intel.

Intel® Communications Chipset 8900

to 8920 Series Software

Programmer’s Guide

Revision 008

April 2022

Document Number: 330753

intel

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis You may not use or facilitate
the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to
grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

Allinformation provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system
manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular
purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intellogo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.
*Other names and brands may be claimed as the property of others.

Copyright © 2022, Intel Corporation. All rights reserved.

2 Programmer’s Guide

http://intel.com/

Contents

1 Introduction
1.1 JLIET 0110 T o] Lo T 1Y OO 13
1.2 DocUMENT OFgaNiZatioN ... et ses st ses st s st s st 13
1.3 Product DOCUMENTATION ...ttt ss s ss s saes 14
1.4 TypPographiCal CONVENTIONS ...ttt ses st s s ees 14
2 Platform Overview
2.1 Platform Synopsis
22 Determining the PCH SKU TYP ... eerererrssesesssesessessesssssessessssssssessesssssssssssssssssssssessessenns 16
2.2 EXAMIPIE ettt 17
2.3 Determining the PCH DeViCe STEPPING . rrerneereirerseesessesresssssessessessessessessssssssessssssssssssessesseens 17
231 EXAMIPIE ettt 18
3 SOTEWAIE OVEIVIEW ..ottt s s s AR 19
3.1 High-Level Software ArchiteCture OVErVIEW.......o e sessssssessessesseens 19
3.2 LOGICAI INSTANCES ..ottt s s 21
3.21 RESPONSE PrOCESSING .t essssssessssesenss 21
3.2.11 INTEITUPT MOAE oot es st ees 21
3.212 POlEd MOE..... et ss s sssenas 22
3.3 Operating SYSTEM SUPPOIT ...t ses st ses st sse ettt st ssnns 22
3.4 OpenSSL* Library INClUSION aNd USAgE ... ssessssssssessessessessssssssens 23
35 Support for Multiple Acceleration Hardware Generationsneneeneonensenenessenenns 23
4 ACCEIEration DIIVErS OVEIVIEWcceeereeireerieineeresesesseasessssessesssssssessssssssssssssssssssssasssssssassssssssssssssssnssssssessssane
4.1 Hardware ASSISEEA RINGS ...t esses et ese st sessessessessssssssssseas
4.2 Basic Software Context for Acceleration DFIVErS ..o
4.3 Linux* Software Context for Acceleration Drivers
4.4 ACCEIEIATION DIIVEIS ..ottt ssses st s s a bt
4.4.1 FrameWOrk OVEIVIEWc.ccueuieerieeeeeessessesesssessssssesesssesssesssesssssssssss s ssssssssasesssssesans
442 SEIVICE ACCESS LAYEN ..ttt
443 Acceleration Driver FrameWork ... necreeseesessesssessssssssssessssssessesssesans
444 Acceleration Driver Configuration File ... nneneecrcreseseeseeseeeeeesseaseenees
445 Utility for Loading Configuration Files and Sending Events to the Driver -
=Y | K o1 d OO 32
45 Acceleration Architecture in Kernel and UsSer SPacerereeneeneeneenesssesesessesssesesees 33
451 User Space Memory AllOCAtIONceeerniereineeeesesesesss e ssesesssssesesssssesssssssens 34
4511 Accelerator Driver Memory AlloCationnereneeneereeneeneens 34
4512 Application Payload Memory Allocationeneeneereeneeneens 35
452 User Space Additional FUNCHIONS ...t seseeeessessessessessessseens 36
453 User Space Configuration..... e ereneeseisesseesssesessesse s sssesessessessesssseens 37
454 User Space ReSPONSE ProCeSSING...eererererersessesresssssesessrsessessesssssessessesseens 38
4541 User Space Interrupt Mode........ceeeneneeneeseeeeeseesessesssessesssessseens 38
4542 User Space Polled MOde.........eeneeeneeseeeesseesessessessesssessseens 39
4.6 Managing Acceleration Devices USINg Qat_ServiCeeeneesneesessesssessesssessseens 39
4.7 Intel® QuickAssist Technology Entries in the /proc Filesystemreeesnneeeenns 40

4.8 Debug Feature

Programmer’s Guide 3

intel

4.9 Heartbeat Feature and Recovery from Hardware Errors ... eneeneensesesesnesnessesseeseens 45
491 How to Call the Heartbeat QUETY ... ssessneens 46
4911 User Proc Entry Read (not Enabled by Default)..........ccoccoeeeevveen. 46
4912 User Application Heartbeat APIs (not Enabled by Default).......47
49.2 Handling Heartbeat Failures ...t ssesessessesees 48
493 AER and Uncorrectable Errors 48
494 Handling Device Failures in a Virtualized Environment 48
495 GE WatChdOg SEIVICE. ...t sssssessesssssessssssssssssane 49
4.9.6 Special Considerations When Using the Heartbeat Feature and the GbE
Watchdog Service
4.10 Driver Threading MOEl ... sses e ssessesses s ssssssssanessesenns
4.10.1 Thread-18SS MOAE..... s naen
4 CoMPression StAtUS COUES ... s
411 Intel® QuickAssist Technology Compression AP Errors......enensensennens 52
412 Stateful Compression - Dealing with Error Code CPA_DC_BAD_LITLEN_CODES (-7)
... 54
4121 Example of a Stream that Triggers Error Code (-7) .eoeeeroneeeressessennesonne 54
4122 Special Case when a Packet Cuts a Header in the Streamccccoveveneveverneenne 55
412.3 Pseudo Code for Handling Error Code =7 ... ereneneserseeseesesessessessessneens 56
412.4 Unprocessed Data During Stateful Decompression Operations ... 56
413 Stateful Compression LeVel DEtailS ... sssssssssesessessessesssssens 57
414 Stateless Compression LEVEI DetailS..... e sesssssssssssessessessessssseens 57
4.15 Acceleration Driver ErfOr SCENAIIOSouereenreessesssessessessssssesssssssssssssssssssssssessssssssssssssssees 58
4.15. User SPace ProCess Crash ... seissssesesesessssss s ssesessessssssssssens 58
415.2 Hardware Hang Detected by Heartbeat ... 58
415.3 Hardware Error Detected by AER ... esessessessessessessessseens 59
4154 Virtualization: User Space Process Crash (in Guest OS)........cooeveeoneeeevensenennns 59
4.15.5 Virtualization: Guest OS Kernel Crash ... nenseeereseseseseeseesesessesseens 60
4.15.6 Virtualization: Hardware Hang Detected by Heartbeat......c.cccovveenrererernienen. 60
415.7 Virtualization: Hardware Hang Detected by AER ... 60
416 BUIlD FIag SUMIMAIY ...t sessssse s esse s s sss s sssssssssessesssssssssssssseasessesseens 61
417 Running Applications as NON-ROOt USET ... ssssessessessessesssssssssssens 63
4.8 Compiling Acceleration Software on Older Kernelsoneneneeneeneeneessesessessesseeseens 65
4.19 Compiling With DEbUG SYMDOIS ... 65
420 Acceleration Driver REtUIMN COOES ...ttt tsesessssssesssssssessssssesssssssesssssans 66
5 Acceleration Driver CoNfiguration File ...t sssessesssssessssssssesssane 68
5. Configuration File OVEIVIEW ...t sesss st essesses s ssssessssens 68
5.2 GENEIAl SECTION ...ttt bbb Rt 69
5.2.1 GNEral ParameEters...... ettt ss s saees 69
522 Statistics Parameters ... 72
523 Optimized Firmware for Wireless AppliCationscoeeenreenserneeneeseeneesseenees 73
53 LOGICal INSTANCES SECTION ...oeureveeeceeieteeeee ettt ss s 73
5.3.1 [KERNEL] SECLION coourrreverreeveesessssesesssessssssessssssnes 74
5.3.11 Cryptographic Logical Instance Parameters........coeveeoreenneennenne 74
5312 Data Compression Logical Instance Parameters ..o 76
5.3.2 (DY NI SECHION ettt st se e ees s essses et ss s sases e se s s as s ses s s sassaseseesessessnen 76
5.3.21 Dynamic Instance Configuration Exampleccoorenineeneeneeneennes 77
5.3.3 USEr Process [XXXXX] S@CHIONS......eeeeeeeeeeseereeetsessseseeseeseesessssessssessasssseasessssssssssesssseas 78

Programmer’s Guide

5.3.3.1 Maximum Number of Process Calculations.........cconeneerneeenn. 79
54 Configuring Multiple PCH Devices in @ SYSTeM ... nneeeereeseeseisesssesesesessessesssssseeens 79
55 Configuring Multiple Processes on a Multiple-Device System.......oronenenrenenenseneenenes 81
5.6 Sample Configuration File (V2)....resmssns
5.7 Configuration File Version 2 Differences.
Secure Architecture CoNSIAEratioNS ... sasens 92
6.1 JLICT 0110 FoTc 1Y PO 92
6.1.1 THreat Cat@gOrNIES ..t ees st s bbb 92
6.1.2 AtaCk MECNANISIN ..ot ss s 93
6.1.3 ATLACKET PriVIIEGE .ottt es s 93
614 DePloymMENT MOAEIS ... ssasens 94
6.2 THrEat/ AtEACK VECLOIS c.vuuurevveseesesessessisssssssess st st st ssssss s sss st ssssssssesssssssssssssssssssssssenees 94
6.2.1 GENEral MitigatioN ...ttt es ettt 94
6.2.2 General Threats
6.2.2.1 DMA
6.22.2 Intentional Modification of [A DIVEr ... 96
6.2.2.3 Modification of Intel® QuickAssist Accelerator Firmware.......... 96
6224 Modification of the PCH Configuration Filecccovoreninencencenennees 96
6.225 Malicious Application COAE ... sseeeeaes 97
6.2.2.6 Contrived Packet STream ... eeessesssssssssesssessesseens 97
6.2.3 Threats Against the CryptographiC ServiCe.... e 97
6.2.3.1 Reading and Writing of Cryptographic Keysconeneneennennes 98
6.2.3.2 Modification of Public Key Firmware ... 98
6.2.3.3 Failure of the Entropy Source for the Random Number
LG =T =T o) TSP 98
6.2.3.4 Interference Among Users of the Random Number Service....98
6.2.4 Data Compression Service Threats ... ssesssseens 99
6.2.4.1 Read/Write of Save/Restore CONtEXt .. reeeeeeeoreeereeseeesseeseresenns 99
6.2.4.2 Stateful BENaVIOr .. ettt seneen 99
6.2.4.3 Incomplete or Malformed Huffman Treeooeeeeovcneveneeneennennes 99
6.24.4 Contrived Packet STream ... neeneesessereesesssesssesesssesees 100
U] o) oo €= 1N = 3OO 101
7.1 Intel® QuickAssist TEChNOIOGY APIS ...t ssesenes 101
711 Intel® QuickAssist Technology API Limitations.. ... 101
7111 Resubmitting After Getting an Overflow Error................ ..103
7.1.1.2 Dynamic Compression for Data Compression Service.............. 104
7.1.1.3 Maximal Expansion with Auto Select Best Feature for Data
COMPIrESSION SEIVICE ..ttt ses st ssees 105
71.1.4 Maximal Expansion and Destination Buffer Size.....ccccccoeveunreneee. 106
7.1.2 Data Plane APIS OVEIVIEWeeeeureeseesessesssesssssssssesssesssessessesssesssssssssssssssasees 106
7.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs.......... 107
71.2.2 Usage Constraints on the Data Plane APIs ... 109
7.1.2.3 Cryptographic and Data Compression AP| Descriptions.......... 109
7.2 A Lo L4 oY q F=T 12] £ PP
7.2.1 Dynamic Instance Allocation FUNCHIONS.........ceneneenneineeneeseessseessessessessenens
7.2.1.1 icp_sal_userCyGetAvailableNumDynlInstances
7.2.1.2 icp_sal_userDcGetAvailableNumDynInstances
7.2.1.3 icp_sal_userCylnstancesAlloc.......onenereeneeneeneens

Programmer’s Guide

intel

7.2.1.4 icp_sal_userDcINStanCeSAIIOC ... esesessesseenees 13
7215 icp_sal_userCyFreelnStanCes.. .. ssessessessessenns 13
7.2.1.6 icp_sal_userDCFreelnstancCes...... s nsessessesseenenns N4
7.21.7 icp_sal_userCyGetAvailableNumDynInstancesByDevPkg..... 114
7.2.1.8 icp_sal_userDcGetAvailableNumDynInstancesByDevPkg...... 115
7.2.1.9 icp_sal_userCylnstancesAllocByDeVPkg.......commmenenrerneereenenns 15
7.2.1.10 icp_sal_userDclnstancesAllocByDeVvPKg........ccueneneererreereenennes 1né
7.211 icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel ...117
7.2.1.12 icp_sal_userCylnstancesAllocByPkgAcceleererneeneereennes n7
7.2.2 IOMMU RemMapping FUNCLIONScieeeceeeresessersesseseseesessessessessesssssessssssessessessesees 18
7.2.21] icp_sal_iommu_get_remap_sizZe.......unnereneeneeneensenseseseeneenns 18
7222 ICP_Sal_IOMMIU_IMEP ..ottt ssesessessessess 19
7223 ICP_Sal_ioMMU_UNMAEP .ttt sessessessess 19
7224 IOMMU Remapping Function Usagerneeseneeneseneenesseneens 120
7.2.3 POIlING FUNCHIONS ...ttt s st sses s sseane 120
7.2.3.1 ICP_SAl_POIIBANK ..t ssesessessessenas 121
7.2.3.2 ICP_SAl_POIANBANKS ..coeererireereeeemreseessersesseesesseessessessessssssssesssssessessessesns 121
7.2.3.3 ICP_Sal_CyPOlINStANCE ...cetecererreererrereeeeeereses e 122
7.2.3.4 ICP_Sal_DCPOIINStANCE ...t neens 123
7.2.35 ICP_Sal_CyPolIDPINStaNCE...ccreeeererreeeeeeeereres s 123
7.2.3.6 ICP_Sal_DCPOIIDPINSTANCE ...coveeeererreereieireresreeseiseeseesesesessessesssssseeens 124
724 Random Number Generation FUNCLIONS........ooiieneeneeseesereesesssesssseesseeaees 125
7.2.4.1 icp_sal_drbgGetEnropylnputFuncRegister ... 126
7.24.2 icp_sal_drbgGetInStance..... e 126
7.2.4.3 icp_sal_drbgGetNonceFuncRegister ... eorenereereenseneens 127
7244 icp_sal_drbgHT GEeNerate ... 127
7245 icp_sal_drbgHT GetTestSessionSize. ... enenrerernesseesesseeneens 128
7.2.4.6 icp_sal_drbgHTINStantiate ... 128
7.24.7 icp_sal_drbgHTRESEEd. ... 129
7.2.4.8 icp_sal_drbglsDFReqFUNCREGISTEr ..o 129
7.2.4.9 icp_sal_nrbgHealthTest ... 130
72410 DRBG Health Test and cpaCyDrbgSessionlnit Implementation
DETAII coereveereeteeree et 131
725 User Space Access Configuration FUNCLIONS.......coereorcenereneeneeneececeeeseees 131
7.2.5.1 [1o] o IT | U 1Y =T S =1 ST 132
7.25.2 icp_sal_userStartMultiProCessuerenerneeneeneesessesseesessseeens 132
7.25.3 ICP_SAl_USEISTOP ettt sesses et saeeas 134
7.2.6 User Space Heartbeat FUNCHIONS......o et sesseesessessessesssssessenn 134
7.2.6.1 ICP_Sal_CheCK_dEVICE ...ttt 135
7.2.6.2 icp_sal_check_all_deViCes......eneirenerneeseeeesessessesseseseens 135
7.2.7 Version INformation FUNCHION ... ssesssesnes 136
7.2.7. icp_sal_getDevVersionInfo...... s 136
7.2.8 Reset Device FUNCHION ... 137
7.2.8.1 ICP_Sal_reSet_dEVICE....ieeeereereteeeeeeeseeees s sssseeaeen 137
7.2.9 THrEAA-1ESS APIS ...ttt s st 137
7.2.9.1 icp_sal_poll_deviCe_eVvents ... 137
7.2.9.2 icp_sal_find_NewW_deViCes ... 138
8 ApPPlication USage GUITEINES ...ttt ses s ses s 139
8.1 Mapping Service Instances to Hardware Accelerators onthe PCH.......cooeneninecnecnnee 139
8.1.1 Processorand PCH Device CoOmMMUNICAtIONviveeeeereemreesernesssesssersesesssenaees 140

Programmer’s Guide

Appendix A

Appendix B

Figures

Figurel.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure11.
Figure12.
Figure13.
Figure 14.
Figure15.

8.1.2 Service Instances and Interaction with the Hardware........coooveenenecnirnnenn. 140
8.1.3 Service Instance Configuration
814 Guidelines for Using Multiple Intel® QuickAssist Instances for Load
Balancing in Cryptography Applications
8.2 Cryptography APPIICATIONS ...ttt b s bbb
8.2.1 IPSEC ANA SSL VPINS ...ttt sssssssss st ssss s sanees
822 ENCrypted STOrage. ..ttt sssesses s essssse s s
823 WED Proxy APPlIANCES ...t ssssases st ssss st ssssssens
8.3 Data Compression APPIICAtiONS.. ...t esesesses e esssssesss s sssase
8.3.1 CoMPression fOr STOragE ...t saen
8.3.2 Data Deduplication and WAN Acceleration ... 148
Acceleration Driver Configuration File - Earlier File FOrmat ... 149
Al Configuration File OVEIVIEW ... sssss s sssssssssases 149
A2 GENEIAl SECTION ettt s s 150
A2l1 GENEral ParamEters.. .. ssesses s essssse s sssases 150
A22 QAT PAramMEterS....u e sessssse s essssse s ssesssssesns 151
A23 StatiStiCs PAarameters ... sssaees 152
A3 L= LY =X e O [T =Yoo) o PO 153
A3 Interrupt Coalescing Parameters.. ... essessessessessessessesssens 153
A3.2 Affinity Parameters
A4 LOGICal INStANCES SECHION wercvreeiceereereerer e es s
A4l [KERNEL] SECLION coturverrunresseesessssessssssesssssssesssnssssses
A4l Cryptographic Logical Instance Parameters........cccovvereereeneenens 156
A412 Data Compression Logical Instance Parameterscc.ccocveeneenne. 157
A4.2 User Process INstance [XXxxX] SECHIONSreemreessmmressmnsssssmssssssessssssesssssas 158
A5 Sample Configuration FIle (V1) ... seeeesesessssese s sssesssssss s ssssesssssssssassssssssssssnens 159
GlOSSAIY ueueureerereeeteee st es et s es bR AR AR R 170

I/O Optimized Platform Example
I/O Optimized Platform Example...
PCH SKU Identification Example...
Software Architecture Overview

Kernel Space Response RING ProCESSING ...t sessessessssssessessessessssssssssssssssanes 22
Intel® QuickAsSiSt ACCEIErator RING ACCESS ..t eseses st ssssssssesessesssssssesssesanen 27
Ring Partitioning 0N the ChipSet DEVICE ...t esessessessessssssssessessessesssssssesssssases 27
BaSiC SOFEWAIE CONTEXT ...cuueeeeerieieeeereeiei et es et b s 28
LiNUX* SOTEWAIE CONTEXT .ouveuuieerieaeeeceeesretsseteessesssessss s s b ss s sb s 29
AcCCEleration DIiVer FramMEWOrIK ... s sessessssssssssssssessssssessessesas 30
Software Architecture for Kernel and USEr SPACE ... sssesessessessesssseens 34
User Space Memory Allocation at INitialiZation. ... essessessesssssesaees 35
User Space Process with TWo LOgiCal INSTANCES ...t essessessesssesesases 37
User Space Response Processing for INterrupt MOde ... eneneenseeeneeseeseiseseeseesesessessessesssssesases 39
Stream of Compressed Data Split into Three PacKetseneeneenneeneeneessesseseesseessessseesesas 54

Programmer’s Guide 7

intel

Figure 16.

Figure17.
Figure 18.
Figure 19.
Figure 20.
Figure 21.
Figure 22.
Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.
Figure 28.
Figure 29.
Figure 30.
Figure 31.

Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table10.
Table11.
Table12.
Table13.
Table 14.
Table15.
Table 16.
Table17.
Table 18.
Table19.
Table 20.
Table 21.
Table 22.
Table 23.
Table 24.

Accelerator Software Consumes Data up to End of Header 2 where Error Code (-7) is Normally
GENEIATEM ..ottt R R RS R e R e 55
Unprocessed Data Appended 10 Next Packet. ... essessessesssssesaes 55

Packet Cutin the Middle 0f @ HEAAEN ...t ss e 55
Packet Cutin the Middle 0f @ HEAAEN ...t ss e 56
Unprocessed Data for INCoOmMpPlete HEAEN ... ssessessessessessesssssssssnses 57
RING BANKS .ottt ses s ss s s es s s R e 68
Dynamic Compression Data Path ... ssessesssssessesssssessesesssessssessesssssssssseens 104
Amortizing the Cost of an MMIO Across Multiple REQUESTS ... sesseeeenes 108
Processor and PCH DeviCe COMPONENTS. ... ererierereeeesessessesssssessessessessessesssssessssssssessessesssssssssssseens 139
Processorand PCH Device COMMUNICATIONireeurrerereesessssssssesssesssesssesssssssssessssssssssssssssesssssnes 140
Processorand PCH Device COMMUNICATIONcueirerereenissssssssesssesssesssssssssssssssssssssssssesssssssssesssssssees 141
Service INStanCe CoONFIGUIATION ...t es st 142
Entities and Relationships for Load BalanCing..... s ssessesesessessssssssseseens 144
LOAd BalanNCing SCENANIOS c..c.vvueiiereereeeressiaseissessasessessessssss s ssesssssssss st s ssesssssssssssssssssssssesssssessssasssnens 145
RING BANKS ..ottt ses s R R 150
Ring Bank Affinity to Core for MSI-X INterruptS.....oeerereereessesssssessesssssessesessssssesessessessessssseens 154
Device ENUMEration EXAMPIE ...t isisesessesse it essessesss st esssssesss st sasssssssessessssssssssanes 32
Heartbeat/GbE WatChdog SErviCe SCENAMIOSoceoeeevenee s sssesssasesssssssssssssassssssssssassssassssns 50
Intel® QuickAssist Technology Compression AP EITOrSeeeesnessessesssssessessessessessesssssessees 52

Required Build Flags
Optional Build Flags
General Parameters
Statistics Parameters
Cryptographic Logical Instance Parameters....

User Process [xxxxx] Sections Parameters..........owceeeeeveseeernne.

System Threat Categories

Attack Mechanisms and EXamples.......nnenseneensenseneeneeneens

Attacker Privilege

Deployment Models

Compression/Decompression OVerflow BEhaVior..........eivssessiesssssssssssssssssssssssssssssssssasesses 103
SErViCe INSTANCE AEIIDULES ..o 141
General Parameters - Earlier File FOrMat ...ttt ssssseanes 151
General Parameters - Earlier File FOrMat ...ttt sssseanssnnns 152
General Parameters - Earlier File FOrMat. ...ttt ssesessessessssssssssenns 152
General Parameters - Earlier File FOrMat. ...ttt esesessessesssssssssssenns 153
RiNg Bank Affinity ParameEters ...t sesssessse s s s ssssssssasesssessssnes 155
Cryptographic Logical Instance Parameters - Earlier File FOrmat ... 156
Data Compression Logical INStance Parameters ... eieeneeneeseeseisesssesssssssssesssssssesssessesses 158
User Process INStance [XXXXX] ParamEters ... eeeeeeseeseeseessesssessesseseesessssssssssessassssssessssssssssassasens 159
LI 01121 Fo T 1Y TP 170

Programmer’s Guide

Revision History

intel

Document Number | Revision Number Description Date
330753 008 e Updated Sections 8.2.2: Encrypted Storage, & 8.3: Data April 2022
Compression Applications with minor edits to terminology
and grammatical updates for clarity
330753 007 e Updated with new Intel® logo December 2021
e Updated content with Intel One text font
330753 006 Update includes: October 2016
o Updated Section 1.3 Product Documentation
330753 005 Updatesinclude: March 2016
o Updated Stateful Compression Level Details on page 58
and Stateless Compression Level Details on page 58
e Added DRBG_POLL_AND_WAIT optional build flag to
Build Flag Summary on page 61
330753 004 Updatesinclude: October 2015
e Updated Build Flag Summary on page 61
e Updated Cryptographic Logical Instance Parameters on
page 75 and Data Compression Logical Instance
Parameters on page 76
e Updated Intel® QuickAssist Technology API Limitations
on page 98
330753 003 Updatesinclude: March 2015
o Added Intel® QuickAssist Technology Entries in the /proc
Filesystem on page 42
o Added How to Call the Heartbeat Query on page 47
e Updated Build Flag Summary on page 61
o Added Acceleration Driver Return Codes on page 66
e Updated Dynamic Instance Configuration Example on
page 77
o Updated Maximum Number of Process Calculations on
page 79 and Resubmitting After Getting an Overflow Error
on page 100
330753 002 Updatesinclude: December 2014

o Added Intel® QuickAssist Technology Compression API
Errors on page 53

o Updated Intel® QuickAssist Technology API Limitations
on page 98

Programmer’s Guide

intel

Document Number

Revision Number

Description

Date

o Added Resubmitting After Getting an Overflow Error on
page 100

o Added new APIs to Dynamic Instance Allocation Functions
onpage 107

o Updated Reset Device Function on page 134
e Added Thread-less APIs on page 135

e Other general updates.

330753

001

Updatesinclude:

e First “public” version of the document. Based on “Intel
Confidential” document number 441782-1.8 with the
revision history of that document retained for reference

purposes.

July 2014

330753

Updatesinclude:

e Added Compiling with Debug Symbols on page 66

May 2014

330753

17

Updatesinclude:

o Added new information to "direct user space access” bullet

in Acceleration Drivers Overview on page 28

Added further detail to note in Hardware Assisted Rings on
page 28

Updated Linux* Software Context for Acceleration Drivers
on page 30

e Added Stateless Compression Level Details on page 58

Added support for the PF/VF concurrency for
SRIOV_Enabled in General Parameters on page 70

e Added Dynamic Compression for Data Compression
Service on page 101, Maximal Expansion with Auto Select
Best Feature for Data Compression Service on page 102,

and Maximal Expansion and Destination Buffer Size

March 2014

330753

Updatesinclude:

o Added new information to Intel® QuickAssist Technology

API Limitations on page 98
e Added Running Applications as Non-Root User on page 63

e Added Compiling Acceleration Software on Older Kernels
on page 65

e Changed document and software title to specify chipset
SKU range.

e Other minor updates.

December 2013

330753

Updatesinclude:

August 2013

10

Programmer’s Guide

intel

Document Number | Revision Number

Description

Date

e Added section, "Heartbeat Feature in a Virtualized
Environment”

e Removed two stateful compression/decompression
limitations from Intel® QuickAssist Technology API

Limitations on page 98

e Added new NRBG and DRBG support information to

Random Number Generation Functions on page 122

330753

Updates for software release 1.3.0:

o Added Support for Multiple Acceleration Hardware
Generations on page 25

e Added Compression Status Codes on page 53

e Updated Stateful Compression - Dealing with Error Code

CPA_DC_BAD_LITLEN_CODES (-7) on page 54 and
subsections

e Added Stateful Compression Level Details on page 58

o Updated Build Flag Summary on page 61to add
ICP_TRACE option

o Updated icp_sal_CyPollinstance on page 119
e Updated icp_sal_DcPollinstance on page 120

June 2013

330753

Updates for software release 1.2.0:

e In General Parameters, added SRIOV_Enable and
PF_bundle_offset

e Added [DYN] Section
e Updated Sample Configuration File (V2)
o Added Driver Threading Model

o Added Stateful Compression - Dealing with Error Code
CPA_DC_BAD_LITLEN_CODES (-7)

e Added Acceleration Driver Error Scenarios
o Added Build Flag Summary
o Added Dynamic Instance Allocation Functions

e Added IOMMU Remapping Functions

March 2013

330753

Updates for software release 1.1.0:

e Updated Heartbeat Feature and Recovery from Hardware

Errors

e Added User Proc Entry Read (not Enabled by Default)

e Added User Application Heartbeat APIs (not Enabled by

Default)

December 2012

Programmer’s Guide

n

intel

Document Number

Revision Number

Description

Date

e Updated Intel® QuickAssist Technology API Limitations to
better clarify autoSelectBest behavior for static

compression service
o Added GbE Watchdog Service

o Added Special Considerations When Using the Heartbeat
Feature and GbE

o Addedicp_sal_drbgGetinstance
e Updated DRBG Health Test and cpaCyDrbgSessionlnit

Implementation Detail

e Added User Space Heartbeat Functions

330753

11

Updates for software release 1.0.1:

o Added Heartbeat Feature and Recovery from Hardware

Errors
o Updated General Parameters
e Updated Cryptographic Logical Instance Parameters
o Updated Data Compression Logical Instance Parameters

e Added DRBG HealthTest and cpaCyDrbgSessionlnit
Implemenation Detail

October 2012

330753

1.0

Corresponds with software release 1.0.0

September 2012

12

§

Programmer’s Guide

]
Introduction I n te I@

] Introduction

This Programmer’s Guide provides information on the architecture of the software and usage
quidelines. Information on the use of Intel® QuickAssist Technology APIs, which provide the
interface to acceleration services (cryptographic, data compression), is documented in the
related QuickAssist Technology Software Library documentation (see Product
Documentation).

1.1 Terminology

In this document, for convenience:
e Software package is used as a generic term for the package.

e Platform Controller Hub (PCH) is used as a generic term for the Intel® Communications
Chipset 8900 to 8920 Series.

e Acceleratoris used as a generic term for the Intel® QuickAssist Accelerator device(s)
integrated in the Intel® Communications Chipset 8900 to 8920 Series.

e Accelerationdriversis used as a generic term for the software that allows the QuickAssist
Software Library APIs to access the Intel® QuickAssist Accelerator device(s) integrated in
the Intel® Communications Chipset 8900 to 8920 Series.

e Mobile platform is used as a generic term for a platform that combines Intel® Xeon® and
Intel® Core™ Processors for Communications Infrastructure with the Intel®
Communications Chipset 8900 to 8920 Series.

e Server platform is used as a generic term for a platform that combines Intel® Xeon®
Processors with the Intel® Communications Chipset 8900 to 8920 Series.

Refer to Glossary for the definition of acronyms and other terms used in this document.

1.2 Document Organization

This document is organized as follows:

Programmer’s Guide 13

s
I n te I Acceleration Driver Configuration File - Earlier
® File Format

1.3

1.4

14

A glossary of the terms and acronyms used in this guide is provided at the end of the
document.

Product Documentation

Documentation supporting the software package includes:
e Release Notes for Linux* Getting Started Guide
e Intel® Communications Chipset 89xx Series Software for FreeBSD* Getting Started Guide

e Intel® Communications Chipset 89xx Series Software for Windows* Getting Started Guide
Programmer’s Guide (this document)

Related QuickAssist Technology Software Library documentationincludes:
o Intel® QuickAssist Technology API Programmer’s Guide
o Intel® QuickAssist Technology Cryptographic API Reference Manual

o Intel® QuickAssist Technology Data Compression APl Reference Manual

Other related documentation:
o Intel® QuickAssist Technology Acceleration Software OS Porting Guide

¢ Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist Technology
Application Note

¢ Intel® Communications Chipset 89xx Series External Design Specification (EDS)

e Supported Ethernet PHY Devices for the Intel® Communications Chipset 89xx Series
Application Note

¢ Intel® 82580 Quad/Dual Gigabit Ethernet Controller Data Sheet

o Intel® Xeon® Processor (storage) - External Design Specification (EDS) Addendum - Rev.
1.1(Reference: 503997)

Typographical Conventions

The following conventions are used in this manual:

e Courier font -file names, path names, code examples, command line entries, APl names,
parameter names and other programming constructs

o [talic text — key terms and publication titles

e Boldtext - graphical userinterface entries and buttons

Programmer’s Guide

http://download.intel.com/design/network/datashts/321027.pdf
http://download.intel.com/design/network/datashts/321027.pdf

i)
Platform Overview I n te I@

2

Platform Overview

2.1

Figurel.

The mobile and server platforms described in this manual are follow ons to previous generation
platforms that continue to reduce power, reduce footprint and increase performance for
communications infrastructure systems. The platforms deliver leadership solutions with GB/s
Ethernet* MACs and Intel® QuickAssist Technology hardware: the acceleration for
cryptography and data compression.

Platform Synopsis

At a high level, the platform pairs an Intel® architecture processor with the Intel®
Communications Chipset 8900 to 8920 Series. Functionally, Intel® Communications Chipset
8900 to 8920 Series can be most easily described as a Platform Controller Hub (PCH) that
includes both standard PC interfaces (for example, PCI Express*, SATA, USB and so on)
together with accelerator and I/O interfaces (for example, Intel® QuickAssist Accelerator and
GigE).

e Forl/O-optimized applications, Intel® Xeon® and Intel® Core™ Processors for
Communications Infrastructure are paired with the Intel® Communications Chipset 8900 to
8920 Series. Eigure 1is a block diagram of the Intel® Xeon® Processor E3-1125C with Intel®
Communications Chipset 8910 Development Kit, codenamed Stargo. See the Intel® Xeon®
Processor E3-1125C with Intel® Communications Chipset 8910 Development Kit User
Guide for detailed information.

e Forbladed applications, Intel® Xeon® Processors are paired with the Intel®
Communications Chipset 8900 to 8920 Series. Eigure 2 is a block diagram of the Intel®
Xeon® Processor E5-2658 and E5-2448L with Intel® Communications Chipset 89xx
Development Kit, codenamed Shumway. See the Intel® Xeon® Processor E5-2658 and E5-
2448L with Intel® Communications Chipset 8920 Development Kit User Guide for detailed
information.

I/O Optimized Platform Example

FolE a2

XDP1

3 R FCis Gan2x1
~ T - e e——
N .
~ ’ PCie Gan2 xd Lazl)
~| B | ,
N End Point
~
N
~|
N

/77777777

W /7777777

V=7
W) 77777777,

lar

L

PHY Carg

| —

wne Y S} PCla Genl x1
o I (L0)PCIe Gan1 X1
-)7
- —
pers gont 1105
XDPO

SERIAL 2L 4 ports - Rear Pangl
o r== jl usB ==| | 2porta—FrontHR
iy et | Switch o .
1 -

wiIRE IS, - '!1
——— SATA 2 SATA Connle)

SERIAL tusiminin

@' TR LPC W TemHoR
88 retee
S ot

LGD Dibisu HOR

e
Clock Bufier

Programmer’s Guide 15

]
I n te I ® Platform Overview

Figure2. 1/O Optimized Platform Example

o ien s

NS
VAN
SAAAAAAAY

SAVVAVVVY

AV Y
SANNANANDN

MAMANNANT

77777777
27277777
17771777
27777777
172772777
17777777

AAAAAAAAAAAAAA Communications [NGRN. =
Chipset 8300 to PEP
8920 Series

Communications »——SERIAL—«:m 2Rt
Chipset 8900 to SR angeses

...... cuze sTack
- RIGHT ANGLE

e e :
Q e ‘Stuffing option m 588 -

2.2 Determining the PCH SKU Type

Determine the PCH SKU type as follows:

1. Find out the bus, slot and function of the PCH devices:
[root@localhost ~]# lspci -d 8086:0434
03:00.0 Co-processor: Intel Corporation Device 0434 (rev 10)

82:00.0 Co-processor: Intel Corporation Device 0434 (rev 10)

This displays the PCI configuration space for the 0434 device. In the case of the first entry,
the bus number=0x03, the device number=0x0 and the function number=0x0.

2. Readthe config space using the command:
[root@localhost ~]# od -tx4 -Ax /proc/bus/pci/03/00.0

where:
e -tx4displaysthe outputinareadable 4-bytes word format.

e -Ax specifies Hex. format

3. Readthe Ox00040 offset specifically using the command:
[root@localhost ~]# od -tx4 -Ax /proc/bus/pci/03/00.0 | grep 000040

This gives an output similar to the following:
000040 00000000 00000000 00010000 0bLBOOOO

Note: The word starts at Ox4C.

4. Readthe element returned from the following command:

16 Programmer’s Guide

Platform Overview

intel

od -tx4 -Ax /proc/bus/pci/03/00.0 | grep "~000040" | awk '{print
$2}!
This gives an output similar to the following:
0bb80000
221 Example
Specific bits in this output determine the SKU type depending on the silicon stepping as
indicated in the following table.
Silicon Bits to Check SKU Type
AO 17:16 =00 SKU 4
BO 22:19=011 SKU 4
22:19=0110 and SKU 3
17:16 =01
22:19=0110 and SKU 2
17:16 =10
Cx Same as BO.
Assuming a BO stepping device, if the 0xObb80000 output from the command is analyzed in
binary form as shown in the following figure, it can be determined that bits 22:19 are 0111,
indicating SKU 4.
Figure 3. PCH SKU Identification Example

Bit 32
Bit 28
Bit 24
Bit 20
Bit 16
Bit 12
Bit 8
Bit 4
Bit 0

=
=
=
=
=y
=
=y
=y
=y
=
=y
=y
=y
=
=
=
=
=
=
=
=
=
=
=]
=]
=]
=]
=
=
=
=
=

2.3

Determining the PCH Device Stepping

Determine the PCH stepping as follows:

1.
2,

Programmer’s Guide

Find out the bus, device, and function of the PCH device.

Read the config space using the command:

od -txl -Ax /proc/bus/pci/<bus number>/<device number>.<function
number>

Look at offset Ox0O8 (Revision ID register for the device) from the beginning of PCI
Configuration Space for the PCH device.

The following is the bit definition of the Revision ID register, an 8-bit register with
bits[07:00].

bits[07:04] identify the "Major Revision":

0000 = A stepping

intel

2.3.1

18

0001 =
0010 =
0011 =

bits[03:00] identify the "Minor Revision™:

0000 =
0001 =
0010 =
0011 =

Example

B stepping

C stepping

D stepping

x0
x1
X2
x3

stepping
stepping
stepping
stepping

Platform Overview

For example, if you find the PCH device at bus number 02, device number 00 and function O

then, the command to enter is:
od -txl -Ax /proc/bus/pci/02/00.0

This gives an output similar to the following:
000000 86 80 34 04 06 00 10 00 00 0O 40 Ob 00 00 80 00

[0x08] = 0x00, which is 0000_0000, in binary form bits[07:00]:
o bits[07:04] is the Major Revision, 0000 indicates an A stepping.
e bits[03:00] is the Minor Revision, 0000 indicates an x0 stepping.

Therefore, the PCH device is an AO stepping.

grep 000000

Programmer’s Guide

i
Software Overview I n te I ®

3

Software Overview

3.1

Figure 4.

In addition to the hardware mentioned in Platform Overview, the respective platforms have
critical software components that are part of the offering. The software includes drivers and
acceleration code that runs on the Intel® architecture (IA) CPUs and on the accelerators in the
PCH.

High-Level Software Architecture Overview

The primary components that describe the high-level architecture are shown in the following
figure.

