

Document Number: 330687-008

Intel® QuickAssist Technology

Performance Optimization Guide

Revision 008

December 2021

2 Performance Optimization Guide

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis You may not use or facilitate

the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to

grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product

specifications and roadmaps.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software, or service activation.

Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system

manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular

purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, Xeon, Atom, SpeedStep, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

http://intel.com/

Performance Optimization Guide 3

Contents

1 Introduction ...6

1.1 Terminology ...6
1.2 Where to Find Current Software and Documentation ... 7

1.2.1 Product Documentation .. 7
1.2.2 Documentation Conventions .. 7

2 Intel® QuickAssist Technology Software Overview ... 8

3 Software Design Guidelines ...9

3.1 Polling vs. Interrupts (If Supported) ..9
3.1.1 Interrupt Mode ...9
3.1.2 Polling Mode ... 10
3.1.3 Epoll Mode .. 11
3.1.4 Recommendations .. 11

3.2 Use of Data Plane (DP) API vs. Traditional API .. 11
3.2.1 Batch Submission of Requests Using the Data Plane API 12

3.3 Synchronous (sync) vs. Asynchronous (async).. 12
3.4 Buffer Lists ... 13
3.5 Maximum Number of Concurrent Requests .. 13
3.6 Symmetric Crypto Partial Operations ... 14
3.7 Reusing Session in QAT Environment .. 14
3.8 Backpressure Mechanism .. 14
3.9 Load Balancing Within a QAT Endpoint ... 14
3.10 Best Known Method (BKM) for Avoiding PCI Performance Bottlenecks 15

4 Application Tuning ... 16

4.1 Platform-Level Optimizations .. 16
4.1.1 BIOS Configuration ... 16
4.1.2 Core Selection ... 16
4.1.3 Memory Configuration ... 16
4.1.4 Payload Alignment ... 16
4.1.5 NUMA Awareness .. 18

4.2 Intel® QuickAssist Technology Optimization .. 18
4.2.1 Disable Services Not Used ... 18
4.2.2 Using Embedded SRAM (if supported) .. 18
4.2.3 Disable Parameter Checking ... 18
4.2.4 Adjusting the Polling Interval ... 18
4.2.5 Reducing Asymmetric Service Memory Usage ... 19

Figures

Figure 1. Packet Decrypt and Encrypt .. 17

4 Performance Optimization Guide

Tables

Table 1. Terminology ..6
Table 2. Reference Documents.. 7

Performance Optimization Guide 5

Revision History

Document
Number

Revision
Number

Description Revision Date

330687 008 • Updated the document with New Intel Logo

• Updated the content with Intel One text font

December 2021

330687 007 • Updated Section 3.1.3, Epoll Mode

• Updated Section 3.1.4, Recommendations

Updated Section 3.2, Use of Data Plane (DP) vs.

Traditional API.

• Updated note.

• Updated Section 3.3, Synchronous (sync) vs.

Asynchronous (async)

• Added Section 3.7, Reusing Session in QAT API

• Added Section 3.8, Backpressure Mechanism

• Updated Section 4.2.5, Reducing Asymmetric Service

Memory Usage.

• Added note

August 2019

330687 006 • Deleted Figure 1, Performance Impact of Multiple

Buffers

December 2018

330687 005 • Removed references to using coalescing timer and to

Intel® Communications

Chipset 8900 to 8920 series.

September 2018

330687 004 • Updates to interrupt and epoll modes, other minor

technical changes

January 2017

330687 003 • Minor updates throughout. Added Section 3.2.3, Epoll

Mode and Section 3.2.4, Recommendations

• Updated Section 4.2.6, Reducing Asymmetric Service

Memory Usage

October 2015

330687 002 • Updated Section 4.1.3, Payload Alignment May 2015

330687 0.1 • Initial release September 2014

§

Introduction

6 Performance Optimization Guide

1 Introduction

This performance optimization guide for Intel® QuickAssist Technology can be used both

during the architecture/design phases and the implementation/integration phases of a project

that involves the integration of the Intel® QuickAssist Technology software with an application

stack.

Accordingly, the guide is divided into two main sections:

• Software Design Guidelines – Architecture and design guidelines on how best to integrate

the Intel® QuickAssist Technology software into the application software stack. Trade-

offs between various design choices are described together with recommended

approaches.

