Data

3.2.10

46

GMAC is supported using the same API and similar data structures as the general GCM
case shown above. However, for GMAC, the messagel.enToCipherInBytes will be set
to 0.

Chained Cipher and Hash Using the Symmetric Data Plane
API

This example demonstrates the usage of the data plane symmetric API to perform a
“chained” cipher and hash operation. It encrypts some sample text using the AES-256
algorithm in CBC mode, and then performs an SHA-256 HMAC operation on the
ciphertext, writing the MAC to the buffer immediately after the ciphertext.

This example has been simplified to demonstrate the basics of how to use the API and
build the structures required. This example does not demonstrate the optimal way to
use the API to get the maximum performance for a particular implementation. Refer
to Implementation Specific Documentation in Table 1 (for example, the Intel®
Communications Chipset 8900 to 8920 Series Software Programmer’s Guide) and
performance sample code for a guide on how to use the API for best performance.

API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

These samples are located in /sym/symdp sample

Note: Use of the data plane symmetric API follows some of the same basic steps as the
traditional symmetric API:

Discover and start up the cryptographic service instance.
Register a callback function for the instance.

Create and initialize a session.

Enqueue the symmetric operation on the instance.
Submit the symmetric operation for processing.

Poll the instance for a response.

Tear down the session.

Stop the Cryptographic service instance.

The following are the steps in more detail:

Cryptographic service instances are discovered and started in the same way and
using the same API as the traditional symmetric use cases described in Listing 4,

Listing 5, and, Listing 6.
The next step is to register a callback function for the cryptographic instance:

The function is called back in the context of the polling function when an asynchronous
operation has completed. This function can perform whatever processing is
appropriate to the Application.

Callback differs from the traditional symmetric API, where the callback function is
registered for the session.

Listing 40.

Register Callback Function

Create and initialize a session:

Listing 41.

Create and Initialize Data Plane Session

API Programmer’s Guide 47

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

In this example, data is stored in flat buffers (as opposed to scatter gather lists). The
operational data in this case is shown below.

Listing 42. Data Plane Operational Data

48 API Programmer’s Guide

Intel® QuickAssist Technology Cryptographic API

API Programmer’s Guide

I n te I Intel® QuickAssist Technology
® Cryptographic API

50

do {
status = icp sal CyPollDpInstance (cyInstHandle, O0);
} while (CPA STATUS SUCCESS != status);
}
#endif

This request is then enqueued on the instance.

Listing 43. Data Plane Enqueue

status = cpaCySymDpEnqueueOp (pOpData, CPA FALSE) ;

Other requests can now be enqueued before submitting all the requests to be
processed. Enqueued requests allow the cost of submitting a request (which can be
expensive, in terms of cycles, for some hardware-based implementations) to be
amortized over all enqueued requests on the instance. Once sufficient requests have
been enqueued they are all submitted for processing.

Listing 44. Data Plane Perform
status = cpaCySymDpPerformOpNow (cyInstHandle) ;

e An alternative to calling the cpaCcysymbpPerformopNow function is to set
performOpNow to CPA TRUE when calling the enqueue functions
(cpaCySymDpEnqueueOp Or cpaCySymDpEnqueueOpBatch). This is illustrated in
Sections 4.4, Sample - Data Compression Data Plane API example.

e After submitting several requests and possibly doing other work (e.g., enqueuing
and submitting more requests), the Application can poll for responses that invoke
the callback function registered with the instance. Refer to Table 1 Implementation
Specific Documentation for information on the implementations polling functions.

e Once all requests associated with a session have been completed, the session can
be removed.
Listing 45. Wait for Outstanding Requests
symSessionWaitForInflightReqg (sessionCtx)
Since cryptographic API v2.2 before removing the symmetric session context, it is

recommended to wait for the completion of any outstanding request using
cpaCySymSessionInUse.

It is executed in the symSessionWaitForInflightReq call, which polls for the in-flight
requests.

Listing 46. Data Plane Remove Session
sessionStatus = cpaCySymDpRemoveSession (cyInstHandle, sessionCtx);
Since Cryptographic API v2.2, two new functions have been implemented:
cpaCySymUpdateSession and cpaCySymSessionInUse

e The function cpaCySymUpdateSession can be used to update certain parameters of
a session like a cipher key, the cipher direction, and the authentication key.
cpaCySymSessionInUse indicates whether there are outstanding requests on a
given session.

API Programmer’s Guide

Intel® QuickAssist Technology Cryptographic API I n te I "

3.2.11

3.2.11.1

As a result of the implementation of this feature, the behavior of
cpaCySymRemoveSession has been changed. The cpaCySymRemoveSession fails if
there is an outstanding request for the session that the user is trying to remove.

e As a result, it is recommended to wait for the completion of any outstanding
request, using cpaCysSymSessionInUse, before removing a session.

TLS Key and MGF Mask Generation

Refer Table 1 to the API manuals for full details of Key and Mask Generation
operations.

1. Define a Flat Buffer callback function as per the API prototype, Refer Table 1 to
the API manuals.
If synchronous operation is preferred, instead simply pass NULL to the API for the
callback parameter.
Allocate memory for the operation.