Software Architecture Overview

Customer Application

Open Source Frameworks ‘

Patch Layers ‘

Intel® QuickAssist Technology APls

Services
Standard 0%

Drivers and

PreBoot

Firmware

Intel® QuickAssist Accelerator

Acceleration Services

Hardware 0s
Management | Management

Acceleration Driver Framework

Acceleration Software Subsystem

Platform Hardware

The main software components are:
e Pre-boot Firmware

The Intel® Communications Chipset 8900 to 8920 Series(PCH) pre-boot firmware
(provided by an IBV) executes when the system is reset or powered up. It initializes and
configures system memory, chipset functions, interrupts, console devices, disk devices,
integrated I/O controllers, PCl buses and devices, and additional application processors

Programmer’s Guide 19

I n te I ® Software Overview

(AP)if present. IBV pre-boot firmware solutions are available to support both the legacy
BIOS interface and the newer Unified Extensible Firmware Interface (UEFI).

e Standard OS Drivers

These drivers (provided in a standard OS distribution) include support for standard
peripherals on a traditional Intel® architecture platform such as USB, SATA, Ethernet and
so on. Intel® provides a patch to the OS so that it recognizes the Device IDs (DIDs).

e Acceleration Software Subsystem

A subsystem (provided by Intel®) which includes the software components that provide
acceleration to applications running on the PCH. It contains the following:
- Services (Cryptographic, Data Compression)

Includes the firmware that drives the various workload slices in the accelerators, and
the associated Intel® architecture Service libraries that expose these workloads via
APIs. The Service libraries use the Acceleration Driver Framework (ADF) to plug into
the OS and gain access to the hardware to communicate with the firmware. The
architecture for this subsystem is detailed in : Acceleration Drivers of this manual.

— Intel® QuickAssist Technology APIs

The Intel® QuickAssist Technology APIs provide service level interfaces for customer
applications or Ecosystem Middleware to access the accelerator(s) in the PCH. More
detail on the APIs and associated architecture is detailed in: “Acceleration Drivers” of
this manual.

— Acceleration Driver Framework (ADF)

The Acceleration Driver Framework (ADF) includes infrastructure libraries that
provide various services to the different software components of the acceleration
drivers. The software framework is used to provide the acceleration services API to
the application. A configuration file enables customization of system operation. See

Configuration File Overview for more information.

e Open Source Frameworks

This layer includes open source stacks, such as the Linux* Kernel Crypto framework, zlib,
and OpenSSL*. The software package works to integrate the Intel® QuickAssist
Technology APIs with these stacks using patch layers. These open source stacks are not
developed or provided by Intel®.

e Patch Layers

As described above, the PCH integrates with different OS stacks and Ecosystem
Middleware using patch layers (translation layers). These patch layers may be developed
by Intel® or ecosystem vendors.

e Customer Applications

Customer applications may connect to the Services directly via the Intel® QuickAssist
Technology API or may connect through the supported open source frameworks and
associated patches.

Such applications can migrate to the PCH with little or no change provided that the Intel®
QuickAssist Technology APIs are integrated with the OS stack or middleware used.

20 Programmer’s Guide

1]
Software Overview I n te I ®

3.2 Logical Instances

A logical instance may be thought of as a channel to the hardware. A logical instance allows an
address domain (that is, kernel space and individual user space processes) to configure the
rings to be used by that address domain and to define the behavior of that ring.

3.2.1 Response Processing

In the kernel space, each logical instance can be configured to operate in one of the two
modes:

e Interrupt mode

e Polled mode

In the user space, each logical instance can be configured to operate in one of the two modes:
¢ Polled mode

e Interrupt mode

3.2.1.1 Interrupt Mode
The interruptis supported in both Kernel and User space.

When configured in interrupt mode, the Accelerator Driver Framework (ADF) registers an
interrupt handler for response ring processing.

As the latency in servicing an interrupt may be costly, the hardware assisted ring provides a
mechanism to amortize the cost of an interrupt into a single interrupt that may service multiple
responses. The interrupt coalescing section of the configuration file allows the user to select
the mechanism to amortize response interrupts using either a time-based interrupt scheme or
anumber-of-responses-based scheme.

The ADF registers an interrupt handler to service the ring bank interrupt. When aninterrupt
fires, the ADF services the interrupt and creates an interrupt handler bottom half' to consume
the responses from the response ring. When MSI-X is supported, the bottom half of the
interrupt handler is created and affinitized to the configured core.

Configuration of this feature is available in the legacy variant of the configuration file only; see

Interrupt Coalescing Parameters for details. Callbacks to the application code occurin the

context of this tasklet. This sequence is shown in the following figure (the full sequence has
been reduced for clarity).

'Linux* (and other operating systems) split an interrupt handler into two halves. The so-called "top half" is the routine that
actually responds to the interrupt, that is, the one you register with request_irq. The "bottom half" is a routine that is
scheduled by the top half to be executed later, at a safer time.

Programmer’s Guide 21

s}
I n te I® Software Overview

Figure 5.

3.2.1.2

3.3

22

Kernel Space Response Ring Processing

Application Service Access Laver ADF Hardware
coalyQrEetom)

> Format hardware message;

dngButl

Signal request

“ -

Process request

Response Ring Interrupt [

> Schedule Tasklet
Ring processing isin a
Linux fagklef context I

> Retrieve message

Callback SAL

:> Interpret message
Callback Application

Polled Mode

If the cost of servicing an interrupt and scheduling the interrupt handler bottom half is not
desired, a user can choose to disable interrupts and poll for responses. This mechanism can be
configured on a per logical instance basis by setting the CyXIsPolled or DcXlIsPolled attribute

of alogical instance in the configuration file to 1. See Cryptographic Logical Instance
Parameters and Data Compression Logical Instance Parameters for more information. When

configured to 1, the ADF does not service interrupts for that logical instance.

The ADF provides a set of APIs to allow the client to poll a single bank or all banks on a given
accelerator:

e icp_sal_pollBank - Poll the rings on the given bank number for a given accelerator.

o icp_sal_pollAllIBanks - Poll the rings on all banks for a given accelerator.

The Service Access Layer (SAL) provides an API to poll on an individual logical instance:
e icp_sal_CyPollinstance - Poll a specific cryptographic (Cy) logical instance

¢ icp_sal_DcPollinstance - Poll a specific data compression (Dc) logical instance

See Polling Functions for details on all the polling functions.
Operating System Support

The software package supports the Linux*, FreeBSD* and Windows* operating systems.
Intel® QuickAssist Technology software requires that the following crypto modules be present

Programmer’s Guide

i)
Software Overview I n te I ®

3.4

3.5

on the system: sha256-generic.ko and sha512-generic.ko. The Acceleration driver is validated
with the Linux* operating system only. Details of the specific operating system versions
supported depend on the release version. See the Release Notes for your release version for
details on the specific operating system support provided in that release version.

OpenSSL* Library Inclusion and Usage

The Intel® Communications Chipset 8900 to 8920 Series Linux* package is distributed with
an OpenSSL* library file. This library file has certain dependencies that will be metin most
cases. In the event that these dependencies are not met, it may be necessary to build
OpenSSL* on the development platform and link any ProductNameShort applications to the
relevant OpenSSL* library.

Support for Multiple Acceleration Hardware Generations

Note: Not all Intel® QuickAssist Technology releases come with support for multiple acceleration
hardware generations.

Note: See Utility for | oading Configuration Files and Sending Events to the Driver - adf ctlfor
additional details.

Software Architecture

The acceleration drivers for Intel® Communications Chipset 8900 to 8920 Series and Intel®
Communications Chipset 8925 to 8955 Series devices are not compatible, however later
Intel® QuickAssist Technology software releases allow for both sets of drivers to be loaded on
the same target. Compatibility with the Intel® QuickAssist Technology APl is maintained via a
"mux" layer that provides the dynamic linking to the appropriate driver based on the particular
device.

Software Packaging

This package includes:
o QAT 1.5 tarball of Intel® Architecture (1A) driver
o QAT 1.6 tarball of IA driver

e gat_mux (included in the QAT 1.6 tarball), which exposes the Intel® QuickAssist Technology
APl inthe case where above drivers are installed. When only one of the above drivers is
installed, the Intel® QuickAssist Technology APl is exposed by the driver and the gat_mux is
notinstalled.

Different devices are supported by different Intel® QuickAssist Technology drivers; please see
the following table:

Device Driver
DH8900 - DH8920 QATI15

C2XXX QATI15
DH8925-DH8955 QAT16

Programmer’s Guide 23

I n te I ® Software Overview

24

In the Intel® QuickAssist Technology software package, the directory "QAT1.5" contains the
driver for the Intel® Communications Chipset 8900 to 8920 Series and Intel® Atom™
Processor C2000 Product Family for Communications Infrastructure devices, and the
directory "QAT1.6" contains the driver for the Intel® Communications Chipset 8925 to 8955
Series devices. The "mux" directory contains the software to build in support for all of the
above devices.

Build Installation Details

Some Intel® QuickAssist Technology releases can support multiple acceleration hardware
generations (e.g., both Intel® Communications Chipset 8900 to 8920 Series and Intel®
Communications Chipset 8925 to 8955 Series). By default, software releases with support for
multiple acceleration hardware generations will build or install according to the devices visible
on the platform. Forinstance:

e If one or more Intel® Communications Chipset 8900 to 8920 Series devices are visible on
the PCle* bus and no Intel® Communications Chipset 8925 to 8955 Series device is
present, the installer.sh will build with support for Intel® Communications Chipset 8900 to
8920 Series devices only.

o If one or more Intel® Communications Chipset 8925 to 8955 Series devices are visible on
the PCle* bus and no Intel® Communications Chipset 8900 to 8920 Series device is
present, the installer.sh will build with support for Intel® Communications Chipset 8925 to
8955 Series devices only.

¢ |f one ormore Intel® Communications Chipset 8925 to 8955 Series devices are visible on
the PCle* bus and one or more Intel® Communications Chipset 8900 to 8920 Series
devices are present, the installer.sh will build with support for both Intel® Communications
Chipset 8900 to 8920 Series devices and Intel® Communications Chipset 8925 to 8955
Series.

There are two primary usage models for building with support for multiple acceleration
hardware generations:

1. Concurrent usage of acceleration devices across multiple acceleration hardware
generations.

2. Deployment of a software release/image that supports multiple acceleration hardware
generations, without the expectation that a given platform will have more than one
acceleration hardware generation present.

To support multiple acceleration hardware generations, the icp_ga_al.ko kernel module is not
used. Instead, a "mux" kernel module (gat_mux.ko) and one or both of gat_1_5_mux.ko and
gat_1_6_mux.ko (depending on which hardware must be supported) are used. In addition, any

applications that make use of the acceleration software must link to different libraries. In
summary, the following table applies:

Case Kernel object(s) User Space object(s) Static Libraries
QAT 1.5 only build option icp_qa_al.ko libicp_qa_al_s.so libicp_qa_al.a
QAT 1.6 only build option icp_qa_al.ko libicp_qa_al_s.so libicp_qa_al.a
QATmux case qat_1_5_mux.ko libgat_1_5_mux_s.so libgat_1_5_mux.a
supporting multiple gat_1_6_mux.ko libgat_1_6_mux_s.so libgat_1_6_mux.a
acceleration hardware gat_mux.ko libgat_mux_s.so libgat_mux.a
generations

Programmer’s Guide

i)
Software Overview I n te I@

User space applications in a mux installation should link against libgat_mux_s.so or
libgat_mux.a; there's no need to link against the other build objects.

Programmer’s Guide 25

]
I n te ® Acceleration Drivers Overview

4

Acceleration Drivers Overview

4.1

26

The Intel® Communications Chipset 8900 to 8920 Series contains:

o Acceleration Drivers - These drivers are described in this chapter.

For each supported acceleration service (Cryptographic, Data Compression), the following
application usage models are supported:

¢ Kernel mode, where both the application and the service(s) are running in kernel space.

o Direct user space access to services running in user space. In this model, both the
application and service(s) are running in user space and access to the hardware is also
performed from user space. The kernel space driver is needed to perform the mapping for
user space access.

The Acceleration Drivers are supported on 64-bit and 32-bit kernels. 32-bit user space
applications are supported on 32-bit and 64-bit kernels.

For Linux*, the acceleration drivers are provided for both user and kernel space. A porting
gquide is available that provides guidance on porting the software to other Operating Systems
including RTOSs that do not distinguish between user and kernel space. Refer to the Intel®
QuickAssist Technology Acceleration Software OS Porting Guide for additional information.

Hardware Assisted Rings

Hardware assisted rings are used as the communication mechanism to transfer requests
between the CPU and the accelerator(s) on the chipset device and vice- versa. The hardware
supports 256 rings, each with head and tail Configuration Status Register (CSR) pointers that
are mapped to PCle* memory on the CPU. The rings may be configured as:

e Requestrings, where the CPU is a producer and the acceleratoris a consumer
e Responserings, where the accelerator is a producer and the CPU is a consumer
The CPU may be arranged as a producer or a consumer on a ring but cannot be both a

consumer and producer on the same ring, as shown in the following figure. This is to avoid
atomicity issues associated with multiple writers.

Note: Therings are configured and serviced by the provided kernel space driver for use by the
application either in kernel or user space.

Programmer’s Guide

Acceleration Drivers Overview

Figure 6.

Figure7.

intel

Intel® QuickAssist Accelerator Ring Access

Application

Intel” Quickassist Technaology APIs

o Service Access Layers
73!
= - :
Acceleration Driver Framework
'
) Y Head b3
Tail)
Pointer ™ = & Pointer | -“E
52 . 53
Head S @ Tail G 5
- Poifter ™ ™

Poifter ™ + f

Acceleration Hardware

Rings are grouped into ring banks with each ring bank containing 16 rings, and there are 8 ring
banks for each accelerator.

For eachring bank, hardware supports the generation of the interrupt when data is available for
processing on the response ring within the bank.

On each accelerator in the chipset device, there are eight independent ring banks. Each ring
bank has an associated ring interrupt. If the OS supports MSI-X interrupts, the response may
be directed to any core on system. This allows an even distribution of response processing
among the cores on the system. The configuration of bank interrupts and core affinity is

detailed in Affinity Parameters.

Depending on the chipset device model number, there are up to two accelerators on the
device. The following figure shows an overview of the rings, ring banks and accelerators fora
single chipset.

Ring Partitioning on the Chipset Device

MSI-X intelrrupt MSI-X inlelrrupt MSI-X inlelrrupt MS1-X inlelrrupt
ring0 ring15 ring0 ring15 ring0 ring15 ring0 ring15
Ring Bank 0 Ring Bank 7 Ring Bank 0 Ring Bank 7

‘ Intel® QuickAssist Accelerator 0 ‘ ‘ Intel® QuickAssist Accelerator 1 ‘

PCH Device

Programmer’s Guide 27

]
I n te " Acceleration Drivers Overview

4.2 Basic Software Context for Acceleration Drivers

The following figure depicts the basic OS-agnostic software model for the acceleration
drivers.

Figure 8. Basic Software Context

Application Clients

Intel® QuickAssist Technology API

Crvptolen CompressAcc

Intel® QuickAssist Accelerator

Firmware

The key elements of this model are as follows:
e The firmware encompasses software executing on the accelerator(s).

¢ Intel® architecture software entities that fall into two groups:
— Driverlevel entities - CryptoAcc, CompressAcc, and the Intel® QuickAssist
Technology API
— Application level entities - application clients

o Application-level software that runs on Intel® architecture.
— Application entities executing at an Intel® architecture level that make use of the
accelerators via the Intel® QuickAssist Technology APls.

4.3 Linux* Software Context for Acceleration Drivers

The following figure shows an example of the Linux* operating environment for the
Acceleration Driver Framework.

28 Programmer’s Guide

]
Acceleration Drivers Overview I n te ®

Figure 9.

Linux* Software Context

User Space
Application

Open Source API

(e-0. EVP API) User Space
_ o
Patch Layer
Open Source API - Intel” QuickAssist Technology APl = = = =

Crypto User Space
Library User Space

Kernel Space

Open Source API
(e-q. scattedist. OCF)

Patch Layer

= = = = Intel” QuickAssist Technology APl = = = =

Crypto Kernel Space
Driver

Crypto Accelerator

The Services support applications in kernel space as well as user space. User space access is
hardware direct access with mapping from kernel space driver. Catering for these access
options provides full flexibility in the use of the accelerator.

The driver architecture supports simultaneous operation of multiple applications using any
and all combinations of acceleration access options. However, some limitations apply. These
are called out clearly in following topics.

Note: The applications identified in the figure above are examples only and do not serve as a
statement of intent for enabling.

Note: Software packages for patches, such as OpenSSL*, Linux* Kernel Crypto Framework, and
NetKey and zlib are distributed separately. See Product Documentation. You will need an Intel®
Business Link (IBL) account and a subscription to the Electronic Design Kit (EDK).

4.4

Acceleration Drivers

The Acceleration Driver is divided into a number of functional components as shown in the
following figure. The figure shows the basic driver framework.

Programmer’s Guide 29

-]
I n te " Acceleration Drivers Overview

Figure10. Acceleration Driver Framework

4.4.1

4.4.2

30

Framework/Application

Intel® QuickAssist Technology APls—————

Config Mot

Ring Cirl

Service QAT
Init and Ctrl Init & Ctrl

Ring Access (Send and Receive)

Intel® QuickAssist Accelerator Driver |

Acceleration Engine Firmware

Framework Overview

An acceleration driver contains a number of logical units that are primarily exposed via the
Intel® QuickAssist Technology APIs. Eigure 10 depicts the main components of the driver.
These are:

e Service Access Layer (SAL)

Provides the main access to the acceleration services of the accelerator. Each service is
provided by a service entity in that layer. Though contained in a single logical layer, each
service is separate and distinct and as such services do not depend on each other.

o Acceleration Driver Framework (ADF)

An acceleration driver provides a supporting framework which contains services that the
SAL depends on and also provides the hardware level interactions for PCl in particular,
including PCl registration and interaction.

Service Access Layer

The Service Access Layer (SAL) is responsible for providing access to the individual
acceleration services contained in the accelerator. As shown in Eigure 10, the layer is made up
of the individual services as well as an Initialization and Control component.

This layeris largely OS-agnostic. In particular, the layer is designed in such a way as to allow it
to operate in kernel space as well as user space Linux* environments.

The primary responsibilities of this layer are as follows:

Programmer’s Guide

i
Acceleration Drivers Overview I n te ®

Register for notification of, query, observe and handle initialization/discovery/error events
from the ADF framework. The layer initializes and stops services based on the state of the
accelerator as indicated by ADF.

Initialize the service layers based on the settings in a configuration file.
Initialize and model the logical accelerator instances as configured in the configuration file.

Be aware of the execution context for the SAL, that is, whether operating as a driver in kernel
space or a library in user space and perform the necessary initializations required.

Process Intel® QuickAssist Technology API functions and pass them on as requests to the
firmware.

443 Acceleration Driver Framework

This topic outlines the services in the ADF that the SAL depends on. Services include:

Events: The SAL relies on the ADF for an event notification function with which the SAL
registers to get notified of key runtime events. It uses these events to trigger initialization
and shutdown operations in particular. The SAL also queries the ADF for the status.

Discovery: The ADF framework is responsible for all hardware level discovery and provides
notification to the ISAL when accelerator discovery events occur such as accelerator plug
and play events.

Download & Init: The ADF framework takes care of the download and starting of the
firmware. The ADF notifies the SAL that the firmware is downloaded and started.

Ring Control and Access: The ADF provides the mechanism by which the accelerator rings
are configured, including the enabling of interrupts on ring sets. In addition, the ADF
abstracts the communication mechanism with the accelerator.

Configuration: ADF provides access to the configuration text files used to configure an
acceleration driver. Some elements of the configuration file such as ring bank configuration
belong to the ADF itself, while other settings are owned by the SAL. The ADF provides the
mechanism by which the SAL gets access to the configuration settings.

OS Abstraction: The SAL layeris OS independent and makes use of the OSAL provided as
part of the ADF.

Note: \When operating in user space, the SAL should be considered to have the same dependencies
onthe ADF as it does in kernel space.

444 Acceleration Driver Configuration File

An acceleration driver has a configuration file that is used to configure the driver for runtime
operation. There is a single configuration file for each PCH device in the system. The
configuration file format is described in Acceleration Driver Configuration File. The older
legacy configuration file format (which is still supported) is described in Acceleration Driver

Configuration File - Earlier File Format.

Programmer’s Guide 31

intel

445

Tablel.

32

Acceleration Drivers Overview

Utility for Loading Configuration Files and Sending Events to the
Driver - adf_ctl

The adf _ctl userspace utility is separate to the driver and provides the mechanism for:

e Loading configuration file data to the kernel driver. The kernel space driver uses the data

and also provides the data to the user space driver.

e Sending events to the driver to bring devices up and down.

The adf ctl utilities provided in the QAT 1.5 package and earlier QAT 1.6 packages can only
be used to interface with the driver they are provided with.

The adf ctl provided with the QAT1.6 driverin the single package can be used to interface
with both drivers. It can bring up all devices supported by both drivers.

Usage

./adf_ctl [dev] [upldown|reset] - to bring up or down or reset device(s).

or

./adf_ctl status - to print device(s) status

Device Enumeration

Device enumeration varies within the driver code, in adf_ctl and on the API. This is best
illustrated with an example. The following table illustrates device enumeration on a platform
with three different device types, two DH895xccs, two DH89xxccs and one C2xxx.

Device Enumeration Example

Driver adf_ctlstatus ConfFile API
Name
Devices Types Inst_id Usedbyclient | Passedby
incall to mux to driver
icp_sal_poll incallto
Bank, etc. icp_sal_poll
Bank, etc
accelld hw_data. hw_data. accelldon | accel_dev.ac
dev_class.na | Instanceld API celldindriver
me
QATL6 icp_devO dh895xcc 0 dh895xcc_qga 0 0
_devO.conf
QATL6 icp_devl dh895xcc 1 dh895xcc_ga 1 1
_devl.conf
QATILS5 icp_dev2 dh89xxcc 0 dh89xxcc_ga 2 0
_devO.conf
QATLS icp_dev3 C2xxx 0 c2xxx_ga_de 3 1
vO.conf
QATLS icp_dev4 dh89xxcc 1 dh89xxcc_ga 4 2

Programmer’s Guide

1]
Acceleration Drivers Overview I n te ®

4.5

Driver adf_ctlstatus ConfFile API
Name
Devices Types Inst_id Usedbyclient | Passedby
incall to mux to driver
icp_sal_poll incallto
Bank, etc. icp_sal_poll
Bank, etc
accelld hw_data. hw_data. accelldon | accel_dev.ac
dev_class.na | Instanceld API celldindriver
me
_devl.conf

Examples of Manual Sequence for Starting the Driver

Note: Forthe fullinstallation, see the Intel® Communications Chipset 89xx Series Software for
Linux* Getting Started Guide.

Case where only DH895xcc devices are on the platform
1. Copyfirmwareto /lib/firmware/dh895xcc

2. Copy a configfile for each device to /etc
3. insmod ./QAT1.6/build/icp _ga al.ko
4. ./QAT1.6/build/adf ctl up

Case where DH895xcc and DH89xxcc devices are on the platform

1. Copy firmware for DH89xxccto /1ib/firmware and for DH895xccto /1lib/
firmware/dh895xcc

2. Copyaconfigfile foreach deviceto /etc

3. insmod ./QAT1.6/build/gat mux.ko

4. insmod ./QATI1. 5/build/qat:l_5_mux .ko
5

6

insmod ./QAT1.6/build/gat 1 6 mux.ko
./QAT1.6/build/adf ctl up

Acceleration Architecture in Kernel and User Space

The Intel® QuickAssist Accelerator software is architected to allow it to operate in either
kernel or user space using a "build time” decision. The overall architecture of the software
stackis shown in the following figure.

Programmer’s Guide 33

i
I n te ® Acceleration Drivers Overview

Figure 1.

4.5.]

4.5.1.1

34

Software Architecture for Kernel and User Space

User Space Application

Intel” QuickAszist Technology APls———

o | Service Access Layers |
w
> . -
= | Acceleration Driver Framework |
Request Response
User Space Ring - Ring
Kernel Space
Kernel Space Application
Intel” QuickAssist Technology APls
o ‘ Service Access Layers ” QAT Ctrl ‘
w
=
= ‘ Acceleration Driver Framework ‘

g % % e
' t

Acceleration Hardware

The Intel® QuickAssist Technology APl is OS agnostic and has the same function signaturesin
both kernel and user space. The SAL component is also OS agnostic and may be compiled as a
user space library or as a kernel space module. The SAL uses the OSAL forall OS services and
versions of OSAL have been implemented for Linux* user space and kernel space.

User Space Memory Allocation

For user space applications, two aspects of memory allocation need to be considered:
o Accelerator driver memory allocation

e Application payload memory allocation

Accelerator Driver Memory Allocation

At initialization, the accelerator driver allocates memory for use in communications with the
Intel® QuickAssist Accelerator hardware. This memory needs to be resident, DMA accessible
and needs a physical address to provide to the accelerator hardware.

Inkernel space, the SAL calls the OSAL memory routines to allocate this memory. Principally,
the function used by SAL is osalMemAllocContiguousNUMA. In the kernel, this OSAL routine
isimplemented with kmalloc_node. Memory allocated using kmalloc_node is guaranteed to
be contiguous, resident and the OSAL routine also exists to retrieve the associated physical
address.

Inuser space, itis a little more complex. The OSAL implementation of
osalMemAllocContiguousNUMA needs to return memory thatis resident and contiguous. To

Programmer’s Guide

i)
Acceleration Drivers Overview I n te ®

do this, the OSAL in kernel space creates a device, called icp_dev_memthat may be called
through an 10CTL function by the OSAL in user space to allocate memory. When called with
IOCTL DEV_MEM IOC MEMALLOC, the OSAL kernel mode driver returns the allocated memory.

For communications with the Intel® QuickAssist Accelerator device, the ADF needs access to
the rings. The hardware ring CSRs are mapped from kernel space MMIO space to the
application's user space by ADF. The DRAM memory for the hardware rings are also mapped
to the user space application. In user space, the ADF exposes a ring put and a ring get API to
the SAL to allow it to communicate with the Intel® QuickAssist Accelerator hardware.

The following figure shows the ring CSRs and allocation buffers that are required to be
mapped to user space.

Note: If your software has another mechanism for the allocation of contiguous memory, for example,
by reserving an area of memory from the OS, then replace the OSAL memory functions (see
$ICP/quickassist/utilities/osal/include/Osal.h fordetails) with your specific
implementation.

Figure12. User Space Memory Allocation at Initialization

4512

User Space Application

Intel® QuickAssist Technology APls

o ‘ Service Access Layers i
2

‘ Acceleration Driver Framework ‘ /

| Acceleration Hardware |

User Space

Kernel Space Ring C5Rs mapped Memory allocated
to user space and mapped }o user space

Memory allocated
by kernel OSAL

Acceleration Driver Framework

Application Payload Memory Allocation

When performing offload operations through the Intel® QuickAssist Technology AP, itis
required that the payload data be placed in a buffer that is resident, physically contiguous and
is DMA accessible from the acceleration hardware. It is the application's responsibility to
provide buffers with these constraints. A scheme similar to the OSAL implementation
mentioned above may be implemented by the user space application.

Buffers are passed to the Intel® QuickAssist Accelerator service access layer with virtual
addresses. However, the accelerator layers need to pass physical addresses to the hardware,
therefore a virtual-to-physical address translation is required. The Intel® QuickAssist
Technology APl allows an application to register a function that will do this virtual-to-physical
translation.

Programmer’s Guide 35

I n te 6 Acceleration Drivers Overview
3

4,5.2

36

See the Intel® QuickAssist Technology

cpaCySetAddressTranslation|Cryptographic APl Reference Manual for
details.

Cryptographic
service

See the Intel® QuickAssist Technology Data

Dat m ion .
ata Compressio cpaDcSetAddressTranslation|/Compression APl Reference Manual for

service

details.

When the SAL requires the physical address, it calls the registered function.

Note: This address translation functionis called at least once per request. Consequently, for optimal
performance, the implementation of this function should be optimized.

User Space Additional Functions

To allow a user space process access to the Intel® QuickAssist Accelerator rings, the service
access layer needs to be configured to expose logical instances to the user space process.
Logical instances are configured using the per device configuration file. See User Space

Configuration for an example.

To allow each process to have separate logical instances, the configuration file groups a set of
logical instances by name. The process then needs to call the icp_sal userStartMultiProcess
function (oricp_sal_userStart if the older configuration file format is used) at initialization time
with the name associated with the group of logical instances. Similarly, on process exit, to free
the resources and make them available to other processes with the same name, the process

needs to call the functionicp_sal userStop.

For example, in the sequence in the following figure, the user has configured the Service
Access Layer to have two crypto logical instances available for the process called "SSL". The
user space process may then access these logical instances by calling the cpaCyGetInstances
function. The application may then initiate a session with these logical instances and perform a
cryptographic operation. See the Intel® QuickAssist Technology Cryptographic API
Reference Manual for more information on the API functions available for use.

Programmer’s Guide

Acceleration Drivers Overview

Figure13. User Space Process with Two Logical Instances

4.5.3

intel

Application

isp.seluseriia'SSLY)

Senvice Access Layer

g I

Retum 2 logical instances

>

SRS sinnl)

Logical Instance

Select one

>

CySurlRitassian)

Logical Instance

1]

Select next

—

Setup the rings associated
with the logical instance "S5L"

]

Application may now submit
requests to the Logical Instances

j> Setup Logical Instances
-t

[KERNEL]
NumberCyInstances
NumberDcInstances

[SSL]
NumberCyInstances
NumberDcInstances
NumProcesses = 1

User Space Configuration

Crypto - User instance #0

CyOName = "SSLO"

Programmer’s Guide

The section of the configuration file that details user space configuration follows the
[KERNEL] section.

For example, in the sequence in Eigure 13, the user has configured the service access layer to
have two crypto logical instances available for the process called "SSL".

For this example, the logical instances section of the configuration file is as follows:

37

i
I n te I ® Acceleration Drivers Overview
R

454

4.5.4.1

38

CyO0IsPolled = 1
CyOAcceleratorNumber = 0,1
List of core affinities
CyOCoreAffinity = 0,1

Crypto - User instance #1

CylName = "SSL1"

CylIsPolled = 1

CylAcceleratorNumber = 2,3

List of core affinities CylCoreAffinity = 2,3

In this example, the user process SSL configures two logical instances (called “SSL0O" and
"SSL1"), each of which targets specific acceleration units, so that load balancing among the
four (assuming the top SKU) acceleration units is achieved.

User Space Response Processing

Asin the case of kernel space operation, there are two modes of response processing for user
space operation:

e Polled mode

e Interrupt mode

User Space Interrupt Mode

Note: Userspaceinterrupt mode is being removed from future Intel® QuickAssist Technology
releases. A new event-based user space notification mechanism will be added. Please discuss any
concerns with your Intel® representative.

Response ring processing in interrupt mode differs slightly from the kernel mode response
ring processing since the user space application needs to be signaled when a response is
placed on the response ring by the Intel® QuickAssist Accelerator hardware.

The ADF is responsible for managing this signaling path. Initially, user space ADF creates a
dispatcher thread thatis responsible for handling the notifications from the ADF in kernel
space. Upon creation, this thread blocks on reading a Linux character device until the
dispatcher thread has been signaled by the ADF in kernel space. For each user space response
ring that is subsequently created, ADF creates aring thread in user space for reading the
response ring.

Upon receiving a response, the ADF in kernel space shall post a signal to wake-up the blocked
dispatcher thread. The dispatcher thread notifies the relevant ring thread and the ADF will
read the contents of the ring in the context of this ring thread. The ADF calls back SAL and
SAL in turn calls back the application to signal the completion of the original request. This
sequence is depicted in the following figure.

Programmer’s Guide

i)
Acceleration Drivers Overview I n te ®

Figure14. User Space Response Processing for Interrupt Mode

User Space Application

Intel® QuickAssist Technology API
6. Callback
|

‘ Service Access Layers ‘

5. Callback
|

Acceleration Driver Framework

ADF
Dispatcher Thread
3.

User Space

Kernel Space 2. Signal ring activity
1

Acceleration Driver Framework

)

1. Interrupt

Acceleration Hardware

4542 User Space Polled Mode

The sequence for user space polling does not differ from that described in Polled Mode.

4.6 Managing Acceleration Devices Using gat_service

The gat_service script is installed with the software package in the /etc/init.d/ directory. The
script allows a user to start, stop, or query the status (up or down) of a single device orall
devices in the system.

Usage:
. /qat_service start| |stop| |status| |restart| |shutdown

To view all devices in the system, use:
./gat_service status

If there are two acceleration devices in the system for example, the output will be similar to the
following:
icp dev0 is up

icp _devl is up

For a system with multiple devices, you can start, stop or restart each individual device by
passing the device to be restarted or stopped as a parameter (icp_dev<N>). For example:

Programmer’s Guide 39

intel

4.7

40

Acceleration Drivers Overview

./gat_service stop icp dev0

where the device number <N>is equal to O in this case.

The shutdown qualifier enables the user to bring down all devices and unload driver modules
from the kernel. This contrasts with the stop qualifier which brings down one or more devices,
but does not unload kernel modules, so other devices can still run.

Intel® QuickAssist Technology Entries in the /proc

Filesystem

For kernel space instances, the following /proc filesystem entries are created to provide
information on the driver and APlIs, provided the related entry has been enabled in the driver’s

configuration file.

Jproc/icp_dh89xxcc_devX/
files, where Xis the device
number

Description of Information Contained in That File

.Jcfg_debug

Internal configuration table generated from:
[etc/dh89xxcc_qga_devX.conf
and from some internal data, e.g., firmware version.

Itis useful to check which user processes and instances have been
configured.

Jagat

Statistics for Intel® QuickAssist Technology (QAT), overall number of
requests/ responses per ME. FW is loaded on each ME, if ME O gets one
request, processes it and put it back on the ring, then the FW counters for
Request and Response will be incremented by 1for that ME. Example output
forone ME is:

| Firmware Requests[AE 0]: 1 |
| Firmware Responses[AE 0]: 1]
For QAT 1.5 and QAT 1.6, this also triggers the heartbeat query below.

.Jversion

Lists hardware, software and APl versions in use. Example output for
QATL6:

+ __
-——+

Hardware Version: A0 SKU2

Firmware Version: 2.2.0

MMP Version: 1.0.0

Driver Version: 2.2.0

Lowest Compatible Driver: 2.0
QuickAssist API CY Version: 1.8

Programmer’s Guide

]
Acceleration Drivers Overview I n te ®
R

Jproc/icp_dh89xxcc_devX/
files, where Xis the device L i . . .
number Description of Information Containedin That File

QuickAssist API DC Version: 1.3

'Lowest Compatible Driver' indicates the lowest QAT driver version that this
driveris compatible with in a virtualized system, where one driver is on the
Host and the otheris in a Guest.

Jey/IPSecY

./dc/IPCompY For cy and dc stats, see Section 4.7 and Section 5.2.2

Refers to EagleTail_Ring_Control, this conf file gives a summary on all
EagleTailRings in use inbank_Y, where Y is one of the banks configured for
use.

Example output:

cat
/proc/icp dh895xcc _dev0/et ring ctrl/bank 0/conf
——————— Bank 0 Configuration -------

Interrupt Coalescing Enabled Interrupt Coalescing
Counter = 10000

Interrupt mask: 01 01 01 010000O0O0O0O

User interrupt mask: 0000O0OO0OO0OO0OOOOOQO
000

Polling mask: 0 0 0 0 0 0 0 0O 0 O OO OOOO
Coalesc reg: 01 01 01 0100O0O0O0O0O0O0
Bank empty stat: 1 1 1 1111111111111
Bank nempty stat: 111111111111 111

Jet_ring_ctrl/bank_Y/conf

——————— Rings:

Ring Number: 0, Config: 80000006, Base Addr:
ff£f£880267e50000 Head: 0, Tail: 0, Space: 1000,
inflights: 0, Name: CyORingAsymTx

Ring Number: 2, Config: 8000000a, Base Addr:
ff£f£f88021ea60000 Head: 0, Tail: 0, Space: 10000,
inflights: 0, Name: CyORingSymTx

Ring Number: 4, Config: 8000000a, Base Addr:
ff££f88021e8a0000 Head: 0, Tail: 0, Space: 10000,
inflights: 0, Name: CyORingNrbgTx

Ring Number: 6, Config: 8000000a, Base Addr:
ff££f88021£f£d0000 Head: 0, Tail: 0, Space: 10000,
inflights: 0, Name: DcORingTx

Ring Number: 8, Config: 5405, Base Addr:
f£f££f880267e51000 Head: 0, Tail: 0, Space: 1000,
inflights: 0, Name: CyORingAsymRx

Ring Number: 10, Config: 5408, Base Addr:
f£££880220140000 Head: 0, Tail: 0, Space: 4000,
inflights: 0, Name: CyORingSymRx

Programmer’s Guide 41

]
I n te ® Acceleration Drivers Overview

Jproc/icp_dh89xxcc_devX/
files, where Xis the device

4.8

42

number Description of Information Containedin That File

Ring Number: 12, Config: 5408, Base Addr:
f£££8802200cc000 Head: 0, Tail: O, Space: 4000,
inflights: 0, Name: CyORingNrbgRx

Ring Number: 14, Config: 5408, Base Addr:
f£f££8802202b4000 Head: 0, Tail: 0, Space: 4000,
inflights: 0, Name: DcORingRx

Jet_ring_ctrl/bank_Y/
ring_Z

Gives information on each specific ring. For example ring_0 from the above
conf entry will give the data on that ring and accelerator number associated
with it in addition to the information given in the conf entry:

——————— Ring Configuration —-------
Service Name: CyORingAsymTx

Accelerator Number: 0, Bank Number: 0, Ring

Number : 0

Ring Config: 80000006 Tx, Base Address:
ff£f£f880267e50000, Head: 0, Tail: 0, Space: 1000
Message size: 64, Max messages: 64, Current
messages: 0

Ring Empty flag: 1, Ring Nearly Empty flag: 1
Ring Data

Memory Address: <Contents of memory address
(64bytes) >

Debug Feature

For user space applications, there are a number of Intel® QuickAssist Technology API
functions that enable a user to retrieve statistics for a service instance. These functions
include:

cpaCybhQueryStats64 - Query statistics (64-bit version) for Diffie-Hellman operations.
cpaCyDsaQueryStats64 - Query 64-bit statistics for a specific DSA instance.

cpaCyKeyGenQueryStats64 - Queries the Key and Mask generation statistics (64-bit
version) specific to an instance.

cpaCyPrimeQueryStats64 - Query prime number statistics specific to an instance.
cpaCyRsaQueryStats64 - Query statistics (64-bit version) for a specific RSA instance.

cpaCySymQueryStats64 - Query symmetric cryptographic statistics (64-bit version) for a
specific instance.

cpaCyEcQueryStats64 - Query statistics for a specific EC instance.
cpaCyEcdhQueryStats64 - Query statistics for a specific ECDH instance.
cpaCyEcdsaQueryStats64 - Query statistics for a specific ECDSA instance.

cpaCyDrbgQueryStats64 - Returns statistics specific to a session, orinstance, of the RBG
APL

Programmer’s Guide

Acceleration Drivers Overview I n te I ®
R

e cpaDcGetStats - Retrieves the current statistics for a compression.

See the Intel® QuickAssist Technology Cryptographic APl Reference Manual and the Intel®
QuickAssist Technology Data Compression APl Reference Manual for detailed information.

