

Document Number: 336210-030

Intel® QuickAssist Technology (Intel®

QAT) Software for Linux*

Programmer's Guide – Customer Enabling Release

Revision 030

July 2024

2 Programmer’s Guide

Legal Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more on Intel’s Performance Index site .

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

See Intel’s Legal Notices and Disclaimers .

© Intel Corporation. Intel, the Intel logo, Atom, Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Other names and brands may be claimed as the property of others.

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://www.intel.com/LegalNoticesAndDisclaimers

Programmer’s Guide 3

Contents
1 Introduction ... 14

1.1 Terminology .. 14
1.2 Typographical Conventions ... 17

2 Software Overview .. 18
2.1 Intel® Communications Chipset 8925 to 8955 Series Compatibility 18
2.2 Logical Instances ... 18

2.2.1 Response Processing .. 18
2.2.1.1 Interrupt Mode .. 18
2.2.1.2 Epolled Mode .. 20

3 Acceleration Drivers Overview .. 22
3.1 Hardware/Software Overview .. 22
3.2 Acceleration Driver Configuration File ... 24
3.3 Utility for Loading Configuration Files and Sending Events to the Driver - adf_ctl 24

3.3.1 Usage ... 24
3.3.2 Examples .. 24

3.4 Application Payload Memory Allocation ... 25
3.4.1 Thread Specific USDM .. 25

3.5 User Space Additional Functions ... 26
3.6 Managing Intel® QAT Endpoints Using qat_service .. 27
3.7 Overview of QAT debugfs entries .. 28

3.7.1 Entries in /sys/kernel/debug/qat_* ... 28
3.7.2 Memory driver queries (qae_mem_slabs) ... 28

3.8 Compression Status Codes ... 29
3.8.1 Intel® QAT Compression API Errors ... 29

3.9 Stateful Compression Unsupported ... 33
3.10 Stateless Compression Level Details ... 33

3.10.1 Compression Level Mapping ... 33
3.10.2 Limitation on History Buffer Size (aka Deflate Window Size) 34

3.11 Acceleration Driver Return Codes ... 35
3.12 Batch and Pack Compression Unsupported .. 36
3.13 Compress and Verify Feature .. 36
3.14 Running Applications as Non-Root User ... 37
3.15 Random Number Generation ... 38
3.16 Huge Pages with the Included Memory Driver .. 38
3.17 Heartbeat .. 39

3.17.1 Heartbeat Operation .. 39
3.17.1.1 Initialization ... 39
3.17.1.2 Heartbeat Monitoring .. 39
3.17.1.3 Resetting a Failed Device .. 39

3.17.2 Incorporating Heartbeat into Intel® QAT Applications 40
3.17.3 Testing Heartbeat ... 42

3.17.3.1 Simulated Heartbeat Failure Configuration 43
3.17.3.2 Simulating Heartbeat Failure .. 43

4 Programmer’s Guide

3.17.3.3 System Virtual Files ... 43
3.17.3.4 Heartbeat Polling Frequencies .. 43

3.18 Handling Device Failures in a Virtualized Environment .. 44
3.18.1 Understanding System Messages and Warnings .. 45

3.19 Incorporating Dummy Responses into an Intel® QAT Application 45
3.19.1 Reliability, Availability, Serviceability ... 46
3.19.2 End to End Data Integrity Support in QAT 1.8: .. 47

3.20 Rate Limiting .. 47
3.20.1 Service Level Agreement (SLA) .. 48
3.20.2 SLA Units .. 48
3.20.3 SLA Manager Application .. 48

3.20.3.1 Rate Limiting Commands .. 48
3.21 DU Manager Application ... 49

3.21.1 Commands to Fetch Device Utilization ... 50
3.21.2 Durations .. 50
3.21.3 Reference Algorithm .. 50

3.22 Cipher-CRC .. 50
3.23 Access to Legacy Algorithms ... 51

4 Acceleration Driver Configuration File ... 55
4.1 Configuration File Overview ... 55
4.2 General Section .. 56

4.2.1 General Parameters .. 56
4.3 Logical Instances Section ... 58

4.3.1 [KERNEL] Section .. 59
4.3.1.1 Enabling Linux* Kernel Crypto Framework (LKCF) 60

4.3.2 [KERNEL_QAT] Section .. 60
4.3.3 User Process [xxxxx] Sections .. 61

4.3.3.1 Maximum Number of Process Calculations 62
4.3.3.2 Increasing the Maximum Number of Processes/Instances 62
4.3.3.3 Configuring Instances for Virtual Functions 63

4.3.4 Cryptographic Logical Instance Parameters ... 65
4.3.4.1 LKCF-supported algorithms: .. 66

4.3.5 Data Compression Logical Instance Parameters ... 66
4.3.6 Setting the Core Affinity Parameter for a Logical Instance 66

4.4 Configuring Multiple Intel® QAT Endpoints in a System .. 67
4.5 Configuring Multiple Processes on a System with Multiple Intel® QAT Endpoints 68
4.6 Sample Configuration File .. 71

5 Secure Architecture Considerations ... 72
5.1 Terminology ... 72

5.1.1 Threat Categories ... 72
5.1.2 Attack Mechanism .. 73
5.1.3 Attacker Privilege .. 73
5.1.4 Deployment Models.. 74

5.2 Threat/Attack Vectors ... 74
5.2.1 General Mitigation ... 74
5.2.2 General Threats .. 74

5.2.2.1 DMA ... 75
5.2.2.2 Intentional Modification of IA Driver .. 75

Programmer’s Guide 5

5.2.2.3 Modification of the QAT Configuration File 75
5.2.2.4 Malicious Application Code .. 76
5.2.2.5 Denial of Service ... 76

5.2.3 Threats Specific to Cryptographic Service ... 77
5.2.3.1 Reading Cryptographic Keys ... 77

6 Supported APIs ... 78
6.1 Intel® QAT APIs ... 78

6.1.1 Intel® QAT API Limitations ... 78
6.1.1.1 Resubmitting After Getting an Overflow Error 80
6.1.1.2 Dynamic Compression for Data Compression Service 82
6.1.1.3 Maximal Expansion with Auto Select Best Feature for

Compression .. 83
6.1.1.4 Maximal Expansion and Destination Buffer Size in Compression

Direction ... 84
6.1.2 Data Plane APIs Overview .. 85

6.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs 85
6.1.2.2 Usage Constraints on the Data Plane APIs 86
6.1.2.3 Cryptographic and Data Compression API Descriptions 87

6.1.3 Recovering from a Compress and Verify Error ... 87
6.1.4 Counting Recovered Compression Errors ... 89
6.1.5 Compress and Verify Error log in Sysfs: .. 89
6.1.6 Supported Algorithms in LKCF .. 89

6.2 Additional APIs ... 90
6.2.1 IOMMU Remapping Functions ... 90

6.2.1.1 icp_sal_iommu_get_remap_size ... 90
6.2.1.2 icp_sal_iommu_map ... 91
6.2.1.3 icp_sal_iommu_unmap .. 91
6.2.1.4 IOMMU Remapping Function Usage .. 92

6.2.2 Polling Functions ... 92
6.2.2.1 icp_sal_pollBank .. 93
6.2.2.2 icp_sal_pollAllBanks .. 93
6.2.2.3 icp_sal_CyPollInstance ... 94
6.2.2.4 icp_sal_DcPollInstance ... 95
6.2.2.5 icp_sal_CyPollDpInstance ... 95
6.2.2.6 icp_sal_DcPollDpInstance ... 96

6.2.3 User Space Access Configuration Functions ... 97
6.2.3.1 icp_sal_userStart .. 97
6.2.3.2 icp_sal_userStop ... 98

6.2.4 Version Information Function ... 98
6.2.4.1 icp_sal_getDevVersionInfo ... 99

6.2.5 Reset Device Function ... 99
6.2.5.1 icp_sal_reset_device ... 99

6.2.6 Thread-Less APIs .. 100
6.2.6.1 icp_sal_poll_device_events ... 100
6.2.6.2 icp_sal_find_new_devices ... 101

6.2.7 Compress and Verify (CnV) Related APIs ... 101
6.2.7.1 icp_sal_dc_get_dc_error() .. 101
6.2.7.2 icp_sal_dc_simulate_error() ..102

6.2.8 Heartbeat APIs ..102
6.2.8.1 icp_sal_check_device() .. 103

6 Programmer’s Guide

6.2.8.2 icp_sal_check_all_devices() ... 103
6.2.8.3 icp_sal_heartbeat_simulate_failure() .. 103

6.2.9 Device Polling APIs ... 104
6.2.9.1 icp_sal_poll_device_events() ... 104
6.2.9.2 cpaCyInstanceSetNotificationCb .. 104
6.2.9.3 cpaDcInstanceSetNotificationCb .. 105

6.2.10 Congestion Management APIs ... 106
6.2.10.1 icp_sal_SymGetInflightRequests .. 107
6.2.10.2 icp_sal_AsymGetInflightRequests ... 107
6.2.10.3 icp_sal_dp_SymGetInflightRequests ... 108

6.2.11 Service Specific Polling APIs .. 109
6.2.11.1 icp_sal_ CyPollSymRing ... 109
6.2.11.2 icp_sal_ CyPollAsymRing .. 109

6.2.12 Check Device Availability APIs ... 110
6.2.12.1 icp_sal_userIsQatAvailable ... 110

7 Application Usage Guidelines .. 112
7.1 Mapping Service Instances to Engines on the Intel® QAT Endpoint 112

7.1.1 Processor and Intel® QAT Endpoint Communication ... 112
7.1.2 Service Instances and Interaction with the Hardware .. 112
7.1.3 Service Instance Configuration .. 113
7.1.4 Cryptographic Load Balancing Using Multiple Intel® QAT Instances 113

7.2 Cryptography Applications .. 114
7.2.1 IPsec and SSL VPNs ... 114
7.2.2 Encrypted Storage .. 114
7.2.3 Web Proxy Appliances ... 115

7.3 Data Compression Applications ... 116
7.3.1 Compression for Storage ... 116
7.3.2 Data Deduplication and WAN Acceleration .. 116

8 Black Box Debug Tool ... 118
8.1 Introduction .. 118

8.1.1 Overview ... 118
8.1.1.1 Security Considerations ... 118
8.1.1.2 Performance Considerations ... 118

8.2 Detailed Description ... 119
8.2.1 Collection Data ... 119

8.2.1.1 Data Synchronization .. 119
8.2.1.2 Handling QAT Error Events .. 121

8.2.2 Post-Processing ... 121
8.2.2.1 Physical Addresses Audit ... 122
8.2.2.2 Cipher Lengths Audit ... 122
8.2.2.3 Return Codes Audit .. 123
8.2.2.4 Listing Collected Data in ’Human Readable Form’ 123

8.3 Installation .. 125
8.3.1 Hardware and Software Compatibility .. 125
8.3.2 Installing the Driver .. 126
8.3.3 Compiling and Executing Performance Sample Code 126
8.3.4 Uninstalling the Driver ... 126

8.4 Configuration .. 127

Programmer’s Guide 7

8.4.1 Configuration via QAT Device Configuration Files .. 127
8.4.2 Configuration via sysfs .. 128
8.4.3 Checking Current Configuration Used by Driver .. 129

8.5 Usage Examples ... 131
8.5.1 Collecting Data – Sanity Check .. 131

8.5.1.1 Continuous Sync Enabled ... 131
8.5.1.2 Continuous Sync Disabled .. 131

8.5.2 Audit Physical Addresses – Sanity Check ... 132
8.5.2.1 Emulate Uncorrectable Error .. 132
8.5.2.2 Continuous Sync Enabled .. 133
8.5.2.3 Continuous Sync Disabled (Crash Dump Based) 135

8.5.3 Audit Cipher Buffers Alignment – Sanity Check ... 138
8.5.3.1 Emulate Slice Hang Caused by Incorrect Buffers Alignments 138
8.5.3.2 Slice Hang Handling with Continuous Sync Enabled 139
8.5.3.3 Slice Hang Handling with Continuous Sync Disabled 141

8.5.4 Audit Return Codes .. 144
8.5.4.1 Audit Return Codes – Continuous Sync Option 144

8.6 SR-IOV .. 146
8.6.1 Build instructions .. 146
8.6.2 Usage ... 148

8.7 Programming Guide .. 148
8.7.1 Physical to Virtual Translation Callback .. 148

 Figures

Figure 1. Kernel Space Response Ring Processing ... 19
Figure 2. Intel® C62x Chipset (PCH) Acceleration Endpoint Configuration 1 ... 22
Figure 3. Intel® C62x Chipset (PCH) Acceleration Endpoint Configuration 2 .. 23
Figure 4. Incorporating Dummy Responses in an Intel® QAT Operation... 46
Figure 5. Dynamic Compression Data Path ... 83
Figure 6. Amortizing the Cost of an MMIO Across Multiple Requests ... 86
Figure 7. Service Instance Configuration ... 113
Figure 8. Data Collection Architecture ...120
Figure 9. Typical Crash Dump Scenario .. 121

 Tables

Table 1. Terminology .. 14
Table 2. Reference Documents and Resources ... 17
Table 3. Services .. 25
Table 4. Intel® QuickAssist Technology /sys/kernel/debug Entries .. 28
Table 5. qae_mem_slabs Commands Supported .. 29
Table 6. Intel® QAT Compression API Errors .. 30
Table 7. Compression Levels for QAT 1.7 Hardware .. 33
Table 8. Compression Levels for QAT 1.8 Hardware .. 34
Table 9. Acceleration Driver Return Codes .. 35
Table 10. Acceleration Driver Return Codes for Linux* Device Driver Operations .. 35
Table 11. AutoResetOnError Values .. 40
Table 12. Heartbeat System Virtual Files .. 43
Table 13. Supported Legacy Algorithms .. 52

8 Programmer’s Guide

Table 14. General Default Configuration Parameters ... 56
Table 15. General Parameters ... 57
Table 16. [KERNEL] Section Parameters ... 60
Table 17. [KERNEL_QAT] Section Parameters ... 60
Table 18. [KERNEL_QAT] Section Parameters .. 61
Table 19. Configuring Physical Functions and Virtual Functions ... 64
Table 20. Cryptographic Logical Instance Parameters .. 65
Table 21. Data Compression Logical Instance Parameters .. 66
Table 22. System Threat Categories .. 72
Table 23. Attack Mechanisms and Examples ... 73
Table 24. Attacker Privilege ... 73
Table 25. Deployment Models ... 74
Table 26. Compression/Decompression Overflow Behavior ... 81
Table 27. API Support for Compress and Verify and Recover... 88

Programmer’s Guide 9

Revision History
Document

Number
Revision
Number

Description Revision Date

336210 030

Updates for Intel® QAT Programmers Guide – Customer Enabling
Release:

• Updated parameter value “packageId” for the following APIs:

o icp_sal_check_device

o icp_sal_heartbeat_simulate_failure

July 2024

336210 029

Updates for Intel® QAT Programmers Guide – Customer Enabling
Release:

• Updated Thread Specific USDM

• Added Enabling Linux* Kernel Crypto Framework (LKCF)

• Added 3.18.1: Understanding System Messages and

Warnings

• Updated Section 3.10.1: Compression Level Mapping

• Added note about enabling Black Box Debug Tool (BBDT) to

Virtual Functions

December 2023

336210 028

Updates for Intel® QAT Programmers Guide – Customer Enabling
Release:

• Updated Section 6.1.1: Intel® QAT API Limitations with

updated Guidance on. Auto-Select-Best feature (ASB, i.e.

CPA_DC_ASB_ENABLED)

• Updated Table 11: Access to Legacy Algorithms with Opt-In

PKE Algorithms

• Updated Section 3.21: DU Manager Application for clarity

May 2023

336210 027

Updates for Intel® QAT Programmers Guide – Customer Enabling
Release, with Release v4.21:

• Added 3.4.1: Thread Specific USDM
March 2023

336210 026

Updates for Intel® QAT Programmers Guide – Customer Enabling
Release:

• Updated Section 3.7: Overview of QAT debugfs entries to

include new Section 3.7.2: Memory driver queries (

qae_mem_slabs)

• Updated Legal Notices & Disclaimers

February 2023

336210 025

Updates for Intel® QAT Programmers Guide – Customer Enabling
Release:

• Name change, now supports 1.8 HW Gen lookaside features

(non-inline)

December 2022

10 Programmer’s Guide

Document
Number

Revision
Number

Description Revision Date

336210 024

Updates for Intel® QAT Programmers Guide Hardware Version 1.7:

• Added Section 3.22 Access to Legacy Algorithms

• Removed Section 6.2.1 Dynamic Instance Allocation

Functions, as it is unsupported

September 2022

336210 023

Updates for Intel® QAT Programmers Guide Hardware Version 1.7:

• Updated Chapter 8: Black Box Debug Tool, changed

numeration, added SR-IOV section, update report tool

behavior

• Updated Sections 7.2.2: Encrypted Storage, & 7.3: Data

Compression Applications with minor edits to terminology

and grammatical updates for clarity

April 2022

336210 022

Updates for Intel® QAT Programmers Guide Hardware Version 1.7:

• Updated Section 2.2.1.3: changed first note on epoll mode to

improve clarity.

• Updated Section 3.16 Huge Pages with the Included Memory

Driver

• Updated with IntelOne font

March 2022

336210 021

Updates for Intel® QAT Programmers Guide Hardware Version 1.7:

• Updated Table 1: Terminology table

• Updated Section 3.3.1 Usage

• Added Section 3.3.2 Examples

• Updated Section 6.2 Additional APIs

• Added Section 6.2.13 Check Device Availability APIs

• Updated formatting on Section 6.2 Additional APIs

• Added Chapter 8: Black Box Debug Tool

December 2021

336210 020

Updates for Intel® QAT Programmers Guide Hardware Version 1.7:

• Updated Section 3.14 Running Applications as Non-Root

User

November 2021

336210 019

Updates for Intel® QAT Programmers Guide Hardware Version 1.7:

• Updated Section 3.20 Rate Limiting

• Updated Section 3.21 DU Manager Application

• Updated Section 3.21.1 Commands to Fetch Device

Utilization

• Updated formatting in Section 3.21.2 Durations

• Updated Section 4.2.1 General Parameters

October 2021

Programmer’s Guide 11

Document
Number

Revision
Number

Description Revision Date

• Updated Table 10. General Default Configuration

Parameters

• Updated formatting for Table 11. General Parameters, Table

12. [KERNEL] Section Parameters, Table 13.

[KERNEL_QAT] Section Parameters, Table 14.

[KERNEL_QAT] Section Parameters, Table 15. Configuring

Physical Functions and Virtual Functions, Table 16.

Cryptographic Logical Instance Parameters

336210 018

Updates for Intel® QAT Programmers Guide Hardware Version 1.7:

• Section 3.20 Rate Limiting

• Section 3.20.1 Service Level Agreement (SLA)

• Section 3.20.2 SLA Units

• Section 3.20.3.1 -- Commands to Fetch Device Utilization

• Section 3.21 DU Manager Application

• Section 3.21.1 Commands to Fetch Device Utilization

• Section 6.1.1.3.5 CPA_DC_ASB_ENABLED

• Section 6.1.1.4 Maximal Expansion and Destination Buffer

Size in compression direction

September 2021

336210 017

Updates for Intel® QAT Programmers Guide Hardware Version 1.7

• Clarified "exception" vs "error" in the Section 6.1.1.1.1 title.

• Add new section 6.1.1.1.5: "Avoiding a Compression Overflow

exception"

• Updated Table 10 under Section 4.2.1 ("General

Parameters") to reflect a new capability of hashing being

available with ServicesProfile = COMPRESSION

May 2021

336210 016
Updated guidance to enable rate limiting

March 2021

336210 015

Updates for Intel® QAT Programmers Guide Hardware Version 1.7

Added new sections:

• Section 5 Secure Architecture Considerations

December 2020

336210 014

Updates for Intel® QAT Programmers Guide Hardware Version 1.7

Added new sections:

• Section 6.2.11 Congestion Management APIs

• Section 6.2.12 Service Specific Polling APIs

September 2020

336210 013
Updates for Intel® QAT software v4.10.0 release:

• Revised Note in Section 2.2.1.3
June 2020

12 Programmer’s Guide

Document
Number

Revision
Number

Description Revision Date

• Section 3.8.1 Added Note before Table 5

• Revised Table 10

• Table 11, removed StorageEnabled and PkeServiceDisabled

parameter

336210 012

Updates for Intel® QAT software v4.8.0 release:

• Revised Section Chapter, 3.4 Application Payload Memory

Allocation

February 2020

336210 011

Updated:

• Permissions for using huge pages with included memory

driver

• Rate limiting and device utilization measurement impacts

performance when active

November 2019

336210 010

Updates for 4.7.0 release:

• Added virtual functions to list of configurable instances

• Rate limiting and device utilization measurement features

October 2019

336210 009
Updated configuration options for concurrent requests (Tables 10,
14, 15)

July 2019

336210 008

Updates for 4.6.0 release:

• Dummy responses added to Heartbeat feature

• Handling device failures in a ritualized environment

June 2019

336210 007

Updates for 4.5.0 release:

• Updated list of general parameters

• Updated list of Intel® QuickAssist entries in

/sys/kernel/debug

March 2019

336210 006
Updates for 4.4.0 release:

• Updated list of Compression API Errors
December 2018

336210 005

Updates for 4.3.0 release:

• Intel® QuickAssist API in kernel space

• Added epoll content

• Updates for the Compress and Verify and Recover feature

• Other minor changes

September 2018

336210 004
Added description of Compress and Verify and Recover (CnVnR)
capability.

June 2018

Programmer’s Guide 13

Document
Number

Revision
Number

Description Revision Date

336210 003
Added Heartbeat description. Clarified explanations of stateless
and stateful compression and decompression. April 2018

336210 002
Stateful compression is no longer supported by default. April 2018

336210 001
Initial public release. August 2017

§

Introduction

14 Programmer’s Guide

1 Introduction
This programmer’s guide provides information on the architecture of the software and usage
guidelines., information on the use of Intel® QuickAssist Technology (Intel® QAT) APIs, which
provide the interface to the acceleration services (cryptographic and data compression), is
documented in the related Intel® QAT software library documentation (refer to Table 2).

1.1 Terminology

In this document, for convenience:

• The software package is used as a generic term for the Intel® QAT software package
for hardware versions 1.7 and 1.8.

• Acceleration driver is used as a generic term for the software that allows the Intel®
QAT Software Library APIs to access the Intel® QAT Endpoint(s).

Table 1. Terminology

Term Description

ADF Acceleration Driver Framework

AE Acceleration Engine

AES Advanced Encryption Standard

ASIC Application Specific Integrated Circuit

AU Acceleration Unit

BDF Bus Device Function

BMSM Broad Market Switch Mode

BnP Batch and Pack

BTS Base Transceiver Station

CBC Cipher Block Chaining mode

CCM Counter with CBC-MAC mode

CnV Compress and Verify

CnVnR Compress and Verify and Recover

CPK Columbia Park

CY Cryptography

DC Data Compression

DID Device ID

DMA Direct Memory Access

Introduction

Programmer’s Guide 15

Term Description

DPDK Data Plane Development Kit

DRAM Dynamic Random-Access Memory

DSA Digital Signature Algorithm

DTLS Datagram Transport Layer Security

ECC Elliptic Curve Cryptography

EVP Envelope (OpenSSL* high-level cryptographic functions)

FW Firmware

GCM Galois/Counter Mode

GPL General Public License

HLP Highland Park

HMAC Hash-based Message Authentication Mode

IA Intel® Architecture

I/O Input/Output

IDC Inter Driver Communication

IDS/IPS Intrusion Detection System/Intrusion Prevention System

IEEE Institute of Electrical and Electronics Engineers

IKE Internet Key Exchange

Intel® QAT Intel® QuickAssist Technology

IOCTL Input Output Control function

IOMMU Input-Output Memory Management Unit

IOSF-SB Intel® On-chip System Fabric Side Band

IPSec Internet Protocol Security

LKCF Linux* Kernel Cryptographic Framework

LTTng Linux* Trace Toolkit Next Generation

MGF Mask Generation Function

MSI Message Signaled Interrupts

NAC Network Acceleration Complex

NUMA Non-uniform Memory Access

OP Data Operational Data

PCH
Platform Controller Hub. In this manual, a Platform Controller Hub device includes
standard interfaces and Intel® QAT Endpoint and I/O interfaces.

Introduction

16 Programmer’s Guide

Term Description

PCI Peripheral Connect Interface

PCIe* PCI Express*

PF Physical Function

PKE Public Key Encryption

RSA Rivest-Shamir-Adleman

RTE Run-Time Environment

SA Security Association

SADB Security Association Database

SAL Service Access Layer

SATA Serial Advanced Technology Attachment

SGL Scatter-Gather List

SHA Secure Hash Algorithm

SKU Stock Keeping Unit

SoC System-on-a-Chip

SPI Serial Peripheral Interconnect

SR-IOV Single Root I/O Virtualization

SSC Storage Subsystem Class

SSL Secure Sockets Layer

SYM Symmetric Crypto

TCG Trusted Computing Group

TLS Transport Layer Security

TPM Trusted Platform Module

USDM User Space DMA-able Memory

VF Virtual Function

VPN Virtual Private Network

WAN Wide Area Network

WQM Work Queue Manager

Introduction

Programmer’s Guide 17

Table 2. Reference Documents and Resources

Document Document Number/
Location

Intel® QuickAssist Technology Software for Linux* CE Release Notes 336211

Intel® QuickAssist Technology Software for Linux* Release Notes
(Hardware Version 1.8 for In-line)

613775

Intel® QuickAssist Technology Software for Linux* CE Getting Started
Guide

336212

Intel® QuickAssist Technology API Programmer’s Guide 330684

Intel® QuickAssist Technology Cryptographic API Reference Manual 330685

Intel® QuickAssist Technology Data Compression API Reference Manual 330686

Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist
Technology Application Note 330689

1.2 Typographical Conventions

The following font conventions are used in this manual:

• Courier font - file names, path names, executables, code examples, command line
entries, API names, parameter names, and other programming constructs

• Italic text – key terms and publication titles

• Bold text - graphical user interface entries, buttons, keyboard keys and Intel® software
names

§

Software Overview

18 Programmer’s Guide

2 Software Overview
In addition to the hardware mentioned in Section 3.1, Hardware/Software Overview, the
respective platforms have critical software components that are part of the offering. The
software includes drivers and acceleration code that runs on the Intel® Architecture (IA) CPUs
and Intel® QAT Endpoints.

2.1 Intel® Communications Chipset 8925 to 8955 Series
Compatibility

While the focus of this document is on Intel® QAT software for hardware versions 1.7 and 1.8,
the Intel® Communications Chipset 8925 to 8955 Series is also supported.

2.2 Logical Instances

A logical instance may be thought of as a channel to the hardware. A logical instance allows an
address domain (that is, kernel space and individual user space processes) to configure the
rings to be used by that address domain and to define the behavior of that ring.

2.2.1 Response Processing

In the kernel space, each logical instance can be configured to operate in one of the two
modes:

• Interrupt mode

• Polled mode

In the user space, each logical instance can be configured to operate in one of the two modes:

• Polled mode

• Epolled mode

2.2.1.1 Interrupt Mode

The interrupt is only supported in Kernel space. In User space it is no longer supported;
therefore, the user space instance can no longer be configured with interrupt enabled mode.

When configured in interrupt mode, the Accelerator Driver Framework (ADF) registers an
interrupt handler for response ring processing.

As the latency in servicing an interrupt may be costly, the hardware-assisted ring provides a
mechanism to amortize the cost of interrupts into a single interrupt that may service multiple
responses. The interrupt coalescing section of the configuration file allows the user to select
the mechanism to amortize response interrupts using either a time-based interrupt scheme or
a number-of-responses-based scheme.

Software Overview

Programmer’s Guide 19

The ADF registers an interrupt handler to service the ring bank interrupt. When an interrupt
fires, the ADF services the interrupt and creates an interrupt handler bottom half to consume
the responses from the response ring. When MSI-X is supported, the bottom half of the
interrupt handler is created and affinitized to the configured core. Callbacks to the application
code occur in the context of this taskset. This sequence is shown in the following figure (the
full sequence has been reduced for clarity).

NOTE: Linux* (and other operating systems) split an interrupt handler into two halves. The
so-called "top half" is the routine that responds to the interrupt, that is, the one you
register with request_irq. The "bottom half" is a routine that is scheduled by the top
half to be executed later, at a safer time.

Figure 1. Kernel Space Response Ring Processing

If the cost of servicing an interrupt and scheduling the interrupt handler bottom half is not
desired, a user can choose to disable interrupts and poll for responses. This mechanism can be
configured on a per logical instance basis by setting the Dc/ CyXIsPolled attribute of a
logical instance in the configuration file to 1. When configured to 1, the ADF does not service
interrupts for that logical instance.

The ADF provides a set of APIs to allow the client to poll a single bank or all banks on a given
accelerator:

• icp_sal_pollBank - Poll the rings on the given bank number for a given accelerator.

• icp_sal_pollAllBanks - Poll the rings on all banks for a given accelerator.

The Service Access Layer (SAL) provides an API to poll on an individual logical instance:

• icp_sal_CyPollInstance - Poll a specific Cryptographic (CY) logical instance.

Software Overview

20 Programmer’s Guide

• icp_sal_DcPollInstance - Poll a specific Data Compression (DC) logical instance.

Refer to Section 6.2.2, “Polling Functions” for details on all the polling functions.

2.2.1.2 Epolled Mode

The event-based poll mode is called "epoll mode". The Intel® QAT driver’s new mode supports
the Linux* epoll interface. The Linux* epoll is a scalable I/O event notification mechanism
intended to replace the older select/poll system calls.

NOTE: For performance reasons, in epoll mode, only one instance (and one process) per
bank should be used.

To use the Linux* epoll, the user space application uses the following APIs:

• epoll_create()/epoll_create1() - creates an epoll instance and returns a file
descriptor referring to that instance.

• epoll_ctl() - registers the file descriptors which will be polled.

• epoll_wait() - waits for I/O events for the file descriptors registered via
epoll_ctl, blocking the calling thread if no events are currently available.

For more information, consult the Linux* epoll manuals, here: http://man7.org/linux/man-
pages/man7/epoll.7.html

NOTE: The Intel® QAT driver's epoll mode is only used by the user space instances, it is not
valid for the kernel space.

The Intel® QAT driver's epoll mode consists of two parts: the kernel space part and the user
space part.

The coalescing fields expose the same behavior for the epoll mode. If the interrupt is delayed
by changing the Coalescing fields, the event delivery to user space will be delayed too.

To enable the epoll mode, ensure the following steps are followed:

1. In the configuration file, please use the "IsPolled = 2" for the user space instance,
for example:

 Cy0Name = “SSL0”

 Cy0IsPolled = 2

2. Whether the application uses the driver in a synchronously or asynchronously , it
should create a thread to call the Intel® QAT drivers epoll API and the Linux*
standard epoll interface.

The Intel® QAT drivers epoll API:

Crypto: icp_sal_CyGetFileDescriptor() / icp_sal_CyPutFileDescriptor()

Compression: icp_sal_DcGetFileDescriptor() /
icp_sal_DcPutFileDescriptor()

The Linux* standard epoll interface:

epoll_create() / epoll_ctl() / epoll_wait()

http://man7.org/linux/man-pages/man7/epoll.7.html
http://man7.org/linux/man-pages/man7/epoll.7.html

Software Overview

Programmer’s Guide 21

NOTE: For performance reasons, in epoll mode, only one instance (and one process) per bank
should be used. The instance can be a crypto or compression instance.

For QAT 1.7 Generation Hardware:

When a bank is used for the epoll mode, it means there is only one instance (crypto or
compression) for this bank. When the instance is used by a process, it means the process is the
only user for this bank. Other processes could not use this bank temporarily. But if the process
releases this instance, other processes can use this bank. Since there is only one instance for
this bank, no more than 16 user space instances are available for 1.7 HW to configure all the
banks for the epoll mode vs 128 user space instances for 1.8 HW. (For the Intel®
Communications Chipset 8925-8955 series, up to 32 user space instances are available.)

For QAT 1.8 Generation Hardware:

If a process needs to provide compression and crypto services at the same time, it will need
two instances, which means the process needs two banks. In such a scenario, no more than
eight processes can be used for 1.7 HW vs 64 processes for 1.8 HW. (For the Intel®
Communications Chipset 8925-8955 series, up to 16 processes can be used.)

For comparison purposes, when the CPU is in the idle state, for the user space instance, the
standard poll mode ("IsPolled = 1") will poll the empty rings periodically and the polling will
consume some CPU cycles (for instance, 2% usage may appear available when the CPU is in
the idle state). But if epoll mode is used, the usage will stay at 0% when the CPU is in the idle
state.

NOTE: The standard poll mode performs better when the CPU is in the high load state.

For user space instances, interrupt mode is no longer supported. Interrupt mode for the user
space did not consume CPU cycles when there was no data in the response rings, unlike the
polling mode, which continues to check at specified intervals. With the epoll support, standard
Linux* epoll APIs, such as epoll_create()/epoll_ctl()/ epoll_wait(), can be used.

Most web servers and socket-based applications, such as Nginx*, Apache*, etc., use one of
epoll /select/poll to be notified when a socket is available for reading or writing, and then take
appropriate action. With the epoll mode, the Intel® QuickAssist Technology driver will have
more seamless integration into existing applications, such as Nginx*, as it will be using a
standard notification mechanism.

§

Acceleration Drivers Overview

22 Programmer’s Guide

3 Acceleration Drivers Overview
Selected Intel® products support Intel® QAT. Depending on the product chosen, Intel® QAT
accelerates both or either of two services: cryptography (both symmetric and public key) and
data compression.

The Intel® QAT Endpoints are exposed as Peripheral Connect Interface (PCI) devices.
Applications running in the user space typically access these services via the Intel® QAT APIs.
Support for the applications that run only in the kernel space is planned for a future software
release, but driver support for the Linux* Kernel Cryptographic Framework (LKCF) API is
present in this software release (default disabled).

3.1 Hardware/Software Overview

Because the hardware is accessed using the Intel® QAT APIs, it is not necessary to know all the
hardware and software architecture details, but some knowledge of the underlying hardware
and software is helpful for performance optimization and debugging purposes. For example, to
support customers with different acceleration performance requirements, the Intel® C62x
Chipset is available in different SKUs and supports two different "fabric configurations".
Figure 2 and Figure 3 show two possible configurations for the acceleration endpoints in one
Intel® C62x Chipset die.

