

Document Number: 330753

Intel® Communications Chipset 8900

to 8920 Series Software

Programmer’s Guide

Revision 008

April 2022

2 Programmer’s Guide

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis You may not use or facilitate

the use of this document in connection with any infringement or other legal analysis concerning Intel products described herein. You agree to

grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter disclosed herein.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product

specifications and roadmaps.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published

specifications. Current characterized errata are available on request.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation.

Performance varies depending on system configuration. No computer system can be absolutely secure. Check with your system

manufacturer or retailer or learn more at intel.com.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a particular

purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in trade.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries.

*Other names and brands may be claimed as the property of others.

Copyright © 2022, Intel Corporation. All rights reserved.

http://intel.com/

Programmer’s Guide 3

Contents

1 Introduction ... 13

1.1 Terminology ... 13
1.2 Document Organization ... 13
1.3 Product Documentation ... 14
1.4 Typographical Conventions .. 14

2 Platform Overview .. 15

2.1 Platform Synopsis ... 15
2.2 Determining the PCH SKU Type... 16

2.2.1 Example .. 17
2.3 Determining the PCH Device Stepping ... 17

2.3.1 Example .. 18

3 Software Overview ... 19

3.1 High-Level Software Architecture Overview ... 19
3.2 Logical Instances ... 21

3.2.1 Response Processing ... 21
3.2.1.1 Interrupt Mode ... 21
3.2.1.2 Polled Mode .. 22

3.3 Operating System Support .. 22
3.4 OpenSSL* Library Inclusion and Usage .. 23
3.5 Support for Multiple Acceleration Hardware Generations ... 23

4 Acceleration Drivers Overview .. 26

4.1 Hardware Assisted Rings .. 26
4.2 Basic Software Context for Acceleration Drivers ... 28
4.3 Linux* Software Context for Acceleration Drivers ... 28
4.4 Acceleration Drivers .. 29

4.4.1 Framework Overview .. 30
4.4.2 Service Access Layer .. 30
4.4.3 Acceleration Driver Framework ... 31
4.4.4 Acceleration Driver Configuration File .. 31
4.4.5 Utility for Loading Configuration Files and Sending Events to the Driver -

adf_ctl ... 32
4.5 Acceleration Architecture in Kernel and User Space .. 33

4.5.1 User Space Memory Allocation ...34
4.5.1.1 Accelerator Driver Memory Allocation ...34
4.5.1.2 Application Payload Memory Allocation .. 35

4.5.2 User Space Additional Functions ... 36
4.5.3 User Space Configuration.. 37
4.5.4 User Space Response Processing.. 38

4.5.4.1 User Space Interrupt Mode.. 38
4.5.4.2 User Space Polled Mode ... 39

4.6 Managing Acceleration Devices Using qat_service ... 39
4.7 Intel® QuickAssist Technology Entries in the /proc Filesystem .. 40
4.8 Debug Feature ... 42

4 Programmer’s Guide

4.9 Heartbeat Feature and Recovery from Hardware Errors ... 45
4.9.1 How to Call the Heartbeat Query .. 46

4.9.1.1 User Proc Entry Read (not Enabled by Default) 46
4.9.1.2 User Application Heartbeat APIs (not Enabled by Default)....... 47

4.9.2 Handling Heartbeat Failures .. 48
4.9.3 AER and Uncorrectable Errors ... 48
4.9.4 Handling Device Failures in a Virtualized Environment 48
4.9.5 GbE Watchdog Service... 49
4.9.6 Special Considerations When Using the Heartbeat Feature and the GbE

Watchdog Service .. 50
4.10 Driver Threading Model .. 51

4.10.1 Thread-less Mode .. 52
4.11 Compression Status Codes ... 52

4.11.1 Intel® QuickAssist Technology Compression API Errors 52
4.12 Stateful Compression - Dealing with Error Code CPA_DC_BAD_LITLEN_CODES (-7)

 .. 54
4.12.1 Example of a Stream that Triggers Error Code (-7) .. 54
4.12.2 Special Case when a Packet Cuts a Header in the Stream 55
4.12.3 Pseudo Code for Handling Error Code -7 .. 56
4.12.4 Unprocessed Data During Stateful Decompression Operations 56

4.13 Stateful Compression Level Details ... 57
4.14 Stateless Compression Level Details ... 57
4.15 Acceleration Driver Error Scenarios ... 58

4.15.1 User Space Process Crash .. 58
4.15.2 Hardware Hang Detected by Heartbeat .. 58
4.15.3 Hardware Error Detected by AER .. 59
4.15.4 Virtualization: User Space Process Crash (in Guest OS) 59
4.15.5 Virtualization: Guest OS Kernel Crash ... 60
4.15.6 Virtualization: Hardware Hang Detected by Heartbeat 60
4.15.7 Virtualization: Hardware Hang Detected by AER ... 60

4.16 Build Flag Summary.. 61
4.17 Running Applications as Non-Root User .. 63
4.18 Compiling Acceleration Software on Older Kernels .. 65
4.19 Compiling with Debug Symbols ... 65
4.20 Acceleration Driver Return Codes .. 66

5 Acceleration Driver Configuration File ... 68

5.1 Configuration File Overview .. 68
5.2 General Section ... 69

5.2.1 General Parameters .. 69
5.2.2 Statistics Parameters .. 72
5.2.3 Optimized Firmware for Wireless Applications .. 73

5.3 Logical Instances Section ... 73
5.3.1 [KERNEL] Section .. 74

5.3.1.1 Cryptographic Logical Instance Parameters 74
5.3.1.2 Data Compression Logical Instance Parameters 76

5.3.2 [DYN] Section .. 76
5.3.2.1 Dynamic Instance Configuration Example .. 77

5.3.3 User Process [xxxxx] Sections ... 78

Programmer’s Guide 5

5.3.3.1 Maximum Number of Process Calculations 79
5.4 Configuring Multiple PCH Devices in a System ... 79
5.5 Configuring Multiple Processes on a Multiple-Device System ... 81
5.6 Sample Configuration File (V2) ... 84
5.7 Configuration File Version 2 Differences .. 90

6 Secure Architecture Considerations ... 92

6.1 Terminology .. 92
6.1.1 Threat Categories ... 92
6.1.2 Attack Mechanism .. 93
6.1.3 Attacker Privilege .. 93
6.1.4 Deployment Models ... 94

6.2 Threat/Attack Vectors ... 94
6.2.1 General Mitigation ... 94
6.2.2 General Threats .. 95

6.2.2.1 DMA ... 95
6.2.2.2 Intentional Modification of IA Driver .. 96
6.2.2.3 Modification of Intel® QuickAssist Accelerator Firmware 96
6.2.2.4 Modification of the PCH Configuration File 96
6.2.2.5 Malicious Application Code ... 97
6.2.2.6 Contrived Packet Stream ... 97

6.2.3 Threats Against the Cryptographic Service ... 97
6.2.3.1 Reading and Writing of Cryptographic Keys 98
6.2.3.2 Modification of Public Key Firmware ... 98
6.2.3.3 Failure of the Entropy Source for the Random Number

Generator .. 98
6.2.3.4 Interference Among Users of the Random Number Service 98

6.2.4 Data Compression Service Threats ... 99
6.2.4.1 Read/Write of Save/Restore Context ... 99
6.2.4.2 Stateful Behavior .. 99
6.2.4.3 Incomplete or Malformed Huffman Tree ... 99
6.2.4.4 Contrived Packet Stream ... 100

7 Supported APIs ... 101

7.1 Intel® QuickAssist Technology APIs ... 101
7.1.1 Intel® QuickAssist Technology API Limitations .. 101

7.1.1.1 Resubmitting After Getting an Overflow Error 103
7.1.1.2 Dynamic Compression for Data Compression Service 104
7.1.1.3 Maximal Expansion with Auto Select Best Feature for Data

Compression Service ... 105
7.1.1.4 Maximal Expansion and Destination Buffer Size 106

7.1.2 Data Plane APIs Overview ... 106
7.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs 107
7.1.2.2 Usage Constraints on the Data Plane APIs 109
7.1.2.3 Cryptographic and Data Compression API Descriptions 109

7.2 Additional APIs .. 109
7.2.1 Dynamic Instance Allocation Functions.. 110

7.2.1.1 icp_sal_userCyGetAvailableNumDynInstances 111
7.2.1.2 icp_sal_userDcGetAvailableNumDynInstances 111
7.2.1.3 icp_sal_userCyInstancesAlloc ... 112

6 Programmer’s Guide

7.2.1.4 icp_sal_userDcInstancesAlloc .. 113
7.2.1.5 icp_sal_userCyFreeInstances .. 113
7.2.1.6 icp_sal_userDcFreeInstances.. 114
7.2.1.7 icp_sal_userCyGetAvailableNumDynInstancesByDevPkg 114
7.2.1.8 icp_sal_userDcGetAvailableNumDynInstancesByDevPkg 115
7.2.1.9 icp_sal_userCyInstancesAllocByDevPkg ... 115
7.2.1.10 icp_sal_userDcInstancesAllocByDevPkg... 116
7.2.1.11 icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel ... 117
7.2.1.12 icp_sal_userCyInstancesAllocByPkgAccel 117

7.2.2 IOMMU Remapping Functions ... 118
7.2.2.1 icp_sal_iommu_get_remap_size... 118
7.2.2.2 icp_sal_iommu_map .. 119
7.2.2.3 icp_sal_iommu_unmap ... 119
7.2.2.4 IOMMU Remapping Function Usage .. 120

7.2.3 Polling Functions ... 120
7.2.3.1 icp_sal_pollBank .. 121
7.2.3.2 icp_sal_pollAllBanks .. 121
7.2.3.3 icp_sal_CyPollInstance .. 122
7.2.3.4 icp_sal_DcPollInstance .. 123
7.2.3.5 icp_sal_CyPollDpInstance .. 123
7.2.3.6 icp_sal_DcPollDpInstance ... 124

7.2.4 Random Number Generation Functions .. 125
7.2.4.1 icp_sal_drbgGetEnropyInputFuncRegister 126
7.2.4.2 icp_sal_drbgGetInstance .. 126
7.2.4.3 icp_sal_drbgGetNonceFuncRegister ... 127
7.2.4.4 icp_sal_drbgHTGenerate ... 127
7.2.4.5 icp_sal_drbgHTGetTestSessionSize .. 128
7.2.4.6 icp_sal_drbgHTInstantiate .. 128
7.2.4.7 icp_sal_drbgHTReseed ... 129
7.2.4.8 icp_sal_drbgIsDFReqFuncRegister ... 129
7.2.4.9 icp_sal_nrbgHealthTest .. 130
7.2.4.10 DRBG Health Test and cpaCyDrbgSessionInit Implementation

Detail .. 131
7.2.5 User Space Access Configuration Functions ... 131

7.2.5.1 icp_sal_userStart .. 132
7.2.5.2 icp_sal_userStartMultiProcess .. 132
7.2.5.3 icp_sal_userStop .. 134

7.2.6 User Space Heartbeat Functions.. 134
7.2.6.1 icp_sal_check_device ... 135
7.2.6.2 icp_sal_check_all_devices .. 135

7.2.7 Version Information Function .. 136
7.2.7.1 icp_sal_getDevVersionInfo.. 136

7.2.8 Reset Device Function .. 137
7.2.8.1 icp_sal_reset_device... 137

7.2.9 Thread-less APIs .. 137
7.2.9.1 icp_sal_poll_device_events ... 137
7.2.9.2 icp_sal_find_new_devices .. 138

8 Application Usage Guidelines .. 139

8.1 Mapping Service Instances to Hardware Accelerators on the PCH 139
8.1.1 Processor and PCH Device Communication ... 140

Programmer’s Guide 7

8.1.2 Service Instances and Interaction with the Hardware .. 140
8.1.3 Service Instance Configuration ... 142
8.1.4 Guidelines for Using Multiple Intel® QuickAssist Instances for Load

Balancing in Cryptography Applications ... 143
8.2 Cryptography Applications .. 145

8.2.1 IPsec and SSL VPNs .. 145
8.2.2 Encrypted Storage .. 146
8.2.3 Web Proxy Appliances .. 147

8.3 Data Compression Applications ... 147
8.3.1 Compression for Storage ... 147
8.3.2 Data Deduplication and WAN Acceleration ... 148

Appendix A Acceleration Driver Configuration File - Earlier File Format .. 149

A.1 Configuration File Overview .. 149
A.2 General Section ... 150

A.2.1 General Parameters .. 150
A.2.2 QAT Parameters ... 151
A.2.3 Statistics Parameters .. 152

A.3 [AcceleratorX] Section .. 153
A.3.1 Interrupt Coalescing Parameters .. 153
A.3.2 Affinity Parameters ... 154

A.4 Logical Instances Section ... 155
A.4.1 [KERNEL] Section .. 156

A.4.1.1 Cryptographic Logical Instance Parameters 156
A.4.1.2 Data Compression Logical Instance Parameters 157

A.4.2 User Process Instance [xxxxx] Sections .. 158
A.5 Sample Configuration File (V1) ... 159

Appendix B Glossary ... 170

Figures

Figure 1. I/O Optimized Platform Example ... 15
Figure 2. I/O Optimized Platform Example ... 16
Figure 3. PCH SKU Identification Example ... 17
Figure 4. Software Architecture Overview ... 19
Figure 5. Kernel Space Response Ring Processing .. 22
Figure 6. Intel® QuickAssist Accelerator Ring Access.. 27
Figure 7. Ring Partitioning on the Chipset Device ... 27
Figure 8. Basic Software Context .. 28
Figure 9. Linux* Software Context .. 29
Figure 10. Acceleration Driver Framework .. 30
Figure 11. Software Architecture for Kernel and User Space ..34
Figure 12. User Space Memory Allocation at Initialization ... 35
Figure 13. User Space Process with Two Logical Instances ... 37
Figure 14. User Space Response Processing for Interrupt Mode ... 39
Figure 15. Stream of Compressed Data Split into Three Packets .. 54

8 Programmer’s Guide

Figure 16. Accelerator Software Consumes Data up to End of Header 2 where Error Code (-7) is Normally

Generated ... 55
Figure 17. Unprocessed Data Appended to Next Packet... 55
Figure 18. Packet Cut in the Middle of a Header ... 55
Figure 19. Packet Cut in the Middle of a Header ... 56
Figure 20. Unprocessed Data for Incomplete Header ... 57
Figure 21. Ring Banks .. 68
Figure 22. Dynamic Compression Data Path ... 104
Figure 23. Amortizing the Cost of an MMIO Across Multiple Requests ... 108
Figure 24. Processor and PCH Device Components .. 139
Figure 25. Processor and PCH Device Communication ... 140
Figure 26. Processor and PCH Device Communication .. 141
Figure 27. Service Instance Configuration ... 142
Figure 28. Entities and Relationships for Load Balancing ... 144
Figure 29. Load Balancing Scenarios .. 145
Figure 30. Ring Banks .. 150
Figure 31. Ring Bank Affinity to Core for MSI-X Interrupts .. 154

Tables

Table 1. Device Enumeration Example .. 32
Table 2. Heartbeat/GbE Watchdog Service Scenarios ... 50
Table 3. Intel® QuickAssist Technology Compression API Errors ... 52
Table 4. Required Build Flags .. 61
Table 5. Optional Build Flags ... 61
Table 6. General Parameters .. 69
Table 7. Statistics Parameters ... 72
Table 8. Cryptographic Logical Instance Parameters .. 75
Table 9. User Process [xxxxx] Sections Parameters .. 78
Table 10. System Threat Categories ... 92
Table 11. Attack Mechanisms and Examples ... 93
Table 12. Attacker Privilege .. 94
Table 13. Deployment Models.. 94
Table 14. Compression/Decompression Overflow Behavior .. 103
Table 15. Service Instance Attributes .. 141
Table 16. General Parameters - Earlier File Format .. 151
Table 17. General Parameters - Earlier File Format ... 152
Table 18. General Parameters - Earlier File Format ... 152
Table 19. General Parameters - Earlier File Format ... 153
Table 20. Ring Bank Affinity Parameters ... 155
Table 21. Cryptographic Logical Instance Parameters - Earlier File Format .. 156
Table 22. Data Compression Logical Instance Parameters ... 158
Table 23. User Process Instance [xxxxx] Parameters .. 159
Table 24. Terminology ... 170

Programmer’s Guide 9

Revision History

Document Number Revision Number Description Date

330753 008 • Updated Sections 8.2.2: Encrypted Storage, & 8.3: Data

Compression Applications with minor edits to terminology

and grammatical updates for clarity

April 2022

330753 007 • Updated with new Intel® logo

• Updated content with Intel One text font

December 2021

330753 006 Update includes:

• Updated Section 1.3 Product Documentation

October 2016

330753 005 Updates include:

• Updated Stateful Compression Level Details on page 58

and Stateless Compression Level Details on page 58

• Added DRBG_POLL_AND_WAIT optional build flag to

Build Flag Summary on page 61

March 2016

330753 004 Updates include:

• Updated Build Flag Summary on page 61

• Updated Cryptographic Logical Instance Parameters on

page 75 and Data Compression Logical Instance

Parameters on page 76

• Updated Intel® QuickAssist Technology API Limitations

on page 98

October 2015

330753 003 Updates include:

• Added Intel® QuickAssist Technology Entries in the /proc

Filesystem on page 42

• Added How to Call the Heartbeat Query on page 47

• Updated Build Flag Summary on page 61

• Added Acceleration Driver Return Codes on page 66

• Updated Dynamic Instance Configuration Example on

page 77

• Updated Maximum Number of Process Calculations on

page 79 and Resubmitting After Getting an Overflow Error

on page 100

March 2015

330753 002 Updates include:

• Added Intel® QuickAssist Technology Compression API

Errors on page 53

• Updated Intel® QuickAssist Technology API Limitations

on page 98

December 2014

10 Programmer’s Guide

Document Number Revision Number Description Date

• Added Resubmitting After Getting an Overflow Error on

page 100

• Added new APIs to Dynamic Instance Allocation Functions

on page 107

• Updated Reset Device Function on page 134

• Added Thread-less APIs on page 135

• Other general updates.

330753 001 Updates include:

• First “public” version of the document. Based on “Intel

Confidential” document number 441782-1.8 with the

revision history of that document retained for reference

purposes.

July 2014

330753 1.8 Updates include:

• Added Compiling with Debug Symbols on page 66

May 2014

330753 1.7 Updates include:

• Added new information to "direct user space access" bullet

in Acceleration Drivers Overview on page 28

• Added further detail to note in Hardware Assisted Rings on

page 28

• Updated Linux* Software Context for Acceleration Drivers

on page 30

• Added Stateless Compression Level Details on page 58

• Added support for the PF/VF concurrency for

SRIOV_Enabled in General Parameters on page 70

• Added Dynamic Compression for Data Compression

Service on page 101, Maximal Expansion with Auto Select

Best Feature for Data Compression Service on page 102,

and Maximal Expansion and Destination Buffer Size

March 2014

330753 1.6 Updates include:

• Added new information to Intel® QuickAssist Technology

API Limitations on page 98

• Added Running Applications as Non-Root User on page 63

• Added Compiling Acceleration Software on Older Kernels

on page 65

• Changed document and software title to specify chipset

SKU range.

• Other minor updates.

December 2013

330753 1.5 Updates include: August 2013

Programmer’s Guide 11

Document Number Revision Number Description Date

• Added section, "Heartbeat Feature in a Virtualized

Environment"

• Removed two stateful compression/decompression

limitations from Intel® QuickAssist Technology API

Limitations on page 98

• Added new NRBG and DRBG support information to

Random Number Generation Functions on page 122

330753 1.4 Updates for software release 1.3.0:

• Added Support for Multiple Acceleration Hardware

Generations on page 25

• Added Compression Status Codes on page 53

• Updated Stateful Compression - Dealing with Error Code

CPA_DC_BAD_LITLEN_CODES (-7) on page 54 and

subsections

• Added Stateful Compression Level Details on page 58

• Updated Build Flag Summary on page 61 to add

ICP_TRACE option

• Updated icp_sal_CyPollInstance on page 119

• Updated icp_sal_DcPollInstance on page 120

June 2013

330753 1.3 Updates for software release 1.2.0:

• In General Parameters, added SRIOV_Enable and

PF_bundle_offset

• Added [DYN] Section

• Updated Sample Configuration File (V2)

• Added Driver Threading Model

• Added Stateful Compression - Dealing with Error Code

CPA_DC_BAD_LITLEN_CODES (-7)

• Added Acceleration Driver Error Scenarios

• Added Build Flag Summary

• Added Dynamic Instance Allocation Functions

• Added IOMMU Remapping Functions

March 2013

330753 1.2 Updates for software release 1.1.0:

• Updated Heartbeat Feature and Recovery from Hardware

Errors

• Added User Proc Entry Read (not Enabled by Default)

• Added User Application Heartbeat APIs (not Enabled by

Default)

December 2012

12 Programmer’s Guide

Document Number Revision Number Description Date

• Updated Intel® QuickAssist Technology API Limitations to

better clarify autoSelectBest behavior for static

compression service

• Added GbE Watchdog Service

• Added Special Considerations When Using the Heartbeat

Feature and GbE

• Added icp_sal_drbgGetInstance

• Updated DRBG Health Test and cpaCyDrbgSessionInit

Implementation Detail

• Added User Space Heartbeat Functions

330753 1.1 Updates for software release 1.0.1:

• Added Heartbeat Feature and Recovery from Hardware

Errors

• Updated General Parameters

• Updated Cryptographic Logical Instance Parameters

• Updated Data Compression Logical Instance Parameters

• Added DRBG HealthTest and cpaCyDrbgSessionInit

Implemenation Detail

October 2012

330753 1.0 Corresponds with software release 1.0.0 September 2012

§

Introduction

Programmer’s Guide 13

1 Introduction

This Programmer’s Guide provides information on the architecture of the software and usage

guidelines. Information on the use of Intel® QuickAssist Technology APIs, which provide the

interface to acceleration services (cryptographic, data compression), is documented in the

related QuickAssist Technology Software Library documentation (see Product

Documentation).

1.1 Terminology

In this document, for convenience:

• Software package is used as a generic term for the package.

• Platform Controller Hub (PCH) is used as a generic term for the Intel® Communications

Chipset 8900 to 8920 Series.

• Accelerator is used as a generic term for the Intel® QuickAssist Accelerator device(s)

integrated in the Intel® Communications Chipset 8900 to 8920 Series.

• Acceleration drivers is used as a generic term for the software that allows the QuickAssist

Software Library APIs to access the Intel® QuickAssist Accelerator device(s) integrated in

the Intel® Communications Chipset 8900 to 8920 Series.

• Mobile platform is used as a generic term for a platform that combines Intel® Xeon® and

Intel® Core™ Processors for Communications Infrastructure with the Intel®

Communications Chipset 8900 to 8920 Series.

• Server platform is used as a generic term for a platform that combines Intel® Xeon®

Processors with the Intel® Communications Chipset 8900 to 8920 Series.

Refer to Glossary for the definition of acronyms and other terms used in this document.

1.2 Document Organization

This document is organized as follows:

• Chapter 1 – Introduction

• Chapter 2 – Platform Overview

• Chapter 3 – Software Overview

• Chapter 4 – Acceleration Drivers Overview

• Chapter 5 – Acceleration Driver Configuration File

• Chapter 6 – Secure Architecture Considerations

• Chapter 7 – Supported APIs

• Chapter 8 – Application Usage Guidelines

Acceleration Driver Configuration File - Earlier

File Format

14 Programmer’s Guide

A glossary of the terms and acronyms used in this guide is provided at the end of the

document.

1.3 Product Documentation

Documentation supporting the software package includes:

• Release Notes for Linux* Getting Started Guide

• Intel® Communications Chipset 89xx Series Software for FreeBSD* Getting Started Guide

• Intel® Communications Chipset 89xx Series Software for Windows* Getting Started Guide

Programmer’s Guide (this document)

Related QuickAssist Technology Software Library documentation includes:

• Intel® QuickAssist Technology API Programmer’s Guide

• Intel® QuickAssist Technology Cryptographic API Reference Manual

• Intel® QuickAssist Technology Data Compression API Reference Manual

Other related documentation:

• Intel® QuickAssist Technology Acceleration Software OS Porting Guide

• Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist Technology

Application Note

• Intel® Communications Chipset 89xx Series External Design Specification (EDS)

• Supported Ethernet PHY Devices for the Intel® Communications Chipset 89xx Series

Application Note

• Intel® 82580 Quad/Dual Gigabit Ethernet Controller Data Sheet

• Intel® Xeon® Processor (storage) - External Design Specification (EDS) Addendum - Rev.

1.1 (Reference: 503997)

1.4 Typographical Conventions

The following conventions are used in this manual:

• Courier font - file names, path names, code examples, command line entries, API names,

parameter names and other programming constructs

• Italic text – key terms and publication titles

• Bold text - graphical user interface entries and buttons

§

http://download.intel.com/design/network/datashts/321027.pdf
http://download.intel.com/design/network/datashts/321027.pdf

Platform Overview

Programmer’s Guide 15

2 Platform Overview

The mobile and server platforms described in this manual are follow ons to previous generation

platforms that continue to reduce power, reduce footprint and increase performance for

communications infrastructure systems. The platforms deliver leadership solutions with GB/s

Ethernet* MACs and Intel® QuickAssist Technology hardware: the acceleration for

cryptography and data compression.

2.1 Platform Synopsis

At a high level, the platform pairs an Intel® architecture processor with the Intel®

Communications Chipset 8900 to 8920 Series. Functionally, Intel® Communications Chipset

8900 to 8920 Series can be most easily described as a Platform Controller Hub (PCH) that

includes both standard PC interfaces (for example, PCI Express*, SATA, USB and so on)

together with accelerator and I/O interfaces (for example, Intel® QuickAssist Accelerator and

GigE).

• For I/O-optimized applications, Intel® Xeon® and Intel® Core™ Processors for

Communications Infrastructure are paired with the Intel® Communications Chipset 8900 to

8920 Series. Figure 1 is a block diagram of the Intel® Xeon® Processor E3-1125C with Intel®

Communications Chipset 8910 Development Kit, codenamed Stargo. See the Intel® Xeon®

Processor E3-1125C with Intel® Communications Chipset 8910 Development Kit User

Guide for detailed information.

• For bladed applications, Intel® Xeon® Processors are paired with the Intel®

Communications Chipset 8900 to 8920 Series. Figure 2 is a block diagram of the Intel®

Xeon® Processor E5-2658 and E5-2448L with Intel® Communications Chipset 89xx

Development Kit, codenamed Shumway. See the Intel® Xeon® Processor E5-2658 and E5-

2448L with Intel® Communications Chipset 8920 Development Kit User Guide for detailed

information.

Figure 1. I/O Optimized Platform Example

Platform Overview

16 Programmer’s Guide

Figure 2. I/O Optimized Platform Example

2.2 Determining the PCH SKU Type

Determine the PCH SKU type as follows:

 Find out the bus, slot and function of the PCH devices:

[root@localhost ~]# lspci -d 8086:0434

03:00.0 Co-processor: Intel Corporation Device 0434 (rev 10)

82:00.0 Co-processor: Intel Corporation Device 0434 (rev 10)

This displays the PCI configuration space for the 0434 device. In the case of the first entry,

the bus number=0x03, the device number=0x0 and the function number=0x0.

 Read the config space using the command:

[root@localhost ~]# od -tx4 -Ax /proc/bus/pci/03/00.0

where:

• -tx4 displays the output in a readable 4-bytes word format.

• -Ax specifies Hex. format

 Read the 0x00040 offset specifically using the command:

[root@localhost ~]# od -tx4 -Ax /proc/bus/pci/03/00.0 | grep 000040

This gives an output similar to the following:

000040 00000000 00000000 00010000 0bb80000

Note: The word starts at 0x4C.

 Read the element returned from the following command:

Platform Overview

Programmer’s Guide 17

od -tx4 -Ax /proc/bus/pci/03/00.0 | grep "^000040" | awk '{print

$2}'

This gives an output similar to the following:

0bb80000

2.2.1 Example

Specific bits in this output determine the SKU type depending on the silicon stepping as

indicated in the following table.

Silicon Bits to Check SKU Type

A0 17:16 = 00 SKU 4

B0 22:19 = 0111 SKU 4

22:19 = 0110 and

17:16 = 01

SKU 3

22:19 = 0110 and

17:16 = 10

SKU 2

Cx Same as B0.

Assuming a B0 stepping device, if the 0x0bb80000 output from the command is analyzed in

binary form as shown in the following figure, it can be determined that bits 22:19 are 0111,

indicating SKU 4.

Figure 3. PCH SKU Identification Example

2.3 Determining the PCH Device Stepping

Determine the PCH stepping as follows:

 Find out the bus, device, and function of the PCH device.

 Read the config space using the command:

od -tx1 -Ax /proc/bus/pci/<bus number>/<device number>.<function

number>

 Look at offset 0x08 (Revision ID register for the device) from the beginning of PCI

Configuration Space for the PCH device.

The following is the bit definition of the Revision ID register, an 8-bit register with

bits[07:00].

bits[07:04] identify the "Major Revision":

0000 = A stepping

Platform Overview

18 Programmer’s Guide

0001 = B stepping

0010 = C stepping

0011 = D stepping

bits[03:00] identify the "Minor Revision":

0000 = x0 stepping

0001 = x1 stepping

0010 = x2 stepping

0011 = x3 stepping

2.3.1 Example

For example, if you find the PCH device at bus number 02, device number 00 and function 0

then, the command to enter is:

od -tx1 -Ax /proc/bus/pci/02/00.0 | grep 000000

This gives an output similar to the following:

000000 86 80 34 04 06 00 10 00 00 00 40 0b 00 00 80 00

[0x08] = 0x00, which is 0000_0000, in binary form bits[07:00]:

• bits[07:04] is the Major Revision, 0000 indicates an A stepping.

• bits[03:00] is the Minor Revision, 0000 indicates an x0 stepping.

Therefore, the PCH device is an A0 stepping.

§

Software Overview

Programmer’s Guide 19

3 Software Overview

In addition to the hardware mentioned in Platform Overview, the respective platforms have

critical software components that are part of the offering. The software includes drivers and

acceleration code that runs on the Intel® architecture (IA) CPUs and on the accelerators in the

PCH.

3.1 High-Level Software Architecture Overview

The primary components that describe the high-level architecture are shown in the following

figure.

Figure 4. Software Architecture Overview

The main software components are:

• Pre-boot Firmware

The Intel® Communications Chipset 8900 to 8920 Series(PCH) pre-boot firmware

(provided by an IBV) executes when the system is reset or powered up. It initializes and

configures system memory, chipset functions, interrupts, console devices, disk devices,

integrated I/O controllers, PCI buses and devices, and additional application processors

Software Overview

20 Programmer’s Guide

(AP) if present. IBV pre-boot firmware solutions are available to support both the legacy

BIOS interface and the newer Unified Extensible Firmware Interface (UEFI).

• Standard OS Drivers

These drivers (provided in a standard OS distribution) include support for standard

peripherals on a traditional Intel® architecture platform such as USB, SATA, Ethernet and

so on. Intel® provides a patch to the OS so that it recognizes the Device IDs (DIDs).

• Acceleration Software Subsystem

A subsystem (provided by Intel®) which includes the software components that provide

acceleration to applications running on the PCH. It contains the following:

− Services (Cryptographic, Data Compression)

Includes the firmware that drives the various workload slices in the accelerators, and

the associated Intel® architecture Service libraries that expose these workloads via

APIs. The Service libraries use the Acceleration Driver Framework (ADF) to plug into

the OS and gain access to the hardware to communicate with the firmware. The

architecture for this subsystem is detailed in : Acceleration Drivers of this manual.

− Intel® QuickAssist Technology APIs

The Intel® QuickAssist Technology APIs provide service level interfaces for customer

applications or Ecosystem Middleware to access the accelerator(s) in the PCH. More

detail on the APIs and associated architecture is detailed in : “Acceleration Drivers” of

this manual.

− Acceleration Driver Framework (ADF)

The Acceleration Driver Framework (ADF) includes infrastructure libraries that

provide various services to the different software components of the acceleration

drivers. The software framework is used to provide the acceleration services API to

the application. A configuration file enables customization of system operation. See

Configuration File Overview for more information.

• Open Source Frameworks

This layer includes open source stacks, such as the Linux* Kernel Crypto framework, zlib,

and OpenSSL*. The software package works to integrate the Intel® QuickAssist

Technology APIs with these stacks using patch layers. These open source stacks are not

developed or provided by Intel®.

• Patch Layers

As described above, the PCH integrates with different OS stacks and Ecosystem

Middleware using patch layers (translation layers). These patch layers may be developed

by Intel® or ecosystem vendors.

• Customer Applications

Customer applications may connect to the Services directly via the Intel® QuickAssist

Technology API or may connect through the supported open source frameworks and

associated patches.

Such applications can migrate to the PCH with little or no change provided that the Intel®

QuickAssist Technology APIs are integrated with the OS stack or middleware used.

Software Overview

Programmer’s Guide 21

3.2 Logical Instances

A logical instance may be thought of as a channel to the hardware. A logical instance allows an

address domain (that is, kernel space and individual user space processes) to configure the

rings to be used by that address domain and to define the behavior of that ring.

3.2.1 Response Processing

In the kernel space, each logical instance can be configured to operate in one of the two

modes:

• Interrupt mode

• Polled mode

In the user space, each logical instance can be configured to operate in one of the two modes:

• Polled mode

• Interrupt mode

3.2.1.1 Interrupt Mode

The interrupt is supported in both Kernel and User space.

When configured in interrupt mode, the Accelerator Driver Framework (ADF) registers an

interrupt handler for response ring processing.

As the latency in servicing an interrupt may be costly, the hardware assisted ring provides a

mechanism to amortize the cost of an interrupt into a single interrupt that may service multiple

responses. The interrupt coalescing section of the configuration file allows the user to select

the mechanism to amortize response interrupts using either a time-based interrupt scheme or

a number-of-responses-based scheme.

The ADF registers an interrupt handler to service the ring bank interrupt. When an interrupt

fires, the ADF services the interrupt and creates an interrupt handler bottom half1 to consume

the responses from the response ring. When MSI-X is supported, the bottom half of the

interrupt handler is created and affinitized to the configured core.

Configuration of this feature is available in the legacy variant of the configuration file only; see

Interrupt Coalescing Parameters for details. Callbacks to the application code occur in the

context of this tasklet. This sequence is shown in the following figure (the full sequence has

been reduced for clarity).

1 Linux* (and other operating systems) split an interrupt handler into two halves. The so-called "top half" is the routine that

actually responds to the interrupt, that is, the one you register with request_irq. The "bottom half" is a routine that is

scheduled by the top half to be executed later, at a safer time.

Software Overview

22 Programmer’s Guide

Figure 5. Kernel Space Response Ring Processing

3.2.1.2 Polled Mode

If the cost of servicing an interrupt and scheduling the interrupt handler bottom half is not

desired, a user can choose to disable interrupts and poll for responses. This mechanism can be

configured on a per logical instance basis by setting the CyXIsPolled or DcXIsPolled attribute

of a logical instance in the configuration file to 1. See Cryptographic Logical Instance

Parameters and Data Compression Logical Instance Parameters for more information. When

configured to 1, the ADF does not service interrupts for that logical instance.

The ADF provides a set of APIs to allow the client to poll a single bank or all banks on a given

accelerator:

• icp_sal_pollBank - Poll the rings on the given bank number for a given accelerator.

• icp_sal_pollAllBanks - Poll the rings on all banks for a given accelerator.

The Service Access Layer (SAL) provides an API to poll on an individual logical instance:

• icp_sal_CyPollInstance - Poll a specific cryptographic (Cy) logical instance

• icp_sal_DcPollInstance - Poll a specific data compression (Dc) logical instance

See Polling Functions for details on all the polling functions.

3.3 Operating System Support

The software package supports the Linux*, FreeBSD* and Windows* operating systems.

Intel® QuickAssist Technology software requires that the following crypto modules be present

Software Overview

Programmer’s Guide 23

on the system: sha256-generic.ko and sha512-generic.ko. The Acceleration driver is validated

with the Linux* operating system only. Details of the specific operating system versions

supported depend on the release version. See the Release Notes for your release version for

details on the specific operating system support provided in that release version.