• Application Tuning – Guidelines to further increase the performance of Intel® QuickAssist

Technology in the context of a full application.

The intended audience for this document includes software architects, developers and

performance engineers.

In this document, for convenience:

Acceleration drivers is used as a generic term for the software that allows the QuickAssist

Software Library APIs to access the Intel® QuickAssist Accelerator(s) integrated in the

following devices:

− Intel® Communications Chipset 8900 to 8920 Series

− Intel® Communications Chipset 8925 to 8955 Series

− Intel® Atom® processor C2000 product family

− Intel® Atom® processor C3000 product family

− Intel® C620 Series Chipsets

− Intel® Xeon® D-1500 processor

− Intel® Xeon® D-2100 processor

1.1 Terminology

Table 1. Terminology

Term Description

C-States C-States are advanced CPU current lowering technologies.

ECDH Elliptic Curve Diffie-Hellman

IA Intel® architecture CPU

Intel® SpeedStep®

Technology

Advanced means of enabling very high performance while also meeting the

power-conservation needs of mobile systems.

LAC LookAside Crypto

Latency
The time between the submission of an operation via the QuickAssist API and

the completion of that operation.

MSI Message Signaled Interrupts

NUMA Non Uniform Memory Access

Offload Cost

This refers to the cost, in CPU cycles, of driving the hardware accelerator. This

cost includes the cost of submitting an operation via the Intel® QuickAssist API

and the cost of processing responses from the hardware.

Introduction

Performance Optimization Guide 7

Term Description

PCH Platform Controller Hub

PKE Public Key Encryption

Throughput
The accelerator throughput usually expressed in terms of either requests per

second or bytes per second.

1.2 Where to Find Current Software and Documentation

Associated software and collateral can be found on the open source website:

https://01.org/intelquickassist-technology

Table 2 includes a list of related documentation.

1.2.1 Product Documentation

Documentation includes:

• Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist Technology

Application Note (this document)

• Additional related documents listed in Table 2.

Table 2. Reference Documents

Document Name
Document Number/

Location

Intel® QuickAssist Technology API Programmer’s Guide 330684

Intel® QuickAssist Technology Cryptographic API Reference Manual 330685

Intel® QuickAssist Technology Data Compression API Reference Manual 330686

Intel® QuickAssist Technology for Linux* Release Notes 330683

Intel® QuickAssist Technology Software for Linux* - Programmer's Guide 336210

Intel® QuickAssist Technology for Linux* Getting Started Guide 336212

1.2.2 Documentation Conventions

The following conventions are used in this manual:

• Courier font- code examples, command line entries, API names, parameters, filenames,

directory paths, and executables

• Bold text - graphical user interface entries and buttons

§

https://01.org/intel-quickassist-technology
https://01.org/intel-quickassist-technology
https://01.org/intel-quickassist-technology

Intel® QuickAssist Technology Software Overview

8 Performance Optimization Guide

2 Intel® QuickAssist Technology

Software Overview

This chapter provides a very brief overview of the Intel® QuickAssist Technology software. It is

included here to set the context for terminology used in later sections of this document. More

details are available in the Programmer’s Guide for your platform (refer to Table 1).

The Intel® QuickAssist Technology API supports two acceleration services:

• Cryptographic

• Data Compression.

The acceleration driver interfaces to the hardware via hardware-assisted rings. These rings are

used as request and response rings. Rings are grouped into banks (16 rings per bank). Request

rings are used by the driver to submit requests to the accelerator and response rings are used

to retrieve responses back from the accelerator. The availability of responses can be indicated

to the driver using either interrupts or by having software poll the response rings.

At the Intel® QuickAssist Technology API, services are accessed via “instances.” A set of rings

is assigned to an instance and so any operations performed on a service instance will involve

communication over the rings assigned to that instance.

§

Software Design Guidelines

Performance Optimization Guide 9

3 Software Design Guidelines

This chapter focuses on key design decisions that should be considered, in order to achieve

optimal performance, when integrating with the Intel® QuickAssist Technology software. In

many cases the best Intel® QuickAssist Technology configuration is dependent on the design

of the application stack that is being used and so it is not possible to have a “one configuration

fits all” approach. The trade-offs between differing approaches will be discussed in this section

to help the designer to make an informed decision.