Figure 2. Intel® C62x Chipset (PCH) Acceleration Endpoint Configuration 1

Acceleration Drivers Overview

Programmer’s Guide 23

Figure 3. Intel® C62x Chipset (PCH) Acceleration Endpoint Configuration 2

For a given platform, the specific internal connections and number of Intel® QAT Endpoints per
die (for instance, up to three for Intel® C62x Chipset) is product dependent, SKU-dependent,
routing-dependent (i.e., how many lanes are routed), and configuration-dependent (e.g., with
different fabric configuration soft-straps). For each Intel® QAT Endpoint (e.g., QAT[0]),
hardware-assisted rings are used as the communication mechanism to transfer requests
between the CPU and the Intel® QAT Endpoint(s) and vice-versa. The 1.7 HW supports 256
rings vs 1024 rings for 1.8 HW (per Intel® QAT Endpoint), each with head and tail Configuration
Status Register (CSR) pointers that are mapped to PCIe* memory on the CPU. Rings are
assigned by the provided software based on the Cryptography (CY) and Data Compression
(DC) instances declared in the configuration files. Refer to Section 3.2, Acceleration Driver
Configuration File for more information.

Each Intel® QAT Endpoint has multiple computation engines. For a given Intel® QAT Endpoint,
all rings associated with that endpoint are shared, and the hardware load balances requests
from these rings.

A user can write directly to the Intel® QAT APIs, or the use of Intel® QAT can be done through
frameworks that have been enabled by others including Intel® (for example, zlib*, OpenSSL*
libcrypto*, and the Linux* Kernel Crypto Framework).

The driver architecture supports simultaneous operation of multiple applications.

Acceleration Drivers Overview

24 Programmer’s Guide

3.2 Acceleration Driver Configuration File

An acceleration driver has a configuration file that is used to configure the driver for runtime
operation. There is a single configuration file for each Intel® QAT Endpoint in the system. If
Single-Root Input/Output Virtualization (SR-IOV) is enabled, a separate configuration file is
used for each virtual function, if applicable. The configuration file format is described in
Section 4.1, Configuration File Overview.

3.3 Utility for Loading Configuration Files and Sending
Events to the Driver - adf_ctl

The adf_ctl user space utility is separate from the driver and provides a mechanism for:

• Loading configuration file data to the kernel driver. The kernel space driver uses the
data and provides it to the user space driver.

• Sending events to the driver to bring devices up and down.

The adf_ctl provided with the Intel® QAT 1.7 & 1.8 drivers can be used to interface with Intel®
QAT v1.6, 1.7 and 1.8 devices.

3.3.1 Usage

• To bring up, down, restart or reset device(s):
./adf_ctl [-c|--config] [config_file_path] [qat_dev<N>]

[up|down|restart|reset]

• To print device(s) status:
./adf_ctl [qat_dev<N>] status

• To use the specified configuration file:
-c (--config) [config_file_path]

NOTE: If no device (physical or virtual) is selected, this file is used against all existing devices.

3.3.2 Examples

• To bring device 0 down:
./adf_ctl qat_dev0 down

• To load device configuration from default path /etc/c4xxx_dev1.conf, then bring device 1

up:
./adf_ctl qat_dev1 up

• To load device configuration from specified path ~/user_c4xxx_dev1.conf, then bring
device 1 up:
./adf_ctl -c ~/user_c4xxx_dev1.conf qat_dev1 up

• To restart all devices with default configuration file ~/user_c4xxx_dev1.conf:
./adf_ctl restart

Acceleration Drivers Overview

Programmer’s Guide 25

• To restart all devices with specified configuration file ~/user_c4xxx_dev1.conf:

./adf_ctl -c ~/user_c4xxx_dev1.conf restart

• To restart device 0 with specified configuration file ~/user_c4xxx_dev1.conf:
./adf_ctl -c ~/user_c4xxx_dev1.conf qat_dev0 restart

• To restart device 0:

./adf_ctl qat_dev0 reset

3.4 Application Payload Memory Allocation

When performing offload operations through the Intel® QAT API, it is required that the payload
data be placed in a buffer that is resident, physically contiguous, and Direct Memory Access
(DMA) accessible from the acceleration hardware. It is the applications responsibility to
provide buffers with these constraints.

Buffers are passed to the API with virtual addresses. The API translates these addresses to the
address information required by the hardware (see the following table).

Table 3. Services

Service API Reference

Cryptographic
service

cpaCySetAddressTranslation See the Intel® QuickAssist Technology

Cryptographic API Reference Manual (refer to
Table 2) for details.

Data

Compression
service

cpaDcSetAddressTranslation See the Intel® QuickAssist Technology Data
Compression API Reference Manual (refer to
Table 2) for details.

When the software requires the physical address, it calls the registered function.

NOTE: This address translation function is called at least once per request. Consequently, for
optimal performance, the implementation of this function should be optimized.

If using the Intel® QAT Data Plane API, buffers are passed to the Intel® QAT API as physical
addresses. The library passes this directly to the hardware, without the need for translation.

All these tasks can be performed utilizing the User Space DMA-able Memory (USDM) driver
supplied with the Intel® QAT driver package. The driver consists of the kernel-mode and user-
mode parts allowing allocation of 1k-aligned memory blocks, setting up address translation,
and automatic block deallocation in case of a user application crash."

3.4.1 Thread Specific USDM
By default, memory allocation uses the USDM slab allocator, which gives 2MB contiguous
memory. The allocation has locks in the library to prevent a race condition in getting the
memory from the slab. This lock has an impact on some multi-threaded applications and use
cases, like HAProxy, causing a drop in performance. To mitigate this issue, thread specific

Acceleration Drivers Overview

26 Programmer’s Guide

USDM is implemented with the v4.21 release, which allocates and handles memory specific to
threads. (For multi-thread apps, allocated memory information will be maintained separately
for each thread). This feature can be enabled by configuring with the configure flag
--enable-icp-thread-specific-usdm .

In some use cases with thread specific USDM, using a 128K slab allocator instead of the default
2MB allocator could improve performance and reduce memory consumption for a large
number of threads. This can be enabled by configuring with the configure flag
--enable-128k-slab.

NOTE: There is a limitation with thread specific USDM: memory allocated in one thread
should be freed only by the thread which allocates it. Incorrect cleanup can lead to a
segmentation fault (segfault) . Also, memory allocated in a thread is freed
automatically when the thread exits/terminates, even if the user does not explicitly
free the memory.

See the CE Getting Started Guide for more information on ./configure flags.

We have observed poor multithreaded performance with QAT_Engine using OpenSSL* at
higher thread counts. Unfortunately, these issues appear to stem from the way OpenSSL*
implements its engine_table_select and locks. For relevant issues on the OpenSSL*
github pages, see the two issues below:

- OpenSSL* 1.1.1.x: Performance bottleneck with locks in engine_table_select() function
#18509, https://github.com/openssl/openssl/issues/18509

- OpenSSL* 3.0: 3.0 performance degraded due to locking #20286,
https://github.com/openssl/openssl/issues/20286

3.5 User Space Additional Functions

To allow a user space access to the Intel® QAT rings, the service access layer must be
configured to expose logical instances to the user space process. Logical instances are
configured using the per device configuration files.

To allow each process to have separate logical instances, the configuration file groups a set of
logical instances by name. The process then must call the icp_sal_userStart function
(refer to Section 6.2.4.1) at initialization time with the name associated with the group of logical
instances. Similarly, on process exit, to free the resources and make them available to other
processes with the same name, the process must call the function icp_sal_userStop (refer
to Section 6.2.2.1).

For example, the user can configure the driver to have two crypto logical instances available for
the process called "SSL". The user space process may then access these logical instances by
calling the cpaCyGetInstances function. The application may then initiate a session with
these logical instances and perform a cryptographic operation. See the Intel® QuickAssist
Technology Cryptographic API Reference Manual. Refer to Table 2 of the manual for more
information on the API functions available for use.

For this example, the logical instances section of the configuration file is as follows:
[SSL]
NumberCyInstances = 2

https://github.com/openssl/openssl/issues/18509
https://github.com/openssl/openssl/issues/20286

Acceleration Drivers Overview

Programmer’s Guide 27

NumberDcInstances = 0
NumProcesses = 1
LimitDevAccess = 0

Crypto - User instance #0
Cy0Name = "SSL0"
Cy0IsPolled = 1
List of core affinities
Cy0CoreAffinity = 1

Crypto - User instance #1
Cy1Name = “SSL1”
Cy1IsPolled = 1
List of core affinities
Cy1CoreAffinity = 2

In this example, the user process Secure Sockets Layer (SSL) configures two logical instances
(called "SSL0" and "SSL1").

3.6 Managing Intel® QAT Endpoints Using qat_service

The qat_service script is installed with the software package in the /etc/init.d/
directory. The script allows a user to start, stop, shutdown or query the status (up or down) of a
single Intel® QAT Endpoint or all Intel® QAT Endpoints in the system.

Usage:

./qat_service start||stop||status||restart||shutdown

To view all Intel® QAT Endpoints in the system, use:
./qat_service status

If there are two Intel® QAT Endpoints in the system, the output will be as follows:

qat_dev0 - type: c6xx, inst_id: 0, bsf: 06:00:0, #accel: 5 #engines: 10
state: up
qat_dev1 - type: c6xx, inst_id: 1, bsf: 83:00:0, #accel: 5 #engines: 10
state: up

For a system with multiple Intel® QAT Endpoints, you can start, stop or restart each device by
passing the Intel® QAT Endpoint to be restarted or stopped as a parameter (qat_dev<N>). For
example:
./qat_service stop qat_dev0 where the device number <N> is equal to 0
in this case.

The shutdown qualifier enables the user to bring down all Intel® QAT Endpoints and unload
driver modules from the kernel. Compared with the stop qualifier, which brings down one or
more Intel® QAT Endpoints, but does not unload kernel modules, so other Intel® QAT
Endpoints can still run.

Acceleration Drivers Overview

28 Programmer’s Guide

NOTE: In systems with more than three devices it might be necessary to change the
qat_service timeout in /etc/systemd/system/qat_service.service.d/
startup-timeout.conf.

3.7 Overview of QAT debugfs entries

Some useful debugging information for the driver and configuration is available via the Linux*
debugfs file system, with the entries /sys/kernel/debug/qat_* and
/sys/kernel/debug/qae_mem_dbg/qae_mem_slabs.

For more information, see Chapter 8: Black Box Debug Tool or the Intel® QuickAssist
Technology Debugging Guide .

3.7.1 Entries in /sys/kernel/debug/qat_*

This includes:

Table 4. Intel® QuickAssist Technology /sys/kernel/debug Entries

Entry Description

cnv_errors Indicates number of compress and Verify errors. Refer to Section
6.1.5, Compress and Verify Error log in Sysfs:

dev_cfg Displays internal device configuration information

frequency Displays frequency of Acceleration Engines

fw_counters Displays Acceleration Engine firmware requests/responses

heartbeat heartbeat_failed
heartbeat_sent Refer to Section 3.17.3.3.1 System Virtual Files

transport Contains firmware request/response data. Available only for
kernel space instances.

version Includes package version information

3.7.2 Memory driver queries (qae_mem_slabs)

Debug features are also available by reading and writing the file
/sys/kernel/debug/qae_mem_dbg/qae_mem_slabs . When reading the virtual/physical
address , size and slab id together with the pid of the allocating process are shown.
Writing a string to the file will start executing debug commands.

For example:
cat /sys/kernel/debug/qae_mem_dbg/qae_mem_slabs

Pid 78854, Slab Id 10550771712
Virtual address 000000000b39412d, Physical Address 274e00000, Size
2097152

https://cdrdv2.intel.com/v1/dl/getContent/709495
https://cdrdv2.intel.com/v1/dl/getContent/709495

Acceleration Drivers Overview

Programmer’s Guide 29

Pid 78854, Slab Id 10309599232
Virtual address 000000003670dd45, Physical Address 266800000, Size
2097152
. . .

There are three commands supported, and the table below shows their output. Writing these
strings will give the output when the file is read.

Table 5. qae_mem_slabs Commands Supported

 Command Output

"d <pid> <virtual or physical address>" The 256 byte in hex and ascii from the start address

"c <pid> <slab id>"
(pid should be the process id that can be
obtained by a previous read)

The allocation bit map for the given slab identifier

“t” Total size of NUMA memory allocated in kernel
space

For example, by combining a write to the file and a subsequent read, you can see the total
allocated NUMA memory, e.g.:
echo "t" > /sys/kernel/debug/qae_mem_dbg/qae_mem_slabs ; cat
/sys/kernel/debug/qae_mem_dbg/qae_mem_slabs

Total allocated NUMA memory: 0 bytes

As above, the “d” and “c” commands will output their respective information.

3.8 Compression Status Codes

The CpaDcRqResults structure should be checked for compression status codes in the
CpaDcReqStatus data field. The mapping of the error codes to the enums is included in the
quickassist/include/dc/cpa_dc.h file.

3.8.1 Intel® QAT Compression API Errors

The Intel® QAT Compression APIs that send requests to the compression hardware can return
the error codes shown in the following table. These APIs are:

• cpaDcCompressData()

• cpaDcDecompressData()

• cpaDcDpEnqueueOp()

• cpaDcDpEnqueueOpBatch()

NOTE: Decompression issues in the table below may also apply to the compression use case
due to potential issues encountered during a Compress-and-Verify operation. In this
case, the file(s) /sys/kernel/debug/qat_*/cnv_errors may show these nested
errors. In some cases, the suggested corrective action may need to be to store the
block uncompressed or to compress the block with software.

Acceleration Drivers Overview

30 Programmer’s Guide

Table 6. Intel® QAT Compression API Errors

Error
Code Error Type Description Suggested Corrective

Action(s)

0 CPA_DC_OK
No error detected by
compression hardware. None.

-1 CPA_DC_INVALID_BLOCK
_TYPE

Invalid block type (type =
3); invalid input stream
detected for
decompression

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-2 CPA_DC_BAD_STORED_
BLOCK_LEN

Stored block length did
not match one's
complement; invalid input
stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-3 CPA_DC_TOO_MANY
_CODES

Too many length or
distance codes; invalid
input stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-4 CPA_DC_INCOMPLETE
_CODE_LENS

Code length codes
incomplete: invalid input
stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-5 CPA_DC_REPEATED_LENS
Repeated lengths with no
first length; invalid input
stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-6 CPA_DC_MORE_REPEAT
Repeat more than
specified lengths; invalid
input stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

Acceleration Drivers Overview

Programmer’s Guide 31

Error
Code Error Type Description Suggested Corrective

Action(s)

-7 CPA_DC_BAD_LITLEN
_CODES

Invalid literal/length code
lengths; invalid input
stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-8 CPA_DC_BAD_DIST
_CODES

Invalid distance code
lengths; invalid input
stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-9 CPA_DC_INVALID_CODE

Invalid literal/length or
distance code in fixed or
dynamic block; invalid
input stream detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-10 CPA_DC_INVALID_DIST

Distance is too far back in
fixed or dynamic block;
invalid input stream
detected

Decompression error.
Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-11 CPA_DC_OVERFLOW

Overflow detected. This is
not an error, but an
exception. Overflow is
supported and can be
handled.

Resubmit with a larger output
buffer when appropriate.
Table 22 in Section 6.1.1.1
gives details on the various
overflow exceptions.

-12 CPA_DC_SOFTERR Other non-fatal detected.

Discard output. For a
stateless session, resubmit
affected request. For a
stateful session, abort the
session calling
CpaDcRemoveSession().

-13 CPA_DC_FATALERR Fatal error detected.
Discard output and abort the
session calling
CpaDcRemoveSession().

Acceleration Drivers Overview

32 Programmer’s Guide

Error
Code Error Type Description Suggested Corrective

Action(s)

-14 CPA_DC_MAX
_RESUBMITERR

On an error being
detected, the firmware
attempted to correct and
resubmitted the request,
however, the maximum
resubmit value was
exceeded. Maximal value
is internally set in the
firmware to 10 attempts.
This is a QAT1.6 error only.
This error code is
considered as a fatal error.

Discard output and abort the
session calling
CpaDcRemoveSession().

-15 CPA_DC_INCOMPLETE
_FILE_ERR

This decompression error
can be reported only by
QAT 1.7 devices. However,
it is not exposed to the
application.
The input file is
incomplete. This indicates
that the request was
submitted with a
CPA_DC_FLUSH_FINAL.
However, a BFINAL bit
was not found in the
request.

No corrective action is
required as it is not exposed
to the application.

-16 CPA_DC_WDOG_TIMER _
ERR

The request was not
completed as a watchdog
timer hardware event
occurred.

Discard output and resubmit
the affected request.

-17 CPA_DC_EP_HARDWARE

This is a recoverable error
available only with QAT1.7
devices. Request was not
completed as an end point
hardware error occurred
(for example, a parity
error).

Discard output and abort the
session calling
CpaDcRemoveSession().

-18 CPA_DC_VERIFY_ERROR

Compress and Verify
(CnV). This is a
compression direction
error only. During the
decompression of the
compressed payload, an
error was detected and
the deflate block
produced is invalid.

Discard output; resubmit
affected request.

-19 CPA_DC_EMPTY_DYM_BLK

Decompression request
contained an empty
dynamic stored block (not
supported).

Discard output.

-20 CPA_DC_CRC_INTEG_ERR
Compression CRC data
integrity check error
detected.

Discard output: resubmit
affected request or abort the
session.

Acceleration Drivers Overview

Programmer’s Guide 33

NOTE: Except for the errors CPA_DC_OK, CPA_DC_OVERFLOW, CPA_DC_FATALERR,
CPA_DC_MAX_RESUBMITERR, CPA_DC_WDOG_TIMER_ERR,
CPA_DC_VERIFY_ERR, and CPA_DC_EP_HARDWARE_ERR, the rest of the error
codes can be considered as invalid input stream errors.

NOTE: When the suggested corrective action is to discard the output, it implies that the
application must also ignore the consumed data, the produced data, and the
checksum values.

3.9 Stateful Compression Unsupported

Stateful compression is no longer supported.

3.10 Stateless Compression Level Details

The throughput and compression ratio for stateless compression can be adjusted with the
compression levels to achieve particular requirements. The most recent software packages
now support four compression levels, and the history buffer size is ignored.

3.10.1 Compression Level Mapping

3.10.1.1.1 QAT 1.7 hardware:

Compression levels 1 to 4 translate to search depth 1, 4, 8, and 16, respectively.

Compression levels 5 to 9 are retained for backward compatibility, but map to level 4.

Table 7. Compression Levels for QAT 1.7 Hardware

Compression
Level

(at the QAT
API)

Search
Depth

HB1 Size

(KB)

Stateful Context Size (KB)

HB1 HT2 LL3 Total

1 1 32 32 16 0 48

2 4 16 16 16 32 64

3 8 16 16 16 32 64

4 through 9 16 16 16 16 32 64

1. History Buffer. For a search depth of 1, this is 32KB and uses Banks A, B, C and D. For other
search depths, this is 16KB and uses Banks A and B.

2. Hash Table. Regardless of search depth, this is 16KB and uses Banks F and G.

3. Linked List. For a search depth of 1, this is not used. For other search depths, this is 32KB
and uses Banks C, D, H and I.

Acceleration Drivers Overview

34 Programmer’s Guide

3.10.1.1.2 QAT 1.8 hardware:

Compression levels 1 to 5 translate to search depth 1, 4, 8, 16, and 128, respectively.

Compression levels 6 to 9 are retained for backward compatibility but map to level 5.

Table 8. Compression Levels for QAT 1.8 Hardware

Compression
Level

(at the QAT
API)

Search
Depth

HB1 Size

(KB)

Stateful Context Size (KB)

HB1 HT2 LL3 Total

1 1 32 32 16 0 48

2 4 16 16 16 32 64

3 8 16 16 16 32 64

4 16 16 16 16 32 64

5 through 9 128 16 16 16 32 64

1. History Buffer. For a search depth of 1, this is 32KB and uses Banks A, B, C and D. For other
search depths, this is 16KB and uses Banks A and B.

2. Hash Table. Regardless of search depth, this is 16KB and uses Banks F and G.

3. Linked List. For a search depth of 1, this is not used. For other search depths, this is 32KB
and uses Banks C, D, H and I.

3.10.2 Limitation on History Buffer Size (aka Deflate Window Size)

NOTE: These details are specific to QAT 1.x hardware.

NOTE: The history buffer size is also known as the deflate window size.

There are rare use cases where compressible files may have worse compression at higher
compression levels, and this section explains those rare cases.

The issue is related to the history buffer size used during the compression process.

In level 2 (L2) through level 9 (L9) compression levels, the history buffer size is limited to 16KB.
This buffer/window this is used to store previously processed data, and find matches within
the data to achieve better compression. For files smaller than 16KB, higher compression levels
will usually achieve better compression. However, for larger files, with a 16KB history buffer,
the compression algorithm will not be able to find matches at lengths greater than 16KB. This
limitation affects the compression ratio at L2 and above.

For example, there are specific files with most compressible matches at distances >= the 16KB
buffer size, all of which cannot be accessed at L2 or above. The result is that for these unique
files, compression level L1 provides the best compression results. While this is generally
uncommon, it could be common to specific datasets.

Acceleration Drivers Overview

Programmer’s Guide 35

Table 7 and Table 8 (above) help understand the relationship between compression levels,
history buffer size, and compression performance. These shows the history window, search
depth, and context size for different compression levels.

3.11 Acceleration Driver Return Codes

The following table shows the return codes used by various components of the acceleration
driver, defined in quickassist/include/cpa.h.

Table 9. Acceleration Driver Return Codes

Return Type Return Code Description

CPA_STATUS_SUCCESS 0 Requested operation was successful.

CPA_STATUS_FAIL -1

A general or unspecified error occurred. Refer
to the console log user space application or to
/var/log/messages in kernel space for more
details of the failure.

CPA_STATUS_RETRY -2
Recoverable errors occurred. Refer to relevant
sections of the API for specifics on what the
suggested course of action.

CPA_STATUS_RESOURCE -3

Required resource is unavailable. The resource
that has been requested is unavailable. Refer to
relevant sections of the API for specifics on
what the suggested course of action.

CPA_STATUS_INVALID_PARAM -4 Invalid parameter has been passed in.

CPA_STATUS_FATAL -5
A fatal error has occurred. A serious error has
occurred. The recommended course of action
is to shut down and restart the component.

CPA_STATUS_UNSUPPORTED -6

The function is not supported, at least not with
the specific parameters supplied. This may be
because the current implementation does not
support a particular capability.

CPA_STATUS_RESTARTING -7

The API implementation is restarting.
Restarting may be reported if, for example, a
hardware implementation is undergoing a
reset.

The following table shows the return codes used by the acceleration driver to handle the
Linux* device driver operations.

Table 10. Acceleration Driver Return Codes for Linux* Device Driver Operations

Return Type Return Code Description

SUCCESS 0 The operation was successful.

Acceleration Drivers Overview

36 Programmer’s Guide

Return Type Return Code Description

FAIL 1
A general error occurred. Refer to the console log user space
application or to /var/log/ messages in kernel space for more
details of the failure.

-EPERM -1 Operation is not permitted. Used during ioctl operations.

-EIO -5 Input/Output error occurred. Used when copying
configuration data to and from user space.

-EBADF -9
Bad File Number. Used when an invalid file descriptor is
detected.

-EAGAIN -11 Try Again. Used when a recoverable operation occurred.

-ENOMEM -12
Out of Memory. A memory resource that has been requested
is not available.

-EACCES -13 Permission Denied. Used when the operation failed to
connect to a process or open a device.

-EFAULT -14
Bad Address. Used when an operation detects invalid
parameter data.

-ENODEV -19
No Such Device. Used when an operation detects invalid
device id.

-ENOTTY -25 Invalid Command Type. Used when an ioctl operation
detects an invalid command type.

3.12 Batch and Pack Compression Unsupported

Batch and Pack (BnP) compression are no longer supported.

3.13 Compress and Verify Feature

The Compress and Verify (CnV) feature check and ensures data integrity in the compression
operation of the Data Compression API. This feature introduces an independent capability to
verify the compression transformation.

Refer to Intel® QuickAssist Technology Data Compression API Reference Manual.

NOTE:

1. CnV is always enabled via the cpaDcCompressData() API.

2. CnV supports compression operations only.

3. The compressAndVerify flag in the CpaDcDpOpData structure should be set to
CPA_TRUE when using the cpaDcDpEnqueueOp() or cpaDcDpEnqueueOpBatch() API.
These APIs are declared in the API file cpa_dc_dp.h.

Acceleration Drivers Overview

Programmer’s Guide 37

4. The compressAndVerify flag in the CpaDcOpData structure should be set to CPA_TRUE
when using the cpaDcCompressData2() API. This API is declared in the API file
cpa_dc.h.

The CnV functionality is implemented in the Data Compression APIs

cpaDcCompressData(), cpaDcCompressData2(), cpaDcDpEnqueueOp() and
cpaDcDpEnqueueOpBatch() for the compression path only.

These APIs are declared and documented in the API file cpa_dc.h.

NOTE: It is possible to recover from Compress and Verify errors in a seamless manner. Refer
to the Compress and Verify and Recover discussion in Section 6.1.3.

3.14 Running Applications as Non-Root User

The installation of Intel® QAT software package configures the driver to allow applications to
run as Non-Root User. The users must be added to the 'qat' group.

When the make install is performed at the directory where the Intel® QAT package is installed,
the following udev file is created that is responsible for setting up non-root access.
KERNEL=="qat_adf_ctl" MODE="0660" GROUP="qat" RUN+="/bin/chgrp qat
/usr/local/bin/adf_ctl"
KERNEL=="qat_dev_processes" MODE="0660" GROUP="qat"
KERNEL=="usdm_drv" MODE="0660" GROUP="qat"
ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"
RUN+="/bin/mkdir / dev/hugepages/qat"
ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"
RUN+="/bin/chgrp qat /dev/hugepages/qat"
ACTION=="add", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"
RUN+="/bin/chmod 0770 /dev/hugepages/qat"
ACTION=="remove", DEVPATH=="/module/usdm_drv" SUBSYSTEM=="module"
RUN+="/bin/rmdir
/dev/hugepages/qat"
KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x0435"
MODE="0660" GROUP="qat"
KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x0443"
MODE="0660" GROUP="qat"
KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x37c8"
MODE="0660" GROUP="qat"
KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x37c9"
MODE="0660" GROUP="qat"
KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x6f54"
MODE="0660" GROUP="qat"
KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x6f55"
MODE="0660" GROUP="qat"
KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x19e2"
MODE="0660" GROUP="qat"
KERNEL=="uio*", ATTRS{vendor}=="0x8086", ATTRS{device}=="0x19e3"
MODE="0660" GROUP="qat"

The updates to the udev rules are performed during the installation of the Intel® QAT driver.

The following steps need to be manually applied:

Acceleration Drivers Overview

38 Programmer’s Guide

Change the amount of max locked memory for the username that is included in the group
name (which is by default 64). This can be done by specifying the limit in
/etc/security/limits.conf.
@qat - memlock 4096

3.15 Random Number Generation

Starting with Intel® QAT Hardware version 1.7, Intel® QAT no longer includes random number
generation capability, because this capability is already included in the CPU and is available via
the RDRAND and RDSEED instructions.

3.16 Huge Pages with the Included Memory Driver

The included User space DMAable Memory driver (usdm_drv.ko) supports 2 MB pages. This
allows direct access to main memory by devices other than the CPU and the actual supported
maximum memory size in one individual allocation when huge pages is enabled is 2 MB – 5 KB.
Where the 5 KB is used for memory management for the memory driver. The use of 2 MB
pages provides benefits, but also requires additional configuration. Use of this capability
assumes that enough huge pages are allocated in the operating system for the particular use
case and configuration.

Here are some examples use cases:
insmod ./usdm_drv.ko

Default settings applied.
insmod ./usdm_drv.ko max_mem_numa=32768

Maximum amount of Non-uniform Memory Access (NUMA) type memory that the User
Space DMA-able Memory (USDM) driver can allocate is 32 MB in total for all processes. Huge
pages are disabled.
insmod ./usdm_drv.ko max_huge_pages=50 max_huge_pages_per_process=5

Maximum number of huge pages that the USDM can allocate is 50 in total and 5 per process
(up to 10 processes, 0 for the next processes).
insmod ./usdm_drv.ko max_huge_pages=3
max_huge_pages_per_process=5

An erroneous configuration, maximum number of huge pages that USDM can allocate is 3
totals: 3 for a first process, 0 for the next processes.
insmod ./usdm_drv.ko max_huge_pages_per_process=5

An invalid configuration, huge pages are disabled because max_huge_pages is 0 by default.
insmod ./usdm_drv.ko max_huge_pages=5

An invalid configuration, huge pages are disabled because max_huge_pages_per_process is
0 by default.

NOTE: The use of huge pages may not be supported for all use cases. For instance,
depending on the driver version, some limitations may exist for an Input/Output
Memory Management Unit (IOMMU).

Acceleration Drivers Overview

Programmer’s Guide 39

3.17 Heartbeat

Under some circumstances, firmware in the Intel® QAT devices could become unresponsive,
requiring a device reset to recover. The Intel® QAT Heartbeat feature provides a mechanism
for the customer application to detect and reset unresponsive devices. It also notifies the
application processes of the start and end of the reset operation and suspends all Intel® QAT
instances between the events.

3.17.1 Heartbeat Operation

A Heartbeat enabled Intel® QAT device firmware periodically writes counters to a specified
physical memory location. A pair of counters per thread is incremented at the start and end of
the main processing loop within the firmware. Checking for Heartbeat consists of checking the
validity of the pair of counter values for each thread. Stagnant counters indicate a firmware
hang.

3.17.1.1 Initialization

At startup, the Intel® QAT device driver allocates memory for the counter pairs to be written by
the firmware and then sends a message to the firmware to start the heartbeat functionality.

3.17.1.2 Heartbeat Monitoring

Heartbeat check/monitoring refers to the invocation of one of the two API calls that check if
the device is responsive. Heartbeat failure refers to the API returning failure.

The Intel® QAT driver does not monitor for Heartbeat. It should be initiated by a Heartbeat
management thread calling one of the following APIs periodically:

• icp_sal_check_device(Cpa32U accelId);

• icp_sal_check_all_devices(void);

A failure return code implies the device has failed or hung.

The Heartbeat management thread should satisfy the following conditions:

• For any given device, only one such process/thread should monitor.

• One process can monitor one or more devices.

• Can be a user application that uses Intel® QAT services, or a separate
management/control plane process.

• In virtualized environment, monitoring process(es)/thread(s) must run in the context
of the host or hypervisor.

3.17.1.3 Resetting a Failed Device

A device can be configured for automatic reset by the Intel® QAT framework or manually reset
by the application by using the AutoResetOnError field in the device configuration file
/etc/<device>.conf, as shown in the following table.

Acceleration Drivers Overview

40 Programmer’s Guide

Table 11. AutoResetOnError Values

AutoResetOnError Value Action on Heartbeat Failure

0 (default) Do not reset the device

1 Reset the device automatically

:If an Intel® QAT device is not configured for automatic reset, the management thread should
reset it using the icp_sal_reset_device(Cpa32U accelId) API.

The icp_sal_reset_device() function starts an asynchronous reset sequence and returns
immediately. The reset function should not be called again until the device has completed the
reset to avoid a reset storm. The icp_sal_check_device(<device id>) function could be
called in a loop to check if the device reset is still in progress.

If the application devices are all configured for automatic reset, then the
icp_sal_check_all_devices() function could be used; otherwise, the function should not
be used because it does not return the identity of the failed device, which is a required
parameter for the icp_sal_reset_device() function.

3.17.1.3.1 Function Signatures

The details of the above functions, parameters, and return values can be found in Section 6.2,
Additional APIs.

3.17.2 Incorporating Heartbeat into Intel® QAT Applications

A typical Intel® QAT user application consists of two tasks:

• The first task is typically an application thread that initializes Intel® QAT instances and
sessions, and then submits service requests for Intel® QAT crypto or compression.

• If an application employs polling to receive Intel® QAT service responses, then this
task is also an application thread. Alternatively, responses are received as an interrupt
handler.

Two more tasks are required to support Heartbeat:

• The first is a management task to monitor the devices for failure or hang and then
resets them, when required. As discussed earlier, this could be an application thread
of an independent management process.

• The second task is an application thread that polls for device reset events:

— CPA_INSTANCE_EVENT_RESTARTING (device is restarting)

— CPA_INSTANCE_EVENT_RESTARTED (device restart is complete)

If the application employs polling to receive Intel® QAT service responses, then this task could
be included in the same polling loop.

The polling for device events is done using the API:

Acceleration Drivers Overview

Programmer’s Guide 41

• icp_sal_poll_device_events()

The two callback functions for crypto and compression are registered using the following
APIs:

• cpaCyInstanceSetNotificationCb

• cpaDcInstanceSetNotificationCb

The details of the above functions, parameters, and return values can be found in Section 6.2,
Additional APIs

3.17.2.1.1 Restart Sequence

During the restart sequence, the user space library releases the memory used for rings and
other data structures as part of the shutdown and reallocates them when the restart is
completed. The process is transparent to the user application, so it can continue to use the
same logical instance after reset to submit Intel® QAT service requests. Any memory allocated
by the user application for the Intel® QAT service is untouched during device reset.

A typical Heartbeat error use-case is as follows:

1. The driver and the firmware are loaded, initialized, and started.

2. The user-space application registers to receive instance notifications by calling
cpaCyInstanceSetNotificationCb and cpaDcInstanceSetNotificationCb.

3. The management thread monitors for the device’s Heartbeat. When a device is
unresponsive, a device reset is initiated by the management thread or by the Intel® QAT
framework depending on the device configuration.

4. The kernel-space process sends the Restarting event to the user-space process.

5. The user-space driver passes the device restarting event to all the registered application
instances. It also frees memory and rings associated with the registered instances.