For kernel space instances, the same information can be obtained from the /proc file system if
the required statistics parameters are enabled in the configuration file, as the following
configuration file extract shows. See also Statistics Parameters for more details.

#Statistics, valid values: 1,0

statsGeneral = 1

statsDc = 1

statsDh = 1

statsDrbg = 1

statsDsa = 1

statsEcc = 1
statsKeyGen = 1
statsln = 1

statsPrime = 1

statsRsa 1
1

statsSym

For eachinstance, afile is created with a name that is the same as the instance name specified
in the configuration file. For example, if in the “User Process Instance Section” of the
configuration file, the IPSecO, IPSec], IPSec2 and IPSec3 names are used, the following
command gives the result:

1s -1 /proc/icp dh89xxcc dev0/cy total 0

T . 1 root root 0 Apr 18 13:48 IPSecO
T . 1 root root 0 Apr 18 13:48 IPSecl
T . 1 root root 0 Apr 18 13:48 IPSec2
T . 1 root root 0 Apr 18 13:48 IPSec3

The statistics can then be queried simply by running cat on the corresponding file in the /proc
file system. For example:
cat /proc/icp_dh89xxcc_dev0/cy/IPSec0

The output is similar to the following:

| Statistics for Instance IPSecO |

| Symmetric Stats |

| Sessions Initialized: 86 |
| Sessions Removed: 86 |

| Session Errors: 0 |
| Symmetric Requests: 960 |

| Symmetric Request Errors: 0 |

| Symmetric Completed: 960 |

Programmer’s Guide 43

]
I n te " Acceleration Drivers Overview

| Symmetric Completed Errors: 0 |

| Symmetric Verify Failures: 0 |

B et i it e e P e +
| DSA Stats |
o +
| DSA P Param Gen Requests-Succ: 0 |

| DSA P Param Gen Requests-Err: 0 |

| DSA P Param Gen Completed-Succ: 0 |

| DSA P Param Gen Completed-Err: 0 |
o +
| DSA G Param Gen Requests-Succ: 1 |

| DSA G Param Gen Requests-Err: 0 |

| DSA G Param Gen Completed-Succ: 1 |

| DSA G Param Gen Completed-Err: 0 |

R et ettt +
| DSA Y Param Gen Requests-Succ: 20 |

| DSA Y Param Gen Requests-Err: 0 |

| DSA Y Param Gen Completed-Succ: 20 |

| DSA Y Param Gen Completed-Err: 0 |

R et ettt +
| DSA R Sign Requests-Succ: 0 |

| DSA R Sign Request-Err: 0 |

| DSA R Sign Completed-Succ: 0 |

| DSA R Sign Completed-Err: 0 |

B ettt ettt +
| DSA S Sign Requests-Succ: 0 |

| DSA S Sign Request-Err: 0 |

| DSA S Sign Completed-Succ: 0 |

| DSA S Sign Completed-Err: 0 |

f-—— +

DSA RS Sign Requests-Succ: 20 |
DSA RS Sign Request-Err: 0 |

DSA RS Sign Completed-Succ: 20 |
DSA RS Sign Completed-Err: 0 |

| DSA Verify Requests-Succ: 20 |
| DSA Verify Request-Err: 0 |

| DSA Verify Completed-Succ: 20 |
|

|

DSA Verify Completed-Err: 0 |

DSA Verify Completed-Failure: 0 |
B ettt e e E e e e +
| RSA Stats |
B ettt T e D T e e e +

| RSA Key Gen Requests: 20 |
| RSA Key Gen Request Errors 0 |
| RSA Key Gen Completed: 20 |

44 Programmer’s Guide

Acceleration Drivers Overview

Encrypt
Encrypt
Encrypt
Encrypt

Decrypt
Decrypt
Decrypt
Decrypt

DH
DH
DH
DH

Phasel
Phasel
Phasel
Phasel

DH
DH
DH
DH

Phase?2
Phase?2
Phase?2
Phase?2

4.9

Completed Errors: 0 |

Requests: 0 |

Request Errors: 0 |
Completed: 0 |
Completed Errors: 0 |

Requests: 20 |

Request Errors: 0 |

20 |
Completed Errors: 0 |

Completed:

40 |
Request Err: 0 |
Completed: 40 |
Completed Err: 0 |

Requests:

40 |
Request Err: 0 |
Completed: 40 |
Completed Err: 0 |

Requests:

Requests: 0 |
Request Errors: 0 |
Completed 0 |
Complete Errors: 0 |

Requests: 0 |
Request Errors: 0 |
Completed 0 |
Complete Errors: 0 |

Heartbeat Feature and Recovery from Hardware Errors

The PCH can detect and report to the acceleration driver typically unrecoverable hardware
errors that the driver can recover from by resetting and restarting the device. Additionally, the
"Heartbeat" feature allows detection and recovery from software/firmware errors in the PCH.

The Acceleration driver can optionally reset the device in the event of an admin message
timeout or a heartbeat query failure. The timeout or heartbeat query failure indicates that the

Programmer’s Guide

45

i
I n te ® Acceleration Drivers Overview

4.9.1

4.9.1.1

46

firmware running on the Accelerator has become unresponsive. This can happen when an
application sends invalid data, for example, invalid source data, or an invalid output data
pointer.

Note: Recoveryon detection of a Heartbeat failure is not enabled by default. Automatic recovery can
be enabled by building the acceleration software with a compile-time flag. The ICP_HEARTBEAT
compile-time flag enables this functionality. When the driver is not built with this flag, the acceleration
software writes a message to the system (/var/log/messages), reporting that the device is not
responding and the device will need to be restarted by the user.

The firmware, if healthy, responds with request/response counters for each accelerator engine
on the device. If the firmware is not responsive, a timeout occurs. When such a condition is
detected, the driver notifies applications by calling a notification callback for each instance that
is registered for notification callback. The event type in this case is
CPA_INSTANCE_EVENT_RESTARTING. Then, the device is restarted and all resources
allocated to the device, except instance handles, are freed. After restart, all resources are
reallocated and the driver notifies applications by calling a notification callback for every
instance. The event type in this case is CPA_INSTANCE_EVENT_RESTARTED. Thereafter,
the application can use all instances and no further initialization is required. When an
application tries to use any instance that uses a restarting device, a new return code
CPA_STATUS_RESTARTING is returned. If there is more than one PCH device in the system,
and one device is restarted, applications can still use instances on other devices.

How to Call the Heartbeat Query

The Heartbeat query is not kicked off by the driver, it must be initiated by the user. It can be
initiated using any of the following methods:

e Watch on cat/proc/icp../qatx

o Periodically call heartbeat APIs (see User Application Heartbeat APIs (not Enabled by
Default)).

It will report “QAT is not responding” message in the case that the firmware threads hangs.
The device will need to be reset to recover from this error. By default, the device does not
automatically reset. It can be manually reset using adf _ctl <deviceId> reset.

User Proc Entry Read (not Enabled by Default)

The user can periodically perform a read of the /proc entry as specified by any one of the
following methods:

Note: The examples below are for one device on one accelerator. The user should apply the desired
method to each device and accelerator of interest.

e Manually from command line using the command:
cat /proc/icp_dh89xxcc_dev0/gat0

e From awatch process running in background:
watch -n0.1 cat /proc/icp_ dh89xxcc _dev0/gat0 > /dev/null

e From simple script running in the background:

Programmer’s Guide

1]
Acceleration Drivers Overview I n te ®

#!/bin/bash

while

do

cat /proc/icp dh89xxcc_dev0/gat0 > /dev/null
sleep 1

done

For example, to send an admin message to device 2, the user issues the following command:
cat /proc/icp dh89xxcc dev2/gat0

| Firmware Requests[AE 0]: 5 |

| Firmware Responses[AE 0]: 5 |

| Firmware Requests[AE 1]: 4 |

| Firmware Responses[AE 1]: 4 |

| Firmware Requests[AE 2]: 3 |

| Firmware Responses[AE 2]: 3 |

| Firmware Requests[AE 3]: 0 |

| Firmware Responses[AE 3]: 0 |

If the device is unresponsive and if the acceleration software is built to automatically reset the
device on failure, the following message is displayed:
ERROR: QAT is not responding and it will be restarted

If the device is unresponsive and if the acceleration software is built to not automatically reset
the device on failure, the following message is displayed:
ERROR: QAT is not responding. Please restart the device

4912 User Application Heartbeat APIs (not Enabled by Default)

These functions have the following signatures:
CpaStatus icp_sal check device (Cpa32U accelId);

CpaStatus icp sal check all devices(void);

Seeicp_sal _check device andicp_sal_check_all_devices for details on the functions and
parameters.

Programmer’s Guide 47

I n te 6 Acceleration Drivers Overview
3

492 Handling Heartbeat Failures

The driver must be compiled with ICP_HEARTBEAT defined to do recovery sequence on
detecting a heartbeat failure.

A typical heartbeat error use-case is as follows:
1. Thedriverisloaded, initialized and started.

2. Theuser-space application registers for instance notifications by calling
cpaCylnstanceSetNotificationCb and cpaDclnstanceSetNotificationCb

3. Theapplication detects that the firmware is unresponsive using the heartbeat feature (see
Heartbeat Feature and Recovery from Hardware Errors.

4. Thekernel-space driver sends the Restarting event to user-space processes.

5. The user-space processes-

e Passtherestarting event on to the application instances registered.

e Free memory andrings associated with all the instances.

6. Thekernel-space driver
e Triggers the device reset (save state, initiate SBR, restore state).

e Oncetheresetis complete, sends the Restarted event to user-space processes.

7. Theuser-space processes
e Setup eachinstance associated with the process, including allocating memory and rings
e Passtherestarted event on to the application instances registered.

Note: If built with ICP_WITHOUT_THREAD then the user-space processes will not automatically
get the Restarting and Restarted events. See Thread-less Mode.

In a driver built without ICP_HEARTBEAT, there is no automatic recovery on device failure
detection. The driver should be reset using adf_ctl reset or the icp_reset_device() API.

493 AER and Uncorrectable Errors

Two other errors can be detected that need to be recovered by resetting the device.

e Uncorrectable errors feature . Errors detected by the QAT device generate an interrupt
handled by the driver. Errors will be seenin the log.

e Advanced Error Reporting feature . PCIEAER. If kernel detects an error caused by the driver
errors will be seen in the log and the kernel can trigger a device reset.

On detecting either of these errors, the device will be automatically reset by the driver.

494 Handling Device Failures in a Virtualized Environment
The heartbeat feature in the acceleration software can be used in a virtualized environment.

Refer to the Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist
Technology Application Note for more details on enabling SR-IOV and the creation of Virtual

48 Programmer’s Guide

i
Acceleration Drivers Overview I n te ®

Functions (VFs) from a single Intel® QuickAssist Technology acceleration device to support
acceleration for multiple Virtual Machines (VMs).

Note: The Physical Function (PF) driver used here refers to the Intel® QuickAssist Technology PF
driver. The Virtual Function (VF) driver used here refers to the Intel® QuickAssist Technology VF

driver.

The following sequence describe a possible use case for using the heartbeat featureina
virtualized environment.

1.

2.
3.

8.
9.

The PF driveris loaded, initialized and started.
The VF driveris loaded, initialized and started in the Guest OS in the VM.

The PF driver detects that the firmware is unresponsive (using either of the following

methods: User Proc Entry Read (not Enabled by Default)) or User Application Heartbeat
APIs (not Enabled by Default) .

The PF driver sends the "Restarting” event message to the VF via the internal PF- to-VF
communication messaging mechanism.

The VF driver sends the "Restarting" event to the application's registered callback (the
callback is registered using the cpaDclnstanceSetNotificationCb() or
cpaCylnstanceSetNotificationCb() Intel® QuickAssist Technology API function) in the
Guest OS.

e The application's callback function may perform any application-level cleanup.

The return from the application’s callback triggers the VF driver to send an ACK message
back to the PF driver. At this time:

e The application may perform a complete shutdown.

e The user may force a graceful shutdown of the Guest OS in the VM.

The PF driver receives the ACK message from the VF driver (a timeout mechanism is
used to handle any unexpected condition).

The PF driver starts the reset sequence (save state, initiate reset, and restore state).

The user restarts the Guest OS and loads the VF driver and application in the Guest OS.

Note: If the heartbeat feature in the acceleration software is not enabled, the PF driver will not notify
the VF driver that the firmware is unresponsive.

Note: If built with ICP_WITHOUT_THREAD then the user-space processes will not automatically
get the Restarting and Restarted events. See Thread-less Mode.

Note: The error detection mechanisms are not available on the VF driverin the VM, but device errors
caused by any of the software running on the VM will be detected by the PF driver using the above
mechanisms.

495 GbE Watchdog Service

The GbE Watchdog Service (gige_watchdog_service) is provided to properly reset and restart
the GbE interfaces on an Intel® Communications Chipset 8900 to 8920 Series (PCH) device
on detecting a reset of the device by the Heartbeat functionality in the Acceleration driver. The

Programmer’s Guide 49

I n te 6 Acceleration Drivers Overview
3

Note:

4.9.6

Table 2.

Note:

50

user of these GbE interfaces on the PCH device may get an intermittent network disconnect
and reconnect as the GbE interfaces are reset and restarted by this service. This service is
automatically enabled and started when the Acceleration software is installed with the
installation script.

e The GbE Watchdog Service is included in the Acceleration software, but it can be
considered a separate service. That is to say, itis not integrated into the driver.

e This GbE Watchdog Service does not affect other GbE interfaces available on the system
that are not on the PCH device.

o If the GbE interfaces on the PCH device are not used, the GbE Watchdog Service must be
disabled and the GbE driver (igb) must not be loaded/installed on the system.

o Ifthe GbE interfaces are not used and the GbE driver is loaded/installed when the Heartbeat
feature resets the PCH device, the system may become unstable and unresponsive.

Special Considerations When Using the Heartbeat Feature and the
GbE Watchdog Service

When using the Heartbeat functionality in the acceleration software with the GbE Watchdog
Service, special considerations may need to be considered in specific use cases. The following
table shows the recommended action(s) when using the Heartbeat feature with/without GbEs
on the PCH and with/without external GbEs from Intel® in the system.

Heartbeat/GbE Watchdog Service Scenarios

Heartbeat | GbEsonPCH | External Intel® Recommended Action(s)

Enabled? Enabled GbEs Enabled
No Yes No Disable GbE Watchdog Service
Yes Yes No Enable GbE Watchdog Service
No No No Perform blacklistigb and disable GbE Watchdog Service
Yes No No Perform blacklistigb and disable GbE Watchdog Service
Yes No Yes Either:

Turn off all GbEs on the PCH (ifdown) OR

Modify the igb driver to remove the PCl device ID of GbEs
on the PCH and recompile the igb driver

AND disable the GbE Watchdog Service

Yes Yes Yes Enable GbE Watchdog Service
No Yes Yes Disable GbE Watchdog Service
No No Yes Disable GbE Watchdog Service

Programmer’s Guide

Acceleration Drivers Overview I n te I ®
R

e "Heartbeat Enabled"” with "Yes" means that the acceleration software has the Heartbeat
feature enabled (that is, the acceleration software is built with the ICP_HEARTBEAT
compile-time flag).

e "Heartbeat Enabled"” with "No" means that the acceleration software has the Heartbeat
feature disabled (that is, the default case where the acceleration software is built without
the ICP_HEARTBEAT compile-time flag).

e "GbEs on PCH Enabled” with "Yes" means that the igb driver for the GbEs on the PCH is
loaded/installed and the interfaces are up (ifup). This igb driver may also support other
external Intel® GbEs.

e "GbEs on PCH Enabled"” with "No" means that the igb driver for the GbEs on the PCH is not
loaded/installed and the interfaces are down (ifdown). This igb driver may also support
other external Intel® GbEs.

e "External Intel® GbEs Enabled" with "Yes" means that the igb driver for the external Intel®
GbEs is loaded/installed and the interfaces are up (ifup). This igb driver may also support
the GbEs on the PCH.

o "External Intel® GbEs Enabled” with "No" means that the igb driver for the external Intel®
GbEs is not loaded/installed and the interfaces are down (ifdown). This igb driver may also
support the GbEs on the PCH.

4.10 Driver Threading Model

By default, when an application uses the acceleration driver in user space, the driver creates
threads internally.

When the application callsthe icp_sal userStart () or
icp sal userStartMultiProcess () function, the driver creates the following threads:

e Monitor Thread

There is only one instance of this thread per system. It loops infinitely and checks if new
devices become active in the system that the user proxy layer can start using. If it finds
such a device, it spawns a listener thread for that device and continues.

= Listener Thread

There is one listener thread per active device in the system. A listener thread calls a
blocking read function on the /dev/icp_dev<N>_csr file, which blocks until there are device
events, suchas EVENT_INIT, EVENT_START, EVENT_STOP, EVENT_SHUTDOWN,
EVENT_RESTARTING or EVENT_RESTARTED that need to be delivered to user space.
If the thread gets an event, it sends it to all user space subsystems (ADF, SAL) and calls
the blocking read again in a loop. In the case of a shutdown event, the thread delivers the
event and finishes.

* Ring Thread

Ring threads are only created for IRQ-driven service instances in user space. If all
instances are polled, no ring thread is created. For each IRQ driver response (Rx) ring
created in user space, there is one worker thread. User callbacks are called in the context
of this worker thread. Additionally, one dispatcher thread (per device) is created when the

Programmer’s Guide 51

i)
I n te " Acceleration Drivers Overview
R

4.10.1

4.11

4.11.1

Table 3.

52

first Rx ring is allocated (and exits when the last Rx ring is freed). This thread waits for IRQs
that are delivered by the kernel space driver and dispatches jobs to worker threads.

Thread-less Mode

The user sets an environment variable:
setenv ICP WITHOUT THREAD = 1

When the driver is built with this flag set, no threads are created by the User Space driver.

In this mode, no IRQ-driven instances are allowed and no events from kernel driver are
propagated to user space automatically (with the exception of the first EVENT INIT and
EVENT START events).

There are two new API functions that can be used in this mode:

= CpaStatus icp_sal find new devices (void) - Performsa function similarto the
monitor thread, that is, checks if there are new devices in the system.

* CpaStatus icp_sal poll device events (void) - Performsafunction similarto the
listener thread, that is, polls for events.

Itis the user's responsibility to use these functions to monitor the state of devices and receive
device-related events.

Compression Status Codes

The CpaDcRqgResults structure should be checked for compression status codes in the
CpaDcReqStatus data field. The mapping of the error codes to the enumsiisincluded in the
quickassist/include/dc/cpa_dc.hfile.

Intel® QuickAssist Technology Compression API Errors

The two traditional Intel® QuickAssist Technology Compression APIs, cpaDcCompressData
() and cpaDcDecompressData (), that send requests to the compression hardware can
return the error codes shown in the following table.

Intel® QuickAssist Technology Compression API Errors

Error Code Error Type Description Suggested Corrective
Action(s)

0 CPA_DC_OK No error detected by compression |None.
hardware.

-1 CPA_DC_INVALID_BLOC Invalid block type (type = 3); invalid |Discard output; resubmit
K_TYPE input stream detected for affected request orabort
decompression; for dynamic session.

compression, corrupted
intermediate data

Programmer’s Guide

Acceleration Drivers Overview

intel

Error Code

Error Type

Description

Suggested Corrective
Action(s)

-2

CPA_DC_BAD_STORED_
BLOCK_LEN

Stored block length did not match
one's complement; invalid input
stream detected

Discard output; resubmit
affected request or abort
session.

CPA_DC_TOO_MANY_CO
DES

Too many length or distance codes;
invalid input stream detected; for
dynamic compression, corrupted
intermediate data

Discard output; resubmit
affected request or abort
session.

CPA_DC_INCOMPLETE_C
ODE_LENS

Code length codes incomplete;
invalid input stream detected; for
dynamic compression, corrupted
intermediate data

Discard output; resubmit
affected request or abort
session.

CPA_DC_REPEATED_LENS

Repeated lengths with no first
length; invalid input stream
detected; for dynamic
compression, corrupted
intermediate data

Discard output; resubmit
affected request or abort
session.

CPA_DC_MORE_REPEAT

Repeat more than specified
lengths; invalid input stream
detected; for dynamic
compression, corrupted
intermediate data

Discard output; resubmit
affected request or abort
session.

CPA_DC_BAD_LITLEN_C
ODES

Invalid literal/length code lengths;
invalid input stream detected; for
dynamic compression, corrupted
intermediate data

Discard output; resubmit
affected request or abort
session.

CPA_DC_BAD_DIST_CO
DES

Invalid distance code lengths;
invalid input stream detected; for
dynamic compression, corrupted
intermediate data

Discard output; resubmit
affected request or abort
session.

-9

CPA_DC_INVALID_CODE

Invalid literal/length or distance
code in fixed or dynamic block;
invalid input stream detected; for
dynamic compression, corrupted
intermediate data

Discard output; resubmit
affected request or abort
session.

CPA_DC_INVALID_DIST

Distance is too far back in fixed or
dynamic block; invalid input stream
detected; for dynamic
compression, corrupted
intermediate data

Discard output; resubmit
affected request or abort
session.

CPA_DC_OVERFLOW

Overflow detected. Thisis notan
error, but an exception. Overflow is
supported and can be handled.

Continue with the
session as normal.

CPA_DC_SOFTERR

Other non-fatal detected.

Discard output; resubmit
affected request orabort
session.

CPA_DC_FATALERR

Fatal error detected.

Discard output; restart
orreset session.

Programmer’s Guide

53

i)
I n te " Acceleration Drivers Overview
R

412

4,121

Figure 15.

54

Except for the errors, CPA_DC_OK, CPA DC_OVERFLOW, and CPA_DC_FATALERR, the rest of
the error codes can be considered as invalid input stream errors.

Stateful Compression - Dealing with Error Code
CPA_DC_BAD_LITLEN_CODES (-7)

Prior to software release version 1.2, the driver was unable to deal with the
CPA_DC_BAD_LITLEN_CODES (-7) error code being returned from the acceleration
software. A software workaround has been implemented to overcome this hardware
deficiency.

Error-7 occurs when running a stateful decompression. Stateful decompression uses some
history that is stored in the internal memory of the data compression hardware.

For some hardware specific reasons, this internal memory is corrupted when the acceleration
software tries to deal with certain packet headers. The header is incorrectly decoded,
computed data in the internal memory is incorrect, and the error (-7) is generated.

To overcome this issue, a workaround has been implemented that searches for the faulty
header in the source data packet that the acceleration software is trying to decompress. When
the headeris found, the acceleration software computes and loads the data that should have
been in the internal memory. With this internal memory loaded with the correct data, a call to
the cpaDcDecompressData () function is required to finish decompressing the rest of the
packet.

Example of a Stream that Triggers Error Code (-7)
The following figure shows an example of a stream comprising four headers and their
corresponding payloads. Let us assume that Header 2 produces error code (-7) and that the

user cuts the stream in the middle of Payload 2 and Payload 4 to form three packets.

Stream of Compressed Data Split into Three Packets

Error-7

\

Header 1 ‘ Payload 1 ‘ Header 2 ‘ Payload 2 ‘ Header 3 | Payload 3 Header 4 | Payload 4 |

Packet 1 Packet 2 Packet 3

As a result of the software workaround included in Release 1.2 and later, the data is processed
up to the beginning of Header 2. When the acceleration software encounters Header 2, "error
code (-7)" is hidden from the user and the software workaround processes the header and
updates datain internal hardware memory.

Programmer’s Guide

]
Acceleration Drivers Overview I n te @

Figure16. Accelerator Software Consumes Data up to End of Header 2 where Error Code (-7) is

Figure17.

4.12.2

Figure 18.

Normally Generated

Error -7

Packet 1

a1

GpaDeRoBesults.cansumed will
include in the count all daia up to
the end of Header 2

However, the software workaround is unable to decompress the rest of the packet, and
therefore it is the user's responsibility to call the cpaDcDecompressData () function again on
the remaining data.

The most efficient approachis to check the CpaDcRgResults. consumed field returned by the
cpaDcDecompressData () function and see if all the data in the source buffer have been
consumed. If not, Intel® recommends including the unprocessed data in the next packet as
shown in the following figure.

Unprocessed Data Appended to Next Packet

Error -7

Header 4 | Payload 4 |

Packet 2

Header 1 Payload 1 Header 2 J Payload 2 | Header 3 | Payload 3
E Packet 3
I
R

Unprocessed data of Packet 1
needs to be appended to Packet 2

Special Case when a Packet Cuts a Header in the Stream

The following figure shows a packet cut in the middle of a header that triggers error code (-7).
The cpaDcDecompressData () function returns no error, but as in the example described in

Example of a Stream that Triggers Error Code (-7), not all the packet data is consumed.

Therefore, the user must compare the consumed data with the original packet size.

Packet Cut in the Middle of a Header

Error -7

v
Header 4 | Payload 4

Header 1 Payload 1 Header 2] Payload 2 1 Header 3 | Payload 3

|
Packet 2 | Packet 3

-
L

CraDeRaResults.~ansumad will
Include in the count all the data up

|
|
|
to the end of Payload 3. !

By doing so, the user will determine that the truncated header has not been consumed and
consumed data includes up to the end of payload 3. Next, the user must prepend the
unprocessed data of packet 2 to packet 3 and submit the request. By doing so, this includes all
the data necessary for the workaround to operate correctly. The following figure shows the
new format of packet 3.

Programmer’s Guide 55

i)
I n te % Acceleration Drivers Overview

Figure19. Packet Cutinthe Middle of a Header

4.12.3

4124

56

Header 1 Payload 1 Header 2 Payload 2 Header 3 Payload 3

Headem‘ Payload 4 I

| Packet 3
! >

| Packet 3 now includes header 4 for
| the workaround to operate correctly
i

Pseudo Code for Handling Error Code -7

The following pseudo code shows how to handle error code -7 generated during stateful
decompression.

BEGIN

Buffer offset = 0

DO

Read stream and store data starting from Buffer offset

Packet size = 0

For all the buffers in SGL source buffer list

Packet size = Packet size + current buffer data length in bytes Next
buffer
Remaining bytes to decompress = Packet size Call

cpaDcDecompressData () API function
IF CpaDcRgResults.status # OK THEN Return Error
ENDIF

Remaining bytes to decompress = Remaining bytes to decompress -
CpaDcRgResults.consumed

Buffer offset = Remaining bytes to decompress

IF Remaining bytes to decompress > 0 THEN

Find buffer index and buffer offset in SGL of last consumed data byte
Prepend unprocessed data (From last process data to the end of the
last buffer) to SGL source buffer list.

ENDIF
LOOP until end of stream
END

Unprocessed Data During Stateful Decompression Operations

When running stateful decompression operations, the user may observe in some cases that
not all of the data is consumed by the slice, but the cpaDcDecompressbData () APl returns
CPA_STATUS_SUCCESS. This can occur in two cases:

o A packet with an odd number of bytes: The slice was designed to operate on packets size
with multiples of 2 bytes. At the APl level, the user s free to allocate the buffer size that they

Programmer’s Guide

Acceleration Drivers Overview

intel

want, but if the user submits 17 bytes to be inflated, the cpaDcDecompressbData () API
reports 16 bytes consumed. The user must then take the unprocessed byte and prepend it to
the next packet. If the user omits this step, the compression history will be broken and the
slice returns an error on the next request.

e A packet contains anincomplete header: This use case occurs when running dynamic
stateful decompression. If the packet to be processed has anincomplete header, the slice
cannot process the Huffman trees. In this case, the slice reports consumed data up to the
beginning of the incomplete header. The following figure shows the use case. Header 2 is

incomplete and the slice consumes data up to the beginning of Header 2.

Figure 20. Unprocessed Data for Incomplete Header

4.13

414

Note:

Note: No context is saved and no State registers are saved.

Header 1
+ Trees

Payload 1

Header 2
+ Trees

Payload 2

Packet to be processed by the slice

CpalDcRaResults.cansumed will include in the count

all the data processed up to the end of Payload 1.

>

When doing stateful decompression, the user must always check the number of bytes
consumed even if the status parameter of the CpaDcRqResults structure returns

CPA_STATUS_SUCCESS.

Stateful Compression Level Details

Throughput and compression ratio for stateful compression can be adjusted with the
compression levels to achieve particular requirements. The following table shows the mapping
of the compression levels to the history window, search depth, and context size.

The State registers are also saved.

Compression Level History Windows* Search Depth Context Size
1 32kB 1 48kB
2 8kB 4 48kB
3 8kB 8 48kB
4-9 8kB 16 48 kB

Stateless Compression Level Details

Throughput and compression ratio for stateless compression can be adjusted with the
compression levels to achieve particular requirements. The following table shows the mapping
of the compression levels to the history window, search depth, and context size.

Programmer’s Guide

57

intel

415

4.15.1

4.15.2

58

Acceleration Drivers Overview

Compression Level History Windows* Search Depth Context Size (Kbyte)
1 32kB 1 0
2 8kB 4 0
3 8kB 0
4-9 8kB 16 0

Acceleration Driver Error Scenarios

This section describes the behavior of the Acceleration Driver in various error scenarios.

User Space Process Crash

Error Scenario

A user space process crashes without cleanly stopping the user space
acceleration driverin the process.

Background

The kernel acceleration driver keeps track of all rings created by each process
on adevice. From the user space acceleration driver, rings are created on a
deviceviaioctl callsonicp dev<N> ring.Thekernelacceleration driver
maintains a list of rings per pid, per device.

In a similar way, the kernel acceleration driver keeps track of all internal memory
allocation. Physically contiguous memory chunks are allocated from the user
space acceleration drivervia ioctl callsonicp dev_mem. The kernel driver
keeps track of all memory allocated per pid.

These files are opened at initialization when an application calls

icp sal userStart() andareclosedwhen anapplication calls

icp _sal userStop () orclosed by the operating system when the applicatio
is killed/crashed.

>

Sequence of Events

1. Theuserspace process crashes.

2. The OS calls arelease handlerin the kernel acceleration driver, with the pid
of the crashed process, for each opened /dev/icp_dev_* file.

3. Thekernelacceleration driver frees any allocated resources
(rings/memory) associated with the crashed process.

a. Formemory allocations, the kernel acceleration driver frees all the
memory buffersin the list.

a. Forrings, the kernel acceleration driver creates a new list and starts an
"orphan” thread (if itis not running at the given time) and passes the
list of rings associated with the process to the orphan thread. The
orphan thread then loops and waits for all the in-flight requests to
come back, then it frees the rings.

Side Effects

None

Hardware Hang Detected by Heartbeat

Error Scenario

Acceleration hardware hangs, for example, due to a bad DMA address passed
to the driver and hardware. A device reset is required to recover from the hang.
The hangis detected by a "heartbeat” poll that triggers a reset of the
acceleration device. The reset happens if an only if the Heartbeat feature is
enabled using the compile-time option.

Programmer’s Guide

i)
Acceleration Drivers Overview I n te ®
R

Sequence of Events 1. Applications register for instance notifications by calling

cpaCyInstanceSetNotificationCb () and
cpaDcInstanceSetNotificationCb () .

2. Applications must periodically issue a "heartbeat” poll via either an API call
toeithericp sal check device() oricp sal check all devices() or
by reading afile in the /proc file system.

3. Foreach heartbeat poll, the kernel acceleration driver sends
SYNC/GET messages to the acceleration hardware and waits for
responses. If the driver times out waiting for responses, the driver
triggers areset of the acceleration device.

4. Beforeresetting the device, the kernel acceleration driver notifies the user
space acceleration drivers that the device is about to be reset.

5. Once notified that a device is about to be reset, the user space acceleration
driver:

a. SendsaCPA_INSTANCE_EVENT_RESTARTING event to
registered applications.

a. Frees memoryandrings associated with all the instances.

6. Aftertheresetis complete, the kernel acceleration driver notifies the user
space acceleration driver that the resetis complete.
7. Once notified that a device resetis complete:

a. Setupeachinstance associated with the process. This includes
allocating memory and rings for each instance.

8. SendaCPA_INSTANCE_EVENT_RESTARTED eventto registered
applications.

Side Effects On a device reset, the PCH Gigabit Ethernet devices are also reset. The GigE
drivers can recover from this reset by running a Gigk watchdog process. This
watchdog will be notified by the acceleration driver before areset and the
watchdog will shut down the network interfaces of each effected GigE. The
kernel space acceleration driver then saves the state of each GigE. Following
the reset, the kernel acceleration driver restores the GigE state and notifies the
watchdog process which then brings the network interfaces back up. See

Heartbeat Feature and Recovery from Hardware Errors for further details.

415.3 Hardware Error Detected by AER

Error Scenario Acceleration hardware detects an un-correctable error. A device resetis
needed to recover from the error.

Sequence of Events 1. Acceleration hardware detects an un-correctable error. It notifies the
kernel acceleration driver via an error interrupt.

2. If,and only if the Heartbeat feature is enabled by the ICP_HEARTBEAT
compile-time option, the kernel acceleration driver resets the acceleration
device upon receipt of the interrupt. The reset sequence follows the same

flow as steps 4 to 7 in Hardware Hang Detected by Heartbeat .
Side Effects Same as Hardware Hang Detected by Heartbeat.

415.4 Virtualization: User Space Process Crash (in Guest OS)

Error Scenario A user space process running in a guest OS within a Virtual Machine (VM)
crashes. Itis assumed that the user space process is using an Intel® QuickAssist
Technology Virtual Function (VF) that has been assigned to the VM.

Programmer’s Guide 59

intel

4.15.5

4.15.6

4.15.7

60

Acceleration Drivers Overview

Sequence of Events

Within the VM, the sequence of events is the same as for the non-virtualization

error scenario, see User Space Process Crash . There is no involvement from
the Intel® QuickAssist Technology Physical Function (PF) driver in this
scenario.

Side Effects

None

Virtualization: Guest OS Kernel Crash

Error Scenario

A Virtual Machine (VM) crashes in an uncontrolled manner, for example, due to
akernel crash within the guest OS running in the VM.

Background

Ina controlled VM shutdown, the Intel® QuickAssist Technology Virtual
Function (VF) driver running in the VM the VF from the shutdown VM.

The Intel® QuickAssist Technology PF driver keeps track of the ring resources
used by each VF.

Sequence of Events

1. TheVMcrashes.

2. Thehost OS/VMM detects the VM crash and un-assigns the VF from the
crashed VM.

Virtualization: Hardware Hang Detected by Heartbeat

Error Scenario

The acceleration hardware hangs as a result of processing a bad request issued
from a Virtual Machine (VM), for example, due to a bad address passed to the
acceleration hardware. A full device reset is required to recover from the error.

Sequence of Events

1. The acceleration hardware hang is detected via the heartbeat mechanism
running in the host OS/VMM with the Intel® QuickAssist Technology
Physical Function (PF) driver.

2. The sequence of events within the host OS is the same as for the non-
virtualization scenario. See Hardware Hang Detected by Heartbeat .

3. Each VF acceleration driveris informed that the device is restarting, and so
starts its reset sequence. This will result in the same events being notified
to services on the VMs as on the Host.

Side Effects

All VMs that are assigned VFs from the same silicon device are affected.

Virtualization: Hardware Hang Detected by AER

Error Scenario

The acceleration hardware detects an un-correctable error. A device reset is
needed to recover from the error.

Sequence of Events

1. Theresetsequenceisthe same as for the non-virtualization scenario. See
Hardware Error Detected by AER.

2. Each VF acceleration driverisinformed that the device is restarting, and so
starts its reset sequence. This will result in the same events being notified
to services on the VMs as on the Host.

Side Effects

All VMs that are assigned VFs from the same silicon device are affected.

Programmer’s Guide

i)
Acceleration Drivers Overview I n te ®
R

416 Build Flag Summary

The following tables summarize the options available when building the software. The
following table shows the build flags that must be specified.

Table4. Required Build Flags

Symbol Description Default Reference

LCP_ROOT Set to the directory where User defined

acceleration software is extracted.
This may be /QAT or
/QAT/QAT1.5, depending on how
the driver was compiled.

TCP_BUILDSYSTEM PATH Igetto the build system folder User defined

located under the quickassist
folder
($1CP_ROOT/quickassist/
buildﬁsystem)

ICP_BUILD_OUTPUT Set to directory that executable/ |User defined

libraries are placed in
($ICP_ROOT/ build)

LCP_ENV_DIR Set to the directory that contains |User defined

the environmental build files
($1CP_ROOT/quickassist/
build_ system/build files/
env_files)

LCP_TOOLS_TARGET Settoaccelcomp for DH89xxcc |User defined

platforms

The following table shows the build flags that can be optionally specified.

Table5. Optional Build Flags

Symbol Description Default Reference

DISABLE_PARAM CHECK\ypen defined, parameter checking in Not defined

the top-level APlIs is performed. This can
be set to optimize performance.

DISABLE STATS

When defined, disables statistics. Not defined,
Disabling statistics can improve therefore
performance. statistics are
enabled.
DRBG_POLL_AND_WAIT \\njhapy defined, modifies the behavior of |Enabled DRBG Health Testand
cpaCyDrbgSessionInit andthe cpaCyDrbgSessionlnit
DRBG HT functions to poll for responses Implementation Detail

internally rather than depending on an
external polling thread.

Programmer’s Guide 61

intel

62

Acceleration Drivers Overview

Symbol Description Default Reference
1CP_LOG_SYSLOG When defined, enables debug messages |Not defined
to be output to the system log file
instead of standard out for user space
applications.
LCP_WITHOUT_THREAD \\nhen defined, no user space threads are |Not defined |Thread-less Mode
created when a user space application
invokesicp sal userStart or
icp_sal userStartMultiProce ss.
1CP_HEARTBEAT When defined, enables automatic device Heartbeat Feature and
to reset on failures detected by the Recovery from
heartbeat mechanism. Hardware Errors
TCP_NONBLOCKING_PAR\\hen defined, resultsin partial Notdefined |Defined when
TIALS PERFORM . . " .
- operations not being blocked. compiling the driver
using the
installer.sh
installation script.
1CP_SRIOV Indicates whether SRIOV should be Not defined
enabled in the driver.
ICP_TRACE Used to enable tracing capability for Not defined
debug purposes. Once the acceleration
driveris compiled with this option, all the
Cryptography and Data Compression
APIs will expose their parameters to the
console for user space applications OR
to /var/log/ messagesinkernel
space.
LAC_HW_PRECOMPUTES |\\jhen defined, enables hardware for Not defined, [See limitations below
HMAC precomputes. therefore the [table.
driveruses
software
(dependency
on OpenSSL*
and Linux*
Crypto API.

max mr

Used to set the number of Miller Rabin
rounds for prime operations. Setting this
to a smaller value reduces the memory
usage required by the driver.

50

WITH CPA MUX

When defined, the driver will be built for
the mux environment, i.e., cpa_mux. ko
will be built and will expose the Intel®
QuickAssist Technology API. The
drivers will not export symbols but will
instead register with the cpa_mux.

Depends on
devices found
onthe
platform. Not
defined if
devices found
can be
supported by a
single driver.

Programmer’s Guide

1]
Acceleration Drivers Overview I n te ®

Symbol Description Default Reference

Defined
otherwise, e.g.,
if both
DH89xxcc and
DH895xcc
devices are
found.

iE(P)ENUMiPAGE S_PER M defined, the memory driver will allocate|Not defined See Compiling

a128K memory to be the memory Slab; Acceleration Software
otherwise, it will allocate 2M memory. on OlderKernels
For kernel versions older than 2.6.32, this
variable should be set.