The guidelines presented here focus on the following performance aspects:

• Maximizing throughput through the accelerator

• Minimizing the offload cost incurred when using the accelerator

• Minimizing latency

Each guideline will highlight its impact on performance. Specific performance numbers are not

given in this document since exact performance numbers depend on a variety of factors and

tend to be specific to a given workload, software, and platform configuration.

3.1 Polling vs. Interrupts (If Supported)

Note: Not all use cases support interrupt mode, and not all software packages support interrupt
mode.

Software can either periodically query the hardware accelerator for responses or it can enable

the generation of an interrupt when responses are available. Interrupts or polling mode can be

configured per instance via the platform-specific configuration file. Configuration parameter

details are available in the Programmer’s Guide for your platform (refer to Table 1).

The properties and performance characteristics of each mode are explained below followed by

recommendations on selecting a configuration.

3.1.1 Interrupt Mode

When operating in interrupt mode, the accelerator will generate an MSI-X interrupt when a

response is placed on a response ring. Each ring bank has a separate MSI-X interrupt which

may be steered to a particular CPU core via the CoreAffinity settings in the configuration file.

To reduce the number of interrupts generated, and hence the number of CPU cycles spent

processing interrupts, multiple responses can be coalesced together. The presence of the

multiple responses can be indicated via a single coalesced interrupt rather than having an

interrupt per response. The number of responses that are associated with a coalesced

interrupt is determined by an interrupt coalescing timer. When the accelerator places a

response in a response ring, it starts an interrupt coalescing timer. While the timer is running,

additional responses may be placed in the response ring. When the timer expires, an interrupt

is generated to indicate that responses are available. Details on how to configure interrupt

coalescing are available in the Programmer’s Guide for your platform (refer to Table 1).

Software Design Guidelines

10 Performance Optimization Guide

Since interrupt coalescing is based on a timer, there is some variability in the number of

responses that are associated with an interrupt. The arrival rate of responses is a function of

the arrival rate of the associated requests and of the request size. Hence, the timer

configuration needed to coalesce X large requests is different from the timer configuration

needed to coalesce X small requests. It is recommended that the timer is tuned based on the

average expected request size.

The choice of timer configuration impacts throughput, latency, and offload cost:

• Configuring a very short time period maximizes the throughput through the accelerator,

minimizing latency, but will increase the offload cost since there will be a higher number of

interrupts and hence more CPU cycles spent processing the interrupts. If this interrupt

processing becomes a performance bottleneck for the CPU, the overall system

throughput will be impacted.

• Configuring a very long timer period leads to reduced offload cost (due to the reduction in

the number of interrupts) but increased latency. If the timer period is very long and causes

the response rings to fill, the accelerator will stall and throughput will be impacted.

The appropriate coalescing timer configuration will depend on the characteristics of the

application. It is recommended that the value chosen is tuned to achieve optimal performance.

When using interrupts with the user space Intel® QuickAssist Technology driver, there is

significant overhead in propagating the interrupt to the user space process that the driver is

running in. This leads to an increased offload cost. Hence it is recommended that interrupts

should not be used with the user space Intel® QuickAssist Technology driver.

3.1.2 Polling Mode

In polled mode, interrupts are fully disabled and the software application must periodically

invoke the polling API, provided by the Intel® QuickAssist Technology driver, to check for and

process responses from the hardware. Details of the polling API are available in the

Programmer’s Guide for your platform (refer to Table 1).

The frequency of polling is a key performance parameter that should be fine-tuned based on

the application. This parameter has an impact on throughput, latency and on offload cost:

• If the polling frequency is too high, CPU cycles are wasted if there are no responses

available when the polling routine is called. This leads to an increased offload cost.

• If the polling frequency is too low, latency is increased and throughput may be impacted if

the response rings fill causing the accelerator to stall.

The choice of threading model has an impact on performance when using a polling approach.

There are two main threading approaches when polling:

• Creating a polling thread that periodically calls the polling API. This model is often the

simplest to implement, allows for maximum throughput, but can lead to increased offload

cost due to the overhead associated with context switching to/from the polling thread.