3. Populate data for the appropriate operation data structure, Refer Table 1 to the
API manuals.

a. Fill in the Flat Buffers, a pointer to data, and length.

b. Fill in the options for the operation required.
4. Call the appropriate key or Mask Generation API.
5. Complete the operation.

The API for TLS key operations is based on the Transport Layer Security (TLS)
Protocol Version 1.1 standard, RFC 4346, Backward compatibility is supported with the
legacy Transport Layer Security (TLS) Protocol Version 1.0 standard, RFC 2246, refer
to Table 1. The user-defined label should be used for backward compatibility with the
client write key, server write key, and iv block. Refer to Table 1 Intel® QAT
Cryptographic API Reference Manual for details of populating CpaCyKeyGenT1sOpData,
the operation data structure.

The following sections describe examples of the parameter mapping to the

Cryptographic API.

Setting CpaCyKeyGenTIsOpData Structure Fields

The Transport Layer Security (TLS) Protocol Version 1.1 standard, RFC 4346, refer to
Table 1, Section 6.3 key block is described as:

key block = PRF (SecurityParameters.master secret,
"key expansion",
SecurityParameters.server random +

SecurityParameters.client random) ;
This maps to the Cryptographic API's CpaCyKeyGenT1sOpData as follows:
TLS Key-Material Derivation:

tlsOp = CPA CY KEY TLS OP KEY MATERIAL DERIVE

API Programmer’s Guide 51

B
I n te I Intel® QuickAssist Technology
® Cryptographic API

secret = master secret key
seed = server random + client random

userLabel = NULL

Setting CpaCyKeyGenT1sOpData Structure Fields for Backward Compatibility.
1. In the Transport Layer Security (TLS) Protocol Version 1.0 standard, RFC 2246,
refer to Table 1, Section 6.3 final client write key is described as:
final client write key = PRF(client write key,
"client write key",

client random + server random) [0..15]

This maps to the Cryptographic API’'s CpaCyKeyGenT1sOpData as follows:
TLS User Defined Derivation:
tlsOp = CPA CY KEY TLS OP USER DEFINED
secret = client write key
seed = client random + server random
userlLabel = "client write key"
2. In the Transport Layer Security (TLS) Protocol v1.0 standard, RFC 2246, refer to
Table 1, Section 6.3 final server write key is described as:
final server write key = PRF(server write key,
"server write key",
client random +

server random) [0..15]

This maps to the Cryptographic API’'s CpaCyKeyGenT1sOpData as follows:
TLS User Defined Derivation:
tlsOp = CPA CY KEY TLS OP USER DEFINED
secret = server write key
seed = client random + server random
userLabel = "server write key"
3. 1In the Transport Layer Security (TLS) Protocol Version 1.0 standard, RFC 2246,
refer to Table 1., Section 6.3 iv_block is described as:
iv_block = PRF("", "IV block", client random +
server random) [0..15]
This maps to the Cryptographic API’'s CpaCyKeyGenT1sOpData as follows:
TLS User Defined Derivation:
tlsOp = CPA CY KEY TLS OP USER DEFINED
secret = NULL
seed = client random + server random
userLabel = "IV block"

Memory for the user label must be physically contiguous memory allocated by the
user. This memory must be available to the API for the duration of the operation.

52 API Programmer’s Guide

B
Intel® QuickAssist Technology Cryptographic API I n te I®

3.2.12 Session Update for Chained Cipher and Hash Operation

This example demonstrates the usage of the session update together with data plane
symmetric API to perform a “chained” cipher and hash operation. It performs a
KASUMI F9 hash operation on the sample text and then encrypts the sample text using
the kasum1 r8 algorithm. After the operation is complete, the cipher and
authentication keys are updated inside the session and the operation is performed
again with different keys.

Note: This example is simplified to demonstrate the basics of how to use the API and how to
build the structures required. This example does not demonstrate the optimal way to use the
API to get maximum performance for a particular implementation. Refer to Table 1 for
implementation specific documentation and performance sample code for a guide on how to
use the API for best performance.

These samples are located in /sym/update sample

The following are the details of the steps performed in the sample:

e Cryptographic service instances are discovered and started in the same way and
using the same API as the traditional symmetric use cases described in Listing 4,
Listing 5 and Listing 6.

e Next register a callback function for the cryptographic instance.

The function is called back in the context of the polling function when an
asynchronous operation has completed. This function can perform whatever
processing is appropriate to the application. Note this differs from the traditional
symmetric API where the callback function is registered for the session.