ICP_DISABLE_INLINE When defined, function inlining for Not defined

functions that cannot be inlined by the
compileris removed to enable
compilation of the driver for kernels build
without
CONFIG_ARCH_SUPPORTS_OPTIMIZ
ED_INLINING

Note: The limitations of pre-computes are as follows:
e Hardware pre-computes are not supported with the Data Plane APl in kernel space for both
HMAC and AES-ECB pre-computes.

e Hardware pre-computes are not supported with the “traditional” APl when using polled
instances for kernel space.

e Forkernel versions 2.6.18 or less, neither hardware not software pre-computes can be used
in polled mode or with the Data Plane API, so the driver cannot support any HMAC
(gathashmode 1) or GCM/CCM operation with the Data Plane API with kernel mode.

4.17 Running Applications as Non-Root User

This section describes the steps required to run Intel® QuickAssist Technology user- space
applications as non-root user. This section uses the user space performance sample code as an
example.

Assumptions:
o Intel® QuickAssist Technology software is installed and running

e Userspace Acceleration Sample code (cpa_sample_code) compiled and the directory has
read/write/execution permission for all the users

¢ Kernel space memory driver (qaeMemDrv.ko) compiled and installed

The following steps should be executed by users with root privilege or root user.

1. Exportenvironmental variables.
export ICP ROOT=/QAT

2. Create aLinux* group to provide access for all users in that group.

Programmer’s Guide 63

I n te I ® Acceleration Drivers Overview
R

groupadd <group name>
3. Addusersto the new group. The group should only have users who need access to the
application.
usermod -G <group_ name> <user name to add>
4. Change group ownership of the following files. By default, the group ownership will be
root.
-~ /dev/icp_dev_processes
- /dev/icp_dev<N>_ring
- /dev/icp_dev<N>_csr
- /dev/icp_adf_ctl
- /dev/icp_dev_mem
- /dev/icp_dev_mem_page
cd /dev/

chgrp <group name> icp dev processes icp dev* ring icp dev* csr
icp dev _mem page icp dev mem icp adf ctl

chmod 660 icp dev processes icp dev* ring icp dev* csr
icp dev mem page icp dev mem icp adf ctl

5. Change the File permission for the following configuration files to 644.
chmod 644 /etc/dh89?xcc ga dev?.conf
6. Change the group ownership for the Intel® QuickAssist Technology user space driver
(libicp_ga_al_s.s0).
For 64-bit OS:
cd /1ib64
chgrp <group name> libicp ga al s.so

For 32-bit OS:
cd /1lib
chgrp <group name> libicp ga al s.so

7. Change the group ownership for memory driver.
cd /dev
chgrp <group name> gae mem

chmod 660 gae mem

8. Atthis point, switch to username that is included in <group_name>.
su <user name that is included in group name>
9. Launch the performance sample code.

cd
$ICP_ROOT/quickassist/lookaside/access layer/src/sample code/build/

./cpa_sample code signOfLife=1
Note: If the user does not have access to the directory, modify group ownership of the ICP_ROOT
directory.

chgrp -R <group name> SICP_ROOT

Or copy the sample code application to a directory can be accessed by the user.

64 Programmer’s Guide

1]
Acceleration Drivers Overview I n te ®

4.18

4.19

cp
$ICP ROOT/quickassist/lookaside/access layer/src/sample code/build/
cpa_sample code /home/tester

The same basic steps can be followed to enable non-root access for customer applications
accessing the acceleration software. Every time the acceleration software is restarted, step 4
must be completed. Every time the memory driver is started, step 7 must be completed.

Compiling Acceleration Software on Older Kernels

With the current release of the Acceleration software, changes have been added to provide
limited support for older kernel versions. These changes allow the driver to compile on kernels
as old as the 2.6.18 kernel. They were added to assist customers who are using older kernel
versions.

This section describes the steps required in order to compile the acceleration software and
describes the limitations of the implementation.

e Installing

Define the following environmental variables before compiling the driver. If using the
installer.sh script, these can be added to the SetENV() function. If compiling the driver
manually, define these variables along with ICP_ROOT, ICP_ENV_DIR, etc.

- LAC_HW_PRECOMPUTES=1

- ICP_NUM_PAGES_PER_ALLOC=1

Once these are defined, compile and install the driver.
e Testing

Once the driveris installed, performance sample code signOfLife tests can be executed.
Please refer to the Intel® Communications Chipset 8900 to 8920 Series Software for
Linux* Getting Started Guide for details.

e Limitations

— Olderkernels do not support kmalloc of more than 128K. Due to this limitation,
compression tests within the performance sample code may not execute.

— Running the performance sample code without the signOfLife=1option may fail.

— Ensure LAC_HW_PRECOMPUTES is defined if your application uses algorithm
chaining from kernel space. The acceleration driver by default makes use of software
based hashing for algorithm chaining and this functionality was not available in older
kernels. Setting the LAC_HW_PRECOMPUTES allows the driver to use hardware
acceleration.

Compiling with Debug Symbols

To compile the driver with debug symbols (for easier debug or for performance profiling),
build/rebuild the driver after making the following changes:

1. In$ICP_ROOT/quickassist/build system/build files/0S/ linux_2.6.mk, add
the -g flag to the user space CFLAGS, as shown:
ifeqg ($($(PROG_ACY) OS LEVEL), user_ space)

Programmer’s Guide 65

intel

4.20

66

CFLAGS+=-fPIC $ (DEBUGFLAGS) -g

Acceleration Drivers Overview

-Wall -Wpointer-arith $ (INCLUDES)

2. In$ICP_ROOT/quickassist/build system/build files/common.mk, setthe
optimization level to O, as shown:

#Set default optimization level

$ (PROG_ACY) OPT LEVEL?=0
EXTRA_CFLAGS+=-0$ ($ (PROG_ACY) OPT_LEVEL)

Acceleration Driver Return Codes

The following table shows the return codes used by various components of the acceleration

driver.

Return Type

Return Code

Description

CPA_STATUS_SUCCESS

0]

Requested operation was successful.

CPA_STATUS_FAIL

General or unspecified error occurred. Refer to the
console log user space application or

to /var/log/messages in kernel space for more details of
the failure.

CPA_STATUS_RETRY

Recoverable error occurred. Refer to relevant sections
of the API for specifics on what the suggested course
of action.

CPA_STATUS_RESOURCE

Required resource is unavailable. The resource that has
been requested is unavailable. Refer to relevant
sections of the API for specifics on what the suggested
course of action.

CPA_STATUS_INVALID_PARA
M

Invalid parameter has been passed in.

CPA_STATUS_FATAL

-5

Fatal error has occurred. A serious error has occurred.
Recommended course of actionis to shut down and
restart the component.

CPA_STATUS_UNSUPPORTED

The function is not supported, at least not with the
specific parameters supplied. This may be because a
particular capability is not supported by the current
implementation.

CPA_STATUS_RESTARTING

The APlimplementation is restarting. This may be
reported if, for example, a hardware implementation is
undergoing areset.

Programmer’s Guide

i
Acceleration Drivers Overview I n te ®

The following table shows the return codes used by the driver to handle Linux* device driver

operations.

Return Type Return Code Description

SUCCESS 0 Operation was successful.

FAIL 1 General error occurred. Refer to the console log user space
application or to /var/log/ messages in kernel space for more details
of the failure.

-EPERM -1 Operation is not permitted. Used during ioctl operations.

-EIO -5 Input/Output error occurred. Used when copying configuration data
to and from user space.

-EBADF -9 Bad File Number. Used when an invalid file descriptor is detected.

-EAGAIN -1 Try Again. Used when a recoverable operation occurred.

-ENOMEM -12 Out of Memory. Memory resource that has been requested is not
available.

-EACCES -13 Permission Denied. Used when the operation failed to connecttoa
process or open adevice.

-EFAULT -14 Bad Address. Used when an operation detects invalid parameter
data.

-ENODEV -19 No Such Device. Used when an operation detects invalid device id.

-ENOTTY -25 Invalid Command Type. Used when anioctl operation detects an
invalid command type.

Programmer’s Guide 67

=
I n te o Acceleration Driver Configuration File

5 Acceleration Driver Configuration File

This chapter describes the configuration file(s) managed by the Acceleration Driver
Framework (ADF) that allow customization of runtime operation. This configuration file(s)
must be tuned to meet the performance needs of the target application.

Note: The software package includes a default configuration file against which optimal performance
has been validated. Consider performance implications as well as the configuration details provided in
this section if your system requires modifications to the default configuration file.

5.1 Configuration File Overview

There is a single configuration file for each Intel® Communications Chipset 8900 to 8920
Series (PCH) device. A client application can load balance between two accelerators if
present. Each accelerator has eight independent ring banks - the communication mechanism
between the Acceleration software and the hardware. Each ring bank has an interrupt that can
be directed to a specific Intel® architecture core.

Each ring bank has 16 rings (hardware assisted queues). This hierarchy is shown in the
following figure.

Figure 21. Ring Banks

Intel® Communications Chipset 89xx Series

(Accelerator 0) (Accelerator 1 J

Admin Rings (2) . Admin Rings (2) .
Data Path Rings {14) Data Path Rings (16) Data Path Rings (14) Data Path Rings (16)

Ring Ring Ring Ring Ring Ring Ring Ring
Bank 0 Banlk 2 Bank 3 Banlk 7 Bank 0 Banlk 2 Bank 3 Bank 7
II
Il
1L
I |

Second accelerator depending on the device model number.

Note: Depending onthe model number, a PCH device may also contain no accelerators.

The configuration file is split into a number of different sections: a General section and one or
more Logical Instance sections.

e General - includes parameters that allow the user to specify:
— Which services are enabled?

68 Programmer’s Guide

Acceleration Driver Configuration File I n te I o

— Theconfiguration file format.

— Firmware location configuration.

— Concurrent request default configuration.

— Interrupt coalescing configuration (optional).
— Statistics gathering configuration.

Additional details are included in General Section.

Note: The concurrent request parameters include both transmit (Tx) and receive (Rx) requests. For
example, if a concurrent request parameter is set to 64, this implies 32 requests for Tx and 32 for Rx.

¢ Logical Instances - one or more sections that include parameters that allow the user to set:
— Thenumber of cryptography or data compression instances being managed.
— Foreachinstance, the name of the instance, the accelerator number, whether polling
is enabled or not and the core to which an instance is affinitized.

Additional details are included in Logical Instances Section.

A sample configuration file, targeted at a high-end IPsec box, is included in Sample

Configuration File (V2).

5.2 General Section
The general section of the configuration file contains general parameters and statistics
parameters.

5.21 General Parameters

The following table describes the parameters that can be included in the General section:

Table 6. General Parameters

Parameter Description Default Range

ConfigVersion Used to signify the simpler 2 Integer
configuration file format. If this
parameter is present, the configuration
fileisin a new format that requires fewer
parameter definitions.

If this parameter is not present, this
implies this is V1 configuration file. V1
configuration files are 100% compatible
with this software release.

ServicesEnabled Defines the service(s) available cyO;cyl;dc [cyX, dc
(cryptographic [cyX], data compression Note: X canbe O or 1
[deD. which identifies one of

two available
cryptographic engines.
Note: Multiple values
permitted, use ; as the
delimiter.

Programmer’s Guide 69

intel

Acceleration Driver Configuration File

ests

compression concurrent requests for
data compression instances in general.

Note: This parameter value can be

overridden for a particular data
compression instance if necessary.

Parameter Description Default Range
cyHmacAuthMode Determines when HMAC precomputes 1 -HMAC
are done. precomputes are done
during session
initialization
-HMAC
precomputes are done
during the perform
operation
Note: In general,
with this parameter set to
1, performance is
expected to be better.
dcTotalSRAMAvailable |Each PCH device has a total of 512 KB of 0 0to 524288
eSRAM. The eSRAM can be used by the
Data Compression service only. This
parameter tells the driver how much of
this memory to use for the Data
Compression service. A value of O
means, do not use any eSRAM for the
Data Compression service; 524288
means use all the eSRAM for the Data
Compression service. If an odd value is
specified, internally the driver rounds
the value down to the nearest even
value, for example, if a value of 262145 is
specified, the driver rounds the value
down to 262144.
Firmware_MofPath Name of the Microcode Object File mof_firmw |mof_firmware.bin
(MOF) firmware. are.bin
Firmware_MmpPath Name of the Modular Math Processor mmp_firm |mmp_firmware.bin
(MMP) firmware. ware. bin
CyNumConcurrentSymR |Specifies the number of cryptographic 512 64,128,256, 512,
equests concurrent symmetric requests for 1024, 2048 or
cryptographicinstances in general. '
yptographici ing 4096
Note: This parameter value can be
overridden for a particular
cryptographic instance if necessary.
CyNumConcurrentAsym |Specifies the number of cryptographic 64 64,128,256, 512,
Req uests concurrent asymmetric requests for 1024. 2048 or
t hicinstancesi I '
cryptographic instances in genera 2096
Note: This parameter value can be
overridden for a particular
cryptographic instance if necessary.
DcNumConcurrentRequ |Specifies the number of data 512 64,128,256, 512,

1024,2048 or
4096

70

Programmer’s Guide

Acceleration Driver Configuration File

intel

version 2 configuration file, this
parameter indicates the first bank on
which to allocate instances for the
Physical Function (PF). For example,
when PF_bundle_offset =5, instances in
the PF are allocated starting from bank
5, therefore the first five banks (O to 4)
per PCH device are free and available to
be assigned to Virtual Machines (VMs).

Note: This param should be commented
outin the .conf file if the PF will not use
any instances.

Note: This parameter should not be
used if the version 1configuration file is
used.

Note: Banks O and 8 are used for
administration messages and therefore
cannot be used for services, either PF or
VF.

Parameter Description Default Range
InterruptCoalescingEnab |Specifies if interrupt coalescing is 1 Oorl
led enabled for ring banks.
Note: This parameteris
optional.
InterruptCoalescingTime [Specifies the coalescing time, in 10000 |500t01048575
rN's nanoseconds (ns) for ring banks.
Note: This parameteris |Note: If a value outside the range is set,
optional. the default value is used.
InterruptCoalescingNum |Specifies the number of responses that |0 (disable) |0 to 248
Re sponses need to arrive from hardware before the
Note: This parameter is interruptis triggered. It can be used to
optional. maximize throughput or adjust
throughput latency ratio.
ProcDebug Debug feature. When set to 1enables 0 (disable)|0or1
additional entries in the / proc file
system.
drbgPollAndWaitTimeM |An optional parameter that specifies the 10 1to0 20
S polling interval (in milliseconds) used
when DRBG_POLL_AND_WAIT is
defined. Refer to DRBG Health Testand
Detail.
SRIOV_Enabled Enables or disables Single Root 0 Oorl
Complex 1/O Virtualization. If enabled (disabled)
(setto1), SRIOV and VT-d must be
enabled in the BIOS. If disabled (set to
0), then SRIOV and VT-d must be
disabled in the BIOS.
PF_bundle_offset When using virtualization and the 1 1to7

Note: "Default” denotes the value in the configuration file when shipped.

Note: The concurrent request parameters include both transmit (Tx) and receive (Rx) requests. For
example, if a concurrent request parameter is set to 64, this implies 32 requests for Txand 32 for Rx.

Programmer’s Guide

71

intel

522

72

Acceleration Driver Configuration File

Statistics Parameters

The following table shows the parameters in the configuration file, prefixed with stats, that can
be used to enable or disable certain types of statistics.

Note: Thereisaperformance impact when statistics are enabled. In particular, the 1A cost of offload
is expected to increase when statistics are enabled.

Table7.

When the statistics are enabled, the collected data can be retrieved using the following
methods:

Calling the appropriate Intel® QuickAssist Technology API function. For example,
cpaCySymQueryStats or cpaCySymQueryStats64 for symmetric cryptography. See the
Intel® QuickAssist Technology Cryptographic API Reference Manual for more information
about these functions.

Forkernel space instances, looking at entries inthe /proc/dh89xxcc_devX directory,
where Xis the device number. Forexample, /proc/ icp dh89xxcc_dev0/cy/IPSecO for
all statistics related to cryptography instance IPSecO, where IPSecO is the name given to
the instance in the config file (CyOName ="IPSec0"). See Debug Feature for more
information.

Statistics Parameters

Parameter Description Default Range
statsGeneral Enables/disables statistics in general. 1 lorO
statsDc Enables/disables statistics for data 1 lorO
compression.

statsDh Enables/disables statistics for the Diffie- 1 lorO
Hellman algorithm.

statsDrbg Enables/disables statistics for the 1 lor0O
Deterministic Random Bit Generator
(DRBG).

statsDsa Enables/disables statistics for the Digital 1 lorO
Signature Algorithm (DSA).

statsEcc Enables/disables statistics for Elliptic 1 lorO
Curve Cryptography (ECC).

statsKeyGen Enables/disables statistics for the Key 1 lor0O
Generation algorithm.

statsLn Enables/disables statistics for the Large 1 lorO
Number generator.

statsPrime Enables/disables statistics for the Prime 1 lorO
Number detector.

statsRsa Enables/disables statistics for the RSA 1 lorO
algorithm.

statsSym Enables/disables statistics for symmetric 1 lorO
ciphers.

Programmer’s Guide

O
Acceleration Driver Configuration File I n te o

Parameter Description Default Range

Note: "Default” denotes the value in the configuration file when shipped. A value of Tindicates "enabled”; a
value of O indicates "disabled".

5.2.3 Optimized Firmware for Wireless Applications

When using the simplified configuration file format (indicated by the existence of the
ConfigVersion parameter), if the NumProcesses parameterin the [WIRELESS] section of
the configuration file is greater than O, a version of the firmware optimized for small
cryptography packets is automatically selected. In this case, each cryptography process
consumes six rings as in the "standard" firmware case. The range for the NumProcesses
parameter in the [WIRELESS] section is constrained in the same way as that described in
Maximum Number of Process Calculations, except that only cryptography instances (no
data compression instances) are supported by the optimized firmware.

The optimized firmware operates with the following constraints and characteristics:

SGL and Flat buffers are supported.

The maximum supported Source/Destination payload size is 2K (where payload is either a
flat buffer with a size up to 2K or the total number of bytes in flat buffers specified in SGL
descriptors.

Only rings 0-31and rings 128-159 are use, that is, the first two banks in the lower and upper
clusters (sets of banks), where a bank has 16 rings.

Thereis no support for the runtime (resent) Init AEand Init Ringinfo messages (these
messages must be sent once in the start-up phase per AE).

Cipher Only and Auth Only (ModeO/Model/Mode2) processing is supported.

TRNG (INIT/GET ENTROPY)/Compression/Asymmetric (PKE) services are not
supported.

Admin service is not supported.

Chained (Cipher-Auth/Auth-Cipher/GCM/CCM) operation is not supported.
Partial Cipher Only or Partial Auth Only requests are not supported.

Nested Auth operation is not supported.

Key generation services, such as TLS/SSL/MGF are not supported.

Wireless image does not support virtualized environments.

Request ordering is always enabled.

53 Logical Instances Section

This section allows the configuration of logical instances in each address domain (kernel space

and individual user space processes). See Hardware Assisted Rings and Logical Instances on

for more information.

The address domains are in the following format:

Programmer’s Guide 73

O
I n te o Acceleration Driver Configuration File

5.3.1

5.3.1.1

74

Note:

e Forthekernel address domain: [KERNEL]

e Foruser process address domains: [xxxxx], where xxxxx may be any ASClIl value that
uniquely identifies the user mode process.

To allow a driver to correctly configure the logical instances associated with a user process, the
process must call the function icp_sal_userStartMultiProcess, passing the xxxxx string during
process initialization. When the user space process is finished, it must call the function

icp_sal_userStop to free resources. See User Space Access Configuration Functions for more

information.

¢ The NumProcesses parameter (in the User Process section) indicates the max number of
user space processes within that section name with access to instances on this device. See
icp_sal_userStartMultiProcess Usage for more information.

The items that can be configured for a logical instance are:
e The name of the logical instance
e The accelerator associated with this logical instance

e The core to which the instance is affinitized (optional)

[KERNEL] Section

In the [KERNEL] section of the configuration file, information about the number and type of
kernelinstances can be defined.

The following table describes the parameters that determine the number of kernel instances
foreach service.

The maximum number of cryptographic instances supported is 32.

Parameter Description Default Range

NumberCylnstances |[Specifies the number of cryptographic 2 0to 32
instances.

Note: Depends on the number of
allocations to other services.

NumberDclnstances |Specifies the number of data 1 Oto64
compression instances.

Note: Depends on the number of
allocations to other services.

Note: "Default” denotes the value in the configuration file when shipped.

Cryptographic Logical Instance Parameters

The following table shows the parameters that can be set for cryptographic logical instances.

Programmer’s Guide

Acceleration Driver Configuration File

Table 8.

Cryptographic Logical Instance Parameters

intel

Programmer’s Guide

Parameter Description Default Range

CyXName Specifies the name of cryptographic [IPSecO String (max. 64
instance number X. characters)

CyXAcceleratorNumber Specifies the accelerator number that |O 0,1,20r3
the cryptographic instance number X
is assigned to.

CyXlsPolled Specifies if cryptographic instance Oforkernel |Forinstance,in
number X works in pollmode or IRQ [space the kernel space:
mode. instances for IRQ

1foruser for pollmode
space Fori .
instances orinstance, in
the user space:
forIRQ
for pollmode

CyXNumConcurrentSymRequest |Specifies the number of in-progress |[N/A 64,128,256,

s (optional) cryptographic concurrent symmetric 512 1024 2048
requests (and responses) for

L or4096
cryptographic instance number X.
Note: Overrides the default
CyNumConcurrentSymRequests
value in the General section for this
specific instance.

Note: In the configuration file, this
parameter must be specified before
the CyXCoreAffinity parameter. |If
itis not, the default value specified in
CyNumConcurrentSymRequests in
the General section is used.

CyXNumConcurrentAsymReques|Specifies the number of concurrent |N/A 64,128,256,

ts (optional) asymmetric requests for 512 1024. 2048
cryptographic instance number X.

yprograph or 4096
Note: Overrides the default
CyNumConcurrentAsymRequests
value in the General section for this
specific instance.

Note: In the configuration file, this
parameter must be specified before
the CyXCoreAffinity parameter. If
itis not, the default value specified in
CyNumConcurrentAsymRequests in
the General section is used.

CyXCoreAffinity Specifies the core to which the Varies 0O to max.
instance should be affinitized. depending |number of cores

onthevalue |inthe system
of X.

Note: "Default” denotes the value in the configuration file when shipped.

75

I n te I o Acceleration Driver Configuration File

5.3.1.2 Data Compression Logical Instance Parameters

The following table shows the parameters in the configuration file that can be set for data
compression logical instances.

Note: The maximum number of data compression instances supported is 126.

Parameter Description Default Range

DcXName Specifies the name of data compression [IPCompO |String (max. 64
instance number X. characters)

DcXAcceleratorNumber Specifies the accelerator number that 0 Oorl
the data compression instance number X
is assigned to.

DcXlsPolled Specifies if data compressioninstance |0 for Forinstance in the
number X works in poll mode or IRQ kernel kernel space:
mode. space for IRQ

instances

for poll mode
1foruser Forinst i th
space orins anc.eln e
instances |USerspace:

forIRQ

for pollmode

DcXNumConcurrentRequests|Specifies the number of data N/A 64,128,256, 512,

(optional) compression concurrent requests. 1024. 2048 or 4096
Overrides the default
DcNumConcurrentRequests valuein
the General section for this specific
instance.

Note: In the configuration file, this
parameter must be specified before the
DcXCoreAffinity parameter.|fitis
not, the default value specified in
DcNumConcurrentRequests inthe
General section is used.

DcXCoreAffinity Specifies the core to which this data Varies 0 to max. number of
compression instance is affinitized. dependin [coresinthe system

gonthe
value of X.

Note: "Default” denotes the value in the configuration file when shipped.

5.3.2 [DYN] Section

Inthe [DYN] section of the configuration file, information about the number and type of
instances that can be allocated dynamically are specified.

The parameters that can be included in the [DYN] section are the same as those that can be
included in the [KERNEL] section. See [KERNEL] Section for details.

76 Programmer’s Guide

=
Acceleration Driver Configuration File I n te o

Once the logical instances are reserved in the configuration file, they can be allocated using the

dynamic instance allocation APIs. See Dynamic Instance Allocation Functions for more

information.

5.3.2.1 Dynamic Instance Configuration Example

The following configuration file snippets demonstrate the reservation of instances for dynamic
allocation. In a system that uses the two configuration files below,

icp sal userCyInstancesAlloc can allocate up to 26 cryptographic (cy) instances and
icp sal userDcInstancesAlloc canallocate up to14 data compression (dc) instances.

See Dynamic Instance Allocation Functions for more information.

Taken from: /etc/dh89xxcc ga dev0.conf

[DYN]

NumberCyInstances = 10

NumberDcInstances = 4

Crypto - User instance DYN #0 CyOName = "DYNO"

CyOIsPolled =1

CyOAcceleratorNumber = 0 # List of core affinities CyOCoreAffinity =
0

Crypto - User instance DYN #1 CylName = "DYN1"
CylIsPolled = 1

CylAcceleratorNumber = 1 # List of core affinities CylCoreAffinity =
1

Crypto - User instance DYN #2 Cy2Name = "DYN2"
Cy2IsbPolled =1
Cy2AcceleratorNumber = 2 # List of core affinities Cy2CoreAffinity =

2
Data Compression - User space DYN instance #0 DcOName = "DCDYNOQO"
DcOAcceleratorNumber = 0

Dc0OIsPolled = 1
DcOCoreAffinity = 0

Data Compression - User space DYN instance #1 DclName = "DCDYN1"
DclAcceleratorNumber = 1

DclIsPolled = 1
DclCoreAffinity = 1

Taken from: /etc/dh89xxcc_ga devl.conf

Programmer’s Guide 77

intel

5.3.3

Table 9.

78

[DYN]

Acceleration Driver Configuration File

NumberCyInstances = 16

NumberDcInstances

10

User Process [xxxx] Sections

In each [xxxxx] section of the configuration file, user space access to the device can be

configured.

The following table shows the parameters in the configuration file that can be set for user
process [xxxxx] sections.

User Process [xxxxx] Sections Parameters

this section are limited to only access
instances on this device.

See Confiquring Multiole PCH Devicesi
a System for more information on
configuring multiple user space
processes on a multi device system.

Parameter Description Default Range
NumProcesses The number of user space processes with For constraints, see
section name [xxxxx] that have access to Maximum Number
this device. of Process
The maximum number of processes that
can callicp_sal_userStartMultiProcess
and be active atany one time. See
icp_sal userStartMultiProcess Usage for
more information.
Caution: Resources are preallocated. If
this parameter value is set too high, the
driver fails to load.
LimitDevAccess Indicates if the user space processes in 0 (disabled,

processes in this
section can access
multiple devices) or
1(enabled,
processes in this
section can only
access this device)

compression instances.

Note: Depends on the number of
allocations to other services.

NumberCylnstances |Specifies the number of cryptographic O0to 32
instances.
Note: Depends on the number of
allocations to other services.

NumberDclnstances |Specifies the number of data Oto126

Note: "Default” denotes the value in the configuration file when shipped.

parameter must appear before the LimitDevAccess parameter in the section.

Note: The order of NumProcesses and LimitDevAccess parameters is important. The NumProcess

Programmer’s Guide

O
Acceleration Driver Configuration File I n te o

5.3.3.1

54

Parameters for each user process instance can also be defined. The parameters that can be
included for each specific user process instance are similar to those in the Logical Instances
Section.

Maximum Number of Process Calculations

The NumProcesses parameter is the number of user space processes per service within the
[xxxx] section domain with access to this device.

The value to which this parameter can be set is determined by a number of factors, most
significantly, the number of cryptography instances and/or data compression instances in the
process section. The total number of processes, per service, created by the driveris given by
the expression (e.g., for cryptography):

(NumProcesses) x (NumberCyInstances)

For communications between the CPU and an accelerator, each cryptography instance
consumes six hardware assisted rings and each data compression instance consumes two
rings. In addition, up to four rings (for each device) are reserved for administration purposes. A
further constraintis that itis only possible to have two cryptography instances per bank,
restricting the maximum number of cryptography instances to 32.

The total number of rings available is 256; therefore, the NumProcesses parameter can only be
set to a value that meets the constraints described above.

The following are examples that make use of most of the rings on a device:

e NumProcesses canbesetto16,if NumberCyInstances = 2 (consumingl192rings)and
NumberDcInstances = 1 (consuming 32 rings), with 4 rings foradministration, giving a
total of 228 (meeting the <256 constraint).

e NumProcesses canbe setto 3], if NumberCyInstances = 1 (consumingl186rings)and
NumberDcInstances = 1 (consuming 62 rings), with 4 rings for administration, giving a
total of 248 (meets the <256 constraint).

e NumProcesses canbesetto32,if NumberCyInstances = 1andNumberDcInstances =
0. Thisis because you can only have two cryptography instances per ring bank (the rings for
each cryptography instance must be in the same ring bank) and there are a total of 16 banks.

Also, the following may be useful: When the NumberXXInstances < Number of available
accelerators for that service, and NumProcesses >= Number of available accelerators, then
spread the instances across the accelerators. For example, four Cy accelerators:

e Tlinstance, then set CyOAcceleratorNumber=0,1,2,3

e 2instances, then set CyOAcceleratorNumber = 0,1and CylAcceleratorNumber= 2,3 (or
CyOAcceleratorNumber = 0, 2 and CylAcceleratorNumber =1,3)
Configuring Multiple PCH Devices in a System

A platform may include more than one PCH device. Each device must have its own
configuration file. The format and structure of the configuration file is exactly the same for all

Programmer’s Guide 79

I n te I o Acceleration Driver Configuration File

80

devices. Consequently, the configuration file for device 0, dh89xxcc_qga_devO.conf, can be
cloned for use with other PCH devices.

Simply make a copy of the file and rename it by changing the “"devQ” part of the file name, for
example, for device 1 change the file name to dh89xxcc ga devl.conf, fordevice 2, change
the file name to dh89xxcc_ga dev2.conf and soon. Then, you can configure each device by
editing the corresponding configuration file accordingly. There can be up to 32 PCH devices
ona platform.

Each PCH device must have its own configuration file. If a configuration file does not exist fora
device, that device will not start at all and an error is displayed indicating that a configuration
file was not found.

To determine the number of PCH devices in a system, use the Ispci utility:
lspci -d 8086:0434

The output from a system with two PCH devices is similar to the following:
08:00.0 Co-processor: Intel Corporation Device 0434

09:00.0 Co-processor: Intel Corporation Device 0434

Then, after the driver is loaded, the user can use the qat_service script to determine the name
of each device and its status. For example:

./gat_service status

Again, ina system with two PCH devices, the output looks like this:
icp_dev0 - type=dh89xxcc, inst id=0, bsf=01:00:0, #accel=2,
#engines=8, state=up icp devl - type=dh89xxcc, inst id=1,
bsf=05:00:0, #accel=2, #engines=8, state=up

The user can also use the gqat_service to start, stop, restart and shutdown each device

separately or all devices together. See Managing Acceleration Devices Using gat_service for

more information.

Some important configuration file information when using multiple PCH devices:

e When specifying kernel and user space instances in the configuration file, the
Cy<Number>Name and Dc<Number>Name parameters must be unique in the context of the
section name only. For example, it is valid to have a parameter called CyOName in both a
kernel instance section and a user instance section in the same configuration file without
issue. Also, the parameter names do not need to be unique at a system-wide level. For
example, itis valid to have a parameter called CyOName in both the configuration file for devO
and the configuration file for devl without issue.

e Fordevices with configuration files that have the same section name, for example, "SSL"
and the same data in that section, is it necessary to use the cpaCyInstanceGetInfo?2 ()
function to distinguish between devices. The cpaCyInstanceGetInfo?2 () allows the user
of the API to query which physical device a cryptography instance handle belongs to. In
addition, for any application domain defined in the configuration files ([KERNEL], [SSL]
and soon), a call to cpaCyGetNumInstances () returns the number of cryptography

Programmer’s Guide

i
Acceleration Driver Configuration File I n te I o

55

instances defined for that domain across all configuration files. A subsequent call to
cpaCyGetInstances () obtains these instance handles.

e When using multiple configuration files, the LimitDevAccess parameter for a process must
be enabled or disabled in all configuration files. The driver may not find the correct entries in
the configuration file if the LimitDevAccess optionis enabled in one configuration file and
disabled in another.

Configuring Multiple Processes on a Multiple-Device
System

As an example, consider a system with two PCH devices (in total, eight crypto acceleration
engines, four on each device) where it is necessary to configure two user space sections. One
section we identify as SSLT and the other we identify as IPSec.

= Forthe SsL section, we want to configure eight processes, where each process has access
to one acceleration instance.

= Forthe IPSec section, we want to configure one process with access to all eight
acceleration engines.

In this scenario, the user space section of the configuration files would look like the following.

Fordh89xxcc ga dev0.conf:

[SSL] #User space section name

NumProcesses=4 #There are 4 user space process with section name SSL
with access to this device

LimitDevAccess=1 # These 4 SSL user space processes only use this
device NumCyInstances=1 # Each process has access to 1 Cy instance on
this device

NumDcInstances=0 # Each process has access to 0 Dc instances on this
device

Crypto - User instance #0 CyOName = "SSLO"

CyOIsPolled = 1

CyOAcceleratorNumber = 0,1,2,3

CyOCoreAffinity = 0 # Core affinity not used for polled instance
[IPsec] #User space section name

NumProcesses=1 #There is 1 user space process with section name IPSec
with access to this device

LimitDevAccess=0 # This IPSec user space process may have access to
other devices

NumCyInstances=4 # The IPSec process has access to 4 Cy instances on
this device

NumDcInstances=0 # The IPSec process has access to 0 Dc instances on
this device

Crypto - User instance #0

Programmer’s Guide 81

intel

82

Acceleration Driver Configuration File

CyOName = "IPSecO"

CyOIsPolled = 1

CyOAcceleratorNumber = 0

CyOCoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #1

CylName = "IPSecl"

CylIsPolled = 1

CylAcceleratorNumber = 1

CylCoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #2

Cy2Name = "IPSec2"

Cy2IsbPolled = 1

Cy2AcceleratorNumber = 2

Cy2CoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #3

Cy3Name = "IPSec3"

Cy3IsPolled = 1

Cy3AcceleratorNumber = 3

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

For dh89xxcc devl.conf:

[SSL] #User space section name

NumProcesses=4 #There are 4 user space process with section name SSL
with access to this device

LimitDevAccess=1 # These 4 SSL user space processes only use this
device NumCyInstances=1 # Each process has access to 1 Cy instance on
this device

NumDcInstances=0 # Each process has access to 0 Dc instances on this
device

Crypto - User instance #0 CyOName = "SSLO"

CyOIsPolled = 1

CyOAcceleratorNumber = 0,1,2,3

CyOCoreAffinity = 0 # Core affinity not used for polled instance
[IPsec] #User space section name

NumProcesses=1 #There is 1 user space process with section name IPSec
with access to this device

LimitDevAccess=0 # This IPSec user space process may have access to
other devices

NumCyInstances=4 # The IPSec process has access to 4 Cy instances on
this device

NumDcInstances=0 # The IPSec process has access to 0 Dc instances on
this device

Crypto - User instance #0
CyOName = "IPSecO"

Programmer’s Guide

Acceleration Driver Configuration File I n te I o

CyO0IsPolled = 1

CyOAcceleratorNumber = 0

CyOCoreAffinity = 0 # Core affinity not used for polled instance #
Crypto - User instance #1

CylName = "IPSecl"

CylIsPolled = 1

CylAcceleratorNumber = 1

CylCoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #2

Cy2Name = "IPSec2" Cy2IsPolled = 1

Cy2AcceleratorNumber = 2

Cy2CoreAffinity = 0 # Core affinity not used for polled instance
Crypto - User instance #3

Cy3Name = "IPSec3"

Cy3IsPolled =1

Cy3AcceleratorNumber = 3

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

Eight processes (with section name SSL) can call the

icp sal userStartMultiProcess ("SSL", CPA TRUE) function to get access to one
crypto instance each. One process (with section name IPsec) can call the

icp sal userStartMutliProcess ("IPSec", CPA FALSE) functionto getaccesstoeight
cryptoinstances.

Internally in the driver, this works as follows:

1.

When the driver is configured (that s, the service gat_service s called), the driver reads
the configuration file for the device and populates an internal configuration table.

Reading the configuration file for devO:

a. Forthesectionnamed [SSL], the driver determines that four processes are required
and that these processes are limited to access to this device only. In this case, the
driver creates four internal sections that it labels SSL._DEV0_ INT 0,

SSL DEVO INT 1, SSL DEVO INT 2 andSSL DEVO INT 3.Eachsectionisgiven
access to one crypto instance as described.

b. Forsectionname [IPSec], thedriverdeterminesthatone processisrequiredand
that this process is not limited to access to this device only (that s, it may access
instances on other devices). In this case, the driver creates one internal section that it
labels IPSec INT 0 and gives thisaccess to four cryptoinstances on this device.

Reading the configuration file for devl:

a. For the section named [SSL], the driver determines that four processes are
required and that these processes are limited to access this device only. In this case,
the driver creates four internal sections that it labels SSI. DEV1 INT 0,
SSL_DEV1 INT 1, SSL DEV1 INT 2 and SSL_DEV1 INT_ 3.Each sectionis
given access to one crypto instance as described.

b. Forthesectionnamed [IPSec], the driver determines that one process is required
and that this process may have access to instances on other devices. In this case, the

Programmer’s Guide 83

s
I n te I o Acceleration Driver Configuration File

5.6

84

driver creates one internal section thatitlabels IPSec_INT 0 and gives thisaccess
to four crypto instances on this device. Notice that this section name now appears in
both devices' internal configuration and therefore the process that gets assigned this
section name will have access to instances on both devices.
4. Intotal, there are nine separate sections (SSL_DEVO_INT_O, SSL_DEVO_INT_],
SSL_DEVO_INT_2,SSL_DEVO_INT_3,SSL_DEVI_INT_O, SSL_DEV1_INT_],
SSL_DEVL_INT_2,SSL_DEVI1_INT_3 and IPSec_INT_0) with access to crypto instances.

When aprocesscallsthe icp_sal userStartMultiProcess ("SSL", CPA TRUE) function,
the driver locates the next available section of the form SSIL._DEV<m> INT<. > (ofwhich
there are eight in total in this example) and assigns this section to the process. This gives the
process access to corresponding crypto instances.

Whenaprocesscallsthe icp sal userStartMultiProcess ("IPSec", CPA FALSE)
function, the driver locates the next available section of the form IPSec INT <. > (ofwhich
there is only one in total for this example) and assigns this section to the process. This gives the
process access to the corresponding crypto instances.

Note: Ifaprocesscallstheicp sal userStartMultiProcess ("IPSec", CPA TRUE) function,
the driver locates the next available section of the form IPSec DEV<m> INT<. > andgivesthe
process access to corresponding crypto instances (zero in this example, since LimitDevAccess=0 in
the IPSec section of the config file). When the process queries the number of crypto instances in this
case (using cpaCyGetNumInstances ()), the numberreturned will be zero because this process was
assigned a section that was not configured with any instances using the config file.

