

Document Number: 621658

Intel® QuickAssist Technology

Debugging Guide

June 2021

Revision 1.4

2 Debugging Guide

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis You may not
use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which
includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel
product specifications and roadmaps.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service
activation. Performance varies depending on system configuration. No computer system can be absolutely secure. Check with
your system manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness
for a particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or
usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

*Other names and brands may be claimed as the property of others.

Copyright © 2021, Intel Corporation. All rights reserved.

http://intel.com/

Debugging Guide 3

Contents

1 Introduction .. 7

1.1 Terminology ... 7
1.2 Reference Documents and Software ... 8
1.3 Resources .. 8

2 How To… .. 10

2.1 How to Determine if Intel® QAT is Installed ... 10
2.1.1 Relevant Collateral ... 10
2.1.2 How to Determine if Intel® QAT is Running by Looking at Firmware

Counters ... 10
2.1.3 Relevant Collateral ... 10

2.2 How to Determine if Intel® QAT is Active .. 11
2.2.1 Relevant Collateral ... 11

2.3 How to Determine if the Intel® QAT Device Has Failed or Hung with Heartbeat
Monitoring .. 12
2.3.1 Relevant Collateral ... 12

2.4 How to Reset or Restart the Intel® QAT Device When it has Failed or Hung,
Using adf_ctl .. 12
2.4.1 Relevant Collateral ... 13

2.5 How to Gather Necessary Information for Debugging 13
2.5.1 Relevant Collateral ... 14

2.6 How to Enable Debug Symbols for the QAT Driver 14
2.7 How to Enable Debug Compile for QAT_engine .. 14

3 Intel® QAT Driver Installation Issues ... 16

3.1 Intel® QAT Driver Does Not Compile ... 16
3.1.1 Relevant Collateral ... 16

3.2 Linux* Crypto API Does Not Use Intel® QAT .. 16
3.2.1 Relevant Collateral ... 17

3.3 Issues with the Intel® QAT Make or with Starting Intel® QAT 17
3.3.1 Resolution ... 18
3.3.2 Relevant Collateral ... 18

4 System Configuration Issues ... 19

4.1 Intel® QAT Endpoint is Trained to Less than the PCIe* Max Capability 19
4.1.1 Resolution ... 19
4.1.2 Relevant Collateral ... 19

4.2 “adf_ctl status” Shows Fewer than Expected Devices 19
4.2.1 Resolution ... 19
4.2.2 Relevant Collateral ... 20

4.3 Firmware Authentication Error ... 20
4.3.1 Resolution ... 20
4.3.2 Relevant Collateral ... 20

4.4 Kernel Oops and/or Segmentation Fault When Bringing Up the Driver Via
adf_ctl or qat_service .. 20
4.4.1 Resolution ... 20
4.4.2 Relevant Collateral ... 20

5 Application Issues .. 21

4 Debugging Guide

5.1 Intel® QAT App Fails to Run .. 21
5.1.1 Resolution ... 21
5.1.2 Relevant Collateral ... 21

5.2 Application is Not Using Intel® QAT .. 21
5.2.1 Resolution ... 22
5.2.2 Relevant Collateral ... 22

5.3 Intel® QAT Endpoint Hangs ... 22
5.3.1 Resolution ... 22
5.3.2 Relevant Collateral ... 22

5.4 Error Reading /dev/qat_dev_processes File ... 22
5.4.1 Resolution Steps .. 22
5.4.2 Relevant Collateral ... 23

5.5 HKDF or ECEDMONT Operations Do Not Succeed 23
5.5.1 Resolution Steps .. 23
5.5.2 Relevant Collateral ... 23

5.6 Proxy Application+QAT, No Performance Improvement Using Multi-threads . 23
5.6.1 Resolution Steps .. 23

5.7 QAT1.7 Shows A Hang or Slice Hang but Recovers Automatically 24
5.7.1 Resolution ... 24

5.8 Compilation of Functional Sample Code with Alternative to gcc 24
5.8.1 Resolution ... 24
5.8.2 Relevant Collateral ... 24

5.9 Application Failure and Error When Trying to Run OpenSSL* (or an OpenSSL*-
based application) with QAT_engine with the USDM Driver with Huge Pages 24
5.9.1 Resolution ... 25

6 Intel® QAT Virtualization Issues ... 26

6.1 Too Many Intel® QAT VFs are Created .. 26
6.1.1 Resolution ... 26
6.1.2 Relevant Collateral ... 26

6.2 Intel® QAT VFs are Not Created ... 26
6.2.1 Resolution ... 26
6.2.2 Relevant Collateral ... 27

6.3 Virtualization Use Case Issues ... 27
6.3.1 Resolution ... 27
6.3.2 Relevant Collateral ... 27

7 Intel® QAT Performance Issues .. 28

7.1 CPU Performance Beats Intel® QAT Performance 28
7.1.1 Resolution ... 28
7.1.2 Relevant Collateral ... 28

7.2 Intel® QAT Performance is Low .. 28
7.2.1 Resolution ... 28
7.2.2 Relevant Collateral ... 29

8 NGINX* Issues .. 30

8.1 NGINX* + Intel® QAT Performance is Low ... 30
8.1.1 Resolution ... 30
8.1.2 Relevant Collateral ... 30

8.2 Core Dump Occurs During NGINX Reload .. 30
8.2.1 Resolution ... 32

9 OpenSSL*/QAT_Engine Issues ... 33

Debugging Guide 5

9.1 Error with Version of OpenSSL* ... 33
9.1.1 Resolution ... 33
9.1.2 Relevant Collateral ... 33

9.2 Errors with make/make install of the Intel® QAT OpenSSL* Engine 33
9.2.1 Resolution ... 34
9.2.2 Relevant Collateral ... 34

9.3 Errors observed with openssl_speed ... 34
9.3.1 Resolution ... 34

10 HAProxy* Issues .. 35

10.1 HAProxy* + Intel® QAT Error when Starting HAProxy* 35
10.1.1 Resolution ... 35
10.1.2 Relevant Collateral ... 35

10.2 HAProxy* + Intel® QAT Performance is Low .. 35
10.2.1 Resolution ... 35
10.2.2 Relevant Collateral ... 35

10.3 Error with HAProxy* Version ... 35
10.3.1 Resolution ... 36
10.3.2 Relevant Collateral ... 36

10.4 HAProxy* Shared Libraries libssl.so.1.1. and libcrypto.so.1.1 are Not Found 36
10.4.1 Resolution ... 37
10.4.2 Relevant Collateral ... 37

10.5 Fatal Errors with HAProxy* Configuration File .. 37
10.5.1 Resolution ... 37
10.5.2 Relevant Collateral ... 38

10.6 HAProxy* Test Does not Appear to Produce the Expected Results using
ApacheBench as a Load Generator ... 38
10.6.1 Resolution ... 38
10.6.2 Relevant Collateral ... 39

10.7 Issues making ssl Connection against HAProxy* Launched with Intel® QAT
Configured as Non-root User. .. 39
10.7.1 Resolution ... 40
10.7.2 Relevant Collateral ... 40

11 DPDK Issues ... 41

11.1 DPDK cryptodev failure .. 41
11.1.1 Resolution ... 41
11.1.2 Relevant Collateral ... 41

12 Miscellaneous Issues .. 42

12.1 Possible Errors Due to BIOS Setting ... 42
12.1.1 Resolution ... 42
12.1.2 Relevant Collateral ... 42

Tables

Table 1. Terminology .. 7
Table 2. Reference Documents and Software .. 8

6 Debugging Guide

Revision History

Document

Number

Revision

Number
Description

Revision

Date

621658 1.4 Added the following section for this release:
• Section 2.6 How to Enable Debug symbols for the QAT

Driver

• Section 2.7 How to enable debug compile for

QAT_engine

• Section 4.4 Kernel oops and/or segmentation fault when

bringing up the driver via adf_ctl or qat_service

• Section 5.9 Application failure and error when trying to

run openssl (or an openssl-based application) with

QAT_engine with the USDM driver with huge pages

• Section 9.3 Errors observed with openssl_speed

Modified the following section for this release:

• Section 5.7 QAT1.7 shows a hang or slice hang but

recovers automatically

June 2021

621658 1.3 Added the following section for this release:
• Section 5.8 Compilation of Functional Sample Code with

alternative to gcc

Modified the following section for this release:

• Section 12.1.1 Resolution (for Section 12.1 Possible

Errors Due to BIOS Setting)

December

2020

621658 1.2 Added the following sections for this release:

• 5.7 QAT1.7 shows a hang or slice hang but recovers

automatically

• 8.2 Core Dump Occurs During NGINX Reload

Modified the following sections for this release:

• Table 2 - Section 1.2 - Document location modified for

Intel® QuickAssist Technology Software for Linux* –

Software Drivers – Hardware Version 1.7

• Table 2 – Section 1.2 - Electronic Design Kit removed

from the table

6.3 Virtualization Use Case Issues

October

2020

621658 1.1 Added the following sections for this release:

• 4.3, F.W. Authentication Error

• 5.5, HKDF or ECEDMONT Operations do no Succeed

• 6.3, Virtualization Use Case Issues

• 10.7, Issues making SSL connection against HAProxy

launched with Intel® QAT configured as non-root user

• 11.0, DPDK Issues

July 2020

621658 1.0 Initial release March 2020

 §

Introduction

Debugging Guide 7

1 Introduction

This document was designed to help debug issues with Intel® QuickAssist Technology
(Intel® QAT).