• Invoking the polling API and submitting new requests from within the same thread. This

model is characterized by having a “dispatch loop” that alternates between submitting

new requests and polling for responses. Additional steps are often included in the loop

such as checking for received network packets or transmitting network packets. This

Software Design Guidelines

Performance Optimization Guide 11

approach often leads to the best performance since the polling rate can be easily tuned to

match the submission rate so throughput is maximized and offload cost is minimized.

3.1.3 Epoll Mode

This mode effectively replaces user space Interrupt Mode, which has been deprecated.

The mode can only be used in user space. The following must be considered if opting to use

this mode (such as, over the standard polling mode in user space).

Because epoll mode has two parts, of which the kernel space part utilizes the legacy interrupt

mode, if there is a delay in the kernel interrupt (such as, by changing the coalescing fields),

there will be a corresponding increase in latency in the delivery of the event to user space.

The thread waiting for an event in epoll mode does not consume CPU time, but the latency

could have an impact on the performance. For higher packet load where the wait time for the

next packet is insignificant, polling mode is recommended.

You are limited to one instance (and one process) per bank in epoll mode.

3.1.4 Recommendations

Polling mode tends to be preferred in cases where traffic is steady (such as packet processing

applications) and can result in a minimal offload cost. Epoll mode is preferred for cases where

traffic is bursty, as the application can sleep until there is a response to process.

Considerations when using polling mode:

• Fine-tuning the polling interval is critical to achieving optimal performance.

• The preference is for invoking the polling API and submitting new requests from within the

same thread rather than having a separate polling thread.

Considerations when using epoll mode:

• CPU usage will be at 0% in idle state in epoll mode versus a non-zero value in standard poll

mode. However, with a high load state, standard poll mode should out-perform epoll mode.

• You are limited to one instance (and one process) per bank in epoll mode.

3.2 Use of Data Plane (DP) API vs. Traditional API

The cryptographic and compression services provide two flavors of API, known as the

traditional API and the Data Plane API. The traditional API provides a full set of functionality

including thread safety that allows many application threads to submit operations to the same

service instance. The Data Plane API is aimed at reducing offload cost by providing a “bare

bones” API, with a set of constraints, which may suit many applications. Refer to the Intel®

QuickAssist Technology Cryptographic API Reference Manual for more details on the

differences between the DP and traditional APIs for the crypto service.

From a throughput and latency perspective, there is no difference in performance between the

Data Plane API and the traditional API.

Software Design Guidelines

12 Performance Optimization Guide

From an offload cost perspective, the Data Plane API uses significantly fewer CPU cycles per

request compared to the traditional API. For example, the cryptographic Data Plane API has an

offload cost that is lower than the cryptographic traditional API.

Note: One constraint with using the Data Plane API is that interrupt mode is supported only if one
bank is served by only one thread.

3.2.1 Batch Submission of Requests Using the Data Plane API

The Data Plane API provides the capability to submit batches of requests to the accelerator.

The use of the batch mode of operation leads to a reduction in the offload cost compared to

submitting the requests one at a time to the accelerator. This is due to CPU cycle savings

arising from fewer writes to the hardware ring registers in PCIe* memory space.

Using the Data Plane API, batches of requests can be submitted to the accelerator using either

the cpaCySymDpEnqueueOp() or cpaCySymDpEnqueueOpBatch() API calls for the

symmetric cryptographic data plane API and using either the cpaDcDpEnqueueOp() or

cpaDcDpEnqueueOpBatch() API calls for the compression data plane API. In all cases,

requests are only submitted to the accelerator when the performOpNow parameter is set to

CPA_TRUE.

It is recommended to use the batch submission mode of operation where possible to reduce

offload cost.

3.3 Synchronous (sync) vs. Asynchronous (async)

The Intel® QuickAssist Technology traditional API supports both synchronous and

asynchronous modes of operation. The Intel® QuickAssist Technology Data Plane API only

supports the asynchronous mode of operation.

With synchronous mode, the traditional Intel® QuickAssist Technology API will block and not

return to the calling code until the acceleration operation has completed.

With asynchronous mode, the traditional or Data Plane Intel® QuickAssist Technology API will

return to the calling code once the request has been submitted to the accelerator. When the

accelerator has completed the operation, the completion is signaled via the invocation of a

callback function.