Sample Configuration File (V2)

This following sample configuration file is provided in the software package.

G
A

G@par
This file is provided under a dual BSD/GPLv2 license. When using or

redistributing this file, you may do so under either license.

GPL LICENSE SUMMARY
Copyright (c) 2007-2013 Intel Corporation. All rights reserved.

This program is free software; you can redistribute it and/or

modify it under the terms of version 2 of the GNU General

License as published by the Free Software Foundation.

#

#

#

#

#

#

#

#
Public
#

#

This program is distributed in the hope that it will be

useful, but #WITHOUT ANY WARRANTY; without even the implied

warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

#

#

You should have received a copy of the GNU General Public License

Programmer’s Guide

i
Acceleration Driver Configuration File I n te I o

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-
1301 USA. The full GNU General Public License is included in this
distribution in the file called LICENSE.GPL.

#

Contact Information: Intel Corporation

BSD LICENSE

#

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.

All rights reserved.

#

Redistribution and use in source and binary forms, with or
without

modification, are permitted provided that the following
conditions

are met:

#

* Redistributions of source code must retain the above copyright

S oS S HE S S S S HE S HE #= S 4 HE 3= FE 3= 3 F= 3= o4

#

notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of Intel Corporation nor the names of its

contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AN
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

version: QAT1.5.L.1.10.0-65

G R R R
RS AR EAER AR

#

General Section ############H#HHHESS#HFHFHRSHFHAHASHFHAHERSHHHAS

[GENERAL]
ServicesEnabled = cy0;cyl;dc

Programmer’s Guide

85

intel

86

Acceleration Driver Configuration File

Use version 2 of the config file ConfigVersion = 2

Look Aside Cryptographic Configuration cyHmacAuthMode = 1

Look Aside Compression Configuration dcTotalSRAMAvailable = 0

Firmware Location Configuration Firmware MofPath = mof firmware.bin
Firmware MmpPath = mmp firmware.bin

#Default values for number of concurrent requests*/
CyNumConcurrentSymRequests = 512

#The value CyNumConcurrentAsymRequests will do impact to memory
#consumption greatly. Below is some memory consumption data for #the
configuration per instance.

128: 10M
512: 40M
1024: 78M
4096: 280M

By default, 4 kernel instances and 4 user space instances, so if
the value is set to be 4096, for pke, the memory consumption is: #
(4+4) *280=2240M

CyNumConcurrentAsymRequests = 128

H W H

DcNumConcurrentRequests = 512

#Statistics, valid values: 1,0 statsGeneral = 1
statsDc = 1

statsDh = 1

statsDrbg = 1

Enables or disables Single Root Complex IO Virtualization.

If this is enabled (1) then SRIOV and VT-d need to be enabled in
BIOS and there can be no Cy or Dc instances created in PF (DomO) .
If this i disabled (0) then SRIOV and VT-d need to be disabled
in BIOS and Cy and/or Dc instances can be used in PF (DomO)

SRIOV Enabled = 0

H= F = FE o

When using virtualisation PF bundle offset indicates the first
bundle

that will be used to allocate instances for the Host. This and
bundles

above it will be used until all instances in below sections are

allocated. Guests cannot share bundles with the Host so only
bundles

below and above this will be available to be assigned to VMs.
For instance if PF _bundle offset = 5 and there are 3 instances

below each with different core affinities then instances in the
Host

will be allocated on bundles 5, 6 and 7 and bundles 0-4 and 8-31

Programmer’s Guide

=
Acceleration Driver Configuration File I n te o

will be available for VMs.

So 1f instances are needed on the Host, uncomment this and set it
so it doesn't clash with bundles assigned to VMs.

NOTE: bundle and 0 and 8 and used for admin messages and can not be
used for services via neither PF nor VF.

#PF bundle offset = 1

H o H F

#Debug feature, if set to 1 it enables additional entries in /proc
filesystem ProcDebug = 1

B i
Logical Instances Section

A logical instance allows each address domain

(kernel space and individual user space processes)

to configure rings (i.e. hardware assisted queues)

to be used by that address domain and to define the
behavior of that ring.

#
#
#
#
#
#
#
#

The address domains are in the following format # - For kernel
address domains

[KERNEL]
- For user process address domains
[XxXxX]
Where xxxxx may be any ascii value which uniquely identifies
the user mode process.
To allow the driver correctly configure the
logical instances associated with this user process,
the process must call the icp sal userStartMultiProcess(...)
passing the xxxxx string during process initialisation.
When the user space process is finished it must call
icp_sal userStop(...) to free resources.

NumProcesses will indicate the maximum number of processes

Warning: the resources are preallocated: if NumProcesses
is too high, the driver will fail to load

Items configurable by a logical instance are:

- Name of the logical instance

- The accelerator associated with this logical instance

- The core the instance is affinitized to (optional) #

Note: Logical instances may not share the same ring, but may share

ring bank.

#
#
#
#
#
#
#
#
#
#
#
#
that can call icp sal userStartMultiProcess on this instance.
#
#
#
#
#
#
#
#
a
#
#
The format of the logical instances are:
#

- For crypto:

Programmer’s Guide 87

intel

88

Acceleration Driver Configuration File

Cy<n>Name = "xxxx" Cy<n>AcceleratorNumber = 0-3

Cy<n>CoreAffinity = 0-7

#

- For Data Compression

Dc<n>Name = "xxxx"

Dc<n>AcceleratorNumber = 0-1

Dc<n>CoreAffinity = 0-7

Where:

- n is the number of this logical instance starting at 0.

- xxxx may be any ascii value which identifies the logical

instance.

#

Note: for user space processes, a list of values can be specified
for

the accelerator number and the core affinity: for example

CyOAcceleratorNumber = 0,2

CyOCoreAffinity = 0,2,4

These comma-separated lists will allow the multiple processes to

use
different accelerators and cores, and will wrap around the numbers

in the list. In the above example, process 0 will use accelerator
0,

and process 1 will use accelerator 2

S

G

Kernel Instances Section
FHAH A A A [KERNEL]

NumberCyInstances = 4

NumberDcInstances = 2

Crypto - Kernel instance #0
CyOName = "IPSecO"
CyOAcceleratorNumber = 0
CyOIsPolled = 0
Cy0CoreAffinity = 0

Crypto - Kernel instance #1
CylName = "IPSecl"
CylAcceleratorNumber = 1
CylIsPolled = 0
CylCoreAffinity = 1

Crypto - Kernel instance #2

Cy2Name = "IPSec2"
Cy2AcceleratorNumber = 2

Programmer’s Guide

=
Acceleration Driver Configuration File I n te o

Cy2IsPolled = 0
Cy2CoreAffinity = 2

Crypto - Kernel instance #3
Cy3Name = "IPSec3"
Cy3AcceleratorNumber = 3
Cy3IsbPolled = 0
Cy3CoreAffinity = 3

Data Compression - Kernel instance #0
DcOName = "IPCompO"
DcOAcceleratorNumber = 0

DcOIsPolled = 0

DcOCoreAffinity = 0

Data Compression - Kernel instance #1
DclName = "IPCompl"
DclAcceleratorNumber = 1

DclIsPolled = 0

#Concurent request value can optionally be overwritten
#DclNumConcurrentRequests = 256

DclCoreAffinity = 1

FHAHFHRH AR AR AR AR

User Process Instance Section

FHAHHH A AR S [SSL
NumberCyInstances = 4

NumberDcInstances = 2

NumProcesses = 1

LimitDevAccess = 0

Crypto - User instance #0
CyOName = "SSLO"
CyOIsPolled =1
Cy0OAcceleratorNumber = 0 #
List of core affinities
CyOCoreAffinity = 0

Crypto - User instance #1
CylName = "SSL1"
CylIsPolled =1
CylAcceleratorNumber = 1

List of core affinities
CylCoreAffinity = 1

Crypto - User instance #2
Cy2Name = "SSL2"

Programmer’s Guide 89

i
I n te I o Acceleration Driver Configuration File

Cy2IsPolled = 1
Cy2AcceleratorNumber = 2
List of core affinities
Cy2CoreAffinity = 2

Crypto - User instance #3
Cy3Name = "SSL3"
Cy3IsbPolled = 1
Cy3AcceleratorNumber = 3

List of core affinities
Cy3CoreAffinity = 3

Data Compression - User space instance #0
DcOName = "UserDCO"

DcOAcceleratorNumber = 0

DcOIsPolled = 1

DcOCoreAffinity = 0

Data Compression - User space instance #1
DclName = "UserDC1"

DclAcceleratorNumber = 1

DclIsPolled = 1

DclCoreAffinity = 1

FREFF RS SSSRSRSRSSSRSSRSSSSSSSSSAS

Wireless Process Instance Section
FHAHH A H AR A H AR H S H S H 4 [WIRELESS]

NumberCyInstances = 1
NumberDcInstances = 0

NumProcesses = 0

Crypto - User instance #0
CyOName = "WIRELESSO"
CyOIsPolled =1
CyOAcceleratorNumber = 0

List of core affinities
CyOCoreAffinity = 0

5.7 Configuration File Version 2 Differences

Note: Both the configuration file Version 2 and Version 1are supported by the acceleration driver.
The ConfigVersion parameterif presentand setto 2 (ConfigVersion = 2)indicatesthatthe new
configuration format will be used. Otherwise, the older format is used as before.

The following is a summary of the differences between the configuration file Version 2 and
Version1file format:

90 Programmer’s Guide

Acceleration Driver Configuration File I n te I o

e Bankand ring numbers are no longer specified in the configuration file; they are dynamically
allocated.

¢ Core affinity can be specified for each instance. The driver will allocate a bank with that
affinity.

e The number of current requests (for symmetric cryptography, asymmetric cryptography
and data compression) are now specified in the General section of the configuration file, and
can be overwritten for each particular instance if needed. If they are not specified atall, a
default value is used by the driver.

e Accelerator number and execution engine parameters engine have been merged. The
interpretation now is that there are four accelerators as opposed to two accelerators with
two engines for each accelerator.

e Interrupt coalescing parameters are now in the General section (previously in the
Accelerator sections).

¢ Inthe User Space section, the new NumProcesses parameter allows that number of
processes to use that section. The core affinity for each of the processes is specified in a
comma separated list.

Forexample, if CyOAcceleratorNumber=0,1,2,3, the first process uses accelerator O, the
second uses accelerator 1, and so on. If there are more processes than list elements, it
loops back. For example, if there are 8 processes and the list only contains elements
0,1,2,3, the fourth process uses accelerator O again, the fifth process uses accelerator],
and so on. In order to use this functionality, the processes must be started with the

icp sal userStartMultiProcess function.

* TheLimitDevAccess parameter has been added. This parameterindicates if the user
space processes in the section containing the Limi tDevAccess parameter are limited to only
access instances on a specific device.

Programmer’s Guide 91

i)
I n te @ Secure Architecture Considerations

6

Secure Architecture Considerations

6.1

6.1.1

Table10.

92

This chapter describes the potential threats identified as part of the secure architecture
analysis of the Acceleration Complex within the Intel® Communications Chipset 8900 to 8920
Series (PCH) and the actions that can be taken to protect against these threats. This chapter
concentrates on the Acceleration Complex. There are no additional security considerations
related to other major components within the PCH, including the GbE component (based on
the Intel® 82580 Gigabit Ethernet Controller), and the I/O component (based on the Intel®
P55 Express Chipset).

First, the terminology covering the main threat categories and mechanisms, attacker privilege
and deployment models are presented. Then, some common mitigation actions that can be
applied to many of these threat categories and mechanisms are discussed. Finally, more
specific threat/attack vectors, including attacks against specific services of the PCH device
are described.

Terminology

Each of the potential threat/attack vectors discussed may be described in terms of the
following:

Threat Categories
System threats can be classified into the categories in the following table.

System Threat Categories

Category Nature of Threat and Examples

Exposure of Data e Attacker reads data to which they should not have read access

o Attackerreads cryptographic keys

Modification of Data |o Attacker overwrites data to which they should not have write access

e Attacker overwrites cryptographic keys

Denial of Service e Attacker causes application or driver software (running on an 1A core) to crash

o Attacker causes Intel® QuickAssist Accelerator firmware to crash

Programmer’s Guide

Secure Architecture Considerations I n te %

Category Nature of Threat and Examples

o Attacker causes excessive use of resource (IA core, Intel® QuickAssist
Accelerator firmware thread, silicon slice, PCle* bandwidth, and so on), thereby

reducing availability of the service to legitimate clients.

6.1.2 Attack Mechanism

Some of the mechanisms by which an attacker can carry out an attack are listed in the following
table.

Table1l. Attack Mechanisms and Examples

Mechanism Examples

Contrived packet stream Attacker crafts a packet stream that exploits known vulnerabilities in the
software, firmware or hardware. This could include vulnerabilities such
as buffer overflow bugs, lack of parameter validation, and so on.

Compromised application Attacker modifies the application code calling the Intel® QuickAssist
software Technology API to exploit known vulnerabilities in the driver/hardware.
Application Malware In an environment where an attacker may be able to run their own

application, separate from the main application software, they may
invoke the Intel® QuickAssist Technology API to exploit known
vulnerabilities in the driver/hardware.

Compromised |A driver Attacker modifies the IA driver to exploit known vulnerabilities in the
software driver/hardware.

Compromised Intel® Attacker modifies the Intel® QuickAssist Technology firmware to exploit
QuickAssist Technology vulnerabilities in the hardware.

firmware

Compromised public key Attacker modifies the public key firmware to exploit vulnerabilities in the
firmware hardware.

Note: For a description of this
public key firmware, and how it
differs from the Intel®
QuickAssist Technology
firmware, see Crypto Service

Threats - Modification of Public
Key FW
Defect Itis also possible that the attack is not malicious, but rather an
unintentional defect.
6.1.3 Attacker Privilege

The following table describes the privileges that an attacker may have. The table describes the
case of a non-virtualized system.

Programmer’s Guide 93

https://intel-my.sharepoint.com/personal/gayatrix_takalkar_intel_com/Documents/Desktop/Dec%202021/1328/Comms_8900_8920_SW_PG_Rev_006-unlocked.docx#_bookmark147
https://intel-my.sharepoint.com/personal/gayatrix_takalkar_intel_com/Documents/Desktop/Dec%202021/1328/Comms_8900_8920_SW_PG_Rev_006-unlocked.docx#_bookmark147
https://intel-my.sharepoint.com/personal/gayatrix_takalkar_intel_com/Documents/Desktop/Dec%202021/1328/Comms_8900_8920_SW_PG_Rev_006-unlocked.docx#_bookmark147
https://intel-my.sharepoint.com/personal/gayatrix_takalkar_intel_com/Documents/Desktop/Dec%202021/1328/Comms_8900_8920_SW_PG_Rev_006-unlocked.docx#_bookmark147

I n te % Secure Architecture Considerations

Table 12.

6.1.4

Table 13.

6.2

6.2.1

94

Attacker Privilege

Privilege Comments

Physical access There is no attempt to protect against threats, such as signal probes, where
the attacker has physical access to the system. Customers can protect their
systems using physical locks, tamper-proof enclosures, Faraday cages, and so
on.

Logged in as privileged There is no attempt to protect against threats where the attackeris logged in
user as a privileged user. Customers can protect their systems using strong,
frequently-changed passwords, and so on.

Loggedin asunprivileged |[If the attacker islogged into a platform as an unprivileged user, it is important
user to ensure that they cannot use the services of the PCH to access (read or
write) any data to which they would not otherwise have access.

Ability to send packets In almost all deployments, attackers have the ability to send arbitrary packets
from the network (either on LAN or WAN) into the system. It is assumed that
threats (for example, contrived packet streams to exploit known
vulnerabilities) may arrive in this way.

Deployment Models

Some of the possible deployment models are given in the following table.
Deployment Models

Deployment Model Examples

Systemwith nountrusted users o Network security appliance

e Serverindatacenter

System with potentially untrusted |, Serverin data center
users

Threat/Attack Vectors

A thorough analysis has been conducted by considering each of the threat categories, attack
mechanisms, attacker privilege levels, and deployment models. As a result, the following
threats have been identified. Also described are the steps a user of the PCH chipset can take to
mitigate against each threat.

Some general practices that mitigate many of the common threats are considered first.
Thereafter, threats on specific services (such as cryptography, data compression) and
mitigation against those threats are described.

General Mitigation

The following mitigation techniques are generic to a number of different threat and attack
vectors:

¢ Intel® follows Secure Coding guidelines, including performing code reviews and running
static analysis on its driver software and firmware, to ensure its compliance with security

Programmer’s Guide

Secure Architecture Considerations I n te %

quidelines. Itis recommended that customers follow similar guidelines when developing
application code. This should include the use of tools such as static analysis, fuzzing, and so
on.

e Ensure each module (including the PCH chipset, processor, and DRAM) is physically
secured from attackers. This caninclude such examples as physical locks, tamper proofing,
and Faraday cages (to prevent side-channel attacks via electromagnetic radiation).

e Ensure that network services not required on the module are not operating and that the
corresponding network ports are locked down.

e Use strong passwords to protect against dictionary and other attacks on administrative and
other login accounts.

6.2.2 General Threats

General threats include the following:

6.2.2.1 DMA

Threat: The PCH can perform Direct Memory Access (DMA, the copying of data) between
arbitrary memory locations, without any of the processor's normal memory protection
mechanisms. Once an attacker has sufficient privilege to invoke the Intel® QuickAssist
Technology API, or to write to/read from the hardware rings used by the driver to
communicate with the device, they can send requests to the Intel® QuickAssist Accelerator to
perform such DMA, passing arbitrary physical memory addresses as the source and/or
destination addresses, thereby reading from and/or writing to regions of memory to which
they would otherwise not have access.

Mitigation: Ensure that only trusted users are granted permissions to access the Intel®
QuickAssist Technology API, or to write to and read from the hardware rings. Specifically, the
PCH configuration file describes logical instances of acceleration services and the set of
hardware rings to be used for each such instance. User processes can ask the kernel driver to
map these rings into their address spaces. To access a given device (identified by the number
<N>in the filenames below), the user must be granted read/write access to the following files,
which may be in /dev or /dev/icp_mux:

e icp dev<N> csr
e icp dev<N> ring
e icp dev _mem

e icp dev _mem page

Programmer’s Guide 95

i
I n te % Secure Architecture Considerations

6.2.2.2

6.2.2.3

6.2.24

e icp dev processes

The recommendation is that these files have the following permissions by default?:
1s -1 /dev/icp dev0 ring
Crw———-—--—-—-— . 1 root root 249, 0 Jan 17 16:01 /dev/icp dev0 ring

To grant permission to a given user to use the API, that user should be given membership of a
group, e.9., group “adm”, and the group ownership and permissions should be changed to the
following:

1s -1 /dev/icp dev0_ring

crw-rw----. 1 root adm 249, 0 Jan 17 16:02 /dev/icp dev0 ring

Such permissions and group membership should only be provided to trusted users. Such user
accounts should be protected with strong passwords.

Intentional Modification of IA Driver
Threat: An attacker can potentially modify the |A driver to behave maliciously.

Mitigation: The driver object/executable file on disk should be protected using the normal file
protection mechanisms so that it is writable only by trusted users, for example, a privileged
user or an administrator.

Modification of Intel® QuickAssist Accelerator Firmware

Threat: An attacker can potentially modify the Intel® QuickAssist Accelerator firmware to
behave maliciously. The attacker can then attempt to overwrite the firmware image on disk (so
that it gets downloaded on future reboots) or to download the malicious firmware image after
the originalimage has been downloaded, thereby overwriting it.

Mitigation: The firmware image on disk should be protected using normal file protection
mechanisms so that it is writable only by trusted users, for example, a privileged user or an
administrator.

The implementation of the APl for downloading firmware to the Intel® QuickAssist
Accelerator requires access to a special administrative hardware ring. See the mitigation for
the DMA threat to limit access to this ring.

Modification of the PCH Configuration File

Threat: The PCH configuration file is read at initialization time by the driver and specifies what
instances of each service (cryptographic, data compression) should be created, and which
rings each service instance will use. Modifying this file could lead to denial of service (by
deleting required instances) or could be used to attempt to create additional instances that the
attacker could subsequently attempt to access for malicious purposes.

Mitigation: The configuration file should be protected using the normal file protection
mechanisms so that it is writable only by trusted users, for example, a privileged user or an
administrator.

2 Permissions shown only for one file, but these apply to all files listed.

96

Programmer’s Guide

i)
Secure Architecture Considerations I n te %

Note: By default, the configuration file is stored in the /etc directory and may be named something
like, dn89xxcc _ga dev0.conf.Its default permissions are that it is readable and writeable only by
root.

6.2.2.5 Malicious Application Code

Threat: An attacker who can gain access to the Intel® QuickAssist Technology API may be able
to exploit the following features of the API:

e Simply sending requests to the accelerator at a high rate reduces the availability of the
service to legitimate users.

o Buffers passed to the APl have a specified length of up to 32 bits. By specifying excessive
lengths, an attacker may be able to cause denial of service by overwriting data beyond the
end of a buffer.

o Bufferlists passed to the APl consist of a scatter gather list (array of buffers). An attacker
may incorrectly specify the number of buffers, causing denial of service due to the reading
or writing of incorrect buffers.

Mitigation: Only trusted users should be allowed to access the Intel® QuickAssist Technology
API, as described as part of the Mitigation threat for the DMA..

6.2.2.6 Contrived Packet Stream

Threat: An attacker may attempt to contrive a packet stream that monopolizes the
acceleration services, thereby denying service to legitimate users. This may consist of one or
more of the following:

o Sending packets that are compressed (for example, using IPComp) or encrypted (for
example, using IPsec), thereby reducing the availability of these services to legitimate
traffic.

e Sending excessively large packets, causing some latency for legitimate packets.

e Sending small packets at a high packet rate, causing extra bandwidth utilization on the PCI
Express* bus connecting the device to the processor.

Mitigation: Depending on the deployment scenario, it is usually not possible to prevent such
attempts at denial of service. The system should be designed to cope with the worst case in
terms of throughput and latency at all packet sizes.

6.2.3 Threats Against the Cryptographic Service

Threats against the cryptographic service include:

Programmer’s Guide 97

i
I n te % Secure Architecture Considerations

6.2.3.1

6.2.3.2

6.2.3.3

6.2.3.4

98

Reading and Writing of Cryptographic Keys

Threat: Cryptographic keys are stored in DRAM. An attacker who can determine where these
are stored could read the DRAM to get access to the keys, or could write the DRAM to use keys
known by the attacker, thereby compromising the confidentiality of data protected by these
keys.

Mitigation: DRAM is considered to be inside the cryptographic boundary (as defined by FIPS
140-2). The normal memory protection schemes provided by the Intel® architecture processor
and memory controller, and by the operating system, prevent unauthorized access to these
memory regions.

Modification of Public Key Firmware

Background: In addition to the Intel® QuickAssist Accelerator firmware which is downloaded
to the Acceleration Complex within the PCH by the driver at initialization time, there is a library
of small public key firmware routines, one of which is downloaded to the device along with each
request to perform a public key cryptographic primitive, such as an RSA sign operation. This
public key firmware is part of the driverimage (on disk) and is stored in DRAM at run-time so
that it can be downloaded to the device when required.

Threat: An attacker can potentially modify the public key firmware to behave maliciously. For
this to be useful, they must overwrite the firmware image on disk (so that it gets read into
DRAM at initialization time on future reboots) orin DRAM (so that it gets downloaded with
future PKE requests).

Mitigation: The public key firmware image on disk should be protected using normal file
protection mechanisms so that it is writable only by trusted users, for example, a privileged
user or an administrator. The public key firmware image in DRAM is accessible only to the
process/context in which it is executing and sending the image to the Intel® QuickAssist
Accelerator requires permission to use the APl and write to the corresponding hardware ring.
See the mitigation for the DMA threat to limit access to such rings.

Failure of the Entropy Source for the Random Number Generator

Threat: The PCH has a non-deterministic random bit generator (NRBG, aka True Random
Number Generator or TRNG) implemented in silicon that can be used as an entropy source for
a deterministic random bit generator (DRBG, aka Pseudo Random Number Generator or
PRNG). A failure of the entropy source can lead to poor quality random numbers, which can
compromise the security of the system.

Mitigation: The NRBG has a built-in self-test that detects repeated sequences of bits. A failure
of the entropy source is indicated to the application/user via calls to the API. Itis the
responsibility of the application to decide whether and when to fail the module as aresult of a
failed entropy source.

Interference Among Users of the Random Number Service
Threat: The original API for random number generation (in cpa_cy rand.hfile, as delivered

as part of an earlier generation of the Intel® QuickAssist Accelerator) had a single instance of
the DRBG that was shared by all users. An attacker with appropriate permissions to access the

Programmer’s Guide

i)
Secure Architecture Considerations I n te %

6.24

6.2.4.1

6.24.2

6.2.4.3

DRBG service in one process/address space could re-seed the DRBG and thereby modify the
subsequent outputs of the DRBG in other processes or contexts.

Mitigation: The API has been updated for the current generation. The updated API

(cpa_cy drbg.h)supports a FIPS-compliant DRBG API with multiple instances. Re- seeding
one such instance does not interfere with the output of another instance. The original APl has
been deprecated. Applications should use the new API.

Data Compression Service Threats

Threats against the Data Compression service include:

Read/Write of Save/Restore Context

Threat: The save/restore context is stored in DRAM. An attacker may attempt to read this
memory to determine information about the packet stream. An attacker may also overwrite
this context, affecting the result of the compression/decompression.

Mitigation: DRAM is considered to be inside the cryptographic boundary (as defined by FIPS
140-2). The normal memory protection schemes provided by the Intel® architecture processor
and memory controller, and by the operating system, prevent unauthorized access to these
memory regions.

Stateful Behavior

Threat: The combination of stateful behavior and requests to compress/decompress small
regions of memory can lead to reduced significant overhead, and could potentially be exploited
as part of a denial of service attack. This is because stateful contexts requires that the service
restore and save the session state for each request. The session state includes history data and
can be significantly larger than the packet, especially for small packets.

Mitigation: To minimize this overhead, the application can use stateless sessions.

Incomplete or Malformed Huffman Tree

Threat: An attacker who can run malicious code on the platform (see Malicious Application
Code) can deny service (reduce performance) by sending in a rogue request with an
incomplete or malformed Huffman tree. A transmission error may also lead to this situation
occurring.

Mitigation: See the mitigation proposed in Malicious Application Code. Furthermore, the slice
detects suchincomplete or malformed Huffman trees and returns an error.

Programmer’s Guide 99

I n te % Secure Architecture Considerations

6.24.4

100

Contrived Packet Stream

Threat: Similar to the general attack mechanism described in Contrived Packet Stream, there
are some aspects that are specific to the data compression service:

e An attacker can craft acompressed packet stream with a very large compression ratio (for
example, 1000:1). Generating an output buffer that is significantly larger than the input
buffer may reduce availability of the service to legitimate clients.

e An attacker can craft a packet stream with a large number of zero-length deflate blocks. This
causes the slice to consume input but produce no output.

Mitigation: The output is limited to the size of output buffer. Buffer exhaustion detection is
built into the hardware. Therefore, the application developer should allocate output buffers
based on the largest compression ratio that they wish to deal with, as required by the
application or protocol, and then handle errors reported by the API.

Programmer’s Guide

@
Supported APIs I n te I ®

7 Supported APIs

The supported APIs are described in two categories:
e Intel® QuickAssist T N:
. Additi A

7.1 Intel® QuickAssist Technology APlIs

The platforms described in this manual supports the following Intel® QuickAssist Technology
APl libraries:

¢ Cryptographic - APl definitions are located in: $ICP_ROOT/quickassist/ include/lac,
where $ICP_ROOT is the directory where the Acceleration software is unpacked. See the
Intel® QuickAssist Technology Cryptographic API Reference Manual for details.

¢ Data Compression - API definitions are located in: $ICP_ROOT/quickassist/
include/dc. See the Intel® QuickAssist Technology Data Compression API Reference
Manual for details.

Base API definitions that are common to the APl libraries are located in: $ICP_ROOT/
quickassist/include. See also the Intel® QuickAssist Technology API Programmer’s
Guide for guidelines and examples that demonstrate how to use the APIs.

7.1.1 Intel® QuickAssist Technology API Limitations

The following limitations apply when using the Intel® QuickAssist Technology APIs on the
platforms described in this manual:

e Forallservices, the maximum size of a single perform request is 4 GB.

e Forallservices, data structures that contain data required by the Intel® QuickAssist
Accelerator should be on a 64 Byte-aligned address to maximize performance. This
alignment helps minimize latency when transferring data from DRAM to an accelerator
integrated in the PCH device.

e Forthe key generation cryptographic API, the following limitations apply:
— Secure Sockets Layer (SSL) key generation opdata:
— Maximum secret lengthis 512 bytes
— Maximum userLabel length is 136 bytes
— Maximum generatedKeyLenInBytes is 248
— Transport Layer Security (TLS) key generation opdata:
— Secretlength must be <128 bytes for TLS v1.0/1.1; <512 bytes for TLS v1.2
— userlLabellength must be <256 bytes
— Maximum seed size is 64 bytes
— Maximum generatedKeyLenInBytes is 248 bytes
- Mask Generation Function (MGF) opdata:
— Maximum seed lengthis 255 bytes
— Maximum maskLenInBytes is 65528

Programmer’s Guide 101

intel

102

Supported APIs

For the cryptographic service, SNOW 3G and KASUMI operations are not supported when
CpaCySymPacketTypeissetto CPA_CY_SYM_PACKET_TYPE_PARTIAL. The error
returned in this case is CPA_STATUS_INVALID_PARAM.

For the cryptographic service, when using the Deterministic Random Bit Generator
(DRBG), only one in-flight request per each instantiated DRBG (that is, per each DRBG
session) is allowed. If the user calls the cpaCyDrbgGen or cpaCyDrbgReseed function with
the session handle of a session for which a previous request is still being processed,
CPA_STATUS_RETRY is returned.

For the cryptographic service, when using DRBG with a derivation function, the maximum
security strength with which the DRBG can be instantiated is
CPA_CY_RBG_SEC_STRENGTH_128. In such a case, if the user tries to instantiate DRBG
with a higher security strength, the CPA_STATUS_INVALID_PARAM is returned.

For the cryptographic service, when using DRBG, the requirement for the use of the
derivation function (DF) is not expected to change once DRBG is instantiated.

For the cryptographic service, when using the asymmetric crypto APlIs, the buffer size
passed to the APl should be rounded to the next power of 2, or the next 3-times a power of
2, for optimum performance.

For the data compression service, only one outstanding compression request per stateful
sessionis allowed.

For the data compression service, the size of all stateful decompression requests have to be
amultiple of two with the exception of the last request.

For the data compression service, the CpaDcFileType field in the
CpaDcSessionSetupData data structure is ignored (previously this was considered for
semi-dynamic compression/decompression).

For static compression, the maximum expansion during compression is ceiling
(9*Total_lnput_Byte/8)+7 bytes. If
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS or
CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS is selected, the
maximum expansion during compression is the input buffer size plus up to ceiling
(Total_Input_Byte/65535) * 5 bytes, depending on whether the stored headers are
selected. Note, however, due to the need for a skid pad and the way the checksum is
calculated in the stored block case to prevent compression overflow, an output buffer size
of ceiling (9*Total_Input_Byte/8) + 55 bytes needs to be supplied (even though the stored
block output size might be less).

The decompression service can report various error conditions most of which arise from
processing dynamic Huffman code trees that are ill-formed. These soft error conditions are
reported at the Intel® QuickAssist Technology APl using the CpaDcRegStatus
enumeration. At the point of soft error, the hardware state will not be accurate to allow
recovery. Therefore, in this case, the Intel® QuickAssist Technology software rolls back to
the previous known good state and reports that no input has been processed and no output
produced. This allows an application to correct the source of the error and resubmit the
request.

For example, if the following source and destination buffers were submitted to the Intel®
QuickAssist Technology:

Programmer’s Guide

Supported APIs

7.1.1.1

Table 14.

intel

Consumed=0

p5reBuffer pOstBuffer
Data Length 16K Data Length 18K
Valid Deflate | Valid Deflate
Block Block
L
Consumed=0 Produced=0
The result would be:
pSrcBuffer pDstBuffer
Data Length 16K Data Length 18K
Valid Deflate | Valid Deflate
Block Block Some uncompressed Data
A

3 Produced=0

e Forstateful compression, the maximum output size is 4 GB. Stateful compression requests
that would generate an output size greater than 4.29 GB (232 bytes) will fail without an

error.

o For stateful decompression, the maximum output size is 4.29 GB (232 bytes).

Resubmitting After Getting an Overflow Error

The following table describes the behavior of the Intel® QuickAssist Technology compression

service when an overflow occurs during a compress or decompress operation.

Compression/Decompression Overflow Behavior

Stateful/ Static/ Dynamic Overflow Inputdata Valid datain Status Returned
Stateless consumed? output buffer?
Stateful (see Both Yes Possibly Possibly -n
details below)
Stateless (see Both Yes No No -n
details below)

The following describes the expected behavior of an application when an overflow occurs.

Stateful

The produced and consumed values must be used to determine where the next request starts.
Internally, the session stores the cumulativeConsumedBytes and corresponding cumulative
checksum based on these values and so expects the next request to continue after the valid

data.

Procedure

Save the output data from the Destination buffer based on cpaDcRgResults.produced.

Submit the next request with the following data:

Programmer’s Guide

103

B
I n te I® Supported APIs

7.1.1.2

Figure 22.

104

e The first"cpaDcRgResults.consumed" bytesin the Source buffer have already been
compressed, so rework the Source bufferList to start at the byte after this. Consumed = zero
is a valid case; in this case, the full Source buffer must be resubmitted.

e The same Destination buffer can be re-used. It may now be big enough if part of the source
data has been consumed already. Orincrease if preferred.

e Theresults buffer can be re-used without change. In the Stateful case, the driverignores
everything in it and overwrites it on each API call.

Stateless

In the Stateless case, the entire compression request must be resubmitted with a larger output
buffer. In this case, cpaDcRgResults. consumed, .produced

and .checksum should be ignored. If length and checksum are required, these are not
maintained in the session, and the responsibility to track these is passed up to the application.

Procedure

Resubmit the request with the following data:

e Use the same Source buffer.

o Allocate a bigger Destination buffer.

e Putthe checksum from the previous successful request into the cpaDcRgResults struct.
Dynamic Compression for Data Compression Service

Dynamic compression involves feeding the data produced by the compression hardware block
to the translator hardware block. The following figure shows the dynamic compression data

path.

Dynamic Compression Data Path

Compression Translator
Source data buffer |—f P -p{ Intermediate buffer » » Destination buffer
H/W block _ : _ H/W block
With Dynamic compression, the Dynamic defiate blocks are
inermediate buffer holds the returned to the user via the
static deflate blocks. This buffer destiniation buffer

becomes then the input of the
translator H/W block

When the compression service returns an exception (e.g., overflow error) to the user, it is
recommended to examine the bytes consumed and returned in the CpaDcRgResults
structure to verify if all the data in the source data buffer has been processed.

When the application selects the Huffman type to CPA_DC_HT FULL_DYNAMIC inthe session
and auto select best feature is setto CPA_DC_ASB_ DISABLED, the compression service may
not always produce a deflate stream with dynamic Huffman trees. For example, in the case of
an overflow during dynamic compression, static data will be returned in the destination buffer.

Programmer’s Guide

Supported APIs

7.1.1.3

intel

Maximal Expansion with Auto Select Best Feature for Data Compression
Service

Some input data may lead to a lower than expected compression ratio. This is because the
input data may not be very compressible. To achieve a maximum compression ratio, the
acceleration unit provides an auto select best (ASB) feature. In this mode, the Intel®
QuickAssist Technology hardware will first execute static compression followed by dynamic
compression and then select the output which yields the best compression ratio. To use the
ASB feature, configure the autoSelectBestHuffmanTree enumduring the session creation.

Regardless of the ASB setting selected, dynamic compression will only be attempted if the
session is configured for dynamic compression.

There are four possible settings available forthe autoSelectBestHuf fmanTree when
creating a session. Based on the ASB settings described below, the produced data returned in
the CpaDcRgResults structure will vary:

e CPA DC ASB DISABLED - ASBmodeisdisabled.

e CPA DC_ASB_STATIC DYNAMIC

Both dynamic and static compression operations are performed. The size of produced data
returned in the CpaDcRgResults structure will be the minimal value of the two operations.

Produced data in bytes = Min (Static, Dynamic)

e CPA DC_ASB UNCOMP_STATIC DYNAMIC WITH STORED HDRS

Both a dynamic and a static compression operation are performed. However, if the produced
data both for the dynamic and static operations return a greater value than the uncompressed
source data and source block headers, the source data will be used as a stored block. With this
ASB setting, a 5-byte stored block header is prepended to the stored block.

The worst-case produced data can be estimated to:

Produced data in bytes = Total input bytes + ceil (Total input bytes
/ 65535) * 5

e.g., foraninput source size of 111261 bytes, the worst-case produced data will be:
Produced data = 111261 + ceil (111261 / 65535) * 5
= 111261 + ceil (1.698) * 5
= 111261 + 2 * 5
Produced data = 111271 bytes

e CPA DC_ASB_UNCOMP STATIC DYNAMIC WITH NO_HDRS

With this ASB setting, both a dynamic and a static compression operation are performed.
However, if the produced data both for the dynamic and static operation return a greater value
than the uncompressed source data, the uncompressed source data will be sent to the
destination buffer though DMA transfer. This is the same behavior as with the ASB setting
CPA DC_ASB UNCOMP STATIC DYNAMIC WITH STORED HDRS exceptthe stored block
deflate headers are not prepended to the stored block. The produced data can be estimated
via the following:

Programmer’s Guide 105

|
I n te I ® Supported APIs

7114

7.1.2

106

Produced data in bytes = Min(Static, Dynamic, Uncompressed)

Maximal Expansion and Destination Buffer Size

For static compression operations, the worst-case possible expansion can be expressed as:

Max Static Produced data in bytes = ceil (9 * Total input bytes / 8) +
5

The memory requirement for the destination buffer is expressed by the following formula:

Destination buffer size in bytes = ceil (9 * Total input bytes / 8) +
55 bytes

The destination buffer size must consider the worst-case possible maximal expansion + 55
bytes; e.g., for an input source size of 111261 bytes, the worst-case produced data will be:
Static Produced data = ceil (9 * 111261 / 8) + 7
= ceil (125168.625) + 7
= 125169 + 7
Worst case Static Produced data = 125176 bytes
Memory required for destination buffer = ceil (9 * 111261 / 8) + 55
= ceil (125168.625) + 55
= 125169 + 7
= 125169 + 55
= 125224 bytes to be allocated

Note: Regardless of the ASB settings, the memory must be allocated for the worst case. If an
overflow occurs, either from static or dynamic compression, then the returned counters, status, and

expected application behavioris as shown per the table in Resubmitting After Getting an Overflow
Error.

Data Plane APIs Overview

The Intel® QuickAssist Technology Cryptographic APl Reference Manual and the Intel®
QuickAssist Technology Data Compression AP Reference Manual mentioned previously
contain information on the APIs that are specific to data plane applications.