Listing 47. Register Callback Function
status = cpaCySymDpRegCbFunc (cyInstHandle, symDpCallback) ;

3.2.12.1 Create and Initialize a Session:

Listing 48. Create and Initialize Data Plane Session

sessionSetupData.sessionPriority = CPA CY PRIORITY HIGH;
sessionSetupData.symOperation = CPA CY SYM OP ALGORITHM CHAINING;
sessionSetupData.algChainOrder =

CPA CY SYM ALG CHAIN ORDER HASH THEN CIPHER;
sessionSetupData.cipherSetupData.cipherAlgorithm =

CPA CY SYM CIPHER KASUMI F8;
sessionSetupData.cipherSetupData.pCipherKey = pCipherKey;
sessionSetupData.cipherSetupData.cipherKeyLenInBytes = cipherKeylen;
sessionSetupData.cipherSetupData.cipherDirection =

CPA CY SYM CIPHER DIRECTION ENCRYPT;

sessionSetupData.hashSetupData.hashAlgorithm =
CPA CY SYM HASH KASUMI F9;

sessionSetupData.hashSetupData.hashMode = CPA CY SYM HASH MODE AUTH;

sessionSetupData.hashSetupData.digestResultLenInBytes =
DIGEST LENGTH;

API Programmer’s Guide 53

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

In this example, data is stored in flat buffers (as opposed to scatter gather lists). The
operational data in this case is:

Listing 49. Data Plane Operational Data

54 API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I "

pOpData->srcBuffer = sampleVirtToPhys (pSrcBuffer) ;
pOpData->srcBufferlen = bufferSize;
pOpData->dstBuffer = sampleVirtToPhys (pDstBuffer) ;
pOpData->dstBufferlen = bufferSize;

This request is then enqueued on the instance.

Listing 50. Data Plane Enqueue
status = cpaCySymDpEnqueueOp (pOpData, CPA FALSE) ;

Other requests can now be enqueued before submitting all the requests to be
processed. This allows the cost of submitting a request (which can be expensive, in
terms of cycles, for some hardware-based implementations) to be amortized over all
enqueued requests on the instance. Once sufficient requests have been enqueued
they are all submitted for processing.

Listing 51. Data Plane Perform

status = cpaCySymDpPerformOpNow (cyInstHandle) ;

e An alternative to calling the cpaCcysymbpPerformOpNow function is to set
performOpNow to CPA TRUE when calling the enqueue functions
(cpaCySymDpEnqueueOp Or cpaCySymDpEnqueueOpBatch). This is illustrated in the
data compression data plane example.

e After submitting a number of requests and possibly doing other work (e.g.
enqueuing and submitting more requests) the application can poll for responses
which will invoke the callback function registered with the instance. Refer to Table 1
for implementation specific documentation for information on the implementations
polling functions.

o After the operation is complete cipher key and authentication key are updated in
the existing session via session update API:

Listing 52. Session Update

sessionUpdateData.flags = CPA CY SYM SESUPD CIPHER KEY;
sessionUpdateData.flags |= CPA CY SYM SESUPD AUTH KEY;
sessionUpdateData.pCipherKey = pCipherKey;
sessionUpdateData.authKey = authKey;

status = cpaCySymUpdateSession (sessionCtx, &sessionUpdateData) ;

o With the keys changed, the chained cipher and hash operation is performed again,
just as described above.

e Once all requests associated with a session have been completed, the session can
be removed.

3.2.13 HKDF Use Case

This section contains sample code that demonstrates the usage of the symmetric API,
specifically using this API to perform hash-based message authentication code key
derivation function (HKDF) operations. It performs HKDF Extract and Expand, and
Extract and Expand Label operation without and with sublabels (KEY and IV).

API Programmer’s Guide 55

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

The simplified code example below is simplified and demonstrates how to use the API
and build the structures required. This example does not demonstrate the optimal way
to use the API to get maximum performance for implementation.

This sample is located in the directory:

3.2.13.1 Instance Configuration and Memory Allocation

Cryptographic service instances are discovered and started in the same way and using
the same API as the traditional symmetric use cases.

1. If the instance is polled, start the polling thread.
Polling is done in an implementation-dependent manner.
2. Allocate memory for HKDF operation data:

Listing 53. HKDF Operation Data - Memory Allocation

This structure must be allocated with USDM to be pinned in physical memory.
3. Allocate memory for HKDF output data. Output data is CpaFlatBuffer type:

3.2.13.2 HKDF Extract Expand Operation

To perform an Extract Expand operation, go to the CcpaCyKeyGenHKDFOpData structure,
and set hkdfKeyOp to CPA CY HKDF KEY EXTRACT EXPAND.

Note: Provide the lengths seedlLen, secretlLen, and infoLen and copy all data into the
seed, secret, and info tables.

Listing 54. HKDF Extract Expand Operation

3.2.13.3 HKDF Extract Expand Label Operation

To perform an Extract, Expand Label operation:

1. Go to the cpaCyKeyGenHKDFOpData structure and set hkdfKeyOp to
CPA CY HKDF KEY EXTRACT EXPAND LABEL.

56 API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

N

o v kW

Listing 55.

Provide the lengths seedlen, secretlen, and infoLen and copy all data into the
seed, secret, and info tables.

Set the number of labels in the numLabels field.
Set label[0].labellLen.
Copy label data into the 1abe1[0].1abel table.

Finally, set the 1abel[0].sublabelFlag field to 0x00 to disable generating
sublabels.

HKDF Extract Expand Label Operation

3.2.13.4 HKDF Extract Expand Label and Sublabels operation

To perform an Extract, Expand Label and Sublabels operation:

1.

N

o v kW

Listing 56.

Go to the CpaCyKeyGenHKDFOpData structure and set hkdfkeyOp to
CPA CY HKDF KEY EXTRACT EXPAND LABEL.

Provide the lengths seedlen, secretlen, and infoLen and copy all data into the
seed, secret, and info tables.