6. The kernel-space driver triggers the device reset.

7. During reset, the Intel® QAT service requests made by the user application returns one of:
o CPA_STATUS_FAIL
o CPA_STATUS_RETRY
o CPA_STATUS_RESTARTING

8. When the device reset is complete, the kernel-space driver sends a device Restarted
event to the user space driver.

9. The user space driver allocates the memory and rings and then forwards the device
Restarted event to each of the registered instances.

3.17.2.1.2 Status of Packets in Flight (Crypto Applications Only)

When a device has fatal errors, the application ordinarily cannot determine whether or not
inflight requests have been processed successfully.

The current Intel® QAT release includes a dummy response feature that creates mock
responses to all requests submitted during a fatal error condition, so the application can detect
them and, therefore, know which requests need to be resubmitted to the available devices or
to the software.

Acceleration Drivers Overview

42 Programmer’s Guide

NOTE: The sequence of dummy responses will match the sending request sequence for all
requests submitted during a fatal error.

Since the dummy response feature only supports Public Key Encryption (PKE), dummy
responses may be generated only when the icp_sal_CyPollInstance() function is called,
since it is the function for crypto services.

The icp_sal_poll_device_events() function should also be called by the application, so
that the application get a notification when the device encounters a failure and dummy
responses are generated when calling icp_sal_CyPollInstance() for the inflight requests.

3.17.2.1.3 Determining Device ID

The <device id> that is passed as a parameter to several Heartbeat API is the numeric suffix
of the device name displayed by the following command. (Device name: qat_dev0)

#service qat_service status
There is 1 QAT acceleration device(s) in the system:
qat_dev0 - type: c3xxx, inst_id: 0, node_id: 0, bsf: 01:00.0, #accel:
3 #engines: 6 state: up

The Intel® QAT library has no API to discover the device number easily. However, an
application can use the IOCTLs IOCTL_GET_NUM_DEVICES and IOCTL_STATUS_ACCEL_DEV
to find the device_id of a particular device if they know the Bus Device Function (BDF). Refer
to perform_query_dev() in ./adf_ctl.cpp.

3.17.2.1.4 Setting Polling Minimal Period

QAT driver has possibility to set Heartbeat poll period value inside conf file as
HeartbeatTimer parameter (see Table 16):

• HeartbeatTimer - minimal acceptable value is 100 [ms], due to limitation on
firmware

• If value is not set in config file, default heartbeat pool period value is equal 500 [ms]

Reading Heartbeat value (e.g.: `cat
/sys/kernel/debug/qat_c4xxx_0000\:f4\:00.0/heartbeat`) more frequent than
once per Heartbeat poll period time, causes return value equal -1 and Kernel log: “HB poll
frequency is higher than configured HB timer”.

3.17.3 Testing Heartbeat

Two debug capabilities are available to assist the developers incorporating Heartbeat into
their applications:

• Simulation of Heartbeat failure

• System virtual files under /sys/kernel/debug/

Acceleration Drivers Overview

Programmer’s Guide 43

3.17.3.1 Simulated Heartbeat Failure Configuration

The Heartbeat feature is always enabled in the package. However, a debug capability that
simulates device failure can be enabled during the configure step as follows:
./configure --enable-icp-hb-fail-sim

3.17.3.2 Simulating Heartbeat Failure

Simulating Heartbeat failure can be accomplished using two methods:

• Using API icp_sal_heartbeat_simulate_failure (<device id>)

• Executing the command:

cat /sys/kernel/debug/<device>/heartbeat_sim_fail

3.17.3.3 System Virtual Files

NOTE: The Heartbeat /sys/kernel/debug files are associated with the QAT Physical
Function (PF).

The Heartbeat feature implements the following system virtual files under the /sys/
kernel/debug/qat_cxxx_<your_device_BDF>/ directory.

Table 12. Heartbeat System Virtual Files

File Content

heartbeat 0: Device is responsive.

-1: Device is NOT responsive.

heartbeat_failed Number of times the device became unresponsive.

heartbeat_sent Number of times the control process checked if the device is responsive.

A developer could simulate the Heartbeat management process by running the following
script in the background:

#!/bin/bash while : do

 cat /sys/kernel/debug/<device>/heartbeat > /dev/null sleep 1
done

3.17.3.4 Heartbeat Polling Frequencies

The application developer should decide on the following two Heartbeat polling frequencies:

• Device Heartbeat monitoring

• Checking for device reset events

3.17.3.4.1 Device Heartbeat Monitoring

Consider the following points when determining the frequency of Heartbeat monitoring:

Acceleration Drivers Overview

44 Programmer’s Guide

• Increasing Heartbeat monitoring frequency minimize the customer’s system
downtime

• However, since device unresponsiveness should be an infrequent event, high
frequency Heartbeat monitoring wastes CPU cycles.

• Also, if there are large Intel® QAT service requests that take some time to complete,
high frequency Heartbeat monitoring could result in false reports of
unresponsiveness.

3.17.3.4.2 Checking for Device Reset Events

If the application uses polling for reading Intel® QAT service responses, there is no value in
checking for resets more frequently. Since device unresponsiveness is an infrequent
occurrence, frequency of checking for reset events could be a fraction of the frequency of
polling for Intel® QAT service responses.

3.18 Handling Device Failures in a Virtualized Environment

The Heartbeat feature in the acceleration software can be used in a virtualized environment.
Refer to the Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist
Technology Application Note (refer to Table 2) for more details on enabling SR-IOV and the
creation of Virtual Functions (VFs) from a single Intel® QuickAssist Technology acceleration
device to support acceleration for multiple Virtual Machines (VMs).

The following sequence describes a possible use case for using the Heartbeat feature in a
virtualized environment:

1. The Intel® QAT Physical Function driver (PF driver) is loaded, initialized and started.

2. The Intel® QAT Virtual Function driver (VF driver) is loaded, initialized and started in the
Guest OS in the VM.

NOTE: For Intel® Communications Chipset 8900 to 8920 Series Software (aka Cave Creek) -
- The PF driver detects that the firmware is unresponsive (using either of the following
methods: User Proc Entry Read (not Enabled by Default) or User Application
Heartbeat APIs (not Enabled by Default).

3. The PF driver sends the “Restarting” event message to the VF via the internal PF to VF
communication messaging mechanism.

4. The VF driver sends the “Restarting” event to the application's registered callback. The
callback is registered using either of the Intel® QAT API functions
cpaDcInstanceSetNotificationCb() or cpaCyInstanceSetNotificationCb() in
the Guest OS. The application's callback function may perform any application-level
cleanup.

5. The PF driver starts the reset sequence (save state, initiate reset, and restore state).

6. The user restarts the Guest OS and loads the VF driver and application in the Guest OS.

NOTE: If the Heartbeat feature in the acceleration software is not enabled, the PF driver will
not notify the VF driver that the firmware is unresponsive.

Acceleration Drivers Overview

Programmer’s Guide 45

NOTE: The error detection mechanisms are not available on the VF driver in the VM, but
device errors caused by any of the software running on the VM will be detected by the
PF driver using the above mechanisms.

3.18.1 Understanding System Messages and Warnings

During the operation of Intel® QAT hardware, the system may log various messages that help
diagnose configuration and performance issues. One such message is:

[17.730925] QAT: Could not find a device on node 1

This message is informational only, and indicates that a kernel application is attempting to use
a QAT device on a specific node, but no QAT device is directly attached to that node. As a
result, the application may experience reduced performance due to using a QAT device on a
remote node.

This message is not indicative of an error, but rather a potential performance consideration. It
is most commonly seen during the early stages of driver loading and the crypto self-test. The
message is rate-limited and, as of kernel version 6.3, is logged as a debug message to avoid
excessive entries in the system logs.

If you do not observe this message on your platform, it may be due to one of the following
reasons:

1. The platform does not have remote nodes, i.e., it is a single-socket system.
2. Kernel tests are running on a core that has a local QAT accelerator attached, avoiding

the need for remote node access.
3. The kernel configuration suppresses the printing of informational and debug

messages.

For optimal performance, it is recommended to run applications on cores that have local
access to QAT devices. Please refer to the system topology and QAT device distribution to
ensure proper application and QAT device affinity.

3.19 Incorporating Dummy Responses into an Intel® QAT
Application

The dummy response feature has been incorporated in a scenario with the Intel® QAT engine
and Nginx*. Figure 4 below illustrates how it works. This can be used as a reference to so-called
“software fallback.”

The Intel® QAT engine is a shim layer between OpenSSL* libcrypto* and Intel® QAT Library.
The Intel® QAT Library will generate failover responses.

The Heartbeat Monitoring Daemon, a single process, is a daemon which is used to check the
device status periodically and trigger the driver the reset the device when Heartbeat failure
happens. Its only activity is calling icp_sal_check_device() or
icp_sal_check_all_devices() periodically.

The Intel® QAT Engine polls for and handles “device error” and “device ok” events (via udev). It
keeps track of the number of devices which are active.

Acceleration Drivers Overview

46 Programmer’s Guide

• If some, but not all, Intel® QAT devices encounter errors, switch to remaining available
devices by resubmitting the inflight requests, which are responded to with dummy
responses and new requests to the available devices.

• If the number of active Intel® QAT devices goes to zero, switch to software and
resubmit the inflight requests which are responded to with dummy responses and
new requests to the software.

• If the number of active Intel® QAT devices goes positive again, switch back to
hardware.

Figure 4. Incorporating Dummy Responses in an Intel® QAT Operation

3.19.1 Reliability, Availability, Serviceability

The Reliability, Availability, Serviceability (RAS) features are designed to limit the impact of
errors within QAT. This section describes the software element required to support the QAT
RAS capabilities. As background, the RAS terms are summarized as follows:

• Reliability: Refers to how often errors occur in a system and whether the system can recover
from an error condition.

Acceleration Drivers Overview

Programmer’s Guide 47

• Availability: Refers to how flexible the system resources can be allocated or redistributed for
the system utilization and system recovery from errors.

• Serviceability: Refers to how well the system reports and handles events related to errors.

3.19.2 End to End Data Integrity Support in QAT 1.8:

NOTE: This End-to-End Data Integrity Support is not available in QAT Hardware Generation
1.7 and earlier devices.

In QuickAssist Hardware Generation 1.8, additional CRCs have been added to the compression
to provide end-to-end data integrity support for performing payload verification throughout
the compression pipeline. The CRC for both the input and output data are generated. The
Compress and Verify feature supported in previous generations of QAT SW forms part of the
overall data integrity feature. The Compress and Verify feature is used to verify that the
compressed output from a compression job can be successfully decompressed. The
additional CRCs in QAT 1.8 adds protection for the data as it is transferred between Dynamic
Random-Access Memory (DRAM) and the QAT and as it flows through the compression
processing pipeline.

3.20 Rate Limiting

Rate Limiting is implemented by monitoring the utilization of the device on a per-VF, per-
service basis and comparing that to the SLA allocated to that VF and service. Resources are
shared across guests and the resource utilization of each guest is measured relative to the
capacity of the physical function.

The feature is supported only in rate limiting firmware for cryptographic or compression
services.

To enable the Rate Limiting feature:

1. Install the driver package on the host with Single-Root Input/Output Virtualization
(SR-IOV) enabled.

2. Update the physical function configure file – depending on your device type set either
the ServicesProfile parameter to a value that supports rate limiting (e.g., CRYPTO,
CUSTOM1, COMPRESSION) or set RateLimitingEnabled parameter as 1 to enable the
rate limiting.

3. Set ServicesEnabled to cy or sym or asym or dc.

4. Perform a qat_service stop followed by a qat_service start to instantiate
updated configuration settings.

This procedure also enables Device Utilization measurement (refer to Section 3.21) Rate
Limiting requires a virtualized environment, but device utilization can be used without
virtualization.

Acceleration Drivers Overview

48 Programmer’s Guide

RateLimitingEnabled flag is used only for c4xxx driver. For drivers: 200xx, c3xxx, c6xx,
d15xx, dh895xcc Rate Limiting feature is enabled by ServicesProfile parameter and proper
image selection (CRYPTO, COMPRESSION or CUSTOM1),

When a ServicesProfiles parameter value is used that supports rate limiting is defined,
internal resources are reallocated to administrating Rate Limiting/Device Utilization. This
reduces performance for symmetric crypto and data compression by roughly 10%.

3.20.1 Service Level Agreement (SLA)

Service Level Agreement enforcement allocates a specified amount of capacity for a specified
service to a specified VF.

Max SLA enforced = (number of VFs) X (number of services) where:

• Number of VFs varies based on device type

• Number of services = 3 (asymmetric or symmetric or compression)

NOTE: The number of VFs supporting rate limiting is 32 due to firmware limitation.

3.20.2 SLA Units

SLA units are measured as follows:

• Symmetric Crypto/Compression – 1Mbps of reference operation

• Asymmetric Crypto – 1 operation (ops) of reference operation

NOTE: Enforced SLAs are rounded up to the next multiple of 1000 units.

3.20.3 SLA Manager Application

The sla_mgr tool is used to create, update, delete, list, and get SLA capabilities.

The SLA Manager executable is available in $ICP_ROOT/build/sla_mgr after the package is
built and installed using./configure; make install commands.

3.20.3.1 Rate Limiting Commands

• Create SLA:
./sla_mgr create <vf_addr> <rate_in_sla_units> <service>

• Update SLA:
./sla_mgr update <pf_addr> <sla_id> <rate_in_sla_units>

• Delete SLA:
./sla_mgr delete <pf_addr> <sla_id>

• Delete all SLAs:
./sla_mgr delete_all <pf_addr>

• Query SLA capabilities:
./sla_mgr caps <pf_addr>

Acceleration Drivers Overview

Programmer’s Guide 49

• Query list of SLAs:
./sla_mgr list <pf_addr>

Options:

• pf_addr Physical address in bus:device.function(xx:xx.x) format

• vf_addr Virtual address in bus:device.function(xx:xx.x) format

• Service Asym(=0) or Sym(=1) or Dc(=2)

• rate_in_sla_units [0-MAX]. MAX is found by querying the capabilities.

One (1) rate_in_sla_units is equal to:

• 1 operation per second – for asymmetric service

• 1 Megabits per second – for symmetric service/compression service

• sla_id Value returned by create command

3.21 DU Manager Application

Device Utilization (DU) is a way to measure utilization of acceleration hardware that
corresponds to the throughput of cryptographic or compression services on a given physical
or virtual function. This can vary between different device types and generations.

The du_mgr tool is used to measure the utilization of cryptographic or compression service for
a given physical or virtual function.

The DU execution tool is available in $ICP_ROOT/build/du_mgr after the package is built and
installed using ./configure; make install commands.

To enable the Device Utilization feature:

1. Install the driver package on the host with SR-IOV enabled.

2. Update the physical function configure file to set ServicesProfile parameter to a value that
supports rate limiting (e.g., CRYPTO, CUSTOM1, or COMPRESSION).

3. Set ServicesEnabled to cy or sym or asym or dc.

4. Perform a qat_service stop followed by a qat_service start to instantiate updated
configuration settings.

NOTE: When a ServicesProfiles parameter value is used that supports rate limiting is
defined, internal resources are reallocated to administrating Rate Limiting/Device
Utilization. This reduces performance for symmetric crypto or data compression by
roughly 10%

NOTE: The maximum SLA that can be set for a device is the maximum DU for that device. For
various reasons, the acceptable margin of error for device utilization is 15%; therefore,
the tool may report percentages over 100% (allowable range is 85-110%). This margin
of error is much greater if durations over 5-seconds are used, as mentioned below.

Acceleration Drivers Overview

50 Programmer’s Guide

3.21.1 Commands to Fetch Device Utilization

Start or Stop the device measurement:
./du_mgr (start / stop) <pf_addr>

Query utilization for Physical function:
./du_mgr query <pf_addr> <service>

Query utilization for Virtual function:
./du_mgr query_vf <pf_addr> <vf_addr> <service>

Options:

• pf_addr Physical address in bus:device.function(xx:xx.x) format

• vf_addr Virtual address in bus:device.function(xx:xx.x) format

• service Asym(=0) or Sym(=1) or Dc(=2)

3.21.2 Durations

Duration between start and stop commands should be between 5 to 10 seconds.

Duration of more than 10 seconds may give inconsistent query results.

Device utilization query and query_vf reports utilization between the last start and stop
command.

For a given physical or virtual function, the device utilization reported would be in relation to
the maximum device capacity.

3.21.3 Reference Algorithm

The Symmetric Crypto Algorithm for Intel® QAT 1.7 devices is AES128-CBC HMACSHA1 with
Packet size 1024 bytes.

The Symmetric Crypto Algorithm for Intel® QAT 1.6 devices is AES128-CBC HMACSHA2-
256.

The Asymmetric Crypto Algorithm for both systems are RSA with 2048 modulus size.

3.22 Cipher-CRC

Cipher-CRC is a feature that enables offloading of cryptographic processing along with CRC
operations to QAT 1.8 device.

This feature is supported only by DPDK (Data Plane Development Kit) API and cannot be used
with QAT 1.8 package solely. It is supported only in Cipher-CRC firmware for cryptographic
(cy) service (other services might be used, but cryptographic service is required). Cipher-CRC
cannot be used in combination with Rate Limiting feature.

To enable the Cipher-CRC feature:

Acceleration Drivers Overview

Programmer’s Guide 51

1. Install DPDK software and QAT 1.8 driver package according to DPDK instructions

2. Update the physical function configuration file by adding CipherCRCEnabled
parameter in [GENERAL] section and set it to 1 to enable Cipher-CRC.

3. Set ServicesEnabled to cy. Other services (inline or dc) might also be set, but cy
is required for Cipher-CRC feature.

4. Perform a qat_service stop followed by a qat_service start to instantiate
updated configuration settings.

5. Follow DPDK instructions to use Cipher-CRC with DPDK API.

NOTE: In case cryptographic service is not enabled in ServicesEnabled the Cipher-CRC is
disabled regardless of CipherCRCEnabled.

NOTE: Cipher-CRC feature cannot be used in combination with Rate Limiting. If both
CipherCRCEnabled and RateLimitingEnabled parameters are set to 1 the device
will not start unless Cipher-CRC is disabled due to incorrect platform type or
ServicesEnabled.

NOTE: CipherCRCEnabled flag is used only for c4xxx driver and only with DPDK API.

3.23 Access to Legacy Algorithms

By default, legacy algorithms are now disabled. To enable those algorithms, use the
compilation flag --enable-legacy-algorithms (Getting Started Guide), which enables all legacy
algorithms. Also see associated functions in our Cryptographic API Reference manual:
cpaCyQueryCapabilities(), CpaCySymCapabilitiesInfo(), cpaCySymQueryCapabilities(), etc.

The following are the legacy algorithms now disabled by default.

Cipher Algorithms:

• ARC4
• AES-ECB
• AES-F8
• DES-ECB
• DES-CBC
• 3DES-ECB
• 3DES-CBC
• 3DES-CTR
• SM4-ECB

Hash Algorithms:

• MD5
• SHA1
• SHA224
• SHA3_224

PKE Algorithms:

Acceleration Drivers Overview

52 Programmer’s Guide

• RSA with key lengths less than 2048 bits
• DSA
• DH
• ECC with curve length less than 256 bits

Table 13. Supported Legacy Algorithms

Cipher Algorithm QAT 1.6 QAT 1.7x QAT 1.8 QAT 1.9

NULL Y Y Y Y

ARC4 Opt-in Opt-in Opt-in Opt-in

AES_ECB Opt-in Opt-in Opt-in Opt-in

AES_CBC Y Y Y Y

AES_CTR Y Y Y Y

AES_CCM Y Y Y Y

AES_GCM Y Y Y Y

AES_F8 Opt-in Opt-in Opt-in Opt-in

AES_XTS Y Y Y Y

DES_ECB Opt-in Opt-in Opt-in Opt-in

DES_CBC Opt-in Opt-in Opt-in Opt-in

3DES_ECB Opt-in Opt-in Opt-in Opt-in

3DES_CBC Opt-in Opt-in Opt-in Opt-in

3DES_CTR Opt-in Opt-in Opt-in Opt-in

KASUMI_F8 Y Y Y Y

SNOW3G-UEA2 Y Y Y Y

ZUC_EEA3 Y Y Y Y

CHACHA Y Y

SM4_ECB Opt-in Opt-in

SM4_CBC Y Y

SM4_CTR Y Y

Hash Algorithm QAT 1.6 QAT 1.7x QAT 1.8 QAT 1.9

MD5 Opt-in Opt-in Opt-in Opt-in

SHA1 Opt-in Opt-in Opt-in Opt-in

SHA224 Opt-in Opt-in Opt-in Opt-in

SHA256 Y Y Y Y

SHA384 Y Y Y Y

SHA512 Y Y Y Y

Acceleration Drivers Overview

Programmer’s Guide 53

SHA3_224 Opt-in Opt-in

SHA3_256 Y Y Y

SHA3_384 Y Y

SHA3_512 Y Y

AES_XCBC Y Y Y Y

AES_CBC_MAC Y Y Y Y

AES_CCM Y Y Y Y

AES_GCM Y Y Y Y

AES_GMAC Y Y Y Y

AES_CMAC Y Y Y Y

KASUMI_F9 Y Y Y

SNOW3G_UIA2 Y Y Y Y

ZUC_EIA3 Y Y Y Y

SHAKE_128

SHAKE_256

POLY Y Y

SM3 Y Y

PKE QAT 1.6 QAT 1.7x QAT 1.8 QAT 1.9

RSA-512 Opt-in Opt-in Opt-in Opt-in
RSA-1024 Opt-in Opt-in Opt-in Opt-in
RSA-1536 Opt-in Opt-in Opt-in Opt-in
RSA-2048 Y Y Y Y
RSA-3072 Y Y Y Y
RSA-4096 Y Y Y Y
RSA-8192
DH Opt-in Opt-in Opt-in Opt-in
DSA Opt-in Opt-in Opt-in Opt-in
SM2 Y
ECC key < 256-bit Opt-in Opt-in Opt-in Opt-in
ECDH Point
Multiply Y Y Y
ECDSA Sign Y Y Y
ECDSA Verify Y Y Y
x25519 Y Y
x448 Y Y

Acceleration Drivers Overview

54 Programmer’s Guide

“Opt-in” means that the algorithm is supported by SW/FW, but is not enabled with the default
build configuration. Customers must use the opt-in build flag --enable-legacy-algorithms when
building the SW library/driver to enable support for these legacy algorithms.

§

Acceleration Driver Configuration File

Programmer’s Guide 55

4 Acceleration Driver Configuration
File

This chapter describes the configuration file(s) that allows the customization of runtime
operation. The configuration file(s) must be tuned to meet the performance needs of the
target application.

NOTE: The software package includes a default configuration file, which may not provide
optimal performance on all platforms. Consider performance implications as well as
the configuration details provided in this chapter if your system requires modifications
to the default configuration file.

4.1 Configuration File Overview

There is a single configuration file for each Intel® QAT Endpoint (and there may be multiple
Intel® QAT Endpoints for a given hardware).

NOTE: Depending on the model number, a device may also contain no Intel® QAT Endpoints.

The configuration file is split into a number of different sections: a general section and one or
more Logical Instance sections.

The General section includes parameters that allow the user to specify:

• Which services are enabled?

• Concurrent request default configuration.

• Interrupt coalescing configuration (optional).

• Statistics gathering configuration.

Additional details are included in Section 4.2, General Section.

NOTE: The concurrent request parameters include both Transmit (Tx) and Receive (Rx)
requests.

Logical Instances sections (there may be one or more) include parameters that allow the user
to set:

• The number of cryptography or data compression instances being managed.

• For each instance, the name of the instance, whether polling is enabled, and the core
to which an instance is affinitized.

Additional details are included in Section 4.3, Logical Instances Section.

A sample configuration file is included in the package in the quickassist/
utilities/adf_ctl/conf_files directory.

Available Sample Configuration per SKUs:

Acceleration Driver Configuration File

56 Programmer’s Guide

Sample configurations are broadly divided into services and SKUs that Intel® QAT 1.8
platforms can support. Intel® QAT 1.8 offers these services:

• Cryptography (cy)

• Symmetric cryptography (sym)

• Asymmetric cryptography (asym)

• Compression (dc)

4.2 General Section

The General section of the configuration file contains general parameters and statistics
parameters.

4.2.1 General Parameters

The ServicesProfile parameter (see Table 11) defines the services that are available when
the driver loads. For example, if "ServicesProfile = COMPRESSION" is in the GENERAL
section, the compression and decompression are available, along with service chaining, but not
cryptography.

NOTE: The ServicesProfile parameter is used for all drivers excluding c4xxx, which uses
RateLimitingEnabled.

NOTE: When a ServicesProfile parameter value is used that supports rate limiting is
defined, internal resources are reallocated to administrating Rate Limiting/Device
Utilization. This reduces performance by roughly 5%.

Table 14. General Default Configuration Parameters

Service DEFAULT CRYPTO COMPRESSION CUSTOM1

Asymmetric Crypto YES YES YES

Symmetric Crypto YES YES YES

Hash YES YES YES YES

Cipher YES YES YES

MGF KeyGen YES YES

SSL/TLS KeyGen YES YES YES

HKDF YES YES

Compression YES YES YES

Decompression (stateless) YES YES YES

Decompression (stateful) YES YES

Acceleration Driver Configuration File

Programmer’s Guide 57

Service DEFAULT CRYPTO COMPRESSION CUSTOM1

Service Chaining YES

Device Utilization YES YES YES

Rate Limiting YES YES YES

NOTE: Set the ServicesProfile to determine available features excluding c4xxx, which
uses RateLimitingEnabled.

The following table describes the other parameters that can be included in the General
section.

Table 15. General Parameters

Parameter Description Default Range

ServicesEnabled

Defines the service(s)
available
(cryptographic [cy],
data compression
[dc]), symmetric
cryptography only
[sym], asymmetric
cryptography only
[asym] Note: Mutually
exclusive with [cy]).

cy;dc

cy, dc, sym and asym

Note: Multiple values
permitted, use “;” as
the delimiter.

For exceptions, see

Section 4.3.3.2,

“Increasing the

Maximum Number of

Processes/Instances”.

CyNumConcurrentSymRequests

Specifies the number
of cryptographic
concurrent symmetric
requests for
cryptographic
instances in general.

512

64, 128, 256, 512,

1024, 2048, 4096,
8192, 16384, 32768, or
65536

CyNumConcurrentAsymRequests

Specifies the number
of cryptographic
concurrent
asymmetric requests
for cryptographic
instances in general.

64

64, 128, 256, 512,

1024, 2048, 4096,
8192, 16384, 32768, or
65536

DcNumConcurrentRequests

Specifies the number
of data compression
concurrent requests
for data compression
instances in general.

512

64, 128, 256, 512,

1024, 2048, 4096,
8192, 16384, 32768, or
65536

DcIntermediateBufferSizeIn

KB

Specifies the size in
KB of each
intermediate buffer in
on-chip memory for
dynamic compression.

64 32 or 64

Acceleration Driver Configuration File

58 Programmer’s Guide

Parameter Description Default Range

AutoResetOnError

Automatically resets
the device in case of
fatal error or Heartbeat
failure.

0 0 or 1

NumInlineAccelUnits

Define AU number for
the inline service 0

Note: Inline feature is
only supported on
specific packages

NumCyAccelUnits

Define AU number for
the crypto service

4,2, or 1
(depend s

on the
SKU)

0 to 6

NumDcAccelUnits

Define AU number for
the data compression
service

2 or 1
(depend s

on the
SKU)

0 to 6

RateLimitingEnabled

This flag is to enable
Rate Limiting 0 0 or 1

HeartbeatTimer

This value set minimal
Heartbeat polling
period time

500 >= 100

NOTE: Not all parameters listed are available on all device types. RateLimitingEnabled
parameter is used only for c4xxx driver and visible only inside
c4xxx_.conf.<services>.<SKU> configuration files.

NOTE: “Default” denotes the value in the configuration file when shipped or the value used if
not specified in the configuration file.

For all the services enabled, NumConcurrentRequests must be set in the configuration file to
one of the following values: 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768 and
65536.

The number of concurrent requests registered by the Intel® QAT driver is set to
NumConcurrentRequests - 2.

This implementation ensures that the request ring will never be full and avoids the need for a
Memory Mapped IO (MMIO) read. This implementation maximizes throughput performance.

4.3 Logical Instances Section

This section allows the configuration of logical instances in each address domain (kernel space
and individual user space processes).

The address domains are in the following format:

Acceleration Driver Configuration File

Programmer’s Guide 59

• For the kernel address domain: [KERNEL] targeted to Linux* Kernel Crypto
Framework (LKCF)

• For the Intel® QAT API in Kernel address domain [KERNEL_QAT]

• For user process address domains: [xxxxx], where xxxxx may be any ASCII value
that uniquely identifies the user mode process.

In user space, to allow the driver to configure the logical instances associated with a user
process correctly, the process must call the function icp_sal_userStart passing the xxxxx
string during process initialization. When the user space process is finished, it must call the
function icp_sal_userStop to free resources. Refer to Section 6.2.4, User Space Access
Configuration Functions for more information.

A single Virtual Function (VF) configured for the SR-IOV use case cannot have both user
space instances and kernel space instances. Separate VFs must be created for user space and
kernel space.

The NumProcesses parameter (in the User Process section) indicates the max number of user
space processes within that section name with access to instances on this device. Refer to
Section 6.2.4.2, icp_sal_userStop for more information.

The items that can be configured for a logical instance are:

• The name of the logical instance

• The polling mode

• The core to which the instance is affinitized (optional)

4.3.1 [KERNEL] Section

In the [KERNEL] section of the configuration file, information about the number and type of
kernel instances supporting Linux* Kernel Crypto Framework can be defined.

This section is different from the [KERNEL_QAT] section. The [KERNEL] section in the
configuration file defines instances to register the Intel® QuickAssist Acceleration with Linux*
Kernel Crypto Framework (LKCF) while the instances defined in the [KERNEL_QAT] section
are exclusively targeted to be used with the Intel® QuickAssist API.

LKCF can be used with all devices supported within this software package.

The following table describes the parameters that determine the number of kernel instances
for each service.

NOTE: The maximum number of cryptographic instances supported per Intel® QAT Endpoint
is 32; for exceptions, refer to Section 4.3.3.2, Increasing the Maximum Number of
Processes/Instances.

NOTE: The NumberDcInstances is ignored in this section and is set to 0.

Acceleration Driver Configuration File

60 Programmer’s Guide

Table 16. [KERNEL] Section Parameters

Parameter Description Default Range

NumberCyInstances

Specifies the number of
cryptographic instances.

Note: Depends on the number of
allocations to other services.

0 0 to 32

4.3.1.1 Enabling Linux* Kernel Crypto Framework (LKCF)

To enable Linux* Kernel Crypto Framework, or LKCF: during the ./configure step, add the
flag –enable-qat-lkcf . Also enable at least one Cy instance in [KERNEL] section of the
configuration file. Dc instances are not used in [KERNEL] section.

After installation, to confirm which QAT algorithms were registered with LKCF, run cat
/proc/crypto , and look for algorithms with their module set to intel_qat.

4.3.2 [KERNEL_QAT] Section

The [KERNEL_QAT] section defines instances that can be used by the Intel® QuickAssist API in
Kernel space domain.

The table below describes the parameters for the [KERNEL_QAT] section.

NOTE: Intel® QuickAssist API is not supported by Intel® QAT 1.8 devices.

NOTE: The maximum number of cryptographic and data compression instances supported is
32 per Intel® QAT Endpoint; for exceptions, refer to Section 4.3.3.2, Increasing the
Maximum Number of Processes/Instances.

Table 17. [KERNEL_QAT] Section Parameters

Parameter Description Default Range

NumberCyInstances

Specifies the number of
cryptographic instances.

Note: Depends on the number of
allocations to other services.

6 0 to 32

NumberDcInstances

Specifies the number of data
compression instances.

Note: Depends on the number of
allocations to other services.

2 0 to 32

1. NumberCyInstances depends on the number of allocations to other two services

2. “Default” denotes the value in the configuration file when shipped.

Acceleration Driver Configuration File

Programmer’s Guide 61

4.3.3 User Process [xxxxx] Sections

There is one [xxxxx] section of the configuration file for each Intel® QAT Endpoint to be
configured.

NOTE: Check the SKU information for your specific device to determine how many Intel®
QAT Endpoints the device contains. There can be up to three Intel® QAT Endpoints
per device.

In each [xxxxx] section of the configuration file, user space access to the Intel® QAT Endpoint
can be configured.

The table below shows the parameters in the configuration file that can be set for user process
[xxxxx] sections.

Parameters for each user process instance can also be defined. The parameters that can be
included for each specific user process instance are like those in Section 4.3, Logical Instances
Section.

Table 18. [KERNEL_QAT] Section Parameters

Parameter Description Default Range

NumProcesses

The number of user space
processes with section name
[xxxxx] that have access to this
device.

The maximum number of
processes that can call
icp_sal_userStart and be active at
any one time. Refer to Section
6.2.4.1, “icp_sal_userStart” for more
information.

Caution: Resources are pre-
allocated. If this parameter value is
set too high, the driver fails to load.

1

For constraints, see

Section 4.3.3.1 Maximum
Number of Process
Calculations.

For exceptions, see

Section 4.3.3.2, Increasing
the Maximum Number of
Processes/Instances.

LimitDevAccess

Indicates if the user space
processes in this section are limited
to only access instances on this
Intel® QAT Endpoint.

0

0 (disabled, processes in this
section can access multiple
Intel® QAT Endpoints) or 1
(enabled, processes in this
section can only access this
Intel® QAT Endpoint). For
additional information, see

Section 4.5 Configuring
Multiple Processes on a
System with Multiple Intel®
QAT Endpoints.

Acceleration Driver Configuration File

62 Programmer’s Guide

Parameter Description Default Range

NumberCyInstances

Specifies the number of
cryptographic instances.

Note: Depends on the number of
allocations to other services.

6

0 to 32. For exceptions, see
Section 4.3.3.2, Increasing
the Maximum Number of
Processes/Instances.

NumberDcInstances

Specifies the number of data
compression instances.

Note: Depends on the number of
allocations to other services.

2 0 to 32

4.3.3.1 Maximum Number of Process Calculations

The NumProcesses parameter is the number of user space processes per service within the
[xxxx] section domain with access to this Intel® QAT Endpoint.