3.4 OpenSSL* Library Inclusion and Usage

The Intel® Communications Chipset 8900 to 8920 Series Linux* package is distributed with

an OpenSSL* library file. This library file has certain dependencies that will be met in most

cases. In the event that these dependencies are not met, it may be necessary to build

OpenSSL* on the development platform and link any ProductNameShort applications to the

relevant OpenSSL* library.

3.5 Support for Multiple Acceleration Hardware Generations

Note: Not all Intel® QuickAssist Technology releases come with support for multiple acceleration
hardware generations.

Note: See Utility for Loading Configuration Files and Sending Events to the Driver - adf_ctl for
additional details.

Software Architecture

The acceleration drivers for Intel® Communications Chipset 8900 to 8920 Series and Intel®

Communications Chipset 8925 to 8955 Series devices are not compatible, however later

Intel® QuickAssist Technology software releases allow for both sets of drivers to be loaded on

the same target. Compatibility with the Intel® QuickAssist Technology API is maintained via a

"mux" layer that provides the dynamic linking to the appropriate driver based on the particular

device.

Software Packaging

This package includes:

• QAT 1.5 tarball of Intel® Architecture (IA) driver

• QAT 1.6 tarball of IA driver

• qat_mux (included in the QAT 1.6 tarball), which exposes the Intel® QuickAssist Technology

API in the case where above drivers are installed. When only one of the above drivers is

installed, the Intel® QuickAssist Technology API is exposed by the driver and the qat_mux is

not installed.

Different devices are supported by different Intel® QuickAssist Technology drivers; please see

the following table:

Device Driver

DH8900 - DH8920 QAT 1.5

C2XXX QAT 1.5

DH8925 - DH8955 QAT 1.6

Software Overview

24 Programmer’s Guide

In the Intel® QuickAssist Technology software package, the directory "QAT1.5" contains the

driver for the Intel® Communications Chipset 8900 to 8920 Series and Intel® Atom™

Processor C2000 Product Family for Communications Infrastructure devices, and the

directory "QAT1.6" contains the driver for the Intel® Communications Chipset 8925 to 8955

Series devices. The "mux" directory contains the software to build in support for all of the

above devices.

Build Installation Details

Some Intel® QuickAssist Technology releases can support multiple acceleration hardware

generations (e.g., both Intel® Communications Chipset 8900 to 8920 Series and Intel®

Communications Chipset 8925 to 8955 Series). By default, software releases with support for

multiple acceleration hardware generations will build or install according to the devices visible

on the platform. For instance:

• If one or more Intel® Communications Chipset 8900 to 8920 Series devices are visible on

the PCIe* bus and no Intel® Communications Chipset 8925 to 8955 Series device is

present, the installer.sh will build with support for Intel® Communications Chipset 8900 to

8920 Series devices only.

• If one or more Intel® Communications Chipset 8925 to 8955 Series devices are visible on

the PCIe* bus and no Intel® Communications Chipset 8900 to 8920 Series device is

present, the installer.sh will build with support for Intel® Communications Chipset 8925 to

8955 Series devices only.

• If one or more Intel® Communications Chipset 8925 to 8955 Series devices are visible on

the PCIe* bus and one or more Intel® Communications Chipset 8900 to 8920 Series

devices are present, the installer.sh will build with support for both Intel® Communications

Chipset 8900 to 8920 Series devices and Intel® Communications Chipset 8925 to 8955

Series.

There are two primary usage models for building with support for multiple acceleration

hardware generations:

 Concurrent usage of acceleration devices across multiple acceleration hardware

generations.

 Deployment of a software release/image that supports multiple acceleration hardware

generations, without the expectation that a given platform will have more than one

acceleration hardware generation present.

To support multiple acceleration hardware generations, the icp_qa_al.ko kernel module is not

used. Instead, a "mux" kernel module (qat_mux.ko) and one or both of qat_1_5_mux.ko and

qat_1_6_mux.ko (depending on which hardware must be supported) are used. In addition, any

applications that make use of the acceleration software must link to different libraries. In

summary, the following table applies:

Case Kernel object(s) User Space object(s) Static Libraries

QAT 1.5 only build option icp_qa_al.ko libicp_qa_al_s.so libicp_qa_al.a

QAT 1.6 only build option icp_qa_al.ko libicp_qa_al_s.so libicp_qa_al.a

QATmux case

supporting multiple
acceleration hardware

generations

qat_1_5_mux.ko

qat_1_6_mux.ko
qat_mux.ko

libqat_1_5_mux_s.so

libqat_1_6_mux_s.so
libqat_mux_s.so

libqat_1_5_mux.a

libqat_1_6_mux.a
libqat_mux.a

Software Overview

Programmer’s Guide 25

User space applications in a mux installation should link against libqat_mux_s.so or

libqat_mux.a; there's no need to link against the other build objects.

§

Acceleration Drivers Overview

26 Programmer’s Guide

4 Acceleration Drivers Overview

The Intel® Communications Chipset 8900 to 8920 Series contains:

• Acceleration Drivers - These drivers are described in this chapter.

For each supported acceleration service (Cryptographic, Data Compression), the following

application usage models are supported:

• Kernel mode, where both the application and the service(s) are running in kernel space.

• Direct user space access to services running in user space. In this model, both the

application and service(s) are running in user space and access to the hardware is also

performed from user space. The kernel space driver is needed to perform the mapping for

user space access.

The Acceleration Drivers are supported on 64-bit and 32-bit kernels. 32-bit user space

applications are supported on 32-bit and 64-bit kernels.

For Linux*, the acceleration drivers are provided for both user and kernel space. A porting

guide is available that provides guidance on porting the software to other Operating Systems

including RTOSs that do not distinguish between user and kernel space. Refer to the Intel®

QuickAssist Technology Acceleration Software OS Porting Guide for additional information.

4.1 Hardware Assisted Rings

Hardware assisted rings are used as the communication mechanism to transfer requests

between the CPU and the accelerator(s) on the chipset device and vice- versa. The hardware

supports 256 rings, each with head and tail Configuration Status Register (CSR) pointers that

are mapped to PCIe* memory on the CPU. The rings may be configured as:

• Request rings, where the CPU is a producer and the accelerator is a consumer

• Response rings, where the accelerator is a producer and the CPU is a consumer

The CPU may be arranged as a producer or a consumer on a ring but cannot be both a

consumer and producer on the same ring, as shown in the following figure. This is to avoid

atomicity issues associated with multiple writers.

Note: The rings are configured and serviced by the provided kernel space driver for use by the
application either in kernel or user space.

Acceleration Drivers Overview

Programmer’s Guide 27

Figure 6. Intel® QuickAssist Accelerator Ring Access

Rings are grouped into ring banks with each ring bank containing 16 rings, and there are 8 ring

banks for each accelerator.

For each ring bank, hardware supports the generation of the interrupt when data is available for

processing on the response ring within the bank.

On each accelerator in the chipset device, there are eight independent ring banks. Each ring

bank has an associated ring interrupt. If the OS supports MSI-X interrupts, the response may

be directed to any core on system. This allows an even distribution of response processing

among the cores on the system. The configuration of bank interrupts and core affinity is

detailed in Affinity Parameters.

Depending on the chipset device model number, there are up to two accelerators on the

device. The following figure shows an overview of the rings, ring banks and accelerators for a

single chipset.

Figure 7. Ring Partitioning on the Chipset Device

Acceleration Drivers Overview

28 Programmer’s Guide

4.2 Basic Software Context for Acceleration Drivers

The following figure depicts the basic OS-agnostic software model for the acceleration

drivers.

Figure 8. Basic Software Context

The key elements of this model are as follows:

• The firmware encompasses software executing on the accelerator(s).

• Intel® architecture software entities that fall into two groups:

− Driver level entities - CryptoAcc, CompressAcc, and the Intel® QuickAssist

Technology API

− Application level entities - application clients

• Application-level software that runs on Intel® architecture.

− Application entities executing at an Intel® architecture level that make use of the

accelerators via the Intel® QuickAssist Technology APIs.

4.3 Linux* Software Context for Acceleration Drivers

The following figure shows an example of the Linux* operating environment for the

Acceleration Driver Framework.

Acceleration Drivers Overview

Programmer’s Guide 29

Figure 9. Linux* Software Context

The Services support applications in kernel space as well as user space. User space access is

hardware direct access with mapping from kernel space driver. Catering for these access

options provides full flexibility in the use of the accelerator.

The driver architecture supports simultaneous operation of multiple applications using any

and all combinations of acceleration access options. However, some limitations apply. These

are called out clearly in following topics.

Note: The applications identified in the figure above are examples only and do not serve as a
statement of intent for enabling.

Note: Software packages for patches, such as OpenSSL*, Linux* Kernel Crypto Framework, and
NetKey and zlib are distributed separately. See Product Documentation. You will need an Intel®
Business Link (IBL) account and a subscription to the Electronic Design Kit (EDK).

4.4 Acceleration Drivers

The Acceleration Driver is divided into a number of functional components as shown in the

following figure. The figure shows the basic driver framework.

Acceleration Drivers Overview

30 Programmer’s Guide

Figure 10. Acceleration Driver Framework

4.4.1 Framework Overview

An acceleration driver contains a number of logical units that are primarily exposed via the

Intel® QuickAssist Technology APIs. Figure 10 depicts the main components of the driver.

These are:

• Service Access Layer (SAL)

Provides the main access to the acceleration services of the accelerator. Each service is

provided by a service entity in that layer. Though contained in a single logical layer, each

service is separate and distinct and as such services do not depend on each other.

• Acceleration Driver Framework (ADF)

An acceleration driver provides a supporting framework which contains services that the

SAL depends on and also provides the hardware level interactions for PCI in particular,

including PCI registration and interaction.

4.4.2 Service Access Layer

The Service Access Layer (SAL) is responsible for providing access to the individual

acceleration services contained in the accelerator. As shown in Figure 10 , the layer is made up

of the individual services as well as an Initialization and Control component.

This layer is largely OS-agnostic. In particular, the layer is designed in such a way as to allow it

to operate in kernel space as well as user space Linux* environments.

The primary responsibilities of this layer are as follows:

Acceleration Drivers Overview

Programmer’s Guide 31

• Register for notification of, query, observe and handle initialization/discovery/error events

from the ADF framework. The layer initializes and stops services based on the state of the

accelerator as indicated by ADF.

• Initialize the service layers based on the settings in a configuration file.

• Initialize and model the logical accelerator instances as configured in the configuration file.

• Be aware of the execution context for the SAL, that is, whether operating as a driver in kernel

space or a library in user space and perform the necessary initializations required.

• Process Intel® QuickAssist Technology API functions and pass them on as requests to the

firmware.

4.4.3 Acceleration Driver Framework

This topic outlines the services in the ADF that the SAL depends on. Services include:

• Events: The SAL relies on the ADF for an event notification function with which the SAL

registers to get notified of key runtime events. It uses these events to trigger initialization

and shutdown operations in particular. The SAL also queries the ADF for the status.

• Discovery: The ADF framework is responsible for all hardware level discovery and provides

notification to the lSAL when accelerator discovery events occur such as accelerator plug

and play events.

• Download & Init: The ADF framework takes care of the download and starting of the

firmware. The ADF notifies the SAL that the firmware is downloaded and started.

• Ring Control and Access: The ADF provides the mechanism by which the accelerator rings

are configured, including the enabling of interrupts on ring sets. In addition, the ADF

abstracts the communication mechanism with the accelerator.

• Configuration: ADF provides access to the configuration text files used to configure an

acceleration driver. Some elements of the configuration file such as ring bank configuration

belong to the ADF itself, while other settings are owned by the SAL. The ADF provides the

mechanism by which the SAL gets access to the configuration settings.

• OS Abstraction: The SAL layer is OS independent and makes use of the OSAL provided as

part of the ADF.

Note: When operating in user space, the SAL should be considered to have the same dependencies
on the ADF as it does in kernel space.

4.4.4 Acceleration Driver Configuration File

An acceleration driver has a configuration file that is used to configure the driver for runtime

operation. There is a single configuration file for each PCH device in the system. The

configuration file format is described in Acceleration Driver Configuration File. The older

legacy configuration file format (which is still supported) is described in Acceleration Driver

Configuration File - Earlier File Format.

Acceleration Drivers Overview

32 Programmer’s Guide

4.4.5 Utility for Loading Configuration Files and Sending Events to the
Driver - adf_ctl

The adf_ctl user space utility is separate to the driver and provides the mechanism for:

• Loading configuration file data to the kernel driver. The kernel space driver uses the data

and also provides the data to the user space driver.

• Sending events to the driver to bring devices up and down.

The adf_ctl utilities provided in the QAT 1.5 package and earlier QAT 1.6 packages can only

be used to interface with the driver they are provided with.

The adf_ctl provided with the QAT1.6 driver in the single package can be used to interface

with both drivers. It can bring up all devices supported by both drivers.

Usage

./adf_ctl [dev] [up|down|reset] - to bring up or down or reset device(s).

or

./adf_ctl status - to print device(s) status

Device Enumeration

Device enumeration varies within the driver code, in adf_ctl and on the API. This is best

illustrated with an example. The following table illustrates device enumeration on a platform

with three different device types, two DH895xccs, two DH89xxccs and one C2xxx.

Table 1. Device Enumeration Example

Driver adf_ctl status Conf File
Name

API

 Devices Types Inst_id Used by client
in call to

icp_sal_poll
Bank, etc.

Passed by
mux to driver

in call to
icp_sal_poll

Bank, etc

accelId hw_data.

dev_class.na

me

hw_data.

InstanceId

accelId on

API

accel_dev.ac

celId in driver

QAT1.6 icp_dev0 dh895xcc 0 dh895xcc_qa

_dev0.conf

0 0

QAT1.6 icp_dev1 dh895xcc 1 dh895xcc_qa

_dev1.conf

1 1

QAT1.5 icp_dev2 dh89xxcc 0 dh89xxcc_qa

_dev0.conf

2 0

QAT1.5 icp_dev3 c2xxx 0 c2xxx_qa_de

v0.conf
3 1

QAT1.5 icp_dev4 dh89xxcc 1 dh89xxcc_qa 4 2

Acceleration Drivers Overview

Programmer’s Guide 33

Driver adf_ctl status Conf File
Name

API

 Devices Types Inst_id Used by client
in call to

icp_sal_poll
Bank, etc.

Passed by
mux to driver

in call to
icp_sal_poll

Bank, etc

accelId hw_data.

dev_class.na

me

hw_data.

InstanceId

accelId on

API

accel_dev.ac

celId in driver

_dev1.conf

Examples of Manual Sequence for Starting the Driver

Note: For the full installation, see the Intel® Communications Chipset 89xx Series Software for
Linux* Getting Started Guide.

Case where only DH895xcc devices are on the platform

 Copy firmware to /lib/firmware/dh895xcc

 Copy a config file for each device to /etc

 insmod ./QAT1.6/build/icp_qa_al.ko

 ./QAT1.6/build/adf_ctl up

Case where DH895xcc and DH89xxcc devices are on the platform

 Copy firmware for DH89xxcc to /lib/firmware and for DH895xcc to /lib/
firmware/dh895xcc

 Copy a config file for each device to /etc

 insmod ./QAT1.6/build/qat_mux.ko

 insmod ./QAT1.5/build/qat_1_5_mux.ko

 insmod ./QAT1.6/build/qat_1_6_mux.ko

 ./QAT1.6/build/adf_ctl up

4.5 Acceleration Architecture in Kernel and User Space

The Intel® QuickAssist Accelerator software is architected to allow it to operate in either

kernel or user space using a ”build time” decision. The overall architecture of the software

stack is shown in the following figure.

Acceleration Drivers Overview

34 Programmer’s Guide

Figure 11. Software Architecture for Kernel and User Space

The Intel® QuickAssist Technology API is OS agnostic and has the same function signatures in

both kernel and user space. The SAL component is also OS agnostic and may be compiled as a

user space library or as a kernel space module. The SAL uses the OSAL for all OS services and

versions of OSAL have been implemented for Linux* user space and kernel space.

4.5.1 User Space Memory Allocation

For user space applications, two aspects of memory allocation need to be considered:

• Accelerator driver memory allocation

• Application payload memory allocation

4.5.1.1 Accelerator Driver Memory Allocation

At initialization, the accelerator driver allocates memory for use in communications with the

Intel® QuickAssist Accelerator hardware. This memory needs to be resident, DMA accessible

and needs a physical address to provide to the accelerator hardware.

In kernel space, the SAL calls the OSAL memory routines to allocate this memory. Principally,

the function used by SAL is osalMemAllocContiguousNUMA. In the kernel, this OSAL routine

is implemented with kmalloc_node. Memory allocated using kmalloc_node is guaranteed to

be contiguous, resident and the OSAL routine also exists to retrieve the associated physical

address.

In user space, it is a little more complex. The OSAL implementation of

osalMemAllocContiguousNUMA needs to return memory that is resident and contiguous. To

Acceleration Drivers Overview

Programmer’s Guide 35

do this, the OSAL in kernel space creates a device, called icp_dev_mem that may be called

through an IOCTL function by the OSAL in user space to allocate memory. When called with

IOCTL DEV_MEM_IOC_MEMALLOC, the OSAL kernel mode driver returns the allocated memory.

For communications with the Intel® QuickAssist Accelerator device, the ADF needs access to

the rings. The hardware ring CSRs are mapped from kernel space MMIO space to the

application's user space by ADF. The DRAM memory for the hardware rings are also mapped

to the user space application. In user space, the ADF exposes a ring put and a ring get API to

the SAL to allow it to communicate with the Intel® QuickAssist Accelerator hardware.

The following figure shows the ring CSRs and allocation buffers that are required to be

mapped to user space.

Note: If your software has another mechanism for the allocation of contiguous memory, for example,
by reserving an area of memory from the OS, then replace the OSAL memory functions (see
$ICP/quickassist/utilities/osal/include/Osal.h for details) with your specific
implementation.

Figure 12. User Space Memory Allocation at Initialization

4.5.1.2 Application Payload Memory Allocation

When performing offload operations through the Intel® QuickAssist Technology API, it is

required that the payload data be placed in a buffer that is resident, physically contiguous and

is DMA accessible from the acceleration hardware. It is the application's responsibility to

provide buffers with these constraints. A scheme similar to the OSAL implementation

mentioned above may be implemented by the user space application.

Buffers are passed to the Intel® QuickAssist Accelerator service access layer with virtual

addresses. However, the accelerator layers need to pass physical addresses to the hardware,

therefore a virtual-to-physical address translation is required. The Intel® QuickAssist

Technology API allows an application to register a function that will do this virtual-to-physical

translation.

Acceleration Drivers Overview

36 Programmer’s Guide

Cryptographic

service
cpaCySetAddressTranslation

See the Intel® QuickAssist Technology

Cryptographic API Reference Manual for

details.

Data Compression

service
cpaDcSetAddressTranslation

See the Intel® QuickAssist Technology Data

Compression API Reference Manual for

details.

When the SAL requires the physical address, it calls the registered function.

Note: This address translation function is called at least once per request. Consequently, for optimal
performance, the implementation of this function should be optimized.

4.5.2 User Space Additional Functions

To allow a user space process access to the Intel® QuickAssist Accelerator rings, the service

access layer needs to be configured to expose logical instances to the user space process.

Logical instances are configured using the per device configuration file. See User Space

Configuration for an example.

To allow each process to have separate logical instances, the configuration file groups a set of

logical instances by name. The process then needs to call the icp_sal_userStartMultiProcess

function (or icp_sal_userStart if the older configuration file format is used) at initialization time

with the name associated with the group of logical instances. Similarly, on process exit, to free

the resources and make them available to other processes with the same name, the process

needs to call the function icp_sal_userStop.

For example, in the sequence in the following figure, the user has configured the Service

Access Layer to have two crypto logical instances available for the process called "SSL". The

user space process may then access these logical instances by calling the cpaCyGetInstances

function. The application may then initiate a session with these logical instances and perform a

cryptographic operation. See the Intel® QuickAssist Technology Cryptographic API

Reference Manual for more information on the API functions available for use.

Acceleration Drivers Overview

Programmer’s Guide 37

Figure 13. User Space Process with Two Logical Instances

4.5.3 User Space Configuration

The section of the configuration file that details user space configuration follows the

[KERNEL] section.

For example, in the sequence in Figure 13, the user has configured the service access layer to

have two crypto logical instances available for the process called "SSL".

For this example, the logical instances section of the configuration file is as follows:

[KERNEL]

NumberCyInstances = 0

NumberDcInstances = 0

[SSL]

NumberCyInstances = 2

NumberDcInstances = 0

NumProcesses = 1

Crypto - User instance #0

Cy0Name = "SSL0"

Acceleration Drivers Overview

38 Programmer’s Guide

Cy0IsPolled = 1

Cy0AcceleratorNumber = 0,1

List of core affinities

Cy0CoreAffinity = 0,1

Crypto - User instance #1

Cy1Name = "SSL1"

Cy1IsPolled = 1

Cy1AcceleratorNumber = 2,3

List of core affinities Cy1CoreAffinity = 2,3

In this example, the user process SSL configures two logical instances (called ”SSL0” and

”SSL1”), each of which targets specific acceleration units, so that load balancing among the

four (assuming the top SKU) acceleration units is achieved.

4.5.4 User Space Response Processing

As in the case of kernel space operation, there are two modes of response processing for user

space operation:

• Polled mode

• Interrupt mode

4.5.4.1 User Space Interrupt Mode

Note: User space interrupt mode is being removed from future Intel® QuickAssist Technology
releases. A new event-based user space notification mechanism will be added. Please discuss any
concerns with your Intel® representative.

Response ring processing in interrupt mode differs slightly from the kernel mode response

ring processing since the user space application needs to be signaled when a response is

placed on the response ring by the Intel® QuickAssist Accelerator hardware.

The ADF is responsible for managing this signaling path. Initially, user space ADF creates a

dispatcher thread that is responsible for handling the notifications from the ADF in kernel

space. Upon creation, this thread blocks on reading a Linux character device until the

dispatcher thread has been signaled by the ADF in kernel space. For each user space response

ring that is subsequently created, ADF creates a ring thread in user space for reading the

response ring.

Upon receiving a response, the ADF in kernel space shall post a signal to wake-up the blocked

dispatcher thread. The dispatcher thread notifies the relevant ring thread and the ADF will

read the contents of the ring in the context of this ring thread. The ADF calls back SAL and

SAL in turn calls back the application to signal the completion of the original request. This

sequence is depicted in the following figure.

Acceleration Drivers Overview

Programmer’s Guide 39

Figure 14. User Space Response Processing for Interrupt Mode

4.5.4.2 User Space Polled Mode

The sequence for user space polling does not differ from that described in Polled Mode.

4.6 Managing Acceleration Devices Using qat_service

The qat_service script is installed with the software package in the /etc/init.d/ directory. The

script allows a user to start, stop, or query the status (up or down) of a single device or all

devices in the system.

Usage:

./qat_service start||stop||status||restart||shutdown

To view all devices in the system, use:

./qat_service status

If there are two acceleration devices in the system for example, the output will be similar to the

following:

icp_dev0 is up

icp_dev1 is up

For a system with multiple devices, you can start, stop or restart each individual device by

passing the device to be restarted or stopped as a parameter (icp_dev<N>). For example:

Acceleration Drivers Overview

40 Programmer’s Guide

./qat_service stop icp_dev0

where the device number <N> is equal to 0 in this case.

The shutdown qualifier enables the user to bring down all devices and unload driver modules

from the kernel. This contrasts with the stop qualifier which brings down one or more devices,

but does not unload kernel modules, so other devices can still run.

4.7 Intel® QuickAssist Technology Entries in the /proc
Filesystem

For kernel space instances, the following /proc filesystem entries are created to provide

information on the driver and APIs, provided the related entry has been enabled in the driver’s

configuration file.

/proc/ icp_dh89xxcc_devX/
files, where X is the device

number

Description of Information Contained in That File

./cfg_debug Internal configuration table generated from:

/etc/dh89xxcc_qa_devX.conf

and from some internal data, e.g., firmware version.

It is useful to check which user processes and instances have been
configured.

./qat Statistics for Intel® QuickAssist Technology (QAT), overall number of

requests/ responses per ME. FW is loaded on each ME, if ME 0 gets one
request, processes it and put it back on the ring, then the FW counters for
Request and Response will be incremented by 1 for that ME. Example output

for one ME is:

+--

--+

| Statistics for Qat Instance 0 |

+--

--+

| Firmware Requests[AE 0]: 1 |

| Firmware Responses[AE 0]: 1 |

For QAT 1.5 and QAT 1.6, this also triggers the heartbeat query below.

./version Lists hardware, software and API versions in use. Example output for

QAT1.6:

+--

--+

| Hardware and Software versions for device 0 |

+--

--+

Hardware Version: A0 SKU2

Firmware Version: 2.2.0

MMP Version: 1.0.0

Driver Version: 2.2.0

Lowest Compatible Driver: 2.0

QuickAssist API CY Version: 1.8

Acceleration Drivers Overview

Programmer’s Guide 41

/proc/ icp_dh89xxcc_devX/
files, where X is the device

number

Description of Information Contained in That File

QuickAssist API DC Version: 1.3

+--

--+

'Lowest Compatible Driver' indicates the lowest QAT driver version that this

driver is compatible with in a virtualized system, where one driver is on the

Host and the other is in a Guest.

./cy/IPSecY

./dc/IPCompY For cy and dc stats, see Section 4.7 and Section 5.2.2

./et_ring_ctrl/bank_Y/conf

Refers to EagleTail_Ring_Control, this conf file gives a summary on all

EagleTailRings in use in bank_Y, where Y is one of the banks configured for

use.

Example output:

cat

/proc/icp_dh895xcc_dev0/et_ring_ctrl/bank_0/conf

------- Bank 0 Configuration -------

Interrupt Coalescing Enabled Interrupt Coalescing

Counter = 10000

Interrupt mask: 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

User interrupt mask: 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0

Polling mask: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Coalesc reg: 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0

Bank empty stat: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Bank nempty stat: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

------- Rings:

Ring Number: 0, Config: 80000006, Base Addr:

ffff880267e50000 Head: 0, Tail: 0, Space: 1000,

inflights: 0, Name: Cy0RingAsymTx

Ring Number: 2, Config: 8000000a, Base Addr:

ffff88021ea60000 Head: 0, Tail: 0, Space: 10000,

inflights: 0, Name: Cy0RingSymTx

Ring Number: 4, Config: 8000000a, Base Addr:

ffff88021e8a0000 Head: 0, Tail: 0, Space: 10000,

inflights: 0, Name: Cy0RingNrbgTx

Ring Number: 6, Config: 8000000a, Base Addr:

ffff88021ffd0000 Head: 0, Tail: 0, Space: 10000,

inflights: 0, Name: Dc0RingTx

Ring Number: 8, Config: 5405, Base Addr:

ffff880267e51000 Head: 0, Tail: 0, Space: 1000,

inflights: 0, Name: Cy0RingAsymRx

Ring Number: 10, Config: 5408, Base Addr:

ffff880220140000 Head: 0, Tail: 0, Space: 4000,

inflights: 0, Name: Cy0RingSymRx

Acceleration Drivers Overview

42 Programmer’s Guide

/proc/ icp_dh89xxcc_devX/
files, where X is the device

number

Description of Information Contained in That File

Ring Number: 12, Config: 5408, Base Addr:

ffff8802200cc000 Head: 0, Tail: 0, Space: 4000,

inflights: 0, Name: Cy0RingNrbgRx

Ring Number: 14, Config: 5408, Base Addr:

ffff8802202b4000 Head: 0, Tail: 0, Space: 4000,

 inflights: 0, Name: Dc0RingRx

./et_ring_ctrl/bank_Y/
ring_Z

Gives information on each specific ring. For example ring_0 from the above

conf entry will give the data on that ring and accelerator number associated

with it in addition to the information given in the conf entry:

------- Ring Configuration -------

Service Name: Cy0RingAsymTx

Accelerator Number: 0, Bank Number: 0, Ring

Number: 0

Ring Config: 80000006 Tx, Base Address:

ffff880267e50000, Head: 0, Tail: 0, Space: 1000

Message size: 64, Max messages: 64, Current

messages: 0

Ring Empty flag: 1, Ring Nearly Empty flag: 1

Ring Data

Memory Address: <Contents of memory address

(64bytes)>

4.8 Debug Feature

For user space applications, there are a number of Intel® QuickAssist Technology API

functions that enable a user to retrieve statistics for a service instance. These functions

include:

• cpaCyDhQueryStats64 - Query statistics (64-bit version) for Diffie-Hellman operations.

• cpaCyDsaQueryStats64 - Query 64-bit statistics for a specific DSA instance.

• cpaCyKeyGenQueryStats64 - Queries the Key and Mask generation statistics (64-bit

version) specific to an instance.

• cpaCyPrimeQueryStats64 - Query prime number statistics specific to an instance.

• cpaCyRsaQueryStats64 - Query statistics (64-bit version) for a specific RSA instance.

• cpaCySymQueryStats64 - Query symmetric cryptographic statistics (64-bit version) for a

specific instance.

• cpaCyEcQueryStats64 - Query statistics for a specific EC instance.

• cpaCyEcdhQueryStats64 - Query statistics for a specific ECDH instance.

• cpaCyEcdsaQueryStats64 - Query statistics for a specific ECDSA instance.

• cpaCyDrbgQueryStats64 - Returns statistics specific to a session, or instance, of the RBG

API.

Acceleration Drivers Overview

Programmer’s Guide 43

• cpaDcGetStats - Retrieves the current statistics for a compression.

See the Intel® QuickAssist Technology Cryptographic API Reference Manual and the Intel®

QuickAssist Technology Data Compression API Reference Manual for detailed information.

For kernel space instances, the same information can be obtained from the /proc file system if

the required statistics parameters are enabled in the configuration file, as the following

configuration file extract shows. See also Statistics Parameters for more details.

#Statistics, valid values: 1,0

statsGeneral = 1

statsDc = 1

statsDh = 1

statsDrbg = 1

statsDsa = 1

statsEcc = 1

statsKeyGen = 1

statsLn = 1

statsPrime = 1

statsRsa = 1

statsSym = 1

For each instance, a file is created with a name that is the same as the instance name specified

in the configuration file. For example, if in the ”User Process Instance Section” of the

configuration file, the IPSec0, IPSec1, IPSec2 and IPSec3 names are used, the following

command gives the result:

ls -l /proc/icp_dh89xxcc_dev0/cy total 0

-r--------. 1 root root 0 Apr 18 13:48 IPSec0

-r--------. 1 root root 0 Apr 18 13:48 IPSec1

-r--------. 1 root root 0 Apr 18 13:48 IPSec2

-r--------. 1 root root 0 Apr 18 13:48 IPSec3

The statistics can then be queried simply by running cat on the corresponding file in the /proc

file system. For example:

cat /proc/icp_dh89xxcc_dev0/cy/IPSec0

The output is similar to the following:

+--+

| Statistics for Instance IPSec0 |

| Symmetric Stats |

+--+

| Sessions Initialized: 86 |

| Sessions Removed: 86 |

| Session Errors: 0 |

+--+

| Symmetric Requests: 960 |

| Symmetric Request Errors: 0 |

| Symmetric Completed: 960 |

Acceleration Drivers Overview

44 Programmer’s Guide

| Symmetric Completed Errors: 0 |

| Symmetric Verify Failures: 0 |

+--+

| DSA Stats |

+--+

| DSA P Param Gen Requests-Succ: 0 |

| DSA P Param Gen Requests-Err: 0 |

| DSA P Param Gen Completed-Succ: 0 |

| DSA P Param Gen Completed-Err: 0 |

+--+

| DSA G Param Gen Requests-Succ: 1 |

| DSA G Param Gen Requests-Err: 0 |

| DSA G Param Gen Completed-Succ: 1 |

| DSA G Param Gen Completed-Err: 0 |

+--+

| DSA Y Param Gen Requests-Succ: 20 |

| DSA Y Param Gen Requests-Err: 0 |

| DSA Y Param Gen Completed-Succ: 20 |

| DSA Y Param Gen Completed-Err: 0 |

+--+

| DSA R Sign Requests-Succ: 0 |

| DSA R Sign Request-Err: 0 |

| DSA R Sign Completed-Succ: 0 |

| DSA R Sign Completed-Err: 0 |

+--+

| DSA S Sign Requests-Succ: 0 |

| DSA S Sign Request-Err: 0 |

| DSA S Sign Completed-Succ: 0 |

| DSA S Sign Completed-Err: 0 |

+--+

| DSA RS Sign Requests-Succ: 20 |

| DSA RS Sign Request-Err: 0 |

| DSA RS Sign Completed-Succ: 20 |

| DSA RS Sign Completed-Err: 0 |

+--+

| DSA Verify Requests-Succ: 20 |

| DSA Verify Request-Err: 0 |

| DSA Verify Completed-Succ: 20 |

| DSA Verify Completed-Err: 0 |

| DSA Verify Completed-Failure: 0 |

+--+

| RSA Stats |

+--+

| RSA Key Gen Requests: 20 |

| RSA Key Gen Request Errors 0 |

| RSA Key Gen Completed: 20 |

Acceleration Drivers Overview

Programmer’s Guide 45

| RSA Key Gen Completed Errors: 0 |

+--+

| RSA Encrypt Requests: 0 |

| RSA Encrypt Request Errors: 0 |

| RSA Encrypt Completed: 0 |

| RSA Encrypt Completed Errors: 0 |

+--+

| RSA Decrypt Requests: 20 |

| RSA Decrypt Request Errors: 0 |

| RSA Decrypt Completed: 20 |

| RSA Decrypt Completed Errors: 0 |

+--+

| Diffie Hellman Stats |

+--+

| DH Phase1 Key Gen Requests: 40 |

| DH Phase1 Key Gen Request Err: 0 |

| DH Phase1 Key Gen Completed: 40 |

| DH Phase1 Key Gen Completed Err: 0 |

+--+

| DH Phase2 Key Gen Requests: 40 |

| DH Phase2 Key Gen Request Err: 0 |

| DH Phase2 Key Gen Completed: 40 |

| DH Phase2 Key Gen Completed Err: 0 |

+--+

| Key Stats |

+--+

| SSL Key Requests: 0 |

| SSL Key Request Errors: 0 |

| SSL Key Completed 0 |

| SSL Key Complete Errors: 0 |

+--+

| TLS Key Requests: 0 |

| TLS Key Request Errors: 0 |

| TLS Key Completed 0 |

| TLS Key Complete Errors: 0 |

+--

4.9 Heartbeat Feature and Recovery from Hardware Errors

The PCH can detect and report to the acceleration driver typically unrecoverable hardware

errors that the driver can recover from by resetting and restarting the device. Additionally, the

"Heartbeat" feature allows detection and recovery from software/firmware errors in the PCH.

The Acceleration driver can optionally reset the device in the event of an admin message

timeout or a heartbeat query failure. The timeout or heartbeat query failure indicates that the

Acceleration Drivers Overview

46 Programmer’s Guide

firmware running on the Accelerator has become unresponsive. This can happen when an

application sends invalid data, for example, invalid source data, or an invalid output data

pointer.

Note: Recovery on detection of a Heartbeat failure is not enabled by default. Automatic recovery can
be enabled by building the acceleration software with a compile-time flag. The ICP_HEARTBEAT
compile-time flag enables this functionality. When the driver is not built with this flag, the acceleration
software writes a message to the system (/var/log/messages), reporting that the device is not
responding and the device will need to be restarted by the user.

The firmware, if healthy, responds with request/response counters for each accelerator engine

on the device. If the firmware is not responsive, a timeout occurs. When such a condition is

detected, the driver notifies applications by calling a notification callback for each instance that

is registered for notification callback. The event type in this case is

CPA_INSTANCE_EVENT_RESTARTING. Then, the device is restarted and all resources

allocated to the device, except instance handles, are freed. After restart, all resources are

reallocated and the driver notifies applications by calling a notification callback for every

instance. The event type in this case is CPA_INSTANCE_EVENT_RESTARTED. Thereafter,

the application can use all instances and no further initialization is required. When an

application tries to use any instance that uses a restarting device, a new return code

CPA_STATUS_RESTARTING is returned. If there is more than one PCH device in the system,

and one device is restarted, applications can still use instances on other devices.