It contains the following sections:

• How To…

• Intel® QAT Driver Installation Issues

• System Configuration Issues

• Application Issues

• Intel® QAT Virtualization Issues

• Intel® QAT Performance Issues

• NGINX* Issues

• OpenSSL*/QAT_Engine Issues

• HAProxy* Issues

• DPDK Issues

• Miscellaneous Issues

1.1 Terminology

Table 1. Terminology

Term Description

API Application Programming Interface

BIOS Basic Input/Output System

DC Data Compression

GRUB GRand Unified Bootloader

O.S. Operating System

PCH Platform Controller Hub

PCI Peripheral Component Interconnect

P.F. Physical Function

Intel® QAT Intel® QuickAssist Technology

SoC System-on-a-Chip

Introduction

8 Debugging Guide

Term Description

SRIOV Single Root-I/O Virtualization

V.F. Virtual Function

1.2 Reference Documents and Software

Table 2. Reference Documents and Software

Document Title
Document

Number/Location

Intel® QuickAssist Technology Software for Linux* – Release Notes –

Hardware Version 1.7
336211

Intel® QuickAssist Technology Software for Linux* – Getting Started

Guide – Hardware Version 1.7
336212

Intel® QuickAssist Technology Software for Linux* – Programmer’s

Guide – Hardware Version 1.7
336210

Intel® QuickAssist Technology Software for Linux* – Software

Drivers – Hardware Version 1.7
01.org

Intel® QuickAssist Technology API Programmer’s Guide 330684

Intel® QuickAssist Technology – Performance Optimization Guide 330687

Using Intel® Virtualization Technology (Intel® V.T.) with Intel®

QuickAssist Technology Application Note
330689

HAProxy* with Intel® QuickAssist Technology Application Note 337430

Intel® QuickAssist Technology Software for Linux* – Release Notes –

H.W. version 1.7
336211

Intel® QuickAssist Technology Videos

https://software.intel

.com/enus/networkin

g/quickassist

1.3 Resources

• https://01.org/intel-quickassist-technology

• https://software.intel.com/en-us/networking/quickassist

• https://github.com/intel/QAT_Engine

• http://www.intel.com/quickassist

• https://github.com/intel/QATzip

https://01.org/intel-quickassist-technology
https://01.org/intel-quickassist-technology
https://01.org/intel-quickassist-technology
https://01.org/
https://01.org/
https://01.org/intel-quickassist-technology
https://01.org/intel-quickassist-technology
https://01.org/intel-quickassist-technology
https://01.org/intel-quickassist-technology
https://01.org/intel-quickassist-technology
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://01.org/intel-quickassist-technology
https://01.org/intel-quickassist-technology
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://github.com/intel/QAT_Engine
https://github.com/intel/QAT_Engine
http://www.intel.com/quickassist
http://www.intel.com/quickassist
https://github.com/intel/QATzip
https://github.com/intel/QATzip

Introduction

Debugging Guide 9

• https://github.com/intel/asynch_mode_nginx

• https://www.haproxy.org/

• Intel® Select Solutions for NFVI

 §

https://github.com/intel/asynch_mode_nginx
https://github.com/intel/asynch_mode_nginx
https://www.haproxy.org/
https://www.haproxy.org/
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/network/nfvi.html
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/network/nfvi.html

How To…

10 Debugging Guide

2 How To…

This chapter describes how to perform various status checks on Intel® QAT.

2.1 How to Determine if Intel® QAT is Installed
1. Determine if Intel® QAT is installed by running the following command:

lsmod | grep qa

If Intel® QAT is installed, you should see output like the following:
]# lsmod | grep qa qat_c62x

13473 0 intel_qat 141688 1

qat_c62x authenc 17776 1

intel_qat dh_generic 13323

1 intel_qat rsa_generic 18819

1 intel_qat

2. If Intel QAT is not installed, follow the instructions in 336212, Intel® QuickAssist

Technology Software for Linux* Getting Started Guide Hardware Version 1.7, at
01.org or in the Intel® QuickAssist Technology Videos at
https://software.intel.com/enus/networking/quickassist.

3. Then rerun the command above to verify Intel® QAT is installed.

2.1.1 Relevant Collateral

• 336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –

Hardware Version 1.7, at 01.org

• 336212, Intel® QuickAssist Technology Software for Linux* – Getting Started Guide

– Hardware Version 1.7, at 01.org

• Intel® QuickAssist Technology Videos at
https://software.intel.com/enus/networking/quickassist

2.1.2 How to Determine if Intel® QAT is Running by Looking at

Firmware Counters

Monitor the Intel® QAT firmware counters to determine if Intel® QAT is running as in
the following example:
watch cat /sys/kernel/debug/qat_c6xx_0000\:3d\:00.0/fw_counters

These firmware counters are the -
/sys/kernel/debug/qat_<devicetype>_<bus_device_function>/fw_counters.

Intel® QAT firmware counters increase when Intel® QAT is running. If Intel® QAT is
not running, the firmware counters remain at their current value.

2.1.3 Relevant Collateral

336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –

Hardware Version 1.7, at 01.org.

https://01.org/
https://software.intel.com/enus/networking/quickassist
https://software.intel.com/enus/networking/quickassist
https://software.intel.com/enus/networking/quickassist
https://software.intel.com/enus/networking/quickassist
https://01.org/
https://01.org/
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://01.org/

How To…

Debugging Guide 11

2.2 How to Determine if Intel® QAT is Active

Run one of the following commands: systemctl status qat_service

or service qat_service status

You should see the resulting output similar to the following:
]# systemctl status qat_service

qat_service.service - LSB: modprobe the QAT modules, which loads

dependant modules, before calling the user space utility to pass

configuration parameters

Loaded: loaded (/etc/init.d/qat_service; generated)

Active: active (exited) since Fri 2019-12-20 18:32:32 UTC; 28min ago

Docs: man:systemd-sysv-generator(8)

Process: 48577 ExecStop=/etc/init.d/qat_service stop (code=exited,

status=0/SUCCESS)

Process: 48635 ExecStart=/etc/init.d/qat_service start (code=exited,

status=0/SUCCESS)

Dec 20 18:32:30 dbubuntu qat_service[48635]: Restarting all devices.

Dec 20 18:32:30 dbubuntu qat_service[48635]: Processing

/etc/c6xx_dev0.conf

Dec 20 18:32:30 dbubuntu qat_service[48635]: Processing

/etc/c6xx_dev1.conf

Dec 20 18:32:31 dbubuntu qat_service[48635]: Processing

/etc/c6xx_dev2.conf

Dec 20 18:32:32 dbubuntu qat_service[48635]: Checking status of all

devices. Dec 20 18:32:32 dbubuntu qat_service[48635]: There is 3 QAT

acceleration device(s) in the system:

Dec 20 18:32:32 dbubuntu qat_service[48635]: qat_dev0 - type: c6xx,

inst_id: 0, node_id: 0, bsf: 0000:3d:00.0, #accel: 5 #engines: 10 state:

up

Dec 20 18:32:32 dbubuntu qat_service[48635]: qat_dev1 - type: c6xx,

inst_id: 1, node_id: 0, bsf: 0000:3f:00.0, #accel: 5 #engines: 10 state:

up

Dec 20 18:32:32 dbubuntu qat_service[48635]: qat_dev2 - type: c6xx,

inst_id: 2, node_id: 1, bsf: 0000:da:00.0, #accel: 5 #engines: 10 state:

up

Dec 20 18:32:32 dbubuntu systemd[1]: Started LSB: modprobe the QAT

modules, which loads dependant modules, before calling the user space

utility to pass configuration parameters.

]# service qat_service status Checking status of all devices.