From a performance perspective, the accelerator requires multiple inflight requests per

acceleration engine to achieve maximum throughput. With synchronous mode of operation,

multiple threads must be used to ensure that multiple requests are inflight. The use of multiple

threads introduces an overhead of context switching between the threads which leads to an

increase in offload cost.

Hence, the use of asynchronous mode is the recommended approach for optimal

performance.

Software Design Guidelines

Performance Optimization Guide 13

3.4 Buffer Lists

The symmetric cryptographic and compression Intel® QuickAssist Technology APIs use

buffer lists for passing data to/from the hardware accelerator. The number and size of

elements in a buffer list has an impact on throughput; performance degrades as the number of

elements in a buffer list increases. To minimize this degradation in throughput performance, it

is recommended to keep the number of buffers in a buffer list to a minimum. Using a single

buffer in a buffer list leads to optimal performance. See also 4.1.4Payload Alignment for

additional considerations.

Note: Specific performance numbers are not given in this document since exact performance
numbers depend on a variety of factors and tend to be specific to a given workload, software
and platform configuration.

When using the Data Plane API, it is possible to pass a flat buffer to the API instead of a buffer

list. This is the most efficient usage of system resources (mainly PCIe* bandwidth) and can

lead to lower latencies compared to using buffer lists.

In summary, the recommendations for using buffer lists are:

• If using the Data Plane API, use a flat buffer instead of a buffer list.

• If using a buffer list, a single buffer per buffer list leads to highest throughput performance.

• If using a buffer list, keep the number of buffers in the list to a minimum.

3.5 Maximum Number of Concurrent Requests

The depth of the hardware rings used by the Intel® QuickAssist Technology driver for

submitting requests to, and retrieving responses from, the accelerator hardware can be

controlled via the configuration file using the CyXNumConcurrentSymRequests,

CyXNumConcurrentAsymRequests and DcXNumConcurrentRequests parameters. These

settings can have an impact on performance:

• As the maximum number of concurrent requests is increased in the configuration file, the

memory requirements required to support this also increases.

• If the number of concurrent requests is set too low, there may not be enough outstanding

requests to keep the accelerator busy and so throughput will degrade. The minimum

number of concurrent requests required to keep the accelerator busy is a function of the

size of the requests and of the rate at which responses are processed via either polling or

interrupts (refer to 3.1Polling vs. Interrupts (If Supported) for more details).

• If the number of concurrent requests is set too high, the maximum latency will increase.

It is recommended that the maximum number of concurrent requests is tuned to achieve the

correct balance between memory usage, throughput and latency for a given application. As a

guide the maximum number configured should reflect the peak request rate that the

accelerator must handle.

Software Design Guidelines

14 Performance Optimization Guide

3.6 Symmetric Crypto Partial Operations

The symmetric cryptographic Intel® QuickAssist Technology API supports partial operations.

This allows a single payload to be processed in multiple fragments with each fragment

corresponding to a partial operation. The Intel® QuickAssist Technology API implementation

will maintain sufficient state between each partial operation to allow a subsequent partial

operation for the same session to continue from where the previous operation finished.

From a performance perspective, the cost of maintaining the state and the serialization

between the partial requests in a session has a negative impact on offload cost and throughput.

To maximize performance when using partial operations, multiple symmetric cryptographic

sessions must be used to ensure that sufficient requests are provided to the hardware to keep

it busy.

For optimal performance, it is recommended to avoid the use of partial requests if possible.

There are some situations where the use of partials cannot be avoided since the use of partials

and the need to maintain state is inherent in the higher level protocol (such as, the use of the

RC4 cipher with an SSL/TLS protocol stack).

3.7 Reusing Session in QAT Environment

The session is the entry point to perform symmetric cryptography with the QAT device. Every

session has assigned algorithm, state, instance, but also allocated memory space.

If you are limited with the number of instances and want to run several different algorithms or

change keys for another session, de-initialize the session and create a new one. However, such

an approach impacts performance because it involves buffer disposal, deinitialization of the

instance, and so on.

Instead, the session can be reused with updating only a direction (encryption / decryption), key

or symmetric algorithm to be used. This method will not dispose buffers and can reduce the

CPU cycles significantly.

3.8 Backpressure Mechanism

On FreeBSD, there is a possibility to save CPU cycles by getting information about a ring with

few CPU cycles. If the ring is full, the user can push back and does not have to execute request

submission. Since request submission evaluates the possibility to submit to a ring at the end of

the call stack, many CPU cycles are used up with packet preparation.