The value to which this parameter can be set is determined by a number of factors, most
significantly, the number of cryptography instances and/or data compression instances in the
process section. The total number of processes, per service, created by the driver is given by
the expression (e.g., for cryptography):

(NumProcesses) x (NumberCyInstances)

In Intel® QAT 1.7 devices, there are 16 ring banks per Intel® QAT Endpoint and a maximum of
two cryptography instances and two compression instances per bank. The maximum number
of instances per device is 32 for cryptography and 32 for compression. For exceptions, refer to
Section 4.3.3.2, Increasing the Maximum Number of Processes/Instances.

The following code example illustrates the maximum number of possible processes per device
in polling mode:
NumProcesses = 32
NumCyInstances = 1
NumDcInstances = 1

4.3.3.2 Increasing the Maximum Number of Processes/Instances

NOTE:

1. One bank is used per Intel® QAT virtual function (VFs).

2. This section only applies when the instances make use of polled mode.

It is possible to increase the number of processes supported by the software. In Intel® QAT 1.7
devices, there are 16 ring banks per Intel® QAT Endpoint where Intel® QAT 1.8 devices have 128
and a maximum of two cryptography instances and two compression instances per bank (or
per VF) when the configuration file has ServicesEnabled equal to cy;dc. However, the
maximum number of instances can be increased with the careful selection of the
ServiceEnabled parameter.

Acceleration Driver Configuration File

Programmer’s Guide 63

Compression, symmetric cryptography, and asymmetric cryptography each require two rings
out of the 16 possible rings for Intel® QAT 1.7 devices verses 8 for Intel® QAT 1.8 devices for a
ring bank. By selecting only, the services needed, the number of instances can be increased.

NOTE: Not all versions of the Intel® QAT software package support the ability to increase the
number of processes.

Here are the variations:

• With ServicesEnabled equal to sym, only two rings are used for each instance, so for
Intel® QAT 1.7 devices, eight instances can be used per bank (or per VF), or 128
instances per Intel® QAT Endpoint. For Intel® QAT 1.8 devices, four instances can be
used per bank (or per VF), or 512 instances per Intel® QAT Endpoint. In this case,
compression and asymmetric crypto services will not be available.

• With ServicesEnabled equal to asym, only two rings are used for each instance, so
for Intel® QAT 1.7 devices, eight instances can be used per bank (or per VF), or 128
instances per Intel® QAT Endpoint. For Intel® QAT 1.8 devices, four instances can be
used per bank (or per VF), or 512 instances per Intel® QAT Endpoint. In this case,
compression and symmetric crypto services will not be available.

• With ServicesEnabled equal to cy, only four rings are used for each instance (two
each for asymmetric and symmetric crypto), so for Intel® QAT 1.7 devices,four
instances can be used per bank (or per VF), or 64 instances per Intel® QAT Endpoint.
For Intel® QAT 1.8 devices, two instances can be used per bank (or per VF), or 256
instances per Intel® QAT Endpoint. In this case, compression services will not be
available.

• With ServicesEnabled equal to dc, only two rings are used for each instance, so for
Intel® QAT 1.7 devices, eight instances can be used per bank (or per VF), or 128
instances per Intel® QAT Endpoint. For Intel® QAT 1.8 devices, four instances can be
used per bank (or per VF), or 512 instances per Intel® QAT Endpoint. In this case,
asymmetric and symmetric crypto services will not be available.

• With ServicesEnabled equal to dc;asym, only four rings are used for each instance
(two each for compression and asymmetric crypto), so for Intel® QAT 1.7 devices, four
instances can be used per bank (or per VF), or 64 instances per Intel® QAT Endpoint.
For Intel® QAT 1.8 devices, two instances can be used per bank (or per VF), or 256
instances per Intel® QAT Endpoint. In this case, symmetric crypto services will not be
available.

• With ServicesEnabled equal to dc;sym, only four rings are used for each instance
(two each for compression and symmetric crypto), so for Intel® QAT 1.7 devices, four
instances can be used per bank (or per VF), or 64 instances per Intel® QAT Endpoint.
For Intel® QAT 1.8 devices, two instances can be used per bank (or per VF), or 256
instances per Intel® QAT Endpoint. In this case, asymmetric crypto services will not be
available.

NOTE: The ServicesProfile parameter value may also need to be changed. See Section 4.2.1.

4.3.3.3 Configuring Instances for Virtual Functions

To configure the number of instances for a virtual function:

Acceleration Driver Configuration File

64 Programmer’s Guide

1. Configure and install the driver package on the host with SR-IOV enabled using:
./configure --enable-icp-sriov=host

2. Update the physical function configuration file to set ServicesEnabled (refer to Section
4.3.3.2, Increasing the Maximum Number of Processes/Instances.)

3. Update the virtual function configuration file to set ServicesEnabled (refer to Section
4.3.3.2, Increasing the Maximum Number of Processes/Instances.)

4. Perform a qat_service stop followed by a qat_service start to instantiate updated
configuration settings.

The value of ServicesEnabled in the VF configuration file should be included in the value of
ServicesEnabled in the PF configuration file, or a subset of that value as shown in Table 15.
For instance, if a PF is configured as cy, allowable VF configurations related to that PF can only
be cy, asym, or sym. VF device restart will fail if a VF configuration is not allowed for that related
PF.

If a VF service is configured to a subset of PF service, the number of VF instances is limited to
the number allowed for that PF service as described in Section 4.3.3.2, Increasing the
Maximum Number of Processes/Instances. For example, if the PF configuration file has
ServicesEnabled=dc;asym, only four (not eight) dc instances are enabled if the VF is
configured for dc only.

Table 19. Configuring Physical Functions and Virtual Functions

Configured PF Service Available VF Services

cy;dc

cy;dc

cy

dc

sym

asym

dc;sym

dc;asym

cy

cy

sym

asym

dc;asym

dc;asym

asym

dc

dc;sym
dc;sym

sym

Acceleration Driver Configuration File

Programmer’s Guide 65

Configured PF Service Available VF Services

dc

asym asym

sym sym

dc dc

4.3.4 Cryptographic Logical Instance Parameters

The following table shows the parameters that can be set for cryptographic logical instances.

Table 20. Cryptographic Logical Instance Parameters

Parameter Description Default Range

CyXName
Specifies the name
of cryptographic
instance number X.

IPSec0 for KERNEL and
KERNEL_QAT sections.

SSL0 for user section
String (max. 64 characters)

CyXIsPolled

Specifies if
cryptographic
instance number x
works in poll mode,
interrupt mode or
epoll mode.

0 for kernel space
instances 1 for user
space instance

0 (interrupt mode) for
instances in the KERNEL
and KERNEL_QAT
sections 1 (poll mode) for
instances in the
KERNEL_QAT and user
space sections 2 (epoll
mode eventbased polling
mode) for instances in user
space section

CyXCoreAffinity
Specifies the core to
which the instance
should be affinitized.

Varies depending on the
value of X. 0 to max. number of cores

in the system

CyNumConcurrent
SymRequests

Specifies the number
of cryptographic
concurrent
symmetric requests
for cryptographic
instance X.

512
64, 128, 256, 512, 1024,
2048, or 4096

CyNumConcurrent
AsymRequests

Specifies the number
of concurrent
asymmetric requests
for cryptographic
instance X.

64
64, 128, 256, 512, 1024,
2048, or 4096

NOTE: “Default” denotes the value in the configuration file when shipped.

Acceleration Driver Configuration File

66 Programmer’s Guide

4.3.4.1 LKCF-supported algorithms:

See Supported Algorithms in LKCF for a full list.

4.3.5 Data Compression Logical Instance Parameters

The following table shows the parameters in the configuration file that can be set for data
compression logical instances.

NOTE: The maximum number of data compression instances supported is 64.

Table 21. Data Compression Logical Instance Parameters

Parameter Description Default Range

DcXName
Specifies the name of data
compression instance
number X.

IPComp0 String (max. 64 characters)

DcXIsPolled

Specifies if data
compression instance
number x works in poll
mode, interrupt mode or
epoll mode.

0 - kernel space
instances

1 - user-space
instances

0 (interrupt mode) for
instances in the KERNEL and
KERNEL_QAT sections

1 (poll mode) for instances in
the KERNEL_QAT and user
space sections

2 (epoll mode eventbased
polling mode) for instances in
user space section

DcXCoreAffinity

Specifies the core to which
the data compression
instance should be
affinitized.

Varies
depending on
the value of X.

0 to max. number of cores in
the system

DcXNumConcurren
tRequests

The parameter specifies
the number of concurrent
data requests for
compression instance X.

512
64, 128, 256, 512, 1024, 2048,
or 4096

NOTE: “Default” denotes the value in the configuration file when shipped.

4.3.6 Setting the Core Affinity Parameter for a Logical Instance

When instances are configured with IsPolled = 1 (Polling mode), the parameter
CoreAffinity does not have any impact.

Although not used, it is a valid parameter and applications can query the value using
cpaCyInstanceGetInfo2 (see coreAffinity bitmask in CpaInstanceInfo2). For
example, the sample code affinitizes the thread that uses an instance to the core indicated in
CoreAffinity the config file for that instance.

Acceleration Driver Configuration File

Programmer’s Guide 67

For instances configured in Interrupt Mode (IsPolled = 2 in user space (epoll) and
IsPolled = 1 in kernel space), the value of CoreAffinity is used to affinitize the interrupt
handler to that core.

4.4 Configuring Multiple Intel® QAT Endpoints in a System

A platform may include more than one Intel® QAT Endpoint. Each device must have its own
configuration file. The format and structure of the configuration file is exactly the same for all
devices. Consequently, the configuration file for Intel® QAT Endpoint 0, (c6xx_dev0.conf, for
the Intel® C62x Chipset; c3xxx_dev0.conf, for the Intel® Atom® C3000 Processor Family
SoC; d15xx_dev0.conf, for the Intel® Xeon® Processor D Family), can be cloned for use with
other Intel® QAT Endpoints.

All the configuration files are located in the /etc folder following the installation of the Intel®
QAT package.

Simply make a copy of the file and rename it by changing the dev0 part of the file name. For
example, for a second Intel® C62x Chipset Intel® QAT Endpoint, change the file name to
c6xx_dev1.conf; for a third Intel® QAT Endpoint, change the Intel® QAT Intel® QAT Endpoint
by editing the corresponding configuration file accordingly.

NOTE: If a configuration file does not exist for an Intel® QAT Endpoint, that endpoint will not
start, and an error is displayed indicating that a configuration file was not found.

To determine the number of Intel® QAT Endpoints in a system, use the lspci utility:
lspci -nn | egrep -e '8086:37c8|8086:19e2|8086:0435|8086:6f54'

The output from a system with a high-end Intel® C62x Chipset SKU is similar to the following:
88:00.0 Co-processor [0b40]: Intel Corporation Device [8086:37c8] (rev
03)
8a:00.0 Co-processor [0b40]: Intel Corporation Device [8086:37c8] (rev
03)
8c:00.0 Co-processor [0b40]: Intel Corporation Device [8086:37c8] (rev
03)

Then, after the driver is loaded, the user can use the qat_service script to determine the
name of each Intel® QAT Endpoint and its status. For example:
service qat_service status
qat_dev0 - type: c6xx, inst_id: 0, bsf: 06:00:0, #accel: 5 #engines: 10
state: up qat_dev1 - type: c6xx, inst_id: 1, bsf: 85:00:0, #accel: 5
#engines: 10 state: up qat_dev2 - type: c6xx, inst_id: 2, bsf: 87:00:0,
#accel: 5 #engines: 10 state: up

The qat_service can start, stop, restart and shutdown each device separately or all Intel®
QAT Endpoints together. Refer to Section 3.6, Managing Intel QuickAssist Technology
Endpoints Using qat_service for more information.

Some important configuration file information when using multiple Intel® QAT Endpoints:

• When specifying kernel and user space instances in the configuration file, the Cy<
Number>Name and Dc<Number>Name parameters must be unique in the context of the
section name only. For example, it is valid to have a parameter called Cy0Name in both
a kernel instance section (if supported) and a user instance section in the same

Acceleration Driver Configuration File

68 Programmer’s Guide

configuration file without issue. Also, the parameter names do not need to be unique
at a system-wide level. For example, it is valid to have a parameter called Cy0Name in
both the configuration file for dev0 and the configuration file for dev1 without issue.

• For Intel® QAT Endpoints with configuration files that have the same section name
(for example, [SSL] and the same data in that section), it is necessary to use the
cpaCyInstanceGetInfo2() function to distinguish between Intel® QAT Endpoints.
The cpaCyInstanceGetInfo2() allows the user of the API to query which Intel®
QAT Endpoint a cryptography instance handle belongs to. In addition, for any
application domain defined in the configuration files (e.g., [SSL]), a call to
cpaCyGetNumInstances() returns the number of cryptography instances defined
for that domain across all configuration files. A subsequent call to
cpaCyGetInstances()obtains these instance handles.

4.5 Configuring Multiple Processes on a System with
Multiple Intel® QAT Endpoints

As an example, consider a system with two Intel® QAT Endpoints where it is necessary to
configure two user space sections. One section is identified as SSL and the other is identified
as Internet Protocol Security (IPSec).

• For the SSL section, configure eight processes, where each process has access to one
acceleration instance.

• For the IPSec section, configure one process, with access to eight acceleration
instances, four per Intel® QAT Endpoint.

In this scenario, the user space section of the configuration files would look like the following.

For /etc/c6xx_dev0.conf:

[SSL] #User space section name

NumProcesses=4 # There are 4 user space process with section name SSL with access to this
device

LimitDevAccess=1 # These 4 SSL user space processes only use this device

NumCyInstances=1 # Each process has access to 1 Cy instance on this device

NumDcInstances=0 # Each process has access to 0 Dc instances on this device

Crypto - User instance #0
Cy0Name = "SSL0"
Cy0IsPolled = 1
Cy0CoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name

NumProcesses=1 # There is 1 user space process with section name IPSec with access to this
device

Acceleration Driver Configuration File

Programmer’s Guide 69

LimitDevAccess=0 # This IPSec user space process may have access to other devices

NumCyInstances=4 # The IPSec process has access to 4 Cy instances on this device

NumDcInstances=0 # The IPSec process has access to 0 Dc instances on this device

Crypto - User instance #0
Cy0Name = "IPSec0"
Cy0IsPolled = 1
Cy0CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #1
Cy1Name = "IPSec1"
Cy1IsPolled = 1
Cy1CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #2
Cy2Name = "IPSec2"
Cy2IsPolled = 1
Cy2CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #3
Cy3Name = "IPSec3"
Cy3IsPolled = 1
Cy3CoreAffinity = 0 # Core affinity not used for polled instance

For /etc/c6xx_dev1.conf:

[SSL] #User space section name

NumProcesses=4 # There are 4 user space process with section name SSL with access to this
device

LimitDevAccess=1 # These 4 SSL user space processes only use this device

NumCyInstances=1 # Each process has access to 1 Cy instance on this device

NumDcInstances=0 # Each process has access to 0 Dc instances on this device

Crypto - User instance #0
Cy0Name = "SSL0"
Cy0IsPolled = 1
Cy0CoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name

NumProcesses=1 # There is 1 user space process with section name IPSec with access to this
device

LimitDevAccess=0 # This IPSec user space process may have access to other devices

Acceleration Driver Configuration File

70 Programmer’s Guide

NumCyInstances=4 # The IPSec process has access to 4 Cy instances on this device

NumDcInstances=0 # The IPSec process has access to 0 Dc instances on this device

Crypto - User instance #0
Cy0Name = "IPSec0"
Cy0IsPolled = 1
Cy0CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #1
Cy1Name = "IPSec1"
Cy1IsPolled = 1
Cy1CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #2
Cy2Name = "IPSec2"
Cy2IsPolled = 1
Cy2CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #3
Cy3Name = "IPSec3"
Cy3IsPolled = 1
Cy3CoreAffinity = 0 # Core affinity not used for polled instance

Eight processes (with section name SSL) can call the icp_sal_userStart("SSL") function
to get access to one crypto instance each. One process (with section name IPSec) can call the
icp_sal_userStart("IPSec") function to get access to eight crypto instances.

Internally in the driver, this works as follows:

1. When the driver is configured (that is, the service qat_service is called), the driver reads
the configuration file for the device and populates an internal configuration table.

2. Reading the configuration file for dev0:

- For the section named [SSL], the driver determines that four processes are
required and that these processes limit access to this device only. In this case,
the driver creates four internal sections that it labels SSL_DEV0_INT_0,
SSL_DEV0_INT_1, SSL_DEV0_INT_2 and SSL_DEV0_INT_3. Each section is
given access to one crypto instance as described.

- For section name [IPSec], the driver determines that one process is
required and that this process does not limit access to this device only (that
is, it may access instances on other devices). In this case, the driver creates
one internal section that it labels IPSec_INT_0 and gives this access to four
crypto instances on this device.

3. Reading the configuration file for dev1:

- For the section named [SSL], the driver determines that four processes are
required and that these processes are limited to access this device only. In
this case, the driver creates four internal sections that it labels
SSL_DEV1_INT_0, SSL_DEV1_INT_1, SSL_DEV1_INT_2 and
SSL_DEV1_INT_3. Each section is given access to one crypto instance as
described.

Acceleration Driver Configuration File

Programmer’s Guide 71

- For the section named [IPSec], the driver determines that one process is
required and that this process may have access to instances on other
devices. In this case, the driver creates one internal section that it labels
IPSec_INT_0 and gives this access to four crypto instances on this device.

NOTE: This section name now appears in both devices' internal configuration and, therefore,
the process that gets assigned this section name will have access to instances on both
devices.

4. In total, there are nine separate sections (SSL_DEV0_INT_0, SL_DEV0_INT_1,
SSL_DEV0_INT_2, SSL_DEV0_INT_3, SSL_DEV1_INT_0, SL_DEV1_INT_1,
SSL_DEV1_INT_2, SSL_DEV1_INT_3 and IPSec_INT_0) with access to crypto instances.

When a process calls the icp_sal_userStart ("SSL") function, the driver locates the next
available section of the form SSL_DEV<m>_INT<....> (of which there are eight in total in this
example) and assigns this section to the process. This gives the process access to
corresponding crypto instances.

When a process calls the icp_sal_userStart ("IPSec") function, the driver locates the
next available section of the form IPSec_INT_<....> (of which there is only one in total for
this example) and assigns this section to the process. This gives the process access to the
corresponding crypto instances.

The icp_sal_userStartMultiProcess() function has been deprecated. The API still
exists, but it simply calls icp_sal_userStart().

4.6 Sample Configuration File

Sample configuration files are available in
quickassist/utilities/adf_ctl/conf_files. Depending on the product and
configuration, one or more of these will be copied to /etc during the package installation.

NOTE: The previous "v1" configuration file format is not supported.

§

Secure Architecture Considerations

72 Programmer’s Guide

5 Secure Architecture Considerations
This chapter describes the potential threats identified as part of the secure architecture
analysis of the Intel® Quick Assist Technology acceleration complex within the Intel®
Communications C62x Chipset family and the actions that can be taken to protect against
these threats.

This chapter concentrates on the acceleration complex. First, the terminology covering the
main threat categories and mechanisms, attacker privilege and deployment models are
presented. Then, some common mitigation actions that can be applied to many of these threat
categories and mechanisms are discussed. Finally, more specific threat/attack vectors,
including attacks against specific services of the PCH device are described.

5.1 Terminology

Each of the potential threat/attack vectors discussed may be described in terms of the
following:

• Threat Categories

• Attack Mechanism

• Attacker Privilege

• Deployment Models

5.1.1 Threat Categories

System threats can be classified into the categories in the following table.

Table 22. System Threat Categories

Category Nature of Threat and Examples

Exposure of Data • Attacker reads data to which they should not have read access

• Attacker reads cryptographic keys

Modification of Data • Attacker overwrites data to which they should not have write

access

• Attacker overwrites cryptographic keys

Denial of Service • Attacker causes application or driver software (running on an IA

core) to fail or terminate.

• Attacker causes Intel® QuickAssist Accelerator firmware to hang,

temporarily impeding service

• Attacker causes excessive use of resource (IA core, Intel®

QuickAssist Accelerator firmware thread, silicon slice, PCIe*

Secure Architecture Considerations

Programmer’s Guide 73

Category Nature of Threat and Examples

bandwidth, and so on), thereby reducing availability of the service

to legitimate client

5.1.2 Attack Mechanism

Some of the mechanisms by which an attacker can carry out an attack are listed in the
following table.

Table 23. Attack Mechanisms and Examples

Mechanism Examples

Contrived Packet
Stream

Attacker crafts a packet stream that exploits known vulnerabilities in the
software, firmware, or hardware. This could include vulnerabilities such as
buffer overflow bugs, lack of parameter validation, and so on.

Compromised
Application Software

Attacker modifies the application code calling the Intel® QuickAssist
Technology API to exploit known vulnerabilities in the driver/hardware.

Application Malware In an environment where an attacker may be able to run their own
application, separate from the main application software, they may invoke
the Intel® QuickAssist Technology API to exploit known vulnerabilities in
the driver/hardware

Compromised IA driver
software

Attacker modifies the IA driver to exploit known vulnerabilities in the
driver/hardware.

Defect It is also possible that the attack is not malicious, but rather an unintentional
defect

5.1.3 Attacker Privilege

The following table describes the privileges that an attacker may have. The table describes the
case of a non-virtualized system.

Table 24. Attacker Privilege

Privilege Comments

Physical access There is no attempt to protect against threats, such as signal probes,
where the attacker has physical access to the system. Customers can
protect their systems using physical locks, tamper-proof enclosures,
Faraday cages, and so on.

Logged in as privileged
user

There is no attempt to protect against threats where the attacker is logged
in as a privileged user. Customers can protect their systems using strong,
frequently changed passwords, and so on.

Logged in as
unprivileged user

If the attacker is logged into a platform as an unprivileged user, it is
important to ensure that they cannot use the services of the PCH to access
(read or write) any data to which they would not otherwise have access.

Ability to send packets In almost all deployments, attackers have the ability to send arbitrary
packets from the network into the system. It is assumed that threats (for
example, denial of service attacks) may arrive in this way.

Secure Architecture Considerations

74 Programmer’s Guide

5.1.4 Deployment Models

Some of the possible deployment models are given in the following table.

Table 25. Deployment Models

Deployment Model Examples

System with no untrusted users • Network security appliance

• Server in data center

System with potentially
untrusted users

• Server in data center

5.2 Threat/Attack Vectors

A thorough analysis has been conducted by considering each of the threat categories, attack
mechanisms, attacker privilege levels, and deployment models. As a result, the following
threats have been identified. Also described are the steps a user of the PCH chipset can take to
mitigate against each threat. Some general practices that mitigate many of the common
threats are considered first. Thereafter, threats on specific services and mitigation against
those threats are described.

5.2.1 General Mitigation

The following mitigation techniques are generic to different threats and attack vectors:

• Ensure that all software running on the platform that has access to Intel® Quick Assist
Technology devices is within the trust boundary of the platform owner. This
mitigation includes software running in virtual machines and containers.

• Intel® follows Secure Coding guidelines, including performing code reviews and
running static analysis on its driver software and firmware, to ensure its compliance
with security guidelines. It is recommended that customers follow similar guidelines
when developing application code. This should include the use of tools such as static
analysis, fuzzing, and so on.

• Ensure each hardware component, including the PCH chipset, processor, and DRAM,
is physically secured from attackers. This can include such examples as physical locks,
tamper proofing, and Faraday cages (to prevent side-channel attacks via
electromagnetic radiation).

• Ensure that network services not required on the module are not operating and that
the corresponding network ports are locked down.

• Use strong passwords to protect against dictionary and other attacks on
administrative and other login accounts.

5.2.2 General Threats

General threats include the following:

Secure Architecture Considerations

Programmer’s Guide 75

• DMA

• Intentional Modification of IA Driver

• Modification of the QAT Configuration File

• Malicious Application Code

• Denial of Service

5.2.2.1 DMA

Threat: The PCH can perform Direct Memory Access (DMA, the copying of data) between
defined memory locations. Once an attacker has sufficient privilege to invoke the Intel®
QuickAssist Technology API, or to write to/read from the hardware rings used by the driver to
communicate with the device, they can send requests to the Intel® QuickAssist Accelerator to
perform such DMA, passing arbitrary physical memory addresses as the source and/or
destination addresses, thereby exposing or modifying regions of memory to which they would
otherwise not have access.

Mitigation: Ensure that only trusted users are granted permissions to access the Intel®
QuickAssist Technology API, or to write to and read from the hardware rings. Specifically, the
PCH configuration file describes logical instances of acceleration services and the set of
hardware rings to be used for each such instance. User processes can ask the kernel driver to
map these rings into their address spaces. To access a given device (identified by the number
in the filenames below), the user must be granted read/write access to the following files,
which may be in /dev:

• uio<0..N> (where "0..N" are the qat uio device numbers)

• qat*

• usdm_drv

5.2.2.2 Intentional Modification of IA Driver

Threat: An attacker can potentially modify the IA driver to behave maliciously. This may lead to
a denial of service of Intel® Quick Assist Technology services.

Mitigation: The driver object/executable file on disk should be protected using the normal file
protection mechanisms so that it is writable only by trusted users, for example, a privileged
user or an administrator. Specifically, the Intel® QuickAssist Technology kernel objects and
libraries should not be writeable by user. If the qat user group is being used to provide access
to Intel® Quick Assist Technology services, then this group should not have write permission to
the binaries.

5.2.2.3 Modification of the QAT Configuration File

Threat: The QAT configuration file is read at initialization time by the driver and specifies what
instances of each service (cryptographic, data compression) should be created, and which
rings each service instance will use. Modifying this file could lead to denial of service by
deleting required instances or could be used to attempt to create additional instances that the
attacker could subsequently attempt to access for malicious purposes.

Secure Architecture Considerations

76 Programmer’s Guide

Mitigation: The configuration file should be protected using the normal file protection
mechanisms so that it is writable only by trusted users, for example, a privileged user or an
administrator.

NOTE: By default, the configuration file is stored in the /etc directory and may be named
something like, c6xxx_dev0.conf. Its default permissions are that it is readable and
writeable only by root user and qat group.

5.2.2.4 Malicious Application Code

Threat: An attacker who can gain access to the Intel® QuickAssist Technology API may be able
to exploit the following features of the API:

• Buffers passed to the API have a specified length of up to 32 bits. By specifying
excessive lengths, an attacker may be able to cause denial of service by overwriting
data beyond the end of a buffer.

• Buffer lists passed to the API consist of a scatter gather list (array of buffers). An
attacker may incorrectly specify the number of buffers, causing denial of service due
to the reading or writing of incorrect buffers.

Mitigation: Platform management can include the Rate Limiting feature to mitigate against
Noisy Neighbors. Only trusted users and applications should be allowed to access the Intel®
QuickAssist Technology API, as described in General Mitigations.

5.2.2.5 Denial of Service

Threat: An attacker may construct a service request that does not conform to the
specification, resulting in low of service due to service timeouts, halting of Quick Assist service
or undesired platform level conditions.

Mitigation: The current generation of Intel® Quick Assist Technology has been designed for
performance, providing direct access to hardware via PCIe* MMIO space. Misuse of hardware
registers is to be avoided, and the threat against intentional misuse must be mitigated by
ensuring all software on the platform is trusted.

An attacker may attempt to contrive a packet stream that monopolizes the acceleration
services, thereby denying service to legitimate users. This may consist of one or more of the
following:

• Sending packets that are compressed (for example, using IPComp) or encrypted (for
example, using IPsec), thereby reducing the availability of these services to legitimate
traffic.

• Sending excessively large packets, causing some latency for legitimate packets.

• Sending small packets at a high packet rate, causing extra bandwidth utilization on the
PCI Express* bus connecting the device to the processor.

Mitigation: Proper monitoring of Device Usage (DU) and the construction of Service Level
Agreements (SLA) are now available as part of the Rate Limiting feature.

Secure Architecture Considerations

Programmer’s Guide 77

5.2.3 Threats Specific to Cryptographic Service

Threats against the cryptographic service include:

• Reading of Cryptographic Keys

5.2.3.1 Reading Cryptographic Keys

Threat: Cryptographic keys are stored in DRAM. An attacker who can determine where these
are stored could read the DRAM to get access to the keys or could write the DRAM to use keys
known by the attacker, thereby compromising the confidentiality of data protected by these
keys. Some cryptographic keys have long lives. The impact of an attacker obtaining the key
may exist for the lifetime of the key itself.

Mitigation: DRAM is considered inside the cryptographic boundary (as defined by FIPS 140-2).
The normal memory protection schemes provided by the Intel® architecture processor and
memory controller, and by the operating system, prevent unauthorized access to these
memory regions.

§

Supported APIs

78 Programmer’s Guide

6 Supported APIs
The supported APIs are described in two categories:

• Intel® QuickAssist Technology APIs

• Additional APIs

6.1 Intel® QAT APIs

The platforms described in this manual support the following Intel® QAT API libraries:

• Cryptographic - API definitions are located in: $ICP_ROOT/quickassist/
include/lac, where $ICP_ROOT is the directory where the Acceleration software is
unpacked. See the Intel® QuickAssist Technology Cryptographic API Reference
Manual (refer to Table 2) for details.

• Data Compression - API definitions are located in: $ICP_ROOT/quickassist/
include/dc. See the Intel® QuickAssist Technology Data Compression API
Reference Manual (refer to Table 2) for details.

Base API definitions that are common to the API libraries are located in: $ICP_ROOT/
quickassist/include. See also the Intel® QuickAssist Technology API Programmer’s Guide
(refer to Table 2) for guidelines and examples that demonstrate how to use the APIs.

6.1.1 Intel® QAT API Limitations

The following limitations apply when using the Intel® QAT APIs on the platforms described in
this manual:

• For all services, the maximum size of a single perform request is 4 GB.

• For all services, data structures that contain data required by the Intel® QAT Endpoint
should be on a 64-byte-aligned address to maximize performance. This alignment
helps minimize latency when transferring data from DRAM to an Intel® QAT Endpoint
integrated in the PCH device.

• For the key generation cryptographic API, the following limitations apply:

Caution: Secure Sockets Layer (SSL) key generation op-data:

 Maximum secret length is 512 bytes
 Maximum userLabel length is 136 bytes
 Maximum generatedKeyLenInBytes is 248

Caution: Transport Layer Security (TLS) key generation op-data
Secret length must be <128 bytes for TLS v1.0/1.1; <512 bytes for
TLS v1.2 userLabel length must be <256 bytes

 Maximum seed size is 64 bytes
 Maximum generatedKeyLenInBytes is 248 bytes

Caution: Mask Generation Function (MGF) op-data
 Maximum seed length is 255 bytes
Maximum maskLenInBytes is 65528

Supported APIs

Programmer’s Guide 79

• For the cryptographic service, SNOW 3G and KASUMI* operations are not supported
when CpaCySymPacketType is set to CPA_CY_SYM_PACKET_TYPE_PARTIAL. The
error returned in this case is CPA_STATUS_INVALID_PARAM.

• For the cryptographic service, when using the asymmetric crypto APIs, the buffer size
passed to the API should be rounded to the next power of 2, or the next 3- times a
power of 2, for optimum performance.

• For the data compression service, the size of all stateful decompression requests
have to be a multiple of two with the exception of the last request.

• For the data compression service, the CpaDcFileType field in the
CpaDcSessionSetupData data structure is ignored (previously this was considered
for semi-dynamic compression/decompression).

• For static compression, the maximum expansion during compression is ceiling
(9*Total_Input_Byte/8)+7 bytes. If CPA_DC_ASB_ENABLED is selected, the
maximum expansion during compression is the input buffer size plus ceiling
(Total_Input_Byte/65535) * 5 bytes.

NOTE: Due to the need for a skid pad and the way the checksum is calculated in the stored
block case to prevent compression overflow, an output buffer size of ceiling
(9*Total_Input_Byte/8) + 55 bytes needs to be supplied (even though the stored
block output size might be less).

The decompression service can report various error conditions, most of which arise from
processing dynamic Huffman code trees that are ill-formed. These soft error conditions are
reported at the Intel® QAT API using the CpaDcReqStatus enumeration. At the point of soft
error, the hardware state will not be accurate to allow recovery. Therefore, in this case, the
Intel® QAT software rolls back to the previous known good state and reports that no input
has been processed and no output produced. This allows an application to correct the
source of the error and resubmit the request.

For example, if the following source and destination buffers were submitted to the Intel®
QAT

The result would be:

Supported APIs

80 Programmer’s Guide

• Behavior when build flag ICP_DC_RETURN_COUNTERS_ON_ERROR is defined. In some
specialized applications, when a decompression soft error occurs, the application has no way
of correcting the source of the error and resubmitting the request. The session will need to
be invalidated and terminated. In this case it is more useful to the application to output the
uncompressed data up to the point of soft error before terminating the session. There is a
compile time build flag (ICP_DC_RETURN_COUNTERS_ON_ERROR) to select this mode of
operation. This is the behavior of decompression in case of soft error when this build flag is
used.

If the following source and destination buffers were submitted to the Intel® QAT API:

The result would be:

It is important to note in this case:
Caution: The consumed value returned in the CpaDcRqResults structure is not reliable.
Caution: No further requests can be submitted on this session.

• For stateful decompression, the maximum output size is 4.29 GB (232 bytes).

6.1.1.1 Resubmitting After Getting an Overflow Error

The following table describes the behavior of the Intel® QAT compression service when an
overflow occurs during a compression or decompression operation.

It describes the expected behavior of an application when an overflow occurs.

Supported APIs

Programmer’s Guide 81

Table 26. Compression/Decompression Overflow Behavior

Operation Overflow

Supported
Input Data

Consumed ?
Valid Data
Produced?

Status
Returned in

Results
Note

Traditional API

Stateless
compression

YES

Possible -
indicated in

results
consumed

field

Possible -
indicated in

results
produced

field

-11

Overflow is
considered
as an
exception

Stateless
decompression

NO NO NO -11
Overflow is
considered
as an error

Stateful
decompression

YES

Possible -
indicated in

results
consumed

field

Possible -
indicated in

results
produced

field

-11

Overflow is
considered
as an
exception

Data Plane API

Stateless
compression

NO NO NO -11
Overflow is
considered
as an error

Stateful
decompression

NO NO NO -11
Overflow is
considered
as an error

The Intel® QAT releases enable the Compress and Verify feature by default for compression
requests. The Compress and Verify feature imply that sessions can only be Stateless in the
compression direction.