4.9.1 How to Call the Heartbeat Query

The Heartbeat query is not kicked off by the driver, it must be initiated by the user. It can be

initiated using any of the following methods:

• Watch on cat /proc/icp../qatx

• Periodically call heartbeat APIs (see User Application Heartbeat APIs (not Enabled by

Default)).

It will report “QAT is not responding” message in the case that the firmware threads hangs.

The device will need to be reset to recover from this error. By default, the device does not

automatically reset. It can be manually reset using adf_ctl <deviceId> reset.

4.9.1.1 User Proc Entry Read (not Enabled by Default)

The user can periodically perform a read of the /proc entry as specified by any one of the

following methods:

Note: The examples below are for one device on one accelerator. The user should apply the desired
method to each device and accelerator of interest.

• Manually from command line using the command:

cat /proc/icp_dh89xxcc_dev0/qat0

• From a watch process running in background:

watch -n0.1 cat /proc/icp_dh89xxcc_dev0/qat0 > /dev/null

• From simple script running in the background:

Acceleration Drivers Overview

Programmer’s Guide 47

#!/bin/bash

while :

do

cat /proc/icp_dh89xxcc_dev0/qat0 > /dev/null

sleep 1

done

For example, to send an admin message to device 2, the user issues the following command:

cat /proc/icp_dh89xxcc_dev2/qat0

+--+

| Statistics for Qat Instance 0 |

+--+

| Firmware Requests[AE 0]: 5 |

| Firmware Responses[AE 0]: 5 |

+--+

| Firmware Requests[AE 1]: 4 |

| Firmware Responses[AE 1]: 4 |

+--+

| Firmware Requests[AE 2]: 3 |

| Firmware Responses[AE 2]: 3 |

+--+

| Firmware Requests[AE 3]: 0 |

| Firmware Responses[AE 3]: 0 |

+--+

If the device is unresponsive and if the acceleration software is built to automatically reset the

device on failure, the following message is displayed:

ERROR: QAT is not responding and it will be restarted

If the device is unresponsive and if the acceleration software is built to not automatically reset

the device on failure, the following message is displayed:

ERROR: QAT is not responding. Please restart the device

4.9.1.2 User Application Heartbeat APIs (not Enabled by Default)

These functions have the following signatures:

CpaStatus icp_sal_check_device(Cpa32U accelId);

CpaStatus icp_sal_check_all_devices(void);

See icp_sal_check_device and icp_sal_check_all_devices for details on the functions and

parameters.

Acceleration Drivers Overview

48 Programmer’s Guide

4.9.2 Handling Heartbeat Failures

The driver must be compiled with ICP_HEARTBEAT defined to do recovery sequence on

detecting a heartbeat failure.

A typical heartbeat error use-case is as follows:

 The driver is loaded, initialized and started.

 The user-space application registers for instance notifications by calling

cpaCyInstanceSetNotificationCb and cpaDcInstanceSetNotificationCb

 The application detects that the firmware is unresponsive using the heartbeat feature (see

Heartbeat Feature and Recovery from Hardware Errors.

 The kernel-space driver sends the Restarting event to user-space processes.

 The user-space processes-

• Pass the restarting event on to the application instances registered.

• Free memory and rings associated with all the instances.

 The kernel-space driver

• Triggers the device reset (save state, initiate SBR, restore state).

• Once the reset is complete, sends the Restarted event to user-space processes.

 The user-space processes

• Set up each instance associated with the process, including allocating memory and rings

• Pass the restarted event on to the application instances registered.

Note: If built with ICP_WITHOUT_THREAD then the user-space processes will not automatically
get the Restarting and Restarted events. See Thread-less Mode.

In a driver built without ICP_HEARTBEAT, there is no automatic recovery on device failure

detection. The driver should be reset using adf_ctl reset or the icp_reset_device() API.

4.9.3 AER and Uncorrectable Errors

Two other errors can be detected that need to be recovered by resetting the device.

• Uncorrectable errors feature . Errors detected by the QAT device generate an interrupt

handled by the driver. Errors will be seen in the log.

• Advanced Error Reporting feature . PCIEAER. If kernel detects an error caused by the driver

errors will be seen in the log and the kernel can trigger a device reset.

On detecting either of these errors, the device will be automatically reset by the driver.

4.9.4 Handling Device Failures in a Virtualized Environment

The heartbeat feature in the acceleration software can be used in a virtualized environment.

Refer to the Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist

Technology Application Note for more details on enabling SR-IOV and the creation of Virtual

Acceleration Drivers Overview

Programmer’s Guide 49

Functions (VFs) from a single Intel® QuickAssist Technology acceleration device to support

acceleration for multiple Virtual Machines (VMs).

Note: The Physical Function (PF) driver used here refers to the Intel® QuickAssist Technology PF
driver. The Virtual Function (VF) driver used here refers to the Intel® QuickAssist Technology VF
driver.

The following sequence describe a possible use case for using the heartbeat feature in a

virtualized environment.

 The PF driver is loaded, initialized and started.

 The VF driver is loaded, initialized and started in the Guest OS in the VM.

 The PF driver detects that the firmware is unresponsive (using either of the following

methods: User Proc Entry Read (not Enabled by Default)) or User Application Heartbeat

APIs (not Enabled by Default) .

 The PF driver sends the "Restarting" event message to the VF via the internal PF- to-VF

communication messaging mechanism.

 The VF driver sends the "Restarting" event to the application's registered callback (the

callback is registered using the cpaDcInstanceSetNotificationCb() or

cpaCyInstanceSetNotificationCb() Intel® QuickAssist Technology API function) in the

Guest OS.

• The application's callback function may perform any application-level cleanup.

 The return from the application's callback triggers the VF driver to send an ACK message

back to the PF driver. At this time:

• The application may perform a complete shutdown.

• The user may force a graceful shutdown of the Guest OS in the VM.

 The PF driver receives the ACK message from the VF driver (a timeout mechanism is

used to handle any unexpected condition).

 The PF driver starts the reset sequence (save state, initiate reset, and restore state).

 The user restarts the Guest OS and loads the VF driver and application in the Guest OS.

Note: If the heartbeat feature in the acceleration software is not enabled, the PF driver will not notify
the VF driver that the firmware is unresponsive.

Note: If built with ICP_WITHOUT_THREAD then the user-space processes will not automatically
get the Restarting and Restarted events. See Thread-less Mode.

Note: The error detection mechanisms are not available on the VF driver in the VM, but device errors
caused by any of the software running on the VM will be detected by the PF driver using the above
mechanisms.

4.9.5 GbE Watchdog Service

The GbE Watchdog Service (gige_watchdog_service) is provided to properly reset and restart

the GbE interfaces on an Intel® Communications Chipset 8900 to 8920 Series (PCH) device

on detecting a reset of the device by the Heartbeat functionality in the Acceleration driver. The

Acceleration Drivers Overview

50 Programmer’s Guide

user of these GbE interfaces on the PCH device may get an intermittent network disconnect

and reconnect as the GbE interfaces are reset and restarted by this service. This service is

automatically enabled and started when the Acceleration software is installed with the

installation script.

Note:

• The GbE Watchdog Service is included in the Acceleration software, but it can be

considered a separate service. That is to say, it is not integrated into the driver.

• This GbE Watchdog Service does not affect other GbE interfaces available on the system

that are not on the PCH device.

• If the GbE interfaces on the PCH device are not used, the GbE Watchdog Service must be

disabled and the GbE driver (igb) must not be loaded/installed on the system.

• If the GbE interfaces are not used and the GbE driver is loaded/installed when the Heartbeat

feature resets the PCH device, the system may become unstable and unresponsive.

4.9.6 Special Considerations When Using the Heartbeat Feature and the
GbE Watchdog Service

When using the Heartbeat functionality in the acceleration software with the GbE Watchdog

Service, special considerations may need to be considered in specific use cases. The following

table shows the recommended action(s) when using the Heartbeat feature with/without GbEs

on the PCH and with/without external GbEs from Intel® in the system.

Table 2. Heartbeat/GbE Watchdog Service Scenarios

Heartbeat
Enabled?

GbEs on PCH
Enabled

External Intel®
GbEs Enabled

Recommended Action(s)

No Yes No Disable GbE Watchdog Service

Yes Yes No Enable GbE Watchdog Service

No No No Perform blacklist igb and disable GbE Watchdog Service

Yes No No Perform blacklist igb and disable GbE Watchdog Service

Yes No Yes Either:

Turn off all GbEs on the PCH (ifdown) OR

Modify the igb driver to remove the PCI device ID of GbEs
on the PCH and recompile the igb driver

AND disable the GbE Watchdog Service

Yes Yes Yes Enable GbE Watchdog Service

No Yes Yes Disable GbE Watchdog Service

No No Yes Disable GbE Watchdog Service

Note:

Acceleration Drivers Overview

Programmer’s Guide 51

• "Heartbeat Enabled" with "Yes" means that the acceleration software has the Heartbeat

feature enabled (that is, the acceleration software is built with the ICP_HEARTBEAT

compile-time flag).

• "Heartbeat Enabled" with "No" means that the acceleration software has the Heartbeat

feature disabled (that is, the default case where the acceleration software is built without

the ICP_HEARTBEAT compile-time flag).

• "GbEs on PCH Enabled" with "Yes" means that the igb driver for the GbEs on the PCH is

loaded/installed and the interfaces are up (ifup). This igb driver may also support other

external Intel® GbEs.

• "GbEs on PCH Enabled" with "No" means that the igb driver for the GbEs on the PCH is not

loaded/installed and the interfaces are down (ifdown). This igb driver may also support

other external Intel® GbEs.

• "External Intel® GbEs Enabled" with "Yes" means that the igb driver for the external Intel®

GbEs is loaded/installed and the interfaces are up (ifup). This igb driver may also support

the GbEs on the PCH.

• "External Intel® GbEs Enabled" with "No" means that the igb driver for the external Intel®

GbEs is not loaded/installed and the interfaces are down (ifdown). This igb driver may also

support the GbEs on the PCH.

4.10 Driver Threading Model

By default, when an application uses the acceleration driver in user space, the driver creates

threads internally.

When the application calls the icp_sal_userStart() or

icp_sal_userStartMultiProcess() function, the driver creates the following threads:

• Monitor Thread

There is only one instance of this thread per system. It loops infinitely and checks if new

devices become active in the system that the user proxy layer can start using. If it finds

such a device, it spawns a listener thread for that device and continues.

• Listener Thread

There is one listener thread per active device in the system. A listener thread calls a

blocking read function on the /dev/icp_dev<N>_csr file, which blocks until there are device

events, such as EVENT_INIT, EVENT_START, EVENT_STOP, EVENT_SHUTDOWN,

EVENT_RESTARTING or EVENT_RESTARTED that need to be delivered to user space.

If the thread gets an event, it sends it to all user space subsystems (ADF, SAL) and calls

the blocking read again in a loop. In the case of a shutdown event, the thread delivers the

event and finishes.

• Ring Thread

Ring threads are only created for IRQ-driven service instances in user space. If all

instances are polled, no ring thread is created. For each IRQ driver response (Rx) ring

created in user space, there is one worker thread. User callbacks are called in the context

of this worker thread. Additionally, one dispatcher thread (per device) is created when the

Acceleration Drivers Overview

52 Programmer’s Guide

first Rx ring is allocated (and exits when the last Rx ring is freed). This thread waits for IRQs

that are delivered by the kernel space driver and dispatches jobs to worker threads.

4.10.1 Thread-less Mode

The user sets an environment variable:

setenv ICP_WITHOUT_THREAD = 1

When the driver is built with this flag set, no threads are created by the User Space driver.

In this mode, no IRQ-driven instances are allowed and no events from kernel driver are

propagated to user space automatically (with the exception of the first EVENT_INIT and

EVENT_START events).

There are two new API functions that can be used in this mode:

• CpaStatus icp_sal_find_new_devices(void) - Performs a function similar to the

monitor thread, that is, checks if there are new devices in the system.

• CpaStatus icp_sal_poll_device_events(void) - Performs a function similar to the

listener thread, that is, polls for events.

It is the user's responsibility to use these functions to monitor the state of devices and receive

device-related events.

4.11 Compression Status Codes

The CpaDcRqResults structure should be checked for compression status codes in the

CpaDcReqStatus data field. The mapping of the error codes to the enums is included in the

quickassist/include/dc/cpa_dc.h file.

4.11.1 Intel® QuickAssist Technology Compression API Errors

The two traditional Intel® QuickAssist Technology Compression APIs, cpaDcCompressData

() and cpaDcDecompressData (), that send requests to the compression hardware can

return the error codes shown in the following table.

Table 3. Intel® QuickAssist Technology Compression API Errors

Error Code Error Type Description Suggested Corrective
Action(s)

0 CPA_DC_OK No error detected by compression

hardware.

None.

-1 CPA_DC_INVALID_BLOC

K_TYPE

Invalid block type (type = 3); invalid

input stream detected for

decompression; for dynamic
compression, corrupted
intermediate data

Discard output; resubmit

affected request or abort

session.

Acceleration Drivers Overview

Programmer’s Guide 53

Error Code Error Type Description Suggested Corrective
Action(s)

-2 CPA_DC_BAD_STORED_

BLOCK_LEN

Stored block length did not match

one's complement; invalid input
stream detected

Discard output; resubmit

affected request or abort
session.

-3 CPA_DC_TOO_MANY_CO

DES

Too many length or distance codes;

invalid input stream detected; for
dynamic compression, corrupted

intermediate data

Discard output; resubmit

affected request or abort
session.

-4 CPA_DC_INCOMPLETE_C

ODE_LENS

Code length codes incomplete;

invalid input stream detected; for

dynamic compression, corrupted
intermediate data

Discard output; resubmit

affected request or abort

session.

-5 CPA_DC_REPEATED_LEN S Repeated lengths with no first

length; invalid input stream
detected; for dynamic

compression, corrupted
intermediate data

Discard output; resubmit

affected request or abort
session.

-6 CPA_DC_MORE_REPEAT Repeat more than specified

lengths; invalid input stream
detected; for dynamic
compression, corrupted

intermediate data

Discard output; resubmit

affected request or abort
session.

-7 CPA_DC_BAD_LITLEN_C

ODES

Invalid literal/length code lengths;

invalid input stream detected; for
dynamic compression, corrupted
intermediate data

Discard output; resubmit

affected request or abort
session.

-8 CPA_DC_BAD_DIST_CO

DES

Invalid distance code lengths;

invalid input stream detected; for
dynamic compression, corrupted

intermediate data

Discard output; resubmit

affected request or abort
session.

-9 CPA_DC_INVALID_CODE Invalid literal/length or distance

code in fixed or dynamic block;
invalid input stream detected; for
dynamic compression, corrupted

intermediate data

Discard output; resubmit

affected request or abort
session.

-10 CPA_DC_INVALID_DIST Distance is too far back in fixed or

dynamic block; invalid input stream

detected; for dynamic
compression, corrupted
intermediate data

Discard output; resubmit

affected request or abort

session.

-11 CPA_DC_OVERFLOW Overflow detected. This is not an

error, but an exception. Overflow is

supported and can be handled.

Continue with the

session as normal.

-12 CPA_DC_SOFTERR Other non-fatal detected. Discard output; resubmit

affected request or abort
session.

-13 CPA_DC_FATALERR Fatal error detected. Discard output; restart

or reset session.

Acceleration Drivers Overview

54 Programmer’s Guide

Except for the errors, CPA_DC_OK, CPA_DC_OVERFLOW, and CPA_DC_FATALERR, the rest of

the error codes can be considered as invalid input stream errors.

4.12 Stateful Compression - Dealing with Error Code
CPA_DC_BAD_LITLEN_CODES (-7)

Prior to software release version 1.2, the driver was unable to deal with the

CPA_DC_BAD_LITLEN_CODES (-7) error code being returned from the acceleration

software. A software workaround has been implemented to overcome this hardware

deficiency.

Error -7 occurs when running a stateful decompression. Stateful decompression uses some

history that is stored in the internal memory of the data compression hardware.

For some hardware specific reasons, this internal memory is corrupted when the acceleration

software tries to deal with certain packet headers. The header is incorrectly decoded,

computed data in the internal memory is incorrect, and the error (-7) is generated.

To overcome this issue, a workaround has been implemented that searches for the faulty

header in the source data packet that the acceleration software is trying to decompress. When

the header is found, the acceleration software computes and loads the data that should have

been in the internal memory. With this internal memory loaded with the correct data, a call to

the cpaDcDecompressData() function is required to finish decompressing the rest of the

packet.

4.12.1 Example of a Stream that Triggers Error Code (-7)

The following figure shows an example of a stream comprising four headers and their

corresponding payloads. Let us assume that Header 2 produces error code (-7) and that the

user cuts the stream in the middle of Payload 2 and Payload 4 to form three packets.

Figure 15. Stream of Compressed Data Split into Three Packets

As a result of the software workaround included in Release 1.2 and later, the data is processed

up to the beginning of Header 2. When the acceleration software encounters Header 2, "error

code (-7)" is hidden from the user and the software workaround processes the header and

updates data in internal hardware memory.

Acceleration Drivers Overview

Programmer’s Guide 55

Figure 16. Accelerator Software Consumes Data up to End of Header 2 where Error Code (-7) is
Normally Generated

However, the software workaround is unable to decompress the rest of the packet, and

therefore it is the user's responsibility to call the cpaDcDecompressData() function again on

the remaining data.

The most efficient approach is to check the CpaDcRqResults.consumed field returned by the

cpaDcDecompressData() function and see if all the data in the source buffer have been

consumed. If not, Intel® recommends including the unprocessed data in the next packet as

shown in the following figure.

Figure 17. Unprocessed Data Appended to Next Packet

4.12.2 Special Case when a Packet Cuts a Header in the Stream

The following figure shows a packet cut in the middle of a header that triggers error code (-7).

The cpaDcDecompressData() function returns no error, but as in the example described in

Example of a Stream that Triggers Error Code (-7), not all the packet data is consumed.

Therefore, the user must compare the consumed data with the original packet size.

Figure 18. Packet Cut in the Middle of a Header

By doing so, the user will determine that the truncated header has not been consumed and

consumed data includes up to the end of payload 3. Next, the user must prepend the

unprocessed data of packet 2 to packet 3 and submit the request. By doing so, this includes all

the data necessary for the workaround to operate correctly. The following figure shows the

new format of packet 3.

Acceleration Drivers Overview

56 Programmer’s Guide

Figure 19. Packet Cut in the Middle of a Header

4.12.3 Pseudo Code for Handling Error Code -7

The following pseudo code shows how to handle error code -7 generated during stateful

decompression.

BEGIN

Buffer_offset = 0

DO

Read stream and store data starting from Buffer_offset

Packet size = 0

For all the buffers in SGL source buffer list

Packet size = Packet size + current buffer data length in bytes Next

buffer

Remaining bytes to decompress = Packet size Call

cpaDcDecompressData() API function

IF CpaDcRqResults.status ≠ OK THEN Return Error

ENDIF

Remaining bytes to decompress = Remaining bytes to decompress -

CpaDcRqResults.consumed

Buffer_offset = Remaining bytes to decompress

IF Remaining bytes to decompress > 0 THEN

Find buffer index and buffer offset in SGL of last consumed data byte

Prepend unprocessed data (From last process data to the end of the

last buffer) to SGL source buffer list.

ENDIF

LOOP until end of stream

END

4.12.4 Unprocessed Data During Stateful Decompression Operations

When running stateful decompression operations, the user may observe in some cases that

not all of the data is consumed by the slice, but the cpaDcDecompressData() API returns

CPA_STATUS_SUCCESS. This can occur in two cases:

• A packet with an odd number of bytes: The slice was designed to operate on packets size

with multiples of 2 bytes. At the API level, the user is free to allocate the buffer size that they

Acceleration Drivers Overview

Programmer’s Guide 57

want, but if the user submits 17 bytes to be inflated, the cpaDcDecompressData() API

reports 16 bytes consumed. The user must then take the unprocessed byte and prepend it to

the next packet. If the user omits this step, the compression history will be broken and the

slice returns an error on the next request.

• A packet contains an incomplete header: This use case occurs when running dynamic

stateful decompression. If the packet to be processed has an incomplete header, the slice

cannot process the Huffman trees. In this case, the slice reports consumed data up to the

beginning of the incomplete header. The following figure shows the use case. Header 2 is

incomplete and the slice consumes data up to the beginning of Header 2.

Figure 20. Unprocessed Data for Incomplete Header

When doing stateful decompression, the user must always check the number of bytes

consumed even if the status parameter of the CpaDcRqResults structure returns

CPA_STATUS_SUCCESS.

4.13 Stateful Compression Level Details

Throughput and compression ratio for stateful compression can be adjusted with the

compression levels to achieve particular requirements. The following table shows the mapping

of the compression levels to the history window, search depth, and context size.

Note: The State registers are also saved.

Compression Level History Windows* Search Depth Context Size

1 32 kB 1 48 kB

2 8 kB 4 48 kB

3 8 kB 8 48 kB

4-9 8 kB 16 48 kB

4.14 Stateless Compression Level Details

Throughput and compression ratio for stateless compression can be adjusted with the

compression levels to achieve particular requirements. The following table shows the mapping

of the compression levels to the history window, search depth, and context size.

Note: No context is saved and no State registers are saved.

Acceleration Drivers Overview

58 Programmer’s Guide

Compression Level History Windows* Search Depth Context Size (Kbyte)

1 32 kB 1 0

2 8 kB 4 0

3 8 kB 4 0

4-9 8 kB 16 0

4.15 Acceleration Driver Error Scenarios

This section describes the behavior of the Acceleration Driver in various error scenarios.

4.15.1 User Space Process Crash

Error Scenario A user space process crashes without cleanly stopping the user space

acceleration driver in the process.

Background The kernel acceleration driver keeps track of all rings created by each process

on a device. From the user space acceleration driver, rings are created on a

device via ioctl calls on icp_dev<N>_ring. The kernel acceleration driver
maintains a list of rings per pid, per device.

In a similar way, the kernel acceleration driver keeps track of all internal memory

allocation. Physically contiguous memory chunks are allocated from the user
space acceleration driver via ioctl calls on icp_dev_mem. The kernel driver
keeps track of all memory allocated per pid.

These files are opened at initialization when an application calls
icp_sal_userStart() and are closed when an application calls
icp_sal_userStop() or closed by the operating system when the application

is killed/crashed.

Sequence of Events The user space process crashes.

 The OS calls a release handler in the kernel acceleration driver, with the pid

of the crashed process, for each opened /dev/icp_dev_* file.

 The kernel acceleration driver frees any allocated resources

(rings/memory) associated with the crashed process.

a. For memory allocations, the kernel acceleration driver frees all the

memory buffers in the list.

a. For rings, the kernel acceleration driver creates a new list and starts an
"orphan" thread (if it is not running at the given time) and passes the
list of rings associated with the process to the orphan thread. The

orphan thread then loops and waits for all the in-flight requests to
come back, then it frees the rings.

Side Effects None

4.15.2 Hardware Hang Detected by Heartbeat

Error Scenario Acceleration hardware hangs, for example, due to a bad DMA address passed

to the driver and hardware. A device reset is required to recover from the hang.

The hang is detected by a "heartbeat" poll that triggers a reset of the
acceleration device. The reset happens if an only if the Heartbeat feature is
enabled using the compile-time option.

Acceleration Drivers Overview

Programmer’s Guide 59

Sequence of Events Applications register for instance notifications by calling

cpaCyInstanceSetNotificationCb() and
cpaDcInstanceSetNotificationCb().

 Applications must periodically issue a "heartbeat" poll via either an API call

to either icp_sal_check_device() or icp_sal_check_all_devices() or

by reading a file in the /proc file system.

 For each heartbeat poll, the kernel acceleration driver sends

SYNC/GET messages to the acceleration hardware and waits for

responses. If the driver times out waiting for responses, the driver

triggers a reset of the acceleration device.

 Before resetting the device, the kernel acceleration driver notifies the user

space acceleration drivers that the device is about to be reset.

 Once notified that a device is about to be reset, the user space acceleration

driver:

a. Sends a CPA_INSTANCE_EVENT_RESTARTING event to

registered applications.

a. Frees memory and rings associated with all the instances.

 After the reset is complete, the kernel acceleration driver notifies the user

space acceleration driver that the reset is complete.

 Once notified that a device reset is complete:

a. Set up each instance associated with the process. This includes

allocating memory and rings for each instance.

 Send a CPA_INSTANCE_EVENT_RESTARTED event to registered

applications.

Side Effects On a device reset, the PCH Gigabit Ethernet devices are also reset. The GigE

drivers can recover from this reset by running a GigE watchdog process. This

watchdog will be notified by the acceleration driver before a reset and the
watchdog will shut down the network interfaces of each effected GigE. The
kernel space acceleration driver then saves the state of each GigE. Following

the reset, the kernel acceleration driver restores the GigE state and notifies the
watchdog process which then brings the network interfaces back up. See
Heartbeat Feature and Recovery from Hardware Errors for further details.

4.15.3 Hardware Error Detected by AER

Error Scenario Acceleration hardware detects an un-correctable error. A device reset is

needed to recover from the error.

Sequence of Events Acceleration hardware detects an un-correctable error. It notifies the

kernel acceleration driver via an error interrupt.

 If, and only if the Heartbeat feature is enabled by the ICP_HEARTBEAT

compile-time option, the kernel acceleration driver resets the acceleration

device upon receipt of the interrupt. The reset sequence follows the same

flow as steps 4 to 7 in Hardware Hang Detected by Heartbeat .

Side Effects Same as Hardware Hang Detected by Heartbeat.

4.15.4 Virtualization: User Space Process Crash (in Guest OS)

Error Scenario A user space process running in a guest OS within a Virtual Machine (VM)

crashes. It is assumed that the user space process is using an Intel® QuickAssist
Technology Virtual Function (VF) that has been assigned to the VM.

Acceleration Drivers Overview

60 Programmer’s Guide

Sequence of Events Within the VM, the sequence of events is the same as for the non-virtualization

error scenario, see User Space Process Crash . There is no involvement from

the Intel® QuickAssist Technology Physical Function (PF) driver in this
scenario.

Side Effects None

4.15.5 Virtualization: Guest OS Kernel Crash

Error Scenario A Virtual Machine (VM) crashes in an uncontrolled manner, for example, due to

a kernel crash within the guest OS running in the VM.

Background In a controlled VM shutdown, the Intel® QuickAssist Technology Virtual

Function (VF) driver running in the VM the VF from the shutdown VM.

The Intel® QuickAssist Technology PF driver keeps track of the ring resources
used by each VF.

Sequence of Events The VM crashes.

 The host OS/VMM detects the VM crash and un-assigns the VF from the

crashed VM.

4.15.6 Virtualization: Hardware Hang Detected by Heartbeat

Error Scenario The acceleration hardware hangs as a result of processing a bad request issued

from a Virtual Machine (VM), for example, due to a bad address passed to the
acceleration hardware. A full device reset is required to recover from the error.

Sequence of Events The acceleration hardware hang is detected via the heartbeat mechanism

running in the host OS/VMM with the Intel® QuickAssist Technology

Physical Function (PF) driver.

 The sequence of events within the host OS is the same as for the non-

virtualization scenario. See Hardware Hang Detected by Heartbeat .

 Each VF acceleration driver is informed that the device is restarting, and so

starts its reset sequence. This will result in the same events being notified

to services on the VMs as on the Host.

Side Effects All VMs that are assigned VFs from the same silicon device are affected.

4.15.7 Virtualization: Hardware Hang Detected by AER

Error Scenario The acceleration hardware detects an un-correctable error. A device reset is

needed to recover from the error.

Sequence of Events The reset sequence is the same as for the non-virtualization scenario. See

Hardware Error Detected by AER.

 Each VF acceleration driver is informed that the device is restarting, and so

starts its reset sequence. This will result in the same events being notified

to services on the VMs as on the Host.

Side Effects All VMs that are assigned VFs from the same silicon device are affected.

Acceleration Drivers Overview

Programmer’s Guide 61

4.16 Build Flag Summary

The following tables summarize the options available when building the software. The

following table shows the build flags that must be specified.

Table 4. Required Build Flags

Symbol Description Default Reference

ICP_ROOT
Set to the directory where

acceleration software is extracted.

This may be /QAT or
/QAT/QAT1.5, depending on how
the driver was compiled.

User defined

ICP_BUILDSYSTEM_PATH
Set to the build system folder

located under the quickassist
folder

($ICP_ROOT/quickassist/
build_system)

User defined

ICP_BUILD_OUTPUT
Set to directory that executable/

libraries are placed in
($ICP_ROOT/ build)

User defined

ICP_ENV_DIR
Set to the directory that contains

the environmental build files

($ICP_ROOT/quickassist/
build_system/build_files/

env_files)

User defined

ICP_TOOLS_TARGET
Set to accelcomp for DH89xxcc

platforms
User defined

The following table shows the build flags that can be optionally specified.

Table 5. Optional Build Flags

Symbol Description Default Reference

DISABLE_PARAM_CHECK
When defined, parameter checking in

the top-level APIs is performed. This can

be set to optimize performance.

Not defined

DISABLE_STATS
When defined, disables statistics.

Disabling statistics can improve
performance.

Not defined,

therefore
statistics are

enabled.

DRBG_POLL_AND_WAIT
When defined, modifies the behavior of

cpaCyDrbgSessionInit and the

DRBG HT functions to poll for responses
internally rather than depending on an
external polling thread.

Enabled DRBG Health Test and

cpaCyDrbgSessionInit

Implementation Detail

Acceleration Drivers Overview

62 Programmer’s Guide

Symbol Description Default Reference

ICP_LOG_SYSLOG
When defined, enables debug messages

to be output to the system log file
instead of standard out for user space

applications.

Not defined

ICP_WITHOUT_THREAD
When defined, no user space threads are

created when a user space application
invokes icp_sal_userStart or
icp_sal_userStartMultiProce ss.

Not defined Thread-less Mode

ICP_HEARTBEAT
When defined, enables automatic device

to reset on failures detected by the
heartbeat mechanism.

 Heartbeat Feature and

Recovery from
Hardware Errors

ICP_NONBLOCKING_PAR

TIALS_PERFORM
When defined, results in partial

operations not being blocked.
Not defined Defined when

compiling the driver

using the
installer.sh

installation script.

ICP_SRIOV
Indicates whether SRIOV should be

enabled in the driver.
Not defined

ICP_TRACE
Used to enable tracing capability for

debug purposes. Once the acceleration
driver is compiled with this option, all the

Cryptography and Data Compression
APIs will expose their parameters to the
console for user space applications OR

to /var/log/ messages in kernel
space.

Not defined

LAC_HW_PRECOMPUTES
When defined, enables hardware for

HMAC precomputes.

Not defined,

therefore the
driver uses
software

(dependency
on OpenSSL*
and Linux*

Crypto API.

See limitations below

table.

max_mr
Used to set the number of Miller Rabin

rounds for prime operations. Setting this
to a smaller value reduces the memory
usage required by the driver.

50

WITH_CPA_MUX
When defined, the driver will be built for

the mux environment, i.e., cpa_mux.ko
will be built and will expose the Intel®

QuickAssist Technology API. The
drivers will not export symbols but will
instead register with the cpa_mux.

Depends on

devices found
on the

platform. Not
defined if
devices found

can be
supported by a
single driver.

Acceleration Drivers Overview

Programmer’s Guide 63

Symbol Description Default Reference

Defined
otherwise, e.g.,
if both

DH89xxcc and
DH895xcc
devices are

found.

ICP_NUM_PAGES_PER_A

LLOC
If defined, the memory driver will allocate

a 128K memory to be the memory Slab;
otherwise, it will allocate 2M memory.
For kernel versions older than 2.6.32, this

variable should be set.

Not defined See Compiling

Acceleration Software
on Older Kernels

ICP_DISABLE_INLINE
When defined, function inlining for

functions that cannot be inlined by the

compiler is removed to enable
compilation of the driver for kernels build
without

CONFIG_ARCH_SUPPORTS_OPTIMIZ
ED_INLINING

Not defined

Note: The limitations of pre-computes are as follows:

• Hardware pre-computes are not supported with the Data Plane API in kernel space for both

HMAC and AES-ECB pre-computes.

• Hardware pre-computes are not supported with the “traditional” API when using polled

instances for kernel space.

• For kernel versions 2.6.18 or less, neither hardware not software pre-computes can be used

in polled mode or with the Data Plane API, so the driver cannot support any HMAC

(qathashmode 1) or GCM/CCM operation with the Data Plane API with kernel mode.

4.17 Running Applications as Non-Root User

This section describes the steps required to run Intel® QuickAssist Technology user- space

applications as non-root user. This section uses the user space performance sample code as an

example.

Assumptions:

• Intel® QuickAssist Technology software is installed and running

• User space Acceleration Sample code (cpa_sample_code) compiled and the directory has

read/write/execution permission for all the users

• Kernel space memory driver (qaeMemDrv.ko) compiled and installed

The following steps should be executed by users with root privilege or root user.

 Export environmental variables.

export ICP_ROOT=/QAT

 Create a Linux* group to provide access for all users in that group.

Acceleration Drivers Overview

64 Programmer’s Guide

groupadd <group_name>

 Add users to the new group. The group should only have users who need access to the

application.

usermod -G <group_name> <user_name_to_add>

 Change group ownership of the following files. By default, the group ownership will be

root.

− /dev/icp_dev_processes

− /dev/icp_dev<N>_ring

− /dev/icp_dev<N>_csr

− /dev/icp_adf_ctl

− /dev/icp_dev_mem

− /dev/icp_dev_mem_page

cd /dev/

chgrp <group_name> icp_dev_processes icp_dev*_ring icp_dev*_csr

icp_dev_mem_page icp_dev_mem icp_adf_ctl

chmod 660 icp_dev_processes icp_dev*_ring icp_dev*_csr

icp_dev_mem_page icp_dev_mem icp_adf_ctl

 Change the File permission for the following configuration files to 644.

chmod 644 /etc/dh89?xcc_qa_dev?.conf

 Change the group ownership for the Intel® QuickAssist Technology user space driver

(libicp_qa_al_s.so).

For 64-bit OS:

cd /lib64

chgrp <group_name> libicp_qa_al_s.so

For 32-bit OS:

cd /lib

chgrp <group_name> libicp_qa_al_s.so

 Change the group ownership for memory driver.

cd /dev

chgrp <group_name> qae_mem

chmod 660 qae_mem

 At this point, switch to username that is included in <group_name>.

su <user name that is included in group_name>

 Launch the performance sample code.

cd

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/build/

./cpa_sample_code signOfLife=1

Note: If the user does not have access to the directory, modify group ownership of the ICP_ROOT
directory.

chgrp –R <group_name> $ICP_ROOT

Or copy the sample code application to a directory can be accessed by the user.

Acceleration Drivers Overview

Programmer’s Guide 65

cp

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/build/

cpa_sample_code /home/tester

The same basic steps can be followed to enable non-root access for customer applications

accessing the acceleration software. Every time the acceleration software is restarted, step 4

must be completed. Every time the memory driver is started, step 7 must be completed.

4.18 Compiling Acceleration Software on Older Kernels

With the current release of the Acceleration software, changes have been added to provide

limited support for older kernel versions. These changes allow the driver to compile on kernels

as old as the 2.6.18 kernel. They were added to assist customers who are using older kernel

versions.

This section describes the steps required in order to compile the acceleration software and

describes the limitations of the implementation.

• Installing

Define the following environmental variables before compiling the driver. If using the

installer.sh script, these can be added to the SetENV() function. If compiling the driver

manually, define these variables along with ICP_ROOT, ICP_ENV_DIR, etc.

− LAC_HW_PRECOMPUTES=1

− ICP_NUM_PAGES_PER_ALLOC=1

Once these are defined, compile and install the driver.

• Testing

Once the driver is installed, performance sample code signOfLife tests can be executed.