There is 3 QAT acceleration device(s) in the system: qat_dev0 - type:

c6xx, inst_id: 0, node_id: 0, bsf: 0000:3d:00.0,

#accel: 5 #engines: 10 state: up

qat_dev1 - type: c6xx, inst_id: 1, node_id: 0, bsf: 0000:3f:00.0,

#accel: 5 #engines: 10 state: up

qat_dev2 - type: c6xx, inst_id: 2, node_id: 1, bsf: 0000:da:00.0,

#accel: 5 #engines: 10 state: up

Note: You can also run the systemctl <start, restart or stop> qat_service command, or

qat_service <start, restart or stop> to perform the specific request.

2.2.1 Relevant Collateral

336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –
Hardware Version 1.7, at 01.org

https://01.org/

How To…

12 Debugging Guide

2.3 How to Determine if the Intel® QAT Device Has

Failed or Hung with Heartbeat Monitoring

You can use Heartbeat monitoring to determine if the Intel® QAT device is in a
functional state.

To simulate the Heartbeat management process, run the following commands:
cat /sys/kernel/debug/<device>/heartbeat

If 0 is returned, it indicates the device is responding. If –1 is returned, it indicates the
device is not responding.
cat /sys/kernel/debug/<device>/heartbeat_sent

This number will increase each time the CAT heartbeat is sent because it tracks the
number of times the control process checks to see if the device is responsive.
cat /sys/kernel/debug/<device>/heartbeat_fail

This number will increase each time the return value of the cat heartbeat is –1
because it keeps track of the number of times the control process finds the device
unresponsive.
cat /sys/kernel/debug/<device>/heartbeat_sim_fail

This command simulates a failure on the Intel® QAT device. The return value will be
zero. In addition, you can use the icp_sal_heartbeat_simulate_failure() API to

simulate a heartbeat failure as well. For examples of other types of applications, refer
to the following subdirectory of the Intel® QAT directory where the acceleration

software is unpacked:
quickassist/lookaside/access_layer/src/sample_code/functional/common

Note: To simulate the heartbeat failure, Intel® QAT has to be configured as follows:
./configure --enable-icp-hb-fail-sim

2.3.1 Relevant Collateral

336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –
Hardware Version 1.7, Section 3.17, at 01.org.

2.4 How to Reset or Restart the Intel® QAT Device

When it has Failed or Hung, Using adf_ctl

When the Heartbeat monitoring detects that the Intel® QAT device has failed or hung,
the device can be reset or restarted with the adf_ctl utility. In addition, the Intel®

QAT device can be configured for auto-reset via the configuration file. For more
information, please refer to Document Number 336210, Intel® QuickAssist Technology

Software for Linux* – Programmer’s Guide. Sections 3.3 and 5.2.6 contain information
on the adf_ctl utility. “Resetting a Failed Device,” under Section 3.17.1, contains

information on Intel® QAT device auto-resetting via the configuration file.

The adf_ctl tool is in the subdirectory quickassist/utilities/adf_ctl of the

Intel® QAT directory, where the acceleration software is unpacked. In the following

https://01.org/

How To…

Debugging Guide 13

steps, /opt/APP/driver/QAT is the directory where the acceleration software is

unpacked.
/opt/APP/driver/QAT/quickassist/utilities/adf_ctl]# ./adf_ctl qat_dev0

reset

/opt/APP/driver/QAT/quickassist/utilities/adf_ctl]# ./adf_ctl qat_dev0

restart

The first example above resets the QAT_dev0 device, while the second example

restarts the QAT_dev0 device. Note that if AutoResetOnError is set to 1 in the

[GENERAL] section of the Intel® QAT Config file (i.e., c6xx_dev0.conf), the reset is

done automatically, and there is no need to perform the first example.

2.4.1 Relevant Collateral

336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –
Hardware Version 1.7, at 01.org

2.5 How to Gather Necessary Information for

Debugging

The icp_dump.sh tool is in the quickassist/utilities/debug_tool subdirectory of

the Intel® QAT directory, where the acceleration software is unpacked. In the
following steps, the Intel® QAT directory is /opt/APP/driver/QAT and the tar file

(created from icp_dump.sh) will be stored in the /root/iss_nfvi/icp_dump

directory.

Note: Run the command mkdir /root/iss_nfvi/icp_dump (or the directory of your choice)

before running these steps.

1. Define ICP_ROOT as the directory you have installed Intel® QAT
export ICP_ROOT=/opt/APP/driver/QAT

2. Run icp_dump.sh with one parameter: the directory where you would like the tar

file to be stored.
debug_tool]# ./icp_dump.sh /root/iss_nfvi/icp_dump

Note: Accept and run the debug tool, type yes when prompted.

3. Unzip the file and verify Intel® QAT acceleration devices in the system are up.
iss_nfvi]# tar -xzvf ICP_debug_18h_52m_07s_17d_10m_19y.tar.gz

iss_nfvi]# cd ICP_debug

ICP_debug]# cat adf_ctl_status.txt

Checking status of all devices.

There are three Intel® QAT acceleration devices in the system:
qat_dev0 - type: c6xx, inst_id: 0, node_id: 0, bsf: 0000:3d:00.0,

#accel: 5 #engines: 10 state: up qat_dev1 - type: c6xx, inst_id: 1,

node_id: 0, bsf: 0000:3f:00.0, #accel: 5 #engines: 10 state: up

qat_dev2 - type: c6xx, inst_id: 2, node_id: 1, bsf: 0000:da:00.0,

#accel: 5 #engines: 10 state: up

4. Verify that all Intel® QAT configuration files are the same.

https://01.org/

How To…

14 Debugging Guide

The SHIM section needs to be in place when Intel® QAT SHIMs is used, and this
includes the Intel® QAT Engine and QATqzip. The CPA sample code uses the default

Intel® QAT configuration files that are installed along with the Intel® QAT driver.

The following is an example of the configuration that contains the [SHIM] section:
ICP_debug]# cd config_files/ config_files]# cat c6xx_dev0.conf …

User Process Instance Section

[SHIM]

NumberCyInstances = 1

NumberDcInstances = 0

NumProcesses = 10

Crypto - User space

Cy0Name = "UserCY0"

Cy0IsPolled = 1

Cy0CoreAffinity = 0

2.5.1 Relevant Collateral

336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –
Hardware Version 1.7, at 01.org

2.6 How to Enable Debug Symbols for the QAT Driver

For the QAT driver, you can enable debugging with these changes:
quickassist/build_system/build_files/env_files/environment.mk

ICP_DEFENSES_ENABLED ?= n

quickassist/build_system/build_files/common.mk

$(PROG_ACY)_OPT_LEVEL?=0

Makefile (change it after ./configure, then make and install)

CFLAGS = -g

2.7 How to Enable Debug Compile for QAT_engine

For the QAT_engine / OpenSSL*, you can enable debugging with these changes:

QAT_Engine:

1. run ./configure with additional parameters such as the following:
 --enable-qat_debug \

 --enable-qat_warnings \

 --enable-qat_mem_warnings \

 --enable-qat_mem_debug

 --with-qat_debug_file=/qat_engine_debug.log

2. Check QAT Engine Makefile and make the following changes:
Change cflags = -shared -fPIC -Wall -Wformat -Wformat-security -O2 -

D_FORTIFY_SOURCE=2 -fstack-protector to cflags = -shared -fPIC -Wall

-Wformat -Wformat-security –O0 -g -D_FORTIFY_SOURCE=0 -fstack-

protector

Change "CFLAGS = -g -O2" to "CFLAGS = -g –O0"

https://01.org/

How To…

Debugging Guide 15

Change "CXXFLAGS = -g -O2" to "CXXFLAGS = -g –O0"

§

Intel® QAT Driver Installation Issues

16 Debugging Guide

3 Intel® QAT Driver Installation

Issues

The following sections describe steps for resolving Intel® QAT driver installation
issues.

3.1 Intel® QAT Driver Does Not Compile

If you experience compile errors, try one or more of the following steps:

• Update to the latest Intel® QAT Driver version

• Study the errors and warnings

• Update driver to use the kernel functions that correspond with your kernel and

structures

• Install dependencies as described in the Intel® QAT Getting Started Guide

Note: Compile errors related to the kernel version are usually observed with newer kernels.

Please update to the latest version of the Intel® QAT driver available on 01.org. If you
still experience issues, consult with your Intel representative.

3.1.1 Relevant Collateral

336212, Intel QuickAssist Technology Software for Linux* Getting Started Guide
Hardware Version 1.7, at 01.org.