6.1.1.1.1 Overflow Exception in the Traditional API

Stateless sessions support overflow as an exception for traditional API in the compression
direction only. This means that the application can rely on the cpaDcRqResults.consumed to
resubmit from where the overflow occurred. An overflow in the decompression direction must
be treated as an error.

In this case, the application must resubmit the request with a larger buffer as described in the
procedure for handling overflow errors. For stateful sessions, overflow is supported only in the
decompression direction.

6.1.1.1.2 Overflow error in the Data Plane API

The Data Plane API considers overflow status as an error. If an overflow occurs with the data
plane API, the driver will output the following error message to the user:

"Unrecoverable error: stateless overflow. You may need to increase the size of your destination
buffer"

Supported APIs

82 Programmer’s Guide

In this case, cpaDcRqResults.consumed,.produced and.checksum should be ignored. If
length and checksum are required, they must be tracked in the application, because they are
not maintained in the session.

6.1.1.1.3 Procedure for Handling Overflow Errors

Resubmit the request with the following data:

• Use the same Source buffer.

• Allocate a bigger Destination buffer.

• Put the checksum from the previous successful request into the cpaDcRqResults
struct.

6.1.1.1.4 Compression Overflow Support in A Virtualized Environment

In a virtual environment, the guest does not download the firmware. Only the host downloads
the firmware.

Therefore, if the guest runs a newer Intel® QAT driver than the host, the guest application
might experience false CNV errors. The correct course of action would be to update the host
with the latest Intel® QAT driver.

6.1.1.1.5 Avoiding a Compression Overflow Exception

Overflow happens for 2 reasons:

1. The application allocated a destination buffer that was too small to receive the
compressed data.

2. A recovery occurred after a compress and verified error with an input payload greater than
65,535 bytes.

To minimize the impact of resubmitting data after and overflow exception, the API
cpaDcDeflateCompressBound() has been added to the Intel® QAT driver. This new API will
provide to the application a recommended destination buffer size to avoid the exception. This
API must be called by the application before allocating the destination buffer.

The cpaDcDeflateCompressBound()API requires the instance handle so that the formula
that it uses is tailored to the device generation.

6.1.1.2 Dynamic Compression for Data Compression Service

Dynamic compression involves feeding the data produced by the compression hardware block
to the translator hardware block. Figure 5 shows the dynamic compression data path.

Supported APIs

Programmer’s Guide 83

Figure 5. Dynamic Compression Data Path

When the application selects the Huffman type to CPA_DC_HT_FULL_DYNAMIC in the session
and auto-select best feature is set to CPA_DC_ASB_DISABLED, the compression service may
not always produce a deflate stream with dynamic Huffman trees.

In the case of Stateful decompression requests, if the service returns an exception (e.g.,
overflow status in the results), it is recommended to examine the bytes consumed and
returned in the CpaDcRqResults structure to verify if all the data in the source data buffer has
been processed. Unprocessed data can be submitted in a subsequent request that uses the
offset reported by the consumed field in the CpaDcRqResults structure.

6.1.1.3 Maximal Expansion with Auto Select Best Feature for Compression

Some input data may lead to a lower-than-expected compression ratio. This is because the
input data may not be very compressible.

To achieve a maximum compression ratio, the acceleration unit provides an auto select best
(ASB) feature. In this mode, the Intel® QuickAssist Technology hardware will first execute
static compression followed by dynamic compression and then select the output that yields
the best compression ratio.

However, if the produced data both for dynamic and static operations return a greater value
than the uncompressed source data and source block headers, the source data will be used as
a stored block.

A 5-byte stored block header is always prepended to the stored block.

To use the ASB feature, configure the autoSelectBestHuffmanTree enum during the
session creation.

Regardless of the ASB setting selected, dynamic compression will only be attempted if the
session is configured for dynamic compression.

There are five possible settings available for the autoSelectBestHuffmanTree when
creating a session. Based on the ASB settings described below, the produced data returned in
the CpaDcRqResults structure will vary.

6.1.1.3.1 CPA_DC_ASB_DISABLED

ASB mode is disabled.

Supported APIs

84 Programmer’s Guide

6.1.1.3.2 CPA_DC_ASB_STATIC_DYNAMIC

This setting is deprecated. To avoid incompatibility with older applications, it is internally
redirected to CPA_DC_ASB_ENABLED.. Redirecting to CPA_DC_ASB_ENABLED effectively
means that despite what the old enum name suggests, QAT is now allowed to return an
uncompressed block with this option (if it’s smaller than compressed block would be).

6.1.1.3.3 CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS

This setting is deprecated. To avoid incompatibility with older applications, it is internally
redirected to CPA_DC_ASB_ENABLED.

6.1.1.3.4 CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS

This setting is deprecated. To avoid incompatibility with older applications, it is internally
redirected to CPA_DC_ASB_ENABLED.

For QAT 1.6/1.7 Hardware, deprecation means it is no longer possible to return an
uncompressed stored block without a compliant DEFLATE header.

6.1.1.3.5 CPA_DC_ASB_ENABLED

ASB mode is enabled. When CPA_DC_ASB_ENABLED is used, the output will be a format
compliant block with a proper header, whether the data is compressed or uncompressed. QAT
is allowed to return an uncompressed or compressed (static/dynamic) block, whichever is
smaller.

CPA_DC_ASB_ENABLED behaves the same as
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS did in previous version
of QAT.

6.1.1.4 Maximal Expansion and Destination Buffer Size in Compression
Direction

For static compression operations, the worst-case possible expansion can be expressed as:

Max Static Produced data in bytes = ceil(9 * Total input bytes / 8) + 7

The memory requirement for the destination buffer is expressed by the following formula:

Destination buffer size in bytes = ceil((9 * Total input bytes + (8-1)) / 8) + 55 bytes + N bytes

With:
 ceil(x,y) = (x + (y – 1)) / y
 N = 8 - (total input byte count) when total input byte count < 8
 -or-
 N = 0 when total input byte count >= 8

The destination buffer size must consider the worst-case possible maximal expansion + 55
bytes + N bytes

Supported APIs

Programmer’s Guide 85

Example 1 with an input source size of 111,261 bytes:
Memory required for destination buffer = ceil((9 * 111261 + (8 - 1)) / 8)
+ 55 + (111261 < 8 ? (8 - 111261) : 0)
= ceil (125169.5) + 55 + 0
= 125169 + 55 + 0
= 125224 bytes to be allocated

Example 2 with a 7-byte input source size:
Memory required for destination buffer = ceil((9 * 7 + (8 - 1)) / 8) + 55
+ (7 < 8 ? (8 - 7) : 0)
= ceil (8.75) + 55 + 1
= 8 + 55 + 1
= 64 bytes to be allocated

NOTE: Regardless of the ASB settings, the memory must be allocated for the worst case. If
an overflow occurs, either using static or dynamic compression, then the returned
counters, status, and expected application behavior is as shown per Table 27.

6.1.2 Data Plane APIs Overview

The Intel® QAT Cryptographic API Reference Manual and the Intel® QAT Data Compression
API Reference Manual (refer to Table 2) contain information on the APIs that are specific to
data plane applications.

The APIs are recommended for applications that are executing in a data plane environment
where the cost of offload (that is, the cycles consumed by the driver sending requests to the
hardware) needs to be minimized. To minimize the cost of offload, several constraints have
been placed on the APIs. If these constraints are too restrictive for your application, the
traditional APIs can be used instead (at a cost of additional IA cycles).

The definition of the Cryptographic Data Plane API’s are contained in:
$ICP_ROOT/quickassist/include/lac/cpa_cy_sym_dp.h

The definition of the Data Compression Data Plane APIs is contained in:
$ICP_ROOT/quickassist/include/dc/cpa_dc_dp.h

6.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs

From an IA cycle count perspective, the Data Plane APIs are more performant than the
traditional APIs (that is, for example, the symmetric cryptographic APIs defined in
$ICP_ROOT/quickassist/include/lac/cpa_cy_sym.h). The majority of the cycle count
reduction is realized by the reduction of supported functionality in the Data Plane APIs and the
application of constraints on the calling application (refer to Section 6.1.2.2, Usage Constraints
on the Data Plane APIs).

In addition, to further improve performance, the Data Plane APIs attempt to amortize the cost
of an MMIO access when sending requests to, and receiving responses from, the hardware.

A typical usage is to call the cpaCySymDpEnqueueOp()or the cpaDcDpEnqueueOp() function
multiple times with requests to process and the performOpNow flag set to CPA_FALSE. Once
multiple requests have been enqueued, the

Supported APIs

86 Programmer’s Guide

cpaCySymDpEnqueueOp() or cpaDcDpEnqueueOp() function may be called with the
performOpNow flag set to CPA_TRUE. This sends the requests to the Intel® QAT Endpoint for
processing. This sequence is shown in Figure 6.

Figure 6. Amortizing the Cost of an MMIO Across Multiple Requests

The Intel® QAT API returns a CPA_STATUS_RETRY when the ring becomes full.

The number of requests to place on the ring is application dependent and it is recommended
that performance testing be conducted with tunable parameter values.

Two functions, cpaCySymDpPerformOpNow() and cpaDCDpPerformOpNow(), are also
provided that allow queued requests to be sent to the hardware without the need for queuing
an additional request. This is typically used in the scenario where a request has not been
received for some time and the application would like the enqueued requests to be sent to the
hardware for processing.

6.1.2.2 Usage Constraints on the Data Plane APIs

The following constraints apply to the use of the Data Plane APIs. If the application can handle
these constraints, the Data Plane APIs can be used:

Supported APIs

Programmer’s Guide 87

• Thread safety is not supported. Each software thread should have access to its own
unique instance (CpaInstanceHandle) to avoid contention on the hardware rings.

• For performance, polling is supported, as opposed to interrupts (which are
comparatively more expensive).

• Polling functions (refer to Section 6.2.2, Polling Functions) are provided to read
responses from the hardware response queue and dispatch callback functions.

• Buffers and buffer lists are passed using physical addresses to avoid virtual-to-
physical address translation costs.

• Alignment restrictions are placed on the operation data (that is, the

• CpaCySymDpOpData structure) passed to the Data Plane API. The operation data
must be at least 8-byte aligned, contiguous, resident, DMA-accessible memory.

• Only asynchronous invocation is supported, that is, synchronous invocation is not
supported.

• There is no support for cryptographic partial packets. If support for partial packets is
required, the traditional Intel® QAT APIs should be used.

• Since thread safety is not supported, statistic counters on the Data Plane APIs are not
atomic.

• The default instance (CPA_INSTANCE_HANDLE_SINGLE) is not supported by the Data
Plane APIs. The specific handle should be obtained using the instance discovery
functions (cpaCyGetNumInstances(), cpaCyGetInstances()).

• The submitted requests are always placed on the high-priority ring.

• The data plane APIs are supported in both user space and polling mode in kernel
space, but not supported in interrupt mode in kernel space.

6.1.2.3 Cryptographic and Data Compression API Descriptions

Full descriptions of the Intel® QAT APIs are contained in the Intel® QAT Cryptographic API
Reference Manual and the Intel® QAT.

Data Compression API Reference Manual (refer to Table 2). In addition to the Intel® QAT Data
Plane APIs, there are several Data Plane Polling APIs that are described in Section 6.2.2,
Polling Functions.

6.1.3 Recovering from a Compress and Verify Error

The Compress and Verify and Recover (CnVnR) feature allow a compression error to be
recovered in a seamless manner. It is supported in both the Traditional and in the Data Plane
API.

The CnVnR feature is an enhancement of the existing Compress and Verify (CnV) solution.
When a compress and verify error is detected, the Intel® QAT software will do a correction
without returning a CnV error to the application.

When a recovery occurs, CpaDcRqResults.status will return CPA_DC_OK or
CPA_DC_OVERFLOW and the destination buffer will hold valid DEFLATE data.

Supported APIs

88 Programmer’s Guide

The application can find out if CnVnR is supported by querying the instance capabilities via the
cpaDcQueryCapabilities API. On completion, the

compressAndVerifyAndRecover property of the CpaDcInstanceCapabilities structure
will be set to CPA_TRUE if the feature is supported.

The table below provides details on the Intel® QuickAssist APIs supporting the CnVnR feature.

Table 27. API Support for Compress and Verify and Recover

API CnVnR Behavior

cpaDcCompressData Enabled by default, no option to disable it.

cpaDcCompressData2
CnVnR is enabled when compressAndVerifyAndRecover
property is set to CPA_TRUE in CpaDcOpData structure.

cpaDcDecompressData Not applicable

cpaDcDecompressData2 Not applicable

cpaDcDpEnqueueOp
CnVnR is enabled when compressAndVerifyAndRecover
property is set to CPA_TRUE in CpaDcOpData structure.

cpaDcDpEnqueueOpBatch
CnVnR is enabled when compressAndVerifyAndRecover
property is set to CPA_TRUE in CpaDcOpData structure.

When a CnV recovery takes place, the Intel® QAT software creates a stored block out of the
input payload that could not be compressed. The maximal size of a stored block allowed by the
deflate standard is 65,535 bytes.

When a stored block is created, the DEFLATE header specifies that the data is uncompressed
so that the decompressor does not attempt to decode the cleartext data that follows the
header. The size of a stored block can be defined as:

Stored block size = Source buffer size + 5 Bytes (used for the deflate header)

If a stored block needs to be created out of a cleartext payload size greater than 65,535 bytes,
the Intel® QuickAssist solution creates one stored block of 65,535 bytes and
CpaDcRqResults.status returns CPA_DC_OVERFLOW.

Supported APIs

Programmer’s Guide 89

NOTE: If the application uses the Data Plane API, it is responsible for submitting request sizes
smaller or equal to 65,530 bytes to avoid meeting the overflow error limit.

6.1.4 Counting Recovered Compression Errors

The Intel® QAT API has been updated to allow the application to track recovered compression
errors. The CpaDcStats data structure has a new property called
numCompCnvErrorsRecovered that is incremented every time a compression recovery
happens.

The compression recovery process is agnostic to the application.

CpaDcRqResults.status returns CPA_DC_OK when a compression recovery takes place. The
only way to know if a compression recovery took place on the current request is to call the
cpaDcGetStats() API and to monitor CpaDcStats.numCompCnvErrorsRecovered.

6.1.5 Compress and Verify Error log in Sysfs:

The implementation of the Compress and Verify and Recover solution keeps a record of the
CnV errors that have occurred since the driver was loaded. The error count is provided on a per
Acceleration Engine basis.

The path to the CnV error log is:

cat /sys/kernel/debug/qat_dh895xcc_<Bus>\:<device>.<Function>/ cnv_errors

Each Acceleration Engine keeps a count of the CnV errors. The CnV error counter is reset
when the driver is loaded. The tool also reports the last error type that caused a CnV error.

6.1.6 Supported Algorithms in LKCF

If LKCF is enabled (see section Enabling Linux* Kernel Crypto Framework (LKCF)), the
following algorithms and templates are supported:

• authenc(hmac(sha1),cbc(aes)) - legacy
• authenc(hmac(sha256),cbc(aes))
• authenc(hmac(sha512),cbc(aes))
• cbc(aes)
• ctr(aes)
• xts(aes)
• gcm(aes) - available only with CE release package R4.24.0 and newer, or QAT1.8

driver version 1.11.0, for kernels 4.3.0 and newer
• rsa
• dh - legacy

For more information on the usage of these algorithms through LKCF, refer to the LKCF API
documentation provided by the Linux* kernel, including
https://www.kernel.org/doc/html/v4.15/crypto/architecture.html#ciphers-and-templates , or
https://www.kernel.org/doc/html/v6.0/crypto/architecture.html#ciphers-and-templates .

https://www.kernel.org/doc/html/v4.15/crypto/architecture.html#ciphers-and-templates
https://www.kernel.org/doc/html/v6.0/crypto/architecture.html#ciphers-and-templates

Supported APIs

90 Programmer’s Guide

6.2 Additional APIs

There are a number of additional APIs that can serve for optimization and other uses outside of
the Intel® QAT services.

NOTE: Not all additional APIs are supported with all versions of the software package.

The additional APIs are grouped into the following categories:

• IOMMU Remapping Functions

• Polling Functions

• User Space Access Configuration Functions

• Version Information Function

• Thread-less APIs

• Compress and Verify (CnV) Related APIs

• Heartbeat APIs

• Device Polling APIs

• Congestion Management APIs

• Service Specific Polling APIs

• Check Device Availability APIs

6.2.1 IOMMU Remapping Functions

These functions are intended for IOMMU remapping operations.

All IOMMU remapping function definitions are in: $ICP_ROOT/quickassist/
lookaside/access_layer/include/icp_sal_iommu.h.

The IOMMU remapping functions include:

• Section 6.2.2.1, icp_sal_iommu_get_remap_size

• Section 6.2.2.2, icp_sal_iommu_map

• Section 6.2.2.3, icp_sal_iommu_unmap

6.2.1.1 icp_sal_iommu_get_remap_size

Returns the page_size rounded for IOMMU remapping.

6.2.1.1.1 Syntax
size_ticp_sal_iommu_get_remap_size(size_t size);

6.2.1.1.2 Parameters

size_t the minimum required page size.

Supported APIs

Programmer’s Guide 91

6.2.1.1.3 Return Value

The icp_sal_iommu_get_remap_size function returns the page_size rounded for IOMMU
remapping.

6.2.1.2 icp_sal_iommu_map

Adds an entry to the IOMMU remapping table.

6.2.1.2.1 Syntax
CpaStatus icp_sal_iommu_map(Cpa64U phaddr, Cpa64U iova, size_t size);

6.2.1.2.2 Parameters

phaddr Host physical address.

iova Guest physical address.

size of the remapped region.

6.2.1.2.3 Return Value

The icp_sal_iommu_map function returns one of the following codes:

6.2.1.2.3.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

6.2.1.3 icp_sal_iommu_unmap

Removes an entry from the IOMMU remapping table.

6.2.1.3.1 Syntax
CpaStatus icp_sal_iommu_unmap(Cpa64U iova, size_t size);

6.2.1.3.2 Parameters

iova Guest physical address to be removed.

size Size of the remapped region.

6.2.1.3.3 Return Value

The icp_sal_iommu_unmap function returns one of the following codes:

6.2.1.3.3.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

Supported APIs

92 Programmer’s Guide

CPA_STATUS_FAIL Indicates a failure.

6.2.1.4 IOMMU Remapping Function Usage

These functions are required when the user wants to access an acceleration service from the
Physical Function (PF) when SR-IOV is enabled in the driver. In this case, all I/O transactions
from the device go through DMA remapping hardware. This hardware checks 1) if the
transaction is legitimate and 2) what physical address the given I/O address needs to be
translated to. If the I/O address is not in the transaction table, it fails with a DMA Read error
shown as follows:

DRHD: handling fault status reg 3
DMAR:[DMA Read] Request device [02:01.2] fault addr <ADDR> DMAR:[fault
reason 06] PTE Read access is not set

To make this work, the user must add a 1:1 mapping as follows:

1. Get the size required for a buffer:
int size = icp_sal_iommu_get_remap_size(size_of_data);

2. Allocate a buffer:
char *buff = malloc(size);

3. Get a physical pointer to the buffer:
buff_phys_addr = virt_to_phys(buff);

4. Add a 1:1 mapping to the IOMMU tables:
icp_sal_iommu_map(buff_phys_addr, buff_phys_addr, size);

5. Use the buffer to send data to the Intel® QAT Endpoint.

6. Before freeing the buffer, remove the IOMMU table entry:
icp_sal_iommu_unmap(buff_phys_addr, size);

7. Free the buffer:
free(buff);

The IOMMU remapping functions can be used in all contexts that the Intel® QAT APIs can be
used, that is, kernel and user space in a Physical Function (PF) Domain 0, as well as kernel and
user space in a Virtual Machine (VM). In the case of VM, the APIs will do nothing. In the PF
Domain 0 case, the APIs update the hardware IOMMU tables.

6.2.2 Polling Functions

These functions are intended for retrieving response messages that are on the rings and
dispatching the associated callbacks.

All polling function definitions are in:
$ICP_ROOT/quickassist/lookaside/access_layer/include/icp_sal_poll.h

The polling functions include:

• Section 6.2.2.1, icp_sal_pollBank

• Section 6.2.2.2, icp_sal_pollAllBanks

• Section 6.2.2.3, icp_sal_CyPollInstance

• Section 6.2.2.4, icp_sal_DcPollInstance

Supported APIs

Programmer’s Guide 93

• Section 6.2.2.5, icp_sal_CyPollDpInstance

• Section 6.2.2.6, icp_sal_DcPollDpInstance

6.2.2.1 icp_sal_pollBank

Poll all rings on the given Intel® QAT Endpoint on a given bank number to determine if any of
the rings contain response messages from the Intel® QAT Endpoint. The response_quota
input parameter is per ring.

6.2.2.1.1 Syntax
CpaStatus icp_sal_pollBank(Cpa32U accelId, Cpa32U bank_number, Cpa32U
response_quota);

6.2.2.1.2 Parameters

accelId the device number associated with the Intel® QAT Endpoint.

The valid range is 0 to the number of Intel® QAT Endpoint devices in the system.

bank_number the number of the memory bank on the Intel® QAT Endpoint that will be
polled for response messages. The valid range is 0 to 31.

response_quota the maximum number of responses to take from the ring in one call.

6.2.2.1.3 Return Value

The icp_sal_pollBank function returns one of the following codes:

6.2.2.1.3.1 Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY There is no data on any ring on any bank or the banks are already being
polled.

CPA_STATUS_FAIL Indicates a failure.

6.2.2.2 icp_sal_pollAllBanks

Poll all banks on the given Intel® QAT Endpoint to determine if any of the rings contain
response messages from the Intel® QAT Endpoint. The response_quota input parameter is
per ring.

6.2.2.2.1 Syntax
CpaStatus icp_sal_pollAllBanks(Cpa32U accelId, Cpa32U response_quota);

6.2.2.2.2 Parameters

accelId the device number associated with the Intel® QAT Endpoint. The valid range is 0 to
the number of Intel® QAT Endpoints in the system.

Supported APIs

94 Programmer’s Guide

response_quota the maximum number of responses to take from the ring in one call.

6.2.2.2.3 Return Value

The icp_sal_pollAllBanks function returns one of the following codes:

6.2.2.2.3.1 Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY There is no data on any ring on any bank or the banks are already being
polled.

CPA_STATUS_FAIL Indicates a failure.

6.2.2.3 icp_sal_CyPollInstance

Poll the Cryptographic (CY) logical instance associated with the instanceHandle to retrieve
requests that are on response rings associated with that instance and dispatch the associated
callbacks. The response_quota input parameter is the maximum number of responses to
process in one call.

NOTE: The icp_sal_CyPollInstance() function is used in conjunction with the
CyXIsPolled parameter in the acceleration configuration file.

6.2.2.3.1 Syntax
CpaStatus icp_sal_CyPollInstance(CpaInstanceHandle instanceHandle, Cpa32U
response_quota);

6.2.2.3.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one call. When
set to 0, all responses are retrieved.

6.2.2.3.3 Return Value

The icp_sal_CyPollInstance function returns one of the following codes:

6.2.2.3.3.1 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical
instance.

NOTE: A ring is only polled if it contains data.

CPA_STATUS_FAIL Indicates a failure.

Supported APIs

Programmer’s Guide 95

6.2.2.4 icp_sal_DcPollInstance

Poll the Data Compression (DC) logical instance associated with the instanceHandle to
retrieve requests that are on response rings associated with that instance and dispatch the
associated callbacks. The response_quota input parameter is the maximum number of
responses to process in one call.

NOTE: The icp_sal_DcPollInstance() function is used in conjunction with the
DcXIsPolled parameter in the acceleration configuration file.

6.2.2.4.1 Syntax
CpaStatus icp_sal_DcPollInstance(CpaInstanceHandle instanceHandle, Cpa32U
response_quota);

6.2.2.4.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one call. When
set to 0, all responses are retrieved.

6.2.2.4.3 Return Value

The icp_sal_DcPollInstance function returns one of the following codes:

6.2.2.4.3.1 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical
instance.

NOTE: A ring is only polled if it contains data.

CPA_STATUS_FAIL Indicates a failure.

6.2.2.5 icp_sal_CyPollDpInstance

Poll a particular Cryptographic (CY) data path logical instance associated with the
instanceHandle to retrieve requests that are on the high-priority symmetric ring associated
with that instance and dispatch the associated callbacks. The response_quota input
parameter is the maximum number of responses to process in one call.

6.2.2.5.1 Syntax

NOTE: This function is a Data Plane API function and consequently the restrictions in Section
6.1.2.2, “Usage Constraints on the Data Plane APIs” apply.

CpaStatus icp_sal_CyPollDpInstance(CpaInstanceHandle instanceHandle,
Cpa32U response_quota);

Supported APIs

96 Programmer’s Guide

6.2.2.5.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one call. When
set to 0, all responses are retrieved.

6.2.2.5.3 Return Value

The icp_sal_CyPollDpInstance() function returns one of the following codes:

6.2.2.5.3.1 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical
instance.

CPA_STATUS_FAIL Indicates a failure.

6.2.2.6 icp_sal_DcPollDpInstance

Poll a particular Data Compression (DC) data path logical instance associated with the
instanceHandle to retrieve requests that are on the response ring associated with that
instance. The response_quota input parameter is the maximum number of responses to
process in one call.

6.2.2.6.1 Syntax

NOTE: This function is a Data Plane API function and consequently the restrictions in Section
6.1.2.2 apply.

CpaStatus icp_sal_DcPollDpInstance(CpaInstanceHandle instanceHandle,
Cpa32U response_quota);

6.2.2.6.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one call. When
set to 0, all responses are retrieved.

6.2.2.6.3 Return Value

The icp_sal_DcPollDpInstance function returns one of the following codes:

6.2.2.6.3.1 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical
instance.

Supported APIs

Programmer’s Guide 97

CPA_STATUS_FAIL Indicates a failure.

6.2.3 User Space Access Configuration Functions

Functions that allow the configuration of user space access to the Intel® QAT services from
processes running in user space.

All user space access configuration function definitions are located in $ICP_ROOT/
quickassist/lookaside/access_layer/include/icp_sal_user.h.

The user space access configuration functions include:

• Section 6.2.4.1, icp_sal_userStart

• Section 6.2.4.2, icp_sal_userStop

6.2.3.1 icp_sal_userStart

Initializes user space access to an Intel® QAT Endpoint and starts in the pProcessName section
in the given section of the configuration file. This function needs to be called before to any call
to Intel® QAT API function from the user space process. This function is typically called only
once in a user space process.

NOTE: The icp_sal_userStartMultiProcess() function is still supported, but the
parameter limitDevAccess is ignored because its value is set once in the
configuration file and is not allowed to be specified again in the function.

The configuration format allows the user to create a configuration for many user spaces
processes. The driver internally generates unique process names and a valid configuration for
each process based on the section name (pSectionName) and mode (limitDevAccess)
provided.

For example, on a system with M number of devices, if all M configuration files contain:
[IPSec]
NumProcesses = N LimitDevAccess = 0

Then, N internal sections are generated (each with instances on all devices) and N processes
can be started at any given time. Each process can call

icp_sal_userStart("IPSec") and the driver determines the unique name to use for each
process.

Similarly, on an M device system, if all M configuration files contain:
[SSL]
NumProcesses = N LimitDevAccess=1

Then, M*N internal sections are generated (each with instances on one device only) and M*N
processes can be started at any given time. Each process can call
icp_sal_userStart("SSL") and the driver determines the unique name to use for each
process.

Refer to Section 4.5 Configuring Multiple Processes on a System with Multiple Intel® QAT
Endpoints for a detailed example.

Supported APIs

98 Programmer’s Guide

6.2.3.1.1 Syntax
CpaStatus icp_sal_userStart(const char *pSectionName);

6.2.3.1.2 Parameters

*pSectionName The section name described in the simplified configuration file format.

limitDevAccess Deprecated/ignored.

6.2.3.1.3 Return Value

The icp_sal_userStart function returns one of the following codes:

6.2.3.1.3.1 Code Meaning

CPA_STATUS_SUCCESS Successfully started user space access to the Intel® QAT Endpoint as
defined in the configuration file.

CPA_STATUS_FAIL Operation failed.

6.2.3.2 icp_sal_userStop

Closes user space access to the Intel® QAT Endpoint; stops the services that were running and
frees the allocated resources. After a successful call to this function, user space access to the
Intel® QAT Endpoint from a calling process is not possible. This function should be called once
when the process is finished using the Intel® QAT Endpoint and does not intend to use it again.

6.2.3.2.1 Syntax
CpaStatus icp_sal_userStop(void);

6.2.3.2.2 Parameters

None

6.2.3.2.3 Return Value

The icp_sal_userStop function returns one of the following codes:

6.2.3.2.3.1 Code Meaning

CPA_STATUS_SUCCESS Successfully stopped user space access to the Intel® QAT Endpoint.

CPA_STATUS_FAIL Operation failed.

6.2.4 Version Information Function

A function that allows the retrieval of version information related to the software and hardware
being used.

The version information function definition is located in: $ICP_ROOT/quickassist/
lookaside/access_layer/include/icp_sal_versions.h

Supported APIs

Programmer’s Guide 99

There is only one version information function, that is, icp_sal_getDevVersionInfo.

6.2.4.1 icp_sal_getDevVersionInfo

Retrieves the hardware revision and information on the version of the software components
being run on a given device.

NOTE: The icp_sal_userStartMultiProcess (or icp_sal_userStart) function must
be called before calling this function. If not, calling this function returns
CPA_STATUS_INVALID_PARAM indicating an error. The
icp_sal_userStartMultiProcess (or icp_sal_userStart) function is
responsible for setting up the ADF user space component, which is required for this
function to operate successfully.

6.2.4.1.1 Syntax
CpaStatus icp_sal_getDevVersionInfo(Cpa32U devId,
icp_sal_dev_version_info_t *pVerInfo);

6.2.4.1.2 Parameters

devId the ID (number) of the device for which version information is to be retrieved

*pVerInfo a pointer to a structure that holds the version information.

6.2.4.1.3 Return Values

The icp_sal_getDevVersionInfo function returns one of the following codes:

6.2.4.1.3.1 Code Meaning

CPA_STATUS_SUCCESS Operation finished successfully; version information retrieved.

CPA_STATUS_INVALID_PARAM Invalid parameter passed to the function.

CPA_STATUS_RESOURCE System resource problem.

CPA_STATUS_FAIL Operation failed.

6.2.5 Reset Device Function

This API can only be called in user-space.

The device can be reset using this API call. This API call schedules a reset of the device. The
device can also be reset using the adf_ctl utility, e.g., by calling adf_ctl qat_dev0 reset.

6.2.5.1 icp_sal_reset_device

Resets the device.

Supported APIs

100 Programmer’s Guide

6.2.5.1.1 Syntax
CpaStatus icp_sal_reset_device(Cpa32U accelid);

6.2.5.1.2 Parameters

accelid the device number.

6.2.5.1.3 Return Value

The icp_sal_reset_device function returns one of the following codes:

6.2.5.1.3.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

6.2.6 Thread-Less APIs

These APIs can be used in the user space application.

The thread-less API functions include:

• Section 6.2.6.1, icp_sal_poll_device_events

• Section 6.2.6.2, icp_sal_find_new_devices

6.2.6.1 icp_sal_poll_device_events

This reads any pending device events from icp_dev%d_csr and forwards to interested
subsystems.

6.2.6.1.1 Syntax
CpaStatus icp_sal_poll_device_events(void);

6.2.6.1.2 Parameters

None

6.2.6.1.3 Return Value

The icp_sal_poll_device_events function returns one of the following codes:

6.2.6.1.3.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

Supported APIs

Programmer’s Guide 101

6.2.6.2 icp_sal_find_new_devices

This tries to connect to any available devices that the kernel driver has brought up and
initialized for use in user space process.

6.2.6.2.1 Syntax
CpaStatus icp_sal_find_new_devices(void);

6.2.6.2.2 Parameters

None

6.2.6.2.3 Return Value

The icp_sal_find_new_devices function returns one of the following codes:

6.2.6.2.3.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

6.2.7 Compress and Verify (CnV) Related APIs

These APIs can be used in the user space application.

The CnV API functions include:

• Section 6.2.8.1, icp_sal_dc_get_dc_error()

• Section 6.2.8.2, icp_sal_dc_simulate_error()

6.2.7.1 icp_sal_dc_get_dc_error()

This API allows the application to return the number of errors that occurred a particular
number of times during the lifetime of a process.

6.2.7.1.1 Syntax
Cpa64U icp_sal_get_dc_error(Cpa8S dcError);

6.2.7.1.2 Parameters

Compression Error code exposed by CpaDcReqStatus enum in cpa_dc.h

6.2.7.1.3 Return Value

The icp_sal_get_dc_error() API returns a 64 bit unsigned integer representing how many
times the error type specified by Cpa8S dcError occurred in the current process.

Supported APIs

102 Programmer’s Guide

6.2.7.2 icp_sal_dc_simulate_error()

This API injects a simulated compression error for a defined number of compression or
decompression requests. The simulated compression errors can only be applied to the
traditional APIs. It must be called prior to the APIs that perform the request.

In the case of a simulated Compress and Verify error for a single request, the application would
call icp_sal_dc_simulate_error() API as such: icp_sal_dc_simulate_error(1,
CPA_DC_VERIFY_ERROR);

Followed by a call to:

CpaDcCompressData() or CpaDcCompressData2().

To use this API, the driver must be configured and compiled with option --enabledc-error-
simulation.

6.2.7.2.1 Syntax
CpaStatus icp_sal_dc_simulate_error(Cpa8U numErrors, Cpa8S dcError);

6.2.7.2.2 Parameters

Cpa8U numErrors Number of simulated compression or decompression errors desired.

Cpa8S dcError Desired error code to be returned by the compression or decompression
API.

6.2.7.2.3 Return Value

The icp_sal_dc_simulate_error API returns one of the following codes:

6.2.7.2.3.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates that an invalid error type was assigned to dcError parameter.

6.2.8 Heartbeat APIs

These APIs check firmware/hardware status for a given device and are used as part of the
Heartbeat functionality.