Set the number of labels in the numLabels field.
Set label[0].labellen.
Copy label data into the 1abel[0].1abel table.

Set the 1abel[0].sublabelFlag and label[0].sublabelFlag field as shown
below to generate Key and IV sublabels.

HKDF Extract Expand Label and Sublabels Operation

API Programmer’s Guide 57

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

3.2.14

Perform HKDF operation

The crypto instance must be specified in the instanceHandle to execute the HKDF
operation. When the operation is performed asynchronously, the callback function and
callback tag should be set in the pkeyGenCb and pCallbackTag arguments.
Operational data is provided in pkeyGenTlsOpData, and CpaCyKeyHKDFCipherSuite
must be chosen. The output is passed to the cparFlatBuffer. All generated values are
arranged one after the other in a single buffer. Depending on what operations are
performed, the buffer length should be adjusted.

Listing 57. HKDF Operation

3.3

Using the Diffie-Hellman API

This example demonstrates the usage of the Diffie-Hellman API.

These samples are located in /asym/diffie hellman sample

The following steps are carried out:

e The example uses the API asynchronously; therefore, you must define a Diffie-
Hellman callback function per the API prototype.

e Instance, discovery, and start-up are made in a way similar to that defined for the
symmetric examples above.

e The function samplebhPerformOp is called, which does the following:

— Allocate memory for the operation and populate data for the appropriate DH
phase 1 operation data structure to generate the public value. The fields to be
allocated and populated are the prime P, the base G, and the private value X.
Space must also be allocated for the output, which is the public value (PV).

Listing 58. Allocate Memory and Populate Operational Data

58

API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

Invoke the phase 1 operation, which performs the modular exponentiation such that
PV = (baseG ” privateValueX) mod primeP.

Note: 1In the case of phase 1, the operation is invoked synchronously, hence the NULL
pointer for the callback function.

Listing 59. Perform Phase 1 Operation

API Programmer’s Guide 59

B
I n te I Intel® QuickAssist Technology
® Cryptographic API

pCpaDhOpDataP2, /* structure containing p, the public value &
5255)

pOctetStringSecretKey); /* private key (output of the function) */

In a real-world implementation of a key exchange protocol, the public value generated
above would now be shared with another party, B. This example uses this public value
to go on and invoke the second phase operation. First allocate memory for the secret
value, setup the operational data for the phase 2 operation, and then perform that
operation. This operation is invoked asynchronously, taking the callback function
defined earlier as a parameter:

Listing 60. Perform Phase 2 Operation
status = cpaCyDhKeyGenPhase2Secret (

cyInstHandle,

(const CpaCyGenFlatBufCbFunc)asymCallback, /* CB function*/

pCallbackTagPh2, /* pointer to the complete variable*/

pCpaDhOpDataP2, /* structure containing p, the public value &
x*/

pOctetStringSecretKey); /* private key (output of the function) */

Finally, clean up by freeing up memory, stopping the instance, etc.

3.3.1 Prime Number Testing
This example demonstrates the usage of the prime number testing API.
These samples are located in /asym/prime sample

The following steps are carried out:

e The API is used asynchronously: therefore, a callback function is defined as per the
API prototype.

e Instance, discovery, and start-up is made in a way similar to that defined for the
symmetric examples above.

e The function primepPerformOp is called, which does the following:

— Allocate memory for the operation

— Populate data for the appropriate input fields and perform the operation. The
fields populated include the following:
— Prime Candidate
— Whether to perform the greatest common divisor (GCD) test
— Whether to perform the Fermat test
— Number of Miller-Rabin rounds
— Whether to perform Lucas test

Listing 61. Setup Operational Data and Test Prime

pPrimeTestOpData->primeCandidate.pData = pPrime;

pPrimeTestOpData->primeCandidate.datalenInBytes =
sizeof(samplePrimeP_768);

pPrimeTestOpData->performGcdTest = CPA TRUE;
pPrimeTestOpData->performFermatTest = CPA TRUE;

60 API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

Finally, statistics are queried and the service stopped.

3.4 Using the SM2 API

This example demonstrates the usage of the SM2 API.

The following steps are carried out:

e The example contains synchronous and asynchronous API. For latter one, you must
define a proper callback function per the API prototype for different SM2 operations.

e Instance, discovery, and start-up are made in a way similar to that defined for the
symmetric examples above.

e This sample involves sign/verify, encryption/decryption, key exchange, point
multiplication/verify.

3.4.1 SM2 Digital Signhature Generation and Verification

This operation is to sign a given message and output its digital signature (r,s) then
verify (r,s).

e The function sampleEcsm2SignPerformOp provisions parts of example
implementation, which does the following:
- Allocate memory and populate data for input buffer which includes scalar
multiplier k, digest of the message e and private key d.
— Allocate memory for output buffer which includes signature r and s.
— Call function cpaCyrcsm2Sign for sign operation.

API Programmer’s Guide 61

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

e The function sampleEcsm2VerifyPerformOp provisions parts of example
implementation, which does the following:

— Allocate memory and populate data for input buffer which includes digest of
the message e, signature r and s, x coordinate of public key and y coordinate
of public key.

— Call function cpaCyrEcsm2verify for signature verification operation.