3.2 Linux* Crypto API Does Not Use Intel® QAT

Users may be attempting to use Intel® QAT integrated into the Linux* Crypto API and
looking for confirmation that Intel® QAT is being used. Users can look to the Intel®
QAT FW counters and verify that they increase as crypto operations are performed. If
Intel® QAT counters are not increasing, it may be due to one of the following:

• Depending on the user’s version of Intel® QAT, the Linux* Crypto API may not be

enabled by default. In Intel® QAT HW Version 1.7 L.4.7 and earlier, the Linux*
Crypto API was enabled by default. With Intel® QAT HW Version 1.7 L.4.8 and later,
the option must be enabled when installing Intel® QAT, with the following

command:
 ./configure --enable-qat-lkcf

• The required algorithm may not be installed. The user may add the algorithm or ask
their Intel representative to add the algorithm. The following is an example of how
to determine the algorithms supported in the current installation:

 # cat /proc/crypto | grep

 qat driver : qat-dh

 module : intel_qat

 driver : qat-rsa

https://01.org/
https://01.org/

Intel® QAT Driver Installation Issues

Debugging Guide 17

 module : intel_qat

 driver :

 qat_aes_cbc_hmac_sha512

 module : intel_qat

 driver :

 qat_aes_cbc_hmac_sha256

 module : intel_qat

 driver :

 qat_aes_cbc_hmac_sha1

 module :

 intel_qat driver

 : qat_aes_xts module

 : intel_qat driver

 : qat_aes_ctr module

 : intel_qat driver

 : qat_aes_cbc module

 : intel_qat

3.2.1 Relevant Collateral

Driver code and O.S. registered functions.

3.3 Issues with the Intel® QAT Make or with Starting

Intel® QAT

For the issues listed below, the root cause may be a mismatch of the install kernel
and/or headers.

• Kernel Header Files Missing:
make[1]: Entering directory `/opt/APP/driver/QAT'

make[2]: Entering directory `/opt/APP/driver/QAT/quickassist/qat'

Makefile:66: *** ERROR: Kernel header files not found. Install the

appropriate kernel development package necessary for building external

kernel modules or run 'make oldconfig && make modules_prepare' on

kernel src to fix it. Stop.

make[2]: Leaving directory `/opt/APP/driver/QAT/quickassist/qat'

make[1]: *** [qat-driver-all] Error 2 make[1]: Leaving directory

`/opt/APP/driver/QAT' make: *** [all] Error 2

• Errors in Intel® QAT Make:
include/asm-generic/pgtable.h:632:19: note: previous definition of

‘pud_trans_huge’ was here static inline int pud_trans_huge(pud_t pud)

^ In file included from ./arch/x86/include/asm/pgtable.h:1235:0,

from include/linux/mm.h:63, from

./arch/x86/include/asm/pci.h:4, from

include/linux/pci.h:1641, from

/opt/APP/driver/QAT/quickassist/qat/compat/ qat_compat.h:87,

from <command-line>:0: include/asm-generic/pgtable.h: At top level:

include/asm-generic/pgtable.h:632:19: error: redefinition of

‘pud_trans_huge’ static inline int pud_trans_huge(pud_t pud)

• Unable to Start/Restart Intel® QAT:
 Failed to restart qat_service.service: Unit not found.

Intel® QAT Driver Installation Issues

18 Debugging Guide

3.3.1 Resolution

Follow these steps:

1. Use the following code to determine what kernels are installed on your system, as
in the following example:
yum list installed kernel

Loaded plugins: langpacks, product-id, search-disabled-repos,

subscription-manager Installed Packages kernel.x86_64

3.10.0-957.el7 @anaconda/7.6 kernel.x86_64 3.10.0-

957.12.2.el7 @rhel-7-server-rpms kernel.x86_64 3.10.0-

1062.12.1.el7 @rhel-7-server-rpms

2. If there is no kernel list as shown in the previous step, then install it as follows:
yum install kernel-devel-$(uname -r)

3. If multiple kernels are installed, remove the kernels that you do not need as in the
following example:
yum remove kernel-devel-3.10.0-1062.12.1.el7.x86_64

4. If the only kernel installed is the one you want, then reinstall it by performing
Step 3, followed by Step 2.

Reinstalling the kernel will verify the correct headers are being used (i.e., there may
be a chance that Intel® QAT was previously built with a different Linux* kernel, with
different headers.)

3.3.2 Relevant Collateral

336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –
Hardware Version 1.7, at 01.org

 §

https://01.org/

System Configuration Issues

Debugging Guide 19

4 System Configuration Issues

This section describes resolution steps for system configuration issues.

4.1 Intel® QAT Endpoint is Trained to Less than the

PCIe* Max Capability

This issue includes one or more of the following symptoms:

lspci returns a trained value below the maximum PCIe* capability

• Intel® QAT performance is low

• Platform issues: BIOS, jumpers, or analog issues

• Intel® QAT endpoint is trained correctly, but the internal switches report at lower
speeds

4.1.1 Resolution

Verify that the cpa_sample_code gives the expected performance.

Contact your Intel representative for the expected performance numbers, if
necessary.

4.1.2 Relevant Collateral

• 336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –
Hardware Version 1.7, at 01.org

• 330687, Intel® QuickAssist Technology – Performance Optimization Guide, at 01.org

• Intel® QuickAssist Technology Videos at
https://software.intel.com/enus/networking/quickassist

4.2 “adf_ctl status” Shows Fewer than Expected

Devices

If adf_ctl status shows fewer than expected devices, try the resolution steps below.

4.2.1 Resolution

Check for one or more of the following conditions:

• Intel® QAT modules were not successfully installed with insmod

• Intel® QAT modules were not installed with insmod in the correct order

https://01.org/
https://01.org/
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist

System Configuration Issues

20 Debugging Guide

4.2.2 Relevant Collateral

• 336212, Intel® QuickAssist Technology Software for Linux* – Getting Started Guide
– Hardware Version 1.7, at 01.org

• Intel® QuickAssist Technology Videos at

https://software.intel.com/enus/networking/quickassist

4.3 Firmware Authentication Error

If you see the following symptom, please try the resolution steps below: dmesg Intel®

QAT: authentication error (FCU_STATUS = 0x3),retry = 0

4.3.1 Resolution

If there is not a PCIe AER error, double-check the firmware version. Mismatching the
firmware. version and driver version will cause an authentication error.

4.3.2 Relevant Collateral

336212, Intel® QuickAssist Technology Software for Linux* – Getting Started Guide –
Hardware Version 1.7, at 01.org

4.4 Kernel Oops and/or Segmentation Fault When

Bringing Up the Driver Via adf_ctl or qat_service

If Kernel oops when bringing up the driver with adf_ctl or qat_service, try the

resolution steps below. Oops may include the kernel message keywords "SMP PTI".

4.4.1 Resolution

Ensure that all modules were built correctly and are not a mix of assets
from 01.org and kernel.org. Use modinfo on all modules returned from "lsmod | grep
qa", if necessary. If following the Getting Started Guide and using the configure and
make commands per the guide, this will be handled correctly.

4.4.2 Relevant Collateral

• 336212, Intel® QuickAssist Technology Software for Linux* – Getting Started Guide
– Hardware Version 1.7, at 01.org

 §

https://01.org/
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://01.org/
https://01.org/
https://01.org/
http://kernel.org/
https://01.org/
https://software.intel.com/en-us/networking/quickassist

Application Issues

Debugging Guide 21

5 Application Issues

This section describes resolution steps for application issues.

5.1 Intel® QAT App Fails to Run

Error messages result when starting the Intel® QAT app, usually during the userStart

function.

5.1.1 Resolution

Try one or more of the following:

• Install Intel® QAT.

• Update Intel® QAT configuration files to include the correct section name.

Note: Run the CPA Sample App first to verify that you get good results.

Please refer to Section 4.1 of the Intel® QAT Getting Started Guide.

5.1.2 Relevant Collateral

• 336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –
Hardware Version 1.7, at 01.org

• 336212, Intel® QuickAssist Technology Software for Linux* – Getting Started Guide

– Hardware Version 1.7, at 01.org

• Intel® QuickAssist Technology Videos at
https://software.intel.com/enus/networking/quickassist

For example, Section 3, “Building and Installing Software,” and Section 4, “Sample
Applications,” in the Getting Started Guide, will show all the necessary steps.

Also, please refer to the following entries in Section 2.0 of this document:
− How to Determine if Intel® QAT is Installed
− How to Determine if Intel® QAT is Active

5.2 Application is Not Using Intel® QAT

Intel® QAT counters are not increasing. For example,
watch cat /sys/kernel/debug/qat_c6xx_0000:3d:00.0/fw_counters

Note: Check /sys/kernel/debug for your applicable qat_c6xx* directory.

https://01.org/
https://01.org/
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist

Application Issues

22 Debugging Guide

5.2.1 Resolution

Applications may not be patched or configured to use Intel® QAT. Consult the relevant

documentation.