Please refer to the Intel® Communications Chipset 8900 to 8920 Series Software for

Linux* Getting Started Guide for details.

• Limitations

− Older kernels do not support kmalloc of more than 128K. Due to this limitation,

compression tests within the performance sample code may not execute.

− Running the performance sample code without the signOfLife=1 option may fail.

− Ensure LAC_HW_PRECOMPUTES is defined if your application uses algorithm

chaining from kernel space. The acceleration driver by default makes use of software

based hashing for algorithm chaining and this functionality was not available in older

kernels. Setting the LAC_HW_PRECOMPUTES allows the driver to use hardware

acceleration.

4.19 Compiling with Debug Symbols

To compile the driver with debug symbols (for easier debug or for performance profiling),

build/rebuild the driver after making the following changes:

 In $ICP_ROOT/quickassist/build_system/build_files/OS/ linux_2.6.mk, add

the -g flag to the user space CFLAGS, as shown:

ifeq ($($(PROG_ACY)_OS_LEVEL), user_space)

Acceleration Drivers Overview

66 Programmer’s Guide

CFLAGS+=-fPIC $(DEBUGFLAGS) -g -Wall -Wpointer-arith $(INCLUDES)

 In $ICP_ROOT/quickassist/build_system/build_files/common.mk, set the

optimization level to 0, as shown:

#Set default optimization level

$(PROG_ACY)_OPT_LEVEL?=0

EXTRA_CFLAGS+=-O$($(PROG_ACY)_OPT_LEVEL)

4.20 Acceleration Driver Return Codes

The following table shows the return codes used by various components of the acceleration

driver.

Return Type Return Code Description

CPA_STATUS_SUCCESS 0 Requested operation was successful.

CPA_STATUS_FAIL -1 General or unspecified error occurred. Refer to the

console log user space application or

to /var/log/messages in kernel space for more details of

the failure.

CPA_STATUS_RETRY -2 Recoverable error occurred. Refer to relevant sections

of the API for specifics on what the suggested course
of action.

CPA_STATUS_RESOURCE -3 Required resource is unavailable. The resource that has

been requested is unavailable. Refer to relevant
sections of the API for specifics on what the suggested

course of action.

CPA_STATUS_INVALID_PARA

M

-4 Invalid parameter has been passed in.

CPA_STATUS_FATAL -5 Fatal error has occurred. A serious error has occurred.

Recommended course of action is to shut down and
restart the component.

CPA_STATUS_UNSUPPORTED -6 The function is not supported, at least not with the

specific parameters supplied. This may be because a
particular capability is not supported by the current
implementation.

CPA_STATUS_RESTARTING -7 The API implementation is restarting. This may be

reported if, for example, a hardware implementation is
undergoing a reset.

Acceleration Drivers Overview

Programmer’s Guide 67

The following table shows the return codes used by the driver to handle Linux* device driver

operations.

Return Type Return Code Description

SUCCESS 0 Operation was successful.

FAIL 1 General error occurred. Refer to the console log user space

application or to /var/log/ messages in kernel space for more details
of the failure.

-EPERM -1 Operation is not permitted. Used during ioctl operations.

-EIO -5 Input/Output error occurred. Used when copying configuration data

to and from user space.

-EBADF -9 Bad File Number. Used when an invalid file descriptor is detected.

-EAGAIN -11 Try Again. Used when a recoverable operation occurred.

-ENOMEM -12 Out of Memory. Memory resource that has been requested is not

available.

-EACCES -13 Permission Denied. Used when the operation failed to connect to a

process or open a device.

-EFAULT -14 Bad Address. Used when an operation detects invalid parameter

data.

-ENODEV -19 No Such Device. Used when an operation detects invalid device id.

-ENOTTY -25 Invalid Command Type. Used when an ioctl operation detects an

invalid command type.

§

Acceleration Driver Configuration File

68 Programmer’s Guide

5 Acceleration Driver Configuration File

This chapter describes the configuration file(s) managed by the Acceleration Driver

Framework (ADF) that allow customization of runtime operation. This configuration file(s)

must be tuned to meet the performance needs of the target application.

Note: The software package includes a default configuration file against which optimal performance
has been validated. Consider performance implications as well as the configuration details provided in
this section if your system requires modifications to the default configuration file.

5.1 Configuration File Overview

There is a single configuration file for each Intel® Communications Chipset 8900 to 8920

Series (PCH) device. A client application can load balance between two accelerators if

present. Each accelerator has eight independent ring banks - the communication mechanism

between the Acceleration software and the hardware. Each ring bank has an interrupt that can

be directed to a specific Intel® architecture core.

Each ring bank has 16 rings (hardware assisted queues). This hierarchy is shown in the

following figure.

Figure 21. Ring Banks

Note: Depending on the model number, a PCH device may also contain no accelerators.

The configuration file is split into a number of different sections: a General section and one or

more Logical Instance sections.

• General - includes parameters that allow the user to specify:

− Which services are enabled?

Acceleration Driver Configuration File

Programmer’s Guide 69

− The configuration file format.

− Firmware location configuration.

− Concurrent request default configuration.

− Interrupt coalescing configuration (optional).

− Statistics gathering configuration.

Additional details are included in General Section.

Note: The concurrent request parameters include both transmit (Tx) and receive (Rx) requests. For
example, if a concurrent request parameter is set to 64, this implies 32 requests for Tx and 32 for Rx.

• Logical Instances - one or more sections that include parameters that allow the user to set:

− The number of cryptography or data compression instances being managed.

− For each instance, the name of the instance, the accelerator number, whether polling

is enabled or not and the core to which an instance is affinitized.

Additional details are included in Logical Instances Section.

A sample configuration file, targeted at a high-end IPsec box, is included in Sample

Configuration File (V2).

5.2 General Section

The general section of the configuration file contains general parameters and statistics

parameters.

5.2.1 General Parameters

The following table describes the parameters that can be included in the General section:

Table 6. General Parameters

Parameter Description Default Range

ConfigVersion Used to signify the simpler

configuration file format. If this
parameter is present, the configuration

file is in a new format that requires fewer
parameter definitions.

If this parameter is not present, this

implies this is V1 configuration file. V1
configuration files are 100% compatible
with this software release.

2 Integer

ServicesEnabled Defines the service(s) available

(cryptographic [cyX], data compression
[dc]).

cy0;cy1;dc cyX, dc

Note: X can be 0 or 1,
which identifies one of

two available
cryptographic engines.

Note: Multiple values

permitted, use ; as the
delimiter.

Acceleration Driver Configuration File

70 Programmer’s Guide

Parameter Description Default Range

cyHmacAuthMode Determines when HMAC precomputes

are done.
1 - HMAC

precomputes are done
during session

initialization

- HMAC

precomputes are done

during the perform
operation

Note: In general,

with this parameter set to
1, performance is
expected to be better.

dcTotalSRAMAvailable Each PCH device has a total of 512 KB of

eSRAM. The eSRAM can be used by the

Data Compression service only. This
parameter tells the driver how much of
this memory to use for the Data

Compression service. A value of 0
means, do not use any eSRAM for the
Data Compression service; 524288

means use all the eSRAM for the Data
Compression service. If an odd value is
specified, internally the driver rounds

the value down to the nearest even
value, for example, if a value of 262145 is
specified, the driver rounds the value

down to 262144.

0 0 to 524288

Firmware_MofPath Name of the Microcode Object File

(MOF) firmware.

mof_firmw

are.bi n
mof_firmware.bin

Firmware_MmpPath Name of the Modular Math Processor

(MMP) firmware.

mmp_firm

ware. bin
mmp_firmware.bin

CyNumConcurrentSymR

eq uests

Specifies the number of cryptographic

concurrent symmetric requests for
cryptographic instances in general.

Note: This parameter value can be

overridden for a particular
cryptographic instance if necessary.

512 64, 128, 256, 512,

1024, 2048 or

4096

CyNumConcurrentAsym

Req uests

Specifies the number of cryptographic

concurrent asymmetric requests for
cryptographic instances in general.

Note: This parameter value can be

overridden for a particular
cryptographic instance if necessary.

64 64, 128, 256, 512,

1024, 2048 or

4096

DcNumConcurrentRequ

ests

Specifies the number of data

compression concurrent requests for
data compression instances in general.

Note: This parameter value can be
overridden for a particular data
compression instance if necessary.

512 64, 128, 256, 512,

1024, 2048 or

4096

Acceleration Driver Configuration File

Programmer’s Guide 71

Parameter Description Default Range

InterruptCoalescingEnab

led

Note: This parameter is

optional.

Specifies if interrupt coalescing is

enabled for ring banks.
1 0 or 1

InterruptCoalescingTime

rN s

Note: This parameter is
optional.

Specifies the coalescing time, in

nanoseconds (ns) for ring banks.

Note: If a value outside the range is set,
the default value is used.

10000 500 to 1048575

InterruptCoalescingNum

Re sponses

Note: This parameter is

optional.

Specifies the number of responses that

need to arrive from hardware before the
interrupt is triggered. It can be used to

maximize throughput or adjust
throughput latency ratio.

0 (disable) 0 to 248

ProcDebug Debug feature. When set to 1 enables

additional entries in the / proc file
system.

0 (disable) 0 or 1

drbgPollAndWaitTimeM

S

An optional parameter that specifies the

polling interval (in milliseconds) used
when DRBG_POLL_AND_WAIT is

defined. Refer to DRBG Health Test and
cpaCyDrbgSessionInit Implementation
Detail.

10 1 to 20

SRIOV_Enabled Enables or disables Single Root

Complex I/O Virtualization. If enabled

(set to 1), SRIOV and VT-d must be
enabled in the BIOS. If disabled (set to
0), then SRIOV and VT-d must be

disabled in the BIOS.

0

(disabled)
0 or 1

PF_bundle_offset When using virtualization and the

version 2 configuration file, this

parameter indicates the first bank on
which to allocate instances for the
Physical Function (PF). For example,

when PF_bundle_offset = 5, instances in
the PF are allocated starting from bank
5, therefore the first five banks (0 to 4)

per PCH device are free and available to
be assigned to Virtual Machines (VMs).

Note: This param should be commented

out in the .conf file if the PF will not use
any instances.

Note: This parameter should not be

used if the version 1 configuration file is
used.

Note: Banks 0 and 8 are used for

administration messages and therefore
cannot be used for services, either PF or
VF.

1 1 to 7

Note: "Default" denotes the value in the configuration file when shipped.

Note: The concurrent request parameters include both transmit (Tx) and receive (Rx) requests. For

example, if a concurrent request parameter is set to 64, this implies 32 requests for Tx and 32 for Rx.

Acceleration Driver Configuration File

72 Programmer’s Guide

5.2.2 Statistics Parameters

The following table shows the parameters in the configuration file, prefixed with stats, that can

be used to enable or disable certain types of statistics.

Note: There is a performance impact when statistics are enabled. In particular, the IA cost of offload
is expected to increase when statistics are enabled.

When the statistics are enabled, the collected data can be retrieved using the following

methods:

• Calling the appropriate Intel® QuickAssist Technology API function. For example,

cpaCySymQueryStats or cpaCySymQueryStats64 for symmetric cryptography. See the

Intel® QuickAssist Technology Cryptographic API Reference Manual for more information

about these functions.

• For kernel space instances, looking at entries in the /proc/dh89xxcc_devX directory,

where X is the device number. For example, /proc/ icp_dh89xxcc_dev0/cy/IPSec0 for

all statistics related to cryptography instance IPSec0, where IPSec0 is the name given to

the instance in the config file (Cy0Name = "IPSec0"). See Debug Feature for more

information.

Table 7. Statistics Parameters

Parameter Description Default Range

statsGeneral Enables/disables statistics in general. 1 1 or 0

statsDc Enables/disables statistics for data

compression.
1 1 or 0

statsDh Enables/disables statistics for the Diffie-

Hellman algorithm.
1 1 or 0

statsDrbg Enables/disables statistics for the

Deterministic Random Bit Generator
(DRBG).

1 1 or 0

statsDsa Enables/disables statistics for the Digital

Signature Algorithm (DSA).
1 1 or 0

statsEcc Enables/disables statistics for Elliptic

Curve Cryptography (ECC).

1 1 or 0

statsKeyGen Enables/disables statistics for the Key

Generation algorithm.

1 1 or 0

statsLn Enables/disables statistics for the Large

Number generator.
1 1 or 0

statsPrime Enables/disables statistics for the Prime

Number detector.
1 1 or 0

statsRsa Enables/disables statistics for the RSA

algorithm.
1 1 or 0

statsSym Enables/disables statistics for symmetric

ciphers.
1 1 or 0

Acceleration Driver Configuration File

Programmer’s Guide 73

Parameter Description Default Range

Note: "Default" denotes the value in the configuration file when shipped. A value of 1 indicates "enabled"; a

value of 0 indicates "disabled".

5.2.3 Optimized Firmware for Wireless Applications

• When using the simplified configuration file format (indicated by the existence of the

ConfigVersion parameter), if the NumProcesses parameter in the [WIRELESS] section of

the configuration file is greater than 0, a version of the firmware optimized for small

cryptography packets is automatically selected. In this case, each cryptography process

consumes six rings as in the "standard" firmware case. The range for the NumProcesses

parameter in the [WIRELESS] section is constrained in the same way as that described in

Maximum Number of Process Calculations, except that only cryptography instances (no

data compression instances) are supported by the optimized firmware.

The optimized firmware operates with the following constraints and characteristics:

• SGL and Flat buffers are supported.

• The maximum supported Source/Destination payload size is 2K (where payload is either a

flat buffer with a size up to 2K or the total number of bytes in flat buffers specified in SGL

descriptors.

• Only rings 0-31 and rings 128-159 are use, that is, the first two banks in the lower and upper

clusters (sets of banks), where a bank has 16 rings.

• There is no support for the runtime (resent) Init AE and Init Ring info messages (these

messages must be sent once in the start-up phase per AE).

• Cipher Only and Auth Only (Mode0/Mode1/Mode2) processing is supported.

• TRNG (INIT/GET ENTROPY)/Compression/Asymmetric (PKE) services are not

supported.

• Admin service is not supported.

• Chained (Cipher-Auth/Auth-Cipher/GCM/CCM) operation is not supported.

• Partial Cipher Only or Partial Auth Only requests are not supported.

• Nested Auth operation is not supported.

• Key generation services, such as TLS/SSL/MGF are not supported.

• Wireless image does not support virtualized environments.

• Request ordering is always enabled.

5.3 Logical Instances Section

This section allows the configuration of logical instances in each address domain (kernel space

and individual user space processes). See Hardware Assisted Rings and Logical Instances on

for more information.

The address domains are in the following format:

Acceleration Driver Configuration File

74 Programmer’s Guide

• For the kernel address domain: [KERNEL]

• For user process address domains: [xxxxx], where xxxxx may be any ASCII value that

uniquely identifies the user mode process.

To allow a driver to correctly configure the logical instances associated with a user process, the

process must call the function icp_sal_userStartMultiProcess, passing the xxxxx string during

process initialization. When the user space process is finished, it must call the function

icp_sal_userStop to free resources. See User Space Access Configuration Functions for more

information.

• The NumProcesses parameter (in the User Process section) indicates the max number of

user space processes within that section name with access to instances on this device. See

icp_sal_userStartMultiProcess Usage for more information.

The items that can be configured for a logical instance are:

• The name of the logical instance

• The accelerator associated with this logical instance

• The core to which the instance is affinitized (optional)

5.3.1 [KERNEL] Section

In the [KERNEL] section of the configuration file, information about the number and type of

kernel instances can be defined.

The following table describes the parameters that determine the number of kernel instances

for each service.

Note: The maximum number of cryptographic instances supported is 32.

Parameter Description Default Range

NumberCyInstances Specifies the number of cryptographic

instances.

Note: Depends on the number of
allocations to other services.

2 0 to 32

NumberDcInstances Specifies the number of data

compression instances.

Note: Depends on the number of
allocations to other services.

1 0 to 64

Note: "Default" denotes the value in the configuration file when shipped.

5.3.1.1 Cryptographic Logical Instance Parameters

The following table shows the parameters that can be set for cryptographic logical instances.

Acceleration Driver Configuration File

Programmer’s Guide 75

Table 8. Cryptographic Logical Instance Parameters

Parameter Description Default Range

CyXName Specifies the name of cryptographic

instance number X.

IPSec0 String (max. 64

characters)

CyXAcceleratorNumber Specifies the accelerator number that

the cryptographic instance number X
is assigned to.

0 0, 1, 2 or 3

CyXIsPolled Specifies if cryptographic instance

number X works in poll mode or IRQ
mode.

0 for kernel

space
instances

1 for user

space
instances

For instance, in

the kernel space:

for IRQ

for poll mode

For instance, in
the user space:

for IRQ

for poll mode

CyXNumConcurrentSymRequest

s (optional)

Specifies the number of in-progress

cryptographic concurrent symmetric
requests (and responses) for
cryptographic instance number X.

Note: Overrides the default
CyNumConcurrentSymRequests

value in the General section for this

specific instance.

Note: In the configuration file, this
parameter must be specified before

the CyXCoreAffinity parameter. If
it is not, the default value specified in
CyNumConcurrentSymRequests in

the General section is used.

N/A 64, 128, 256,

512, 1024, 2048

or 4096

CyXNumConcurrentAsymReques

ts (optional)

Specifies the number of concurrent

asymmetric requests for

cryptographic instance number X.

Note: Overrides the default
CyNumConcurrentAsymRequests

value in the General section for this
specific instance.

Note: In the configuration file, this

parameter must be specified before
the CyXCoreAffinity parameter. If
it is not, the default value specified in

CyNumConcurrentAsymRequests in
the General section is used.

N/A 64, 128, 256,

512, 1024, 2048

or 4096

CyXCoreAffinity Specifies the core to which the

instance should be affinitized.

Varies

depending
on the value

of X.

0 to max.

number of cores
in the system

Note: "Default" denotes the value in the configuration file when shipped.

Acceleration Driver Configuration File

76 Programmer’s Guide

5.3.1.2 Data Compression Logical Instance Parameters

The following table shows the parameters in the configuration file that can be set for data

compression logical instances.

Note: The maximum number of data compression instances supported is 126.

Parameter Description Default Range

DcXName Specifies the name of data compression

instance number X.
IPComp0 String (max. 64

characters)

DcXAcceleratorNumber Specifies the accelerator number that

the data compression instance number X
is assigned to.

0 0 or 1

DcXIsPolled Specifies if data compression instance

number X works in poll mode or IRQ

mode.

0 for

kernel

space
instances

1 for user

space
instances

For instance in the

kernel space:

for IRQ

for poll mode

For instance in the

user space:

for IRQ

for poll mode

DcXNumConcurrentRequests

(optional)

Specifies the number of data

compression concurrent requests.

Overrides the default

DcNumConcurrentRequests value in
the General section for this specific
instance.

Note: In the configuration file, this
parameter must be specified before the
DcXCoreAffinity parameter. If it is

not, the default value specified in
DcNumConcurrentRequests in the
General section is used.

N/A 64, 128, 256, 512,

1024, 2048 or 4096

DcXCoreAffinity Specifies the core to which this data

compression instance is affinitized.

Varies

dependin

g on the
value of X.

0 to max. number of

cores in the system

Note: "Default" denotes the value in the configuration file when shipped.

5.3.2 [DYN] Section

In the [DYN] section of the configuration file, information about the number and type of

instances that can be allocated dynamically are specified.

The parameters that can be included in the [DYN] section are the same as those that can be

included in the [KERNEL] section. See [KERNEL] Section for details.

Acceleration Driver Configuration File

Programmer’s Guide 77

Once the logical instances are reserved in the configuration file, they can be allocated using the

dynamic instance allocation APIs. See Dynamic Instance Allocation Functions for more

information.

5.3.2.1 Dynamic Instance Configuration Example

The following configuration file snippets demonstrate the reservation of instances for dynamic

allocation. In a system that uses the two configuration files below,

icp_sal_userCyInstancesAlloc can allocate up to 26 cryptographic (cy) instances and

icp_sal_userDcInstancesAlloc can allocate up to 14 data compression (dc) instances.

See Dynamic Instance Allocation Functions for more information.

Taken from: /etc/dh89xxcc_qa_dev0.conf

...

[DYN]

NumberCyInstances = 10

NumberDcInstances = 4

Crypto - User instance DYN #0 Cy0Name = "DYN0"

Cy0IsPolled = 1

Cy0AcceleratorNumber = 0 # List of core affinities Cy0CoreAffinity =

0

Crypto - User instance DYN #1 Cy1Name = "DYN1"

Cy1IsPolled = 1

Cy1AcceleratorNumber = 1 # List of core affinities Cy1CoreAffinity =

1

Crypto - User instance DYN #2 Cy2Name = "DYN2"

Cy2IsPolled = 1

Cy2AcceleratorNumber = 2 # List of core affinities Cy2CoreAffinity =

2

...

Data Compression - User space DYN instance #0 Dc0Name = "DCDYN0"

Dc0AcceleratorNumber = 0

Dc0IsPolled = 1

Dc0CoreAffinity = 0

Data Compression - User space DYN instance #1 Dc1Name = "DCDYN1"

Dc1AcceleratorNumber = 1

Dc1IsPolled = 1

Dc1CoreAffinity = 1

...

Taken from: /etc/dh89xxcc_qa_dev1.conf

...

Acceleration Driver Configuration File

78 Programmer’s Guide

[DYN]

NumberCyInstances = 16

NumberDcInstances = 10

...

5.3.3 User Process [xxxxx] Sections

In each [xxxxx] section of the configuration file, user space access to the device can be

configured.

The following table shows the parameters in the configuration file that can be set for user

process [xxxxx] sections.

Table 9. User Process [xxxxx] Sections Parameters

Parameter Description Default Range

NumProcesses The number of user space processes with

section name [xxxxx] that have access to

this device.

The maximum number of processes that
can call icp_sal_userStartMultiProcess

and be active at any one time. See
icp_sal_userStartMultiProcess Usage for
more information.

Caution: Resources are preallocated. If
this parameter value is set too high, the
driver fails to load.

1 For constraints, see

Maximum Number

of Process
Calculations.

LimitDevAccess Indicates if the user space processes in

this section are limited to only access
instances on this device.

See Configuring Multiple PCH Devices in
a System for more information on
configuring multiple user space

processes on a multi device system.

0 0 (disabled,

processes in this
section can access

multiple devices) or
1 (enabled,
processes in this

section can only
access this device)

NumberCyInstances Specifies the number of cryptographic

instances.

Note: Depends on the number of

allocations to other services.

1 0 to 32

NumberDcInstances Specifies the number of data

compression instances.

Note: Depends on the number of
allocations to other services.

1 0 to 126

Note: "Default" denotes the value in the configuration file when shipped.

Note: The order of NumProcesses and LimitDevAccess parameters is important. The NumProcess

parameter must appear before the LimitDevAccess parameter in the section.

Acceleration Driver Configuration File

Programmer’s Guide 79

Parameters for each user process instance can also be defined. The parameters that can be

included for each specific user process instance are similar to those in the Logical Instances

Section.

5.3.3.1 Maximum Number of Process Calculations

The NumProcesses parameter is the number of user space processes per service within the

[xxxx] section domain with access to this device.

The value to which this parameter can be set is determined by a number of factors, most

significantly, the number of cryptography instances and/or data compression instances in the

process section. The total number of processes, per service, created by the driver is given by

the expression (e.g., for cryptography):

(NumProcesses) x (NumberCyInstances)

For communications between the CPU and an accelerator, each cryptography instance

consumes six hardware assisted rings and each data compression instance consumes two

rings. In addition, up to four rings (for each device) are reserved for administration purposes. A

further constraint is that it is only possible to have two cryptography instances per bank,

restricting the maximum number of cryptography instances to 32.

The total number of rings available is 256; therefore, the NumProcesses parameter can only be

set to a value that meets the constraints described above.

The following are examples that make use of most of the rings on a device:

• NumProcesses can be set to 16, if NumberCyInstances = 2 (consuming 192 rings) and

NumberDcInstances = 1 (consuming 32 rings), with 4 rings for administration, giving a

total of 228 (meeting the <256 constraint).

• NumProcesses can be set to 31, if NumberCyInstances = 1 (consuming 186 rings) and

NumberDcInstances = 1 (consuming 62 rings), with 4 rings for administration, giving a

total of 248 (meets the <256 constraint).

• NumProcesses can be set to 32, if NumberCyInstances = 1 and NumberDcInstances =

0. This is because you can only have two cryptography instances per ring bank (the rings for

each cryptography instance must be in the same ring bank) and there are a total of 16 banks.

Also, the following may be useful: When the NumberXXInstances < Number of available

accelerators for that service, and NumProcesses >= Number of available accelerators, then

spread the instances across the accelerators. For example, four Cy accelerators:

• 1 instance, then set Cy0AcceleratorNumber = 0,1,2,3

• 2 instances, then set Cy0AcceleratorNumber = 0,1 and Cy1AcceleratorNumber = 2,3 (or

Cy0AcceleratorNumber = 0, 2 and Cy1AcceleratorNumber = 1,3)

5.4 Configuring Multiple PCH Devices in a System

A platform may include more than one PCH device. Each device must have its own

configuration file. The format and structure of the configuration file is exactly the same for all

Acceleration Driver Configuration File

80 Programmer’s Guide

devices. Consequently, the configuration file for device 0, dh89xxcc_qa_dev0.conf, can be

cloned for use with other PCH devices.

Simply make a copy of the file and rename it by changing the ”dev0” part of the file name, for

example, for device 1 change the file name to dh89xxcc_qa_dev1.conf, for device 2, change

the file name to dh89xxcc_qa_dev2.conf and so on. Then, you can configure each device by

editing the corresponding configuration file accordingly. There can be up to 32 PCH devices

on a platform.

Each PCH device must have its own configuration file. If a configuration file does not exist for a

device, that device will not start at all and an error is displayed indicating that a configuration

file was not found.

To determine the number of PCH devices in a system, use the lspci utility:

lspci -d 8086:0434

The output from a system with two PCH devices is similar to the following:

08:00.0 Co-processor: Intel Corporation Device 0434

09:00.0 Co-processor: Intel Corporation Device 0434

Then, after the driver is loaded, the user can use the qat_service script to determine the name

of each device and its status. For example:

./qat_service status

Again, in a system with two PCH devices, the output looks like this:

icp_dev0 - type=dh89xxcc, inst_id=0, bsf=01:00:0, #accel=2,

#engines=8, state=up icp_dev1 - type=dh89xxcc, inst_id=1,

bsf=05:00:0, #accel=2, #engines=8, state=up

The user can also use the qat_service to start, stop, restart and shutdown each device

separately or all devices together. See Managing Acceleration Devices Using qat_service for

more information.

Some important configuration file information when using multiple PCH devices:

• When specifying kernel and user space instances in the configuration file, the

Cy<Number>Name and Dc<Number>Name parameters must be unique in the context of the

section name only. For example, it is valid to have a parameter called Cy0Name in both a

kernel instance section and a user instance section in the same configuration file without

issue. Also, the parameter names do not need to be unique at a system-wide level. For

example, it is valid to have a parameter called Cy0Name in both the configuration file for dev0

and the configuration file for dev1 without issue.

• For devices with configuration files that have the same section name, for example, "SSL"

and the same data in that section, is it necessary to use the cpaCyInstanceGetInfo2()

function to distinguish between devices. The cpaCyInstanceGetInfo2() allows the user

of the API to query which physical device a cryptography instance handle belongs to. In

addition, for any application domain defined in the configuration files ([KERNEL], [SSL]

and so on), a call to cpaCyGetNumInstances() returns the number of cryptography

Acceleration Driver Configuration File

Programmer’s Guide 81

instances defined for that domain across all configuration files. A subsequent call to

cpaCyGetInstances() obtains these instance handles.

• When using multiple configuration files, the LimitDevAccess parameter for a process must

be enabled or disabled in all configuration files. The driver may not find the correct entries in

the configuration file if the LimitDevAccess option is enabled in one configuration file and

disabled in another.

5.5 Configuring Multiple Processes on a Multiple-Device
System

As an example, consider a system with two PCH devices (in total, eight crypto acceleration

engines, four on each device) where it is necessary to configure two user space sections. One

section we identify as SSL and the other we identify as IPSec.

• For the SSL section, we want to configure eight processes, where each process has access

to one acceleration instance.

• For the IPSec section, we want to configure one process with access to all eight

acceleration engines.

In this scenario, the user space section of the configuration files would look like the following.

For dh89xxcc_qa_dev0.conf:

[SSL] #User space section name

NumProcesses=4 #There are 4 user space process with section name SSL

with access to this device

LimitDevAccess=1 # These 4 SSL user space processes only use this

device NumCyInstances=1 # Each process has access to 1 Cy instance on

this device

NumDcInstances=0 # Each process has access to 0 Dc instances on this

device

Crypto - User instance #0 Cy0Name = "SSL0"

Cy0IsPolled = 1

Cy0AcceleratorNumber = 0,1,2,3

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name

NumProcesses=1 #There is 1 user space process with section name IPSec

with access to this device

LimitDevAccess=0 # This IPSec user space process may have access to

other devices

NumCyInstances=4 # The IPSec process has access to 4 Cy instances on

this device

NumDcInstances=0 # The IPSec process has access to 0 Dc instances on

this device

Crypto - User instance #0

Acceleration Driver Configuration File

82 Programmer’s Guide

Cy0Name = "IPSec0"

Cy0IsPolled = 1

Cy0AcceleratorNumber = 0

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #1

Cy1Name = "IPSec1"

Cy1IsPolled = 1

Cy1AcceleratorNumber = 1

Cy1CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #2

Cy2Name = "IPSec2"

Cy2IsPolled = 1

Cy2AcceleratorNumber = 2

Cy2CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #3

Cy3Name = "IPSec3"

Cy3IsPolled = 1

Cy3AcceleratorNumber = 3

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

For dh89xxcc_dev1.conf:

[SSL] #User space section name

NumProcesses=4 #There are 4 user space process with section name SSL

with access to this device

LimitDevAccess=1 # These 4 SSL user space processes only use this

device NumCyInstances=1 # Each process has access to 1 Cy instance on

this device

NumDcInstances=0 # Each process has access to 0 Dc instances on this

device

Crypto - User instance #0 Cy0Name = "SSL0"

Cy0IsPolled = 1

Cy0AcceleratorNumber = 0,1,2,3

Cy0CoreAffinity = 0 # Core affinity not used for polled instance

[IPsec] #User space section name

NumProcesses=1 #There is 1 user space process with section name IPSec

with access to this device

LimitDevAccess=0 # This IPSec user space process may have access to

other devices

NumCyInstances=4 # The IPSec process has access to 4 Cy instances on

this device

NumDcInstances=0 # The IPSec process has access to 0 Dc instances on

this device

Crypto - User instance #0

Cy0Name = "IPSec0"

Acceleration Driver Configuration File

Programmer’s Guide 83

Cy0IsPolled = 1

Cy0AcceleratorNumber = 0

Cy0CoreAffinity = 0 # Core affinity not used for polled instance #

Crypto - User instance #1

Cy1Name = "IPSec1"

Cy1IsPolled = 1

Cy1AcceleratorNumber = 1

Cy1CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #2

Cy2Name = "IPSec2" Cy2IsPolled = 1

Cy2AcceleratorNumber = 2

Cy2CoreAffinity = 0 # Core affinity not used for polled instance

Crypto - User instance #3

Cy3Name = "IPSec3"

Cy3IsPolled = 1

Cy3AcceleratorNumber = 3

Cy3CoreAffinity = 0 # Core affinity not used for polled instance

Eight processes (with section name SSL) can call the

icp_sal_userStartMultiProcess("SSL", CPA_TRUE) function to get access to one

crypto instance each. One process (with section name IPSec) can call the

icp_sal_userStartMutliProcess("IPSec", CPA_FALSE) function to get access to eight

crypto instances.

Internally in the driver, this works as follows:

 When the driver is configured (that is, the service qat_service is called), the driver reads

the configuration file for the device and populates an internal configuration table.

 Reading the configuration file for dev0:

a. For the section named [SSL], the driver determines that four processes are required

and that these processes are limited to access to this device only. In this case, the

driver creates four internal sections that it labels SSL_DEV0_INT_0,

SSL_DEV0_INT_1, SSL_DEV0_INT_2 and SSL_DEV0_INT_3. Each section is given

access to one crypto instance as described.

b. For section name [IPSec], the driver determines that one process is required and

that this process is not limited to access to this device only (that is, it may access

instances on other devices). In this case, the driver creates one internal section that it

labels IPSec_INT_0 and gives this access to four crypto instances on this device.

 Reading the configuration file for dev1:

a. For the section named [SSL], the driver determines that four processes are

required and that these processes are limited to access this device only. In this case,

the driver creates four internal sections that it labels SSL_DEV1_INT_0,

SSL_DEV1_INT_1, SSL_DEV1_INT_2 and SSL_DEV1_INT_3. Each section is

given access to one crypto instance as described.

b. For the section named [IPSec], the driver determines that one process is required

and that this process may have access to instances on other devices. In this case, the

Acceleration Driver Configuration File

84 Programmer’s Guide

driver creates one internal section that it labels IPSec_INT_0 and gives this access

to four crypto instances on this device. Notice that this section name now appears in

both devices' internal configuration and therefore the process that gets assigned this

section name will have access to instances on both devices.

 In total, there are nine separate sections (SSL_DEV0_INT_0, SSL_DEV0_INT_1,

SSL_DEV0_INT_2, SSL_DEV0_INT_3, SSL_DEV1_INT_0, SSL_DEV1_INT_1,

SSL_DEV1_INT_2, SSL_DEV1_INT_3 and IPSec_INT_0) with access to crypto instances.

When a process calls the icp_sal_userStartMultiProcess("SSL", CPA_TRUE) function,

the driver locates the next available section of the form SSL_DEV<m>_INT<. > (of which

there are eight in total in this example) and assigns this section to the process. This gives the

process access to corresponding crypto instances.

When a process calls the icp_sal_userStartMultiProcess("IPSec", CPA_FALSE)

function, the driver locates the next available section of the form IPSec_INT_<. > (of which

there is only one in total for this example) and assigns this section to the process. This gives the

process access to the corresponding crypto instances.

Note: If a process calls the icp_sal_userStartMultiProcess("IPSec", CPA_TRUE) function,
the driver locates the next available section of the form IPSec_DEV<m>_INT<. > and gives the
process access to corresponding crypto instances (zero in this example, since LimitDevAccess=0 in
the IPSec section of the config file). When the process queries the number of crypto instances in this
case (using cpaCyGetNumInstances()), the number returned will be zero because this process was
assigned a section that was not configured with any instances using the config file.

5.6 Sample Configuration File (V2)

This following sample configuration file is provided in the software package.

###

@par

This file is provided under a dual BSD/GPLv2 license. When using or

redistributing this file, you may do so under either license.

GPL LICENSE SUMMARY

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.

This program is free software; you can redistribute it and/or

modify it under the terms of version 2 of the GNU General

Public

License as published by the Free Software Foundation.

This program is distributed in the hope that it will be

useful, but #WITHOUT ANY WARRANTY; without even the implied

warranty of #MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License

Acceleration Driver Configuration File

Programmer’s Guide 85

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-

1301 USA. The full GNU General Public License is included in this

distribution in the file called LICENSE.GPL.

Contact Information: Intel Corporation

BSD LICENSE

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.

All rights reserved.

Redistribution and use in source and binary forms, with or

without

modification, are permitted provided that the following

conditions

are met:

* Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of Intel Corporation nor the names of its

contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AN

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS

BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED

TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,

DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON

ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY

OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE

POSSIBILITY OF SUCH DAMAGE.

version: QAT1.5.L.1.10.0-65

###

General Section ##

[GENERAL]

ServicesEnabled = cy0;cy1;dc

Acceleration Driver Configuration File

86 Programmer’s Guide

Use version 2 of the config file ConfigVersion = 2

Look Aside Cryptographic Configuration cyHmacAuthMode = 1

Look Aside Compression Configuration dcTotalSRAMAvailable = 0

Firmware Location Configuration Firmware_MofPath = mof_firmware.bin

Firmware_MmpPath = mmp_firmware.bin

#Default values for number of concurrent requests*/

CyNumConcurrentSymRequests = 512

#The value CyNumConcurrentAsymRequests will do impact to memory

#consumption greatly. Below is some memory consumption data for #the

configuration per instance.