3.4.2 SM2 Public Key Encryption

This operation is to encrypt a given message then decrypt the cipher and compare to
the given message.

e The function sampleEcsm2EncPerformOp provisions parts of example
implementation, which does the following:
— Allocate memory and populate data for input buffer which includes scalar
multiplier k, x coordinate of public key xP and y coordinate of public key yP.
— Allocate memory for output buffer which includes x coordinate of [k]G x1, y
coordinate of [k]G y1, x coordinate of [k]Pb x2 and y coordinate of [k]Pb y2.

62 API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

— Call function cpaCyEcsm2Encrypt for encryption operation.

e The function sampleEcsm2becPerformOp provisions parts of example
implementation, which does the following:

— Allocate memory and populate data for input buffer which includes private key
d, x coordinate of [k]G x1 and y coordinate of [k]G y1.

— Allocate memory for output buffer which includes x coordinate of [k]Pb x2 and
y coordinate of [k]Pb y2.

— Call function cpaCyEcsm2becrypt for decryption operation.

— Call function sm3 and hashCheck to check correctness of decryption.

API Programmer’s Guide 63

intel

Intel® QuickAssist Technology
Cryptographic API

3.4.3 SM2 Key Exchange

This operation is to exchange key between A side and B side, and check if the shared
keys are the same.

e The function sampleEcsm2KeyExPerformOp provisions parts of example
implementation, which does the following:

Allocate phase 1 input buffer which includes scalar multiplier r for A side and B
side separately.

Allocate phase 1 output buffer which includes x coordinate of a point on the
curve x and y coordinate of a point on the curve y for for A side and B side
separately.

Call function cpaCyEcsm2KeyExPhasel for A side and B side separately.
Allocate phase 2 input buffer which includes scalar multiplier r, private key d,
x coordinate of a point on the curve from other side x1, x coordinate of a point
on the curve from phase 1 x2, y coordinate of a point on the curve from phase
1 y2, x coordinate of public key from other side xP and y coordinate of public
key from other side yP for A side and B side separately.

Allocate phase 2 input buffer which includes x coordinate of a point on the
curve x and y coordinate of a point on the curve y for A side and B side
separately.

Call function cpaCyEcsm2KeyExPhase?2 for A side and B side separately.

64

API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

API Programmer’s Guide 65

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

66 API Programmer’s Guide

]
Intel® QuickAssist Technology Cryptographic API I n te I@

3.4.4 SM2 Elliptic Curve Point

This operation is to calculate a point on the curve according to a given random
number and verify if the point (Xx,y) on the curve or not.

e The function sampleEcsm2PointMultiply provisions parts of example
implementation, which does the following:

— Allocate memory and populate date for input buffer which includes scalar
multiplier k, x coordinate of a point on the curve x and y coordinate of a point
on the curvey.

— Allocate memory for output buffer which includes x coordinate of the resulting
point multiplication pXk and y coordinate of the resulting point multiplication
pYK.

— Call function cpaCyEcsm2PointMultiply for point multiply operation.

API Programmer’s Guide 67

]
I n te I Intel® QuickAssist Technology
® Cryptographic API

e The function sampleEcsm2GeneratortMultiply provisions parts of example
implementation, which does the following:

— Allocate memory and populate date for input buffer which includes scalar
multiplier k.

- Allocate memory for output buffer which includes x coordinate of the resulting
point multiplication pXk and y coordinate of the resulting point multiplication
pYK.

— Call function cpaCyEcsm2GeneratorMultiply for generator multiply
operation.

e The function sampleEcsm2PointVerify provisions parts of example implementation,
which does the following:
— Allocate memory and populate date for input buffer which includes x
coordinate of a point on the curve x and y coordinate of a point on the curve

y.
— Call function cpaCyEcsm2Pointverify for EC point verification.

68 API Programmer’s Guide

o
Intel® QuickAssist Technology Cryptographic API I n te I@

Finally, statistics are queried and the service stopped.

API Programmer’s Guide 69

]
Intel® QuickAssist Technology Data Compression API I n te I "

4

Intel® QuickAssist Technology
Data Compression API

4.1

4.1.1

70

This chapter describes the sample code for the Intel® QuickAssist Technology Data
Compression API, beginning with an API overview, and followed by descriptions of
various scenarios to illustrate the usage of the API.

Note: This document does not cover data integrity concepts. Refer to Table 1 in the
Programmer's Guide, Compress and Verify (CnV) Related APIs for your product for important
information on data integrity concepts, including the Compress-and-Verify feature.

Overview

The Intel® QuickAssist Technology Data Compression API can be categorized into
three broad areas as follows:

¢ Common: This includes functionality for the initialization and shutdown of the
service.

e Instance Management: A given implementation of the API can present multiple
instances of the compression service, each representing a logical or virtual "device".
Request order is guaranteed within a given instance of the service.

e Transformation:
— Compression functionality
— Decompression functionality

These areas of functionality are defined in cpa dc.h and cpa dc dp.h.

The Intel® QAT Data Compression API uses the "base" API (cpa), which defines base
data types used across all services of the Intel® QAT Technology API.