5.2.2 Relevant Collateral

• 336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –
Hardware Version 1.7, at 01.org

• 330687, Intel® QuickAssist Technology – Performance Optimization Guide, at 01.org

• Intel® QuickAssist Technology Videos at
https://software.intel.com/enus/networking/quickassist

5.3 Intel® QAT Endpoint Hangs

If the Intel® QAT device is not responsive, try the resolution steps below.

5.3.1 Resolution

Try one or more of the following:

• Step through the application to identify the operation that led to the hang, i.e.,
focus on replication.

• Run adf_ctl reset to recover.

• Verify that all Intel® QAT API operations and addresses are valid.

5.3.2 Relevant Collateral

336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –
Hardware Version 1.7, at 01.org

5.4 Error Reading /dev/qat_dev_processes File

When testing the driver (e.g., with functional sample code), you receive the error
reading /dev/qat_dev_processes file:
./ipsec_sample main(): Starting IPSec Sample Code App ...

ADF_UIO_PROXY err: icp_adf_userProcessToStart: Error reading

/dev/qat_dev_processes file main(): Failed to start user process SSL

5.4.1 Resolution Steps

1. Ensure that the configuration files match the application code, i.e., that
icp_sal_userStart references "SSL" and that the configuration files in /etc/ also

mention "SSL" sections with a declared number of instances.

2. Restart qat_service.

https://01.org/
https://01.org/
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://01.org/

Application Issues

Debugging Guide 23

5.4.2 Relevant Collateral

336212, Intel® QuickAssist Technology Software for Linux* – Getting Started Guide –

Hardware Version 1.7, at 01.org

5.5 HKDF or ECEDMONT Operations Do Not Succeed

There are multiple options for this issue, such as the following:
"The device does not support ECEDMONT"

"The device does not support HKDF"

"ExtAlgChain feature not supported"

5.5.1 Resolution Steps

There are multiple steps you can take, such as follows:

• Ensure that you have the correct ServicesProfile option

• Ensure that you are on the latest release. 4.10 on the host and guest may solve the
issue.

5.5.2 Relevant Collateral

• 336211, Intel QuickAssist Technology Software for Linux* Release Notes H.W.
version 1.7, at 01.org

• 336210, Intel QuickAssist Technology Software for Linux* Programmers Guide

Hardware Version 1.7, at 01.org

5.6 Proxy Application+QAT, No Performance

Improvement Using Multi-threads

Try the resolution steps below if there is no performance improvement with 1 process
and multithreading(multi workers).

5.6.1 Resolution Steps

Try setting the flag ICP_WITHOUT_THREAD in the USDM

(quickassist/utilities/libusdm_drv) and recompile the USDM alone. Set the

additional environment variables mentioned below to recompile USDM alone.
export ICP_WITHOUT_THREAD=1 export

ICP_BUILDSYSTEM_PATH=$ICP_ROOT/quickassist/build_system

export

ICP_ENV_DIR=$ICP_ROOT/quickassist/build_system/build_files/env_files

https://01.org/
https://01.org/
https://01.org/

Application Issues

24 Debugging Guide

5.7 QAT1.7 Shows A Hang or Slice Hang but Recovers

Automatically

When an automatic recovery occurs after a hang or slice hang, there is no longer a
possibility to perform a register or ring dump analysis to determine the root cause of

the hang. Kernel messages may be seen that mention slice hang, with a possible
application error.

5.7.1 Resolution

Increase CySymAndDcWatchDogTimer and/or CyAsymWatchDogTimer (in ms) in the

general section of the config file to set the watchdog timer to a high value (e.g.
1000000).

You can also disable/enable slice hang detection for a device or all devices as follows:
./qat_debug.sh [[--disable_slicehang_detection|--

enable_slicehang_detection] <bus>:<device>.<func>]

./qat_debug.sh [[--disable_slicehang_detection|--

enable_slicehang_detection] all]

Please contact your Intel representative for more information on qat_debug.sh.

5.8 Compilation of Functional Sample Code with

Alternative to gcc

The functional sample code can be compiled with an alternative compiler other than
the gcc compiler.

5.8.1 Resolution

Use the "CC" option when building. For example, to use the icc compiler, you would
change "make all" to "make CC=icc all". (Please refer to Section 4.2.1 of the Getting
Started Guide.)

5.8.2 Relevant Collateral

336212, Intel QuickAssist Technology Software for Linux* Getting Started Guide
Hardware Version 1.7, at 01.org.

5.9 Application Failure and Error When Trying to Run

OpenSSL* (or an OpenSSL*-based application)

with QAT_engine with the USDM Driver with
Huge Pages

An error message similar to the following may be received when running OpenSSL*
(or an OpenSSL*-based application):

https://01.org/

Application Issues

Debugging Guide 25

hugepage_mmap_phy_addr:159 qae_mmap(/dev/hugepages/qat/usdm.jxZf9Y) for

hpg_fd failed with errno:12

hugepage_alloc_slab:204 mmap on huge page memory allocation failed

ADF_UIO_PROXY err: adf_init_ring: unable to get ringbuf(v:(nil),p:(nil))

for rings in bank(0)

ADF_UIO_PROXY err: icp_adf_transCreateHandle: adf_init_ring failed

[error] SalCtrl_ServiceInit() - : Failed to initialise all service

instances

ADF_UIO_PROXY err: adf_user_subsystemInit: Failed to initialise

Subservice SAL

[error] SalCtrl_ServiceEventStart() - : Private data is NULL

ADF_UIO_PROXY err: adf_user_subsystemStart: Failed to start Subservice

SAL

[error] SalCtrl_AdfServicesStartedCheck() - : Sal Ctrl failed to start in

given time

[error] do_userStart() - : Failed to start services

ADF_UIO_PROXY err: icp_adf_subsystemUnregister: Failed to shutdown

subservice SAL.

5.9.1 Resolution

Ensure that huge pages are created.
cat /sys/kernel/mm/hugepages/hugepages-2048kB/nr_hugepages

(should be greater than zero)

Inf the number of huge pages is zero, as an example, they can be increased
temporarily as follows:
echo 1024 > /proc/sys/vm/nr_hugepages

Other things to try could be reducing the number of QAT instances allocated in the

/etc config file, or adjusting the huge pages allocated on insmod of usdm:
insmod ./usdm_drv.ko max_huge_pages=<adjust>

max_huge_pages_per_process=<adjust>

§

Intel® QAT Virtualization Issues

26 Debugging Guide

6 Intel® QAT Virtualization

Issues

This section describes resolution steps for Intel® QAT virtualization issues.

6.1 Too Many Intel® QAT VFs are Created

When trying to create fewer virtual functions than the maximum, the maximum
number always gets created.

6.1.1 Resolution

None; this is a hardware limitation, currently.

6.1.2 Relevant Collateral

• 330689, Using Intel® Virtualization Technology (Intel® V.T.) with Intel® QuickAssist
Technology Application Note, at 01.org

• Videos at https://software.intel.com/en-us/networking/quickassist

6.2 Intel® QAT VFs are Not Created

If the virtual functions are not created, try resolving this issue using the resolution
steps below.

6.2.1 Resolution

Check for one or more of the following causes:

• configure was not run with the right options and needed to be run with the correct

option.

• intel_iommu=on is not part of the GRUB boot settings and needs to be included in

the grub • Virtualization is not enabled in the BIOS and needs to be enabled

6.2.1.1 Example Outputs

1. Run lscpu to check if virtualization (vmx) is enabled in the BIOS:
lscpu | grep vmx

Flags: fpu vme de pse tsc msr pae mce cx8 apic sep

mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht

tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon

pebs bts rep_good nopl xtopology nonstop_tsc aperfmperf eagerfpu pni

pclmulqdq dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16

xtpr pdcm pcid dca sse4_1 sse4_2 x2apic movbe popcnt

tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm

https://01.org/
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist

Intel® QAT Virtualization Issues

Debugging Guide 27

3dnowprefetch epb cat_l3 cdp_l3 invpcid_single intel_ppin intel_pt

ssbd mba ibrs ibpb stibp ibrs_enhanced tpr_shadow vnmi flexpriority

ept vpid fsgsbase tsc_adjust bmi1 hle avx2 smep bmi2 erms invpcid rtm

cqm mpx rdt_a avx512f avx512dq rdseed adx smap clflushopt clwb

avx512cd avx512bw avx512vl xsaveopt xsavec xgetbv1 cqm_llc

cqm_occup_llc cqm_mbm_total cqm_mbm_local dtherm arat pln pts hwp

hwp_act_window hwp_epp hwp_pkg_req pku ospke avx512_vnni md_clear

spec_ctrl intel_stibp flush_l1d arch_capabilities

2. Check dmesg to see if Virtualization (DMAR) is enabled for your particular device:
dmesg | grep -i DMAR | grep d8:00.0

[5.361824] DMAR: Hardware identity mapping for device

0000:d8:00.0

6.2.2 Relevant Collateral

• 330689, Using Intel® Virtualization Technology (Intel® V.T.) with Intel® QuickAssist

Technology Application Note, at 01.org

• Videos at https://software.intel.com/en-us/networking/quickassist

6.3 Virtualization Use Case Issues

You may encounter a kernel message such as "PTAE Read access is not set"

and/or "Cannot use PF with IOMMU enabled."