128: 10M

512: 40M

1024: 78M

4096: 280M

By default, 4 kernel instances and 4 user space instances, so if #

the value is set to be 4096, for pke, the memory consumption is: #

(4+4)*280=2240M

CyNumConcurrentAsymRequests = 128

DcNumConcurrentRequests = 512

#Statistics, valid values: 1,0 statsGeneral = 1

statsDc = 1

statsDh = 1

statsDrbg = 1

Enables or disables Single Root Complex IO Virtualization.

If this is enabled (1) then SRIOV and VT-d need to be enabled in

BIOS and there can be no Cy or Dc instances created in PF (Dom0).

If this i disabled (0) then SRIOV and VT-d need to be disabled

in BIOS and Cy and/or Dc instances can be used in PF (Dom0)

SRIOV_Enabled = 0

When using virtualisation PF_bundle_offset indicates the first

bundle

that will be used to allocate instances for the Host. This and

bundles

above it will be used until all instances in below sections are

allocated. Guests cannot share bundles with the Host so only

bundles

below and above this will be available to be assigned to VMs.

For instance if PF_bundle_offset = 5 and there are 3 instances

below each with different core affinities then instances in the

Host

will be allocated on bundles 5, 6 and 7 and bundles 0-4 and 8-31

Acceleration Driver Configuration File

Programmer’s Guide 87

will be available for VMs.

So if instances are needed on the Host, uncomment this and set it

so it doesn't clash with bundles assigned to VMs.

NOTE: bundle and 0 and 8 and used for admin messages and can not be

used for services via neither PF nor VF.

#PF_bundle_offset = 1

#Debug feature, if set to 1 it enables additional entries in /proc

filesystem ProcDebug = 1

Logical Instances Section

A logical instance allows each address domain

(kernel space and individual user space processes)

to configure rings (i.e. hardware assisted queues)

to be used by that address domain and to define the

behavior of that ring.

The address domains are in the following format # - For kernel

address domains

[KERNEL]

- For user process address domains

[xxxxx]

Where xxxxx may be any ascii value which uniquely identifies

the user mode process.

To allow the driver correctly configure the

logical instances associated with this user process,

the process must call the icp_sal_userStartMultiProcess(...)

passing the xxxxx string during process initialisation.

When the user space process is finished it must call

icp_sal_userStop(...) to free resources.

NumProcesses will indicate the maximum number of processes

that can call icp_sal_userStartMultiProcess on this instance.

Warning: the resources are preallocated: if NumProcesses

is too high, the driver will fail to load

Items configurable by a logical instance are:

- Name of the logical instance

- The accelerator associated with this logical instance

- The core the instance is affinitized to (optional) #

Note: Logical instances may not share the same ring, but may share

a

ring bank.

The format of the logical instances are:

- For crypto:

Acceleration Driver Configuration File

88 Programmer’s Guide

Cy<n>Name = "xxxx" Cy<n>AcceleratorNumber = 0-3

Cy<n>CoreAffinity = 0-7

- For Data Compression

Dc<n>Name = "xxxx"

Dc<n>AcceleratorNumber = 0-1

Dc<n>CoreAffinity = 0-7

Where:

- n is the number of this logical instance starting at 0.

- xxxx may be any ascii value which identifies the logical

instance.

Note: for user space processes, a list of values can be specified

for

the accelerator number and the core affinity: for example

Cy0AcceleratorNumber = 0,2

Cy0CoreAffinity = 0,2,4

These comma-separated lists will allow the multiple processes to

use

different accelerators and cores, and will wrap around the numbers

in the list. In the above example, process 0 will use accelerator

0,

and process 1 will use accelerator 2

Kernel Instances Section

[KERNEL]

NumberCyInstances = 4

NumberDcInstances = 2

Crypto - Kernel instance #0

Cy0Name = "IPSec0"

Cy0AcceleratorNumber = 0

Cy0IsPolled = 0

Cy0CoreAffinity = 0

Crypto - Kernel instance #1

Cy1Name = "IPSec1"

Cy1AcceleratorNumber = 1

Cy1IsPolled = 0

Cy1CoreAffinity = 1

Crypto - Kernel instance #2

Cy2Name = "IPSec2"

Cy2AcceleratorNumber = 2

Acceleration Driver Configuration File

Programmer’s Guide 89

Cy2IsPolled = 0

Cy2CoreAffinity = 2

Crypto - Kernel instance #3

Cy3Name = "IPSec3"

Cy3AcceleratorNumber = 3

Cy3IsPolled = 0

Cy3CoreAffinity = 3

Data Compression - Kernel instance #0 .

Dc0Name = "IPComp0"

Dc0AcceleratorNumber = 0

Dc0IsPolled = 0

Dc0CoreAffinity = 0

Data Compression - Kernel instance #1

Dc1Name = "IPComp1"

Dc1AcceleratorNumber = 1

Dc1IsPolled = 0

#Concurent request value can optionally be overwritten

#Dc1NumConcurrentRequests = 256

Dc1CoreAffinity = 1

User Process Instance Section

[SSL]

NumberCyInstances = 4

NumberDcInstances = 2

NumProcesses = 1

LimitDevAccess = 0

Crypto - User instance #0

Cy0Name = "SSL0"

Cy0IsPolled = 1

Cy0AcceleratorNumber = 0 #

List of core affinities

Cy0CoreAffinity = 0

Crypto - User instance #1

Cy1Name = "SSL1"

Cy1IsPolled = 1

Cy1AcceleratorNumber = 1

List of core affinities

Cy1CoreAffinity = 1

Crypto - User instance #2

Cy2Name = "SSL2"

Acceleration Driver Configuration File

90 Programmer’s Guide

Cy2IsPolled = 1

Cy2AcceleratorNumber = 2

List of core affinities

Cy2CoreAffinity = 2

Crypto - User instance #3

Cy3Name = "SSL3"

Cy3IsPolled = 1

Cy3AcceleratorNumber = 3

List of core affinities

Cy3CoreAffinity = 3

Data Compression - User space instance #0

Dc0Name = "UserDC0"

Dc0AcceleratorNumber = 0

Dc0IsPolled = 1

Dc0CoreAffinity = 0

Data Compression - User space instance #1

Dc1Name = "UserDC1"

Dc1AcceleratorNumber = 1

Dc1IsPolled = 1

Dc1CoreAffinity = 1

Wireless Process Instance Section

[WIRELESS]

NumberCyInstances = 1

NumberDcInstances = 0

NumProcesses = 0

Crypto - User instance #0

Cy0Name = "WIRELESS0"

Cy0IsPolled = 1

Cy0AcceleratorNumber = 0

List of core affinities

Cy0CoreAffinity = 0

5.7 Configuration File Version 2 Differences

Note: Both the configuration file Version 2 and Version 1 are supported by the acceleration driver.
The ConfigVersion parameter if present and set to 2 (ConfigVersion = 2) indicates that the new
configuration format will be used. Otherwise, the older format is used as before.

The following is a summary of the differences between the configuration file Version 2 and

Version 1 file format:

Acceleration Driver Configuration File

Programmer’s Guide 91

• Bank and ring numbers are no longer specified in the configuration file; they are dynamically

allocated.

• Core affinity can be specified for each instance. The driver will allocate a bank with that

affinity.

• The number of current requests (for symmetric cryptography , asymmetric cryptography

and data compression) are now specified in the General section of the configuration file, and

can be overwritten for each particular instance if needed. If they are not specified at all, a

default value is used by the driver.

• Accelerator number and execution engine parameters engine have been merged. The

interpretation now is that there are four accelerators as opposed to two accelerators with

two engines for each accelerator.

• Interrupt coalescing parameters are now in the General section (previously in the

Accelerator sections).

• In the User Space section, the new NumProcesses parameter allows that number of

processes to use that section. The core affinity for each of the processes is specified in a

comma separated list.

For example, if Cy0AcceleratorNumber=0,1,2,3, the first process uses accelerator 0, the

second uses accelerator 1, and so on. If there are more processes than list elements, it

loops back. For example, if there are 8 processes and the list only contains elements

0,1,2,3, the fourth process uses accelerator 0 again, the fifth process uses accelerator 1,

and so on. In order to use this functionality, the processes must be started with the

icp_sal_userStartMultiProcess function.

• The LimitDevAccess parameter has been added. This parameter indicates if the user

space processes in the section containing the LimitDevAccess parameter are limited to only

access instances on a specific device.

§

Secure Architecture Considerations

92 Programmer’s Guide

6 Secure Architecture Considerations

This chapter describes the potential threats identified as part of the secure architecture

analysis of the Acceleration Complex within the Intel® Communications Chipset 8900 to 8920

Series (PCH) and the actions that can be taken to protect against these threats. This chapter

concentrates on the Acceleration Complex. There are no additional security considerations

related to other major components within the PCH, including the GbE component (based on

the Intel® 82580 Gigabit Ethernet Controller), and the I/O component (based on the Intel®

P55 Express Chipset).

First, the terminology covering the main threat categories and mechanisms, attacker privilege

and deployment models are presented. Then, some common mitigation actions that can be

applied to many of these threat categories and mechanisms are discussed. Finally, more

specific threat/attack vectors, including attacks against specific services of the PCH device

are described.

6.1 Terminology

Each of the potential threat/attack vectors discussed may be described in terms of the

following:

• Threat Categories

• Attack Mechanism

• Attacker Privilege

• Deployment Models

6.1.1 Threat Categories

System threats can be classified into the categories in the following table.

Table 10. System Threat Categories

Category Nature of Threat and Examples

Exposure of Data • Attacker reads data to which they should not have read access

• Attacker reads cryptographic keys

Modification of Data • Attacker overwrites data to which they should not have write access

• Attacker overwrites cryptographic keys

Denial of Service • Attacker causes application or driver software (running on an IA core) to crash

• Attacker causes Intel® QuickAssist Accelerator firmware to crash

Secure Architecture Considerations

Programmer’s Guide 93

Category Nature of Threat and Examples

• Attacker causes excessive use of resource (IA core, Intel® QuickAssist

Accelerator firmware thread, silicon slice, PCIe* bandwidth, and so on), thereby

reducing availability of the service to legitimate clients.

6.1.2 Attack Mechanism

Some of the mechanisms by which an attacker can carry out an attack are listed in the following

table.

Table 11. Attack Mechanisms and Examples

Mechanism Examples

Contrived packet stream Attacker crafts a packet stream that exploits known vulnerabilities in the

software, firmware or hardware. This could include vulnerabilities such
as buffer overflow bugs, lack of parameter validation, and so on.

Compromised application

software

Attacker modifies the application code calling the Intel® QuickAssist

Technology API to exploit known vulnerabilities in the driver/hardware.

Application Malware In an environment where an attacker may be able to run their own

application, separate from the main application software, they may
invoke the Intel® QuickAssist Technology API to exploit known
vulnerabilities in the driver/hardware.

Compromised IA driver

software

Attacker modifies the IA driver to exploit known vulnerabilities in the

driver/hardware.

Compromised Intel®

QuickAssist Technology
firmware

Attacker modifies the Intel® QuickAssist Technology firmware to exploit

vulnerabilities in the hardware.

Compromised public key

firmware

Note: For a description of this
public key firmware, and how it
differs from the Intel®

QuickAssist Technology
firmware, see Crypto Service
Threats - Modification of Public

Key FW

Attacker modifies the public key firmware to exploit vulnerabilities in the

hardware.

Defect It is also possible that the attack is not malicious, but rather an

unintentional defect.

6.1.3 Attacker Privilege

The following table describes the privileges that an attacker may have. The table describes the

case of a non-virtualized system.

https://intel-my.sharepoint.com/personal/gayatrix_takalkar_intel_com/Documents/Desktop/Dec%202021/1328/Comms_8900_8920_SW_PG_Rev_006-unlocked.docx#_bookmark147
https://intel-my.sharepoint.com/personal/gayatrix_takalkar_intel_com/Documents/Desktop/Dec%202021/1328/Comms_8900_8920_SW_PG_Rev_006-unlocked.docx#_bookmark147
https://intel-my.sharepoint.com/personal/gayatrix_takalkar_intel_com/Documents/Desktop/Dec%202021/1328/Comms_8900_8920_SW_PG_Rev_006-unlocked.docx#_bookmark147
https://intel-my.sharepoint.com/personal/gayatrix_takalkar_intel_com/Documents/Desktop/Dec%202021/1328/Comms_8900_8920_SW_PG_Rev_006-unlocked.docx#_bookmark147

Secure Architecture Considerations

94 Programmer’s Guide

Table 12. Attacker Privilege

Privilege Comments

Physical access There is no attempt to protect against threats, such as signal probes, where

the attacker has physical access to the system. Customers can protect their
systems using physical locks, tamper-proof enclosures, Faraday cages, and so
on.

Logged in as privileged

user

There is no attempt to protect against threats where the attacker is logged in

as a privileged user. Customers can protect their systems using strong,

frequently-changed passwords, and so on.

Logged in as unprivileged

user

If the attacker is logged into a platform as an unprivileged user, it is important

to ensure that they cannot use the services of the PCH to access (read or

write) any data to which they would not otherwise have access.

Ability to send packets In almost all deployments, attackers have the ability to send arbitrary packets

from the network (either on LAN or WAN) into the system. It is assumed that
threats (for example, contrived packet streams to exploit known

vulnerabilities) may arrive in this way.

6.1.4 Deployment Models

Some of the possible deployment models are given in the following table.
Table 13. Deployment Models

Deployment Model Examples

System with no untrusted users • Network security appliance

• Server in data center

System with potentially untrusted

users
• Server in data center

6.2 Threat/Attack Vectors

A thorough analysis has been conducted by considering each of the threat categories, attack

mechanisms, attacker privilege levels, and deployment models. As a result, the following

threats have been identified. Also described are the steps a user of the PCH chipset can take to

mitigate against each threat.

Some general practices that mitigate many of the common threats are considered first.

Thereafter, threats on specific services (such as cryptography, data compression) and

mitigation against those threats are described.

6.2.1 General Mitigation

The following mitigation techniques are generic to a number of different threat and attack

vectors:

• Intel® follows Secure Coding guidelines, including performing code reviews and running

static analysis on its driver software and firmware, to ensure its compliance with security

Secure Architecture Considerations

Programmer’s Guide 95

guidelines. It is recommended that customers follow similar guidelines when developing

application code. This should include the use of tools such as static analysis, fuzzing, and so

on.

• Ensure each module (including the PCH chipset, processor, and DRAM) is physically

secured from attackers. This can include such examples as physical locks, tamper proofing,

and Faraday cages (to prevent side-channel attacks via electromagnetic radiation).

• Ensure that network services not required on the module are not operating and that the

corresponding network ports are locked down.

• Use strong passwords to protect against dictionary and other attacks on administrative and

other login accounts.

6.2.2 General Threats

General threats include the following:

• DMA

• Intentional Modification of IA Driver

• Modification of Intel® QuickAssist Accelerator Firmware

• Modification of the PCH Configuration File

• Malicious Application Code

• Contrived Packet Stream

6.2.2.1 DMA

Threat: The PCH can perform Direct Memory Access (DMA, the copying of data) between

arbitrary memory locations, without any of the processor's normal memory protection

mechanisms. Once an attacker has sufficient privilege to invoke the Intel® QuickAssist

Technology API, or to write to/read from the hardware rings used by the driver to

communicate with the device, they can send requests to the Intel® QuickAssist Accelerator to

perform such DMA, passing arbitrary physical memory addresses as the source and/or

destination addresses, thereby reading from and/or writing to regions of memory to which

they would otherwise not have access.

Mitigation: Ensure that only trusted users are granted permissions to access the Intel®

QuickAssist Technology API, or to write to and read from the hardware rings. Specifically, the

PCH configuration file describes logical instances of acceleration services and the set of

hardware rings to be used for each such instance. User processes can ask the kernel driver to

map these rings into their address spaces. To access a given device (identified by the number

<N> in the filenames below), the user must be granted read/write access to the following files,

which may be in /dev or /dev/icp_mux:

• icp_dev<N>_csr

• icp_dev<N>_ring

• icp_dev_mem

• icp_dev_mem_page

Secure Architecture Considerations

96 Programmer’s Guide

• icp_dev_processes

The recommendation is that these files have the following permissions by default2:

ls -l /dev/icp_dev0_ring

crw-------. 1 root root 249, 0 Jan 17 16:01 /dev/icp_dev0_ring

To grant permission to a given user to use the API, that user should be given membership of a

group, e.g., group “adm”, and the group ownership and permissions should be changed to the

following:

ls -l /dev/icp_dev0_ring

crw-rw----. 1 root adm 249, 0 Jan 17 16:02 /dev/icp_dev0_ring

Such permissions and group membership should only be provided to trusted users. Such user

accounts should be protected with strong passwords.

6.2.2.2 Intentional Modification of IA Driver

Threat: An attacker can potentially modify the IA driver to behave maliciously.

Mitigation: The driver object/executable file on disk should be protected using the normal file

protection mechanisms so that it is writable only by trusted users, for example, a privileged

user or an administrator.

6.2.2.3 Modification of Intel® QuickAssist Accelerator Firmware

Threat: An attacker can potentially modify the Intel® QuickAssist Accelerator firmware to

behave maliciously. The attacker can then attempt to overwrite the firmware image on disk (so

that it gets downloaded on future reboots) or to download the malicious firmware image after

the original image has been downloaded, thereby overwriting it.

Mitigation: The firmware image on disk should be protected using normal file protection

mechanisms so that it is writable only by trusted users, for example, a privileged user or an

administrator.

The implementation of the API for downloading firmware to the Intel® QuickAssist

Accelerator requires access to a special administrative hardware ring. See the mitigation for

the DMA threat to limit access to this ring.

6.2.2.4 Modification of the PCH Configuration File

Threat: The PCH configuration file is read at initialization time by the driver and specifies what

instances of each service (cryptographic, data compression) should be created, and which

rings each service instance will use. Modifying this file could lead to denial of service (by

deleting required instances) or could be used to attempt to create additional instances that the

attacker could subsequently attempt to access for malicious purposes.

Mitigation: The configuration file should be protected using the normal file protection

mechanisms so that it is writable only by trusted users, for example, a privileged user or an

administrator.

2 Permissions shown only for one file, but these apply to all files listed.

Secure Architecture Considerations

Programmer’s Guide 97

Note: By default, the configuration file is stored in the /etc directory and may be named something
like, dh89xxcc_qa_dev0.conf. Its default permissions are that it is readable and writeable only by
root.

6.2.2.5 Malicious Application Code

Threat: An attacker who can gain access to the Intel® QuickAssist Technology API may be able

to exploit the following features of the API:

• Simply sending requests to the accelerator at a high rate reduces the availability of the

service to legitimate users.

• Buffers passed to the API have a specified length of up to 32 bits. By specifying excessive

lengths, an attacker may be able to cause denial of service by overwriting data beyond the

end of a buffer.

• Buffer lists passed to the API consist of a scatter gather list (array of buffers). An attacker

may incorrectly specify the number of buffers, causing denial of service due to the reading

or writing of incorrect buffers.

Mitigation: Only trusted users should be allowed to access the Intel® QuickAssist Technology

API, as described as part of the Mitigation threat for the DMA .

6.2.2.6 Contrived Packet Stream

Threat: An attacker may attempt to contrive a packet stream that monopolizes the

acceleration services, thereby denying service to legitimate users. This may consist of one or

more of the following:

• Sending packets that are compressed (for example, using IPComp) or encrypted (for

example, using IPsec), thereby reducing the availability of these services to legitimate

traffic.

• Sending excessively large packets, causing some latency for legitimate packets.

• Sending small packets at a high packet rate, causing extra bandwidth utilization on the PCI

Express* bus connecting the device to the processor.

Mitigation: Depending on the deployment scenario, it is usually not possible to prevent such

attempts at denial of service. The system should be designed to cope with the worst case in

terms of throughput and latency at all packet sizes.

6.2.3 Threats Against the Cryptographic Service

Threats against the cryptographic service include:

• Reading and Writing of Cryptographic Keys

• Modification of Public Key Firmware

• Failure of the Entropy Source for the Random Number Generator

• Interference Among Users of the Random Number Service

Secure Architecture Considerations

98 Programmer’s Guide

6.2.3.1 Reading and Writing of Cryptographic Keys

Threat: Cryptographic keys are stored in DRAM. An attacker who can determine where these

are stored could read the DRAM to get access to the keys, or could write the DRAM to use keys

known by the attacker, thereby compromising the confidentiality of data protected by these

keys.

Mitigation: DRAM is considered to be inside the cryptographic boundary (as defined by FIPS

140-2). The normal memory protection schemes provided by the Intel® architecture processor

and memory controller, and by the operating system, prevent unauthorized access to these

memory regions.

6.2.3.2 Modification of Public Key Firmware

Background: In addition to the Intel® QuickAssist Accelerator firmware which is downloaded

to the Acceleration Complex within the PCH by the driver at initialization time, there is a library

of small public key firmware routines, one of which is downloaded to the device along with each

request to perform a public key cryptographic primitive, such as an RSA sign operation. This

public key firmware is part of the driver image (on disk) and is stored in DRAM at run-time so

that it can be downloaded to the device when required.

Threat: An attacker can potentially modify the public key firmware to behave maliciously. For

this to be useful, they must overwrite the firmware image on disk (so that it gets read into

DRAM at initialization time on future reboots) or in DRAM (so that it gets downloaded with

future PKE requests).

Mitigation: The public key firmware image on disk should be protected using normal file

protection mechanisms so that it is writable only by trusted users, for example, a privileged

user or an administrator. The public key firmware image in DRAM is accessible only to the

process/context in which it is executing and sending the image to the Intel® QuickAssist

Accelerator requires permission to use the API and write to the corresponding hardware ring.

See the mitigation for the DMA threat to limit access to such rings.

6.2.3.3 Failure of the Entropy Source for the Random Number Generator

Threat: The PCH has a non-deterministic random bit generator (NRBG, aka True Random

Number Generator or TRNG) implemented in silicon that can be used as an entropy source for

a deterministic random bit generator (DRBG, aka Pseudo Random Number Generator or

PRNG). A failure of the entropy source can lead to poor quality random numbers, which can

compromise the security of the system.

Mitigation: The NRBG has a built-in self-test that detects repeated sequences of bits. A failure

of the entropy source is indicated to the application/user via calls to the API. It is the

responsibility of the application to decide whether and when to fail the module as a result of a

failed entropy source.

6.2.3.4 Interference Among Users of the Random Number Service

Threat: The original API for random number generation (in cpa_cy_rand.h file, as delivered

as part of an earlier generation of the Intel® QuickAssist Accelerator) had a single instance of

the DRBG that was shared by all users. An attacker with appropriate permissions to access the

Secure Architecture Considerations

Programmer’s Guide 99

DRBG service in one process/address space could re-seed the DRBG and thereby modify the

subsequent outputs of the DRBG in other processes or contexts.

Mitigation: The API has been updated for the current generation. The updated API

(cpa_cy_drbg.h) supports a FIPS-compliant DRBG API with multiple instances. Re- seeding

one such instance does not interfere with the output of another instance. The original API has

been deprecated. Applications should use the new API.

6.2.4 Data Compression Service Threats

Threats against the Data Compression service include:

• Read/Write of Save/Restore Context

• Stateful Behavior

• Incomplete or Malformed Huffman Tree

• Contrived Packet Stream

6.2.4.1 Read/Write of Save/Restore Context

Threat: The save/restore context is stored in DRAM. An attacker may attempt to read this

memory to determine information about the packet stream. An attacker may also overwrite

this context, affecting the result of the compression/decompression.

Mitigation: DRAM is considered to be inside the cryptographic boundary (as defined by FIPS

140-2). The normal memory protection schemes provided by the Intel® architecture processor

and memory controller, and by the operating system, prevent unauthorized access to these

memory regions.

6.2.4.2 Stateful Behavior

Threat: The combination of stateful behavior and requests to compress/decompress small

regions of memory can lead to reduced significant overhead, and could potentially be exploited

as part of a denial of service attack. This is because stateful contexts requires that the service

restore and save the session state for each request. The session state includes history data and

can be significantly larger than the packet, especially for small packets.

Mitigation: To minimize this overhead, the application can use stateless sessions.

6.2.4.3 Incomplete or Malformed Huffman Tree

Threat: An attacker who can run malicious code on the platform (see Malicious Application

Code) can deny service (reduce performance) by sending in a rogue request with an

incomplete or malformed Huffman tree. A transmission error may also lead to this situation

occurring.

Mitigation: See the mitigation proposed in Malicious Application Code. Furthermore, the slice

detects such incomplete or malformed Huffman trees and returns an error.

Secure Architecture Considerations

100 Programmer’s Guide

6.2.4.4 Contrived Packet Stream

Threat: Similar to the general attack mechanism described in Contrived Packet Stream, there

are some aspects that are specific to the data compression service:

• An attacker can craft a compressed packet stream with a very large compression ratio (for

example, 1000:1). Generating an output buffer that is significantly larger than the input

buffer may reduce availability of the service to legitimate clients.

• An attacker can craft a packet stream with a large number of zero-length deflate blocks. This

causes the slice to consume input but produce no output.

Mitigation: The output is limited to the size of output buffer. Buffer exhaustion detection is

built into the hardware. Therefore, the application developer should allocate output buffers

based on the largest compression ratio that they wish to deal with, as required by the

application or protocol, and then handle errors reported by the API.

§

Supported APIs

Programmer’s Guide 101

7 Supported APIs

The supported APIs are described in two categories:

• Intel® QuickAssist Technology APIs

• Additional APIs

7.1 Intel® QuickAssist Technology APIs

The platforms described in this manual supports the following Intel® QuickAssist Technology

API libraries:

• Cryptographic - API definitions are located in: $ICP_ROOT/quickassist/ include/lac,

where $ICP_ROOT is the directory where the Acceleration software is unpacked. See the

Intel® QuickAssist Technology Cryptographic API Reference Manual for details.

• Data Compression - API definitions are located in: $ICP_ROOT/quickassist/

include/dc. See the Intel® QuickAssist Technology Data Compression API Reference

Manual for details.

Base API definitions that are common to the API libraries are located in: $ICP_ROOT/

quickassist/include. See also the Intel® QuickAssist Technology API Programmer’s

Guide for guidelines and examples that demonstrate how to use the APIs.

7.1.1 Intel® QuickAssist Technology API Limitations

The following limitations apply when using the Intel® QuickAssist Technology APIs on the

platforms described in this manual:

• For all services, the maximum size of a single perform request is 4 GB.

• For all services, data structures that contain data required by the Intel® QuickAssist

Accelerator should be on a 64 Byte-aligned address to maximize performance. This

alignment helps minimize latency when transferring data from DRAM to an accelerator

integrated in the PCH device.

• For the key generation cryptographic API, the following limitations apply:

− Secure Sockets Layer (SSL) key generation opdata:

− Maximum secret length is 512 bytes

− Maximum userLabel length is 136 bytes

− Maximum generatedKeyLenInBytes is 248

− Transport Layer Security (TLS) key generation opdata:

− Secret length must be <128 bytes for TLS v1.0/1.1; <512 bytes for TLS v1.2

− userLabel length must be <256 bytes

− Maximum seed size is 64 bytes

− Maximum generatedKeyLenInBytes is 248 bytes

− Mask Generation Function (MGF) opdata:

− Maximum seed length is 255 bytes

− Maximum maskLenInBytes is 65528

Supported APIs

102 Programmer’s Guide

• For the cryptographic service, SNOW 3G and KASUMI operations are not supported when

CpaCySymPacketType is set to CPA_CY_SYM_PACKET_TYPE_PARTIAL. The error

returned in this case is CPA_STATUS_INVALID_PARAM.

• For the cryptographic service, when using the Deterministic Random Bit Generator

(DRBG), only one in-flight request per each instantiated DRBG (that is, per each DRBG

session) is allowed. If the user calls the cpaCyDrbgGen or cpaCyDrbgReseed function with

the session handle of a session for which a previous request is still being processed,

CPA_STATUS_RETRY is returned.

• For the cryptographic service, when using DRBG with a derivation function, the maximum

security strength with which the DRBG can be instantiated is

CPA_CY_RBG_SEC_STRENGTH_128. In such a case, if the user tries to instantiate DRBG

with a higher security strength, the CPA_STATUS_INVALID_PARAM is returned.

• For the cryptographic service, when using DRBG, the requirement for the use of the

derivation function (DF) is not expected to change once DRBG is instantiated.

• For the cryptographic service, when using the asymmetric crypto APIs, the buffer size

passed to the API should be rounded to the next power of 2, or the next 3- times a power of

2, for optimum performance.

• For the data compression service, only one outstanding compression request per stateful

session is allowed.

• For the data compression service, the size of all stateful decompression requests have to be

a multiple of two with the exception of the last request.

• For the data compression service, the CpaDcFileType field in the

CpaDcSessionSetupData data structure is ignored (previously this was considered for

semi-dynamic compression/decompression).

• For static compression, the maximum expansion during compression is ceiling

(9*Total_Input_Byte/8)+7 bytes. If

CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS or

CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS is selected, the

maximum expansion during compression is the input buffer size plus up to ceiling

(Total_Input_Byte/65535) * 5 bytes, depending on whether the stored headers are

selected. Note, however, due to the need for a skid pad and the way the checksum is

calculated in the stored block case to prevent compression overflow, an output buffer size

of ceiling (9*Total_Input_Byte/8) + 55 bytes needs to be supplied (even though the stored

block output size might be less).

• The decompression service can report various error conditions most of which arise from

processing dynamic Huffman code trees that are ill-formed. These soft error conditions are

reported at the Intel® QuickAssist Technology API using the CpaDcReqStatus

enumeration. At the point of soft error, the hardware state will not be accurate to allow

recovery. Therefore, in this case, the Intel® QuickAssist Technology software rolls back to

the previous known good state and reports that no input has been processed and no output

produced. This allows an application to correct the source of the error and resubmit the

request.

For example, if the following source and destination buffers were submitted to the Intel®

QuickAssist Technology:

Supported APIs

Programmer’s Guide 103

The result would be:

• For stateful compression, the maximum output size is 4 GB. Stateful compression requests

that would generate an output size greater than 4.29 GB (232 bytes) will fail without an

error.

• For stateful decompression, the maximum output size is 4.29 GB (232 bytes).

7.1.1.1 Resubmitting After Getting an Overflow Error

The following table describes the behavior of the Intel® QuickAssist Technology compression

service when an overflow occurs during a compress or decompress operation.

Table 14. Compression/Decompression Overflow Behavior

Stateful/
Stateless

Static/ Dynamic Overflow Input data
consumed?

Valid data in
output buffer?

Status Returned

Stateful (see

details below)
Both Yes Possibly Possibly -11

Stateless (see

details below)
Both Yes No No -11

The following describes the expected behavior of an application when an overflow occurs.

Stateful

The produced and consumed values must be used to determine where the next request starts.

Internally, the session stores the cumulativeConsumedBytes and corresponding cumulative

checksum based on these values and so expects the next request to continue after the valid

data.

Procedure

Save the output data from the Destination buffer based on cpaDcRqResults.produced.

Submit the next request with the following data:

Supported APIs

104 Programmer’s Guide

• The first "cpaDcRqResults.consumed" bytes in the Source buffer have already been

compressed, so rework the Source bufferList to start at the byte after this. Consumed = zero

is a valid case; in this case, the full Source buffer must be resubmitted.

• The same Destination buffer can be re-used. It may now be big enough if part of the source

data has been consumed already. Or increase if preferred.

• The results buffer can be re-used without change. In the Stateful case, the driver ignores

everything in it and overwrites it on each API call.

Stateless

In the Stateless case, the entire compression request must be resubmitted with a larger output

buffer. In this case, cpaDcRqResults.consumed, .produced

and .checksum should be ignored. If length and checksum are required, these are not

maintained in the session, and the responsibility to track these is passed up to the application.

Procedure

Resubmit the request with the following data:

• Use the same Source buffer.

• Allocate a bigger Destination buffer.

• Put the checksum from the previous successful request into the cpaDcRqResults struct.

7.1.1.2 Dynamic Compression for Data Compression Service

Dynamic compression involves feeding the data produced by the compression hardware block

to the translator hardware block. The following figure shows the dynamic compression data

path.

Figure 22. Dynamic Compression Data Path

When the compression service returns an exception (e.g., overflow error) to the user, it is

recommended to examine the bytes consumed and returned in the CpaDcRqResults

structure to verify if all the data in the source data buffer has been processed.

When the application selects the Huffman type to CPA_DC_HT_FULL_DYNAMIC in the session

and auto select best feature is set to CPA_DC_ASB_DISABLED, the compression service may

not always produce a deflate stream with dynamic Huffman trees. For example, in the case of

an overflow during dynamic compression, static data will be returned in the destination buffer.

Supported APIs

Programmer’s Guide 105

7.1.1.3 Maximal Expansion with Auto Select Best Feature for Data Compression
Service

Some input data may lead to a lower than expected compression ratio. This is because the

input data may not be very compressible. To achieve a maximum compression ratio, the

acceleration unit provides an auto select best (ASB) feature. In this mode, the Intel®

QuickAssist Technology hardware will first execute static compression followed by dynamic

compression and then select the output which yields the best compression ratio. To use the

ASB feature, configure the autoSelectBestHuffmanTree enum during the session creation.

Regardless of the ASB setting selected, dynamic compression will only be attempted if the

session is configured for dynamic compression.

There are four possible settings available for the autoSelectBestHuffmanTree when

creating a session. Based on the ASB settings described below, the produced data returned in

the CpaDcRqResults structure will vary:

• CPA_DC_ASB_DISABLED - ASB mode is disabled.

• CPA_DC_ASB_STATIC_DYNAMIC

Both dynamic and static compression operations are performed. The size of produced data

returned in the CpaDcRqResults structure will be the minimal value of the two operations.

Produced data in bytes = Min (Static, Dynamic)

• CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS

Both a dynamic and a static compression operation are performed. However, if the produced

data both for the dynamic and static operations return a greater value than the uncompressed

source data and source block headers, the source data will be used as a stored block. With this

ASB setting, a 5-byte stored block header is prepended to the stored block.

The worst-case produced data can be estimated to:

Produced data in bytes = Total input bytes + ceil (Total input bytes

/ 65535) * 5

e.g., for an input source size of 111261 bytes, the worst-case produced data will be:

Produced data = 111261 + ceil (111261 / 65535) * 5

= 111261 + ceil (1.698) * 5

= 111261 + 2 * 5

Produced data = 111271 bytes

• CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_NO_HDRS

With this ASB setting, both a dynamic and a static compression operation are performed.

However, if the produced data both for the dynamic and static operation return a greater value

than the uncompressed source data, the uncompressed source data will be sent to the

destination buffer though DMA transfer. This is the same behavior as with the ASB setting

CPA_DC_ASB_UNCOMP_STATIC_DYNAMIC_WITH_STORED_HDRS except the stored block

deflate headers are not prepended to the stored block. The produced data can be estimated

via the following:

Supported APIs

106 Programmer’s Guide

Produced data in bytes = Min(Static, Dynamic, Uncompressed)

7.1.1.4 Maximal Expansion and Destination Buffer Size

For static compression operations, the worst-case possible expansion can be expressed as:

Max Static Produced data in bytes = ceil(9 * Total input bytes / 8) +

7

The memory requirement for the destination buffer is expressed by the following formula:

Destination buffer size in bytes = ceil(9 * Total input bytes / 8) +

55 bytes

The destination buffer size must consider the worst-case possible maximal expansion + 55

bytes; e.g., for an input source size of 111261 bytes, the worst-case produced data will be:

Static Produced data = ceil(9 * 111261 / 8) + 7

= ceil (125168.625) + 7

= 125169 + 7

Worst case Static Produced data = 125176 bytes

Memory required for destination buffer = ceil(9 * 111261 / 8) + 55

= ceil (125168.625) + 55

= 125169 + 7

= 125169 + 55

= 125224 bytes to be allocated

Note: Regardless of the ASB settings, the memory must be allocated for the worst case. If an
overflow occurs, either from static or dynamic compression, then the returned counters, status, and
expected application behavior is as shown per the table in Resubmitting After Getting an Overflow
Error.