3.9 Load Balancing Within a QAT Endpoint

When using the Intel® QuickAssist Technology API with the Intel® Communications Chipset

8900 to 8920 Series or Intel® Atom® processor C2000 product family, optimal throughput

performance is achieved when operations are load balanced across the engines within a QAT

endpoint.

Software Design Guidelines

Performance Optimization Guide 15

For example, for a top-SKU Intel® Communications Chipset 8900 to 8920 Series device,

which has four cryptographic engines and two compression engines, a minimum of four

cryptographic service instances and two compression service instances are required to

maximize performance.

Note: Intel® Communications Chipset 8925 to 8955 Series and later products have multiple
cryptographic and compression engines, but the hardware can load balance and provide full
performance using only one service instance for cryptographic operations and one service
instance for compression operations.

It is also recommended to assign each service instance to a separate CPU core to balance the

load across the CPU and to ensure that there are sufficient CPU cycles to drive the

accelerators at maximum performance.

When using interrupts, the core affinity settings within the configuration file should be used to

steer the interrupts for a service instance to the appropriate core.

Detailed guidelines on load balancing and how to ensure maximum use of the available

hardware capacity are available in the Programmer’s Guide for your platform (refer to Table 1).

3.10 Best Known Method (BKM) for Avoiding PCI Performance
Bottlenecks

For optimal performance, ensure the following:

• All data buffers should be aligned on a 64-byte boundary.

• Transfer sizes that are multiples of 64 bytes are optimal.

• Small data transfers (less than 64 bytes) should be avoided. If a small data transfer is

needed, consider embedding this within a larger buffer so that the transfer size is a

multiple of 64 bytes. Offsets can then be used to identify the region of interest within the

larger buffer.

• Each buffer entry within a Scatter-Gather-List (SGL) should be a multiple of 64bytes and

should be aligned on a 64-byte boundary.

• Ensure that enough PCIe* lanes are connected between the acceleration device and the

root port and ensure that these lanes are training to the expected width and speed.

• Modify your application so it retries in an optimal manner. This is important for small data

packets. The backoff timer in the sample code may be used as an example of such "back

off" implementation.

§

Application Tuning

16 Performance Optimization Guide

4 Application Tuning

This chapter describes techniques you may employ to optimize your application.

4.1 Platform-Level Optimizations

This section describes platform-level optimizations required to achieve the best performance.

4.1.1 BIOS Configuration

In some cases, maximum performance may only be achieved with the following BIOS

configuration settings:

CPU Power and Performance:

• Intel® SpeedStep® technology is disabled

• All C-states are disabled

• Max CPU Performance is selected

4.1.2 Core Selection

Using physical cores as opposed to hyper threads may result in higher performance.

4.1.3 Memory Configuration

Ensure that memory is not a bottleneck. For instance, ensure that all CPU nodes have enough

local memory and can take advantage of available memory channels.

4.1.4 Payload Alignment

For optimal performance, data pointers should be at least 8-byte aligned. In some cases, this is

a requirement. Refer to the API for details.

For optimal performance, all data passed to the Intel® QuickAssist Technology engines should

be aligned to 64B. The Intel® QuickAssist Technology Cryptographic API Reference and the

Intel® QuickAssist Technology Data Compression API Reference manuals (refer to Table 2)

document the memory alignment requirements of each data structure submitted for

acceleration.

Note: The driver, firmware, and hardware handle unaligned payload memory without any functional
issue but performance will be impacted.

Note: It is common that packet payloads will not be aligned on a 64B boundary in memory, as the
alignment usually depends upon which packet headers are present. In general, the mitigation
for handling this is to adjust the buffer pointer, length and cipher offsets passed to hardware to

Application Tuning

Performance Optimization Guide 17

make the pointer aligned. This works on the assumption that there is a point in the packet,
before the payload, that is 64B aligned. See the diagram below for an illustration of adjusted
alignment in the context of encrypt/decrypt of an IPsec packet.

Figure 1. Packet Decrypt and Encrypt

Application Tuning

18 Performance Optimization Guide

4.1.5 NUMA Awareness

For a dual processor system, memory allocated for data submitted to the acceleration device

should be allocated on the same node as the attached acceleration device. This is to prevent

having to fetch data for processing on memory of the remote node.