6.3.1 Resolution

• Get cpa_sample_code working by referring to Table 2, Using Intel® Virtualization

Technology (Intel® VT) with Intel® QuickAssist Technology Application Note.

• Ensure that the BIOS enables virtualization.

• Ensure that intel_iommu=on is set in grub, verified using "cat /proc/cmdline".

Note: If intel_iommu=on is not set in the grub, then it implies that QAT should be run

without the configure script option enable-icp-sriov. The converse is also true.

• Ensure that host configure script was run with”./configure --enable-icp-

sriov=host" and that the guest configure script (if applicable) was run with

"./configure --enable-icp-sriov=guest"

6.3.2 Relevant Collateral

• 330689, Using Intel® Virtualization Technology (Intel® V.T.) with Intel® QuickAssist
Technology Application Note, at 01.org

• Videos at https://software.intel.com/en-us/networking/quickassist

 §

https://01.org/
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://01.org/
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist

Intel® QAT Performance Issues

28 Debugging Guide

7 Intel® QAT Performance Issues

This section describes resolution steps for Intel® QAT performance issues.

7.1 CPU Performance Beats Intel® QAT Performance

If the CPU performance beats Intel® QAT performance resolve this by using the
resolution steps below.

7.1.1 Resolution

Try one or more of the following steps:

• Optimize the application for memory recycling.

• Increase application concurrency and Intel® QAT configuration to use full
parallelization.

• Increase buffer/packet sizes (small packets may not see the offloading benefit).

• CPU performance may beat Intel® QAT for certain algorithms, for certain packages,
with enough cores.

7.1.2 Relevant Collateral

• 330687, Intel® QuickAssist Technology – Performance Optimization Guide, at 01.org

• Videos at https://software.intel.com/en-us/networking/quickassist

7.2 Intel® QAT Performance is Low

When Intel® QAT is not performing as expected try one or more of the following
resolution steps to resolve the issue.

7.2.1 Resolution

Try one or more of the following steps:

• Optimize the application for memory recycling.

• Increase application concurrency and Intel® QAT configuration to use full
parallelization.

• Increase buffer/packet sizes (small packets may not see the offloading benefit).

• CPU performance may beat Intel® QAT for certain algorithms, for certain packages,
with enough cores.

• Remove software stack layers to verify that Intel® QAT performance at the lower-
lever layers is as expected.

https://01.org/
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist

Intel® QAT Performance Issues

Debugging Guide 29

7.2.2 Relevant Collateral

• 330687, Intel® QuickAssist Technology – Performance Optimization Guide, at 01.org

• 336210, Intel® QuickAssist Technology Software for Linux* – Programmer’s Guide –
Hardware Version 1.7, at 01.org.

• Videos at https://software.intel.com/en-us/networking/quickassist

 §

https://01.org/
https://01.org/
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist
https://software.intel.com/en-us/networking/quickassist

NGINX* Issues

30 Debugging Guide

8 NGINX* Issues

This section describes steps to resolve NGINX* issues.

8.1 NGINX* + Intel® QAT Performance is Low

If performance is low with NGINX and Intel® QAT, follow the resolution steps below.

8.1.1 Resolution

Try one or more of the following steps:

• Use the Intel® Select Solutions for NFVI script to apply the correct settings (i.e.,

more worker processes, keep-alive settings, high concurrency, etc.)

• Ensure that Intel® QAT is being used with the firmware counters

• Ensure that GRUB does not have idle=poll

• Isolating cores in the GRUB has been shown to reduce performance

8.1.2 Relevant Collateral

Intel® Select Solutions for NFVI

8.2 Core Dump Occurs During NGINX Reload

The following is an example of a core dump that occurred during NGINX Reload (i.e.
backtrace stack):

Core dump during Nginx reload, backtrace stack:

#0 0x00007f6964a20544 in Lac_MemPoolCleanUpInternal () from

/usr/local/lib/libqat_s.so

#1 0x00007f6964a208a0 in Lac_MemPoolCreate () from

/usr/local/lib/libqat_s.so

#2 0x00007f6964a3cb5a in SalCtrl_AsymInit () from

/usr/local/lib/libqat_s.so

#3 0x00007f6964a3d573 in SalCtrl_CryptoInit () from

/usr/local/lib/libqat_s.so

#4 0x00007f6964a40ac5 in SalCtrl_ServiceInit.constprop.2 () from

/usr/local/lib/libqat_s.so

#5 0x00007f6964a41918 in SalCtrl_ServiceEventHandler () from

/usr/local/lib/libqat_s.so

https://www.intel.com/content/www/us/en/products/solutions/select-solutions/network/nfvi.html
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/network/nfvi.html
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/network/nfvi.html
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/network/nfvi.html

NGINX* Issues

Debugging Guide 31

#6 0x00007f6964a4821d in adf_user_subsystemInit () from

/usr/local/lib/libqat_s.so

#7 0x00007f6964a48edc in adf_proxy_get_device () from

/usr/local/lib/libqat_s.so

#8 0x00007f6964a49030 in adf_proxy_get_devices () from

/usr/local/lib/libqat_s.so

#9 0x00007f6964a47688 in icp_adf_userProxyInit () from

/usr/local/lib/libqat_s.so

#10 0x00007f6964a450cc in do_userStart (process_name=0x7ffd66ddd660

"SHIM_INT_33") at

/root/qat_upstream_driver/quickassist/lookaside/access_layer/src/user/sal

_user.c:137

#11 icp_sal_userStart (process_name=<optimized out>) at

/root/qat_upstream_driver/quickassist/lookaside/access_layer/src/user/sal

_user.c:187

#12 0x00007f6964a45335 in icp_sal_userStartMultiProcess

(pProcessName=<optimized out>,

limitDevAccess=limitDevAccess@entry=CPA_FALSE) at

/root/qat_upstream_driver/quickassist/lookaside/access_layer/src/user/sal

_user.c:220

#13 0x00007f69627a4e4f in qat_engine_init (e=e@entry=0x55d014708140) at

e_qat.c:475

#14 0x00007f69627a5f30 in engine_init_child_at_fork_handler () at

qat_fork.c:91

#15 0x00007f6964d8caae in fork () from /lib64/libc.so.6

#16 0x000055d01326c90a in ngx_spawn_process

(cycle=cycle@entry=0x55d01473c3f0, proc=proc@entry=0x55d01326e380

<ngx_worker_process_cycle>, data=data@entry=0x1,

name=name@entry=0x55d0132d11db "worker process", respawn=respawn@entry=-

4)

 at src/os/unix/ngx_process.c:186

#17 0x000055d01326db10 in ngx_start_worker_processes

(cycle=cycle@entry=0x55d01473c3f0, n=32, type=type@entry=-4) at

src/os/unix/ngx_process_cycle.c:361

#18 0x000055d01326eebb in ngx_master_process_cycle (cycle=0x55d01473c3f0,

cycle@entry=0x55d0146fcfe0) at src/os/unix/ngx_process_cycle.c:246

#19 0x000055d013246605 in main (argc=<optimized out>, argv=<optimized

out>) at src/core/nginx.c:389

Note: Hugepage memory is used up and there is no 2MB slab memory. Neither can be

checked with `cat /proc/meminfo` and `cat /proc/buddyinfo`. Usually, if check with `free -

m`, the buffer/cache number will be high.

NGINX* Issues

32 Debugging Guide

8.2.1 Resolution

There is a work around. Allocate enough Hugepage Memory for Nginx. If there are 32

Nginx worker processes, during reload, the maximum number of work processes will
be 64.

insmod ./usdm_drv.ko max_huge_pages=N max_huge_pages_per_process=32

N should be larger than or equal to 32 * 64

§

OpenSSL*/QAT_Engine Issues

Debugging Guide 33

9 OpenSSL*/QAT_Engine Issues

This section describes resolution steps for OpenSSL*/QAT_Engine issues.