7.1.2 Data Plane APIs Overview

The Intel® QuickAssist Technology Cryptographic API Reference Manual and the Intel®

QuickAssist Technology Data Compression API Reference Manual mentioned previously

contain information on the APIs that are specific to data plane applications.

These APIs are intended for use in user space applications that take advantage of the

functionality provided of the Intel® Data Plane Development Kit (Intel® DPDK). The APIs are

recommended for applications that are executing in a data plane environment where the cost

of offload (that is, the cycles consumed by the driver sending requests to the hardware) needs

to be minimized. To minimize the cost of offload, several constraints have been placed on the

APIs. If these constraints are too restrictive for your application, the traditional APIs can be

used instead (at a cost of additional IA cycles).

The definition of the Cryptographic Data Plane APIs are contained in:

$ICP_ROOT/quickassist/include/lac/cpa_cy_sym_dp.h

The definition of the Data Compression Data Plane APIs are contained in:

$ICP_ROOT/quickassist/include/dc/cpa_dc_dp.h

Supported APIs

Programmer’s Guide 107

7.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs

From an IA cycle count perspective, the Data Plane APIs are more performant than the

traditional APIs (that is, for example, the symmetric cryptographic APIs defined in

$ICP_ROOT/quickassist/include/lac/cpa_cy_sym.h). The majority of the cycle count

reduction is realized by the reduction of supported functionality in the Data Plane APIs and the

application of constraints on the calling application (see Usage Constraints on the Data Plane

APIs).

In addition, to further improve performance, the Data Plane APIs attempt to amortize the cost

of a Memory Mapped IO (MMIO) access when sending requests to, and receiving responses

from, the hardware.

A typical usage is to call the cpaCySymDpEnqueueOp() or the cpaDcDpEnqueueOp() function

multiple times with requests to process and the performOpNow flag set to CPA_FALSE. Once

multiple requests have been enqueued, the cpaCySymDpEnqueueOp() or

cpaDcDpEnqueueOp() function may be called with the performOpNow flag set to CPA_TRUE.

This sends the requests to the Intel® QuickAssist Accelerator for processing. This sequence is

shown in the following figure.

Supported APIs

108 Programmer’s Guide

Figure 23. Amortizing the Cost of an MMIO Across Multiple Requests

The Intel® QuickAssist Technology API returns a CPA_STATUS_RETRY when the ring

becomes full.

The number of requests to place on the ring is application dependent and it is recommended

that performance testing be conducted with tunable parameter values.

Two functions, cpaCySymDpPerformOpNow() and cpaDCDpPerformOpNow() are also

provided that allow queued requests to be sent to the hardware without the need for queuing

an additional request. This is typically used in the scenario where a request has not been

received for some time and the application would like the enqueued requests to be sent to the

hardware for processing.

Supported APIs

Programmer’s Guide 109

7.1.2.2 Usage Constraints on the Data Plane APIs

The following constraints apply to the use of the Data Plane APIs. If the application can handle

these constraints, the Data Plane APIs can be used:

• Thread safety is not supported. Each software thread should have access to its own unique

instance (CpaInstanceHandle) to avoid contention on the hardware rings.

• For performance, polling is supported, as opposed to interrupts (which are comparatively

more expensive). Polling functions (see Polling Functions) are provided to read responses

from the hardware response queue and dispatch callback functions.

• Buffers and buffer lists are passed using physical addresses to avoid virtual-to- physical

address translation costs.

• Alignment restrictions are placed on the operation data (that is, the CpaCySymDpOpData

structure) passed to the Data Plane API. The operation data must be at least 8-byte aligned,

contiguous, resident, DMA-accessible memory.

• Only asynchronous invocation is supported, that is, synchronous invocation is not

supported.

• There is no support for cryptographic partial packets. If support for partial packets is

required, the traditional Intel® QuickAssist Technology APIs should be used.

• Since thread safety is not supported, statistic counters on the Data Plane APIs are not

atomic.

• The default instance (CPA_INSTANCE_HANDLE_SINGLE) is not supported by the Data Plane

APIs. The specific handle should be obtained using the instance discovery functions

(cpaCyGetNumInstances(), cpaCyGetInstances(), and cpaDcGetNumInstances(),

cpaDcGetInstances()).

• The submitted requests are always placed on the high-priority ring.

7.1.2.3 Cryptographic and Data Compression API Descriptions

Full descriptions of the Intel® QuickAssist Technology APIs are contained in the Intel®

QuickAssist Technology Cryptographic API Reference Manual and the Intel® QuickAssist

Technology Data Compression API Reference Manual. In addition to the Intel® QuickAssist

Technology Data Plane APIs, there are a number of Data Plane Polling APIs that are described

in Polling Functions.

7.2 Additional APIs

There are a number of additional APIs that can serve for optimization and other uses outside of

the Intel® QuickAssist Technology services.

These APIs are grouped into the following categories:

• Dynamic Instance Allocation Functions

• IOMMU Remapping Functions

• Polling Functions

Supported APIs

110 Programmer’s Guide

• Random Number Generation Functions

• User Space Access Configuration Functions

• User Space Heartbeat Functions

• Version Information Function

• Reset Device Function

• Thread-less APIs

7.2.1 Dynamic Instance Allocation Functions

These functions are intended for the dynamic allocation of instances in user space. The user

can use these functions to allocate/free instances defined in the [DYN] section of the

configuration file.

These functions are useful if the user needs to dynamically allocate/free cryptographic (cy) or

data compression (dc) instances at runtime. This is in contrast to statically specifying the

number of cy or dc instances at configuration time, where the number of instances cannot be

changed unless the user modifies the .conf file and restarts the acceleration service.

The advantage of using these functions is that the number of cy/dc instances can be changed

on-demand at runtime. The disadvantage is that runtime performance is impacted if the

number of cy/dc instances is changed frequently.

If the user space application knows the number of instances to be used before starting, then

the user can define Number<Service>Instances in the [User Process] section of the *.conf file.

If the user space application can only know the number of instances at runtime, or wants to

change the number at runtime, then the user can call the Dynamic Instance Allocation

functions to allocate/free instances dynamically. The Number<Service>Instances in the

[DYN] section of the .conf file(s) defines the maximum number of instances that can be

allocated by user processes.

This can be useful when sharing instances among multiple applications at runtime. The

maximum number of instances in a system is known in advance and it is possible to distribute

them statically between applications using the configuration files. Once the driver is started,

however, this cannot be changed. If, for example, there are 32 cy instances and we need to

provision 16 processes, we can statically assign two cy instances per process. This can be a

problem when a process needs more instances at any given time. With dynamic instance

allocation, we can create a pool of instances that can be "shared" between the processes.

Continuing the example above with 32 cy instances and 16 processes, we can assign statically

one cy instance to each process and create a pool of 16 [DYN] instances from the remainder. If

at runtime one process needs more acceleration power, it can allocate some more instances

from the pool, say, for example, eight, use them as appropriate and free them back to the pool

when the work has been completed.

Thereafter, other processes can use these instances as needed.

All dynamic instance allocation function definitions are located in: $ICP_ROOT/
quickassist/lookaside/access_layer/include/icp_sal_user.h

Supported APIs

Programmer’s Guide 111

The dynamic instance allocation functions include:

• icp_sal_userCyGetAvailableNumDynInstances

• icp_sal_userDcGetAvailableNumDynInstances

• icp_sal_userCyInstancesAlloc

• icp_sal_userDcInstancesAlloc

• icp_sal_userCyFreeInstances

• icp_sal_userDcFreeInstances

• icp_sal_userCyGetAvailableNumDynInstancesByDevPkg

• icp_sal_userDcGetAvailableNumDynInstancesByDevPkg

• icp_sal_userCyInstancesAllocByDevPkg

• icp_sal_userDcInstancesAllocByDevPkg

• icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel

7.2.1.1 icp_sal_userCyGetAvailableNumDynInstances

Get the number of cryptographic instances that can be dynamically allocated using the

icp_sal_userCyInstancesAlloc function.

7.2.1.1.1 Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynInstances (Cpa32U

*pNumCyInstances);

7.2.1.1.2 Parameters

*pNumCyInstances A pointer to the number of cryptographic instances available for

dynamic allocation.

7.2.1.1.3 Return Value

The icp_sal_userCyInstancesAlloc function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances

available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.2 icp_sal_userDcGetAvailableNumDynInstances

Get the number of data compression instances that can be dynamically allocated using the

icp_sal_userDcInstancesAlloc function.

Supported APIs

112 Programmer’s Guide

7.2.1.2.1 Syntax

CpaStatus icp_sal_userDcGetAvailableNumDynInstances (Cpa32U

*pNumDcInstances);

7.2.1.2.2 Parameters

*pNumDcInstances A pointer to the number of data compression instances available for

dynamic allocation.

7.2.1.2.3 Return Value

The icp_sal_userDcGetAvailableNumDynInstances function returns one of the following

codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances

available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.3 icp_sal_userCyInstancesAlloc

Allocate the specified number of cryptographic (cy) instances from the amount specified in

the [DYN] section of the configuration file. The numCyInstances parameter specifies the

number of cy instances to allocate and must be less than or equal to the value of the

NumberCyInstances parameter in the [DYN] section of the configuration file.

7.2.1.3.1 Syntax

CpaStatus icp_sal_userCyInstancesAlloc (Cpa32U numCyInstances,

CpaInstanceHandle *pCyInstances);

7.2.1.3.2 Parameters

numCyInstances The number of cy instances to allocate.

*pCyInstances A pointer to the cy instances.

7.2.1.3.3 Return Value

The icp_sal_userCyInstancesAlloc function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the sepecified number of cy instances.

CPA_STATUS_FAIL Indicates a failure.

Supported APIs

Programmer’s Guide 113

7.2.1.4 icp_sal_userDcInstancesAlloc

Allocate the specified number of data compression (dc) instances from the amount specified

in the [DYN] section of the configuration file. The numDcInstances parameter specifies the

number of dc instances to allocate and must be less than or equal to the value of the

NumberDcInstances parameter in the [DYN] section of the configuration file.

7.2.1.4.1 Syntax

CpaStatus icp_sal_userDcInstancesAlloc (Cpa32U numDcInstances,

CpaInstanceHandle *pDcInstances);

7.2.1.4.2 Parameters

numDcInstances The number of dc instances to allocate.

*pDcInstances A pointer to the dc instances.

7.2.1.4.3 Return Value

The icp_sal_userDcInstancesAlloc function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the specified number of dc instances.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.5 icp_sal_userCyFreeInstances

Free the specified number of cryptographic (cy) instances from the amount specified in the

[DYN] section of the configuration file. The numCyInstances parameter specifies the number

of cy instances to free.

7.2.1.5.1 Syntax

CpaStatus icp_sal_userCyFreeInstances (Cpa32U numCyInstances,

CpaInstanceHandle *pCyInstances);

7.2.1.5.2 Parameters

numCyInstances The number of cy instances to free.

*pCyInstances A pointer to the cy instances to free.

7.2.1.5.3 Return Value

The icp_sal_userCyFreeInstances function returns one of the following codes:

Code Meaning

Supported APIs

114 Programmer’s Guide

CPA_STATUS_SUCCESS Successfully freed the specified number of cy instances.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.6 icp_sal_userDcFreeInstances

Free the specified number of data compression (dc) instances from the amount specified in

the [DYN] section of the configuration file. The numDcInstances parameter specifies the

number of dc instances to free.

7.2.1.6.1 Syntax

CpaStatus icp_sal_userDcFreeInstances (Cpa32U numDcInstances,

CpaInstanceHandle *pDcInstances);

7.2.1.6.2 Parameters

numDcInstances The number of dc instances to free.

*pDcInstances A pointer to the dc instances to free.

7.2.1.6.3 Return Value

The icp_sal_userDcInstancesAlloc function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully freed the specified number of dc instances.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.7 icp_sal_userCyGetAvailableNumDynInstancesByDevPkg

Get the number of cryptographic instances that can be dynamically allocated using the

icp_sal_userCyGetAvailableNumDynInstancesByDevPkg function.

7.2.1.7.1 Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynInstancesByDevPkg (Cpa32U

*pNumCyInstances,Cpa32U devPkgID);

7.2.1.7.2 Parameters

*pNumCyInstances A pointer to the number of cryptographic instances available for dynamic

allocation.

devPkgID The device ID of the device of interest (Same as accelID in other APIs) If -1 then

selects from all devices.

Supported APIs

Programmer’s Guide 115

7.2.1.7.3 Return Value

The icp_sal_userCyGetAvailableNumDynInstancesByDevPkg function returns one of

the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances

available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.8 icp_sal_userDcGetAvailableNumDynInstancesByDevPkg

Get the number of data compression instances that can be dynamically allocated using the

icp_sal_userDcGetAvailableNumDynInstancesByDevPkg function.

7.2.1.8.1 Syntax

CpaStatus icp_sal_userDcGetAvailableNumDynInstancesByDevPkg (Cpa32U

*pNumDcInstances,Cpa32U devPkgID);

7.2.1.8.2 Parameters

*pNumDcInstances A pointer to the number of data compression instances available for

dynamic allocation.

devPkgID The device ID of the device of interest (Same as accelID in other APIs) If

-1 then selects from all devices.

7.2.1.8.3 Return Value

The icp_sal_userDcGetAvailableNumDynInstancesByDevPkg function returns one of

the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances

available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.9 icp_sal_userCyInstancesAllocByDevPkg

Allocate the specified number of cryptographic (cy) instances from the amount specified in

the [DYN] section of the configuration file. The numCyInstances parameter specifies the

number of cy instances to allocate and must be less than or equal to the value of the

NumberCyInstances parameter in the [DYN] section of the configuration file.

7.2.1.9.1 Syntax

CpaStatus icp_sal_userCyInstancesAllocByDevPkg (Cpa32U

Supported APIs

116 Programmer’s Guide

numCyInstances, CpaInstanceHandle *pCyInstances,devPkgID);

7.2.1.9.2 Parameters

numCyInstances The number of cy instances to allocate.

*pCyInstances A pointer to the cy instances.

devPkgID The device ID of the device of interest (Same as accelID in other APIs) If -1 then

selects from all devices.

7.2.1.9.3 Return Value

The icp_sal_userCyInstancesAllocByDevPkg function returns one of the following

codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the sepecified number of cy instances.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.10 icp_sal_userDcInstancesAllocByDevPkg

Allocate the specified number of data compression (dc) instances from the amount specified

in the [DYN] section of the configuration file. The numDcInstances parameter specifies the

number of dc instances to allocate and must be less than or equal to the value of the

NumberDcInstances parameter in the [DYN] section of the configuration file.

7.2.1.10.1 Syntax

CpaStatus icp_sal_userDcInstancesAllocByDevPkg (Cpa32U

numDcInstances, CpaInstanceHandle *pDcInstances,devPkgID);

7.2.1.10.2 Parameters

numDcInstances The number of dc instances to allocate.

*pDcInstances A pointer to the dc instances.

devPkgID The device ID of the device of interest (Same as accelID in other APIs) If -1 then

selects from all devices.

7.2.1.10.3 Return Value

The icp_sal_userDcInstancesAllocByDevPkg function returns one of the following

codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the specified number of dc instances.

Supported APIs

Programmer’s Guide 117

CPA_STATUS_FAIL Indicates a failure.

7.2.1.11 icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel

Get the number of cryptographic instances that can be dynamically allocated using the

icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel function.

7.2.1.11.1 Syntax

CpaStatus icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel (

Cpa32U *pNumCyInstances,Cpa32U devPkgID,Cpa32U accelerator_number);

7.2.1.11.2 Parameters

*pNumCyInstances A pointer to the number of cryptographic instances available for dynamic

allocation.

devPkgID the device ID of the device of interest (Same as accelID in other APIs) If

-1 then selects from all devices.

accelerator_number Accelerator Engine to use, valid values are 0..3

7.2.1.11.3 Return Value

The icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel function returns one of

the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the number of cryptographic instances

available for dynamic allocation.

CPA_STATUS_FAIL Indicates a failure.

7.2.1.12 icp_sal_userCyInstancesAllocByPkgAccel

Allocates the specified number of cryptographic (cy) instances from the amount specified in

the [DYN] section of the configuration file. The numCyInstances parameter specifies the

number of cy instances to allocate and must be less than or equal to the value of the

NumberCyInstances parameter returned by a call to the

icp_sal_userCyInstancesAllocByPkgAccel function.

7.2.1.12.1 Syntax

CpaStatus icp_sal_userCyInstancesAllocByPkgAccel (Cpa32U

numCyInstances,CpaInstanceHandle *pCyInstances,devPkgID,Cpa32U

accelerator_number);

7.2.1.12.2 Parameters

NumCyInstances the number of cy instances to allocate.

Supported APIs

118 Programmer’s Guide

*pCyInstances A pointer to the cy instances.

devPkgID the device ID of the device of interest (Same as accelID in other APIs) If -1 then

selects from all devices.

accelerator_number Accelerator Engine to use, valid values are 0..3

7.2.1.12.3 Return Value

The icp_sal_userCyInstancesAllocByDevPkg function returns one of the following

codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully allocated the specified number of cy instances.

CPA_STATUS_FAIL Indicates a failure.

7.2.2 IOMMU Remapping Functions

These functions are intended for IOMMU remapping operations.

All IOMMU remapping function definitions are located in: $ICP_ROOT/quickassist/
lookaside/access_layer/include/icp_sal_iommu.h

The IOMMU remapping functions include:

• icp_sal_iommu_get_remap_size

• icp_sal_iommu_map

• icp_sal_iommu_unmap

7.2.2.1 icp_sal_iommu_get_remap_size

Returns the page_size rounded for IOMMU remapping.

7.2.2.1.1 Syntax

size_t icp_sal_iommu_get_remap_size (size_t size);

7.2.2.1.2 Parameters

size_t the minimum required page size.

7.2.2.1.3 Return Value

The icp_sal_iommu_get_remap_size function returns the page_size rounded for IOMMU

remapping.

Supported APIs

Programmer’s Guide 119

7.2.2.2 icp_sal_iommu_map

Adds an entry to the IOMMU remapping table.

7.2.2.2.1 Syntax

CpaStatus icp_sal_iommu_map (Cpa64U phaddr, Cpa64U iova, size_t

size);

7.2.2.2.2 Parameters

phaddr Host physical address.

iova Guest physical address.

size Size of the remapped region.

7.2.2.2.3 Return Value

The icp_sal_iommu_map function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

7.2.2.3 icp_sal_iommu_unmap

Removes an entry from the IOMMU remapping table.

7.2.2.3.1 Syntax

CpaStatus icp_sal_iommu_unmap (Cpa64U iova, size_t size);

7.2.2.3.2 Parameters

iova Guest physical address to be removed.

size Size of the remapped region.

7.2.2.3.3 Return Value

The icp_sal_iommu_unmap function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

Supported APIs

120 Programmer’s Guide

7.2.2.4 IOMMU Remapping Function Usage

These functions are required when the user wants to access an acceleration service from the

Physical Function (PF) when SR-IOV is enabled in the driver. In this case, all I/O transactions

from the device go through DMA remapping hardware. This hardware checks 1) if the

transaction is legitimate and 2) what physical address the given I/O address needs to be

translated to. If the I/O address is not in the transaction table, it fails with a DMA Read error

shown as follows:

DRHD: handling fault status reg 3

DMAR:[DMA Read] Request device [02:01.2] fault addr <ADDR>

DMAR:[fault reason 06] PTE Read access is not set

To make this work, the user must add a 1:1 mapping as follows:

 Get the size required for a buffer:

int size = icp_sal_iommu_get_remap_size(size_of_data);

 Allocate a buffer:

char *buff = malloc(size);

 Get a physical pointer to the buffer:

buff_phys_addr = virt_to_phys(buff);

 Add a 1:1 mapping to the IOMMU tables:

icp_sal_iommu_map(buff_phys_addr, buff_phys_addr, size);

 Use the buffer to send data to the accelerator.

 Before freeing the buffer, remove the IOMMU table entry:

icp_sal_iommu_unmap(buff_phys_addr, size);

 Free the buffer:

free(buff);

The IOMMU remapping functions can be used in all contexts that the Intel® QuickAssist

Technology APIs can be used, that is, kernel and user space in a Physical Function (PF) Dom0,

as well as kernel and user space in a Virtual Machine (VM). In the case of VM, the APIs will do

nothing. In the PF Dom0 case, the APIs will update the hardware IOMMU tables.

7.2.3 Polling Functions

These functions are intended for retrieving response messages that are on the rings and

dispatching the associated callbacks.

All polling function definitions are located in: $ICP_ROOT/quickassist/
lookaside/access_layer/include/icp_sal_poll.h

The polling functions include:

• icp_sal_pollBank

• icp_sal_pollAllBanks

• icp_sal_CyPollInstance

• icp_sal_DcPollInstance

• icp_sal_CyPollDpInstance

Supported APIs

Programmer’s Guide 121

• icp_sal_DcPollDpInstance

7.2.3.1 icp_sal_pollBank

Poll all rings on the given accelerator on a given bank number to determine if any of the rings

contain response messages from the Intel® QuickAssist Accelerator. The response_quota

input parameter is per ring.

7.2.3.1.1 Syntax

CpaStatus icp_sal_pollBank (Cpa32U accelId, Cpa32U bank_number, Cpa32U

response_quota);

7.2.3.1.2 Parameters

accelId the device number associated with the acceleration device. The valid range is 0 to

the number of dh89xxcc devices in the system.

bank_number the number of the memory bank on the dh89xxcc device that will be polled

for response messages. The valid range is 0 to 7.

response_quota the maximum number of responses to take from the ring in one call.

7.2.3.1.3 Return Value

The icp_sal_pollBank function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY There is no data on any ring on any bank or the banks are already being

polled.

CPA_STATUS_FAIL Indicates a failure.

7.2.3.2 icp_sal_pollAllBanks

Poll all banks on the given acceleration device to determine if any of the rings contain response

messages from the Intel® QuickAssist Accelerator. The response_quota input parameter is

per ring.

7.2.3.2.1 Syntax

CpaStatus icp_sal_pollAllBanks (Cpa32U accelId, Cpa32U

response_quota);

7.2.3.2.2 Parameters

accelId the device number associated with the acceleration device. The valid range is 0 to

the number of dh89xxcc devices in the system.

Supported APIs

122 Programmer’s Guide

response_quota the maximum number of responses to take from the ring in one call.

7.2.3.2.3 Return Value

The icp_sal_pollAllBanks function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully polled a ring with data.

CPA_STATUS_RETRY There is no data on any ring on any bank or the banks are already being

polled.

CPA_STATUS_FAIL Indicates a failure.

7.2.3.3 icp_sal_CyPollInstance

Poll the cryptographic (Cy) logical instance associated with the instanceHandle to retrieve

requests that are on response rings associated with that instance and dispatch the associated

callbacks. The response_quota input parameter is the maximum number of responses to

process in one call.

Note: The icp_sal_CyPollInstance() function is used in conjunction with the CyXIsPolled
parameter in the acceleration configuration file. Refer to Cryptographic Logical Instance Parameters.

7.2.3.3.1 Syntax

CpaStatus icp_sal_CyPollInstance (CpaInstanceHandle

instanceHandle, Cpa32U response_quota);

7.2.3.3.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one call.

When set to 0, all responses are retrieved.

7.2.3.3.3 Return Value

The cp_sal_CyPollInstance function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical

instance.

Note: A ring is only polled if it contains data.

CPA_STATUS_FAIL Indicates a failure.

Supported APIs

Programmer’s Guide 123

7.2.3.4 icp_sal_DcPollInstance

Poll the data compression (Dc) logical instance associated with the instanceHandle to

retrieve requests that are on response rings associated with that instance, and dispatch the

associated callbacks. The response_quota input parameter is the maximum number of

responses to process in one call.

Note: The icp_sal_DcPollInstance() function is used in conjunction with the DcXIsPolled
parameter in the acceleration configuration file. Refer to Data Compression Logical Instance
Parameters.

7.2.3.4.1 Syntax

CpaStatus icp_sal_DcPollInstance (CpaInstanceHandle

instanceHandle, Cpa32U response_quota);

7.2.3.4.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one call.

When set to 0, all responses are retrieved.

7.2.3.4.3 Return Value

The icp_sal_DcPollInstance function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical

instance.

Note: A ring is only polled if it contains data.

CPA_STATUS_FAIL Indicates a failure.

7.2.3.5 icp_sal_CyPollDpInstance

Poll a particular cryptographic (Cy) data path logical instance associated with the

instanceHandle to retrieve requests that are on the high-priority symmetric ring associated

with that instance and dispatch the associated callbacks. The response_quota input

parameter is the maximum number of responses to process in one call.

7.2.3.5.1 Syntax

Note: This function is a Data Plane API function and consequently the restrictions in Usage
Constraints on the Data Plane APIs apply.

CpaStatus icp_sal_CyPollDpInstance (CpaInstanceHandle

Supported APIs

124 Programmer’s Guide

instanceHandle, Cpa32U response_quota);

7.2.3.5.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one call.

When set to 0, all responses are retrieved.

7.2.3.5.3 Return Value

The icp_sal_CyPollDpInstance() function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS The function was successful.

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical

instance.

CPA_STATUS_FAIL Indicates a failure.

7.2.3.6 icp_sal_DcPollDpInstance

Poll a particular Data Compression (Dc) data path logical instance associated with the

instanceHandle to retrieve requests that are on the response ring associated with that

instance. The response_quota input parameter is the maximum number of responses to

process in one call.

7.2.3.6.1 Syntax

Note: This function is a Data Plane API function and consequently the restrictions in Usage
Constraints on the Data Plane APIs apply.

CpaStatus icp_sal_DcPollDpInstance (CpaInstanceHandle

instanceHandle, Cpa32U response_quota);

7.2.3.6.2 Parameters

instanceHandle the logical instance to poll for responses on the response ring.

response_quota the maximum number of responses to take from the ring in one call.

When set to 0, all responses are retrieved.

7.2.3.6.3 Return Value

The icp_sal_DcPollDpInstance function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS The function was successful.

Supported APIs

Programmer’s Guide 125

CPA_STATUS_RETRY There are no responses on the rings associated with the specified logical

instance.

CPA_STATUS_FAIL Indicates a failure.

7.2.4 Random Number Generation Functions

These functions allow the configuration of the Intel® QuickAssist Technology random number

generation APIs.

Non Deterministic Random Bit Generator (NRBG) Support

Also known as True Random Number Generator (TRNG), NRBG is only available on half of the

crypto instances. Only two of the four Intel® Communications Chipset 8900 to 8920 Series

device crypto accelerators offer TRNG hardware support. However, the user can employ the

same entropy source with multiple DRBG instances.

In an Intel® Communications Chipset 8900 to 8920 Series device, the following accelerators

are available:

• Four Cipher slices

• Four Authentication slices

• Two TRNG

The NRBG slice can be accessed via the Intel® QuickAssist Technology NRBG API.

Deterministic Random Bit Generator (DRBG) Support

Implemented in software, DRBG processing takes some entropy as input and then performs

Advanced Encryption Standard (AES) operations on the input using Intel® Communications

Chipset 8900 to 8920 Series hardware.

The output is a deterministic random number. Once the user has the first random number from

DRBG, the next number can be determined (assuming all AES parameters are known).

The DRBG in Intel® QuickAssist Technology is configured with an entropy source. One option

is to use the Intel® QuickAssist Technology NRBG as the entropy source. This is what the

performance sample code does but any other entropy source can also be configured (see the

random number generation function list below).

All random number generation function definitions are located in the following header files:

• $ICP_ROOT/quickassist/lookaside/access_layer/include/
icp_sal_drbg_impl.h

• $ICP_ROOT/quickassist/lookaside/access_layer/include/ icp_sal_drbg_ht.h

• $ICP_ROOT/quickassist/lookaside/access_layer/include/ icp_sal_nrbg_ht.h

The random number generation functions include:

• icp_sal_drbgGetEnropyInputFuncRegister

• icp_sal_drbgGetInstance

Supported APIs

126 Programmer’s Guide

• icp_sal_drbgGetNonceFuncRegister

• icp_sal_drbgHTGenerate

• icp_sal_drbgHTGetTestSessionSize

• icp_sal_drbgHTInstantiate

• icp_sal_drbgHTReseed

• icp_sal_drbgIsDFReqFuncRegister

• icp_sal_nrbgHealthTest

The icp_sal_drbgGetEnropyInputFuncRegister,

icp_sal_drbgGetNonceFuncRegister or icp_sal_drbgIsDFReqFuncRegister

functions must be called before calling any other Deterministic Random Bit Generator (DRBG)

function.

The other functions should be called to validate that the DRBG is working correctly.

7.2.4.1 icp_sal_drbgGetEnropyInputFuncRegister

Allows the client to register a function that the implementation uses to retrieve inputs to the

DRGB entropy source.

7.2.4.1.1 Syntax

IcpSalDrbgGetEntropyInputFunc

icp_sal_drbgGetEntropyInputFuncRegister(

IcpSalDrbgGetEntropyInputFunc func);

7.2.4.1.2 Parameters

func the function that the implementation may call to retrieve the DRGB entropy source.

7.2.4.1.3 Return Value

The icp_sal_drbgGetEntropyInputFuncRegister function returns the function that was

previously registered with the implementation or NULL if no function was previously

registered.

7.2.4.1.4 Sample Code

Refer to the sample application that demonstrates the random number generator capability

provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/

functional/sym/nrbg_sample/

7.2.4.2 icp_sal_drbgGetInstance

Retrieves the instance handle that DRBG is using.

Supported APIs

Programmer’s Guide 127

7.2.4.2.1 Syntax

icp_sal_drbgGetInstance (CpaCyDrbgSessionHandle sessionHandle,

CpaInstanceHandle **pDrbgInstance);

7.2.4.2.2 Parameters

sessionHandle [in] The DRBG session handle structure that contains the session handle.

**pDrbgInstance [out] A pointer to the instance handle.

7.2.4.2.3 Return Value

None

7.2.4.3 icp_sal_drbgGetNonceFuncRegister

Allows the client to register a function that the implementation uses to retrieve the DRGB

nonce.

7.2.4.3.1 Syntax

IcpSalDrbgGetNonceFunc icp_sal_drbgGetNonceFuncRegister(

IcpSalDrbgGetNonceFunc func);

7.2.4.3.2 Parameters

func the function that the implementation may call to retrieve the nonce.

7.2.4.3.3 Return Value

The icp_sal_drbgGetNonceFuncRegister function returns the function that was

previously registered with the implementation or NULL if no function was previously

registered.

7.2.4.3.4 Sample Code

Refer to the sample application that demonstrates the random number generator capability

provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/

functional/sym/nrbg_sample/

7.2.4.4 icp_sal_drbgHTGenerate

Tests the health of the Generate function as described in NIST SP 800-90, section 11.3.3.

7.2.4.4.1 Syntax

CpaStatus icp_sal_drbgHTGenerate (const CpaInstanceHandle

instanceHandle, IcpSalDrbgTestSessionHandle testSessionHandle);

Supported APIs

128 Programmer’s Guide

7.2.4.4.2 Parameters

instanceHandle the handle of the instance for which DRBG is to be tested.

testSessionHandle the handle of the DRBG health test session. Physically contiguous

memory for this session should be allocated by the client of the API.

7.2.4.4.3 Return Value

The icp_sal_drbgHTGenerate function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Health tests passed.

CPA_STATUS_FAIL Health tests failed.

7.2.4.5 icp_sal_drbgHTGetTestSessionSize

Gets the size of the contiguous memory that needs to be allocated by the user for the DRBG

health test session.

7.2.4.5.1 Syntax

CpaStatus icp_sal_drbgHTGetTestSessionSize (CpaInstanceHandle

instanceHandle, Cpa32U *pTestSessionSize);

7.2.4.5.2 Parameters

instanceHandle the handle of the instance for which DRBG is to be tested.

*pTestSessionSize A pointer to a variable to store size of the memory required for DRBG

health test session.

7.2.4.5.3 Return Value

The icp_sal_drbgHTGetTestSessionSize function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully retrieved the health test session size.

CPA_STATUS_FAIL Indicates a failure.

7.2.4.6 icp_sal_drbgHTInstantiate

Tests the health of Instantiate functionality as described in NIST SP 800-90, section 11.3.2.

This function tests Instantiate for all possible setup configurations.

7.2.4.6.1 Syntax

CpaStatus icp_sal_drbgHTInstantiate (const CpaInstanceHandle

Supported APIs

Programmer’s Guide 129

instanceHandle, IcpSalDrbgTestSessionHandle testSessionHandle);

7.2.4.6.2 Parameters

instanceHandle the handle of the instance for which DRBG is to be tested.

testSessionHandle the handle of the DRBG health test session. Physically contiguous

memory for this session should be allocated by the client of the API.

7.2.4.6.3 Return Value

The icp_sal_drbgHTInstantiate function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Health tests passed.

CPA_STATUS_FAIL Health tests failed.

7.2.4.7 icp_sal_drbgHTReseed

Tests the health of the Reseed function as described in NIST SP 800-90, section 11.3.4.

7.2.4.7.1 Syntax

CpaStatus icp_sal_drbgHTReseed (const CpaInstanceHandle

instanceHandle, IcpSalDrbgTestSessionHandle testSessionHandle);

7.2.4.7.2 Parameters

instanceHandle the handle of the instance for which DRBG is to be tested.

testSessionHandle the handle of the DRBG health test session. Physically contiguous

memory for this session should be allocated by the client of the API.

7.2.4.7.3 Return Value

The icp_sal_drbgHTReseed function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Health tests passed.

CPA_STATUS_FAIL Health tests failed.

7.2.4.8 icp_sal_drbgIsDFReqFuncRegister

Allows the client to register a function that the implementation uses to check if a derivation

function is required.

7.2.4.8.1 Syntax

IcpSalDrbgIsDFReqFunc icp_sal_drbgIsDFReqFuncRegister

(IcpSalDrbgIsDFReqFunc func)

Supported APIs

130 Programmer’s Guide

7.2.4.8.2 Parameters

func the function that the implementation may call to check if a derivation function is required.

7.2.4.8.3 Return Value

The icp_sal_drbgIsDFReqFuncRegister function returns the function that was previously

registered with the implementation or NULL if no function was previously registered.

7.2.4.8.4 Sample Code

Refer to the sample application that demonstrates the random number generator capability

provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/

functional/sym/nrbg_sample/

7.2.4.9 icp_sal_nrbgHealthTest

This function performs a check on the deterministic parts of the NRBG. It also provides the

caller with the value of continuous random number generator test failures for n=64 bits. Refer

to FIPS 140-2, section 4.9.2 for details. A non-zero value for the counter does not necessarily

indicate a failure. It is statistically possible that consecutive blocks of 64 bits will be identical,

and the RNG will discard the identical block in such cases. This counter allows the calling

application to monitor changes in this counter and to use this to decide whether to mark the

NRBG as faulty, based on the local policy or statistical model.

7.2.4.9.1 Syntax

CpaStatus icp_sal_nrbgHealthTest (const CpaInstanceHandle

instanceHandle, Cpa32U *pContinuousRngTestFailures);

7.2.4.9.2 Parameters

instanceHandle the handle of the instance.

*pContinuousRngTestFailures the number of continuous random number generator test

failures.

7.2.4.9.3 Return Value

The icp_sal_nrbgHealthTest function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Health tests passed.

CPA_STATUS_RETRY Resubmit the request.

CPA_STATUS_INVALID_PARAM Invalid parameter passed in.

CPA_STATUS_RESOURCE Error related to system resources.

Supported APIs

Programmer’s Guide 131

CPA_STATUS_FAIL Health tests failed.

7.2.4.9.4 Sample Code

Refer to the sample application that demonstrates the random number generator capability

provided by the software package in:

$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/

functional/sym/nrbg_sample/

7.2.4.10 DRBG Health Test and cpaCyDrbgSessionInit Implementation Detail

When using the acceleration driver for DRBG functionality, calls to

cpaCyDrbgSessionInit() and the DRBG Health Test (DRBG HT) functions normally block

while waiting for a response. Something (for example, another thread) is required to unblock

the thread of execution.