These APIs are intended for use in user space applications that take advantage of the
functionality provided of the Intel® Data Plane Development Kit (Intel® DPDK). The APIs are
recommended for applications that are executing in a data plane environment where the cost
of offload (that s, the cycles consumed by the driver sending requests to the hardware) needs
to be minimized. To minimize the cost of offload, several constraints have been placed on the
APIs. If these constraints are too restrictive for your application, the traditional APIs can be
used instead (at a cost of additional IA cycles).

The definition of the Cryptographic Data Plane APIs are contained in:
$ICP_ROOT/quickassist/include/lac/cpa_cy sym dp.h

The definition of the Data Compression Data Plane APls are contained in:
$ICP_ROOT/quickassist/include/dc/cpa_dc_dp.h

Programmer’s Guide

@
Supported APIs I n te I@

7.1.21] IA Cycle Count Reduction When Using Data Plane APls

From an |A cycle count perspective, the Data Plane APls are more performant than the
traditional APIs (that s, for example, the symmetric cryptographic APIs defined in
$ICP_ROOT/quickassist/include/lac/cpa_cy sym.h). The majority of the cycle count
reduction is realized by the reduction of supported functionality in the Data Plane APIs and the
application of constraints on the calling application (see Usage Constraints on the Data Plane
APIs).

In addition, to furtherimprove performance, the Data Plane APIs attempt to amortize the cost
of a Memory Mapped 10 (MMIO) access when sending requests to, and receiving responses
from, the hardware.

A typical usage is to call the cpaCySymDpEnqueueOp () or the cpaDcDpEnqueueOp () function
multiple times with requests to process and the performOpNow flag set to CPA_FALSE. Once
multiple requests have been enqueued, the cpaCySymDpEngqueueOp () or
cpaDcDpEnqueueOp () function may be called with the performOpNow flag set to CPA_TRUE.
This sends the requests to the Intel® QuickAssist Accelerator for processing. This sequence is
shown in the following figure.

Programmer’s Guide 107

B
I n te I® Supported APIs

Figure 23. Amortizing the Cost of an MMIO Across Multiple Requests

licstion Service Access Layer ADF Hardhware

Request place on Quews,

> ot rarowere message but nct sanalles,

cralyRrmlpEnqruetipoCobsets, CPA_FALSE)

coe Ay mOnEnaRaLsCppCehsta,
CPA—FALSE}LT Request place on Queus,

:) Format hardwsare massage but not signalled.

anafktl)

cRARNERmRREnAHarsmDOpDets, CPA_TRUE)

:> Format hardwsare massage

gogRstl

Signal Hardwsare

The Intel® QuickAssist Technology APl returns a CPA_STATUS_RETRY when thering
becomes full.

The number of requests to place on the ring is application dependent and it is recommended
that performance testing be conducted with tunable parameter values.

Two functions, cpaCySymDpPer formOpNow () and cpaDCDpPerformOpNow () are also
provided that allow queued requests to be sent to the hardware without the need for queuing
an additional request. This is typically used in the scenario where a request has not been
received for some time and the application would like the enqueued requests to be sent to the
hardware for processing.

108 Programmer’s Guide

Supported APIs

7122

7.1.2.3

7.2

intel

Usage Constraints on the Data Plane APIs

The following constraints apply to the use of the Data Plane APIs. If the application can handle
these constraints, the Data Plane APIs can be used:

e Thread safety is not supported. Each software thread should have access to its own unique
instance (CpaInstanceHandle) to avoid contention on the hardware rings.

e Forperformance, polling is supported, as opposed to interrupts (which are comparatively
more expensive). Polling functions (see Polling Functions) are provided to read responses
from the hardware response queue and dispatch callback functions.

o Buffers and buffer lists are passed using physical addresses to avoid virtual-to- physical
address translation costs.

¢ Alignmentrestrictions are placed on the operation data (that is, the CpaCySymDpOpData
structure) passed to the Data Plane API. The operation data must be at least 8-byte aligned,
contiguous, resident, DMA-accessible memory.

e Only asynchronous invocation is supported, that is, synchronous invocation is not
supported.

e Thereis no support for cryptographic partial packets. If support for partial packets is
required, the traditional Intel® QuickAssist Technology APIs should be used.

e Since thread safety is not supported, statistic counters on the Data Plane APIs are not
atomic.

e Thedefaultinstance (CPA_ INSTANCE HANDLE SINGLE)is notsupported by the Data Plane
APIs. The specific handle should be obtained using the instance discovery functions
(cpaCyGetNumInstances (), cpaCyGetInstances (), and cpabDcGetNumInstances (),
cpaDcGetInstances 0).

e The submitted requests are always placed on the high-priority ring.

Cryptographic and Data Compression API Descriptions

Full descriptions of the Intel® QuickAssist Technology APIs are contained in the Intel®
QuickAssist Technology Cryptographic APl Reference Manual and the Intel® QuickAssist
Technology Data Compression APl Reference Manual. In addition to the Intel® QuickAssist
Technology Data Plane APIs, there are a number of Data Plane Polling APIs that are described

in Polling Functions.

Additional APlIs

There are a number of additional APIs that can serve for optimization and other uses outside of
the Intel® QuickAssist Technology services.

These APIs are grouped into the following categories:

Programmer’s Guide 109

]
I n te I ® Supported APIs

7.2.]

110

Dynamic Instance Allocation Functions

These functions are intended for the dynamic allocation of instances in user space. The user
can use these functions to allocate/free instances defined in the [DYN] section of the
configuration file.

These functions are useful if the user needs to dynamically allocate/free cryptographic (cy) or
data compression (dc) instances at runtime. This is in contrast to statically specifying the
number of cy or dc instances at configuration time, where the number of instances cannot be
changed unless the user modifies the .con £ file and restarts the acceleration service.

The advantage of using these functions is that the number of cy/dc instances can be changed
on-demand at runtime. The disadvantage is that runtime performance is impacted if the
number of cy/dc instances is changed frequently.

If the user space application knows the number of instances to be used before starting, then
the user can define Number<Service>Instances in the [User Process] section of the *.conf file.

If the user space application can only know the number of instances at runtime, or wants to
change the number at runtime, then the user can call the Dynamic Instance Allocation
functions to allocate/free instances dynamically. The Number<Service>Instances in the
[DYN] section of the . conf file(s) defines the maximum number of instances that can be
allocated by user processes.

This can be useful when sharing instances among multiple applications at runtime. The
maximum number of instances in a system is known in advance and it is possible to distribute
them statically between applications using the configuration files. Once the driver is started,
however, this cannot be changed. If, for example, there are 32 cy instances and we need to
provision 16 processes, we can statically assign two cy instances per process. Thiscanbe a
problem when a process needs more instances at any given time. With dynamic instance
allocation, we can create a pool of instances that can be "shared” between the processes.

Continuing the example above with 32 cy instances and 16 processes, we can assign statically
one cy instance to each process and create a pool of 16 [DYN] instances from the remainder. If
atruntime one process needs more acceleration power, it can allocate some more instances
from the pool, say, for example, eight, use them as appropriate and free them back to the pool
when the work has been completed.

Thereafter, other processes can use these instances as needed.

All dynamic instance allocation function definitions are located in: $ICP_ROOT/
quickassist/lookaside/access layer/include/icp sal user.h

Programmer’s Guide

Supported APIs

7.2.1.1

7.2111

7.2112

7.211.3

7.21.2

intel.

The dynamic instance allocation functions include:

e icp_sal userDcinstancesAllocByDevPkg
. | ~yGetAvailableNumDynl ByPkas
icp_sal_userCyGetAvailableNumDynInstances

Get the number of cryptographic instances that can be dynamically allocated using the
icp sal userCyInstancesAlloc function.

Syntax
CpaStatus icp_sal userCyGetAvailableNumDynInstances (Cpa32U0

*pNumCyInstances) ;

Parameters

*pNumCyInstances A pointertothe numberof cryptographicinstances available for
dynamic allocation.

Return Value

Theicp sal userCyInstancesAlloc functionreturnsone of the following codes:

Code Meaning

CPA_STATUS_ SUCCESS Successfully retrieved the number of cryptographic instances
available for dynamic allocation.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_userDcGetAvailableNumDynlInstances

Get the number of data compression instances that can be dynamically allocated using the
icp sal userDcInstancesAlloc function.

Programmer’s Guide m

B
I n te I® Supported APIs

7.21.2.1

7.21.2.2

7.21.2.3

7.21.3

7.2.1.3.1

7.21.3.2

7.21.3.3

12

Syntax
CpaStatus icp sal userDcGetAvailableNumDynInstances (Cpa320

*pNumDcInstances) ;

Parameters

*pNumDcInstances A pointertothe number of data compressioninstances available for
dynamic allocation.

Return Value

Theicp sal userDcGetAvailableNumDynInstances functionreturnsone of the following
codes:

Code Meaning

CPA_STATUS_ SUCCESS Successfully retrieved the number of cryptographic instances
available for dynamic allocation.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_userCylnstancesAlloc

Allocate the specified number of cryptographic (cy) instances from the amount specified in
the [DYN] section of the configuration file. The numCyInstances parameter specifies the
number of cy instances to allocate and must be less than or equal to the value of the
NumberCyInstances parameterinthe [DYN]section of the configuration file.

Syntax

CpaStatus icp_sal userCyInstancesAlloc (Cpa32U numCyInstances,
CpalInstanceHandle *pCyInstances);

Parameters
numCyInstances The number of cyinstances to allocate.

*pCyInstances A pointerto the cyinstances.

Return Value

Theicp sal userCyInstancesAlloc functionreturnsone of the following codes:

Code Meaning
CPA_STATUS_ SUCCESS Successfully allocated the sepecified number of cy instances.

CPA_STATUS FAIL Indicatesafailure.

Programmer’s Guide

Supported APIs

7.214

7.21.4.

72142

7.21.4.3

7.215

7.2.15.1

7.215.2

7.215.3

intel

icp_sal_userDclInstancesAlloc

Allocate the specified number of data compression (dc) instances from the amount specified
in the [DYN] section of the configuration file. The numDcInstances parameter specifies the
number of dc instances to allocate and must be less than or equal to the value of the
NumberDcInstances parameterinthe [DYN] section of the configuration file.

Syntax

CpaStatus icp sal userDcInstancesAlloc (Cpa32U numDcInstances,
CpalnstanceHandle *pDcInstances) ;

Parameters
numDcInstances The number of dcinstances to allocate.

*pDcInstances A pointerto the dcinstances.

Return Value

The icp_sal_userDclnstancesAlloc function returns one of the following codes:

Code Meaning
CPA_STATUS_ SUCCESS Successfully allocated the specified number of dc instances.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_userCyFreelnstances

Free the specified number of cryptographic (cy) instances from the amount specified in the
[DYN] section of the configuration file. The numCyInstances parameter specifies the number
of cy instances to free.

Syntax

CpaStatus icp sal userCyFreeInstances (Cpa32U0 numCyInstances,
CpalnstanceHandle *pCyInstances);

Parameters
numCyInstances The number of cyinstances to free.

*pCyInstances A pointerto the cyinstances to free.

Return Value

The icp sal userCyFreelInstances functionreturns one of the following codes:

Code Meaning

Programmer’s Guide 13

B
I n te I® Supported APIs

7.21.6

7.2.1.6.1

7.21.6.2

7.21.6.3

7.21.7

7.21.7.1

7.217.2

na

CPA_STATUS_SUCCESS Successfully freed the specified number of cy instances.

CPA STATUS FAIL Indicatesafailure.

icp_sal_userDcFreelnstances

Free the specified number of data compression (dc) instances from the amount specified in
the [DYN] section of the configuration file. The numDcInstances parameter specifies the
number of dc instances to free.

Syntax

CpaStatus icp sal userDcFreelInstances (Cpa32U numDcInstances,
CpalInstanceHandle *pDcInstances);

Parameters
numDcInstances The number of dcinstances to free.

*pDcInstances A pointer to the dcinstances to free.

Return Value

The icp sal userDcInstancesAlloc functionreturnsone of the following codes:

Code Meaning
CPA_STATUS_SUCCESS Successfully freed the specified number of dc instances.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_userCyGetAvailableNumDynInstancesByDevPkg

Get the number of cryptographic instances that can be dynamically allocated using the
icp sal userCyGetAvailableNumDynInstancesByDevPkg function.

Syntax

CpaStatus icp sal userCyGetAvailableNumDynInstancesByDevPkg (Cpa32U
*pNumCyInstances, Cpa32U devPkglID) ;

Parameters

*pNumCyInstances A pointer to the number of cryptographic instances available for dynamic
allocation.

devPkgID The device ID of the device of interest (Same as accellD in other APIs) If -1then
selects from all devices.

Programmer’s Guide

Supported APIs

7.21.7.3

7.21.8

7.21.8.1

7.218.2

7.2.1.8.3

7.21.9

7.219.1

intel

Return Value

Theicp sal userCyGetAvailableNumDynInstancesByDevPkg functionreturnsone of
the following codes:

Code Meaning

CPA_STATUS_ SUCCESS Successfully retrieved the number of cryptographic instances
available for dynamic allocation.

CPA STATUS FAIL Indicatesafailure.

icp_sal_userDcGetAvailableNumDynInstancesByDevPkg

Get the number of data compression instances that can be dynamically allocated using the
icp sal userDcGetAvailableNumDynInstancesByDevPkg function.

Syntax

CpaStatus icp sal userDcGetAvailableNumDynInstancesByDevPkg (Cpa32U
*pNumDcInstances, Cpa32U devPkglID) ;

Parameters

*pNumDcInstances A pointer to the number of data compression instances available for
dynamic allocation.

devPkgID The device ID of the device of interest (Same as accellD in other APIs) If

-1then selects from all devices.

Return Value

Theicp sal userDcGetAvailableNumDynInstancesByDevPkg functionreturnsone of
the following codes:

Code Meaning

CPA_STATUS_ SUCCESS Successfully retrieved the number of cryptographic instances
available for dynamic allocation.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_userCylnstancesAllocByDevPkg

Allocate the specified number of cryptographic (cy) instances from the amount specified in
the [DYN] section of the configuration file. The numCyInstances parameter specifies the
number of cy instances to allocate and must be less than or equal to the value of the
NumberCyInstances parameterinthe [DYN] section of the configuration file.

Syntax
CpaStatus icp sal userCyInstancesAllocByDevPkg (Cpa320

Programmer’s Guide 15

B
I n te I® Supported APIs

7.219.2

7.219.3

7.2.1.10

7.2.1.10.1

7.2.1.10.2

7.2.1.10.3

16

numCyInstances, CpalnstanceHandle *pCyInstances,devPkglID) ;

Parameters
numCyInstances The number of cyinstances to allocate.
*pCyInstances A pointerto the cyinstances.

devPkgID The device ID of the device of interest (Same as accellD in other APIs) If -1then
selects from all devices.

Return Value

Theicp sal userCyInstancesAllocByDevPkg functionreturnsone of the following
codes:

Code Meaning
CPA_STATUS_ SUCCESS Successfully allocated the sepecified number of cy instances.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_userDclInstancesAllocByDevPkg

Allocate the specified number of data compression (dc) instances from the amount specified
in the [DYN] section of the configuration file. The numDcInstances parameter specifies the
number of dc instances to allocate and must be less than or equal to the value of the
NumberDcInstances parameterinthe [DYN]section of the configuration file.

Syntax
CpaStatus icp sal userDcInstancesAllocByDevPkg (Cpa32U0
numDcInstances, CpalnstanceHandle *pDcInstances,devPkglID) ;

Parameters
numDcInstances The number of dcinstances to allocate.
*pDcInstances A pointerto the dcinstances.

devPkgID The device ID of the device of interest (Same as accellD in other APIs) If -1then
selects from all devices.

Return Value

Theicp sal userDcInstancesAllocByDevPkg functionreturnsone of the following
codes:

Code Meaning

CPA_STATUS_ SUCCESS Successfully allocated the specified number of dc instances.

Programmer’s Guide

Supported APIs

7.211

7.2111.1

7.2111.2

7.2111.3

7.21.12

7.2.1.12.1

7.2.1.12.2

intel

CPA_STATUS FAIL Indicatesafailure.

icp_sal_userCyGetAvailableNumDyninstancesByPkgAccel

Get the number of cryptographic instances that can be dynamically allocated using the
icp sal userCyGetAvailableNumDynInstancesByPkgAccel function.

Syntax

CpaStatus icp sal userCyGetAvailableNumDynInstancesByPkgAccel (
Cpa32U *pNumCyInstances,Cpa32U devPkgID,Cpa32U accelerator number) ;

Parameters

*pNumCyInstances A pointer to the number of cryptographic instances available for dynamic
allocation.

devPkgID the device ID of the device of interest (Same as accellD in other APIs) If
-1then selects from all devices.

accelerator number Accelerator Engine to use, valid values are 0..3

Return Value

Theicp sal userCyGetAvailableNumDynInstancesByPkgAccel functionreturnsone of
the following codes:
Code Meaning

CPA_STATUS_ SUCCESS Successfully retrieved the number of cryptographic instances
available for dynamic allocation.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_userCylnstancesAllocByPkgAccel

Allocates the specified number of cryptographic (cy) instances from the amount specified in
the [DYN] section of the configuration file. The numCyInstances parameter specifiesthe
number of cy instances to allocate and must be less than or equal to the value of the
NumberCyInstances parameterreturned by a call to the

icp sal userCyInstancesAllocByPkgAccel function.

Syntax

CpaStatus icp sal userCyInstancesAllocByPkgAccel (Cpa32U
numCyInstances,CpalnstanceHandle *pCyInstances,devPkgID,Cpa32U
accelerator number) ;

Parameters

NumCyInstances the number of cy instances to allocate.

Programmer’s Guide n7

B
I n te I® Supported APIs

7.2112.3

7.2.2

7.2.2]

7.2.2.1.]

72212

7.2.213

18

*pCyInstances A pointerto the cy instances.

devPkgID the device ID of the device of interest (Same as accellD in other APIs) If -1then
selects from all devices.

accelerator number Accelerator Engine to use, valid values are 0..3

Return Value

Theicp sal userCyInstancesAllocByDevPkg functionreturnsone of the following
codes:

Code Meaning
CPA_STATUS SUCCESS Successfully allocated the specified number of cy instances.

CPA_STATUS FAIL Indicatesafailure.

IOMMU Remapping Functions
These functions are intended for OMMU remapping operations.

AllITOMMU remapping function definitions are located in: $ICP_ROOT/quickassist/
lookaside/access layer/include/icp sal iommu.h

The IOMMU remapping functions include:

icp_sal_iommu_get_remap_size

Returnsthepage size rounded forIOMMU remapping.

Syntax

size t icp sal iommu get remap size (size t size);

Parameters

size t the minimum required page size.

Return Value

Theicp sal iommu get remap size functionreturnsthe page_size rounded for OMMU
remapping.

Programmer’s Guide

@
Supported APIs I n te I@

7222 icp_sal_iommu_map

Adds an entry to the (OMMU remapping table.

72221 Syntax
CpaStatus icp sal iommu map (Cpa64U phaddr, Cpa64U iova, size t

size);

72222 Parameters
phaddr Host physical address.
iova Guestphysical address.

size Size of the remapped region.

7.22.2.3 Return Value

Theicp sal iommu map functionreturns one of the following codes:

Code Meaning
CPA_STATUS SUCCESS Successful operation.

CPA_STATUS FAIL Indicatesafailure.

7223 icp_sal_iommu_unmap

Removes an entry from the IOMMU remapping table.

72231 Syntax

CpaStatus icp _sal iommu unmap (Cpa64U iova, size t size);

7.223.2 Parameters
iova Guest physical address to be removed.

size Size of the remapped region.

7.2.2.3.3 Return Value

Theicp sal iommu unmap functionreturnsone of the following codes:

Code Meaning
CPA STATUS SUCCESS Successful operation.

CPA STATUS FAIL Indicatesafailure.

Programmer’s Guide n9o

]
I n te I ® Supported APIs

7224

7.2.3

120

IOMMU Remapping Function Usage

These functions are required when the user wants to access an acceleration service from the
Physical Function (PF) when SR-IOV is enabled in the driver. In this case, all I/O transactions
from the device go through DMA remapping hardware. This hardware checks 1) if the
transaction is legitimate and 2) what physical address the given /O address needs to be
translated to. If the I/O address is not in the transaction table, it fails with a DMA Read error
shown as follows:

DRHD: handling fault status reg 3

DMAR: [DMA Read] Request device [02:01.2] fault addr <ADDR>

DMAR: [fault reason 06] PTE Read access 1s not set

To make this work, the user must add a 1:1 mapping as follows:
1. Getthe size required fora buffer:
int size = icp sal iommu get remap size(size of data);
2. Allocate abuffer:
char *buff = malloc(size);
3. Getaphysical pointer to the buffer:
buff phys addr = virt to phys (buff);
4. Addal:1mapping to the IOMMU tables:
icp_sal iommu map (buff phys addr, buff phys addr, size);
5. Usethe bufferto send data to the accelerator.
6. Before freeing the buffer, remove the IOMMU table entry:
icp_sal iommu unmap (buff phys addr, size);
7. Freethe buffer:
free (buff) ;

The IOMMU remapping functions can be used in all contexts that the Intel® QuickAssist
Technology APIs can be used, that is, kernel and user space in a Physical Function (PF) DomO,
as well as kernel and user space in a Virtual Machine (VM). In the case of VM, the APIs will do
nothing. In the PF DomO case, the APIs will update the hardware IOMMU tables.

Polling Functions

These functions are intended for retrieving response messages that are on the rings and
dispatching the associated callbacks.

All polling function definitions are located in: SICP_ROOT/quickassist/
lookaside/access_layer/include/icp_sal poll.h

The polling functions include:
e icp_sal_pollBank

e icp_sal_pollAllIBanks

e icp_sal_CyPolllnstance

e icp_sal_DcPollinstance

e icp_sal_CyPollDplnstance

Programmer’s Guide

Supported APIs

7.2.3.1

7.2.3.1.1

7.23.1.2

7.2.3.1.3

7.2.3.2

7.2.3.21

72322

intel

e icp_sal_DcPollDplnstance

icp_sal_poliBank

Poll all rings on the given accelerator on a given bank number to determine if any of the rings
contain response messages from the Intel® QuickAssist Accelerator. The response quota
input parameter is perring.

Syntax

CpaStatus icp_sal_pollBank (Cpa32U accelld, Cpa32U bank_number, Cpa32U
response_quota);

Parameters

accelId thedevice numberassociated with the acceleration device. The valid rangeis O to
the number of dh89xxcc devices in the system.

bank number thenumberof the memory bank onthe dh89%xxcc device that will be polled
forresponse messages. The validrangeisOto 7.

response_quota the maximum number of responses to take from the ring in one call.

Return Value

The icp sal pollBank functionreturnsone of the following codes:

Code Meaning
CPA_STATUS_ SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY Thereis nodata onanyring onany bank or the banks are already being
polled.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_pollAllIBanks

Poll all banks on the given acceleration device to determine if any of the rings contain response
messages from the Intel® QuickAssist Accelerator. The response quota input parameter is
perring.

Syntax
CpaStatus icp sal pollAllBanks (Cpa32U accelld, Cpa32U0
response_quota) ;

Parameters

accelId thedevice numberassociated with the acceleration device. The valid range is O to
the number of dh89xxcc devices in the system.

Programmer’s Guide 121

B
I n te I® Supported APIs

7.23.23

7.2.3.3

Note:

response_quota the maximum number of responses to take from the ring in one call.

Return Value

Theicp sal pollAllBanks functionreturnsone of the following codes:

Code Meaning
CPA STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY Thereis nodata onany ring onany bank or the banks are already being
polled.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_CyPolllnstance

Poll the cryptographic (Cy) logical instance associated with the instanceHandle to retrieve
requests that are on response rings associated with that instance and dispatch the associated
callbacks. The response quota input parameteris the maximum number of responses to
process in one call.

Theicp sal CyPollInstance () functionisused inconjunctionwiththe CyxIsPolled

parameter in the acceleration configuration file. Refer to_ Cryptographic L.ogical Instance Parameters.

7.2.3.3.1

7.23.3.2

7.23.3.3

122

Note:

Syntax
CpaStatus icp_sal CyPollInstance (CpalnstanceHandle
instanceHandle, Cpa32U response quota);

Parameters

instanceHandle thelogicalinstance to poll for responses onthe responsering.
response_quota the maximum number of responses to take from the ring in one call.

When set to O, all responses are retrieved.

Return Value

Thecp sal CyPollInstance functionreturnsone of the following codes:

Code Meaning
CPA STATUS SUCCESS The function was successful.

CPA_STATUS RETRY There are no responses on the rings associated with the specified logical
instance.

Aringis only polled if it contains data.

CPA STATUS FAIL Indicatesafailure.

Programmer’s Guide

@
Supported APIs I n te I@

7.2.3.4 icp_sal_DcPollinstance

Poll the data compression (Dc) logical instance associated with the instanceHandle to
retrieve requests that are on response rings associated with that instance, and dispatch the
associated callbacks. The response quota input parameter is the maximum number of
responses to process in one call.

Note: Theicp sal DcPollInstance () functionisusedinconjunctionwiththe DcXxIsPolled

parameter in the acceleration configuration file. Refer to Data Compression L ogical Instance
Parameters.

7.2.34.1 Syntax
CpaStatus icp_sal DcPollInstance (CpalnstanceHandle

instanceHandle, Cpa32U response quota);

7.2.3.4.2 Parameters

instanceHandle thelogicalinstance to poll for responses on the response ring.
response_quota the maximum number of responses to take from the ring in one call.

When set to O, all responses are retrieved.

7.2.3.4.3 Return Value

The icp sal DcPollInstance functionreturnsone of the following codes:

Code Meaning
CPA_STATUS_ SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical
instance.

Note: Aringisonly polledif it contains data.

CPA_STATUS FAIL Indicatesafailure.

7.2.35 icp_sal_CyPollDplnstance

Poll a particular cryptographic (Cy) data path logical instance associated with the
instanceHandle toretrieve requests that are on the high-priority symmetric ring associated
with that instance and dispatch the associated callbacks. The response quota input
parameter is the maximum number of responses to process in one call.

7.2.35.1 Syntax

Note: This functionis a Data Plane API function and consequently the restrictionsin Usage
Constraints on the Data Plane APls apply.

CpaStatus icp sal CyPollDpInstance (CpalnstanceHandle

Programmer’s Guide 123

B
I n te I® Supported APIs

7.235.2

7.235.3

7.2.3.6

7.2.3.6.1

instanceHandle, Cpa32U response quota);

Parameters

instanceHandle thelogicalinstance to poll for responses onthe responsering.
response _quota the maximum number of responses to take from the ring in one call.

When set to O, all responses are retrieved.

Return Value

The icp sal CyPollDpInstance () functionreturnsone of the following codes:

Code Meaning
CPA STATUS SUCCESS The function was successful.

CPA_STATUS_ RETRY There are no responses on the rings associated with the specified logical
instance.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_DcPollDplnstance

Poll a particular Data Compression (Dc) data path logical instance associated with the
instanceHandle toretrieve requests thatare ontheresponse ring associated with that
instance. The response _quota input parameteris the maximum number of responses to
process inone call.

Syntax

Note: This functionis a Data Plane API function and consequently the restrictionsin Usage
Constraints on the Data Plane APls apply.

7.2.3.6.2

7.2.3.6.3

124

CpaStatus icp_sal DcPollDpInstance (CpalnstanceHandle
instanceHandle, Cpa32U response quota);

Parameters

instanceHandle thelogicalinstance to poll for responses on the response ring.
response_quota the maximum number of responses to take from the ring in one call.

When set to O, all responses are retrieved.

Return Value

Theicp sal DcPollDpInstance functionreturns one of the following codes:

Code Meaning

CPA_STATUS_ SUCCESS The function was successful.

Programmer’s Guide

i}
Supported APIs I n te I ®

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical
instance.

CPA STATUS FAIL Indicatesafailure.

7.2.4 Random Number Generation Functions

These functions allow the configuration of the Intel® QuickAssist Technology random number
generation APls.

Non Deterministic Random Bit Generator (NRBG) Support

Also known as True Random Number Generator (TRNG), NRBG is only available on half of the
cryptoinstances. Only two of the four Intel® Communications Chipset 8900 to 8920 Series
device crypto accelerators offer TRNG hardware support. However, the user can employ the
same entropy source with multiple DRBG instances.

In an Intel® Communications Chipset 8900 to 8920 Series device, the following accelerators
are available:

e FourCipherslices
e Four Authentication slices

e Two TRNG
The NRBG slice can be accessed via the Intel® QuickAssist Technology NRBG API.
Deterministic Random Bit Generator (DRBG) Support

Implemented in software, DRBG processing takes some entropy as input and then performs
Advanced Encryption Standard (AES) operations on the input using Intel® Communications
Chipset 8900 to 8920 Series hardware.

The output is a deterministic random number. Once the user has the first random number from
DRBG, the next number can be determined (assuming all AES parameters are known).

The DRBG in Intel® QuickAssist Technology is configured with an entropy source. One option
is to use the Intel® QuickAssist Technology NRBG as the entropy source. This is what the
performance sample code does but any other entropy source can also be configured (see the
random number generation function list below).

Allrandom number generation function definitions are located in the following header files:

e SICP ROOT/quickassist/lookaside/access layer/include/
icp_sal drbg impl.h

e SICP ROOT/quickassist/lookaside/access layer/include/ icp sal drbg ht.h

e SICP ROOT/quickassist/lookaside/access layer/include/ icp_sal nrbg ht.h

The random number generation functions include:
. SetE FuncRedi
. -

Programmer’s Guide 125

B
I n te I® Supported APIs

7.24.1

7.2.4.1.1

7.24.1.2

7.2.4.1.3

7.24.14

7.24.2

126

. DEReqEuncRedi
e icp sal nrbgHealthTest

The icp sal drbgGetEnropyInputFuncRegister,

icp sal drbgGetNonceFuncRegister oricp sal drbgIsDFRegFuncRegister
functions must be called before calling any other Deterministic Random Bit Generator (DRBG)
function.

The other functions should be called to validate that the DRBG is working correctly.

icp_sal_drbgGetEnropylnputFuncRegister

Allows the client to register a function that the implementation uses to retrieve inputs to the
DRGB entropy source.

Syntax

IcpSalDrbgGetEntropyInputFunc
icp sal drbgGetEntropyInputFuncRegister (
IcpSalDrbgGetEntropyInputFunc func) ;

Parameters

func the function that the implementation may call to retrieve the DRGB entropy source.

Return Value

Theicp sal drbgGetEntropyInputFuncRegister functionreturns the functionthatwas
previously registered with the implementation or NULL if no function was previously
registered.

Sample Code

Refer to the sample application that demonstrates the random number generator capability
provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access layer/src/sample code/
functional/sym/nrbg sample/

icp_sal_drbgGetinstance

Retrieves the instance handle that DRBG is using.

Programmer’s Guide

Supported APIs

7.24.2]

72422

7.2.4.2.3

7.24.3

7.24.3.1

72432

7.24.3.3

72434

7.24.4

7.2.4.4.1

intel

Syntax
icp sal drbgGetInstance (CpaCyDrbgSessionHandle sessionHandle,
CpalnstanceHandle **pDrbglInstance) ;

Parameters

sessionHandle [in] The DRBG session handle structure that contains the session handle.

**pDrbgInstance [out] A pointertotheinstance handle.

Return Value

None

icp_sal_drbgGetNonceFuncRegister

Allows the client to register a function that the implementation uses to retrieve the DRGB
nonce.

Syntax

IcpSalDrbgGetNonceFunc icp sal drbgGetNonceFuncRegister (
IcpSalDrbgGetNonceFunc func) ;

Parameters

func the function that the implementation may call to retrieve the nonce.

Return Value

Theicp sal drbgGetNonceFuncRegister functionreturns the function that was
previously registered with the implementation or NULL if no function was previously
registered.

Sample Code

Refer to the sample application that demonstrates the random number generator capability
provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access layer/src/sample code/
functional/sym/nrbg sample/

icp_sal_drbgHT Generate

Tests the health of the Generate function as described in NIST SP 800-90, section 11.3.3.

Syntax
CpaStatus icp sal drbgHTGenerate (const CpalnstanceHandle

instanceHandle, IcpSalDrbgTestSessionHandle testSessionHandle) ;

Programmer’s Guide 127

B
I n te I® Supported APIs

72442

72443

7.245

7.2.4.5.

7.24.5.2

7.2.4.5.3

7.24.6

7.2.4.6.1

128

Parameters
instanceHandle the handle of the instance for which DRBG is to be tested.

testSessionHandle thehandle of the DRBG health test session. Physically contiguous
memory for this session should be allocated by the client of the API.

Return Value

The icp sal drbgHTGenerate functionreturnsone of the following codes:

Code Meaning
CPA STATUS SUCCESS Healthtests passed.

CPA_STATUS FAIL Healthtests failed.

icp_sal_drbgHTGetTestSessionSize

Gets the size of the contiguous memory that needs to be allocated by the user for the DRBG
health test session.

Syntax
CpaStatus icp sal drbgHTGetTestSessionSize (CpalnstanceHandle

instanceHandle, Cpa32U *pTestSessionSize) ;

Parameters
instanceHandle thehandle of theinstance for which DRBG s to be tested.

*pTestSessionSize A pointerto a variable to store size of the memory required for DRBG
health test session.

Return Value

Theicp sal drbgHTGetTestSessionSize functionreturnsone of the following codes:

Code Meaning
CPA_STATUS SUCCESS Successfully retrieved the health test session size.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_drbgHTInstantiate

Tests the health of Instantiate functionality as described in NIST SP 800-90, section 11.3.2.
This function tests Instantiate for all possible setup configurations.

Syntax
CpaStatus icp sal drbgHTInstantiate (const CpalnstanceHandle

Programmer’s Guide

Supported APIs

7.2.4.6.2

7.2.4.6.3

7.24.7

7.2.4.7.1

7.2.4.7.2

7.24.7.3

7.24.8

7.24.8.

intel

instanceHandle, IcpSalDrbgTestSessionHandle testSessionHandle) ;

Parameters

instanceHandle the handle of the instance for which DRBG is to be tested.
testSessionHandle the handle of the DRBG health test session. Physically contiguous
memory for this session should be allocated by the client of the API.

Return Value

The icp sal drbgHTInstantiate functionreturnsone of the following codes:

Code Meaning
CPA_STATUS SUCCESS Health tests passed.

CPA_STATUS FAIL Healthtests failed.

icp_sal_drbgHTReseed

Tests the health of the Reseed function as described in NIST SP 800-90, section 11.3.4.

Syntax
CpaStatus icp sal drbgHTReseed (const CpalnstanceHandle

instanceHandle, IcpSalDrbgTestSessionHandle testSessionHandle) ;

Parameters

instanceHandle the handle of the instance for which DRBG is to be tested.
testSessionHandle the handle of the DRBG health test session. Physically contiguous
memory for this session should be allocated by the client of the API.

Return Value

Theicp sal drbgHTReseed functionreturns one of the following codes:

Code Meaning
CPA STATUS SUCCESS Health tests passed.

CPA_STATUS FAIL Healthtests failed.

icp_sal_drbglsDFRegFuncRegister

Allows the client to register a function that the implementation uses to check if a derivation
functionis required.

Syntax

IcpSalDrbgIsDFRegFunc icp sal drbgIsDFRegFuncRegister
(IcpSalDrbgIsDFRegFunc func)

Programmer’s Guide 129

B
I n te I® Supported APIs

7.24.82

7.2.4.83

7.2.4.8.4

7.24.9

7.2.4.9.1

7.2.4.9.2

7.24.9.3

130

Parameters

func the function that the implementation may call to check if a derivation function is required.

Return Value

Theicp sal drbgIsDFReqgFuncRegister functionreturns the functionthatwas previously
registered with the implementation or NULL if no function was previously registered.

Sample Code

Refer to the sample application that demonstrates the random number generator capability
provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access layer/src/sample code/
functional/sym/nrbg sample/

icp_sal_nrbgHealthTest

This function performs a check on the deterministic parts of the NRBG. It also provides the
caller with the value of continuous random number generator test failures for n=64 bits. Refer
to FIPS 140-2, section 4.9.2 for details. A non-zero value for the counter does not necessarily
indicate a failure. It is statistically possible that consecutive blocks of 64 bits will be identical,
and the RNG will discard the identical block in such cases. This counter allows the calling
application to monitor changes in this counter and to use this to decide whether to mark the
NRBG as faulty, based on the local policy or statistical model.

Syntax
CpaStatus icp sal nrbgHealthTest (const CpalnstanceHandle

instanceHandle, Cpa32U *pContinuousRngTestFailures) ;

Parameters
instanceHandle the handle of the instance.

*pContinuousRngTestFailures the number of continuous random number generator test
failures.

Return Value

Theicp sal nrbgHealthTest functionreturnsone of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Health tests passed.

CPA STATUS RETRY Resubmitthe request.

CPA_STATUS_ INVALID_ PARAM Invalid parameterpassedin.

CPA STATUS RESOURCE Errorrelatedto system resources.

Programmer’s Guide

Supported APIs

72494

7.2.4.10

7.25

intel

CPA_STATUS_ FAIL Health tests failed.

Sample Code

Refer to the sample application that demonstrates the random number generator capability
provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access layer/src/sample code/
functional/sym/nrbg sample/

DRBG Health Test and cpaCyDrbgSessionlnit Implementation Detail

When using the acceleration driver for DRBG functionality, calls to

cpaCyDrbgSessionInit () and the DRBG Health Test (DRBG HT) functions normally block
while waiting for a response. Something (for example, another thread) is required to unblock
the thread of execution.

When the application is using interrupts, this is not a problem. However, when the applicationis
polling, this is an issue, especially for single-threaded applications, where there is no "polling
thread".

Starting with software release 1.0.1, a build option has been added to the acceleration driver to
allow the cpaCyDrbgSessionInit (0) and DRBG HT functions to poll for responses
internally, rather than depending on an external polling thread. Instead of just waiting, these
functions will now go into aninternal loop, where they poll and wait with a pre-defined interval
between polls (default 10 ms).

This functionality is automatically set at compile timeinuser space only.Itisnotusedin
kernel space.

The default polling interval for cpaCyDrbgSessionInit () pollingis 10 ms. This can be
modified by adding the drbgPol1AndWaitTimeMS parameter to the GENERAL section of the
config file (see General Parameters). The polling in cpaCyDrbgSessionInit () islimitedto
the low-priority symmetric response ring to ensure that other rings in that instance do not have
their responses polled.

Using the DRBG_POLL AND WAIT option at compile time now means that a polling application
that needs to use the DRBG functionality can now be single-threaded and does not depend on
a separate polling thread.

User Space Access Configuration Functions

Functions that allow the configuration of user space access to the Intel® QuickAssist
Technology services from processes running in user space.

Alluser space access configuration function definitions are located in SICP_ROOT/
quickassist/lookaside/access layer/include/icp sal user.h.

The user space access configuration functions include:
e icp_sal_userStart

e icp_sal_userStartMultiProcess

Programmer’s Guide 131

I n te I ® Supported APIs

7.2.5.1

e icp_sal_userStop

icp_sal_userStart

Initializes user space access to an Intel® QuickAssist Accelerator and starts the services
configured in the pProcessName section of the configuration file. This function needs to be
called prior to any call to Intel® QuickAssist Technology API function from the user space
process. This functionis typically called only once in a user space process.

Note: Theicp sal userStart functionisforuse only with the earlier configuration file variant
(that s, the configuration file does not contain ConfigVersion = 2).