The Heartbeat API functions include:

• Section 6.2.8.1, icp_sal_check_device()

• Section 6.2.8.2, icp_sal_check_all_devices()

• Section 6.2.8.3, icp_sal_heartbeat_simulate_failure()

Supported APIs

Programmer’s Guide 103

6.2.8.1 icp_sal_check_device()

This function checks the status of the firmware/hardware for a given device and is used as part
of the Heartbeat functionality.

6.2.8.1.1 Syntax
CpaStatus icp_sal_check_device(Cpa32U accelID);

6.2.8.1.2 Parameters

packageId -- the device ID.

6.2.8.1.3 Return Value

The icp_sal_check_device function returns one of the following codes:

6.2.8.1.3.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

6.2.8.2 icp_sal_check_all_devices()

This function checks the status of the firmware/hardware for all devices and is used as part of
the Heartbeat functionality.

6.2.8.2.1 Syntax
CpaStatus icp_sal_check_all_devices(void);

6.2.8.2.2 Parameters

None

6.2.8.2.3 Return Value

The icp_sal_check_all_devices function returns one of the following codes:

6.2.8.2.3.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

6.2.8.3 icp_sal_heartbeat_simulate_failure()

This function simulates Heartbeat failure for a specific device.

Supported APIs

104 Programmer’s Guide

6.2.8.3.1 Syntax

CpaStatus icp_sal_heartbeat_simulate_failure(Cpa32U accelID);

6.2.8.3.2 Parameters

packageId -- the device ID.

6.2.8.3.3 Return Value

The icp_sal_heartbeat_simulate_failure function returns one of the following codes:

6.2.8.3.3.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

6.2.9 Device Polling APIs

6.2.9.1 icp_sal_poll_device_events()

This function polls for device reset events.

6.2.9.1.1 Syntax
CpaStatus icp_sal_poll_device_events(void);

6.2.9.1.2 Parameters

None

6.2.9.1.3 Return Value

The icp_sal_poll_device_events function returns one of the following codes:

6.2.9.1.3.1 Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

NOTE: The events are sent to each instance that has registered a callback function. The
callbacks are registered using cpaCyInstanceSetNotificationCb and
cpaDcInstanceSetNotificationCb.

6.2.9.2 cpaCyInstanceSetNotificationCb

Cryptographic instances use this function to register for device event notifications.

Supported APIs

Programmer’s Guide 105

6.2.9.2.1 Syntax
CpaStatus cpaCyInstanceSetNotificationCb
 const CpaInstanceHandle instanceHandle,
 const CpaCyInstanceNotificationCbFunc
pinstanceNotificationCb,
 void *pCallbackTag);

6.2.9.2.2 Parameters

instanceHandle Instance handle.

pinstanceNotificationCb Instance notification callback function pointer.

pCallbackTag Opaque value provided by user.

6.2.9.2.3 Return Values

The cpaCyInstanceSetNotificationCb() function returns one of the following codes:

6.2.9.2.3.1 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

CPA_STATUS_UNSUPPORTED Function is not supported.

The signature for the callback function is:
typedef void (*CpaCyInstanceNotificationCbFunc)(
 const CpaInstanceHandle instanceHandle,
 void * pCallbackTag,
 const CpaInstanceEvent instanceEvent);

6.2.9.2.4 Parameter
typedef enum _CpaInstanceEvent
{
CPA_INSTANCE_EVENT_RESTARTING = 0,
CPA_INSTANCE_EVENT_RESTARTED,
CPA_INSTANCE_EVENT_FATAL_ERROR
} CpaInstanceEvent;

6.2.9.3 cpaDcInstanceSetNotificationCb

Cryptographic instances use this function to register for device event notifications.

6.2.9.3.1 Syntax
CpaStatus cpaDcInstanceSetNotificationCb
 const CpaInstanceHandle instanceHandle,
 const CpaDcInstanceNotificationCbFunc pinstanceNotificationCb,
void *pCallbackTag);

Supported APIs

106 Programmer’s Guide

6.2.9.3.2 Parameters

instanceHandle Instance handle.

pinstanceNotificationCb Instance notification callback function pointer.

pCallbackTag Opaque value provided by user.

6.2.9.3.3 Return Values

The cpaDcInstanceSetNotificationCb() function returns one of the following codes:

6.2.9.3.3.1 Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

CPA_STATUS_UNSUPPORTED Function is not supported.

The signature for the callback function is:
typedef void (*CpaDcInstanceNotificationCbFunc)(
 const CpaInstanceHandle instanceHandle,
 void * pCallbackTag,
 const CpaInstanceEvent instanceEvent);

6.2.9.3.4 Parameter
typedef enum _CpaInstanceEvent
{
CPA_INSTANCE_EVENT_RESTARTING = 0,
CPA_INSTANCE_EVENT_RESTARTED,
CPA_INSTANCE_EVENT_FATAL_ERROR
} CpaInstanceEvent;

6.2.10 Congestion Management APIs

Congestion Management or Back-pressure mechanism APIs are intended to handle the cases
when the device is busy. These APIs ensures there is enough space on the ring before
submitting a request.

Applications can query the appropriate ring on each instance and select any instance with
enough space without creating any OpData structures.

All these API definitions are located in:
$ICP_ROOT/quickassist/lookaside/access_layer/
include/icp_sal_congestion_mgmt.h

The Congestion Management APIs include:

• Section 6.2.10.1, icp_sal_SymGetInflightRequests

• Section 6.2.10.2, icp_sal_AsymGetInflightRequests

Supported APIs

Programmer’s Guide 107

• Section 6.2.10.3, icp_sal_dp_SymGetInflightRequests

6.2.10.1 icp_sal_SymGetInflightRequests

This function is used to fetch in-flight and max in-flight request counts for the given symmetric
instance handle.

6.2.10.1.1 Syntax
CpaStatus icp_sal_SymGetInflightRequests(CpaInstanceHandle
instanceHandle,

Cpa32U *maxInflightRequests,

Cpa32U *numInflightRequests)

6.2.10.1.2 Parameters

instanceHandle Symmetric instance handle.

*maxInflightRequests A pointer to the max in-flight request count.

*numInflightRequests A pointer to the current in-flight request count.

6.2.10.1.3 Return Value

The icp_sal_SymGetInflightRequests function returns one of the following codes:

6.2.10.1.3.1 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the request counts.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter.

6.2.10.2 icp_sal_AsymGetInflightRequests

This function is used to fetch in-flight and max in-flight request counts for the given
asymmetric instance handle.

6.2.10.2.1 Syntax
CpaStatus icp_sal_AsymGetInflightRequests(CpaInstanceHandle
instanceHandle,

Cpa32U *maxInflightRequests,

Cpa32U *numInflightRequests)

6.2.10.2.2 Parameters

instanceHandle Asymmetric instance handle.

Supported APIs

108 Programmer’s Guide

*maxInflightRequests A pointer to the max in-flight request count.

*numInflightRequests A pointer to the current in-flight request count.

6.2.10.2.3 Return Value

The icp_sal_AsymGetInflightRequests function returns one of the following codes:

6.2.10.2.3.1 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the request counts.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter.

6.2.10.3 icp_sal_dp_SymGetInflightRequests

This data plane function is used to fetch in-flight and max in-flight request counts for the given
symmetric instance handle.

6.2.10.3.1 Syntax
CpaStatus icp_sal_dp_SymGetInflightRequests(CpaInstanceHandle
instanceHandle,

Cpa32U *maxInflightRequests,

Cpa32U *numInflightRequests)

6.2.10.3.2 Parameters

instanceHandle Symmetric instance handle.

*maxInflightRequests A pointer to the max in-flight request count.

*numInflightRequests A pointer to the current in-flight request count.

6.2.10.3.3 Return Value

The icp_sal_dp_SymGetInflightRequests function returns one of the following codes:

6.2.10.3.3.1 Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the request counts.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter.

Supported APIs

Programmer’s Guide 109

6.2.11 Service Specific Polling APIs

These service specific polling APIs are intended for retrieving response messages that are on
the specific ring and dispatching the associated callback.

All these API definitions are located in:
$ICP_ROOT/quickassist/lookaside/access_layer/ include/ icp_sal_poll.h

The Polling APIs include:

• Section 6.2.11.1, icp_sal_CyPollSymRing

• Section 6.2.11.2, icp_sal_CyPollAsymRing

6.2.11.1 icp_sal_ CyPollSymRing

Poll the symmetric logical instance associated with the instanceHandle to retrieve requests
that are on the response rings associated with that instance and dispatch the associated
callbacks. The response_quota input parameter is the maximum number of responses to
process in one call.

6.2.11.1.1 Syntax
CpaStatus icp_sal_CyPollSymRing(CpaInstanceHandle instanceHandle,
Cpa32U response_quota)

6.2.11.1.2 Parameters

instanceHandle Instance handle to poll for responses on the response ring.

response_quota the maximum number of messages that will be read in one polling. Setting
the response quota to zero means that all messages on the ring will be read.

6.2.11.1.3 Return Value

The icp_sal_CyPollSymRing function returns one of the following codes:

6.2.11.1.3.1 Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.
CPA_STATUS_RETRY There are no responses on the rings associated with the instance.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter passed.

CPA_STATUS_RESTARTING Device restarting. Resubmit the request.

6.2.11.2 icp_sal_ CyPollAsymRing

Poll the asymmetric logical instance associated with the instanceHandle to retrieve requests
that are on the response rings associated with that instance and dispatch the associated

Supported APIs

110 Programmer’s Guide

callbacks. The response_quota input parameter is the maximum number of responses to
process in one call.

6.2.11.2.1 Syntax
CpaStatus icp_sal_CyPollAsymRing(CpaInstanceHandle instanceHandle,
Cpa32U response_quota)

6.2.11.2.2 Parameters

instanceHandle Instance handle.

response_quota the maximum number of messages that will be read in one poll. Setting the
response quota to zero means that all messages on the ring will be read.

6.2.11.2.3 Return Value

The icp_sal_CyPollAsymRing function returns one of the following codes:

6.2.11.2.3.1 Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.
CPA_STATUS_RETRY There are no responses on the rings associated with this instance.

CPA_STATUS_FAIL Indicates a failure.

CPA_STATUS_INVALID_PARAM Invalid parameter passed.

CPA_STATUS_RESTARTING Device restarting. Resubmit the request.

6.2.12 Check Device Availability APIs

6.2.12.1 icp_sal_userIsQatAvailable

This API allows an application to establish if there is any active QAT device present on system,
without calling internal libadf APIs or without a dependency on icp_sal_userStart()

6.2.12.1.1 Syntax

CpaBoolean icp_sal_userIsQatAvailable(void);

6.2.12.1.2 Parameters

None

6.2.12.1.3 Return Value

The icp_sal_userIsQatAvailable API returns one of the following codes:

Supported APIs

Programmer’s Guide 111

6.2.12.1.3.1 Code Meaning

CPA_TRUE Indicates that there is at least one active device

CPA_FALSE Indicates that there are no active devices

§

Application Usage Guidelines

112 Programmer’s Guide

7 Application Usage Guidelines
This chapter provides useful guidelines and identifies some of the applications to which the
platforms described in this manual are ideally suited.

7.1 Mapping Service Instances to Engines on the Intel®
QAT Endpoint

A processor may be connected to one or more Intel® QAT Endpoints. For example, an Intel®

Atom® C3000 Processor contains a single integrated Intel® QAT Endpoint, while a single Intel®
C620 Series Chipset contains up to three Intel® QAT Endpoints.

Communication between software running on the processor and the Intel® QAT Endpoint is via
hardware-assisted rings. Rings are used in pairs; software writes requests onto a request ring
and reads responses back from a response ring. The Intel® QAT Endpoint load balances
requests from all rings of a given service type across all available hardware "engines" of the
corresponding type.

A set of 16 ring banks provides the communication mechanism between a processor and the
acceleration complex. Each ring bank contains 16 individual rings for communication.

Intel® provides a software package that abstracts the communication between the host and
the rings and presents the high-level Intel® QAT APIs.

7.1.1 Processor and Intel® QAT Endpoint Communication

An acceleration service uses different rings for request and response messages.
Communication between the processor and Intel® QAT Endpoint is achieved using the
following operations:

• The processor uses a write (PUT) operation to place a request on the request ring.

• The Intel® QAT Endpoint uses a read (GET) operation to retrieve the request from the
request ring.

• Once the operation has been performed, the Intel® QAT Endpoint uses a write (PUT)
operation to put the response to the response ring.

• The processor uses a read (GET) operation to retrieve the response from the
response ring.

7.1.2 Service Instances and Interaction with the Hardware

A ring bank supports two crypto instances and two compression instances. A service instance
can be thought of as a channel between an Intel® QAT Endpoint and a core/ thread running on
the processor, which uses the rings for communication. The rings are not exposed by an API
but are set up using configuration files (one for each Intel® QAT Endpoint).

Application Usage Guidelines

Programmer’s Guide 113

In general, a service instance uses a pair of rings, one for requests and one for responses. For
cryptographic instances, separate request/response pairs are used.

7.1.3 Service Instance Configuration

The configuration of a service instance is done in the configuration file.

The following figure shows an example extract of the relevant section in the configuration file.

Figure 7. Service Instance Configuration

User Space Instances Section

[proc0] 1

NumberCyInstances = 1

NumberDcInstances = 0

Crypto - user space instance #0 Cy0Name = “proc0_0” 2

Cy0IsPolled = 1 3

Cy0CoreAffinity = 0 4

In the previous figure, the meaning of each numbered item is explained as follows:

• Each named address domain (one domain for the kernel, any number of user space
process domains) has its own service instances.

• Specifies a name for the instance.

• Specifies that the instance is using polling.

• Specifies the core affinity for the instance.

7.1.4 Cryptographic Load Balancing Using Multiple Intel® QAT
Instances

The application is responsible for load balancing/spreading requests across Intel® QAT
Endpoints. Load balancing across the engines computing instances within the Intel® QAT
Endpoint is performed by hardware.

In general, the device can be fully utilized from a single instance/ring pair. The main reasons for
using multiple instances/ring pairs are:

• Separate software processes each benefit by having their own ring pair to enable the
rings to be mapped into the address space of that process.

• Separate threads within a process, possibly on different cores, avoid contention.

• If using interrupts, they can be affinitized from different instances/ring pairs to
different cores.

Application Usage Guidelines

114 Programmer’s Guide

7.2 Cryptography Applications

Cryptography applications supported by the platforms described in this manual include, but
are not limited to:

• Virtual Private Networks (VPNs, both IPsec and SSL). Both symmetric and public key
cryptography can be offloaded for bulk transfer and key exchange (IKE, SSL
handshakes and so on). Refer to Section 7.2.1, IPsec and SSL VPNs for more
information.

• Encrypted Storage. See Section 7.2.2, Encrypted Storage for more information.

• Web Proxy Appliances. See Section 7.2.3, Web Proxy Appliances.

7.2.1 IPsec and SSL VPNs

Virtual Private Networks (VPNs) allow for private networks to be established over the public
Internet by providing confidentiality, integrity, and authentication using cryptography. VPN
functionality can be provided by a standalone security gateway box at the boundary between
the trusted and untrusted networks. It is also commonly combined with other networking and
security functionality in a security appliance, or even in standard routers.

VPNs are typically based on one of two cryptographic protocols, either IPsec or Datagram
Transport Layer Security (DTLS). Each has its advantages and disadvantages.

One of the most compute-intensive aspects of a VPN is the cryptographic processing required
to encrypt/decrypt traffic for confidentiality, to perform cryptographic hash functionality for
authentication, and to perform public key cryptography, based on modular exponentiation of
large numbers or elliptic curve cryptography as part of key negotiation and exchange. The
PCH provides cryptographic acceleration that can offload this computation from the CPU,
thereby freeing up CPU cycles to perform other networking, encryption, or other value-add
applications.

The Intel® QAT Endpoint offers its acceleration services through an API, called the Intel® QAT
Cryptographic API. This can be invoked from the Linux* kernel or from Linux* user space as
well as from other operating systems. Intel® also provides plugins to enable many of the PCH's
cryptographic services to be accessed through open-source cryptographic frameworks, such
as the Linux* Kernel Crypto Framework/API (also known as the scatterlist API) and
OpenSSL* libcrypto* (through its EVP API). This facilitates ease of integration with certain
open-source implementations of protocol stacks, such as the Linux* kernel's native IPsec stack
(called NETKEY) or with OpenVPN* (an open source SSL VPN implementation).

7.2.2 Encrypted Storage

In recent years, cases of lost laptops containing sensitive information have made the headlines
all too frequently. Full disk encryption has become a standard procedure for many corporate
PCs. Safe-guarding critical data, however, is not just a necessity in the client space, it is also a
necessity in the data center.

Enterprise-class storage appliances achieve throughput rates in excess of 50 Gbps. Several
high-profile cases of data theft have triggered updates to government regulations and industry
standards. These regulations/standards now require protection of data-at-rest for applications

Application Usage Guidelines

Programmer’s Guide 115

involving sensitive data such as medical and financial records, typically using strong
encryption. The high computational cost of adding encryption to storage appliances makes
offload solutions an attractive value proposition.

Several complimentary standards exist for the encryption of data-at-rest, which, when
combined with traditional network security protocols, such as IPsec or SSL/Transport Layer
Security(TLS), provide an end-to-end encrypted storage solution, even for data-in-flight.

The IEEE* Security in Storage working group is developing the IEEE 1619 series of standards
that deal with cipher algorithms for disk and tape storage devices (AES in CCM and GCM
modes). The cryptographic acceleration services of platforms that use the Intel® QAT
Endpoints are ideally suited for long-term encrypted storage solutions implementing the IEEE
1619.1 standard, by providing acceleration of the AES-256 cipher in CBC, CCM, and GCM
modes and HMAC authentication using SHA-1, SHA-256 and SHA-512 hashes.

The Trusted Computing Group's (TCG) Storage Working Group does not prescribe a
particular set of algorithms for the disk encryption. Instead, it defines several Storage
Subsystem Classes (SSC) for various usage models, which define services such as enrollment
and connection, protected storage (an extension of Trusted Platform Module (TPM)), locking,
logging, cryptographic services, authorization, and firmware updates. The cryptographic
acceleration services of the platform can help by providing the highest level of encryption for
authenticating the host to trusted peripherals implementing the TCG storage standards.

7.2.3 Web Proxy Appliances

Historically, Web Proxy appliances have evolved to present a public or intermediary interface
for clients seeking resources from other servers, providing services such as web page caching
and load balancing. These appliances are located at the edge of the network, typically at
network gateways. Due to their centralized presence in the network, Web Proxy appliances
today (referred to with several different names, such as Application Delivery Controllers,
Reverse Proxy, and so on) have become a collection of services that include:

• Application Load Balancing (L4-L7)

• SSL Acceleration

• Wide Area Network- (WAN) Acceleration

• Caching

• Traffic Management

• Web Application Firewall

SSL and WAN acceleration have become common place capabilities of the Web Proxy
appliance, require computing intensive algorithms for cryptography (SSL) and compression
(WAN acceleration). Intel® QAT devices on the platforms described in this manual provide
acceleration of asymmetric cryptography (RSA is the most used key negotiation algorithm in
SSL), symmetric cryptography (all algorithms defined in the TLS RFCs can be accelerated
with the PCH) and compression (DEFLATE algorithm). With the prominence of Web Proxy
appliances in typical networks, this use case has applications from cloud computing to small
webserver deployments.

Application Usage Guidelines

116 Programmer’s Guide

7.3 Data Compression Applications

Data compression can be used as part of application delivery networks, data de- duplication, as
well as in several crypto applications, for example, VPNs, IDS/IPS and so on.

7.3.1 Compression for Storage

In a time when the amount of online information is increasing dramatically, but budgets for
storing that information remain static, compression technology is a powerful tool for improved
information management, protection, and access.

Compression appliances can transparently compress data such that clients can keep between
two- and five-times more data online and reap the benefit of other efficiencies throughout the
data lifecycle. By shrinking the primary data, all subsequent copies of that data, such as
backups, archives, snapshots, and replicas are also compressed. Compression is the newest
advancement in storage efficiency. Storage compression appliances can shrink primary online
data in real time, without performance degradation. Compression can significantly lower
storage capital and operating expenses by reducing the amount of data that is stored, and the
required hardware that must be powered and cooled.

Compression can help slow the growth of storage, reducing storage costs while simplifying
both operations and management. It also enables organizations to keep more data available for
use, as opposed to storing data offsite or on harder-to-access media (such as tape).

Compression algorithms are very compute-intensive, which is one of the reasons why the
adoption of compression techniques in mainstream applications has been slow. As an
example, the DEFLATE Algorithm, which is one of the most used and popular compression
techniques today, involves several compute-intensive steps: string search and match, sort
logic, binary tree generation, Huffman Code generation. Intel® QAT devices in the platforms
described in this manual provide acceleration capabilities in hardware that allow the CPU to
offload the compute-intensive DEFLATE algorithm operations, thereby freeing up CPU cycles
for other networking, encryption, or other value-add operations.

7.3.2 Data Deduplication and WAN Acceleration

Data Deduplication and WAN Acceleration are coarse-grain data compression techniques
centered around the concept of single-instance storage. Identical blocks of data (either to be
stored on disk or to be transferred across a WAN link) are only stored/moved once, and any
further occurrences are replaced by a reference to the first instance.

While the benefits of deduplication and WAN acceleration obviously depend on the type of
data, multi-user collaborative environments are the most suitable due to the amount of
naturally occurring replication caused by forwarded emails and multiple (similar) versions of
documents in various stages of development.

Deduplication strategies can vary in terms of inline vs post-processing, block size granularity
(file-level only, fixed block size or variable block-size chunking), duplicate identification
(cryptographic hash only, simple CRC followed by byte-level comparison or hybrids) and
duplicate look-up (for example, Bloom filter based index).

Application Usage Guidelines

Programmer’s Guide 117

Cryptographic hashes are the most suitable techniques for reliably identifying matching
blocks with an improbably low risk for false positives, but they also represent the most
compute-intensive workload in the application. As such, the cryptographic acceleration
services offered by the hardware through the Intel® QAT Cryptographic API can be used to
improve the throughput of deduplication/WAN acceleration applications considerably.

Additionally, the compression/decompression acceleration services can be used to further
compress blocks for storage on disk, while optionally encrypting the compressed contents.

§

Black Box Debug Tool

118 Programmer’s Guide

8 Black Box Debug Tool
This chapter provides information on the configuration and use of the Intel® QuickAssist
Technology Black Box Debug tool. Information contained includes usage examples, fail
signature cases and sample outputs.

8.1 Introduction

8.1.1 Overview

QAT Debug tool was designed to add customer-usable debug solutions that can gather data in
order to help with issue diagnosis. It is intended to help the customer to identify root-cause, in a
relatively short time and avoid putting significant effort into the whole debugging process.

QAT library does not perform extensive checks or input data validation, which can cause
device hangs and other unexpected behavior. Root-causes of these issues are hard to identify
without advanced debugging techniques. Using this tool, the customer is given enough
information to allow them to find and fix defects caused by probable QAT API misuse. This
should be achieved without the QAT-specific technical knowledge required. The QAT Debug
tool is released as part of a customer-deployed solution.

8.1.1.1 Security Considerations

QAT Debug tools main aim is to store data captured from traffic generated between the user-
space and the QAT device. This useful function could also be considered a potential security
risk, given written data could be sensitive in some cases.

Potential sensitive data that is stored by QAT Debug feature:

• Physical addresses of flat buffers (memory at these addresses could contain sensitive
data)

• Content descriptor in SYM (symmetric) request that can contain sensitive data

• Members of the QAT group can access stored information contained in logs
describing traffic generated by all users inside this group

Potential risk mitigations:

• Sensitive data cleanup function was implemented to be called right after capture

• Storage directories are restricted to QAT group only

8.1.1.2 Performance Considerations

Users should be aware that the QAT Debug feature is able to work in continuous sync mode,
which can significantly decrease overall performance when configuration is set to collect all
possible data. Types of storage also have a large impact on overall performance. It is
recommended to use high-performance storage (high speed NAND memory, RAM-disk, etc.).

Black Box Debug Tool

Programmer’s Guide 119

8.2 Detailed Description

8.2.1 Collection Data

This feature is intended to collect low-level traffic between the QAT driver and firmware.
Collected data is stored in binary file - original form with additional metadata such as:
timestamp, process ID of sender and basic slice configuration data (cipher, hash algorithms,
data compression type, Huffman tree type).

In order to perform validation of physical addresses and buffer lengths alignments, the content
of SGL is additionally captured.

Contents of OP Data can also be captured when the proper log-level is set.

Data collection is supported for:

• QAT driver ’Traditional API’:

o FW (firmware) request descriptors including SGL (Scatter-Gather List),
SYM (Symmetric) and DC (Data Compression))

o FW response descriptors

o API calls (OP Data content provided by caller)

• QAT driver ’Data Plane API’:

o FW request descriptors including SGL (SYM, DC)

o FW response descriptors

o API calls (OP Data content provided by caller)

Data is stored in kernel-managed debug buffers. This approach has been chosen to meet the
following requirements:

• The integrity of data must be preserved despite e.g., user-process crash

• Performance degradation should be insignificant

o Any additional sys-call during request preparation or responses parsing can
degrade performance significantly

• Debug buffers should be available either from user-space or kernel (to support e.g.,
QAT kernel API)

What is not supported:

• Kernel API

• LKCF (Linux* Kernel Cryptography Framework)

8.2.1.1 Data Synchronization

QAT Debug can operate in two synchronization modes:

• Continuous data synchronization

Black Box Debug Tool

120 Programmer’s Guide

• Event triggered synchronization (crash dump)

8.2.1.1.1 Continuous Synchronization

This optional feature is intended to perform an ongoing data synchronization with persistent
storage. The data stored in debug buffers is dumped to continuous synchronization files
immediately after receiving the following events from user-space application or kernel module:

• Debug buffer is released

• Debug buffer is full

• User-process crashes (event caught by kernel module)

NOTE: This mode is introducing additional performance degradation closely related to disk
performance

8.2.1.1.2 Crash-Dump Mode

This option is intended to use only debug buffers while handling traffic and to dump contents
of buffers to persistent storage, only if any of error events occur. When a buffer is full, it is
replaced with an empty buffer or a buffer with less recent data.

8.2.1.1.3 Data Collecting Architecture

The high-level design for data collection is presented in the figure below:

Figure 8. Data Collection Architecture

Black Box Debug Tool

Programmer’s Guide 121

8.2.1.2 Handling QAT Error Events

The following ’error events 'are supported:

• IRQ based event caught by QAT kernel driver

• AER (Advance Error Reporting) depending on platform configuration

• Firmware error response (including Slice hang)

• Slice hang caught as an IRQ

• Process crash – event connected to ’orphan ring cleaner’

The handling of error events is presented in the diagram below:

Figure 9. Typical Crash Dump Scenario

8.2.2 Post-Processing

This post-processing tool provides the following utilities:

Audits:

• Physical address used in FW request and SGLs

• Return codes in FW responses

• FLAT buffers and SGL buffers lengths based on cipher algorithm

Black Box Debug Tool

122 Programmer’s Guide

Listings:

• Lists all collected entries sorted by sent/extraction time

Triggers:

• Manual trigger to dump content of debug buffers to configured location

8.2.2.1 Physical Addresses Audit

NOTE: Usage example is available in Section 8.5.2

The audit is based on:

• Memory map regions - mapped to user space process collected now of ’error event’

NOTE: Huge pages are supported

• Buffers overlapping test

• Basic null checks

User space process memory map example:

 [root@silpixa00400507 qat_logs]# cat
proc.mmaps.dev00_0000_4d_00_0 | grep 43927
 43927:0x0000001cd9c00000:4194304
 43927:0x0000001c8f400000:2097152
 43927:0x0000001c8f200000:2097152
 43927:0x0000001c8f000000:2097152
 43927:0x0000001c8ee00000:2097152
 43927:0x0000001c8ec00000:2097152

Command line interface:

#qat_dbg_report command=audit_phy_addresses path=<path>
[dev=<dev>]|[bdf=<bdf>]

• Path: path to
o Crash dump directory
o Continuous sync directory

• Dev: device ID

• Bdf: domain, bus, device, function of a device in a hexadecimal format of
0000:00:00.0

NOTE: Dev or bdf option required only in case of analyzing cont-sync data

8.2.2.2 Cipher Lengths Audit

NOTE: Usage example is available in Section 8.5.3

The audit is based on:

• Cipher algorithm extracted from session and stored in ’content type‘ field

Black Box Debug Tool

Programmer’s Guide 123

• Lengths of input buffers (flat buffers and in SGLs)

Command line interface:

#qat_dbg_report command=audit_fields_lengths path=<path>
[dev=<dev>]|[bdf=<bdf>]

• Path: path to
o Crash dump directory
o Continuous sync data directory

• Dev: device ID

• Bdf: domain, bus, device, function of a device in a hexadecimal format of
0000:00:00.0

NOTE: Dev or bdf option required only in case of analyzing cont-sync data

8.2.2.3 Return Codes Audit

NOTE: Usage example is available in Section 8.5.4

The audit is based on:

• return codes in FW responses (sym/asym/dc)

Command line interface:

#qat_dbg_report command= audit_ret_codes path=<path>
[dev=<dev>]|[bdf=<bdf>]

• path: path to
Caution: Crash dump directory
Caution: Continuous sync data directory

• dev: device ID

• bdf: domain, bus, device, function of a device in a hexadecimal format of
0000:00:00.0

NOTE: Dev or bdf option required only in case of analyzing cont-sync data

NOTE: In case of any error found – audit tries to match response with corresponding request
and prints both to output.

8.2.2.4 Listing Collected Data in ’Human Readable Form’

This option is intended to display the collected data in human readable form. It can be useful
while investigating certain issues. Entries are sorted in descending order according to
timestamp.

Command line interface:

Black Box Debug Tool

124 Programmer’s Guide

#qat_dbg_report command=list [path=<path>] [dev=<dev>]|[bdf=<bdf>]
[last=<last>]

• Path: path to
Caution: Crash dump directory
Caution: Continuous sync data directory

• Dev: device ID

• bdf: is a domain, bus, device, function of a device in a hexadecimal format of
0000:00:00.0

NOTE: Dev or bdf option required only in case of analyzing cont-sync data

• Last: prints last several packets restricted by <last> entities

Example:

Entry [REQUEST SYM]: Time-stamp: 2020-11-10 13:58:24.211579144
 Bank: 0 Ring: 2 [2] PID: 43784
 [0.1B] Crypto command ID:
ICP_QAT_FW_LA_CMD_CIPHER_HASH [2]
 [0.2B] Service type: ICP_QAT_FW_COMN_REQ_CPM_FW_LA [4]
 [1.0-1B] LA BULK (SYMMETRIC CRYPTO) COMMAND FLAGS
(0x2c)
 [1.12] ZUC_3G_PROTO: 0
 [1.11] GCM_IV_LEN_FLAG: 0
 [1.10] DIGEST_IN_BUFFER: 0
 [1.7-9] PROTO: 0
 [1.6] CMP_AUTH: 0
 [1.5] RET_AUTH: 1
 [1.4] UPDATE_STATE: 0
 [1.3] CIPH_AUTH_CFG_OFFSET_FLAG: 1
 [1.2] CIPH_IV_FLD_FLAG: 1
 [1.0-1] PARTIAL FLAGS: 0 (FULL)
 [1.2B] Common Request flags: 0x1
 SGL[1] CD_IN [0] BNP [0]
 [1.3B] Extended Symmetric Crypto Command Flags: 0
 [2-3] Content Descriptor (CD) Param Pointer:
0xe864e4540
 [4.2B] Content Descriptor Param Size: 8 [Quad words]
 [6-7] Opaque Data: 0x7fcd7c2e2040
 [8-9] Source phy_addr: 0xe864e4c00
 [10-11] Destination phy_addr: 0xe864e4c00
 [12] Source length: 0
 [13] Destination length: 0
 [14-19] Cipher Request Parameters:
 [14] uint32_t::cipher_offset: 24
 [15] uint32_t::cipher_length: 64
 [16-17] uint64_t::cipher_IV_ptr:
0xaddbcefabebafeca
 [18-19] uint64_t::resrvd1: 0x459113d88f8cade
 [27-28.0B] Cipher Request Control Header:
 [27.0B] uint8_t::cipher_state_sz: 2
 [27.1B] uint8_t::cipher_key_sz: 2
 [27.2B] uint8_t::cipher_cfg_offset: 18
 [27.3B] uint8_t::next_curr_id: 0x21 (curr_id:
1, next: 2)

Black Box Debug Tool

Programmer’s Guide 125

 [28.0B] uint8_t::cipher_padding_sz: 0
 [20-26] Authentication Request Parameters:
 [20] uint32_t::auth_off: 0
 [21] uint32_t::auth_len: 88
 [22-23] uint64_t::aad_adr/APS: 0xe864e46e0
 [24-25] uint64_t::auth_res_addr: 0xe864e5058
 [26.0B] uint8_t::aad_sz/inner_prefix_sz: 0
 [26.1B] uint8_t::resrvd1: 0
 [26.2B] uint8_t::hash_state_sz: 0
 [26.3B] uint8_t::auth_res_sz: 0
 [27-31] Authentication Request Control Header:
 [27] uint32_t::resrvd1: 0x21120202
 [28.0B] uint8_t::resrvd2: 0x0
 [28.1B] uint8_t::hash_flags: 0x0
 [28.2B] uint8_t::hash_cfg_offset: 46
 [28.3B] uint8_t::next_curr_id: 0x42 (curr_id:
2, next: 4)
 [29.0B] uint8_t::resrvd3: 0x0
 [29.1B] uint8_t::outer_prefix_offset: 0
 [29.2B] uint8_t::final_sz: 12
 [29.3B] uint8_t::inner_res_sz: 20
 [30.0B] uint8_t::resrvd4: 0x0
 [30.1B] uint8_t::inner_state1_sz: 24
 [30.2B] uint8_t::inner_state2_offset: 3
 [30.3B] uint8_t::inner_state2_sz: 24
 [31.0B] uint8_t::outer_config_offset: 0
 [31.1B] uint8_t::outer_state1_sz: 0
 [31.2B] uint8_t::outer_res_sz: 0
 [31.3B] uint8_t::outer_prefix_offset: 0
 SGL Data:
 Source SGL contains 1 flat buffer(s):
 [0] Flat buffer: len: 100 phy_addr:
e864e5000
 Destination SGL contains 1 flat buffer(s):
 [0] Flat buffer: len: 100 phy_addr:
e864e5000

8.3 Installation

8.3.1 Hardware and Software Compatibility

Hardware:

• LBG Intel® C62x Chipset

• Intel® Atom® C3000 processor product family

• Intel® QuickAssist Adapter 8960/Intel® QuickAssist Adapter 8970 (formerly known as
’Lewis Hill')

• Intel® Communications Chipset 8925 to 8955 Series

• Intel® C4xxx Series QAT

Supported Operating System:

• As per v4.16 release of the 1.7 QAT Linux* driver

Black Box Debug Tool

126 Programmer’s Guide

8.3.2 Installing the Driver

NOTE: User must have root privileges to perform the following:

Step 1 - copy package onto the system

Step 2 - extract package:
mkdir /root/QAT
cd /root/QAT
tar -xzomf <path_to>/QAT<hw_version>.<sw_version>.tar.gz

Step 3 - setup the environment to build driver:
./configure --enable-icp-qat-dbg

Step 4 - build and install driver:
make install

NOTE: Successful build should end up with message similar to the following:

Checking status of all devices.
There is 3 QAT acceleration device(s) in the system:
 qat_dev0 - type: c6xx, inst_id: 0, node_id: 0, bsf:
0000:3d:00.0, #accel: 5 #engines: 10 state: up
 qat_dev1 - type: c6xx, inst_id: 1, node_id: 0, bsf:
0000:3f:00.0, #accel: 5 #engines: 10 state: up
 qat_dev2 - type: c6xx, inst_id: 2, node_id: 1, bsf:
0000:da:00.0, #accel: 5 #engines: 10 state: up

Step 5 - change access permissions to kernel debug sysfs directory (for non-root usage):
chmod o+rx /sys/kernel/debug

8.3.3 Compiling and Executing Performance Sample Code

Step 1 - build application:
make sample-all

Step 2 - install sample applications:
make sample-install

Step 3 - run sample code sanity check:
cpa_sample_code signOfLife=1

NOTE: Tool execution should end with following message:

Sample code completed successfully.