9.1 Error with Version of OpenSSL*

If you see a result like the following:
[root@SR1B011 apps]# ./openssl version

./openssl: error while loading shared libraries:

libssl.so.1.1: cannot open shared object file: No such file or directory

Then most likely, the library path is not set up.
[root@SR1B011 apps]# echo $LD_LIBRARY_PATH

9.1.1 Resolution

Export the $LD_LIBRARY_PATH and rerun the command as follows:
[root@SR1B011 apps]# export

LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/ssl/lib

[root@SR1B011 apps]# ./openssl version

OpenSSL* 1.1.1 11 Sep 2018

9.1.2 Relevant Collateral

https://github.com/intel/QAT_Engine (including the Troubleshooting section)

9.2 Errors with make/make install of the Intel® QAT

OpenSSL* Engine

You experience errors with make or make install as in the following:
qat_ciphers.c:464:26: note: each undeclared identifier is reported only

once for each function it appears in make[1]: *** [qat_rsa.lo] Error 1

qat_ciphers.c: In function 'qat_chained_ciphers_do_cipher':

qat_ciphers.c:1651:59: error: 'ASYNC_STATUS_OK' undeclared (first use in

this function) if ((job_ret = qat_pause_job(done.opDone.job,

ASYNC_STATUS_OK)) == 0)

^ qat_ciphers.c: In function 'qat_sym_perform_op':

qat_ciphers.c:1778:48: error: 'ASYNC_STATUS_EAGAIN' undeclared (first use

in this function)

if ((qat_wake_job(opDone->job, ASYNC_STATUS_EAGAIN)

== 0) ||

https://github.com/intel/QAT_Engine
https://github.com/intel/QAT_Engine

OpenSSL*/QAT_Engine Issues

34 Debugging Guide

9.2.1 Resolution

The root cause could be you have cloned the QAT_Engine with the OpenSSL*

repository. It is not normally advised to clone one git repo within another. In this
case, clone the QAT_Engine somewhere other than in the OpenSSL* repository.

9.2.2 Relevant Collateral

https://github.com/intel/QAT_Engine (including the Troubleshooting section).

9.3 Errors observed with openssl_speed

You see errors such as the following:
./openssl speed -engine qatengine -elapsed -evp aes-128-cbc-hmac-sha1 -

bytes 1400

17086849.27k

140242605822464:error:0607F08A:digital envelope

routines:EVP_EncryptFinal_ex:data not multiple of block

length:crypto/evp/evp_enc.c:405:

9.3.1 Resolution

Two issues are present here:

1. The buffer size should be in multiple of block length (for AES128 its 16) hence the

error at software and engine which then leads to:

2. Reported throughput being invalid when issuing OpenSSL* speed commands,

ensure buffer sizes are in multiple of block length. This is the default behavior for
OpenSSL* speed.

In this case the extra parameter -bytes was used to manually set the buffer size.

§

https://github.com/intel/QAT_Engine
https://github.com/intel/QAT_Engine

HAProxy* Issues

Debugging Guide 35

10 HAProxy* Issues

This section describes resolution steps for HAProxy* issues.

10.1 HAProxy* + Intel® QAT Error when Starting

HAProxy*

Starting HAProxy* results in the following message:
"ssl-engine qat: failed to get structural reference"

10.1.1 Resolution

Review the HAProxy* with Intel® QuickAssist Technology Application Note to verify
that all required steps were covered.

10.1.2 Relevant Collateral

337430, HAProxy* with Intel® QuickAssist Technology Application Note, on 01.org.

10.2 HAProxy* + Intel® QAT Performance is Low

If you experience a low performance of HAProxy* and Intel® QAT, refer to the

resolution steps below to isolate the issue.

10.2.1 Resolution

• Use the Intel® Select Solutions for NFVI script to reapply the correct settings (i.e.,
more worker processes, keep-alive settings, high concurrency, etc.)

• Ensure that Intel® QAT is being used, with the firmware counters

• Ensure that GRUB does not have idle=poll

• Isolating cores in the GRUB has been shown to reduce performance

10.2.2 Relevant Collateral

Intel® Select Solutions for NFVI

10.3 Error with HAProxy* Version

If you experience the following error:
./haproxy -vv

./haproxy: error while loading shared libraries: libssl.so.1.1: cannot

open shared object file: No such file or directory

https://01.org/
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/network/nfvi.html
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/network/nfvi.html
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/network/nfvi.html
https://www.intel.com/content/www/us/en/products/solutions/select-solutions/network/nfvi.html

HAProxy* Issues

36 Debugging Guide

It is likely that the LD_LIBRARY_PATH variable is not set up.

10.3.1 Resolution

Define the LD_LIBRARY_PATH and verify that the “Built with” and “Running on”

OpenSSL* versions are the same.
]# export LD_LIBRARY_PATH=/usr/local/ssl/lib

]# ./haproxy -vv

HA-Proxy version 1.9.4 2019/02/06 –

https://haproxy.org/

10.3.1.1 Build Options

• TARGET = linux2628

• CPU = generic

• CC = gcc

• CFLAGS = -O2 -g -fno-strict-aliasing -Wdeclaration-after-statement -
fwrapv -Wno-unusedlabel -Wno-sign-compare -Wno-unused-parameter -Wno-

old-style-declaration -Wnoignored-qualifiers -Wno-clobbered -Wno-

missing-field-initializers -Wtype-limits

• OPTIONS = USE_OPENSSL=1

10.3.1.2 Default settings:

• maxconn=2000, bufsize=16384, maxrewrite=1024, maxpollevents=200

• Built with OpenSSL* version: OpenSSL* 1.1.1 11 Sep 2018

• Running on OpenSSL* version: OpenSSL* 1.1.1 11 Sep 2018

10.3.2 Relevant Collateral

337430, HAProxy* with Intel® QuickAssist Technology Application Note, at 01.org,
especially the following sections:

• Section 3.0, “HAProxy* Setup and Testing for HTTP Connections”

• Section 3.1, “Installing HAProxy*”

• Section 3.2, “Verifying HAProxy* Installation”

10.4 HAProxy* Shared Libraries libssl.so.1.1. and

libcrypto.so.1.1 are Not Found

The HAProxy* shared libraries libssl.so.1.1. and libcrypto.so.1.1 are not found

when running the command "ldd haproxy".
]# ldd haproxy linux-vdso.so.1 => (0x00007ffe4853e000)

libcrypt.so.1 => /lib64/libcrypt.so.1 (0x00007ff32d26e000)

libdl.so.2 => /lib64/libdl.so.2 (0x00007ff32d06a000)

https://01.org/

HAProxy* Issues

Debugging Guide 37

libpthread.so.0 => /lib64/libpthread.so.0 (0x00007ff32ce4e000)

librt.so.1 => /lib64/librt.so.1 (0x00007ff32cc46000)

libssl.so.1.1 => not found libcrypto.so.1.1 => not found

libc.so.6 => /lib64/libc.so.6 (0x00007ff32c878000) libfreebl3.so

=> /lib64/libfreebl3.so (0x00007ff32c675000)

/lib64/ld-linux-x86-64.so.2 (0x00007ff32d4a5000)

10.4.1 Resolution

Define the LD_LIBRARY_PATH variable and verify that the libssl.so.1.1 and

libcrpto.so.1.1 files point to the correct libraries.
]# export LD_LIBRARY_PATH=/usr/local/ssl/lib]# ldd haproxy

linux-vdso.so.1 => (0x00007ffd75bbf000)

 libcrypt.so.1 => /lib64/libcrypt.so.1 (0x00007feaeb0e4000)

libdl.so.2 => /lib64/libdl.so.2 (0x00007feaeaee0000)

libpthread.so.0 => /lib64/libpthread.so.0 (0x00007feaeacc4000)

librt.so.1 => /lib64/librt.so.1 (0x00007feaeaabc000)

libssl.so.1.1 => /usr/local/ssl/lib/libssl.so.1.1

(0x00007feaea82a000) libcrypto.so.1.1 =>

/usr/local/ssl/lib/libcrypto.so.1.1 (0x00007feaea345000)

libc.so.6 => /lib64/libc.so.6 (0x00007feae9f77000) libfreebl3.so

=> /lib64/libfreebl3.so (0x00007feae9d74000) /lib64/ld-linux-x86-

64.so.2 (0x00007feaeb31b000)

10.4.2 Relevant Collateral

337430, HAProxy* with Intel® QuickAssist Technology Application Note, at 01.org,

especially the following sections:

• Section 3.0, “HAProxy* Setup and Testing for HTTP Connections”

• Section 3.1, “Installing HAProxy*”

• Section 3.2, “Verifying HAProxy* Installation”

10.5 Fatal Errors with HAProxy* Configuration File

If you experience fatal errors with the HAProxy* configuration file, like the following:
#] ./haproxy -f /etc/haproxy/allhaproxy.cfg

[ALERT] 178/155753 (38095) : ssl-engine qat: failed to get structural

reference

[ALERT] 178/155753 (38095) : parsing [/etc/haproxy/allhaproxy.cfg:3] :

(null)

[ALERT] 178/155753 (38095) : Error(s) found in configuration file :

/etc/haproxy/allhaproxy.cfg [ALERT] 178/155753 (38095) : Fatal errors

found in configuration.