Session

Similar to the symmetric cryptography API, the data compression API has the concept
of a session. In the case of the compression API, a session is an object that describes
the compression parameters to be applied across several requests. These requests
might submit buffers within a single file, or buffers associated with a particular data
stream or flow. A session object is described by the following:

¢ The compression level: Lower levels provide faster compression and the cost of
compression ratio, whereas higher levels provide a better compression ratio as the
cost of performance.

e The compression algorithm: to use (e.g. deflate) and what type of Huffman trees
to use (static or dynamic).

e The session direction: If all requests on this session are compression requests,
then the direction can be set to compress (and similarly, for decompress). A
combined direction is also available if both compression and decompression
requests are called using this session.

API Programmer’s Guide

Intel® QuickAssist Technology Data Compression API I n te I "

e The session state: a session can be described as stateful or stateless. Stateful
sessions maintain history and state between calls to the API, and stateless sessions
do not.

— Stateless compression does not require history data from a previous
compression/decompression request to be restored before submitting the
request. Stateless sessions are used when the output data is known to be
constrained in size. An overflow condition (when the output data is about to
exceed the output buffer) is treated as an error condition in the
decompression direction. In the compression direction, the Application can
keep submitting data from where the overflow was registered in the input
stream. The Data Plane API treats overflow as an error. In this case, the
overflow is treated as an error rather than an exception. The client application
is required to resubmit the job in its entirety with a larger output buffer.
Requests are treated independently; state and history are not saved and
restored between calls.

Note: When using a stateless session, it is possible to feed a seed checksum to the

cpaDcCompressData () or the cpabDeDecompressbData () API when the cPA DC FLUSH FULL

flush flag is used. The user application is responsible for maintaining the checksum across

4.2

requests. This feature is also known as Stateful Lite.

— Stateful sessions are required when the data to be decompressed is larger
than the buffers being used. This is a standard mode of operation for
applications such as GZIP, where the size of the uncompressed data is not
known before execution, and therefore the destination buffer may not be large
enough to hold the resultant output. Requests to stateful sessions are not
treated independently, and state and history can be saved and restored
between calls. The amount of history and state carried between calls depends
on the compression level. For stateful decompression, only one outstanding
request may be in-flight at any one time for that session.

Sample - Stateful Data Compression

This example demonstrates the usage of the synchronous API, specifically using this
API to perform a compression operation. It compresses a file via a stateful session
using the deflate compress algorithm with static Huffman trees and using GZIP style
headers and footers.

These samples are located in /dc/stateful sample

Note: Stateful data compression is not available in Intel® QAT v1.8 and later releases.

4.2.1

However, stateful decompression is available in Intel® QAT v1.8 and later releases.

Session Establishment

This is the main entry point for the sample compression code. It demonstrates the
sequence of calls to be made to the API to create a session, perform one or more
compress operations, and then tear down the session. At this point, the instance has
been discovered and started, and the capabilities of the instance have been queried
and found to be suitable.

API Programmer’s Guide 71

]
I n te I Intel® QuickAssist Technology Data
® Compression API

A session is established by describing a session, determining how much session
memory is required, and then invoking the session initialization function
cpaDcInitSession.

Listing 62. Create and Initialize Stateful Session

72 API Programmer’s Guide

]
Intel® QuickAssist Technology Data Compression API I n te I@

Note: Source and destination buffers must be established.

Listing 63. Stateful Compression Memory Allocation

API Programmer’s Guide 73

]
I n te I Intel® QuickAssist Technology Data
® Compression API

Listing 64. Create Header

At this point, the application has opened an instance, established a session, and
allocated buffers. It is time to start some compress operations. To produce GZIP style
compressed files, the first thing that needs to be performed is header generation.
Create a header using the following code:

cpaDcGenerateHeader produces a GZIP style header (compliant with GZIP file format
specification v4.3, RFC 1952, refer to Table 1) when the session set up data is set
such that compType is cPA DC DEFLATE and checksum is CPA DC CRC32.

Note: Alternatively, a zlib style header (compliant with ZLIB Compressed Data Format
Specification, v3.3, RFC 1950, refer to Table 1) can be produced if the session setup data is
set such that compType is CPA DC DEFLATE and checksum is CPA DC ADLER32. This operation

74 API Programmer’s Guide

]
Intel® QuickAssist Technology Data Compression API I n te I@

demonstrates looping through a file, reading the data, invoking the data compress operation,
and writing the results to the output file.

Listing 65. Perform Stateful Compression Operation

API Programmer’s Guide 75

]
I n te I Intel® QuickAssist Technology Data
® Compression API

Finally, a GZIP footer is generated. Similar to the call to cpaDcGenerateHeader, a
GZIP footer (compliant with GZIP style header (compliant with GZIP file format
specification v4.3, RFC 1952, refer to Table 1) is produced because the session setup
data is set such that compType is cPA DC DEFLATE and checksum is CPA DC CRC32.
The call to cpaDcGenerateFooter increments the produced field of the
CpaDcRgResults structure by the size of the footer added. In this example, the data
produced so far has already been written out to the file. As such, the produced field of
the cpabcRgresults structure is cleared before calling the cpabDcGenerateFooter
function.

In the event the destination buffer would be too small to accept the footer, the
cpaDcGenerateFooter () API will return an invalid parameter error. The
cpaDcGenerateFooter () API cannot return an overflow exception. It is application's
responsibility to ensure that there is enough allocated buffer memory to append the
algorithm specific footer.