7.25.1.1

7.251.2

7.25.13

7.25.1.4

7.25.2

Syntax

CpaStatus icp_sal_userStart (const char *pProcessName);

Parameters

*pProcessName the name of the process corresponding to the section in the configuration file
that defines and configures the services accessible to the process.

Return Value

The icp sal userStart functionreturns one of the following codes:

Code Meaning

CPA_STATUS_ SUCCESS Successfully started user space access to the Intel® QuickAssist
Accelerator.

CPA STATUS FAIL Operation failed.

Notes

None

icp_sal_userStartMultiProcess

Performs a function similarto icp _sal userStart (), thatis, initializes user space access to
an Intel® QuickAssist Accelerator and starts the instances configured, if any, in the given
section of the configuration file.

Note: The icp sal userStartMultiProcess () functionis to be used with the simplified
configuration file only (that is, the configuration file with Configversion = 2).

132

The new configuration format allows the user to easily create a configuration for many user
space processes. The driver internally generates unique process names and a valid
configuration for each process based on the section name (pSectionName) and mode
(limitDevAccess) provided.

For example, on an M device system, if all M configuration files contain:

Programmer’s Guide

Supported APIs

7.25.2.1

72522

7.25.23

72524

intel

[IPSec]
NumProcesses = N

LimitDevAccess = 0

then Ninternal sections are generated (each with instances on all devices) and N processes
can be started atany given time. Each processcancall icp_sal userStartMultiProcess
("IPsec", CPA_ FALSE)and the driver determines the unique name to use for each process.

Similarly, on an M device system, if all M configuration files contain:
[SSL]
NumProcesses = N

LimitDevAccess=1

then M*N internal sections are generated (each with instances on one device only) and M*N
processes can be started at any given time. Each process can call

icp sal userStartMultiProcess ("SSL", CPA_ TRUE) and the driver determines the
unique name to use for each process.

Refer to Configuring Multiple Processes on a Multiple-Device System for a detailed example.

Syntax

CpaStatus icp_sal userStartMultiProcess (const char

*pSectionName, CpaBoolean limitDevAccess);

Parameters
*pSectionName the section name described in the simplified configuration file format.

limitDevAccess Correspondstothe LimitDevAccess parameter settingin the simplified
configuration file format.

Return Value

Theicp sal userStartMultiProcess functionreturns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully started user space access to the Intel® QuickAssist
Accelerator as defined in the configuration file.

CPA STATUS FAIL Operation failed.

icp_sal_userStartMultiProcess Usage
This topic describes a typical usage of the icp _sal userStartMultiProcess function.

A common approach is as follows:

1. Theuser starts a main application (for example, an Apache web server oran OpenSSL*
speed application).

Programmer’s Guide 133

B
I n te I ® Supported APIs

7.25.3

7.25.3.1

7.253.2

7.25.3.3

7.253.4

7.25.3.5

7.2.6

134

2. The main application spawns N child processes (workers). The number of child processes
running at a given time should not be greater that the value configured by NumProcesses
in the configuration file.

3. Eachchildprocesscallsicp sal userStartMultiProcess ("SSL", CPA TRUE).Ifthe
application spawns more child processes, the first N processes that call
icp sal userStartMultiProcess ("SSL", CPA_ TRUE) startsuccessfully with access
to the accelerator. All subsequent calls start successfully but will not have access to the
accelerator. In this case, calls to cpaCyGetNumInstances () and
cpaDcGetNumInstances () returnzero. If any of the N running processes finish their work
andcallicp sal usersStop () (orifasubprocess terminates non-gracefully), another
subprocesscancallicp _sal userStartMultiProcess("SSL", CPA TRUE) and it will
succeed.

icp_sal_userStop

Closes user space access to the Intel® QuickAssist Accelerator; stops the services that were
running and frees the allocated resources. After a successful call to this function, user space
access to the Intel® QuickAssist Accelerator from a calling process is not possible. This
function should be called once when the process is finished using the Intel® QuickAssist
Accelerator and does notintend to use it again.

Syntax
CpaStatus icp_ sal userStop (void);

Parameters

None.

Return Value

Theicp sal userStop functionreturns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully stopped user space access to the Intel® QuickAssist
Accelerator.

CPA_STATUS FAIL Operation failed.

Notes

None

User Space Heartbeat Functions
These functions allow the user space application to check the status of the firmware/ hardware

of the Intel® Communications Chipset 8900 to 8920 Series device as part of the Heartbeat
functionality.

Programmer’s Guide

Supported APIs

7.2.6.1

7.2.6.1.1

7.2.6.1.2

7.2.6.13

7.2.6.14

7.2.6.2

7.2.6.2.1

7.2.6.2.2

7.2.6.2.3

intel

Alluser space heartbeat function definitions are located in $ICP_ROOT/
quickassist/lookaside/access layer/include/icp sal user.h.

The heartbeat functions include:
. i .

. i .
icp_sal_check_device

This function checks the status of the firmware/hardware for a given device and is used as part
of the Heartbeat functionality.

Syntax
CpaStatus icp_sal check device (Cpa32U accellD);

Parameters

accellID the device ID of the device of interest.

Return Value

Theicp sal check_device functionreturns one of the following codes:

Code Meaning
CPA_STATUS_SUCCESS Noerrorinoperation.

CPA_STATUS FAIL Operation failed.

Notes

None

icp_sal_check_all_devices

This function checks the status of the firmware/hardware for all devices and is used as part of
the Heartbeat functionality.

Syntax

CpaStatus icp sal check all devices (void);

Parameters

None.

Return Value

Theicp sal check_all devices functionreturns one of the following codes:

Programmer’s Guide 135

B
I n te I® Supported APIs

7.2.7

7.2.7.

Code Meaning
CPA STATUS SUCCESS Noerrorinoperation.

CPA_STATUS FAIL Operation failed.

Version Information Function

A function that allows the retrieval of version information related to the software and hardware
being used.

The version information function definitionis locatedin: $ICP_ROOT/quickassist/
lookaside/access layer/include/icp sal versions.h.

There is only one version information function, thatis, icp _sal getDevVersionInfo.

icp_sal_getDevVersioninfo

Retrieves the hardware revision and information on the version of the software components
being run on a given device.

Note: Theicp sal userStartMultiProcess (or icp sal userStart) function mustbe called
before calling this function. If not, calling this function returns CPA_STATUS INVALID PARAM
indicatingan error. The icp_sal userStartMultiProcess (or icp sal userStart) functionis
responsible for setting up the ADF user space component, which is required for this function to
operate successfully.

7.27.1.1]

7.271.2

72713

136

Syntax

CpaStatus icp sal getDevVersionInfo (Cpa32U devId,
icp_sal dev version info t *pVerInfo);

Parameters
devId ThelD (number) of the device for which version information is to be retrieved.

*pVerInfo A pointerto a structure that holds the version information.

Return Value

Theicp sal getDevVersionInfo functionreturns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Operation finished successfully; version information retrieved.
CPA STATUS INVALID PARAM Invalid parameter passed to the function.

CPA_STATUS RESOURCE System resource problem.

CPA STATUS FAIL Operation failed.

Programmer’s Guide

Supported APIs

7.2.8

7.2.8.1

7.2.8.1.1

7.2.812

7.2.813

7.2.9

7.2.9.1

7.2.9.1.1

intel

Reset Device Function
This APl can only be called in user-space.

The device can be reset using this API call. This will schedule a reset of the device. See

Heartbeat Feature and Recovery from Hardware Errors for details of the steps on a device

reset. The device can also be resetusing the adf ctl utility, e.g. bycallingadf ctl
icp dev0 reset.

icp_sal_reset_device

Resets the device.

Syntax

CpaStatus icp sal reset device (Cpa32U accelid);

Parameters

accelid The device number.

Return Value

Theicp sal reset device functionreturns one of the following codes:

Code Meaning
CPA_STATUS SUCCESS Successful operation.

CPA_STATUS FAIL Indicatesafailure.

Thread-less APIs

These APIs can be used in the User Space Application when the driver is built with the
ICP_WITHOUT_THREAD flag. See Thread-less Mode for details.

The Thread-less API functions include:
. i .
. i i .

icp_sal_poll_device_events

This reads any pending device events from icp dev$d csr (see Driver Threading Model)
and forwards to interested subsystems.

Syntax

CpaStatus CpaStatus icp sal poll device events(void) (Cpa32U
accelid) ;

Programmer’s Guide 137

B
I n te I® Supported APIs

7.29.1.2

7.29.13

7.29.2

7.29.21

72922

7.29.2.3

138

Parameters

None

Return Value

Theicp sal reset device functionreturnsone of the following codes:

Code Meaning
CPA STATUS_ SUCCESS Successful operation.

CPA_STATUS FAIL Indicatesafailure.

icp_sal_find_new_devices

This tries to connect to any available devices that the kernel driver has brought up and
initialized for use in user space process.

Syntax
CpaStatus CpaStatus icp sal find new devices(void) (Cpa32U accelid);

Parameters

None

Return Value

Theicp sal find new_devices functionreturnsone of the following codes:

Code Meaning
CPA_STATUS_ SUCCESS Successful operation.

CPA_STATUS_ FAIL Indicatesa failure.

Programmer’s Guide

o
Application Usage Guidelines I n te I ®

8 Application Usage Guidelines

This chapter provides some usage guidelines and identifies some of the applications to which
the platforms described in this manual are ideally suited.

Note: The usage information provided in this section relates to the original configuration file format.
Much of the information is still appropriate when using the newer (default) version of the configuration
file.

8.1 Mapping Service Instances to Hardware Accelerators on the
PCH

On the platform(s) described in this manual, a processor can be connected to one or more
Intel® Communications Chipset 8900 to 8920 Series (PCH) devices. Each PCH device can
contain zero, one or two accelerators depending on the device variant being used. An
accelerator has one or more dedicated engines for each service type. Specifically, there are
two cryptography engines and one data compression engine.

A set of 16 ring banks provide the communication mechanism between a processor and the
acceleration complex on a PCH device. Each ring bank contains 16 individual rings for
communication. The following figure shows the relationship between processors, PCH
devices, accelerator(s) and ring banks.

Intel® provides a driver as a starting point that abstracts the communication between the host
and the rings and presents the high-level Intel® QuickAssist Technology APlIs.

Figure 24. Processor and PCH Device Components

Processor #0

'
'

'

=0 £ ren '
wore| | Coiw .

'

'

'

'

.

"a et

. -
r <3
i \ \,_\ Package (PCH) #n

H }i\cl(age (PCH) #1

Package (PCH) #0

RB RB RE RE G M
L =1 . =t/ =8 =5 s

Accelerator #0 Accelerator #1
CY <Y
Engine #0 Engine #0
Dc DC
Engine #0 Engine #0
c L= AU (N SES—
Engine #1 Engine #1

Programmer’s Guide 139

s}
I n te I ® Application Usage Guidelines

8.1.1

Processorand PCH Device Communication

An acceleration service uses different rings for request and response messages and for
different priorities (currently for symmetric cryptography only). Communication between the
processor and PCH device is achieved using the following operations (see also the following
figure):

1. Theprocessoruses a write (put) operation to place a request on the request ring.
2. The PCH device uses aread (get) operation to retrieve the request from the request ring.

3. Once the operation has been performed, the PCH device uses a write (put) operation to
put the response to the response ring.

4. The processor uses aread (get) operation to retrieve the response from the response ring.

Figure 25. Processor and PCH Device Communication

8.1.2

Processor #0

Core Core
#0 #1
I
L4
I
I/
0‘/ /
I
' /O
I
i
r
I
i
RE RB
#0 #1

Package (PCH) #0

RB
#7

RB
#8

RB RB
#9 #15

.
L
e/) /‘ Accelerator #0 Accelerator #1
!
/O
CY CY
Engine #0 Engine 0
DC DC
Engine £0 Engine #0
cY CY
Engine #1 Engine #1

Service Instances and Interaction with the Hardware

A typical use case would be to have a ring bank supporting two crypto instances and one
compression instance. 3A service instance can be thought of as a channel between an
accelerator and a core/thread running on the processor, which uses the rings for
communication. The rings are not exposed by an API but are set up using configuration files
(one foreach PCH device).

In general, a service instance uses a pair of rings, one for requests and one for responses. For
cryptographic instances, separate request/response pairs are used for the following:

8 The exceptions are ring bank O, where two rings are reserved for administration related to accelerator O and ring bank 8,
where two rings are reserved for administration related to accelerator 1. See Eigure 30.

140

Programmer’s Guide

Application Usage Guidelines

e Symmetric low priority

e Symmetric high priority

intel

¢ Public key cryptography requests/responses

The key attributes of a service instance are given in the following table.

Table15. Service Instance Attributes
Member Sub-field Description

physinstld acceleratorld Identifies the accelerator within the PCH

physinstld executionEngineld [Identifies the engine (slice) within the accelerator

nodeAffinity N/A Identifies the processor node/socket to which the PCH is
physically connected (relevantin NUMA configurations)

coreAffinity N/A Identifies the core(s) to which interrupts (if enabled) are affinitized
(Bitmap)

isPolled N/A For Kernel space:

o IsPoll =0 (interrupt mode)

e IsPoll=1(pollmode)

For User space:
o IsPoll =0 (interrupt mode)

e IsPoll=1(pollmode)

The following figure shows how the attributes relate to hardware components.

Figure 26. Processorand PCH Device Communication

CpalnstanceInfo2
. serviceType
Processor Logical Core Compression noadeaffinity,
n O (= coreAffinity. (bitmap)
nadeld coreld. Ny physlnstid
T LEypic packageld.
0 “ﬁ"‘ Instance o
" executionEngineld?
n " Mot supported on AD silicon.
Ring Bank Ring |2 ___
. 16 . 2
ungBapkld, —— tngld
coreAffinity
Complession
Package 2 Accelerator 1 Enpine
acceleratorld _
packageld, 5 | crypto Engine
—

Programmer’s Guide

141

I n te I ® Application Usage Guidelines

8.1.3 Service Instance Configuration

The configuration of a service instance is done in the configuration file.

Note: The following example uses the earlier configuration file format, which continues to be
supported.

The following figure shows an example extract of the relevant section in the configuration file.

Figure 27. Service Instance Configuration

FhEFRFEFRFEIRFEFRFEFIRFEFITHEF R IR A IR HER AR EERS
User Space Instances Section

tHEFdE R AR S4TSR RSN A SRR SR A4S
[procO]

NumberCyinstances = 1

NumberDcInstances = 0
Crypto — user space instance #0

CyOName = "proc0.0"
CylAcceleratorNumber =
CyOJExecutionEngine = 0
Cy0BankNumber = 1 e
Cy0IsBolled = 1

o P

CyORingRAsymTx = 2
CyORingRAsymBx 3
CyORingSymTxHi =
Cy0RingSymTxLo
CyORingSymRxHi
CyORingSymExLo =

I
I R T

(5
(6
7

In the previous figure, the meaning of each numbered item is explained as follows:

1. Eachnamed address domain (one domain for the kernel, any number of user space
process domains) has its own service instances.

2. Identifies the accelerator.

w

Identified the accelerator engine.

4. ldentifies the ring bank to be used by the instances (which has a core affinity). See the
configuration file snipped below for an example of core affinity association.

5. Asymmetric (public key), request (Tx) and response (Rx) rings.

6. Symmetric (bulk) crypto, low (normal) and high priority request (Tx) rings;
CyORingSymTxHiis for the high priority requests and CyORingSymTxLo is for normal
priority requests.

7. Symmetric (bulk) crypto, low (normal) and high priority response (Rx) rings;
CyORingSymRxHi s for the high priority responses and CyORingSymRxLo is for normal
priority responses.

142 Programmer’s Guide

o
Application Usage Guidelines I n te I ®

8.1.4

Note: The data compression service requires just two rings; one for requests and one for responses.

Guidelines for Using Multiple Intel® QuickAssist Instances for Load
Balancing in Cryptography Applications

The application is responsible for load balancing/spreading:

e Across engines withina PCH device

e Across PCH devices

To get the maximum performance from the hardware, there needs to be at least as many
service instances as engines, that is:

e Four (two for each of the two accelerators in the top-end PCH SKU) for Cryptography.

e Two (per PCH device) for Data Compression.

In the simplest case, load balancing is done through configuration. This applies when each
engine has more capacity than required by a Icore. Each Icore uses exactly one service
instance. Different Icores use different service instances, which map to different service
engines. The load is balanced by spreading the traffic across Icores.

If a hardware engine has more capacity than that required by one instance, then multiple
instances can share an engine. If a hardware engine has less capacity than required by one
instance, then a core/process can talk to multiple instances.

Each core (physical or logical) has a certain application performance capacity (Pcore). This
depends on the core frequency, number of IA cycles per packet, packet size/mix, protocols
and so on. Each (physical) service engine has a certain level of service performance (Pengine).
This may depend on the PCH SKU, cryptography algorithms, packet size/mix and so on.

The following figure shows the relationship between cores, application threads, service
instances and cryptographic engines.

Programmer’s Guide 143

]
I n te I ® Application Usage Guidelines

Figure 28. Entities and Relationships for Load Balancing

Logical Core
PCDrE

| : Application -“'.
[Thread |
Peare/a /

Service
Instance
pEm‘JinE:‘IS

s

1

Crypto
Engine
p

engine

The goal is to balance the performance of the cores and the service engines. Expressed
mathematically, choose a, i and s (see figure), such that:

Pcore/a ~=(Pengine)*i/s

Note: Performance capacity of a core may be measured as throughput at a certain packet size, mix of
sizes, protocols and so on. Performance capacity of a service engine can be measured as throughput
at a certain packet size, mix of sizes, algorithms and so on.

The following figure shows four different load balancing scenarios:

e Case (a) - The simplest case. Load balancing is done by spreading traffic across cores, and
then each core talks to exactly one engine.

e Case (b) - When the engines have more capacity than the cores/threads need, then an
engine can be mapped into multiple such cores/threads.

When the cores need more capacity than one engine can supply, then multiple engines
must be mapped into a single Icore. There are at least two ways to do this as indicated in
case (c) and (d) following.

e Case (c)- Eachthread talks to multiple service instances. This requires the application code
to change, in that the application must know about multiple instances and load balance
across them.

144 Programmer’s Guide

o
Application Usage Guidelines I n te I ®

e Case (d) - Multiple threads can be assigned to the same Icore. This moves the responsibility
forload balancing to the OS or whatever is managing the threads.

Figure 29. Load Balancing Scenarios

8.2

8.2.1

Logical Core Logical Core Logical Core
Application Application
Thread Thread
Service Service Service Service Service
Instance Instance Instance Instance Instance
Crypto Crypto Crypto Crypto Crypto Crypto
Engine Engine Engine Engine Engine Engine
(@) Peore m=Pengine (b) Peore < Pangine (c) Peare > Pangine (d) Peore > Pengine
(s=i=a=1) (s=1} (i=1) {a=1)
Each core/thread Multiple cores/threads One core/thread uses Alternative te (c), assign
uses one engine share same engine multiple engines multiple threads to a core

In all cases, except Case (c), the code remains unchanged. Each thread talks to exactly one
service instance. This makes it easier to port applications to different platforms with different
numbers/frequencies of cores, different numbers/PCH SKU numbers and so on.

Cryptography Applications

Cryptography applications supported by the platforms described in this manual include, but
are not limited to:

o Virtual Private Networks (VPNs, both IPsec and SSL). Both symmetric and public key
cryptography can be offloaded for bulk transfer and key exchange (IKE, SSL handshakes
and so on). See |Psec and SSI. VPNs for more information.

e Encrypted Storage. See Encrypted Storage for more information.
e Web Proxy Appliances. See Web Proxy Appliances.

IPsec and SSL VPNs

Virtual Private Networks (VPNs) allow for private networks to be established over the public
internet by providing confidentiality, integrity and authentication using cryptography. VPN
functionality can be provided by a standalone security gateway box at the boundary between
the trusted and untrusted networks. It is also commonly combined with other networking and
security functionality in a security appliance, or even in standard routers.

Programmer’s Guide 145

I n te I ® Application Usage Guidelines

822

146

VPNs are typically based on one of two cryptographic protocols, either IPsec or DTLS. Each
has its advantages and disadvantages.

One of the most compute-intensive aspects of a VPN is the cryptographic processing required
to encrypt/decrypt traffic for confidentiality, to perform cryptographic hash functionality for
authentication and to perform public key cryptography, based on modular exponentiation of
large numbers or elliptic curve cryptography as part of key negotiation and exchange. The
Intel® Communications Chipset 8900 to 8920 Series PCH provides cryptographic
acceleration that can offload this computation from the CPU, thereby freeing up CPU cycles to
perform other networking, encryption, or other value-add applications.

The PCH offers its acceleration services through an AP, called the Intel® QuickAssist
Technology Cryptographic API. This can be invoked from the Linux* kernel or from Linux* user
space as well as from other operating systems. Intel® also provides plugins to enable many of
the PCH's cryptographic services to be accessed through open source cryptographic
frameworks, such as the Linux* kernel crypto framework/API (also known as the scatterlist
API) and OpenSSL's libcrypto* (through its EVP API). This facilitates ease of integration with
certain open source implementations of protocol stacks, such as the Linux* kernel's native
IPsec stack (called NETKEY) or with OpenVPN (an open source SSL VPN implementation).

Encrypted Storage

Inrecent years, cases of lost laptops containing sensitive information have made the headlines
all too frequently. Full disk encryption has become a standard procedure for many corporate
PCs. Safe-guarding critical data however is not just a necessity in the client space, itisalso a
necessity in the data center.

Enterprise-class storage appliances achieve throughput rates in excess of 50 Gbps. Several
high-profile cases of data theft have triggered updates to government regulations and industry
standards. These regulations/standards now require protection of data-at-rest for applications
involving sensitive data such as medical and financial records, typically using strong
encryption. The high computational cost of adding encryption to storage appliances makes
offload solutions an attractive value proposition.

Several complimentary standards exist for the encryption of data-at-rest, which, when
combined with traditional network security protocols such as IPsec or SSL/TLS, provide an
end-to-end encrypted storage solution, even for data-in-flight.

The IEEE Security in Storage working group is developing the IEEE 1619 series of standards
that deal with cipher algorithms for disk and tape storage devices (AES in CCM and GCM
modes). The cryptographic acceleration services of platforms that use the Intel®
Communications Chipset 8900 to 8920 Series (PCH) are ideally suited for long-term
encrypted storage solutions implementing the IEEE 1619.1 standard, by providing acceleration
of the AES-256 cipherin CBC, CCM, and GCM modes and HMAC authentication using SHA-1,
SHA-256 and SHA-512 hashes.

The Trusted Computing Group's (TCG) Storage Working Group does not prescribe a
particular set of algorithms for the disk encryption. Instead, it defines several Storage
Subsystem Classes (SSC) for various usage models, which define services such as enroliment
and connection, protected storage (an extension of TPM), locking, logging, cryptographic
services, authorization, and firmware updates. The cryptographic acceleration services of the

Programmer’s Guide

]
Application Usage Guidelines I n te I &

8.2.3

8.3.1

platform can help by providing the highest level of encryption for authenticating the host to
trusted peripherals implementing the TCG storage standards.

Web Proxy Appliances

Historically, Web Proxy appliances have evolved to present a public orintermediary interface
for clients seeking resources from other servers, providing services such as web page caching
and load balancing. These appliances are located at the edge of the network, typically at
network gateways. Due to their centralized presence in the network, Web Proxy appliances
today (referred to with several different names, such as Application Delivery Controllers,
Reverse Proxy, and so on) have become a collection of services that include:

e Application Load Balancing (L4-L7)
e SSL Acceleration

o WAN Acceleration

e Caching

e Traffic Management

o Web Application Firewall

SSL and WAN acceleration have become common place capabilities of the Web Proxy
appliance, requiring compute intensive algorithms for cryptography (SSL) and compression
(WAN acceleration). Intel® Communications Chipset 8900 to 8920 Series (PCH) devices on
the platforms described in this manual provide acceleration of asymmetric cryptography (RSA
is the most commonly used key negotiation algorithm in SSL), symmetric cryptography (all
algorithms defined in the TLS RFCs can be accelerated with the PCH) and compression
(DEFLATE and LZS algorithms). With the prominence of Web Proxy appliances in typical
networks, this use case has applications from cloud computing to small web server
deployments.

Data Compression Applications

Data compression can be used as part of application delivery networks, data de- duplication, as
well as in a number of crypto applications, for example, VPNs, IDS/IPS and so on.

Compression for Storage

In a time when the amount of online information is increasing dramatically, but budgets for
storing that information remain static, compression technology is a powerful tool forimproved
information management, protection and access.

Compression appliances can transparently compress data such that clients can keep between
two- and five-times more data online and reap the benefit of other efficiencies throughout the
data lifecycle. By shrinking the primary data, all subsequent copies of that data, such as
backups, archives, snapshots, and replicas are also compressed. Compression is the newest
advancement in storage efficiency.

Programmer’s Guide 147

I n te I ® Application Usage Guidelines

8.3.2

148

Storage compression appliances can shrink primary online data in real time, without
performance degradation. This can significantly lower storage capital and operating expenses
by reducing the amount of data that is stored, and the required hardware that must be powered
and cooled.

Compression can help slow the growth of storage, reducing storage costs while simplifying
both operations and management. It also enables organizations to keep more data available for
use, as opposed to storing data offsite or on harder-to-access media (such as tape).

Compression algorithms are very compute-intensive, which is one of the reasons why the
adoption of compression techniques in mainstream applications has been slow. As an
example, the DEFLATE Algorithm, which is one of the most used and popular compression
techniques today, involves several compute-intensive steps: string search and match, sort
logic, binary tree generation, Huffman Code generation. Intel® Communications Chipset 8900
to 8920 Series (PCH) devices in the platforms described in this manual provide acceleration
capabilities in hardware that allow the CPU to offload the compute-intensive DEFLATE
algorithm operations, thereby freeing up CPU cycles for other networking, encryption, or other
value-add operations.

Data Deduplication and WAN Acceleration

Data Deduplication and WAN Acceleration are coarse-grain data compression techniques
centered around the concept of single-instance storage. Identical blocks of data (either to be
stored on disk or to be transferred across a WAN link) are only stored/moved once, and any
further occurrences are replaced by a reference to the first instance.

While the benefits of deduplication and WAN acceleration obviously depend on the type of
data, multi-user collaborative environments are the most suitable due to the amount of
naturally occurring replication caused by forwarded emails and multiple (similar) versions of
documents in various stages of development.

Deduplication strategies can vary in terms of inline vs post-processing, block size granularity
(file-level only, fixed block size or variable block-size chunking), duplicate identification
(cryptographic hash only, simple CRC followed by byte-level comparison or hybrids) and
duplicate look-up (for example, Bloom filter based index).

Cryptographic hashes are the most suitable techniques for reliably identifying matching blocks
with animprobably low risk for false positives, but they also represent the most compute-
intensive workload in the application. As such, the cryptographic acceleration services offered
by the hardware (PCH) through the Intel® QuickAssist Technology Cryptographic APl can be
used to considerably improve the throughput of deduplication/WAN acceleration
applications.

Additionally, the compression/decompression acceleration services can be used to further
compress blocks for storage on disk, while optionally encrypting the compressed contents.

§

Programmer’s Guide

=
Acceleration Driver Configuration File - Earlier File Format I n te o

Appendix A Acceleration Driver
Configuration File - Earlier File Format

Al

Note: This chapter describes the older configuration file format. The older configuration file format is
fully supported, but the format is deprecated in favor of the simpler new file format described earlier in
this document.

This chapter describes the configuration file(s) managed by the Acceleration Driver
Framework (ADF) that allow customization of runtime operation. This configuration file(s)
must be tuned to meet the performance needs of the target application.

Note: The parameter values given in this chapter represent the configuration against which the
software has been validated. While the configuration file is intended to be modified, no guarantee can
be given for the expected behavior when parameter values are changed.text

Configuration File Overview

There is a single configuration file for each Intel® Communications Chipset 8900 to 8920
Series (PCH) device. The configuration file always contains two accelerator subsections. The
significance of these subsections depends on the number of accelerators in the PCH device as
defined by the model number:

e |[fthere are no accelerators in the device, the information in both accelerator subsections is
not relevant and can be ignored.

o Ifthereis one acceleratorin the device, only the information in the first accelerator
subsectionis relevant. The second subsection can be ignored.

e |fthere are two accelerators in the device, both accelerator subsections are relevant.
The client application may load balance between two accelerators if present.

Each accelerator has eight independent ring banks - the communication mechanism between
the Acceleration software and the hardware. Each ring bank has an interrupt that can be
directed to a specific Intel® architecture core. Each ring bank has 16 rings (hardware assisted
queues). This hierarchy is shown in the following figure.

Programmer’s Guide 149

s}
I n te I Acceleration Driver Configuration File - Earlier
® File Format

Figure 30. Ring Banks

Intel® Communications Chipset 89xx Series

(Accelerator 0) (Accelerator 1)

Admin Rings (2} Admin Rings (2]
Data Path Rings {14) Data Path Rings (16) Data Path Rings {14) Data Path Rings (16)

Ring Ring Ring Ring Ring Ring Ring Ring
Bank 0 Bank2 [| Bank: [N Bank 7 Bank 0 Bank2 [l Bank: [N Bank 7

Second accelerator depending on the device model number.

Depending on the SKU number, a PCH device may also contain no accelerators.

The configuration file is split into three (or more) sections: General, Hardware Access Ring
Bank Configuration, and one or more Logical Instance sections.

e General - includes parameters that allow the user to:
— Specify which services are enabled.
— Configure the settings for the services.

Additional details are included in General Parameters.

o Hardware Access Ring Bank Configuration - includes parameters that allow the user to:
— Enable and configure interrupt coalescing.
— Directan MSlI-xinterrupt for a given ring bank to a specified Intel® architecture core,
assuming that the OS supports MSI-X interrupts.

Additional details are included in [AcceleratorX] Section.

e Logical Instances - one or more sections that include parameters that allow the user to:
-~ Configure rings to be used by that address domain (kernel space or individual user
space process) and define the behavior of the ring.

Additional details are included in Logical Instances Section.

A sample configuration file, targeted at a high-end IPsec box without compression, is included

in Sample Configuration File (V1) .

A.2 General Section
The general section of the configuration file contains general parameters and statistics
parameters.

A2l General Parameters

The following table describes the parameters that can be included in the General section.

150 Programmer’s Guide

Acceleration Driver Configuration File - Earlier File Format

Please see Table 6.

Table16. General Parameters -

Earlier File Format

intel

Parameter

Description

Default

Range

ServicesEnabled

Defines the service(s) available
(cryptographic [cyX], data
compression [dc]).

cyO;dc

cyX, dc

Note: X canbe O or1, which
identifies one of two
available cryptographic
engines.

Note: Multiple

values permitted, use ; as the
delimiter.

cyHmacAuthMode

Determines when HMAC
precomputes are done.

-HMAC

precomputes are done
during session initialization
-HMAC

precomputes are done
during the perform operation
Note: In general,

with this parameterset to,
performance is expected to
be better.

dcTotalSRAMAvailable

Each PCH device has a total of
512 KB of eSRAM. The eSRAM
can be used by different services,
such as Data Compression. This
parameter tells the driver how
much of this memory to use for
the Data Compression service. A
value of O means, do not use any
eSRAM for the Data
Compression service; 512000
means use all the eSRAM for the
Data Compression service.

0to 512000

(currently, Ois the only
possible value, since eSRAM
is not currently supported)

Firmware_MmpPath

Name of the Modular Math
Processor (MMP) firmware.

mmp_firmware.
bin

mmp_firmware.bin

Note: "Default” denotes the value in the configuration file when shipped.

A.2.2

QAT Parameters

The following table describes accelerator-specific parameters.

Note: Inthe following parameters, beginning AccelX..., the X can be O or 1representing the

accelerator number.

Programmer’s Guide

151

intel

Table17.

A.2.3

Acceleration Driver Configuration File - Earlier

File Format
General Parameters - Earlier File Format
Parameter Description Default Range

AccelXAdminBankNum |Specifies the bank number for 0 Oto7
ber administration request/response rings on

accelerator X, where Xcanbe Oor1.
AccelXAcceleratorNum|Specifies the accelerator number for 0 Oorl
ber administration request/response rings for

accelerator X, where Xcanbe Oor1.
AccelXAdminTx Specifies the ring number of the 0 0

administration request ring for
accelerator X, where X canbe Oor.

AccelXAdminRx

Specifies the ring number of the
administration response ring for
accelerator X, where Xcanbe Oor]l.

Note: "Default” denotes the value in the configuration file when shipped.

Statistics Parameters

The following table shows the parameters in the configuration file, prefixed with stats, that can
be used to enable or disable certain types of statistics.

Note: Thereisaperformance impact when statistics are enabled. In particular, the |A cost of offload
is expected to increase when statistics are enabled.

Table18.

152

When the statistics are enabled, the collected data can be retrieved using the following

methods:

e Calling the appropriate Intel® QuickAssist Technology API function. For example,
cpaCySymQueryStats or cpaCySymQueryStats64 for symmetric cryptography. See the
Intel® QuickAssist Technology Cryptographic API Reference Manual for more information
about these functions.

¢ Forkernel spaceinstances, looking at entries in the /proc/dh89xxcc_devX directory,
where Xis the device number. Forexample, /proc/ icp dh89xxcc_dev0/cy/IPSecO for
all statistics related to cryptography instance IPSecO, where IPSecO is the name given to
the instance in the config file (CyOName = "IPSec0"). See Debug Feature for more

information.

General Parameters - Earlier File Format

Parameter Description Default Range
statsGeneral Enables/disables statistics in general. 1 lorO
statsDc Enables/disables statistics for data 1 TorO

compression.
statsDh Enables/disables statistics for the Diffie- 1 TorO
Hellman algorithm.

Programmer’s Guide

Acceleration Driver Configuration File - Earlier File Format

A.3

intel

Parameter Description Default Range

statsDrbg Enables/disables statistics for the Deterministic 1 TorO
Random Bit Generator (DRBG).

statsDsa Enables/disables statistics for the Digital 1 TorO
Signature Algorithm (DSA).

statsEcc Enables/disables statistics for Elliptic Curve 1 lorO
Cryptography (ECC).

statsKeyGen Enables/disables statistics for the Key 1 lorO
Generation algorithm.

statsLn Enables/disables statistics for the Large 1 TorO
Number generator.

statsPrime Enables/disables statistics for the Prime 1 lorO
Number detector.

statsRsa Enables/disables statistics for the RSA 1 TorO
algorithm.

statsSym Enables/disables statistics for symmetric 1 lor0O
ciphers.

Note: "Default” denotes the value in the configuration file when shipped. A value of Tindicates "enabled"; a

value of O indicates "disabled".

[AcceleratorX] Section

Note: A PCH device may contain O, 10or 2 accelerators depending on the model number. In the
configuration file, there is an [AcceleratorX] section for each accelerator.

A.3.1

Table19.

The [AcceleratorX] section of the configuration file contains interrupt coalescing and core
affinity parameters.

Interrupt Coalescing Parameters

For each accelerator, the interrupt coalescing parameters in the following table can be

configured.

General Parameters - Earlier File Format

Parameter

Description

Default

Range

BankXInterruptCoalescingEnabled

intherangeOto7.

Specifies if interrupt coalescing is 1
enabled for ring bank X, where Xis

Oorl

BankXInterruptCoalescingTimerNs

Specifies the coalescing time, in

where Xisintherange Oto7.

set, the default value is used.

nanoseconds (ns), for ring bank X,

Note: If a value outside the range is

10000

500to
1048575

Programmer’s Guide

153

]
I n te I Acceleration Driver Configuration File - Earlier
® File Format

A3.2

Figure 31.

154

Parameter Description Default Range
BankXInterruptCoalescingNumRespo|Specifies the number of responses | 0 (disable) 0to248
nses that need to arrive from hardware

before the interruptis triggered. It
can be used to maximize
throughput or adjust throughput
latency ratio.

Note: "Default” denotes the value in the configuration file when shipped.

Affinity Parameters

To use core affinity, itis necessary to disable the irgbalancer service usingthe following
command issued from an account with root privileges:

service irgbalance stop

Each accelerator has eight ring banks (0 to 7). If the OS supports MSI-X interrupts, each ring
bank has a steerable MSI-X interrupt that may be affinitized to a particular node/core as shown

in the following figure.

Ring Bank Affinity to Core for MSI-X Interrupts

MSI1-X MSI-X
Steerable Interrupt MSI-X Steerable Interrupt
Steerable Interrupt

M3I-X
Steerable Interrupt

I T ,l/
=B =8| =285 ==

| Crypto unit ‘ Crypto unit

QA Accelerator 0 QA Accelerator 1

Programmer’s Guide

Acceleration Driver Configuration File - Earlier File Format I n te I o

For each accelerator, the ring bank parameters in the following table can be configured.

Table 20. Ring Bank Affinity Parameters

Parameter Description Default Range
BankXCorelDAffinity |Defines core affinity for ring bank X, 0 0 to cpumax-1
where Xisintherange Oto7. Note: cpumaxis

the number of
CPUs in the system.

Note: "Default” denotes the value in the configuration file when shipped.

A4 Logical Instances Section

A logicalinstance allows each address domain (kernel space and individual user space
processes) to configure rings (hardware assisted queues) to be used by that address domain

and to define the behavior of that ring. See Hardware Assisted Rings and Logical Instances for

more information.

The address domains are in the following format:
e Forthekernel address domain: [KERNEL]

e Foruserprocessaddress domains: [xxxxx], where xxxxx may be any ASClII value that
uniquely identifies the user mode process.

To allow a driver to correctly configure the logical instances associated with this user process,
the process must call the function icp_sal userStart, passing the xxxxx string during process
initialization. When the user space process is finished, it must call the function

icp_sal_userStop to free resources. See User Space Access Configuration Functions for more

information.

The items that can be configured for a logical instance are:

e The name of the logical instance

e The accelerator associated with this logical instance

e Thering bank associated with this logical instance

e Theresponse mode associated with this logical instance (O for IRQ, 1 for Polled)

e Thering forreceiving and the ring for transmitting

¢ The number of concurrent requests supported by a pair of rings on this instance (Tx and

Rx).

Note: This number affects the amount of memory allocated by the driver. Also, coalescing that is
based on the number of responses is only enabled if: 1) Time-based coalescing is enabled, 2) The
number of concurrent requests = 512256 (ring size =16 KB) and 3)
Bank<n>InterruptCoalescingNumResponses != 0.

Programmer’s Guide 155

intel

Note: Logical instances may not share the same rings but may share a ring bank.

A4

Note:

A4l

Table 21.

156

Acceleration Driver Configuration File - Earlier

[KERNEL] Section

In the [KERNEL] section of the configuration file, information about the number and type of
kernelinstances can be defined.

File Format

The following table describes the parameters that determine the number of kernel instances

foreach service.

The maximum number of cryptographic instances supported is 32.

Parameter

Description

Default

Range

NumberCylnstances

Specifies the number of cryptographic
instances.

Note: Depends on the number of
allocations to other services.

N

Oto 32

NumberDclnstances

Specifies the number of data
compression instances.

Note: Depends on the number of
allocations to other services.

Oto 64

Note: "Default” denotes the value in the configuration file when shipped.

Cryptographic Logical Instance Parameters

The following table shows the parameters that can be set for cryptographic logical instances.