8.3.4 Uninstalling the Driver

Step 1 - bring down the driver:
adf_ctl down

Step 2 - uninstall driver:
cd /root/QAT/

Black Box Debug Tool

Programmer’s Guide 127

make uninstall

8.4 Configuration

8.4.1 Configuration via QAT Device Configuration Files

QAT Debug may be configured via dedicated section in QAT device configuration file. The
listing below shows example configuration of the debug feature:

QAT Debuggability Section
Debug levels description:
0: no data collection
1: API calls data collection
2: FW calls data collection
3: combined level 1 and 2

[DEBUG]
Enabled = 0
DebugLevel = 2
NumBuffers = 128
BufferSizeMB = 4
LogDir = "/qat_crash"
DumpOnProcessCrash = 0
LogDirMaxSizeMB = 4096
ContSyncEnabled = 1
ContSyncLogDir = "/qat_logs"
ContSyncMaxLogFiles = 10
ContSyncMaxLogSizeMB = 100

NOTE: Package is installed with Debug section already added to configuration files – but
feature is disabled by default.

NOTE: For Virtual Functions (VFs), the above [DEBUG] section must also exist in the
configuration files, i.e. c4xxxvf_dev0.conf, c4xxxvf_dev1.conf, etc., with
Enabled = 1 | 2 | 3 .

Field descriptions:

• Enabled

[0]: Collecting data disabled

[1]: Collecting data enabled

• DebugLevel

[0]: No data collecting
[1]: Collecting API calls only
[2]: Collecting FW requests and responses (default)
[3]: Collecting all above

• NumBuffers:

[50-2000]: Number of buffers for data storage per device

Black Box Debug Tool

128 Programmer’s Guide

• BufferSizeMB:

[2-4]: Size of each buffers in MB

• LogDir:

["path"]: Path to directory for crash dumps

• LogDirMaxSizeMB:

[1024+]: Maximum size of crash dump directory

5. If there is no space for new crash dump – the oldest crash dump directory present
under ‘LogDir’ path is removed.

• DumpOnProcessCrash:

[0]: Do not dump buffers in case of user-space process connected to QAT crash

[1]: Dump buffers in case of user-space process connected to QAT crash

• ContSyncEnabled:

[0]: Do not perform ongoing synchronization of collected data with persistent storage

[1]: Perform ongoing synchronization of collected data with persistent storage

NOTE: If continuous sync mode is enabled – crash dumps are not performed while handling
error events. In such case the post-processing analysis is performed only based on the
data collected by continuous sync option. In this case the buffers number and their
size must be configured properly to hold generated QAT payload in case of high
throughput.

• ContSyncLogDir:

["path"]: Path to directory for continuous sync data

• ContSyncMaxLogFiles:

[10-100]: Maximum number of continuous sync files

• ContSyncMaxLogSizeMB:

[100-1000]: Maximum size in MB of particular continuous sync file

6. Please reload configuration after each change by using ‘adf_ctl restart’.

8.4.2 Configuration via sysfs

On Linux*, the configuration via sysfs is very similar to configuration via QAT configuration
files. Main difference is that the parameters are passed to files, which are accessible in
/sys/kernel/debug/<device>/qat_debug/ directory. QAT configuration files stored by
default in /etc/ may stay unmodified. Reloading parameters follows writing to enabled file.
Thus, all parameters should already be passed before writing to that file.

NOTE: This functionality is not available on FreeBSD.

Black Box Debug Tool

Programmer’s Guide 129

One could define a script named sysfs_cfg.sh to perform configuration in a clean manner:

#!/bin/bash

[[$# -ne 1]] && echo "Error: Please provide sysfs subfolder" && exit
1;
dev=$1
echo "200" > /sys/kernel/debug/${dev}/qat_debug/buffer_pool_size
echo "4" > /sys/kernel/debug/${dev}/qat_debug/buffer_size_mb
echo "/qat_logs" > /sys/kernel/debug/${dev}/qat_debug/cont_sync_dir
echo "0" > /sys/kernel/debug/${dev}/qat_debug/cont_sync_enabled
echo "10" > /sys/kernel/debug/${dev}/qat_debug/cont_sync_max_files
echo "100" >
/sys/kernel/debug/${dev}/qat_debug/cont_sync_max_file_size_mb
echo "/qat_crash" > /sys/kernel/debug/${dev}/qat_debug/dump_dir
echo "4096" > /sys/kernel/debug/${dev}/qat_debug/dump_dir_size_mb
echo "3" > /sys/kernel/debug/${dev}/qat_debug/level
echo "1" > /sys/kernel/debug/${dev}/qat_debug/dump_on_process_crash

#commit
echo "1" > /sys/kernel/debug/${dev}/qat_debug/enabled

Example call to modify QAT 1.7 VF available under 0000:4d:02.0 bdf:
sh sysfs_cfg.sh qat_c4xxxvf_0000:4d:02.0

The configuration should end with starting Debuggability daemon with a command:
qat_dbg_daemon_sync

8.4.3 Checking Current Configuration Used by Driver

To check details about current configuration used by driver, the following utility can be used:

• qat_dbg_ctl

Tool usage looks as follows:

--
USAGE:
--
/usr/local/bin/qat_dbg_ctl start||stop||status||restart
--
 To see QAT debuggability configuration in the system use:
 /usr/local/bin/qat_dbg_ctl status
 To start QAT debuggability synchronization daemon use:
 /usr/local/bin/qat_dbg_ctl start
 To terminate QAT debuggability synchronization daemon use:
 /usr/local/bin/qat_dbg_ctl stop
 To restart QAT debuggability synchronization daemon use:
 /usr/local/bin/qat_dbg_ctl restart
--

Example (QAT Debug not configured):

qat_dbg_ctl status

QAT debuggability configuration:

Black Box Debug Tool

130 Programmer’s Guide

 No QAT devices configured with debuggability
QAT debuggability synchronization daemon not running.

Example (QAT Debug configured):

qat_dbg_ctl status

QAT debuggability configuration:
 Device: qat_c6xx_0000:3f:00.0
 Debug level: 3
 Buffer pool size: 100
 Buffer size in MB: 4
 Crash dump on client process: 0
 Synchronization mode: dump on crash
 Crash dump directory: /qat_crash
 Crash dump directory max size in MB: 4096
 Device: qat_c6xx_0000:3d:00.0
 Debug level: 3
 Buffer pool size: 128
 Buffer size in MB: 4
 Crash dump on client process: 0
 Synchronization mode: cont-sync
 Cont-sync directory: /qat_logs
 Max number of cont-sync log files 10
 Max size of cont-sync log file: 100
QAT debuggability synchronization daemon running. Pid:
 31962

7. If feature is enabled – ‘qat_dbg_sync_daemon’ should be up and running. Daemon is
initialized automatically by adf_ctl during configuration reloading.

QAT debug synchronization daemon (qat_dbg_sync_daemon) logs to the syslog – you can
check daemon activities e.g., by the following command:

grep qat_dbg_sync_daemon /var/log/syslog

Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: Starting
daemon...
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: Device 0
configuration:
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: -dump_dir:
/qat_crash
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: -
dump_dir_size_mb: 4096
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: -
buffer_pool_size: 128
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: -buffer_size_mb:
4
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: -level: 2
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: -
dump_on_process_crash:0
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: -sync_mode:
continuous synchronization
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: -
cont_sync_dir:/qat_logs
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: -
cont_sync_max_file_size_mb:100

Black Box Debug Tool

Programmer’s Guide 131

Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: -
cont_sync_max_files:10
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: Creating cont-
sync directory: /qat_logs
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: Initialized
cont-sync mode for 1 devices
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: Daemon started
Nov 22 12:18:42 ubuntu qat_dbg_sync_daemon[11641]: QAT events
listener worker started

8.5 Usage Examples

8.5.1 Collecting Data – Sanity Check

Various tools can be used to perform collecting data sanity check. One of them is
cpa_sample_code (installed directly with QAT package by execution of ‘samples-install’
target) and this one will be used as an example.

8.5.1.1 Continuous Sync Enabled

NOTE: Ensure that at least one device is configured with Debug feature (Enabled=1) and
cont-sync mode enabled (ContSyncEnabled=1) by editing QAT device configuration
file and reloading the configuration by running ‘adf_ctl restart’ command

1. Run test:
cpa_sample_code signOfLife=1

2. Check collected data by using ’qat_dbg_report‘ tool:

qat_dbg_report path=/qat_logs command=list dev=0 last=0

==

Building index...
DONE
 Overall indexed 3269338 msgs.
 Requests: 150408 (Sym:11280, PKE:138932, DC:196)
 Responses:150408
 API calls:2968522
==

NOTE: You can use different last or audit commands other than ’list‘ to perform this test as
well.

8.5.1.2 Continuous Sync Disabled

NOTE: Ensure that at least one device is configured with Debug feature enabled
(Enabled=1) and cont-sync mode disabled (ContSyncEnabled=0)

1. Run test:
cpa_sample_code signOfLife=1

Black Box Debug Tool

132 Programmer’s Guide

2. Trigger crash-dump manually to check collected data (set the dev parameter the same as
QAT device number configured with cont-sync mode disabled):

qat_dbg_report command=dump dev=0

3. [Optional] You can check qat_dbg_sync_daemon logs if event has been handled:

tail -F /var/log/messages | grep -i qat_dbg_sync

Nov 30 11:56:25 localhost qat_dbg_sync_daemon[38164]: Daemon started
Nov 30 12:00:39 localhost qat_dbg_sync_daemon[38164]: Received QAT
event: manual_dump
Nov 30 12:00:39 localhost qat_dbg_sync_daemon[38164]: Creating crash
dump directory: /qat_crash
Nov 30 12:00:39 localhost qat_dbg_sync_daemon[38164]: Crash dump in
progress ...
Nov 30 12:00:40 localhost qat_dbg_sync_daemon[38164]: Dumping physical
memory regions to file:
/qat_crash/qat_crash_dev_<dev>_<bdf>_<timestamp>/proc.mmaps.<dev>_<bdf>
Nov 30 12:00:40 localhost qat_dbg_sync_daemon[38164]: Crash dump done -
path: /qat_crash/qat_crash_dev_<dev>_<bdf>_<timestamp>

4. Check collected data by using qat_dbg_report tool:

qat_dbg_report path=/qat_crash/qat_crash_dev_<dev>_<timestamp>
command=list last=0

==

Building index...
DONE
 Overall indexed 3430983 msgs.
 Requests: 158708 (Sym:11280, PKE:147232, DC:196)
 Responses:158708
 API calls:3113567
==

NOTE: You can use different last or audit commands other than ’list‘ to perform this test as
well.

8.5.2 Audit Physical Addresses – Sanity Check

8.5.2.1 Emulate Uncorrectable Error

You can force QAT FW to crash by using a modified version of the tool provided in the QAT
package. To prepare tool to send incorrect data to QAT FW please use the modified following
file:

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functiona
l/sym/symdp_sample/cpa_sym_dp_sample.c

NOTE: Set ICP_ROOT to where you have your package extracted (e.g., export
ICP_ROOT=/root/QAT)

Following change can be applied to force uncorrectable error:

196,199c196,199

Black Box Debug Tool

Programmer’s Guide 133

- pOpData->srcBuffer = sampleVirtToPhys(pSrcBuffer);
- pOpData->srcBufferLen = bufferSize;
- pOpData->dstBuffer = sampleVirtToPhys(pSrcBuffer);
- pOpData->dstBufferLen = bufferSize;
+ pOpData->srcBuffer = pSrcBuffer;
+ pOpData->srcBufferLen = CPA_DP_BUFLIST;
+ pOpData->dstBuffer = pSrcBuffer;
+ pOpData->dstBufferLen = CPA_DP_BUFLIST;

Compile modified tool by using following commands:
1. cd

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/function
al

2. make all

To significantly improve recovery time after an uncorrectable error event, ensure that the
AutoResetOnError configuration option (AutoResetOnError = 1) is set in the QAT
configuration file.

8.5.2.2 Continuous Sync Enabled

Ensure that at least one device is configured with Debug feature (Enabled = 1) and cont-
sync mode enabled (ContSyncEnabled = 1)

1. Execute modified tool:

cd
$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional
/build
./sym_dp_sample

NOTE: Please press ‘ctrl+c’ almost immediately after tool execution. Keeping tool up, can
cause timeout on driver side while waiting for client processes to detach from device
before restart routine.

2. [Optional] Check if event has been caught and handled properly:

tail -F /var/log/messages | grep -i qat_dbg_sync

Nov 3 15:14:38 localhost qat_dbg_sync_daemon[12940]: Received QAT
event: error
Nov 3 15:14:38 localhost qat_dbg_sync_daemon[12940]: Dumping physical
memory regions to file: /qat_logs/proc.mmaps.dev00_0000_4d_00_0
Nov 3 15:14:38 localhost qat_dbg_sync_daemon[12940]: Received QAT
event: restarting
Nov 3 15:14:41 localhost qat_dbg_sync_daemon[12940]: Received QAT
event: restarted

3. Execute audit:

qat_dbg_report path

=/qat_logs/ command=audit_phy_addresses dev=0
==

Building index...

Black Box Debug Tool

134 Programmer’s Guide

DONE
 Overall indexed 2 msgs.
 Requests: 1 (Sym:1, PKE:0, DC:0)
 Responses:0
 API calls:1
==

==

QAT Physical addresses - audit in progress ...

ERROR: Missing SGL source in log entry.
ERROR: Missing SGL destination in log entry.
ERROR: SGL audit failed - check entry below.
ERROR: address overlapping audit failed - check entry below.
ERROR: Physical address (0x7f460961a800) used in request is out of
process pid: 9423 range.
 Check /qat_logs//proc.mmaps.dev00_0000_4d_00_0 to see process
physical addresses ranges.
ERROR: User process memory regions audit failed - check entry below.
 Entry [REQUEST SYM]: Time-stamp: 2021-11-03 15:14:37.849936202
 Bank: 1 Ring: 2 PID: 9423
 [0.1B] Crypto command ID:
ICP_QAT_FW_LA_CMD_CIPHER_HASH [2]
 [0.2B] Service type: ICP_QAT_FW_COMN_REQ_CPM_FW_LA
[4]
 [1.0-1B] LA BULK (SYMMETRIC CRYPTO) COMMAND FLAGS
(0x24)
 [1.12] ZUC_3G_PROTO: 0
 [1.11] GCM_IV_LEN_FLAG: 0
 [1.10] DIGEST_IN_BUFFER: 0
 [1.7-9] PROTO: 0
 [1.6] CMP_AUTH: 0
 [1.5] RET_AUTH: 1
 [1.4] UPDATE_STATE: 0
 [1.3] CIPH_AUTH_CFG_OFFSET_FLAG: 0
 [1.2] CIPH_IV_FLD_FLAG: 1
 [1.0-1] PARTIAL FLAGS: 0 (FULL)
 [1.2B] Common Request flags: 0x1
 SGL[1] CD_IN [0] BNP [0]
 [1.3B] Extended Symmetric Crypto Command Flags: 0
 [2-3] Content Descriptor (CD) Param Pointer:
0x192752c40
 [4.2B] Content Descriptor Param Size: 15 [Quad words]
 [6-7] Opaque Data: 0x7f460961b000
 [8-9] Source phy_addr: 0x7f460961a800
 [10-11] Destination phy_addr: 0x7f460961a800
 [12] Source length: 0
 [13] Destination length: 0
 [14-19] Cipher Request Parameters:
 [14] uint32_t::cipher_offset: 0
 [15] uint32_t::cipher_length: 96
 [16-17] uint64_t::cipher_IV_ptr:
0xdfc54a821d4c9b7e
 [18-19] uint64_t::resrvd1:
0x27378daa44a14c99
 [27-28.0B] Cipher Request Control Header:

Black Box Debug Tool

Programmer’s Guide 135

 [27.0B] uint8_t::cipher_state_sz: 2
 [27.1B] uint8_t::cipher_key_sz: 4
 [27.2B] uint8_t::cipher_cfg_offset: 0
 [27.3B] uint8_t::next_curr_id: 0x21
(curr_id: 1, next: 2)
 [28.0B] uint8_t::cipher_padding_sz: 0
 [20-26] Authentication Request Parameters:
 [20] uint32_t::auth_off: 0
 [21] uint32_t::auth_len: 96
 [22-23] uint64_t::aad_adr/APS: 0
 [24-25] uint64_t::auth_res_addr: 0x192753860
 [26.0B] uint8_t::aad_sz/inner_prefix_sz: 0
 [26.1B] uint8_t::resrvd1: 0
 [26.2B] uint8_t::hash_state_sz: 0
 [26.3B] uint8_t::auth_res_sz: 0
 [27-31] Authentication Request Control Header:
 [27] uint32_t::resrvd1: 0x21000402
 [28.0B] uint8_t::resrvd2: 0x0
 [28.1B] uint8_t::hash_flags: 0x0
 [28.2B] uint8_t::hash_cfg_offset: 5
 [28.3B] uint8_t::next_curr_id: 0x42
(curr_id: 2, next: 4)
 [29.0B] uint8_t::resrvd3: 0x0
 [29.1B] uint8_t::outer_prefix_offset: 0
 [29.2B] uint8_t::final_sz: 32
 [29.3B] uint8_t::inner_res_sz: 32
 [30.0B] uint8_t::resrvd4: 0x0
 [30.1B] uint8_t::inner_state1_sz: 32
 [30.2B] uint8_t::inner_state2_offset: 11
 [30.3B] uint8_t::inner_state2_sz: 32
 [31.0B] uint8_t::outer_config_offset: 0
 [31.1B] uint8_t::outer_state1_sz: 0
 [31.2B] uint8_t::outer_res_sz: 0
 [31.3B] uint8_t::outer_prefix_offset: 0
 SGL Data:
==

100% [||]
Checked 2 records. Found 1 issue(s).

8.5.2.3 Continuous Sync Disabled (Crash Dump Based)

NOTE: Ensure that at least one device is configured with Debug feature enabled (Enabled =
1) and cont-sync mode disabled (ContSyncEnabled = 0)

1. Execute modified tool:

cd
$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional
/build
./sym_dp_sample

NOTE: Please press ‘ctrl+c’ almost immediately after tool execution. Keeping tool up, can
cause timeout on driver side while waiting for client processes to detach from device
before restart routine

Black Box Debug Tool

136 Programmer’s Guide

2. [Optional] Check if event has been caught and handled properly:

tail -F /var/log/messages|grep -i qat_dbg_sync

Nov 3 15:50:03 localhost qat_dbg_sync_daemon[14822]: Received QAT
event: error
Nov 3 15:50:03 localhost qat_dbg_sync_daemon[14822]: Creating crash
dump directory: /qat_crash
Nov 3 15:50:03 localhost qat_dbg_sync_daemon[14822]: Crash dump in
progress ...
Nov 3 15:50:03 localhost qat_dbg_sync_daemon[14822]: Dumping physical
memory regions to file: /qat_crash/qat_crash_dev_00_2021-11-
03_155003//proc.mmaps.dev00_0000_4d_00_0
Nov 3 15:50:03 localhost qat_dbg_sync_daemon[14822]: Crash dump done
- path: /qat_crash/qat_crash_dev_00_2021-11-03_155003/
Nov 3 15:50:03 localhost qat_dbg_sync_daemon[14822]: Received QAT
event: restarting
Nov 3 15:50:06 localhost qat_dbg_sync_daemon[14822]: Received QAT
event: restarted

3. Execute audit:

qat_dbg_report
path=/qat_crash/qat_crash_dev_<dev>_<bdf>_<timestamp>/
command=audit_phy_addresses

==
====

Building index...
DONE
 Overall indexed 2 msgs.
 Requests: 1 (Sym:1, PKE:0, DC:0)
 Responses:0
 API calls:1
==
====

==
====

QAT Physical addresses - audit in progress ...

ERROR: Missing SGL source in log entry.
ERROR: Missing SGL destination in log entry.
ERROR: SGL audit failed - check entry below.
ERROR: address overlapping audit failed - check entry below.
ERROR: Physical address (0x7f950ff52c00) used in request is out of
process pid: <PID> range.
 Check
/qat_crash/qat_crash_dev_<dev>_<bdf>_<timestamp>/proc.mmaps.dev<dev>_<
bdf> to see process physical addresses ranges.
ERROR: User process memory regions audit failed - check entry below.

Entry [REQUEST SYM]: Time-stamp: 2020-11-30 13:04:10.59952422
Bank: 1 Ring: 2 PID: <PID>

Black Box Debug Tool

Programmer’s Guide 137

 [0.1B] Crypto command ID:
ICP_QAT_FW_LA_CMD_CIPHER_HASH [2]
 [0.2B] Service type: ICP_QAT_FW_COMN_REQ_CPM_FW_LA
[4]
 [1.0-1B] LA BULK (SYMMETRIC CRYPTO) COMMAND FLAGS
(0x24)
 [1.12] ZUC_3G_PROTO: 0
 [1.11] GCM_IV_LEN_FLAG: 0
 [1.10] DIGEST_IN_BUFFER: 0
 [1.7-9] PROTO: 0
 [1.6] CMP_AUTH: 0
 [1.5] RET_AUTH: 1
 [1.4] UPDATE_STATE: 0
 [1.3] CIPH_AUTH_CFG_OFFSET_FLAG: 0
 [1.2] CIPH_IV_FLD_FLAG: 1
 [1.0-1] PARTIAL FLAGS: 0 (FULL)
 [1.2B] Common Request flags: 0x1
 SGL[1] CD_IN [0] BNP [0]
 [1.3B] Extended Symmetric Crypto Command Flags: 0
 [2-3] Content Descriptor (CD) Param Pointer:
0xeb20e4440
 [4.2B] Content Descriptor Param Size: 15 [Quad words]
 [6-7] Opaque Data: 0x7f950ff53400
 [8-9] Source phy_addr: 0x7f950ff52c00
 [10-11] Destination phy_addr: 0x7f950ff52c00
 [12] Source length: 0
 [13] Destination length: 0
 [14-19] Cipher Request Parameters:
 [14] uint32_t::cipher_offset: 0
 [15] uint32_t::cipher_length: 96
 [16-17] uint64_t::cipher_IV_ptr:
0xdfc54a821d4c9b7e
 [18-19] uint64_t::resrvd1:
0x27378daa44a14c99
 [27-28.0B] Cipher Request Control Header:
 [27.0B] uint8_t::cipher_state_sz: 2
 [27.1B] uint8_t::cipher_key_sz: 4
 [27.2B] uint8_t::cipher_cfg_offset:
0
 [27.3B] uint8_t::next_curr_id: 0x21
(curr_id: 1, next: 2)
 [28.0B] uint8_t::cipher_padding_sz:
0
 [20-26] Authentication Request Parameters:
 [20] uint32_t::auth_off: 0
 [21] uint32_t::auth_len: 96
 [22-23] uint64_t::aad_adr/APS: 0
 [24-25] uint64_t::auth_res_addr:
0xeb20e4c60
 [26.0B]
uint8_t::aad_sz/inner_prefix_sz: 0
 [26.1B] uint8_t::resrvd1: 0
 [26.2B] uint8_t::hash_state_sz: 0
 [26.3B] uint8_t::auth_res_sz: 0
 [27-31] Authentication Request Control Header:
 [27] uint32_t::resrvd1:
0x21000402
 [28.0B] uint8_t::resrvd2: 0x0
 [28.1B] uint8_t::hash_flags: 0x0

Black Box Debug Tool

138 Programmer’s Guide

 [28.2B] uint8_t::hash_cfg_offset: 5
 [28.3B] uint8_t::next_curr_id: 0x42
(curr_id: 2, next: 4)
 [29.0B] uint8_t::resrvd3: 0x0
 [29.1B]
uint8_t::outer_prefix_offset: 0
 [29.2B] uint8_t::final_sz: 32
 [29.3B] uint8_t::inner_res_sz: 32
 [30.0B] uint8_t::resrvd4: 0x0
 [30.1B] uint8_t::inner_state1_sz: 32
 [30.2B]
uint8_t::inner_state2_offset: 11
 [30.3B] uint8_t::inner_state2_sz: 32
 [31.0B]
uint8_t::outer_config_offset: 0
 [31.1B] uint8_t::outer_state1_sz: 0
 [31.2B] uint8_t::outer_res_sz: 0
 [31.3B]
uint8_t::outer_prefix_offset: 0
 SGL Data:
==
====

100% [||]
Checked 2 records. Found 1 issue(s).

8.5.3 Audit Cipher Buffers Alignment – Sanity Check

8.5.3.1 Emulate Slice Hang Caused by Incorrect Buffers Alignments

NOTE: To execute this test, the package should be compiled with ‘--disable-param-check’
option. To do this, you should uninstall existing package and install it again with extra
configuration option mentioned above

You can force QAT slice to hang by using a modified version of the tool provided by the QAT
package. To prepare tool to send incorrect data to QAT FW please modify the following file:

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functiona
l/sym/ipsec_sample/cpa_ipsec_sample.c

Following change can be applied to buffer lengths alignment error and slice hang:

308c308
- pOpData->messageLenToCipherInBytes =
sizeof(samplePayload);
+ pOpData->messageLenToCipherInBytes = 2;

Compile modified tool by using following commands:
1. cd

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/function
al

2. make all

Black Box Debug Tool

Programmer’s Guide 139

8.5.3.2 Slice Hang Handling with Continuous Sync Enabled

Ensure that at least one device is configured with Debug feature (Enabled = 1) and cont-
sync mode enabled (ContSyncEnabled = 1)

1. Execute modified tool:

cd
$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional
/build
./ipsec_sample
main(): Starting IPSec Sample Code App ...
algChainSample(): cpaCyStartInstance
algChainSample(): Encrypt-Generate ICV
algChainPerformOp(): cpaCySymPerformOp
[error] LacSymQat_SymLogSliceHangError() - : slice hang detected on CPM
cipher or auth slice.
[error] LacSymCb_ProcessCallbackInternal() - : Response status value
not as expected
symCallback(): Callback called with status = -1.
symCallback(): Callback verify result error
algChainPerformOp(): Output does not match expected output encrypt
generate
algChainSample(): cpaCyStopInstance
algChainSample(): Sample code failed with status of -1
main():
IPSec Sample Code App failed

2. [Optional] Check if event has been caught and handled properly:

tail -F /var/log/messages | grep -i qat_dbg_sync

Nov 30 16:09:34 localhost qat_dbg_sync_daemon[22391]:
Received QAT event: err_resp
Nov 30 16:09:34 localhost qat_dbg_sync_daemon[22391]: Dumping
physical memory regions to file:
/qat_logs/proc.mmaps.dev00_0000_4d_00_0

3. Execute audit:

qat_dbg_report path=/qat_logs command=audit_fields_lengths dev=0

==
====

Building index...
DONE
 Overall indexed 3 msgs.
 Requests: 1 (Sym:1, PKE:0, DC:0)
 Responses:1
 API calls:1
==
====

==
====

Black Box Debug Tool

140 Programmer’s Guide

QAT request fields length - audit in progress...
ERROR: Cipher data size must be block multiple (Cipher len:2, block
size:16) for alg: CPA_CY_SYM_CIPHER_AES_CBC
 Entry [REQUEST SYM]: Time-stamp: 2021-11-23 07:37:32.625265272
 Bank: 0 Ring: 1 PID: 23612
 [0.1B] Crypto command ID:
ICP_QAT_FW_LA_CMD_CIPHER_HASH [2]
 [0.2B] Service type: ICP_QAT_FW_COMN_REQ_CPM_FW_LA [4]
 [1.0-1B] LA BULK (SYMMETRIC CRYPTO) COMMAND FLAGS
(0x2c)
 [1.12] ZUC_3G_PROTO: 0
 [1.11] GCM_IV_LEN_FLAG: 0
 [1.10] DIGEST_IN_BUFFER: 0
 [1.7-9] PROTO: 0
 [1.6] CMP_AUTH: 0
 [1.5] RET_AUTH: 1
 [1.4] UPDATE_STATE: 0
 [1.3] CIPH_AUTH_CFG_OFFSET_FLAG: 1
 [1.2] CIPH_IV_FLD_FLAG: 1
 [1.0-1] PARTIAL FLAGS: 0 (FULL)
 [1.2B] Common Request flags: 0x1
 SGL[1] CD_IN [0] BNP [0]
 [1.3B] Extended Symmetric Crypto Command Flags: 0
 [2-3] Content Descriptor (CD) Param Pointer:
0x1af801640
 [4.2B] Content Descriptor Param Size: 8 [Quad words]
 [6-7] Opaque Data: 0x7f9dd0ebbc40
 [8-9] Source phy_addr: 0x1af802000
 [10-11] Destination phy_addr: 0x1af802000
 [12] Source length: 0
 [13] Destination length: 0
 [14-19] Cipher Request Parameters:
 [14] uint32_t::cipher_offset: 24
 [15] uint32_t::cipher_length: 2
 [16-17] uint64_t::cipher_IV_ptr:
0xaddbcefabebafeca
 [18-19] uint64_t::resrvd1: 0x459113d88f8cade
 [27-28.0B] Cipher Request Control Header:
 [27.0B] uint8_t::cipher_state_sz: 2
 [27.1B] uint8_t::cipher_key_sz: 2
 [27.2B] uint8_t::cipher_cfg_offset: 18
 [27.3B] uint8_t::next_curr_id: 0x21 (curr_id:
1, next: 2)
 [28.0B] uint8_t::cipher_padding_sz: 0
 [20-26] Authentication Request Parameters:
 [20] uint32_t::auth_off: 0
 [21] uint32_t::auth_len: 88
 [22-23] uint64_t::aad_adr/APS: 0x1af801820
 [24-25] uint64_t::auth_res_addr: 0x1af802458
 [26.0B] uint8_t::aad_sz/inner_prefix_sz: 0
 [26.1B] uint8_t::resrvd1: 0
 [26.2B] uint8_t::hash_state_sz: 0
 [26.3B] uint8_t::auth_res_sz: 0
 [27-31] Authentication Request Control Header:
 [27] uint32_t::resrvd1: 0x21120202
 [28.0B] uint8_t::resrvd2: 0x0
 [28.1B] uint8_t::hash_flags: 0x0
 [28.2B] uint8_t::hash_cfg_offset: 46

Black Box Debug Tool

Programmer’s Guide 141

 [28.3B] uint8_t::next_curr_id: 0x42 (curr_id:
2, next: 4)
 [29.0B] uint8_t::resrvd3: 0x0
 [29.1B] uint8_t::outer_prefix_offset: 0
 [29.2B] uint8_t::final_sz: 12
 [29.3B] uint8_t::inner_res_sz: 20
 [30.0B] uint8_t::resrvd4: 0x0
 [30.1B] uint8_t::inner_state1_sz: 24
 [30.2B] uint8_t::inner_state2_offset: 3
 [30.3B] uint8_t::inner_state2_sz: 24
 [31.0B] uint8_t::outer_config_offset: 0
 [31.1B] uint8_t::outer_state1_sz: 0
 [31.2B] uint8_t::outer_res_sz: 0
 [31.3B] uint8_t::outer_prefix_offset: 0
 SGL Data:
 Source SGL contains 1 flat buffer(s):
 [0] Flat buffer: len: 100 phy_addr:
0x1af802400
 Destination SGL contains 1 flat buffer(s):
 [0] Flat buffer: len: 100 phy_addr:
0x1af802400
==
====

100% [||]
Checked 3 records. Found 1 issue(s).