Listing 66. Create Footer

76 API Programmer’s Guide

]
Intel® QuickAssist Technology Data Compression API I n te I@

Because this session was created with cpA DC DIR COMBINED it can also be used to
decompress data.

The Stateful Decompression Operation demonstrates looping through a file, reading
the compressed data, invoking the data decompress operation, and writing the results
to the output file. In this case, the overflow condition has to be considered.

Listing 67. Perform Stateful Decompression Operation

API Programmer’s Guide 77

Intel® QuickAssist Technology Data
Compression API

API Programmer’s Guide

]
Intel® QuickAssist Technology Data Compression API I n te I@

Once all operations on this session have been completed, the session is torn down
using the Remove Stateful Session in Listing 68.

Listing 68. Remove Stateful Session

Query statistics at this point, which can be useful for debugging.

Finally, clean up by freeing up memory, stopping the instance, etc.

4.2.2 Sample - Stateless Data Compression
This example demonstrates the usage of the asynchronous API, specifically using this
API to perform a compression operation. It compresses a data buffer through a
stateless session using the deflate compress algorithm with dynamic Huffman trees.
The example below compresses a block of data into a compressed block.
These samples are located in /dc/stateless sample
In this example, dynamic Huffman trees are used. The instance can be queried to

ensure dynamic Huffman trees are supported, and if an instance-specific buffer is
required to perform a dynamic Huffman tree deflate request.

Listing 69. Querying and Starting a Compression Instance

API Programmer’s Guide 79

]
I n te I Intel® QuickAssist Technology Data
® Compression API

80 API Programmer’s Guide

]
Intel® QuickAssist Technology Data Compression API I n te I@

The create and initialize stateless session demonstrates the sequence of calls to be
made to the API to create a session. To establish a session: describing the session,

determining how much session memory is required, and then invoke the session
initialization function cpabDcInitSession.

Listing 70. Create and Initialize Stateless Session

API Programmer’s Guide

]
I n te I Intel® QuickAssist Technology Data
® Compression API

Source and destination buffers are allocated in a similar way to the stateful example
above.

Perform Operation: This listing demonstrates invoking the data compress operation,
in the stateless case.

Listing 71. Data Plane Remove Compression Session

4.3

Sample - Stateless Data Compression Using
Multiple Compress Operations

This example demonstrates the use of the asynchronous API: specifically, using this
API to perform a compression operation. It compresses a data buffer using multiple
stateless compression API requests and maintains length and checksum information
across the multiple requests without the overhead of maintaining full history
information as used in a stateful operation.

The samples are located in: /dc/stateless multi op checksum sample
In this sample, session creation is the same as for regular stateless operation. Refer to

the previous sample described in Section 4.3, Sample — Stateless Data Compression
Using Multiple Compress Operations for details.

Perform Operation: This listing demonstrates the invoking of the data compress
operation in the stateless case while maintaining checksum information across
multiple compress operations. The key points to note are:

The initial value of dcrResults.checksum is set to 0 for CRC32 or set to 1 for Adler32
when invoking the first compress or decompress operation for a data set.

Listing 72. Setting the Initial Value of the Checksum

82

API Programmer’s Guide

]
Intel® QuickAssist Technology Data Compression API I n te I@

The value of dcrResults.checksum when invoking a subsequent compress operation
for a data set is set to the dcresults. Checksum value returned from the previous
compress operation on that data set.

4.4 Sample - Data Compression Data Plane API

This example demonstrates the usage of the data plane data compression API to
perform a compression operation. It compresses a data buffer via a stateless session
using the deflate compress algorithm with dynamic Huffman trees. This example is
simplified to demonstrate the basics of how to use the API and how to build the
structures required. This example does not demonstrate the optimal way to use the
API to get maximum performance for a particular implementation. Refer to Table 1
Implementation Specific Documentation and performance sample code for a guide on
how to use the API for best performance.

These samples are located in /dc/dc dp sample

The data plane data compression API is used in a similar way to the data plane-
symmetric cryptographic API:

Data compression service instances are queried and started in the same way and
using the same functions as before (see Listing 1 and Listing 68).

Listing 73. Register Compression Callback Function

This listing registers a callback function for the data compression instance.

Next, create and initialize a session.

Listing 74. Create and Initialize Compression Data Plane Session

API Programmer’s Guide 83

]
I n te I Intel® QuickAssist Technology Data
® Compression API

Listing 75. Setup Source Buffer

In this example, input and output data is stored in a scatter gather list. The source
and destination buffers are described using the CpapPhysBufferList structure. In this
example the allocation (which needs to be 8-byte aligned) and setup of the source
buffer is shown. The destination buffers can be allocated and set up in a similar way.

84 API Programmer’s Guide

]
Intel® QuickAssist Technology Data Compression API I n te I@

The operational data in this case is:

Listing 76. Compression Data Plane Operational Data

This request is then enqueued and submitted on the instance.