Cryptographic Logical Instance Parameters - Earlier File Format

cryptographic instance number X
executeson.

Parameter Description Default Range
CyXName Specifies the name of IPSecO String (max. 64
cryptographic instance number X. characters)
CyXAcceleratorNumber |Specifies the acceleratornumber |0 Oorl
that the cryptographic instance
number X is assigned to.
CyXBankNumber Specifies the bank numberof the |forkernel space|0to 8
cryptographic instance number X. |instances
foruser space
instances
CyXExecutionEngine Specifies the engine that 0 0 or1(depending on the

SKU)

CyXlsPolled

Specifies if cryptographic instance
number X works in poll mode or
IRQ mode.

forkernel space
instances

for user space
instances

Forinstance in the kernel
space:

(interrupt mode)
(pollmode)

Programmer’s Guide

A4.1.2

Acceleration Driver Configuration File - Earlier File Format

intel

ring number for cryptographic
instance number X.

Parameter Description Default Range
Forinstance in the user
space:

(interrupt mode)
(pollmode)
CyXNumConcurrentSym [Specifies the number of 512 64,128,256,
Requests cryptographic concurrent symetric 512 1024, 2048
requests for cryptographic
instance number X. or4096
CyXNumConcurrentAsy [Specifies the number of concurrent|64 64,128,256,
mReques ts asymmetric requests for 5121024, 2048
cryptographic instance number X.
ryptographict " ' or4096
CyXRingAsymTx Specifies the asymmetric request |2 forkernel Even numberinrange: 0

space instances

O foruserspace
instances

to14

CyXRingAsymRx

Specifies the asymmetric response
ring number for cryptographic
instance number X.

3 forkernel
space instances

1for user space
instances

Odd numberinrange:1to
15

Specifies the symmetric request
ring number for cryptographic
instance number X for high priority
messages.

4 forkernel
space instances

2 foruser space
instances

Even numberinrange: O
to14

CyXRingSymTxLo

Specifies the symmetric request
ring number for cryptographic
instance number X for low priority
messages.

5 forkernel
space instances

3 foruserspace
instances

Even numberinrange: O
to14

CyXRingSymRxHi

Specifies the symmetric response
ring number for cryptographic
instance number X for high priority
messages.

6 forkernel
space instances

4 foruser space
instances

Odd numberinrange: 0
to15

CyXRingSymRxHi

Specifies the symmetric response
ring number for cryptographic
instance number X for low priority
messages.

7 forkernel
space instances

5 foruser space
instances

Odd numberinrange:1to
15

Note: "Default” denotes the value in the configuration file when shipped.

Data Compression Logical Instance Parameters

The following table shows the parameters in the configuration file that can be set for data

compression logical instances.

Note: The maximum number of data compression instances supported is 126.

Programmer’s Guide 157

intel

Acceleration Driver Configuration File - Earlier

File Format
Table22. Data Compression Logical Instance Parameters
Parameter Description Default Range
DcXName Specifies the name of data [IPCompO String (max. 64
compression instance characters)
number X.
DcXAcceleratorNumber Specifies the accelerator 0 Oorl
number that the data
compression instance
number X is assigned to.
DcXBankNumber Specifies the bank number of [for kernel space |0to8
data compressioninstance |instances
number X. for user space
instances
DcXlsPolled Specifies if data forkernelspace |Forinstanceinthe
compression instance instances kernel space:
nulrgber X;vorks inpollmode |for yser space (interrupt mode)
or mode. ;
Q instances (poII mode)
Forinstance in the user
space:
(interrupt mode)
(pollmode)
DcXNumConcurrentRequests|Specifies the number of data (512 64,128,256, 512,

A4.2

158

compression concurrent
requests.

1024,2048 or 4096

number for data
compression instance
number X.

instances

7 for user space
instances

DcXRingTx Specifies the request ring 8 forkernel space |Evennumberinthe
number for data instances range: O to 14
compression instance 6 for user space
number X. instances

DcXRingRx Specifies the responsering |9 forkernel space |[Odd numberinthe

range:1to 15

Note: "Default” denotes the value in the configuration file when shipped.

User Process Instance [xxxxx] Sections

In each [xxxxx] section of the configuration file, information about the number and type of user
process instances can be defined.

The parameters in the following table specify the number of user process instances for each

service.

Programmer’s Guide

=
Acceleration Driver Configuration File - Earlier File Format I n te o

Table 23.

A5

User Process Instance [xxxxx] Parameters

Parameter Description Default Range

NumberCylnstances |Specifies the number of cryptographic 0 0to32

instances.

Note: Depends on the number of
allocations to other services.

NumberDclnstances |Specifies the number of data 0 0to126

compression instances.

Note: Depends on the number of
allocations to other services.

Note: "Default” denotes the value in the configuration file when shipped.

Parameters for each user process instance can also be defined. The parameters that can be
included for each specific user process instance are similar to those in the Logical Instances
Section.

Sample Configuration File (V1)

The following sample configuration file is intended for a high-end IPsec box.

G
THEE H#

Q@par
This file is provided under a dual BSD/GPLv2 license. When using or

redistributing this file, you may do so under either license.
GPL LICENSE SUMMARY

#
#
#
Copyright(c) 2007-2013 Intel Corporation. All rights reserved.
#
#

This program is free software; you can redistribute it and/or
modify

1t under the terms of version 2 of the GNU General Public License
as

published by the Free Software Foundation.

This program is distributed in the hope that it will be useful,but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-
1301 # USA.

The full GNU General Public License i1s included in this
distribution

#
#
#
#
#
#
#
#
#
#

Programmer’s Guide 159

s
I n te I Acceleration Driver Configuration File - Earlier
® File Format

in the file called LICENSE.GPL.

Contact Information:

Intel Corporation
BSD LICENSE

Copyright (¢) 2007-2013 Intel Corporation. All rights reserved.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions

are met:

B . T I e .

* Redistributions of source code must retain the above copyright #
notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.

* Neither the name of Intel Corporation nor the names of its
contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE .

B . T T T T e T . T e

#

version: QAT1.5.L.1.10.0-65
FHA A AR A AR A AR AR AR A AR AR AR AR AR HH
FHEF FHAR AR AR AR AR AR AR AR A AR AR A A A A AR AR A A RS

#
This file is the configuration for a single dh89xxcc ga

device.

160 Programmer’s Guide

=
Acceleration Driver Configuration File - Earlier File Format I n te o

Each device has up to two accelerators.
- The client may load balance between these # accelerators.

Each accelerator has 8 independent ring banks. # - The interrupt
for each can be directed to a # specific core.

Each ring bank as 16 rings (hardware assisted queues).

FHAH AR A AR AR AR AR A R R A

FHAHHH R A A AR AR

General Section ##########H#HSHHHHFHIHFHRHHHRAHERHFSHHSSFHSSHS
[GENERAL]

#ServicesEnabled = cy0;cyl;dc

ServicesEnabled = cy0;cyl;dc

Look Aside Cryptographic Configuration c
yHmacAuthMode = 1

Look Aside Compression Configuration
dcTotalSRAMAvailable = 0

#No wireless NumberOfWirelessProcs = 0

Firmware Location Configuration
Firmware MofPath = mof firmware.bin

Firmware MmpPath = mmp firmware.bin

QAT Parameters AccelOAdminBankNumber = 0
AccelOAcceleratorNumber = 0

AccelOAdminTx = 0

AccelOAdminRx = 1

Il
=

AccellAcceleratorNumber
AccellAdminBankNumber = 0
AccellAdminTx = 0
AccellAdminRx = 1

#Statistics, valid values: 1,0 statsGeneral = 1
statsDc = 1

statsDh = 1

statsDrbg = 1

statsDsa

1
statsKeyGen = 1
statsln = 1
statsPrime = 1

statsEcc

statsRsa = 1

statsSym = 1

Enables or disables Single Root Complex IO Virtualization.

If this is enabled (1) then SRIOV and VT-d need to be enabled in

Programmer’s Guide 161

intel

162

Acceleration Driver Configuration File - Earlier

File Format

BIOS and there can be no Cy or Dc instances created in PF (DomO) .
If this i disabled (0) then SRIOV and VT-d need to be disabled

in BIOS and Cy and/or Dc instances can be used in PF

SRIOV Enabled = 0

(DomO)

#Debug feature, if set to 1 it enables additional entries in /proc

filesystem

ProcDebug = 1

G

Hardware Access Ring Bank Configuration

Each Accelerator has 8 ring banks (0-7)

If the OS supports MSI-X, each ring bank has an # steerable MSI-x

interrupt which may be

affinitized to a particular node/core.

BRI SRS AS

[Accelerator0] BankOInterruptCoalescingEnabled

BankOInterruptCoalescingTimerNs = 10000
BankQCoreIDAffinity = 0

BankOInterruptCoalescingNumResponses = 0

1
BanklInterruptCoalescingTimerNs = 10000
BanklCoreIDAffinity = 1

BanklInterruptCoalescingEnabled

BanklInterruptCoalescingNumResponses = 0

Bank2InterruptCoalescingEnabled = 1
Bank2InterruptCoalescingTimerNs = 10000
Bank2CoreIDAffinity = 0
Bank2InterruptCoalescingNumResponses = 0

1
Bank3InterruptCoalescingTimerNs = 10000
Bank3CoreIDAffinity = 1
Bank3InterruptCoalescingNumResponses = 0

Bank3InterruptCoalescingEnabled

1
10000

Bank4InterruptCoalescingEnabled

Bank4InterruptCoalescingTimerNs
Bank4CoreIDAffinity = 0
Bank4InterruptCoalescingNumResponses = 0

Bank5InterruptCoalescingEnabled = 1
Bank5InterruptCoalescingTimerNs = 10000
Bank5CoreIDAffinity = 2
Bank5InterruptCoalescingNumResponses = 0

Programmer’s Guide

=
Acceleration Driver Configuration File - Earlier File Format I n te @

Bank6InterruptCoalescingEnabled = 1

Bank6InterruptCoalescingTimerNs = 10000
Bank6CoreIDAffinity = 4
Bank6InterruptCoalescingNumResponses = 0
Bank7InterruptCoalescingEnabled = 1

Bank7InterruptCoalescingTimerNs = 10000
Bank7CoreIDAffinity = 6

Bank7InterruptCoalescingNumResponses = 0

[Acceleratorl] BankOInterruptCoalescingEnabled = 1
BankOInterruptCoalescingTimerNs = 10000
BankOCoreIDAffinity = 2

BankOInterruptCoalescingNumResponses = 0

1
BanklInterruptCoalescingTimerNs = 10000
BanklCoreIDAffinity = 3

BanklInterruptCoalescingEnabled

BanklInterruptCoalescingNumResponses = 0

1
Bank2InterruptCoalescingTimerNs = 10000
Bank2CoreIDAffinity = 1

Bank2InterruptCoalescingEnabled

Bank2InterruptCoalescingNumResponses = 0

Bank3InterruptCoalescingEnabled = 1
Bank3InterruptCoalescingTimerNs = 10000
Bank3CoreIDAffinity = 0
Bank3InterruptCoalescingNumResponses = 0

1
Bank4InterruptCoalescingTimerNs = 10000
Bank4CoreIDAffinity = 1
Bank4InterruptCoalescingNumResponses = 0

Bank4InterruptCoalescingEnabled

1
10000

Bank5InterruptCoalescingEnabled

Bank5InterruptCoalescingTimerNs
Bank5CoreIDAffinity = 3
Bank5InterruptCoalescingNumResponses = 0

Bank6InterruptCoalescingEnabled = 1
Bank6InterruptCoalescingTimerNs = 10000
Bank6CoreIDAffinity = 5
Bank6InterruptCoalescingNumResponses = 0

Programmer’s Guide 163

intel

164

Bank7InterruptCoalescingEnabled

Acceleration Driver Configuration File - Earlier
File Format

1

Bank7InterruptCoalescingTimerNs = 10000
Bank7CoreIDAffinity = 7

Bank7InterruptCoalescingNumResponses = 0

G

HE S = HE S S = S S S S $E S S SE S 5 Sk S S fE S S 9= S oE 9= S 9k S S S S 4k #3934 =

Logical Instances Section

A logical instance allows each address domain
(kernel space and individual user space processes)
to configure rings (i.e. hardware assisted queues)
to be used by that address domain and to define the

behavior of that ring.

The address domains are in the following format

For kernel address domains

[KERNEL]

For user process address domains

[XxXxX]

Where xxxxx may be any ascii value which uniquely identifies
the user mode process.

To allow the driver correctly configure the

logical instances associated with this user process,

the process must call the icp sal userStart(...)

passing the xxxxx string during process initialisation.

When the user space process is finish it must call

icp_sal userStop(...) to free resources.

If there are multiple devices present in the system all conf
files that describe the devices must have the same address domain
sections even if the address domain does not configure any
instances on that particular device. So if

icp sal userStart ("xxxxx") is called

then user process address domain [xxxxx] needs to be present in

all conf files for all devices in the system.

Items configurable by a logical instance are:

Name of the logical instance

The accelerator associated with this logical instance

The execution engine associated with this logical instance (For
crypto instances only)

The ring bank associated with this logical instance.

The response mode associated wth this logical instance (0
for IRQ or 1 for polled).

The ring for receiving and the ring for transmitting.

The number of concurrent requests supported by a pair of
rings on this instance (tx + rx). Note this number affects
the amount of memory allocated by the driver. Also

Programmer’s Guide

=
Acceleration Driver Configuration File - Earlier File Format I n te o

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

Bank<n>InterruptCoalescingNumResponses is only supported for

number of concurrent requests equal to 512.

Note: Logical instances may not share the same ring, but

may share a ring bank.

The format of the logical instances are:

For crypto:
Cy<n>Name = "xxxx"
Cy<n>AcceleratorNumber = 0|1

Cy<n>ExecutionEngine = 0|1

Cy<n>BankNumber = 0-7

Cy<n>IsPolled = 0|1

Cy<n>NumConcurrentSymRequests = 64[128|256[512[1024]12048|4096
Cy<n>NumConcurrentAsymRequests = 64[128|256]512]11024|2048]4096
Cy<n>RingAsymTx = 0-14 (Even numbers only)

Cy<n>RingAsymRx = 1-15 (Odd numbers only)

Cy<n>RingSymTxHi = 0-14

Even numbers only)

(
Cy<n>RingSymRxHi = 1-15 (Odd numbers only)
Cy<n>RingSymTxLo = 0-14 (Even numbers only)
Cy<n>RingSymRxLo = 1-15 (Odd numbers only)
#Note:

HE S S SR S S Sk S R #E 3 FE S 4 HE S S S S $E #= 4 =

The value Cy<n>NumConcurrentAsymRequests will do impact to memory
consumption greatly. Below is some memory consumption data for
the configuration per instance.

128: 10M

512: 40M

1024: 78M

4096: 280M

By default, 4 kernel instances and 4 user space instances, so if
the value is set to be 4096, for pke, the memory consumption is:
(4+4) *280=2240M

For Data Compression

Dc<n>Name = "xxxx"

Dc<n>AcceleratorNumber = 0|1

Dc<n>BankNumber = 0-7

Dc<n>IsPolled = 0|1

Dc<n>NumConcurrentRequests = 64]128|256(512[1024|2048|4096
Dc<n>RingTx = 0-14 (Even numbers only)

Dc<n>RingRx = 1-15 (0Odd numbers only) #

Where:

- n is the number of this logical instance starting at O.
- XxXxXX may be any ascii value which identifies the logical

instance. #

Programmer’s Guide

165

s
I n te I Acceleration Driver Configuration File - Earlier
® File Format

FREF RS S ARSI A A A
FREFF RS

Kernel Instances Section

FHAH A A [KERNEL]
NumberCyInstances = 4

NumberDcInstances = 2

Crypto - Kernel instance #0
CyOName = "IPSecO"
CyOAcceleratorNumber = 0
CyOExecutionEngine = 0
CyOBankNumber = 0

CyOIsPolled = 0
CyONumConcurrentSymRequests = 512
CyONumConcurrentAsymRequests = 128
2

3

CyORingAsymTx

CyORingAsymRx
CyORingSymTxHi =
CyORingSymRxHi

I
-~ o o

CyORingSymTxLo
CyORingSymRxLo =

Crypto - Kernel instance #1
CylName = "IPSecl"
CylAcceleratorNumber = 0
CylExecutionEngine = 1
CylBankNumber = 1

CylIsPolled = 0
CylNumConcurrentSymRequests = 512
CylNumConcurrentAsymRequests = 128
CylRingAsymTx = 0

CylRingAsymRx = 1

CylRingSymTxHi =

2
CylRingSymRxHi = 3
CylRingSymTxLo = 4

5

CylRingSymRxLo =

Crypto - Kernel instance #2 Cy2Name = "IPSec2" Cy2AcceleratorNumber
=1

Cy2ExecutionEngine = 0
Cy2BankNumber = 0

Cy2IsPolled = 0
Cy2NumConcurrentSymRequests = 512
Cy2NumConcurrentAsymRequests = 128
2

Cy2RingAsymRx = 3

Cy2RingAsymTx

166 Programmer’s Guide

=
Acceleration Driver Configuration File - Earlier File Format I n te o

Cy2RingSymTxHi =
Cy2RingSymRxHi =
Cy2RingSymTxLo =

~ o U >

Cy2RingSymRxLo =

Crypto - Kernel instance #3 Cy3Name = "IPSec3" Cy3AcceleratorNumber
=1

Cy3ExecutionEngine = 1
Cy3BankNumber = 1

Cy3IsPolled = 0
Cy3NumConcurrentSymRequests = 512
Cy3NumConcurrentAsymRequests = 128
0

1

Cy3RingAsymTx

Cy3RingAsymRx
Cy3RingSymTxHi =

Cy3RingSymRxHi

2
3
Cy3RingSymTxLo 4
5

Cy3RingSymRxLo =

Data Compression - Kernel instance #0
DcOName = "IPCompO"
DcOAcceleratorNumber = 0

DcOBankNumber = 0

DcOIsPolled = 0
DcONumConcurrentRequests = 512
DcORingTx = 8

DcORingRx = 9

Data Compression - Kernel instance #1
DclName = "IPCompl"

DclAcceleratorNumber = 1

DclBankNumber = 2

DclIsPolled = 0

DclNumConcurrentRequests = 512

DclRingTx = O

DclRingRx = 1

FHAH A A A A

User Process Instance Section
FHAEHHH A H AR [SSL]

NumberCyInstances = 4
NumberDcInstances = 2

Crypto - User instance #0
CyOName = "SSLO"
CyOAcceleratorNumber = 0
CyOExecutionEngine = 0

Programmer’s Guide 167

s
I n te I Acceleration Driver Configuration File - Earlier
® File Format

CyOBankNumber = 0

CyOIsPolled= 1
CyONumConcurrentSymRequests = 512
CyONumConcurrentAsymRequests = 128
CyORingAsymTx = 10

CyORingAsymRx = 11

CyORingSymTxHi = 12
CyORingSymRxHi = 13
CyORingSymTxLo = 14
CyORingSymRxLo = 15

Crypto - User instance #1
CylName = "SSL1"
CylAcceleratorNumber = 0
CylExecutionEngine = 1
CylBankNumber = 1

CylIsPolled = 1
CylNumConcurrentSymRequests = 512
CylNumConcurrentAsymRequests = 128
CylRingAsymTx = 6

CylRingAsymRx = 7

CylRingSymTxHi = 8
CylRingSymRxHi = 9
CylRingSymTxLo = 10
CylRingSymRxLo = 11

Crypto - User instance #2
Cy2Name = "SSL2"
Cy2AcceleratorNumber = 1
Cy2ExecutionEngine = 0
Cy2BankNumber = 0

Cy2IsPolled= 1
Cy2NumConcurrentSymRequests = 512
Cy2NumConcurrentAsymRequests = 128

Cy2RingAsymTx = 8
Cy2RingAsymRx = 9
Cy2RingSymTxHi = 10
Cy2RingSymRxHi = 11
Cy2RingSymTxLo = 12
Cy2RingSymRxLo = 13

Crypto - User instance #3
Cy3Name = "SSL3"
Cy3AcceleratorNumber = 1
Cy3ExecutionEngine = 1
Cy3BankNumber = 1

168 Programmer’s Guide

=
Acceleration Driver Configuration File - Earlier File Format I n te %

Cy3IsbPolled = 1
Cy3NumConcurrentSymRequests = 512
Cy3NumConcurrentAsymRequests = 128
Cy3RingAsymTx = 6

Cy3RingAsymRx = 7

Cy3RingSymTxHi = 8
Cy3RingSymRxHi = 9
Cy3RingSymTxLo = 10
Cy3RingSymRxLo = 11

Data Compression - User space instance #0
DcOName = "UserDCO"

DcOAcceleratorNumber = 0

DcOBankNumber = 2

DcOIsPolled = 1

DcONumConcurrentRequests = 512

DcORingTx = 0

DcORingRx = 1

Data Compression - User space instance #1
DclName = "UserDC1"

DclAcceleratorNumber = 1

DclBankNumber = 2

DclIsPolled = 1

DclNumConcurrentRequests = 512

DclRingTx = 2

DclRingRx = 3

Programmer’s Guide 169

intel

Appendix B

Glossary

Glossary

Table24. Terminology

170

Term Description
ADF Acceleration Driver Framework
AHCI Advanced Host Controller Interface
AP Application Processor
ASIC Application Specific Integrated Circuit

Crystal Beach

Codename for a set of chipset functions that allows discrete PCl Express* (PCle*)
adapters to achieve higher performance.

DID Device ID

DMA Direct Memory Access

DTLS Datagram Transport Layer Security

DRAM Dynamic Random Access Memory

DRGB Deterministic Random Bit Generator

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

EHCI Enhanced Host Controller Interface

EVP Envelope (OpenSSL* high-level cryptographic functions)

GbE Gigabit Ethernet

Gladden Codename for an Intel® architecture mobile CPU

GPIO General Purpose Input Output

GPL General Public License

1BV Independent BIOS Vendor

LPC Low Pincount Interface

MGF Mask Generation Function

MSI Message Signaled Interrupts

NRBG Non-deterministic Random Number Generator

PCH Platform Controller Hub. In this manual, a Intel® Communications Chipset 8900 to
8920 Series device that includes standard interfaces and accelerator and I/O
interfaces.

RCIiEP Root Complex Integrated Endpoint

RTOS Real Time Operating System

SAL Service Access Layer

SATA Serial Advanced Technology Attachment

SGL Scatter Gather List

Programmer’s Guide

Glossary

intel

Term

Description

SIO

Serial I/O

SMBus

System Management Bus

SoC

System-on-a-Chip

SPI

Serial Peripheral Interconnect

SR-IOV

Single Root I/O Virtualization

SSL

Secure Sockets Layer

TLS

Transport Layer Security

TRNG

True Random Number Generator

UART

Universal Asynchronous Receiver/Transmitter

UEFI

Unified Extensible Firmware Interface

UHCI

Universal Host Controller Interface

UsB

Universal Serial Bus

VPN

Virtual Private Network

WDT

Watch Dog Timer

Programmer’s Guide

171

	1 Introduction
	1.1 Terminology
	1.2 Document Organization
	1.3 Product Documentation
	1.4 Typographical Conventions

	2 Platform Overview
	2.1 Platform Synopsis
	2.2 Determining the PCH SKU Type
	2.2.1 Example

	2.3 Determining the PCH Device Stepping
	2.3.1 Example

	3 Software Overview
	3.1 High-Level Software Architecture Overview
	3.2 Logical Instances
	3.2.1 Response Processing
	3.2.1.1 Interrupt Mode
	3.2.1.2 Polled Mode

	3.3 Operating System Support
	3.4 OpenSSL* Library Inclusion and Usage
	3.5 Support for Multiple Acceleration Hardware Generations
	Software Architecture
	Software Packaging
	Build Installation Details

	4 Acceleration Drivers Overview
	4.1 Hardware Assisted Rings
	4.2 Basic Software Context for Acceleration Drivers
	4.3 Linux* Software Context for Acceleration Drivers
	4.4 Acceleration Drivers
	4.4.1 Framework Overview
	4.4.2 Service Access Layer
	4.4.3 Acceleration Driver Framework
	4.4.4 Acceleration Driver Configuration File
	4.4.5 Utility for Loading Configuration Files and Sending Events to the Driver - adf_ctl
	Usage
	Device Enumeration

	4.5 Acceleration Architecture in Kernel and User Space
	4.5.1 User Space Memory Allocation
	4.5.1.1 Accelerator Driver Memory Allocation
	4.5.1.2 Application Payload Memory Allocation

	4.5.2 User Space Additional Functions
	4.5.3 User Space Configuration
	4.5.4 User Space Response Processing
	4.5.4.1 User Space Interrupt Mode
	4.5.4.2 User Space Polled Mode

	4.6 Managing Acceleration Devices Using qat_service
	4.7 Intel® QuickAssist Technology Entries in the /proc Filesystem
	4.8 Debug Feature
	4.9 Heartbeat Feature and Recovery from Hardware Errors
	4.9.1 How to Call the Heartbeat Query
	4.9.1.1 User Proc Entry Read (not Enabled by Default)
	4.9.1.2 User Application Heartbeat APIs (not Enabled by Default)

	4.9.2 Handling Heartbeat Failures
	4.9.3 AER and Uncorrectable Errors
	4.9.4 Handling Device Failures in a Virtualized Environment
	4.9.5 GbE Watchdog Service
	4.9.6 Special Considerations When Using the Heartbeat Feature and the GbE Watchdog Service

	4.10 Driver Threading Model
	4.10.1 Thread-less Mode

	4.11 Compression Status Codes
	4.11.1 Intel® QuickAssist Technology Compression API Errors

	4.12 Stateful Compression - Dealing with Error Code CPA_DC_BAD_LITLEN_CODES (-7)
	4.12.1 Example of a Stream that Triggers Error Code (-7)
	4.12.2 Special Case when a Packet Cuts a Header in the Stream
	4.12.3 Pseudo Code for Handling Error Code -7
	4.12.4 Unprocessed Data During Stateful Decompression Operations

	4.13 Stateful Compression Level Details
	4.14 Stateless Compression Level Details
	4.15 Acceleration Driver Error Scenarios
	4.15.1 User Space Process Crash
	4.15.2 Hardware Hang Detected by Heartbeat
	4.15.3 Hardware Error Detected by AER
	4.15.4 Virtualization: User Space Process Crash (in Guest OS)
	4.15.5 Virtualization: Guest OS Kernel Crash
	4.15.6 Virtualization: Hardware Hang Detected by Heartbeat
	4.15.7 Virtualization: Hardware Hang Detected by AER

	4.16 Build Flag Summary
	4.17 Running Applications as Non-Root User
	4.18 Compiling Acceleration Software on Older Kernels
	4.19 Compiling with Debug Symbols
	4.20 Acceleration Driver Return Codes

	5 Acceleration Driver Configuration File
	5.1 Configuration File Overview
	5.2 General Section
	5.2.1 General Parameters
	5.2.2 Statistics Parameters
	5.2.3 Optimized Firmware for Wireless Applications

	5.3 Logical Instances Section
	5.3.1 [KERNEL] Section
	5.3.1.1 Cryptographic Logical Instance Parameters
	5.3.1.2 Data Compression Logical Instance Parameters

	5.3.2 [DYN] Section
	5.3.2.1 Dynamic Instance Configuration Example

	5.3.3 User Process [xxxxx] Sections
	5.3.3.1 Maximum Number of Process Calculations

	5.4 Configuring Multiple PCH Devices in a System
	5.5 Configuring Multiple Processes on a Multiple-Device System
	5.6 Sample Configuration File (V2)
	5.7 Configuration File Version 2 Differences

	6 Secure Architecture Considerations
	6.1 Terminology
	6.1.1 Threat Categories
	6.1.2 Attack Mechanism
	6.1.3 Attacker Privilege
	6.1.4 Deployment Models

	6.2 Threat/Attack Vectors
	6.2.1 General Mitigation
	6.2.2 General Threats
	6.2.2.1 DMA
	6.2.2.2 Intentional Modification of IA Driver
	6.2.2.3 Modification of Intel® QuickAssist Accelerator Firmware
	6.2.2.4 Modification of the PCH Configuration File
	6.2.2.5 Malicious Application Code
	6.2.2.6 Contrived Packet Stream

	6.2.3 Threats Against the Cryptographic Service
	6.2.3.1 Reading and Writing of Cryptographic Keys
	6.2.3.2 Modification of Public Key Firmware
	6.2.3.3 Failure of the Entropy Source for the Random Number Generator
	6.2.3.4 Interference Among Users of the Random Number Service

	6.2.4 Data Compression Service Threats
	6.2.4.1 Read/Write of Save/Restore Context
	6.2.4.2 Stateful Behavior
	6.2.4.3 Incomplete or Malformed Huffman Tree
	6.2.4.4 Contrived Packet Stream

	7 Supported APIs
	7.1 Intel® QuickAssist Technology APIs
	7.1.1 Intel® QuickAssist Technology API Limitations
	7.1.1.1 Resubmitting After Getting an Overflow Error
	Stateful
	Stateless

	7.1.1.2 Dynamic Compression for Data Compression Service
	7.1.1.3 Maximal Expansion with Auto Select Best Feature for Data Compression Service
	7.1.1.4 Maximal Expansion and Destination Buffer Size

	7.1.2 Data Plane APIs Overview
	7.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs
	7.1.2.2 Usage Constraints on the Data Plane APIs
	7.1.2.3 Cryptographic and Data Compression API Descriptions

	7.2 Additional APIs
	7.2.1 Dynamic Instance Allocation Functions
	7.2.1.1 icp_sal_userCyGetAvailableNumDynInstances
	7.2.1.1.1 Syntax
	7.2.1.1.2 Parameters
	7.2.1.1.3 Return Value
	Code Meaning

	7.2.1.2 icp_sal_userDcGetAvailableNumDynInstances
	7.2.1.2.1 Syntax
	7.2.1.2.2 Parameters
	7.2.1.2.3 Return Value
	Code Meaning

	7.2.1.3 icp_sal_userCyInstancesAlloc
	7.2.1.3.1 Syntax
	7.2.1.3.2 Parameters
	7.2.1.3.3 Return Value
	Code Meaning

	7.2.1.4 icp_sal_userDcInstancesAlloc
	7.2.1.4.1 Syntax
	7.2.1.4.2 Parameters
	7.2.1.4.3 Return Value
	Code Meaning

	7.2.1.5 icp_sal_userCyFreeInstances
	7.2.1.5.1 Syntax
	7.2.1.5.2 Parameters
	7.2.1.5.3 Return Value
	Code Meaning

	7.2.1.6 icp_sal_userDcFreeInstances
	7.2.1.6.1 Syntax
	7.2.1.6.2 Parameters
	7.2.1.6.3 Return Value
	Code Meaning

	7.2.1.7 icp_sal_userCyGetAvailableNumDynInstancesByDevPkg
	7.2.1.7.1 Syntax
	7.2.1.7.2 Parameters
	7.2.1.7.3 Return Value
	Code Meaning

	7.2.1.8 icp_sal_userDcGetAvailableNumDynInstancesByDevPkg
	7.2.1.8.1 Syntax
	7.2.1.8.2 Parameters
	7.2.1.8.3 Return Value
	Code Meaning

	7.2.1.9 icp_sal_userCyInstancesAllocByDevPkg
	7.2.1.9.1 Syntax
	7.2.1.9.2 Parameters
	7.2.1.9.3 Return Value
	Code Meaning

	7.2.1.10 icp_sal_userDcInstancesAllocByDevPkg
	7.2.1.10.1 Syntax
	7.2.1.10.2 Parameters
	7.2.1.10.3 Return Value
	Code Meaning

	7.2.1.11 icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel
	7.2.1.11.1 Syntax
	7.2.1.11.2 Parameters
	7.2.1.11.3 Return Value
	Code Meaning

	7.2.1.12 icp_sal_userCyInstancesAllocByPkgAccel
	7.2.1.12.1 Syntax
	7.2.1.12.2 Parameters
	7.2.1.12.3 Return Value
	Code Meaning

	7.2.2 IOMMU Remapping Functions
	7.2.2.1 icp_sal_iommu_get_remap_size
	7.2.2.1.1 Syntax
	7.2.2.1.2 Parameters
	7.2.2.1.3 Return Value

	7.2.2.2 icp_sal_iommu_map
	7.2.2.2.1 Syntax
	7.2.2.2.2 Parameters
	7.2.2.2.3 Return Value
	Code Meaning

	7.2.2.3 icp_sal_iommu_unmap
	7.2.2.3.1 Syntax
	7.2.2.3.2 Parameters
	7.2.2.3.3 Return Value
	Code Meaning

	7.2.2.4 IOMMU Remapping Function Usage

	7.2.3 Polling Functions
	7.2.3.1 icp_sal_pollBank
	7.2.3.1.1 Syntax
	7.2.3.1.2 Parameters
	7.2.3.1.3 Return Value
	Code Meaning

	7.2.3.2 icp_sal_pollAllBanks
	7.2.3.2.1 Syntax
	7.2.3.2.2 Parameters
	7.2.3.2.3 Return Value
	Code Meaning

	7.2.3.3 icp_sal_CyPollInstance
	7.2.3.3.1 Syntax
	7.2.3.3.2 Parameters
	7.2.3.3.3 Return Value
	Code Meaning

	7.2.3.4 icp_sal_DcPollInstance
	7.2.3.4.1 Syntax
	7.2.3.4.2 Parameters
	7.2.3.4.3 Return Value
	Code Meaning

	7.2.3.5 icp_sal_CyPollDpInstance
	7.2.3.5.1 Syntax
	7.2.3.5.2 Parameters
	7.2.3.5.3 Return Value
	Code Meaning

	7.2.3.6 icp_sal_DcPollDpInstance
	7.2.3.6.1 Syntax
	7.2.3.6.2 Parameters
	7.2.3.6.3 Return Value
	Code Meaning

	7.2.4 Random Number Generation Functions
	7.2.4.1 icp_sal_drbgGetEnropyInputFuncRegister
	7.2.4.1.1 Syntax
	7.2.4.1.2 Parameters
	7.2.4.1.3 Return Value
	7.2.4.1.4 Sample Code

	7.2.4.2 icp_sal_drbgGetInstance
	7.2.4.2.1 Syntax
	7.2.4.2.2 Parameters
	7.2.4.2.3 Return Value

	7.2.4.3 icp_sal_drbgGetNonceFuncRegister
	7.2.4.3.1 Syntax
	7.2.4.3.2 Parameters
	7.2.4.3.3 Return Value
	7.2.4.3.4 Sample Code

	7.2.4.4 icp_sal_drbgHTGenerate
	7.2.4.4.1 Syntax
	7.2.4.4.2 Parameters
	7.2.4.4.3 Return Value
	Code Meaning

	7.2.4.5 icp_sal_drbgHTGetTestSessionSize
	7.2.4.5.1 Syntax
	7.2.4.5.2 Parameters
	7.2.4.5.3 Return Value
	Code Meaning

	7.2.4.6 icp_sal_drbgHTInstantiate
	7.2.4.6.1 Syntax
	7.2.4.6.2 Parameters
	7.2.4.6.3 Return Value
	Code Meaning

	7.2.4.7 icp_sal_drbgHTReseed
	7.2.4.7.1 Syntax
	7.2.4.7.2 Parameters
	7.2.4.7.3 Return Value
	Code Meaning

	7.2.4.8 icp_sal_drbgIsDFReqFuncRegister
	7.2.4.8.1 Syntax
	7.2.4.8.2 Parameters
	7.2.4.8.3 Return Value
	7.2.4.8.4 Sample Code

	7.2.4.9 icp_sal_nrbgHealthTest
	7.2.4.9.1 Syntax
	7.2.4.9.2 Parameters
	7.2.4.9.3 Return Value
	Code Meaning

	7.2.4.9.4 Sample Code

	7.2.4.10 DRBG Health Test and cpaCyDrbgSessionInit Implementation Detail

	7.2.5 User Space Access Configuration Functions
	7.2.5.1 icp_sal_userStart
	7.2.5.1.1 Syntax
	7.2.5.1.2 Parameters
	7.2.5.1.3 Return Value
	Code Meaning

	7.2.5.1.4 Notes

	7.2.5.2 icp_sal_userStartMultiProcess
	7.2.5.2.1 Syntax
	7.2.5.2.2 Parameters
	7.2.5.2.3 Return Value
	Code Meaning

	7.2.5.2.4 icp_sal_userStartMultiProcess Usage

	7.2.5.3 icp_sal_userStop
	7.2.5.3.1 Syntax
	7.2.5.3.2 Parameters
	7.2.5.3.3 Return Value
	7.2.5.3.4 Code Meaning
	7.2.5.3.5 Notes

	7.2.6 User Space Heartbeat Functions
	7.2.6.1 icp_sal_check_device
	7.2.6.1.1 Syntax
	7.2.6.1.2 Parameters
	7.2.6.1.3 Return Value
	Code Meaning

	7.2.6.1.4 Notes

	7.2.6.2 icp_sal_check_all_devices
	7.2.6.2.1 Syntax
	7.2.6.2.2 Parameters
	7.2.6.2.3 Return Value
	Code Meaning

	7.2.7 Version Information Function
	7.2.7.1 icp_sal_getDevVersionInfo
	7.2.7.1.1 Syntax
	7.2.7.1.2 Parameters
	7.2.7.1.3 Return Value
	Code Meaning

	7.2.8 Reset Device Function
	7.2.8.1 icp_sal_reset_device
	7.2.8.1.1 Syntax
	7.2.8.1.2 Parameters
	7.2.8.1.3 Return Value
	Code Meaning

	7.2.9 Thread-less APIs
	7.2.9.1 icp_sal_poll_device_events
	7.2.9.1.1 Syntax
	7.2.9.1.2 Parameters
	7.2.9.1.3 Return Value
	Code Meaning

	7.2.9.2 icp_sal_find_new_devices
	7.2.9.2.1 Syntax
	7.2.9.2.2 Parameters
	7.2.9.2.3 Return Value
	Code Meaning

	8 Application Usage Guidelines
	8.1 Mapping Service Instances to Hardware Accelerators on the PCH
	8.1.1 Processor and PCH Device Communication
	8.1.2 Service Instances and Interaction with the Hardware
	8.1.3 Service Instance Configuration
	8.1.4 Guidelines for Using Multiple Intel® QuickAssist Instances for Load Balancing in Cryptography Applications

	8.2 Cryptography Applications
	8.2.1 IPsec and SSL VPNs
	8.2.2 Encrypted Storage
	8.2.3 Web Proxy Appliances

	8.3 Data Compression Applications
	8.3.1 Compression for Storage
	8.3.2 Data Deduplication and WAN Acceleration

	Appendix A Acceleration Driver Configuration File - Earlier File Format
	A.1 Configuration File Overview
	A.2 General Section
	A.2.1 General Parameters
	A.2.2 QAT Parameters
	A.2.3 Statistics Parameters
	A.3 [AcceleratorX] Section
	A.3.1 Interrupt Coalescing Parameters
	A.3.2 Affinity Parameters
	A.4 Logical Instances Section
	A.4.1 [KERNEL] Section
	A.4.1.1 Cryptographic Logical Instance Parameters
	A.4.1.2 Data Compression Logical Instance Parameters
	A.4.2 User Process Instance [xxxxx] Sections
	A.5 Sample Configuration File (V1)
	Appendix B Glossary