When the application is using interrupts, this is not a problem. However, when the application is

polling, this is an issue, especially for single-threaded applications, where there is no "polling

thread".

Starting with software release 1.0.1, a build option has been added to the acceleration driver to

allow the cpaCyDrbgSessionInit(0) and DRBG HT functions to poll for responses

internally, rather than depending on an external polling thread. Instead of just waiting, these

functions will now go into an internal loop, where they poll and wait with a pre-defined interval

between polls (default 10 ms).

This functionality is automatically set at compile time in user_space only. It is not used in

kernel space.

The default polling interval for cpaCyDrbgSessionInit() polling is 10 ms. This can be

modified by adding the drbgPollAndWaitTimeMS parameter to the GENERAL section of the

config file (see General Parameters). The polling in cpaCyDrbgSessionInit() is limited to

the low-priority symmetric response ring to ensure that other rings in that instance do not have

their responses polled.

Using the DRBG_POLL_AND_WAIT option at compile time now means that a polling application

that needs to use the DRBG functionality can now be single-threaded and does not depend on

a separate polling thread.

7.2.5 User Space Access Configuration Functions

Functions that allow the configuration of user space access to the Intel® QuickAssist

Technology services from processes running in user space.

All user space access configuration function definitions are located in $ICP_ROOT/
quickassist/lookaside/access_layer/include/icp_sal_user.h.

The user space access configuration functions include:

• icp_sal_userStart

• icp_sal_userStartMultiProcess

Supported APIs

132 Programmer’s Guide

• icp_sal_userStop

7.2.5.1 icp_sal_userStart

Initializes user space access to an Intel® QuickAssist Accelerator and starts the services

configured in the pProcessName section of the configuration file. This function needs to be

called prior to any call to Intel® QuickAssist Technology API function from the user space

process. This function is typically called only once in a user space process.

Note: The icp_sal_userStart function is for use only with the earlier configuration file variant
(that is, the configuration file does not contain ConfigVersion = 2).

7.2.5.1.1 Syntax

CpaStatus icp_sal_userStart (const char *pProcessName);

7.2.5.1.2 Parameters

*pProcessName the name of the process corresponding to the section in the configuration file

that defines and configures the services accessible to the process.

7.2.5.1.3 Return Value

The icp_sal_userStart function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully started user space access to the Intel® QuickAssist

Accelerator.

CPA_STATUS_FAIL Operation failed.

7.2.5.1.4 Notes

None

7.2.5.2 icp_sal_userStartMultiProcess

Performs a function similar to icp_sal_userStart(), that is, initializes user space access to

an Intel® QuickAssist Accelerator and starts the instances configured, if any, in the given

section of the configuration file.

Note: The icp_sal_userStartMultiProcess() function is to be used with the simplified
configuration file only (that is, the configuration file with ConfigVersion = 2).

The new configuration format allows the user to easily create a configuration for many user

space processes. The driver internally generates unique process names and a valid

configuration for each process based on the section name (pSectionName) and mode

(limitDevAccess) provided.

For example, on an M device system, if all M configuration files contain:

Supported APIs

Programmer’s Guide 133

[IPSec]

NumProcesses = N

LimitDevAccess = 0

then N internal sections are generated (each with instances on all devices) and N processes

can be started at any given time. Each process can call icp_sal_userStartMultiProcess

("IPSec", CPA_FALSE) and the driver determines the unique name to use for each process.

Similarly, on an M device system, if all M configuration files contain:

[SSL]

NumProcesses = N

LimitDevAccess=1

then M*N internal sections are generated (each with instances on one device only) and M*N

processes can be started at any given time. Each process can call

icp_sal_userStartMultiProcess("SSL", CPA_TRUE) and the driver determines the

unique name to use for each process.

Refer to Configuring Multiple Processes on a Multiple-Device System for a detailed example.

7.2.5.2.1 Syntax

CpaStatus icp_sal_userStartMultiProcess (const char

*pSectionName, CpaBoolean limitDevAccess);

7.2.5.2.2 Parameters

*pSectionName the section name described in the simplified configuration file format.

limitDevAccess Corresponds to the LimitDevAccess parameter setting in the simplified

configuration file format.

7.2.5.2.3 Return Value

The icp_sal_userStartMultiProcess function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successfully started user space access to the Intel® QuickAssist

Accelerator as defined in the configuration file.

CPA_STATUS_FAIL Operation failed.

7.2.5.2.4 icp_sal_userStartMultiProcess Usage

This topic describes a typical usage of the icp_sal_userStartMultiProcess function.

A common approach is as follows:

 The user starts a main application (for example, an Apache web server or an OpenSSL*

speed application).

Supported APIs

134 Programmer’s Guide

 The main application spawns N child processes (workers). The number of child processes

running at a given time should not be greater that the value configured by NumProcesses

in the configuration file.

 Each child process calls icp_sal_userStartMultiProcess("SSL", CPA_TRUE). If the

application spawns more child processes, the first N processes that call

icp_sal_userStartMultiProcess("SSL", CPA_TRUE) start successfully with access

to the accelerator. All subsequent calls start successfully but will not have access to the

accelerator. In this case, calls to cpaCyGetNumInstances() and

cpaDcGetNumInstances() return zero. If any of the N running processes finish their work

and call icp_sal_userStop() (or if a subprocess terminates non-gracefully), another

subprocess can call icp_sal_userStartMultiProcess("SSL", CPA_TRUE) and it will

succeed.

7.2.5.3 icp_sal_userStop

Closes user space access to the Intel® QuickAssist Accelerator; stops the services that were

running and frees the allocated resources. After a successful call to this function, user space

access to the Intel® QuickAssist Accelerator from a calling process is not possible. This

function should be called once when the process is finished using the Intel® QuickAssist

Accelerator and does not intend to use it again.

7.2.5.3.1 Syntax

CpaStatus icp_sal_userStop (void);

7.2.5.3.2 Parameters

None.

7.2.5.3.3 Return Value

The icp_sal_userStop function returns one of the following codes:

7.2.5.3.4 Code Meaning

CPA_STATUS_SUCCESS Successfully stopped user space access to the Intel® QuickAssist

Accelerator.

CPA_STATUS_FAIL Operation failed.

7.2.5.3.5 Notes

None

7.2.6 User Space Heartbeat Functions

These functions allow the user space application to check the status of the firmware/ hardware

of the Intel® Communications Chipset 8900 to 8920 Series device as part of the Heartbeat

functionality.

Supported APIs

Programmer’s Guide 135

All user space heartbeat function definitions are located in $ICP_ROOT/
quickassist/lookaside/access_layer/include/icp_sal_user.h.

The heartbeat functions include:

• icp_sal_check_device

• icp_sal_check_all_devices

7.2.6.1 icp_sal_check_device

This function checks the status of the firmware/hardware for a given device and is used as part

of the Heartbeat functionality.

7.2.6.1.1 Syntax

CpaStatus icp_sal_check_device (Cpa32U accelID);

7.2.6.1.2 Parameters

accelID the device ID of the device of interest.

7.2.6.1.3 Return Value

The icp_sal_check_device function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS No error in operation.

CPA_STATUS_FAIL Operation failed.

7.2.6.1.4 Notes

None

7.2.6.2 icp_sal_check_all_devices

This function checks the status of the firmware/hardware for all devices and is used as part of

the Heartbeat functionality.

7.2.6.2.1 Syntax

CpaStatus icp_sal_check_all_devices (void);

7.2.6.2.2 Parameters

None.

7.2.6.2.3 Return Value

The icp_sal_check_all_devices function returns one of the following codes:

Supported APIs

136 Programmer’s Guide

Code Meaning

CPA_STATUS_SUCCESS No error in operation.

CPA_STATUS_FAIL Operation failed.

7.2.7 Version Information Function

A function that allows the retrieval of version information related to the software and hardware

being used.

The version information function definition is located in: $ICP_ROOT/quickassist/
lookaside/access_layer/include/icp_sal_versions.h.

There is only one version information function, that is, icp_sal_getDevVersionInfo.

7.2.7.1 icp_sal_getDevVersionInfo

Retrieves the hardware revision and information on the version of the software components

being run on a given device.

Note: The icp_sal_userStartMultiProcess (or icp_sal_userStart) function must be called
before calling this function. If not, calling this function returns CPA_STATUS_INVALID_PARAM
indicating an error. The icp_sal_userStartMultiProcess (or icp_sal_userStart) function is
responsible for setting up the ADF user space component, which is required for this function to
operate successfully.

7.2.7.1.1 Syntax

CpaStatus icp_sal_getDevVersionInfo (Cpa32U devId,

icp_sal_dev_version_info_t *pVerInfo);

7.2.7.1.2 Parameters

devId The ID (number) of the device for which version information is to be retrieved.

*pVerInfo A pointer to a structure that holds the version information.

7.2.7.1.3 Return Value

The icp_sal_getDevVersionInfo function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Operation finished successfully; version information retrieved.

CPA_STATUS_INVALID_PARAM Invalid parameter passed to the function.

CPA_STATUS_RESOURCE System resource problem.

CPA_STATUS_FAIL Operation failed.

Supported APIs

Programmer’s Guide 137

7.2.8 Reset Device Function

This API can only be called in user-space.

The device can be reset using this API call. This will schedule a reset of the device. See

Heartbeat Feature and Recovery from Hardware Errors for details of the steps on a device

reset. The device can also be reset using the adf_ctl utility, e.g., by calling adf_ctl

icp_dev0 reset.

7.2.8.1 icp_sal_reset_device

Resets the device.

7.2.8.1.1 Syntax

CpaStatus icp_sal_reset_device (Cpa32U accelid);

7.2.8.1.2 Parameters

accelid The device number.

7.2.8.1.3 Return Value

The icp_sal_reset_device function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

7.2.9 Thread-less APIs

These APIs can be used in the User Space Application when the driver is built with the

ICP_WITHOUT_THREAD flag. See Thread-less Mode for details.

The Thread-less API functions include:

• icp_sal_poll_device_events

• icp_sal_find_new_devices

7.2.9.1 icp_sal_poll_device_events

This reads any pending device events from icp_dev%d_csr (see Driver Threading Model)

and forwards to interested subsystems.

7.2.9.1.1 Syntax

CpaStatus CpaStatus icp_sal_poll_device_events(void) (Cpa32U

accelid);

Supported APIs

138 Programmer’s Guide

7.2.9.1.2 Parameters

None

7.2.9.1.3 Return Value

The icp_sal_reset_device function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

7.2.9.2 icp_sal_find_new_devices

This tries to connect to any available devices that the kernel driver has brought up and

initialized for use in user space process.

7.2.9.2.1 Syntax

CpaStatus CpaStatus icp_sal_find_new_devices(void) (Cpa32U accelid);

7.2.9.2.2 Parameters

None

7.2.9.2.3 Return Value

The icp_sal_find_new_devices function returns one of the following codes:

Code Meaning

CPA_STATUS_SUCCESS Successful operation.

CPA_STATUS_FAIL Indicates a failure.

§

Application Usage Guidelines

Programmer’s Guide 139

8 Application Usage Guidelines

This chapter provides some usage guidelines and identifies some of the applications to which

the platforms described in this manual are ideally suited.

Note: The usage information provided in this section relates to the original configuration file format.
Much of the information is still appropriate when using the newer (default) version of the configuration
file.

8.1 Mapping Service Instances to Hardware Accelerators on the
PCH

On the platform(s) described in this manual, a processor can be connected to one or more

Intel® Communications Chipset 8900 to 8920 Series (PCH) devices. Each PCH device can

contain zero, one or two accelerators depending on the device variant being used. An

accelerator has one or more dedicated engines for each service type. Specifically, there are

two cryptography engines and one data compression engine.

A set of 16 ring banks provide the communication mechanism between a processor and the

acceleration complex on a PCH device. Each ring bank contains 16 individual rings for

communication. The following figure shows the relationship between processors, PCH

devices, accelerator(s) and ring banks.

Intel® provides a driver as a starting point that abstracts the communication between the host

and the rings and presents the high-level Intel® QuickAssist Technology APIs.

Figure 24. Processor and PCH Device Components

Application Usage Guidelines

140 Programmer’s Guide

8.1.1 Processor and PCH Device Communication

An acceleration service uses different rings for request and response messages and for

different priorities (currently for symmetric cryptography only). Communication between the

processor and PCH device is achieved using the following operations (see also the following

figure):

 The processor uses a write (put) operation to place a request on the request ring.

 The PCH device uses a read (get) operation to retrieve the request from the request ring.

 Once the operation has been performed, the PCH device uses a write (put) operation to

put the response to the response ring.

 The processor uses a read (get) operation to retrieve the response from the response ring.

Figure 25. Processor and PCH Device Communication

8.1.2 Service Instances and Interaction with the Hardware

A typical use case would be to have a ring bank supporting two crypto instances and one

compression instance. 3A service instance can be thought of as a channel between an

accelerator and a core/thread running on the processor, which uses the rings for

communication. The rings are not exposed by an API but are set up using configuration files

(one for each PCH device).

In general, a service instance uses a pair of rings, one for requests and one for responses. For

cryptographic instances, separate request/response pairs are used for the following:

3 The exceptions are ring bank 0, where two rings are reserved for administration related to accelerator 0 and ring bank 8,

where two rings are reserved for administration related to accelerator 1. See Figure 30.

Application Usage Guidelines

Programmer’s Guide 141

• Symmetric low priority

• Symmetric high priority

• Public key cryptography requests/responses

The key attributes of a service instance are given in the following table.

Table 15. Service Instance Attributes

Member Sub-field Description

physInstId acceleratorId Identifies the accelerator within the PCH

physInstId executionEngineId Identifies the engine (slice) within the accelerator

nodeAffinity N/A Identifies the processor node/socket to which the PCH is

physically connected (relevant in NUMA configurations)

coreAffinity N/A Identifies the core(s) to which interrupts (if enabled) are affinitized

(Bitmap)

isPolled N/A For Kernel space:

• IsPoll = 0 (interrupt mode)

• IsPoll = 1 (poll mode)

For User space:

• IsPoll = 0 (interrupt mode)

• IsPoll = 1 (poll mode)

The following figure shows how the attributes relate to hardware components.

Figure 26. Processor and PCH Device Communication

Application Usage Guidelines

142 Programmer’s Guide

8.1.3 Service Instance Configuration

The configuration of a service instance is done in the configuration file.

Note: The following example uses the earlier configuration file format, which continues to be
supported.

The following figure shows an example extract of the relevant section in the configuration file.

Figure 27. Service Instance Configuration

In the previous figure, the meaning of each numbered item is explained as follows:

 Each named address domain (one domain for the kernel, any number of user space

process domains) has its own service instances.

 Identifies the accelerator.

 Identified the accelerator engine.

 Identifies the ring bank to be used by the instances (which has a core affinity). See the

configuration file snipped below for an example of core affinity association.

 Asymmetric (public key), request (Tx) and response (Rx) rings.

 Symmetric (bulk) crypto, low (normal) and high priority request (Tx) rings;

Cy0RingSymTxHi is for the high priority requests and Cy0RingSymTxLo is for normal

priority requests.

 Symmetric (bulk) crypto, low (normal) and high priority response (Rx) rings;

Cy0RingSymRxHi is for the high priority responses and Cy0RingSymRxLo is for normal

priority responses.

Application Usage Guidelines

Programmer’s Guide 143

Note: The data compression service requires just two rings; one for requests and one for responses.

8.1.4 Guidelines for Using Multiple Intel® QuickAssist Instances for Load
Balancing in Cryptography Applications

The application is responsible for load balancing/spreading:

• Across engines within a PCH device

• Across PCH devices

To get the maximum performance from the hardware, there needs to be at least as many

service instances as engines, that is:

• Four (two for each of the two accelerators in the top-end PCH SKU) for Cryptography.

• Two (per PCH device) for Data Compression.

In the simplest case, load balancing is done through configuration. This applies when each

engine has more capacity than required by a lcore. Each lcore uses exactly one service

instance. Different lcores use different service instances, which map to different service

engines. The load is balanced by spreading the traffic across lcores.

If a hardware engine has more capacity than that required by one instance, then multiple

instances can share an engine. If a hardware engine has less capacity than required by one

instance, then a core/process can talk to multiple instances.

Each core (physical or logical) has a certain application performance capacity (Pcore). This

depends on the core frequency, number of IA cycles per packet, packet size/mix, protocols

and so on. Each (physical) service engine has a certain level of service performance (Pengine).

This may depend on the PCH SKU, cryptography algorithms, packet size/mix and so on.

The following figure shows the relationship between cores, application threads, service

instances and cryptographic engines.

Application Usage Guidelines

144 Programmer’s Guide

Figure 28. Entities and Relationships for Load Balancing

The goal is to balance the performance of the cores and the service engines. Expressed

mathematically, choose a, i and s (see figure), such that:

Pcore/a ~= (Pengine)*i/s

Note: Performance capacity of a core may be measured as throughput at a certain packet size, mix of
sizes, protocols and so on. Performance capacity of a service engine can be measured as throughput
at a certain packet size, mix of sizes, algorithms and so on.

The following figure shows four different load balancing scenarios:

• Case (a) - The simplest case. Load balancing is done by spreading traffic across cores, and

then each core talks to exactly one engine.

• Case (b) - When the engines have more capacity than the cores/threads need, then an

engine can be mapped into multiple such cores/threads.

When the cores need more capacity than one engine can supply, then multiple engines

must be mapped into a single lcore. There are at least two ways to do this as indicated in

case (c) and (d) following.

• Case (c) - Each thread talks to multiple service instances. This requires the application code

to change, in that the application must know about multiple instances and load balance

across them.

Application Usage Guidelines

Programmer’s Guide 145

• Case (d) - Multiple threads can be assigned to the same lcore. This moves the responsibility

for load balancing to the OS or whatever is managing the threads.

Figure 29. Load Balancing Scenarios

In all cases, except Case (c), the code remains unchanged. Each thread talks to exactly one

service instance. This makes it easier to port applications to different platforms with different

numbers/frequencies of cores, different numbers/PCH SKU numbers and so on.

8.2 Cryptography Applications

Cryptography applications supported by the platforms described in this manual include, but

are not limited to:

• Virtual Private Networks (VPNs, both IPsec and SSL). Both symmetric and public key

cryptography can be offloaded for bulk transfer and key exchange (IKE, SSL handshakes

and so on). See IPsec and SSL VPNs for more information.

• Encrypted Storage. See Encrypted Storage for more information.

• Web Proxy Appliances. See Web Proxy Appliances.

8.2.1 IPsec and SSL VPNs

Virtual Private Networks (VPNs) allow for private networks to be established over the public

internet by providing confidentiality, integrity and authentication using cryptography. VPN

functionality can be provided by a standalone security gateway box at the boundary between

the trusted and untrusted networks. It is also commonly combined with other networking and

security functionality in a security appliance, or even in standard routers.

Application Usage Guidelines

146 Programmer’s Guide

VPNs are typically based on one of two cryptographic protocols, either IPsec or DTLS. Each

has its advantages and disadvantages.

One of the most compute-intensive aspects of a VPN is the cryptographic processing required

to encrypt/decrypt traffic for confidentiality, to perform cryptographic hash functionality for

authentication and to perform public key cryptography, based on modular exponentiation of

large numbers or elliptic curve cryptography as part of key negotiation and exchange. The

Intel® Communications Chipset 8900 to 8920 Series PCH provides cryptographic

acceleration that can offload this computation from the CPU, thereby freeing up CPU cycles to

perform other networking, encryption, or other value-add applications.

The PCH offers its acceleration services through an API, called the Intel® QuickAssist

Technology Cryptographic API. This can be invoked from the Linux* kernel or from Linux* user

space as well as from other operating systems. Intel® also provides plugins to enable many of

the PCH's cryptographic services to be accessed through open source cryptographic

frameworks, such as the Linux* kernel crypto framework/API (also known as the scatterlist

API) and OpenSSL's libcrypto* (through its EVP API). This facilitates ease of integration with

certain open source implementations of protocol stacks, such as the Linux* kernel's native

IPsec stack (called NETKEY) or with OpenVPN (an open source SSL VPN implementation).

8.2.2 Encrypted Storage

In recent years, cases of lost laptops containing sensitive information have made the headlines

all too frequently. Full disk encryption has become a standard procedure for many corporate

PCs. Safe-guarding critical data however is not just a necessity in the client space, it is also a

necessity in the data center.

Enterprise-class storage appliances achieve throughput rates in excess of 50 Gbps. Several

high-profile cases of data theft have triggered updates to government regulations and industry

standards. These regulations/standards now require protection of data-at-rest for applications

involving sensitive data such as medical and financial records, typically using strong

encryption. The high computational cost of adding encryption to storage appliances makes

offload solutions an attractive value proposition.

Several complimentary standards exist for the encryption of data-at-rest, which, when

combined with traditional network security protocols such as IPsec or SSL/TLS, provide an

end-to-end encrypted storage solution, even for data-in-flight.

The IEEE Security in Storage working group is developing the IEEE 1619 series of standards

that deal with cipher algorithms for disk and tape storage devices (AES in CCM and GCM

modes). The cryptographic acceleration services of platforms that use the Intel®

Communications Chipset 8900 to 8920 Series (PCH) are ideally suited for long-term

encrypted storage solutions implementing the IEEE 1619.1 standard, by providing acceleration

of the AES-256 cipher in CBC, CCM, and GCM modes and HMAC authentication using SHA-1,

SHA-256 and SHA-512 hashes.

The Trusted Computing Group's (TCG) Storage Working Group does not prescribe a

particular set of algorithms for the disk encryption. Instead, it defines several Storage

Subsystem Classes (SSC) for various usage models, which define services such as enrollment

and connection, protected storage (an extension of TPM), locking, logging, cryptographic

services, authorization, and firmware updates. The cryptographic acceleration services of the

Application Usage Guidelines

Programmer’s Guide 147

platform can help by providing the highest level of encryption for authenticating the host to

trusted peripherals implementing the TCG storage standards.

8.2.3 Web Proxy Appliances

Historically, Web Proxy appliances have evolved to present a public or intermediary interface

for clients seeking resources from other servers, providing services such as web page caching

and load balancing. These appliances are located at the edge of the network, typically at

network gateways. Due to their centralized presence in the network, Web Proxy appliances

today (referred to with several different names, such as Application Delivery Controllers,

Reverse Proxy, and so on) have become a collection of services that include:

• Application Load Balancing (L4-L7)

• SSL Acceleration

• WAN Acceleration

• Caching

• Traffic Management

• Web Application Firewall

SSL and WAN acceleration have become common place capabilities of the Web Proxy

appliance, requiring compute intensive algorithms for cryptography (SSL) and compression

(WAN acceleration). Intel® Communications Chipset 8900 to 8920 Series (PCH) devices on

the platforms described in this manual provide acceleration of asymmetric cryptography (RSA

is the most commonly used key negotiation algorithm in SSL), symmetric cryptography (all

algorithms defined in the TLS RFCs can be accelerated with the PCH) and compression

(DEFLATE and LZS algorithms). With the prominence of Web Proxy appliances in typical

networks, this use case has applications from cloud computing to small web server

deployments.

8.3 Data Compression Applications

Data compression can be used as part of application delivery networks, data de- duplication, as

well as in a number of crypto applications, for example, VPNs, IDS/IPS and so on.

8.3.1 Compression for Storage

In a time when the amount of online information is increasing dramatically, but budgets for

storing that information remain static, compression technology is a powerful tool for improved

information management, protection and access.

Compression appliances can transparently compress data such that clients can keep between

two- and five-times more data online and reap the benefit of other efficiencies throughout the

data lifecycle. By shrinking the primary data, all subsequent copies of that data, such as

backups, archives, snapshots, and replicas are also compressed. Compression is the newest

advancement in storage efficiency.

Application Usage Guidelines

148 Programmer’s Guide

Storage compression appliances can shrink primary online data in real time, without

performance degradation. This can significantly lower storage capital and operating expenses

by reducing the amount of data that is stored, and the required hardware that must be powered

and cooled.

Compression can help slow the growth of storage, reducing storage costs while simplifying

both operations and management. It also enables organizations to keep more data available for

use, as opposed to storing data offsite or on harder-to-access media (such as tape).

Compression algorithms are very compute-intensive, which is one of the reasons why the

adoption of compression techniques in mainstream applications has been slow. As an

example, the DEFLATE Algorithm, which is one of the most used and popular compression

techniques today, involves several compute-intensive steps: string search and match, sort

logic, binary tree generation, Huffman Code generation. Intel® Communications Chipset 8900

to 8920 Series (PCH) devices in the platforms described in this manual provide acceleration

capabilities in hardware that allow the CPU to offload the compute-intensive DEFLATE

algorithm operations, thereby freeing up CPU cycles for other networking, encryption, or other

value-add operations.

8.3.2 Data Deduplication and WAN Acceleration

Data Deduplication and WAN Acceleration are coarse-grain data compression techniques

centered around the concept of single-instance storage. Identical blocks of data (either to be

stored on disk or to be transferred across a WAN link) are only stored/moved once, and any

further occurrences are replaced by a reference to the first instance.

While the benefits of deduplication and WAN acceleration obviously depend on the type of

data, multi-user collaborative environments are the most suitable due to the amount of

naturally occurring replication caused by forwarded emails and multiple (similar) versions of

documents in various stages of development.

Deduplication strategies can vary in terms of inline vs post-processing, block size granularity

(file-level only, fixed block size or variable block-size chunking), duplicate identification

(cryptographic hash only, simple CRC followed by byte-level comparison or hybrids) and

duplicate look-up (for example, Bloom filter based index).

Cryptographic hashes are the most suitable techniques for reliably identifying matching blocks

with an improbably low risk for false positives, but they also represent the most compute-

intensive workload in the application. As such, the cryptographic acceleration services offered

by the hardware (PCH) through the Intel® QuickAssist Technology Cryptographic API can be

used to considerably improve the throughput of deduplication/WAN acceleration

applications.

Additionally, the compression/decompression acceleration services can be used to further

compress blocks for storage on disk, while optionally encrypting the compressed contents.

§

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 149

Appendix A Acceleration Driver

Configuration File - Earlier File Format

Note: This chapter describes the older configuration file format. The older configuration file format is
fully supported, but the format is deprecated in favor of the simpler new file format described earlier in
this document.

This chapter describes the configuration file(s) managed by the Acceleration Driver

Framework (ADF) that allow customization of runtime operation. This configuration file(s)

must be tuned to meet the performance needs of the target application.

Note: The parameter values given in this chapter represent the configuration against which the
software has been validated. While the configuration file is intended to be modified, no guarantee can
be given for the expected behavior when parameter values are changed.text

A.1 Configuration File Overview

There is a single configuration file for each Intel® Communications Chipset 8900 to 8920

Series (PCH) device. The configuration file always contains two accelerator subsections. The

significance of these subsections depends on the number of accelerators in the PCH device as

defined by the model number:

• If there are no accelerators in the device, the information in both accelerator subsections is

not relevant and can be ignored.

• If there is one accelerator in the device, only the information in the first accelerator

subsection is relevant. The second subsection can be ignored.

• If there are two accelerators in the device, both accelerator subsections are relevant.

The client application may load balance between two accelerators if present.

Each accelerator has eight independent ring banks - the communication mechanism between

the Acceleration software and the hardware. Each ring bank has an interrupt that can be

directed to a specific Intel® architecture core. Each ring bank has 16 rings (hardware assisted

queues). This hierarchy is shown in the following figure.

Acceleration Driver Configuration File - Earlier

File Format

150 Programmer’s Guide

Figure 30. Ring Banks

Depending on the SKU number, a PCH device may also contain no accelerators.

The configuration file is split into three (or more) sections: General, Hardware Access Ring

Bank Configuration, and one or more Logical Instance sections.

• General - includes parameters that allow the user to:

− Specify which services are enabled.

− Configure the settings for the services.

Additional details are included in General Parameters.

• Hardware Access Ring Bank Configuration - includes parameters that allow the user to:

− Enable and configure interrupt coalescing.

− Direct an MSI-x interrupt for a given ring bank to a specified Intel® architecture core,

assuming that the OS supports MSI-X interrupts.

Additional details are included in [AcceleratorX] Section.

• Logical Instances - one or more sections that include parameters that allow the user to:

− Configure rings to be used by that address domain (kernel space or individual user

space process) and define the behavior of the ring.

Additional details are included in Logical Instances Section.

A sample configuration file, targeted at a high-end IPsec box without compression, is included

in Sample Configuration File (V1) .

A.2 General Section

The general section of the configuration file contains general parameters and statistics

parameters.

A.2.1 General Parameters

The following table describes the parameters that can be included in the General section.

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 151

Please see Table 6.

Table 16. General Parameters - Earlier File Format

Parameter Description Default Range

ServicesEnabled Defines the service(s) available

(cryptographic [cyX], data

compression [dc]).

cy0;dc cyX, dc

Note: X can be 0 or 1, which

identifies one of two
available cryptographic
engines.

Note: Multiple

values permitted, use ; as the
delimiter.

cyHmacAuthMode Determines when HMAC

precomputes are done.
1 - HMAC

precomputes are done

during session initialization

- HMAC

precomputes are done

during the perform operation

Note: In general,

with this parameter set to 1,

performance is expected to
be better.

dcTotalSRAMAvailable Each PCH device has a total of

512 KB of eSRAM. The eSRAM
can be used by different services,
such as Data Compression. This

parameter tells the driver how
much of this memory to use for
the Data Compression service. A

value of 0 means, do not use any
eSRAM for the Data
Compression service; 512000

means use all the eSRAM for the
Data Compression service.

0 0 to 512000

(currently, 0 is the only
possible value, since eSRAM
is not currently supported)

Firmware_MmpPath Name of the Modular Math

Processor (MMP) firmware.

mmp_firmware.

bin
mmp_firmware.bin

Note: "Default" denotes the value in the configuration file when shipped.

A.2.2 QAT Parameters

The following table describes accelerator-specific parameters.

Note: In the following parameters, beginning AccelX..., the X can be 0 or 1 representing the
accelerator number.

Acceleration Driver Configuration File - Earlier

File Format

152 Programmer’s Guide

Table 17. General Parameters - Earlier File Format

Parameter Description Default Range

AccelXAdminBankNum

ber

Specifies the bank number for

administration request/response rings on
accelerator X, where X can be 0 or 1.

0 0 to 7

AccelXAcceleratorNum

ber

Specifies the accelerator number for

administration request/response rings for
accelerator X, where X can be 0 or 1.

0 0 or 1

AccelXAdminTx Specifies the ring number of the

administration request ring for
accelerator X, where X can be 0 or 1.

0 0

AccelXAdminRx Specifies the ring number of the

administration response ring for

accelerator X, where X can be 0 or 1.

1 1

Note: "Default" denotes the value in the configuration file when shipped.

A.2.3 Statistics Parameters

The following table shows the parameters in the configuration file, prefixed with stats, that can

be used to enable or disable certain types of statistics.

Note: There is a performance impact when statistics are enabled. In particular, the IA cost of offload
is expected to increase when statistics are enabled.

When the statistics are enabled, the collected data can be retrieved using the following

methods:

• Calling the appropriate Intel® QuickAssist Technology API function. For example,

cpaCySymQueryStats or cpaCySymQueryStats64 for symmetric cryptography. See the

Intel® QuickAssist Technology Cryptographic API Reference Manual for more information

about these functions.

• For kernel space instances, looking at entries in the /proc/dh89xxcc_devX directory,

where X is the device number. For example, /proc/ icp_dh89xxcc_dev0/cy/IPSec0 for

all statistics related to cryptography instance IPSec0, where IPSec0 is the name given to

the instance in the config file (Cy0Name = "IPSec0"). See Debug Feature for more

information.

Table 18. General Parameters - Earlier File Format

Parameter Description Default Range

statsGeneral Enables/disables statistics in general. 1 1 or 0

statsDc Enables/disables statistics for data

compression.
1 1 or 0

statsDh Enables/disables statistics for the Diffie-

Hellman algorithm.

1 1 or 0

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 153

Parameter Description Default Range

statsDrbg Enables/disables statistics for the Deterministic

Random Bit Generator (DRBG).
1 1 or 0

statsDsa Enables/disables statistics for the Digital

Signature Algorithm (DSA).
1 1 or 0

statsEcc Enables/disables statistics for Elliptic Curve

Cryptography (ECC).
1 1 or 0

statsKeyGen Enables/disables statistics for the Key

Generation algorithm.

1 1 or 0

statsLn Enables/disables statistics for the Large

Number generator.

1 1 or 0

statsPrime Enables/disables statistics for the Prime

Number detector.
1 1 or 0

statsRsa Enables/disables statistics for the RSA

algorithm.
1 1 or 0

statsSym Enables/disables statistics for symmetric

ciphers.
1 1 or 0

Note: "Default" denotes the value in the configuration file when shipped. A value of 1 indicates "enabled"; a

value of 0 indicates "disabled".

A.3 [AcceleratorX] Section

Note: A PCH device may contain 0, 1 or 2 accelerators depending on the model number. In the
configuration file, there is an [AcceleratorX] section for each accelerator.

The [AcceleratorX] section of the configuration file contains interrupt coalescing and core

affinity parameters.

A.3.1 Interrupt Coalescing Parameters

For each accelerator, the interrupt coalescing parameters in the following table can be

configured.

Table 19. General Parameters - Earlier File Format

Parameter Description Default Range

BankXInterruptCoalescingEnabled Specifies if interrupt coalescing is

enabled for ring bank X, where X is
in the range 0 to 7.

1 0 or 1

BankXInterruptCoalescingTimerNs Specifies the coalescing time, in

nanoseconds (ns), for ring bank X,
where X is in the range 0 to 7.

Note: If a value outside the range is
set, the default value is used.

10000 500 to

1048575

Acceleration Driver Configuration File - Earlier

File Format

154 Programmer’s Guide

Parameter Description Default Range

BankXInterruptCoalescingNumRespo

nses

Specifies the number of responses

that need to arrive from hardware
before the interrupt is triggered. It

can be used to maximize
throughput or adjust throughput
latency ratio.

0 (disable) 0 to 248

Note: "Default" denotes the value in the configuration file when shipped.

A.3.2 Affinity Parameters

To use core affinity, it is necessary to disable the irqbalancer service using the following

command issued from an account with root privileges:

service irqbalance stop

Each accelerator has eight ring banks (0 to 7). If the OS supports MSI-X interrupts, each ring

bank has a steerable MSI-X interrupt that may be affinitized to a particular node/core as shown

in the following figure.

Figure 31. Ring Bank Affinity to Core for MSI-X Interrupts

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 155

For each accelerator, the ring bank parameters in the following table can be configured.

Table 20. Ring Bank Affinity Parameters

Parameter Description Default Range

BankXCoreIDAffinity Defines core affinity for ring bank X,

where X is in the range 0 to 7.
0 0 to cpumax-1

Note: cpumax is

the number of
CPUs in the system.

Note: "Default" denotes the value in the configuration file when shipped.

A.4 Logical Instances Section

A logical instance allows each address domain (kernel space and individual user space

processes) to configure rings (hardware assisted queues) to be used by that address domain

and to define the behavior of that ring. See Hardware Assisted Rings and Logical Instances for

more information.

The address domains are in the following format:

• For the kernel address domain: [KERNEL]

• For user process address domains: [xxxxx], where xxxxx may be any ASCII value that

uniquely identifies the user mode process.

To allow a driver to correctly configure the logical instances associated with this user process,

the process must call the function icp_sal_userStart, passing the xxxxx string during process

initialization. When the user space process is finished, it must call the function

icp_sal_userStop to free resources. See User Space Access Configuration Functions for more

information.

The items that can be configured for a logical instance are:

• The name of the logical instance

• The accelerator associated with this logical instance

• The ring bank associated with this logical instance

• The response mode associated with this logical instance (0 for IRQ, 1 for Polled)

• The ring for receiving and the ring for transmitting

• The number of concurrent requests supported by a pair of rings on this instance (Tx and

Rx).