Listing 77. Data Plane Enqueue and Submit

e After possibly doing other work (e.g., enqueuing and submitting more requests),
the Application can poll for responses that invoke the callback function registered

API Programmer’s Guide 85

]
I n te I Intel® QuickAssist Technology Data
® Compression API

with the instance. Refer to Table 1 Implementation Specific Documentation on the
implementations polling functions.

e Once all requests associated with a session have been completed, the session can
be removed.

Listing 78. Data Plane Remove Compression Session

Clean up by freeing up memory, stopping the instance, etc. using this command:

4.5 Sample - Chained Hash and Stateless

Compression

This example demonstrates the use of the asynchronous API, specifically, using the
data compression chain API to perform chained hash and stateless compression
operations. It performs a sha256 hash on the sample text and then compresses the

sample text through a stateless session using the deflate compress algorithm with
static Huffman trees.

These samples are located in /dc/chaining sample

Listing 79. Querying and Starting a Compression Instance

86 API Programmer’s Guide

]
Intel® QuickAssist Technology Data Compression API I n te I@

Listing 80. Create and Initialize Session Hash and Compression

API Programmer’s Guide 87

Intel® QuickAssist Technology Data
Compression API

API Programmer’s Guide

]
Intel® QuickAssist Technology Data Compression API I n te I@

Note: cysessionData.digestIsAppended should be always set to cpA FALSE as the digest
must not appended in the end of output.

Listing 81. Chained Hash and Stateless Compression Memory Allocation

API Programmer’s Guide 89

]
I n te I Intel® QuickAssist Technology Data
® Compression API

Listing 82. Set Up Operational Data Hash and Compression

Hash and stateless dynamic compression are also supported. Refer to Listing 64 and
Listing 65 to add dynamic compression released buffers and session data.

Note: Hash algorithms are not limited to shal and sha256. Refer to Intel® QuickAssist
Technology Software for Linux* Release Notes (Table 1) for any limitations on using other
hash algorithms in the current release.

Listing 83. Verify the Output of Chained Hash and Stateless Compression

90 API Programmer’s Guide

Intel® QuickAssist Technology Data Compression API

API Programmer’s Guide

]
I n te I Intel® QuickAssist Technology Data
® Compression API

Listing 84. Remove Chained Hash and Stateless Compression Session

 status = cpaDcChainRemoveSession(dcInstHandle, sessionHdl);
§

92 API Programmer’s Guide

	1 Introduction
	1.1 Intended Audience
	1.2 Related Documents and References
	1.3 Using This Document
	1.4 Terminology

	2 Base API and API Conventions
	2.1 Intel® QAT Technology Base API
	2.1.1 Data Buffer Models
	2.1.1.1 Flat Buffers
	2.1.1.2 Scatter-Gather Lists

	2.2 Intel® QuickAssist Technology API Conventions
	2.2.1 Instance Discovery
	2.2.2 Modes of Operation
	2.2.2.1 Asynchronous Operation
	2.2.2.2 Synchronous Operation

	2.2.3 Memory Allocation and Ownership
	2.2.4 Data Plane APIs

	3 Intel® QuickAssist Technology Cryptographic API
	3.1 Overview
	3.1.1 Sessions
	3.1.2 Priority

	3.2 Using the Symmetric Cryptography API
	3.2.1 General Concepts
	3.2.1.1 Session
	3.2.1.2 In-Place and Out-of-Place Support
	3.2.1.3 Partial Support

	3.2.2 Cipher
	3.2.2.1 symCallback
	3.2.2.2 cipherSample

	3.2.3 Hash
	3.2.4 Hash a File
	3.2.5 Chained Cipher and Hash
	3.2.6 Chained Cipher and Hash – IPSec Like Use Case
	3.2.7 Chained Cipher and Hash – SSL Like Use Case
	3.2.8 Chained Cipher and Hash – CCM Use Case
	3.2.9 Chained Cipher and Hash – GCM Use Case
	3.2.10 Chained Cipher and Hash Using the Symmetric Data Plane API
	3.2.11 TLS Key and MGF Mask Generation
	3.2.11.1 Setting CpaCyKeyGenTlsOpData Structure Fields

	3.2.12 Session Update for Chained Cipher and Hash Operation
	3.2.12.1 Create and Initialize a Session:

	3.2.13 HKDF Use Case
	3.2.13.1 Instance Configuration and Memory Allocation
	3.2.13.2 HKDF Extract Expand Operation
	3.2.13.3 HKDF Extract Expand Label Operation
	3.2.13.4 HKDF Extract Expand Label and Sublabels operation

	3.2.14 Perform HKDF operation

	3.3 Using the Diffie-Hellman API
	3.3.1 Prime Number Testing

	3.4 Using the SM2 API
	3.4.1 SM2 Digital Signature Generation and Verification
	3.4.2 SM2 Public Key Encryption
	3.4.3 SM2 Key Exchange
	3.4.4 SM2 Elliptic Curve Point

	4 Intel® QuickAssist Technology Data Compression API
	4.1 Overview
	4.1.1 Session

	4.2 Sample – Stateful Data Compression
	4.2.1 Session Establishment
	4.2.2 Sample – Stateless Data Compression

	4.3 Sample – Stateless Data Compression Using Multiple Compress Operations
	4.4 Sample – Data Compression Data Plane API
	4.5 Sample - Chained Hash and Stateless Compression