8.5.3.3 Slice Hang Handling with Continuous Sync Disabled

Ensure that at least one device is configured with Debug feature enabled (Enabled = 1) and
cont-sync mode disabled (ContSyncEnabled = 0)

• Execute modified tool:

cd
$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional
/build
./ipsec_sample
main(): Starting IPSec Sample Code App ...
algChainSample(): cpaCyStartInstance
algChainSample(): Encrypt-Generate ICV
algChainPerformOp(): cpaCySymPerformOp
[error] LacSymQat_SymLogSliceHangError() - : slice hang detected on CPM
cipher or auth slice.
[error] LacSymCb_ProcessCallbackInternal() - : Response status value
not as expected
symCallback(): Callback called with status = -1.
symCallback(): Callback verify result error
algChainPerformOp(): Output does not match expected output encrypt
generate
algChainSample(): cpaCyStopInstance
algChainSample(): Sample code failed with status of -1
main():
IPSec Sample Code App failed

4. [Optional] Check if event has been caught and handled properly:

Black Box Debug Tool

142 Programmer’s Guide

tail -F /var/log/messages | grep -i qat_dbg_sync

Nov 30 16:17:02 localhost qat_dbg_sync_daemon[23780]: Received QAT
event: err_resp
Nov 30 16:17:02 localhost qat_dbg_sync_daemon[23780]: Creating crash
dump directory: /qat_crash
Nov 30 16:17:02 localhost qat_dbg_sync_daemon[23780]: Crash dump in
progress ...
Nov 30 16:17:02 localhost qat_dbg_sync_daemon[23780]: Dumping physical
memory regions to file: /qat_crash/qat_crash_dev_00_0000_4d_00_0_2020-
11-30_161702//proc.mmaps.dev00_0000_4d_00_0
Nov 30 16:17:02 localhost qat_dbg_sync_daemon[23780]: Crash dump done
- path: /qat_crash/qat_crash_dev_00_0000_4d_00_0_2020-11-30_161702/

5. Execute audit:

qat_dbg_report path=/qat_crash/qat_crash_dev_<dev>_<bdf>_<timestamp>
command=audit_fields_lengths

==
====

Building index...
DONE
 Overall indexed 3 msgs.
 Requests: 1 (Sym:1, PKE:0, DC:0)
 Responses:1
 API calls:1
==
====

==
====

QAT request fields length - audit in progress...
ERROR: Cipher data size must be block multiple (Cipher len:2, block
size:16) for alg: CPA_CY_SYM_CIPHER_AES_CBC
 Entry [REQUEST SYM]: Time-stamp: 2021-11-23 07:39:01.357421282
 Bank: 0 Ring: 1 PID: 23661
 [0.1B] Crypto command ID:
ICP_QAT_FW_LA_CMD_CIPHER_HASH [2]
 [0.2B] Service type: ICP_QAT_FW_COMN_REQ_CPM_FW_LA [4]
 [1.0-1B] LA BULK (SYMMETRIC CRYPTO) COMMAND FLAGS
(0x2c)
 [1.12] ZUC_3G_PROTO: 0
 [1.11] GCM_IV_LEN_FLAG: 0
 [1.10] DIGEST_IN_BUFFER: 0
 [1.7-9] PROTO: 0
 [1.6] CMP_AUTH: 0
 [1.5] RET_AUTH: 1
 [1.4] UPDATE_STATE: 0
 [1.3] CIPH_AUTH_CFG_OFFSET_FLAG: 1
 [1.2] CIPH_IV_FLD_FLAG: 1
 [1.0-1] PARTIAL FLAGS: 0 (FULL)
 [1.2B] Common Request flags: 0x1
 SGL[1] CD_IN [0] BNP [0]
 [1.3B] Extended Symmetric Crypto Command Flags: 0

Black Box Debug Tool

Programmer’s Guide 143

 [2-3] Content Descriptor (CD) Param Pointer:
0x18e001640
 [4.2B] Content Descriptor Param Size: 8 [Quad words]
 [6-7] Opaque Data: 0x7f4681b98c40
 [8-9] Source phy_addr: 0x18e002000
 [10-11] Destination phy_addr: 0x18e002000
 [12] Source length: 0
 [13] Destination length: 0
 [14-19] Cipher Request Parameters:
 [14] uint32_t::cipher_offset: 24
 [15] uint32_t::cipher_length: 2
 [16-17] uint64_t::cipher_IV_ptr:
0xaddbcefabebafeca
 [18-19] uint64_t::resrvd1: 0x459113d88f8cade
 [27-28.0B] Cipher Request Control Header:
 [27.0B] uint8_t::cipher_state_sz: 2
 [27.1B] uint8_t::cipher_key_sz: 2
 [27.2B] uint8_t::cipher_cfg_offset: 18
 [27.3B] uint8_t::next_curr_id: 0x21 (curr_id:
1, next: 2)
 [28.0B] uint8_t::cipher_padding_sz: 0
 [20-26] Authentication Request Parameters:
 [20] uint32_t::auth_off: 0
 [21] uint32_t::auth_len: 88
 [22-23] uint64_t::aad_adr/APS: 0x18e001820
 [24-25] uint64_t::auth_res_addr: 0x18e002458
 [26.0B] uint8_t::aad_sz/inner_prefix_sz: 0
 [26.1B] uint8_t::resrvd1: 0
 [26.2B] uint8_t::hash_state_sz: 0
 [26.3B] uint8_t::auth_res_sz: 0
 [27-31] Authentication Request Control Header:
 [27] uint32_t::resrvd1: 0x21120202
 [28.0B] uint8_t::resrvd2: 0x0
 [28.1B] uint8_t::hash_flags: 0x0
 [28.2B] uint8_t::hash_cfg_offset: 46
 [28.3B] uint8_t::next_curr_id: 0x42 (curr_id:
2, next: 4)
 [29.0B] uint8_t::resrvd3: 0x0
 [29.1B] uint8_t::outer_prefix_offset: 0
 [29.2B] uint8_t::final_sz: 12
 [29.3B] uint8_t::inner_res_sz: 20
 [30.0B] uint8_t::resrvd4: 0x0
 [30.1B] uint8_t::inner_state1_sz: 24
 [30.2B] uint8_t::inner_state2_offset: 3
 [30.3B] uint8_t::inner_state2_sz: 24
 [31.0B] uint8_t::outer_config_offset: 0
 [31.1B] uint8_t::outer_state1_sz: 0
 [31.2B] uint8_t::outer_res_sz: 0
 [31.3B] uint8_t::outer_prefix_offset: 0
 SGL Data:
 Source SGL contains 1 flat buffer(s):
 [0] Flat buffer: len: 100 phy_addr:
0x18e002400
 Destination SGL contains 1 flat buffer(s):
 [0] Flat buffer: len: 100 phy_addr:
0x18e002400
==
====

Black Box Debug Tool

144 Programmer’s Guide

100% [||]
Checked 3 records. Found 1 issue(s).

8.5.4 Audit Return Codes

To collect data with incorrect return codes – the tool with the same modifications as described
in Section 8.5.3.1 can be used.

8.5.4.1 Audit Return Codes – Continuous Sync Option

An example audit of return codes for the data collected in Section 8.5.3.2 looks as follows:

qat_dbg_report path=/qat_logs dev=0 command=audit_ret_codes

==
====

Building index...
DONE
 Overall indexed 3 msgs.
 Requests: 1 (Sym:1, PKE:0, DC:0)
 Responses:1
 API calls:1
==
====

==
====

QAT Response return codes audit in progress ...

WARNING: Incorrect response RCs. Status: 128 error_code: 0xf0
 Entry [RESPONSE SYM]: Time-stamp: 2021-11-23
07:37:32.646255054
 Bank: 0 Ring: 5 PID: 23612
 [0.1B] Service ID: ICP_QAT_FW_COMN_RESP_SERV_CPM_FW
[1]
 [0.2B] Response type: ICP_QAT_FW_COMN_REQ_CPM_FW_LA
[4]
 [1.3B] Command ID: ICP_QAT_FW_LA_CMD_CIPHER_HASH [2]
 [1.1B] Common error code: 240
 [1.2B] Common status flags: 0x80
 CRYPTO STAT FLAG: 1
 PKE STAT FLAG: 0
 CMP STAT FLAG: 0
 XLAT STAT FLAG: 0
 XLAT APPLIED STAT FLAG: 0
 CMP EOF LAST BLK FLAG: 0
 UNSUPPORTED RQ STAT FLAG: 0
 [2-3] Opaque data: 0x7f9dd0ebbc40
 Entry [REQUEST SYM]: Time-stamp: 2021-11-23 07:37:32.625265272
 Bank: 0 Ring: 1 PID: 23612

Black Box Debug Tool

Programmer’s Guide 145

 [0.1B] Crypto command ID:
ICP_QAT_FW_LA_CMD_CIPHER_HASH [2]
 [0.2B] Service type: ICP_QAT_FW_COMN_REQ_CPM_FW_LA [4]
 [1.0-1B] LA BULK (SYMMETRIC CRYPTO) COMMAND FLAGS
(0x2c)
 [1.12] ZUC_3G_PROTO: 0
 [1.11] GCM_IV_LEN_FLAG: 0
 [1.10] DIGEST_IN_BUFFER: 0
 [1.7-9] PROTO: 0
 [1.6] CMP_AUTH: 0
 [1.5] RET_AUTH: 1
 [1.4] UPDATE_STATE: 0
 [1.3] CIPH_AUTH_CFG_OFFSET_FLAG: 1
 [1.2] CIPH_IV_FLD_FLAG: 1
 [1.0-1] PARTIAL FLAGS: 0 (FULL)
 [1.2B] Common Request flags: 0x1
 SGL[1] CD_IN [0] BNP [0]
 [1.3B] Extended Symmetric Crypto Command Flags: 0
 [2-3] Content Descriptor (CD) Param Pointer:
0x1af801640
 [4.2B] Content Descriptor Param Size: 8 [Quad words]
 [6-7] Opaque Data: 0x7f9dd0ebbc40
 [8-9] Source phy_addr: 0x1af802000
 [10-11] Destination phy_addr: 0x1af802000
 [12] Source length: 0
 [13] Destination length: 0
 [14-19] Cipher Request Parameters:
 [14] uint32_t::cipher_offset: 24
 [15] uint32_t::cipher_length: 2
 [16-17] uint64_t::cipher_IV_ptr:
0xaddbcefabebafeca
 [18-19] uint64_t::resrvd1: 0x459113d88f8cade
 [27-28.0B] Cipher Request Control Header:
 [27.0B] uint8_t::cipher_state_sz: 2
 [27.1B] uint8_t::cipher_key_sz: 2
 [27.2B] uint8_t::cipher_cfg_offset: 18
 [27.3B] uint8_t::next_curr_id: 0x21 (curr_id:
1, next: 2)
 [28.0B] uint8_t::cipher_padding_sz: 0
 [20-26] Authentication Request Parameters:
 [20] uint32_t::auth_off: 0
 [21] uint32_t::auth_len: 88
 [22-23] uint64_t::aad_adr/APS: 0x1af801820
 [24-25] uint64_t::auth_res_addr: 0x1af802458
 [26.0B] uint8_t::aad_sz/inner_prefix_sz: 0
 [26.1B] uint8_t::resrvd1: 0
 [26.2B] uint8_t::hash_state_sz: 0
 [26.3B] uint8_t::auth_res_sz: 0
 [27-31] Authentication Request Control Header:
 [27] uint32_t::resrvd1: 0x21120202
 [28.0B] uint8_t::resrvd2: 0x0
 [28.1B] uint8_t::hash_flags: 0x0
 [28.2B] uint8_t::hash_cfg_offset: 46
 [28.3B] uint8_t::next_curr_id: 0x42 (curr_id:
2, next: 4)
 [29.0B] uint8_t::resrvd3: 0x0
 [29.1B] uint8_t::outer_prefix_offset: 0
 [29.2B] uint8_t::final_sz: 12
 [29.3B] uint8_t::inner_res_sz: 20

Black Box Debug Tool

146 Programmer’s Guide

 [30.0B] uint8_t::resrvd4: 0x0
 [30.1B] uint8_t::inner_state1_sz: 24
 [30.2B] uint8_t::inner_state2_offset: 3
 [30.3B] uint8_t::inner_state2_sz: 24
 [31.0B] uint8_t::outer_config_offset: 0
 [31.1B] uint8_t::outer_state1_sz: 0
 [31.2B] uint8_t::outer_res_sz: 0
 [31.3B] uint8_t::outer_prefix_offset: 0
 SGL Data:
 Source SGL contains 1 flat buffer(s):
 [0] Flat buffer: len: 100 phy_addr:
0x1af802400
 Destination SGL contains 1 flat buffer(s):
 [0] Flat buffer: len: 100 phy_addr:
0x1af802400
==
====

100% [||]
Checked 3 records. Found 1 issue(s).

Audit prints warnings in case of any issue found. Every response considered as unsuccessful is
tried to be matched to its corresponding request.

NOTE: In some cases this operation may not be possible because the searched request could
already be overwritten by new data.

8.6 SR-IOV

The Debuggability feature can be used in Single Root – Input Output Virtualization terms.

NOTE: As the errors occurring on VF utilized on the host is forwarded, unnecessary logs
might be generated if the feature is enabled on guest utilizing the same QAT device.
Thus, logs might not contain error information.

8.6.1 Build instructions

The usage flow might be following:

Step
No.

Host Guest

1 Set up BIOS and OS

2 Install the driver with debuggability
flags with configure options

3 Start the desired KVM

4 Stop/start QAT PF service

5 Start QAT VFs service

6 Attach desired VFs to Guest

Black Box Debug Tool

Programmer’s Guide 147

7 Install the driver with debuggability flags with
configure options

8 Set up configuration

Example steps to build the environment might be as follows:

1. Set up BIOS and OS:
Options regarding VT-d, VT-x, and SR-IOV should be enabled in BIOS. Host OS needs to
enable IOMMU. Details can be found in 2.1 Updating the BIOS Settings and 2.2 Installing
and Configuring the Host Operating System sections of Using Intel® Virtualization
Technology (Intel® VT) with Intel® QuickAssist Technology App Notes.

2. Install on host:
cd /QAT && \
tar -xzomf QAT.L.4.17.0-00002.tar.gz && \
export ICP_ROOT=$PWD && \
./configure --enable-icp-sriov=host --enable-icp-qat-dbg && \
make install -j

3. Install and start the desired KVM:
virt-install --name Ubuntu_20.04_64bit \
--memory 8096 \
--cpu host \
--vcpus 8 \
--os-type linux \
--os-variant ubuntu20.04 \
--import \
--graphics none \
--disk /PathToImage/Ubuntu_20.04_64_k5.4.0-
90_bl_v000.img,format=img,bus=virtio \
--network direct,source=enp4s0,source_mode=bridge,model=virtio \
--network bridge=virbr0,model=virtio && \
virsh start Ubuntu_20.04_64bit

4. Change configuration: set enable equals 1 in [DEBUG] section and reload with adf_ctl
utility for desired VF. Restart QAT service with:
service qat_service stop &&\
service qat_service start

5. Start VFs service with:
/etc/init.d/qat_service_vfs start

6. Attach desired VFs to KVM. It might be done by
virsh attach-device Ubuntu_20.04_64bit attachdev.xml
Assuming that the attachdev.xml file has following body and it’s addresses (domain, bus,
slot, and function corresponds to appropriate VF):

<?xml version="1.0" encoding="utf-8"?>
<hostdev mode='subsystem' type='pci' managed='yes'>
 <source>
 <address domain='0x0' bus='0x4d'
slot='0x01' function='0x0'/>
 </source>
</hostdev>

7. On guest: Ensure that the VFs were appropriately attached using:
lspci|grep Co-

Black Box Debug Tool

148 Programmer’s Guide

8. Install with guest indicating flag:
./configure --enable-icp-sriov=guest --enable-icp-qat-dbg && \
make install -j

9. Set the configuration (ex. by modifying configuration file in /etc/ directory and
using adf_ctl utility).

8.6.2 Usage

After successful installation the tool can be used in multiple ways:

• Usage on SR-IOV guest only is the same as without SR-IOV enabled. The difference is
that VFs are utilized, so there is a different module loaded and QAT configuration files
names contain ‘vf’ string.

• For SR-IOV host only, there is a need to insert appropriate QAT VF kernel module. For
example, in case of QAT Gen 2 Intel® C62x Chipset, it would be qat_c62xvf. In this
case, the feature can be used as in a PF only scenario.

• In order to use the detached VFs kernel module, qat_*vfs should not be added and
sysfs should be used to configure the device.

• To utilize the host attached and detached devices, the QAT VF kernel module should
be added, required VFs are detached (for example, with virsh nodedev-detach)
and sysfs is used to configure detached VFs with Debuggability.

8.7 Programming Guide

8.7.1 Physical to Virtual Translation Callback

By default, QAT Debug uses common, USDM-based (User Space DMA-able Memory) routine
to perform physical to virtual address translation, which can be used with USDM memory
allocator only. To provide possibility to use user-selected memory allocator, the user has to
provide custom implementation of physical to virtual address translation routine for Debug
purposes.

The callback is called in the same context as payload thread, immediately before placing QAT
request to DMA-able memory.

Callback setter definition is available in the following header file:
$ICP_ROOT/quickassist/lookaside/access_layer/include/icp_sal_user.h

and look as follows:

/**
*
 * @ingroup SalUser
 * @description
 * This function sets provided by user callback for translating
 * physical to virtual addresses for QAT Debuggability purposes.
 * The callback will be used for Data Plane API requests with SGL
 * provided.
 *
 * @assumptions
 * None

Black Box Debug Tool

Programmer’s Guide 149

 * @sideEffects
 * None
 * @reentrant
 * Yes
 * @threadSafe
 * Yes
 *
 * @param[in] instanceHandle Instance handle
 * @param[in] user_dbg_phys2virt Function which will be translating
 * physical addresses to virtual ones
 *
 * @retval CPA_STATUS_FAIL Failed to extract transport
handle
 * @retval CPA_STATUS_SUCCESS User callback set successfully
 *

/
CpaStatus icp_sal_userSetDbgPhysToVirtCallback(
 CpaInstanceHandle instanceHandle,
 icp_sal_dbg_phys2virt_callback user_dbg_phys2virt);

QAT Debug handle can be extracted after transport initialization by the following function:

/*
 * icp_adf_transGetLoggerHandle
 *
 * Description:
 * Function returns Debuggability logger handle for the given
trans_handle
 *
 * Returns:
 * CPA_STATUS_INVALID_PARAM when invalid arguments provided
 * CPA_STATUS_SUCCESS on success
 * CPA_STATUS_FAIL on failure
 */
CpaStatus icp_adf_transGetLoggerHandle(icp_comms_trans_handle
trans_handle,
 icp_adf_dbg_handle_t **handle);

$ICP_ROOT/quickassist/lookaside/access_layer/include/icp_adf_transport
.h

§

	1 Introduction
	1.1 Terminology
	1.2 Typographical Conventions

	2 Software Overview
	2.1 Intel® Communications Chipset 8925 to 8955 Series Compatibility
	2.2 Logical Instances
	2.2.1 Response Processing
	2.2.1.1 Interrupt Mode
	2.2.1.2 Epolled Mode

	3 Acceleration Drivers Overview
	3.1 Hardware/Software Overview
	3.2 Acceleration Driver Configuration File
	3.3 Utility for Loading Configuration Files and Sending Events to the Driver - adf_ctl
	3.3.1 Usage
	3.3.2 Examples

	3.4 Application Payload Memory Allocation
	3.4.1 Thread Specific USDM

	3.5 User Space Additional Functions
	3.6 Managing Intel® QAT Endpoints Using qat_service
	3.7 Overview of QAT debugfs entries
	3.7.1 Entries in /sys/kernel/debug/qat_*
	3.7.2 Memory driver queries (qae_mem_slabs)

	3.8 Compression Status Codes
	3.8.1 Intel® QAT Compression API Errors

	3.9 Stateful Compression Unsupported
	3.10 Stateless Compression Level Details
	3.10.1 Compression Level Mapping
	3.10.1.1.1 QAT 1.7 hardware:
	3.10.1.1.2 QAT 1.8 hardware:

	3.10.2 Limitation on History Buffer Size (aka Deflate Window Size)

	3.11 Acceleration Driver Return Codes
	3.12 Batch and Pack Compression Unsupported
	3.13 Compress and Verify Feature
	3.14 Running Applications as Non-Root User
	3.15 Random Number Generation
	3.16 Huge Pages with the Included Memory Driver
	3.17 Heartbeat
	3.17.1 Heartbeat Operation
	3.17.1.1 Initialization
	3.17.1.2 Heartbeat Monitoring
	3.17.1.3 Resetting a Failed Device
	3.17.1.3.1 Function Signatures

	3.17.2 Incorporating Heartbeat into Intel® QAT Applications
	3.17.2.1.1 Restart Sequence
	3.17.2.1.2 Status of Packets in Flight (Crypto Applications Only)
	3.17.2.1.3 Determining Device ID
	3.17.2.1.4 Setting Polling Minimal Period

	3.17.3 Testing Heartbeat
	3.17.3.1 Simulated Heartbeat Failure Configuration
	3.17.3.2 Simulating Heartbeat Failure
	3.17.3.3 System Virtual Files
	3.17.3.4 Heartbeat Polling Frequencies
	3.17.3.4.1 Device Heartbeat Monitoring
	3.17.3.4.2 Checking for Device Reset Events

	3.18 Handling Device Failures in a Virtualized Environment
	3.18.1 Understanding System Messages and Warnings

	3.19 Incorporating Dummy Responses into an Intel® QAT Application
	3.19.1 Reliability, Availability, Serviceability
	3.19.2 End to End Data Integrity Support in QAT 1.8:

	3.20 Rate Limiting
	3.20.1 Service Level Agreement (SLA)
	3.20.2 SLA Units
	3.20.3 SLA Manager Application
	3.20.3.1 Rate Limiting Commands

	3.21 DU Manager Application
	3.21.1 Commands to Fetch Device Utilization
	3.21.2 Durations
	3.21.3 Reference Algorithm

	3.22 Cipher-CRC
	3.23 Access to Legacy Algorithms

	4 Acceleration Driver Configuration File
	4.1 Configuration File Overview
	4.2 General Section
	4.2.1 General Parameters

	4.3 Logical Instances Section
	4.3.1 [KERNEL] Section
	4.3.1.1 Enabling Linux* Kernel Crypto Framework (LKCF)

	4.3.2 [KERNEL_QAT] Section
	4.3.3 User Process [xxxxx] Sections
	4.3.3.1 Maximum Number of Process Calculations
	4.3.3.2 Increasing the Maximum Number of Processes/Instances
	4.3.3.3 Configuring Instances for Virtual Functions

	4.3.4 Cryptographic Logical Instance Parameters
	4.3.4.1 LKCF-supported algorithms:

	4.3.5 Data Compression Logical Instance Parameters
	4.3.6 Setting the Core Affinity Parameter for a Logical Instance

	4.4 Configuring Multiple Intel® QAT Endpoints in a System
	4.5 Configuring Multiple Processes on a System with Multiple Intel® QAT Endpoints
	4.6 Sample Configuration File

	5 Secure Architecture Considerations
	5.1 Terminology
	5.1.1 Threat Categories
	5.1.2 Attack Mechanism
	5.1.3 Attacker Privilege
	5.1.4 Deployment Models

	5.2 Threat/Attack Vectors
	5.2.1 General Mitigation
	5.2.2 General Threats
	5.2.2.1 DMA
	5.2.2.2 Intentional Modification of IA Driver
	5.2.2.3 Modification of the QAT Configuration File
	5.2.2.4 Malicious Application Code
	5.2.2.5 Denial of Service

	5.2.3 Threats Specific to Cryptographic Service
	5.2.3.1 Reading Cryptographic Keys

	6 Supported APIs
	6.1 Intel® QAT APIs
	6.1.1 Intel® QAT API Limitations
	6.1.1.1 Resubmitting After Getting an Overflow Error
	6.1.1.1.1 Overflow Exception in the Traditional API
	6.1.1.1.2 Overflow error in the Data Plane API
	6.1.1.1.3 Procedure for Handling Overflow Errors
	6.1.1.1.4 Compression Overflow Support in A Virtualized Environment
	6.1.1.1.5 Avoiding a Compression Overflow Exception

	6.1.1.2 Dynamic Compression for Data Compression Service
	6.1.1.3 Maximal Expansion with Auto Select Best Feature for Compression
	6.1.1.3.1 CPA_DC_ASB_DISABLED
	6.1.1.3.2 CPA_DC_ASB_STATIC_DYNAMIC
	6.1.1.3.3 CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS
	6.1.1.3.4 CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS
	6.1.1.3.5 CPA_DC_ASB_ENABLED

	6.1.1.4 Maximal Expansion and Destination Buffer Size in Compression Direction

	6.1.2 Data Plane APIs Overview
	6.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs
	6.1.2.2 Usage Constraints on the Data Plane APIs
	6.1.2.3 Cryptographic and Data Compression API Descriptions

	6.1.3 Recovering from a Compress and Verify Error
	6.1.4 Counting Recovered Compression Errors
	6.1.5 Compress and Verify Error log in Sysfs:
	6.1.6 Supported Algorithms in LKCF

	6.2 Additional APIs
	6.2.1 IOMMU Remapping Functions
	6.2.1.1 icp_sal_iommu_get_remap_size
	6.2.1.1.1 Syntax
	6.2.1.1.2 Parameters
	6.2.1.1.3 Return Value

	6.2.1.2 icp_sal_iommu_map
	6.2.1.2.1 Syntax
	6.2.1.2.2 Parameters
	6.2.1.2.3 Return Value
	6.2.1.2.3.1 Code Meaning

	6.2.1.3 icp_sal_iommu_unmap
	6.2.1.3.1 Syntax
	6.2.1.3.2 Parameters
	6.2.1.3.3 Return Value
	6.2.1.3.3.1 Code Meaning

	6.2.1.4 IOMMU Remapping Function Usage

	6.2.2 Polling Functions
	6.2.2.1 icp_sal_pollBank
	6.2.2.1.1 Syntax
	6.2.2.1.2 Parameters
	6.2.2.1.3 Return Value
	6.2.2.1.3.1 Code Meaning

	6.2.2.2 icp_sal_pollAllBanks
	6.2.2.2.1 Syntax
	6.2.2.2.2 Parameters
	6.2.2.2.3 Return Value
	6.2.2.2.3.1 Code Meaning

	6.2.2.3 icp_sal_CyPollInstance
	6.2.2.3.1 Syntax
	6.2.2.3.2 Parameters
	6.2.2.3.3 Return Value
	6.2.2.3.3.1 Code Meaning

	6.2.2.4 icp_sal_DcPollInstance
	6.2.2.4.1 Syntax
	6.2.2.4.2 Parameters
	6.2.2.4.3 Return Value
	6.2.2.4.3.1 Code Meaning

	6.2.2.5 icp_sal_CyPollDpInstance
	6.2.2.5.1 Syntax
	6.2.2.5.2 Parameters
	6.2.2.5.3 Return Value
	6.2.2.5.3.1 Code Meaning

	6.2.2.6 icp_sal_DcPollDpInstance
	6.2.2.6.1 Syntax
	6.2.2.6.2 Parameters
	6.2.2.6.3 Return Value
	6.2.2.6.3.1 Code Meaning

	6.2.3 User Space Access Configuration Functions
	6.2.3.1 icp_sal_userStart
	6.2.3.1.1 Syntax
	6.2.3.1.2 Parameters
	6.2.3.1.3 Return Value
	6.2.3.1.3.1 Code Meaning

	6.2.3.2 icp_sal_userStop
	6.2.3.2.1 Syntax
	6.2.3.2.2 Parameters
	6.2.3.2.3 Return Value
	6.2.3.2.3.1 Code Meaning

	6.2.4 Version Information Function
	6.2.4.1 icp_sal_getDevVersionInfo
	6.2.4.1.1 Syntax
	6.2.4.1.2 Parameters
	6.2.4.1.3 Return Values
	6.2.4.1.3.1 Code Meaning

	6.2.5 Reset Device Function
	6.2.5.1 icp_sal_reset_device
	6.2.5.1.1 Syntax
	6.2.5.1.2 Parameters
	6.2.5.1.3 Return Value
	6.2.5.1.3.1 Code Meaning

	6.2.6 Thread-Less APIs
	6.2.6.1 icp_sal_poll_device_events
	6.2.6.1.1 Syntax
	6.2.6.1.2 Parameters
	6.2.6.1.3 Return Value
	6.2.6.1.3.1 Code Meaning

	6.2.6.2 icp_sal_find_new_devices
	6.2.6.2.1 Syntax
	6.2.6.2.2 Parameters
	6.2.6.2.3 Return Value
	6.2.6.2.3.1 Code Meaning

	6.2.7 Compress and Verify (CnV) Related APIs
	6.2.7.1 icp_sal_dc_get_dc_error()
	6.2.7.1.1 Syntax
	6.2.7.1.2 Parameters
	6.2.7.1.3 Return Value

	6.2.7.2 icp_sal_dc_simulate_error()
	6.2.7.2.1 Syntax
	6.2.7.2.2 Parameters
	6.2.7.2.3 Return Value
	6.2.7.2.3.1 Code Meaning

	6.2.8 Heartbeat APIs
	6.2.8.1 icp_sal_check_device()
	6.2.8.1.1 Syntax
	6.2.8.1.2 Parameters
	6.2.8.1.3 Return Value
	6.2.8.1.3.1 Code Meaning

	6.2.8.2 icp_sal_check_all_devices()
	6.2.8.2.1 Syntax
	6.2.8.2.2 Parameters
	6.2.8.2.3 Return Value
	6.2.8.2.3.1 Code Meaning

	6.2.8.3 icp_sal_heartbeat_simulate_failure()
	6.2.8.3.1 Syntax
	6.2.8.3.2 Parameters
	6.2.8.3.3 Return Value
	6.2.8.3.3.1 Code Meaning

	6.2.9 Device Polling APIs
	6.2.9.1 icp_sal_poll_device_events()
	6.2.9.1.1 Syntax
	6.2.9.1.2 Parameters
	6.2.9.1.3 Return Value
	6.2.9.1.3.1 Code Meaning

	6.2.9.2 cpaCyInstanceSetNotificationCb
	6.2.9.2.1 Syntax
	6.2.9.2.2 Parameters
	6.2.9.2.3 Return Values
	6.2.9.2.3.1 Code Meaning

	6.2.9.2.4 Parameter

	6.2.9.3 cpaDcInstanceSetNotificationCb
	6.2.9.3.1 Syntax
	6.2.9.3.2 Parameters
	6.2.9.3.3 Return Values
	6.2.9.3.3.1 Code Meaning

	6.2.9.3.4 Parameter

	6.2.10 Congestion Management APIs
	6.2.10.1 icp_sal_SymGetInflightRequests
	6.2.10.1.1 Syntax
	6.2.10.1.2 Parameters
	6.2.10.1.3 Return Value
	6.2.10.1.3.1 Code Meaning

	6.2.10.2 icp_sal_AsymGetInflightRequests
	6.2.10.2.1 Syntax
	6.2.10.2.2 Parameters
	6.2.10.2.3 Return Value
	6.2.10.2.3.1 Code Meaning

	6.2.10.3 icp_sal_dp_SymGetInflightRequests
	6.2.10.3.1 Syntax
	6.2.10.3.2 Parameters
	6.2.10.3.3 Return Value
	6.2.10.3.3.1 Code Meaning

	6.2.11 Service Specific Polling APIs
	6.2.11.1 icp_sal_ CyPollSymRing
	6.2.11.1.1 Syntax
	6.2.11.1.2 Parameters
	6.2.11.1.3 Return Value
	6.2.11.1.3.1 Code Meaning

	6.2.11.2 icp_sal_ CyPollAsymRing
	6.2.11.2.1 Syntax
	6.2.11.2.2 Parameters
	6.2.11.2.3 Return Value
	6.2.11.2.3.1 Code Meaning

	6.2.12 Check Device Availability APIs
	6.2.12.1 icp_sal_userIsQatAvailable
	6.2.12.1.1 Syntax
	6.2.12.1.2 Parameters
	6.2.12.1.3 Return Value
	6.2.12.1.3.1 Code Meaning

	7 Application Usage Guidelines
	7.1 Mapping Service Instances to Engines on the Intel® QAT Endpoint
	7.1.1 Processor and Intel® QAT Endpoint Communication
	7.1.2 Service Instances and Interaction with the Hardware
	7.1.3 Service Instance Configuration
	7.1.4 Cryptographic Load Balancing Using Multiple Intel® QAT Instances

	7.2 Cryptography Applications
	7.2.1 IPsec and SSL VPNs
	7.2.2 Encrypted Storage
	7.2.3 Web Proxy Appliances

	7.3 Data Compression Applications
	7.3.1 Compression for Storage
	7.3.2 Data Deduplication and WAN Acceleration

	8 Black Box Debug Tool
	8.1 Introduction
	8.1.1 Overview
	8.1.1.1 Security Considerations
	8.1.1.2 Performance Considerations

	8.2 Detailed Description
	8.2.1 Collection Data
	8.2.1.1 Data Synchronization
	8.2.1.1.1 Continuous Synchronization
	8.2.1.1.2 Crash-Dump Mode
	8.2.1.1.3 Data Collecting Architecture

	8.2.1.2 Handling QAT Error Events

	8.2.2 Post-Processing
	8.2.2.1 Physical Addresses Audit
	8.2.2.2 Cipher Lengths Audit
	8.2.2.3 Return Codes Audit
	8.2.2.4 Listing Collected Data in ’Human Readable Form’

	8.3 Installation
	8.3.1 Hardware and Software Compatibility
	8.3.2 Installing the Driver
	8.3.3 Compiling and Executing Performance Sample Code
	8.3.4 Uninstalling the Driver

	8.4 Configuration
	8.4.1 Configuration via QAT Device Configuration Files
	8.4.2 Configuration via sysfs
	8.4.3 Checking Current Configuration Used by Driver

	8.5 Usage Examples
	8.5.1 Collecting Data – Sanity Check
	8.5.1.1 Continuous Sync Enabled
	8.5.1.2 Continuous Sync Disabled

	8.5.2 Audit Physical Addresses – Sanity Check
	8.5.2.1 Emulate Uncorrectable Error
	8.5.2.2 Continuous Sync Enabled
	8.5.2.3 Continuous Sync Disabled (Crash Dump Based)

	8.5.3 Audit Cipher Buffers Alignment – Sanity Check
	8.5.3.1 Emulate Slice Hang Caused by Incorrect Buffers Alignments
	8.5.3.2 Slice Hang Handling with Continuous Sync Enabled
	8.5.3.3 Slice Hang Handling with Continuous Sync Disabled

	8.5.4 Audit Return Codes
	8.5.4.1 Audit Return Codes – Continuous Sync Option

	8.6 SR-IOV
	8.6.1 Build instructions
	8.6.2 Usage

	8.7 Programming Guide
	8.7.1 Physical to Virtual Translation Callback