4.2 Intel® QuickAssist Technology Optimization

This section references parameters that can be modified in the configuration file or build

system to help maximize throughput and minimize latency or reduce memory footprint. Refer

to Table 2, Programmer’s Guide, for your platform for detailed descriptions of the

configuration file and its parameters.

4.2.1 Disable Services Not Used

The compression service, when enabled, impacts the throughput performance of crypto

services at larger packet sizes and vice versa. This is due to partitioning of internal resources

between the two services when both are enabled. It is recommended to disable unused

services.

Note: With the Intel® Communications Chipsets 8900 to 8920 series, to use Wireless Firmware you
must enable the dc service, even though it is not used.

4.2.2 Using Embedded SRAM (if supported)

Note: This section is relevant only for Intel® Communications Chipset 8900 to 8920 Series and
Intel® Atom® processor C2000 product family software.

Embedded SRAM can be used to reduce the PCIe* transactions that occur during dynamic

compression sessions. This will have a small positive impact on performance, but also frees up

PCIe* bandwidth for other services.

Embedded SRAM can be set using the configuration file parameter:
dcTotalSRAMAvailable = 524288

The default value is 0, the maximum value is 1024 x 512 (524288).

4.2.3 Disable Parameter Checking

Parameter checking results in more Intel® architecture cycles consumed by the driver. By

default, parameter checking is enabled. This is controlled by ICP_PARAM_CHECK, which can be

set as an environment variable or it can be controlled with the configure script option, if

available.

4.2.4 Adjusting the Polling Interval

This section describes how to get an indication of whether your application is polling at the

right frequency. As described in Section 3.1.2Polling Mode the rate of polling will impact

Application Tuning

Performance Optimization Guide 19

latency, offload cost and throughput. Also, Section 3.1.2Polling Mode describes two ways of

polling:

• Polling via a separate thread.

• Polling within the same context as the submit thread.

With option 1, there is limited control over the poll interval, unless a real time operating system

is employed. With option 2, the user can control the interval to poll based on the number of

submissions made.

Whichever method is employed, the user should start with a low frequency of polling, and this

will ensure maximum throughput is achieved. Gradually increase the polling interval until the

throughput starts to drop. The polling interval just before throughput drops should be the

optimal for throughput and offload cost.

This method is only applicable where the submit rate is relatively stable and the average packet

size does not vary. To allow for variances, a larger ring size is recommended, but this in turn will

add to the maximum latency.

4.2.5 Reducing Asymmetric Service Memory Usage

This section only applies to the Intel® Atom® processor C2000 product family and Intel®

Communications Chipset 8900 to 8920 Series.

This section describes how to reduce the memory footprint required by using the asymmetric

crypto API.

The asymmetric cryptographic service requires a far larger memory pool compared to

symmetric cryptography and compression. The more logical instances that are defined in the

configuration file, the more memory is consumed by the driver. This memory usage may be

unnecessary if only the symmetric part of the cryptographic service is used. Alternatively, the

memory requirement may be reduced depending on the user’s requirements on the

asymmetric service.

Option 1: Asymmetric Not Required

The minimum value for CyXNumConcurrentAsymRequests in the configuration file is 64,

where x = the instance number.

Large values of the above configuration file parameter increase memory requirements and

more instances will also cause increases. To minimize memory, the user should:

• Set max_mr = 1 (at compile time)

• Set LAC_PKE_MAX_CHAIN_LENGTH = 1

• Minimize the number of logical crypto instances

 Option 2: Reduce Prime Miller Rabin Rounds

By default, the driver uses 50 rounds of Miller Rabin to test primality. If the user does not

require this amount of prime testing, the following environment variable can be set at build

time to reduce this:

Application Tuning

20 Performance Optimization Guide

Set max_mr = NUM_ROUNDS

where NUM_ROUNDS is between 1 and 50.

Option 3: No Prime or ECDH Services Required

At build time:

• Set max_mr = 1

• In <ICP_ROOT>/quickassist/lookaside/access_layer/src/common/crypto/asym
/include/lac_pke_utils.h, set LAC_PKE_MAX_CHAIN_LENGTH = 1

§