It is likely that the LD_LIBRARY_PATH variable is not set up.

10.5.1 Resolution

Run the following commands:
]# export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/ssl/lib

https://01.org/

HAProxy* Issues

38 Debugging Guide

#] ./haproxy -f /etc/haproxy/allhaproxy.cfg

10.5.2 Relevant Collateral

337430, HAProxy* with Intel® QuickAssist Technology Application Note, at 01.org,
especially the following sections:

• Section 3.0, “HAProxy* Setup and Testing for HTTP Connections”

• Section 3.1, “Installing HAProxy*.”

• Section 3.2, “Verifying HAProxy* Installation.”

10.6 HAProxy* Test Does not Appear to Produce the

Expected Results using ApacheBench as a Load

Generator

If you experience this issue, you may need to use the OpenSSL* s_time command as

a load generator, with a new HAProxy Intel® QAT configuration file.

10.6.1 Resolution

An example of a recommended HAProxy* Intel® QAT configuration file is listed below
for use when running the OpenSSL* s_time command. Please note that the bold line

would be removed if you were running the test without Intel® QAT (i.e., with
software).
]# cat myhaproxy-qat.cfg global user root group root nbproc 15 maxconn

200000 ulimit-n 700000 daemon

ssl-engine qat algo ALL ssl-mode-async

ssl-default-bind-ciphers AES128-SHA

ssl-default-bind-options no-tls-tickets no-sslv3 no-tlsv10 no-tlsv11

tune.bufsize 65536 defaults backlog 327680 balance source retries 3

frontend myfrontend

mode http

bind 127.0.0.1:4400 ssl crt /etc/ssl/myhaproxy/myhaproxy.pem option

forceclose option httpclose option http-server-close option nolinger

timeout client 100s

timeout client-fin 0s timeout http-keep-alive 0s default_backend

mybackend backend mybackend balance roundrobin option httpclose option

http-server-close timeout connect 100s

timeout server 100s

timeout server-fin 0s

option nolinger

option forceclose

mode http

timeout http-keep-alive 0s

https://01.org/

HAProxy* Issues

Debugging Guide 39

server myvm 127.0.0.1:80 check

10.6.2 Relevant Collateral

337430, HAProxy* with Intel® QuickAssist Technology Application Note, at 01.org,
especially the following sections:

• Section 3.0, “HAProxy* Setup and Testing for HTTP Connections”

• Section 3.1, “Installing HAProxy*.”

• Section 3.2, “Verifying HAProxy* Installation.”

10.7 Issues making ssl Connection against HAProxy*

Launched with Intel® QAT Configured as Non-root

User.

Note: You may be able to start HAProxy*, and everything is fine. Intel® QAT reports no

warnings, but issues occur as soon as a request is made.

One example of debug output:
[DEBUG][qat_rsa.c:911:qat_rsa_priv_enc()] - Started.

[DEBUG][qat_rsa.c:403:build_decrypt_op_buf()] - Started

[DEBUG][qat_rsa.c:415:build_decrypt_op_buf()] flen = 256, padding = 3

[WARNING][qat_asym_common.c:112:qat_BN_to_FB()] Failed to allocate fb-

>pData

[WARNING][qat_rsa.c:460:build_decrypt_op_buf()] Failed to convert

privateKeyRep2 elements to flatbuffer

[WARNING][qat_rsa.c:944:qat_rsa_priv_enc()] Failure in

build_decrypt_op_buf [DEBUG][qat_rsa.c:210:rsa_decrypt_op_buf_free()] -

Started

[DEBUG][qat_rsa.c:233:rsa_decrypt_op_buf_free()] - Finished

Another example:
[DEBUG][qat_rsa.c:845:qat_rsa_priv_enc()] - Started.

[DEBUG][qat_rsa.c:369:build_decrypt_op_buf()] - Started

[DEBUG][qat_rsa.c:381:build_decrypt_op_buf()] flen = 256, padding = 3

[MEM_DEBUG][cmn_mem_drv_inf.c:87:qaeCryptoMemAlloc()] pthread_mutex_lock

[DEBUG][cmn_mem_drv_inf.c:95:qaeCryptoMemAlloc()] Address: (nil) Size:

128 File: qat_asym_common.c:104

[MEM_DEBUG][cmn_mem_drv_inf.c:99:qaeCryptoMemAlloc()]

pthread_mutex_unlock

[WARNING][qat_asym_common.c:107:qat_BN_to_FB()] Failed to allocate fb-

>pData

[WARNING][qat_rsa.c:426:build_decrypt_op_buf()] Failed to convert

privateKeyRep2 elements to flatbuffer

[WARNING][qat_rsa.c:872:qat_rsa_priv_enc()] Failure in

build_decrypt_op_buf [DEBUG][qat_rsa.c:209:rsa_decrypt_op_buf_free()] -

Started

[DEBUG][qat_rsa.c:232:rsa_decrypt_op_buf_free()] - Finished

https://01.org/

HAProxy* Issues

40 Debugging Guide

10.7.1 Resolution

• The Intel® QAT Engine/libqat uses usdm_drv and mmap()'s physical memory

regions it gets from the memory driver. On some distro's with systemd, non-root

users have a memlock limit set by default to a too low value, and that triggers

mmap()' error with -EAGAIN.

To see if this is the case, run:

• The Linux* command strace to see the error.

• See the memlock limit for your HAProxy* process.

• If memlock is your problem, set a bigger value, e.g., for your haproxy.service by

adding an override .conf to it:
[Service]

LimitMEMLOCK=<some value, e.g, 16M>

10.7.2 Relevant Collateral

337430, HAProxy* with Intel® QuickAssist Technology Application Note, at 01.org,
especially the following sections:

 §

https://01.org/

DPDK Issues

Debugging Guide 41

11 DPDK Issues

This section describes resolution steps for DPDK issues.

11.1 DPDK cryptodev failure

If you experience the following issue, please follow the resolution steps below: There
is no Intel® QAT PMD available for the DPDK application.

• If you experience a DPDK cryptodev failure because there is no Intel® QAT PMD

available for the DPDK application, please follow the resolution steps.

11.1.1 Resolution

• Quick instructions for Intel® QAT cryptodev PMD are as follows:
cd to the top-level DPDK directory make defconfig sed –

i 's,\(CONFIG_RTE_LIBRTE_PMD_QAT_SYM\)=n,\1=y,' build/.config or/and sed

-i

's,\(CONFIG_RTE_LIBRTE_PMD_QAT_ASYM\)=n,\1=y,'

build/.config make

11.1.2 Relevant Collateral

https://doc.dpdk.org/guides/cryptodevs/qat.html

 §

https://doc.dpdk.org/guides/cryptodevs/qat.html
https://doc.dpdk.org/guides/cryptodevs/qat.html
https://doc.dpdk.org/guides/cryptodevs/qat.html

Miscellaneous Issues

42 Debugging Guide

12 Miscellaneous Issues

This section describes resolution steps for otherwise uncategorized issues.

12.1 Possible Errors Due to BIOS Setting

Issues like the following may be due to BIOS settings:

• Running make install on the Intel® QAT Engine returns an error similar to error -

14:
 dh895xcc: probe of 0000:b1:00.0 failed with error -14

Note: The above result may be seen in dmesg and/or /var/log/syslog.

• Error "Failed to send admin msg to accelerator":
 dh895xcc 0000:b1:00.0: Failed to send init message

Note: The above result may be seen in /var/log/messages.

• Fewer qat acceleration devices than you expect when starting Intel® QAT:

For example, you may see all the c6xx type devices, but not the dh895x device.

12.1.1 Resolution

Please refer to Section 4.4 of QuickAssist Technology Software for Linux* - Release

Notes - H.W. version 1.7 (Document ID 336211). The title of the section is, "When
trying to start the Intel QuickAssist Technology driver, I see errors similar to one of
the following..."

12.1.2 Relevant Collateral

336211, Intel® QuickAssist Technology Software for Linux* – Release Notes – H.W.
version 1.7

 §