Note: This number affects the amount of memory allocated by the driver. Also, coalescing that is
based on the number of responses is only enabled if: 1) Time-based coalescing is enabled, 2) The
number of concurrent requests = 512256 (ring size = 16 KB) and 3)
Bank<n>InterruptCoalescingNumResponses != 0.

Acceleration Driver Configuration File - Earlier

File Format

156 Programmer’s Guide

Note: Logical instances may not share the same rings but may share a ring bank.

A.4.1 [KERNEL] Section

In the [KERNEL] section of the configuration file, information about the number and type of

kernel instances can be defined.

The following table describes the parameters that determine the number of kernel instances

for each service.

Note: The maximum number of cryptographic instances supported is 32.

Parameter Description Default Range

NumberCyInstances Specifies the number of cryptographic

instances.

Note: Depends on the number of
allocations to other services.

2 0 to 32

NumberDcInstances Specifies the number of data

compression instances.

Note: Depends on the number of

allocations to other services.

1 0 to 64

Note: "Default" denotes the value in the configuration file when shipped.

A.4.1.1 Cryptographic Logical Instance Parameters

The following table shows the parameters that can be set for cryptographic logical instances.

Table 21. Cryptographic Logical Instance Parameters - Earlier File Format

Parameter Description Default Range

CyXName Specifies the name of

cryptographic instance number X.
IPSec0 String (max. 64

characters)

CyXAcceleratorNumber Specifies the accelerator number

that the cryptographic instance
number X is assigned to.

0 0 or 1

CyXBankNumber Specifies the bank number of the

cryptographic instance number X.

for kernel space

instances

for user space
instances

0 to 8

CyXExecutionEngine Specifies the engine that

cryptographic instance number X
executes on.

0 0 or 1 (depending on the

SKU)

CyXIsPolled Specifies if cryptographic instance

number X works in poll mode or
IRQ mode.

for kernel space

instances

for user space

instances

For instance in the kernel

space:

(interrupt mode)

(poll mode)

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 157

Parameter Description Default Range

For instance in the user
space:

(interrupt mode)

(poll mode)

CyXNumConcurrentSym

Request s

Specifies the number of

cryptographic concurrent symetric
requests for cryptographic
instance number X.

512 64, 128, 256,

512, 1024, 2048

or 4096

CyXNumConcurrentAsy

mReques ts

Specifies the number of concurrent

asymmetric requests for
cryptographic instance number X.

64 64, 128, 256,

512, 1024, 2048

or 4096

CyXRingAsymTx Specifies the asymmetric request

ring number for cryptographic

instance number X.

2 for kernel

space instances

0 for user space
instances

Even number in range: 0

to 14

CyXRingAsymRx Specifies the asymmetric response

ring number for cryptographic
instance number X.

3 for kernel

space instances

1 for user space
instances

Odd number in range: 1 to

15

 Specifies the symmetric request

ring number for cryptographic

instance number X for high priority
messages.

4 for kernel

space instances

2 for user space
instances

Even number in range: 0

to 14

CyXRingSymTxLo Specifies the symmetric request

ring number for cryptographic
instance number X for low priority
messages.

5 for kernel

space instances

3 for user space
instances

Even number in range: 0

to 14

CyXRingSymRxHi Specifies the symmetric response

ring number for cryptographic

instance number X for high priority
messages.

6 for kernel

space instances

4 for user space
instances

Odd number in range: 0

to 15

CyXRingSymRxHi Specifies the symmetric response

ring number for cryptographic
instance number X for low priority
messages.

7 for kernel

space instances

5 for user space
instances

Odd number in range: 1 to

15

Note: "Default" denotes the value in the configuration file when shipped.

A.4.1.2 Data Compression Logical Instance Parameters

The following table shows the parameters in the configuration file that can be set for data

compression logical instances.

Note: The maximum number of data compression instances supported is 126.

Acceleration Driver Configuration File - Earlier

File Format

158 Programmer’s Guide

Table 22. Data Compression Logical Instance Parameters

Parameter Description Default Range

DcXName Specifies the name of data

compression instance
number X.

IPComp0 String (max. 64

characters)

DcXAcceleratorNumber Specifies the accelerator

number that the data

compression instance
number X is assigned to.

0 0 or 1

DcXBankNumber Specifies the bank number of

data compression instance
number X.

for kernel space

instances

for user space
instances

0 to 8

DcXIsPolled Specifies if data

compression instance

number X works in poll mode
or IRQ mode.

for kernel space

instances

for user space
instances

For instance in the

kernel space:

(interrupt mode)

(poll mode)

For instance in the user

space:

(interrupt mode)

(poll mode)

DcXNumConcurrentRequests Specifies the number of data

compression concurrent
requests.

512 64, 128, 256, 512,

1024, 2048 or 4096

DcXRingTx Specifies the request ring

number for data

compression instance
number X.

8 for kernel space

instances

6 for user space
instances

Even number in the

range: 0 to 14

DcXRingRx Specifies the response ring

number for data
compression instance
number X.

9 for kernel space

instances

7 for user space
instances

Odd number in the

range: 1 to 15

Note: "Default" denotes the value in the configuration file when shipped.

A.4.2 User Process Instance [xxxxx] Sections

In each [xxxxx] section of the configuration file, information about the number and type of user

process instances can be defined.

The parameters in the following table specify the number of user process instances for each

service.

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 159

Table 23. User Process Instance [xxxxx] Parameters

Parameter Description Default Range

NumberCyInstances Specifies the number of cryptographic

instances.

Note: Depends on the number of
allocations to other services.

0 0 to 32

NumberDcInstances Specifies the number of data

compression instances.

Note: Depends on the number of
allocations to other services.

0 0 to 126

Note: "Default" denotes the value in the configuration file when shipped.

Parameters for each user process instance can also be defined. The parameters that can be

included for each specific user process instance are similar to those in the Logical Instances

Section.

A.5 Sample Configuration File (V1)

The following sample configuration file is intended for a high-end IPsec box.

###

@par

This file is provided under a dual BSD/GPLv2 license. When using or

redistributing this file, you may do so under either license.

GPL LICENSE SUMMARY

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.

This program is free software; you can redistribute it and/or

modify

it under the terms of version 2 of the GNU General Public License

as

published by the Free Software Foundation.

This program is distributed in the hope that it will be useful,but

WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software

Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-

1301 # USA.

The full GNU General Public License is included in this

distribution

Acceleration Driver Configuration File - Earlier

File Format

160 Programmer’s Guide

in the file called LICENSE.GPL.

Contact Information:

Intel Corporation

BSD LICENSE

Copyright(c) 2007-2013 Intel Corporation. All rights reserved.

All rights reserved.

Redistribution and use in source and binary forms, with or without

modification, are permitted provided that the following conditions

are met:

* Redistributions of source code must retain the above copyright

 notice, this list of conditions and the following disclaimer.

* Redistributions in binary form must reproduce the above

copyright notice, this list of conditions and the following

disclaimer in the documentation and/or other materials provided

with the distribution.

* Neither the name of Intel Corporation nor the names of its

contributors may be used to endorse or promote products derived

from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND

CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,

INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF

MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE

DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT

OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,

INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS

INTERRUPTION)HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,

WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING

NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE

OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH

DAMAGE.

version: QAT1.5.L.1.10.0-65

###

This file is the configuration for a single dh89xxcc_qa

device. #

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 161

Each device has up to two accelerators.

- The client may load balance between these # accelerators.

Each accelerator has 8 independent ring banks. # - The interrupt

for each can be directed to a # specific core.

Each ring bank as 16 rings (hardware assisted queues). #

General Section ##

[GENERAL]

#ServicesEnabled = cy0;cy1;dc

ServicesEnabled = cy0;cy1;dc

Look Aside Cryptographic Configuration c

yHmacAuthMode = 1

Look Aside Compression Configuration

dcTotalSRAMAvailable = 0

#No wireless NumberOfWirelessProcs = 0

Firmware Location Configuration

Firmware_MofPath = mof_firmware.bin

Firmware_MmpPath = mmp_firmware.bin

QAT Parameters Accel0AdminBankNumber = 0

Accel0AcceleratorNumber = 0

Accel0AdminTx = 0

Accel0AdminRx = 1

Accel1AcceleratorNumber = 1

Accel1AdminBankNumber = 0

Accel1AdminTx = 0

Accel1AdminRx = 1

#Statistics, valid values: 1,0 statsGeneral = 1

statsDc = 1

statsDh = 1

statsDrbg = 1

statsDsa = 1

statsEcc = 1

statsKeyGen = 1

statsLn = 1

statsPrime = 1

statsRsa = 1

statsSym = 1

Enables or disables Single Root Complex IO Virtualization.

If this is enabled (1) then SRIOV and VT-d need to be enabled in

Acceleration Driver Configuration File - Earlier

File Format

162 Programmer’s Guide

BIOS and there can be no Cy or Dc instances created in PF (Dom0).

If this i disabled (0) then SRIOV and VT-d need to be disabled

in BIOS and Cy and/or Dc instances can be used in PF (Dom0)

SRIOV_Enabled = 0

#Debug feature, if set to 1 it enables additional entries in /proc

filesystem

ProcDebug = 1

Hardware Access Ring Bank Configuration

Each Accelerator has 8 ring banks (0-7)

If the OS supports MSI-X, each ring bank has an # steerable MSI-x

interrupt which may be

affinitized to a particular node/core. #

[Accelerator0] Bank0InterruptCoalescingEnabled = 1

Bank0InterruptCoalescingTimerNs = 10000

Bank0CoreIDAffinity = 0

Bank0InterruptCoalescingNumResponses = 0

Bank1InterruptCoalescingEnabled = 1

Bank1InterruptCoalescingTimerNs = 10000

Bank1CoreIDAffinity = 1

Bank1InterruptCoalescingNumResponses = 0

Bank2InterruptCoalescingEnabled = 1

Bank2InterruptCoalescingTimerNs = 10000

Bank2CoreIDAffinity = 0

Bank2InterruptCoalescingNumResponses = 0

Bank3InterruptCoalescingEnabled = 1

Bank3InterruptCoalescingTimerNs = 10000

Bank3CoreIDAffinity = 1

Bank3InterruptCoalescingNumResponses = 0

Bank4InterruptCoalescingEnabled = 1

Bank4InterruptCoalescingTimerNs = 10000

Bank4CoreIDAffinity = 0

Bank4InterruptCoalescingNumResponses = 0

Bank5InterruptCoalescingEnabled = 1

Bank5InterruptCoalescingTimerNs = 10000

Bank5CoreIDAffinity = 2

Bank5InterruptCoalescingNumResponses = 0

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 163

Bank6InterruptCoalescingEnabled = 1

Bank6InterruptCoalescingTimerNs = 10000

Bank6CoreIDAffinity = 4

Bank6InterruptCoalescingNumResponses = 0

Bank7InterruptCoalescingEnabled = 1

Bank7InterruptCoalescingTimerNs = 10000

Bank7CoreIDAffinity = 6

Bank7InterruptCoalescingNumResponses = 0

[Accelerator1] Bank0InterruptCoalescingEnabled = 1

Bank0InterruptCoalescingTimerNs = 10000

Bank0CoreIDAffinity = 2

Bank0InterruptCoalescingNumResponses = 0

Bank1InterruptCoalescingEnabled = 1

Bank1InterruptCoalescingTimerNs = 10000

Bank1CoreIDAffinity = 3

Bank1InterruptCoalescingNumResponses = 0

Bank2InterruptCoalescingEnabled = 1

Bank2InterruptCoalescingTimerNs = 10000

Bank2CoreIDAffinity = 1

Bank2InterruptCoalescingNumResponses = 0

Bank3InterruptCoalescingEnabled = 1

Bank3InterruptCoalescingTimerNs = 10000

Bank3CoreIDAffinity = 0

Bank3InterruptCoalescingNumResponses = 0

Bank4InterruptCoalescingEnabled = 1

Bank4InterruptCoalescingTimerNs = 10000

Bank4CoreIDAffinity = 1

Bank4InterruptCoalescingNumResponses = 0

Bank5InterruptCoalescingEnabled = 1

Bank5InterruptCoalescingTimerNs = 10000

Bank5CoreIDAffinity = 3

Bank5InterruptCoalescingNumResponses = 0

Bank6InterruptCoalescingEnabled = 1

Bank6InterruptCoalescingTimerNs = 10000

Bank6CoreIDAffinity = 5

Bank6InterruptCoalescingNumResponses = 0

Acceleration Driver Configuration File - Earlier

File Format

164 Programmer’s Guide

Bank7InterruptCoalescingEnabled = 1

Bank7InterruptCoalescingTimerNs = 10000

Bank7CoreIDAffinity = 7

Bank7InterruptCoalescingNumResponses = 0

Logical Instances Section

A logical instance allows each address domain

(kernel space and individual user space processes)

to configure rings (i.e. hardware assisted queues)

to be used by that address domain and to define the

behavior of that ring.

The address domains are in the following format

- For kernel address domains

[KERNEL]

- For user process address domains

[xxxxx]

Where xxxxx may be any ascii value which uniquely identifies

the user mode process.

To allow the driver correctly configure the

logical instances associated with this user process,

the process must call the icp_sal_userStart(...)

passing the xxxxx string during process initialisation.

When the user space process is finish it must call

icp_sal_userStop(...) to free resources.

If there are multiple devices present in the system all conf

files that describe the devices must have the same address domain

sections even if the address domain does not configure any

instances on that particular device. So if

icp_sal_userStart("xxxxx") is called

then user process address domain [xxxxx] needs to be present in

all conf files for all devices in the system.

Items configurable by a logical instance are:

- Name of the logical instance

- The accelerator associated with this logical instance

- The execution engine associated with this logical instance (For

crypto instances only)

- The ring bank associated with this logical instance.

- The response mode associated wth this logical instance (0

for IRQ or 1 for polled).

- The ring for receiving and the ring for transmitting.

- The number of concurrent requests supported by a pair of

rings on this instance (tx + rx). Note this number affects

the amount of memory allocated by the driver. Also

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 165

Bank<n>InterruptCoalescingNumResponses is only supported for

number of concurrent requests equal to 512.

Note: Logical instances may not share the same ring, but

may share a ring bank.

The format of the logical instances are:

- For crypto:

Cy<n>Name = "xxxx"

Cy<n>AcceleratorNumber = 0|1

Cy<n>ExecutionEngine = 0|1

Cy<n>BankNumber = 0-7

Cy<n>IsPolled = 0|1

Cy<n>NumConcurrentSymRequests = 64|128|256|512|1024|2048|4096

Cy<n>NumConcurrentAsymRequests = 64|128|256|512|1024|2048|4096

Cy<n>RingAsymTx = 0-14 (Even numbers only)

Cy<n>RingAsymRx = 1-15 (Odd numbers only)

Cy<n>RingSymTxHi = 0-14 (Even numbers only)

Cy<n>RingSymRxHi = 1-15 (Odd numbers only)

Cy<n>RingSymTxLo = 0-14 (Even numbers only)

Cy<n>RingSymRxLo = 1-15 (Odd numbers only)

#Note:

The value Cy<n>NumConcurrentAsymRequests will do impact to memory

consumption greatly. Below is some memory consumption data for

the configuration per instance.

128: 10M

512: 40M

1024: 78M

4096: 280M

By default, 4 kernel instances and 4 user space instances, so if

the value is set to be 4096, for pke, the memory consumption is:

(4+4)*280=2240M

- For Data Compression

Dc<n>Name = "xxxx"

Dc<n>AcceleratorNumber = 0|1

Dc<n>BankNumber = 0-7

Dc<n>IsPolled = 0|1

Dc<n>NumConcurrentRequests = 64|128|256|512|1024|2048|4096

Dc<n>RingTx = 0-14 (Even numbers only)

Dc<n>RingRx = 1-15 (Odd numbers only) #

Where:

- n is the number of this logical instance starting at 0.

- xxxx may be any ascii value which identifies the logical

instance. #

Acceleration Driver Configuration File - Earlier

File Format

166 Programmer’s Guide

Kernel Instances Section

[KERNEL]

NumberCyInstances = 4

NumberDcInstances = 2

Crypto - Kernel instance #0

Cy0Name = "IPSec0"

Cy0AcceleratorNumber = 0

Cy0ExecutionEngine = 0

Cy0BankNumber = 0

Cy0IsPolled = 0

Cy0NumConcurrentSymRequests = 512

Cy0NumConcurrentAsymRequests = 128

Cy0RingAsymTx = 2

Cy0RingAsymRx = 3

Cy0RingSymTxHi = 4

Cy0RingSymRxHi = 5

Cy0RingSymTxLo = 6

Cy0RingSymRxLo = 7

Crypto - Kernel instance #1

Cy1Name = "IPSec1"

Cy1AcceleratorNumber = 0

Cy1ExecutionEngine = 1

Cy1BankNumber = 1

Cy1IsPolled = 0

Cy1NumConcurrentSymRequests = 512

Cy1NumConcurrentAsymRequests = 128

Cy1RingAsymTx = 0

Cy1RingAsymRx = 1

Cy1RingSymTxHi = 2

Cy1RingSymRxHi = 3

Cy1RingSymTxLo = 4

Cy1RingSymRxLo = 5

Crypto - Kernel instance #2 Cy2Name = "IPSec2" Cy2AcceleratorNumber

= 1

Cy2ExecutionEngine = 0

Cy2BankNumber = 0

Cy2IsPolled = 0

Cy2NumConcurrentSymRequests = 512

Cy2NumConcurrentAsymRequests = 128

Cy2RingAsymTx = 2

Cy2RingAsymRx = 3

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 167

Cy2RingSymTxHi = 4

Cy2RingSymRxHi = 5

Cy2RingSymTxLo = 6

Cy2RingSymRxLo = 7

Crypto - Kernel instance #3 Cy3Name = "IPSec3" Cy3AcceleratorNumber

= 1

Cy3ExecutionEngine = 1

Cy3BankNumber = 1

Cy3IsPolled = 0

Cy3NumConcurrentSymRequests = 512

Cy3NumConcurrentAsymRequests = 128

Cy3RingAsymTx = 0

Cy3RingAsymRx = 1

Cy3RingSymTxHi = 2

Cy3RingSymRxHi = 3

Cy3RingSymTxLo = 4

Cy3RingSymRxLo = 5

Data Compression - Kernel instance #0

Dc0Name = "IPComp0"

Dc0AcceleratorNumber = 0

Dc0BankNumber = 0

Dc0IsPolled = 0

Dc0NumConcurrentRequests = 512

Dc0RingTx = 8

Dc0RingRx = 9

Data Compression - Kernel instance #1

Dc1Name = "IPComp1"

Dc1AcceleratorNumber = 1

Dc1BankNumber = 2

Dc1IsPolled = 0

Dc1NumConcurrentRequests = 512

Dc1RingTx = 0

Dc1RingRx = 1

User Process Instance Section

[SSL]

NumberCyInstances = 4

NumberDcInstances = 2

Crypto - User instance #0

Cy0Name = "SSL0"

Cy0AcceleratorNumber = 0

Cy0ExecutionEngine = 0

Acceleration Driver Configuration File - Earlier

File Format

168 Programmer’s Guide

Cy0BankNumber = 0

Cy0IsPolled= 1

Cy0NumConcurrentSymRequests = 512

Cy0NumConcurrentAsymRequests = 128

Cy0RingAsymTx = 10

Cy0RingAsymRx = 11

Cy0RingSymTxHi = 12

Cy0RingSymRxHi = 13

Cy0RingSymTxLo = 14

Cy0RingSymRxLo = 15

Crypto - User instance #1

Cy1Name = "SSL1"

Cy1AcceleratorNumber = 0

Cy1ExecutionEngine = 1

Cy1BankNumber = 1

Cy1IsPolled = 1

Cy1NumConcurrentSymRequests = 512

Cy1NumConcurrentAsymRequests = 128

Cy1RingAsymTx = 6

Cy1RingAsymRx = 7

Cy1RingSymTxHi = 8

Cy1RingSymRxHi = 9

Cy1RingSymTxLo = 10

Cy1RingSymRxLo = 11

Crypto - User instance #2

Cy2Name = "SSL2"

Cy2AcceleratorNumber = 1

Cy2ExecutionEngine = 0

Cy2BankNumber = 0

Cy2IsPolled= 1

Cy2NumConcurrentSymRequests = 512

Cy2NumConcurrentAsymRequests = 128

Cy2RingAsymTx = 8

Cy2RingAsymRx = 9

Cy2RingSymTxHi = 10

Cy2RingSymRxHi = 11

Cy2RingSymTxLo = 12

Cy2RingSymRxLo = 13

Crypto - User instance #3

Cy3Name = "SSL3"

Cy3AcceleratorNumber = 1

Cy3ExecutionEngine = 1

Cy3BankNumber = 1

Acceleration Driver Configuration File - Earlier File Format

Programmer’s Guide 169

Cy3IsPolled = 1

Cy3NumConcurrentSymRequests = 512

Cy3NumConcurrentAsymRequests = 128

Cy3RingAsymTx = 6

Cy3RingAsymRx = 7

Cy3RingSymTxHi = 8

Cy3RingSymRxHi = 9

Cy3RingSymTxLo = 10

Cy3RingSymRxLo = 11

Data Compression - User space instance #0

Dc0Name = "UserDC0"

Dc0AcceleratorNumber = 0

Dc0BankNumber = 2

Dc0IsPolled = 1

Dc0NumConcurrentRequests = 512

Dc0RingTx = 0

Dc0RingRx = 1

Data Compression - User space instance #1

Dc1Name = "UserDC1"

Dc1AcceleratorNumber = 1

Dc1BankNumber = 2

Dc1IsPolled = 1

Dc1NumConcurrentRequests = 512

Dc1RingTx = 2

Dc1RingRx = 3

§

Glossary

170 Programmer’s Guide

Appendix B Glossary

Table 24. Terminology

Term Description

ADF Acceleration Driver Framework

AHCI Advanced Host Controller Interface

AP Application Processor

ASIC Application Specific Integrated Circuit

Crystal Beach Codename for a set of chipset functions that allows discrete PCI Express* (PCIe*)

adapters to achieve higher performance.

DID Device ID

DMA Direct Memory Access

DTLS Datagram Transport Layer Security

DRAM Dynamic Random Access Memory

DRGB Deterministic Random Bit Generator

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

EHCI Enhanced Host Controller Interface

EVP Envelope (OpenSSL* high-level cryptographic functions)

GbE Gigabit Ethernet

Gladden Codename for an Intel® architecture mobile CPU

GPIO General Purpose Input Output

GPL General Public License

IBV Independent BIOS Vendor

LPC Low Pincount Interface

MGF Mask Generation Function

MSI Message Signaled Interrupts

NRBG Non-deterministic Random Number Generator

PCH Platform Controller Hub. In this manual, a Intel® Communications Chipset 8900 to

8920 Series device that includes standard interfaces and accelerator and I/O
interfaces.

RCiEP Root Complex Integrated Endpoint

RTOS Real Time Operating System

SAL Service Access Layer

SATA Serial Advanced Technology Attachment

SGL Scatter Gather List

Glossary

Programmer’s Guide 171

Term Description

SIO Serial I/O

SMBus System Management Bus

SoC System-on-a-Chip

SPI Serial Peripheral Interconnect

SR-IOV Single Root I/O Virtualization

SSL Secure Sockets Layer

TLS Transport Layer Security

TRNG True Random Number Generator

UART Universal Asynchronous Receiver/Transmitter

UEFI Unified Extensible Firmware Interface

UHCI Universal Host Controller Interface

USB Universal Serial Bus

VPN Virtual Private Network

WDT Watch Dog Timer

§

	1 Introduction
	1.1 Terminology
	1.2 Document Organization
	1.3 Product Documentation
	1.4 Typographical Conventions

	2 Platform Overview
	2.1 Platform Synopsis
	2.2 Determining the PCH SKU Type
	2.2.1 Example

	2.3 Determining the PCH Device Stepping
	2.3.1 Example

	3 Software Overview
	3.1 High-Level Software Architecture Overview
	3.2 Logical Instances
	3.2.1 Response Processing
	3.2.1.1 Interrupt Mode
	3.2.1.2 Polled Mode

	3.3 Operating System Support
	3.4 OpenSSL* Library Inclusion and Usage
	3.5 Support for Multiple Acceleration Hardware Generations
	Software Architecture
	Software Packaging
	Build Installation Details

	4 Acceleration Drivers Overview
	4.1 Hardware Assisted Rings
	4.2 Basic Software Context for Acceleration Drivers
	4.3 Linux* Software Context for Acceleration Drivers
	4.4 Acceleration Drivers
	4.4.1 Framework Overview
	4.4.2 Service Access Layer
	4.4.3 Acceleration Driver Framework
	4.4.4 Acceleration Driver Configuration File
	4.4.5 Utility for Loading Configuration Files and Sending Events to the Driver - adf_ctl
	Usage
	Device Enumeration

	4.5 Acceleration Architecture in Kernel and User Space
	4.5.1 User Space Memory Allocation
	4.5.1.1 Accelerator Driver Memory Allocation
	4.5.1.2 Application Payload Memory Allocation

	4.5.2 User Space Additional Functions
	4.5.3 User Space Configuration
	4.5.4 User Space Response Processing
	4.5.4.1 User Space Interrupt Mode
	4.5.4.2 User Space Polled Mode

	4.6 Managing Acceleration Devices Using qat_service
	4.7 Intel® QuickAssist Technology Entries in the /proc Filesystem
	4.8 Debug Feature
	4.9 Heartbeat Feature and Recovery from Hardware Errors
	4.9.1 How to Call the Heartbeat Query
	4.9.1.1 User Proc Entry Read (not Enabled by Default)
	4.9.1.2 User Application Heartbeat APIs (not Enabled by Default)

	4.9.2 Handling Heartbeat Failures
	4.9.3 AER and Uncorrectable Errors
	4.9.4 Handling Device Failures in a Virtualized Environment
	4.9.5 GbE Watchdog Service
	4.9.6 Special Considerations When Using the Heartbeat Feature and the GbE Watchdog Service

	4.10 Driver Threading Model
	4.10.1 Thread-less Mode

	4.11 Compression Status Codes
	4.11.1 Intel® QuickAssist Technology Compression API Errors

	4.12 Stateful Compression - Dealing with Error Code CPA_DC_BAD_LITLEN_CODES (-7)
	4.12.1 Example of a Stream that Triggers Error Code (-7)
	4.12.2 Special Case when a Packet Cuts a Header in the Stream
	4.12.3 Pseudo Code for Handling Error Code -7
	4.12.4 Unprocessed Data During Stateful Decompression Operations

	4.13 Stateful Compression Level Details
	4.14 Stateless Compression Level Details
	4.15 Acceleration Driver Error Scenarios
	4.15.1 User Space Process Crash
	4.15.2 Hardware Hang Detected by Heartbeat
	4.15.3 Hardware Error Detected by AER
	4.15.4 Virtualization: User Space Process Crash (in Guest OS)
	4.15.5 Virtualization: Guest OS Kernel Crash
	4.15.6 Virtualization: Hardware Hang Detected by Heartbeat
	4.15.7 Virtualization: Hardware Hang Detected by AER

	4.16 Build Flag Summary
	4.17 Running Applications as Non-Root User
	4.18 Compiling Acceleration Software on Older Kernels
	4.19 Compiling with Debug Symbols
	4.20 Acceleration Driver Return Codes

	5 Acceleration Driver Configuration File
	5.1 Configuration File Overview
	5.2 General Section
	5.2.1 General Parameters
	5.2.2 Statistics Parameters
	5.2.3 Optimized Firmware for Wireless Applications

	5.3 Logical Instances Section
	5.3.1 [KERNEL] Section
	5.3.1.1 Cryptographic Logical Instance Parameters
	5.3.1.2 Data Compression Logical Instance Parameters

	5.3.2 [DYN] Section
	5.3.2.1 Dynamic Instance Configuration Example

	5.3.3 User Process [xxxxx] Sections
	5.3.3.1 Maximum Number of Process Calculations

	5.4 Configuring Multiple PCH Devices in a System
	5.5 Configuring Multiple Processes on a Multiple-Device System
	5.6 Sample Configuration File (V2)
	5.7 Configuration File Version 2 Differences

	6 Secure Architecture Considerations
	6.1 Terminology
	6.1.1 Threat Categories
	6.1.2 Attack Mechanism
	6.1.3 Attacker Privilege
	6.1.4 Deployment Models

	6.2 Threat/Attack Vectors
	6.2.1 General Mitigation
	6.2.2 General Threats
	6.2.2.1 DMA
	6.2.2.2 Intentional Modification of IA Driver
	6.2.2.3 Modification of Intel® QuickAssist Accelerator Firmware
	6.2.2.4 Modification of the PCH Configuration File
	6.2.2.5 Malicious Application Code
	6.2.2.6 Contrived Packet Stream

	6.2.3 Threats Against the Cryptographic Service
	6.2.3.1 Reading and Writing of Cryptographic Keys
	6.2.3.2 Modification of Public Key Firmware
	6.2.3.3 Failure of the Entropy Source for the Random Number Generator
	6.2.3.4 Interference Among Users of the Random Number Service

	6.2.4 Data Compression Service Threats
	6.2.4.1 Read/Write of Save/Restore Context
	6.2.4.2 Stateful Behavior
	6.2.4.3 Incomplete or Malformed Huffman Tree
	6.2.4.4 Contrived Packet Stream

	7 Supported APIs
	7.1 Intel® QuickAssist Technology APIs
	7.1.1 Intel® QuickAssist Technology API Limitations
	7.1.1.1 Resubmitting After Getting an Overflow Error
	Stateful
	Stateless

	7.1.1.2 Dynamic Compression for Data Compression Service
	7.1.1.3 Maximal Expansion with Auto Select Best Feature for Data Compression Service
	7.1.1.4 Maximal Expansion and Destination Buffer Size

	7.1.2 Data Plane APIs Overview
	7.1.2.1 IA Cycle Count Reduction When Using Data Plane APIs
	7.1.2.2 Usage Constraints on the Data Plane APIs
	7.1.2.3 Cryptographic and Data Compression API Descriptions

	7.2 Additional APIs
	7.2.1 Dynamic Instance Allocation Functions
	7.2.1.1 icp_sal_userCyGetAvailableNumDynInstances
	7.2.1.1.1 Syntax
	7.2.1.1.2 Parameters
	7.2.1.1.3 Return Value
	Code Meaning

	7.2.1.2 icp_sal_userDcGetAvailableNumDynInstances
	7.2.1.2.1 Syntax
	7.2.1.2.2 Parameters
	7.2.1.2.3 Return Value
	Code Meaning

	7.2.1.3 icp_sal_userCyInstancesAlloc
	7.2.1.3.1 Syntax
	7.2.1.3.2 Parameters
	7.2.1.3.3 Return Value
	Code Meaning

	7.2.1.4 icp_sal_userDcInstancesAlloc
	7.2.1.4.1 Syntax
	7.2.1.4.2 Parameters
	7.2.1.4.3 Return Value
	Code Meaning

	7.2.1.5 icp_sal_userCyFreeInstances
	7.2.1.5.1 Syntax
	7.2.1.5.2 Parameters
	7.2.1.5.3 Return Value
	Code Meaning

	7.2.1.6 icp_sal_userDcFreeInstances
	7.2.1.6.1 Syntax
	7.2.1.6.2 Parameters
	7.2.1.6.3 Return Value
	Code Meaning

	7.2.1.7 icp_sal_userCyGetAvailableNumDynInstancesByDevPkg
	7.2.1.7.1 Syntax
	7.2.1.7.2 Parameters
	7.2.1.7.3 Return Value
	Code Meaning

	7.2.1.8 icp_sal_userDcGetAvailableNumDynInstancesByDevPkg
	7.2.1.8.1 Syntax
	7.2.1.8.2 Parameters
	7.2.1.8.3 Return Value
	Code Meaning

	7.2.1.9 icp_sal_userCyInstancesAllocByDevPkg
	7.2.1.9.1 Syntax
	7.2.1.9.2 Parameters
	7.2.1.9.3 Return Value
	Code Meaning

	7.2.1.10 icp_sal_userDcInstancesAllocByDevPkg
	7.2.1.10.1 Syntax
	7.2.1.10.2 Parameters
	7.2.1.10.3 Return Value
	Code Meaning

	7.2.1.11 icp_sal_userCyGetAvailableNumDynInstancesByPkgAccel
	7.2.1.11.1 Syntax
	7.2.1.11.2 Parameters
	7.2.1.11.3 Return Value
	Code Meaning

	7.2.1.12 icp_sal_userCyInstancesAllocByPkgAccel
	7.2.1.12.1 Syntax
	7.2.1.12.2 Parameters
	7.2.1.12.3 Return Value
	Code Meaning

	7.2.2 IOMMU Remapping Functions
	7.2.2.1 icp_sal_iommu_get_remap_size
	7.2.2.1.1 Syntax
	7.2.2.1.2 Parameters
	7.2.2.1.3 Return Value

	7.2.2.2 icp_sal_iommu_map
	7.2.2.2.1 Syntax
	7.2.2.2.2 Parameters
	7.2.2.2.3 Return Value
	Code Meaning

	7.2.2.3 icp_sal_iommu_unmap
	7.2.2.3.1 Syntax
	7.2.2.3.2 Parameters
	7.2.2.3.3 Return Value
	Code Meaning

	7.2.2.4 IOMMU Remapping Function Usage

	7.2.3 Polling Functions
	7.2.3.1 icp_sal_pollBank
	7.2.3.1.1 Syntax
	7.2.3.1.2 Parameters
	7.2.3.1.3 Return Value
	Code Meaning

	7.2.3.2 icp_sal_pollAllBanks
	7.2.3.2.1 Syntax
	7.2.3.2.2 Parameters
	7.2.3.2.3 Return Value
	Code Meaning

	7.2.3.3 icp_sal_CyPollInstance
	7.2.3.3.1 Syntax
	7.2.3.3.2 Parameters
	7.2.3.3.3 Return Value
	Code Meaning

	7.2.3.4 icp_sal_DcPollInstance
	7.2.3.4.1 Syntax
	7.2.3.4.2 Parameters
	7.2.3.4.3 Return Value
	Code Meaning

	7.2.3.5 icp_sal_CyPollDpInstance
	7.2.3.5.1 Syntax
	7.2.3.5.2 Parameters
	7.2.3.5.3 Return Value
	Code Meaning

	7.2.3.6 icp_sal_DcPollDpInstance
	7.2.3.6.1 Syntax
	7.2.3.6.2 Parameters
	7.2.3.6.3 Return Value
	Code Meaning

	7.2.4 Random Number Generation Functions
	7.2.4.1 icp_sal_drbgGetEnropyInputFuncRegister
	7.2.4.1.1 Syntax
	7.2.4.1.2 Parameters
	7.2.4.1.3 Return Value
	7.2.4.1.4 Sample Code

	7.2.4.2 icp_sal_drbgGetInstance
	7.2.4.2.1 Syntax
	7.2.4.2.2 Parameters
	7.2.4.2.3 Return Value

	7.2.4.3 icp_sal_drbgGetNonceFuncRegister
	7.2.4.3.1 Syntax
	7.2.4.3.2 Parameters
	7.2.4.3.3 Return Value
	7.2.4.3.4 Sample Code

	7.2.4.4 icp_sal_drbgHTGenerate
	7.2.4.4.1 Syntax
	7.2.4.4.2 Parameters
	7.2.4.4.3 Return Value
	Code Meaning

	7.2.4.5 icp_sal_drbgHTGetTestSessionSize
	7.2.4.5.1 Syntax
	7.2.4.5.2 Parameters
	7.2.4.5.3 Return Value
	Code Meaning

	7.2.4.6 icp_sal_drbgHTInstantiate
	7.2.4.6.1 Syntax
	7.2.4.6.2 Parameters
	7.2.4.6.3 Return Value
	Code Meaning

	7.2.4.7 icp_sal_drbgHTReseed
	7.2.4.7.1 Syntax
	7.2.4.7.2 Parameters
	7.2.4.7.3 Return Value
	Code Meaning

	7.2.4.8 icp_sal_drbgIsDFReqFuncRegister
	7.2.4.8.1 Syntax
	7.2.4.8.2 Parameters
	7.2.4.8.3 Return Value
	7.2.4.8.4 Sample Code

	7.2.4.9 icp_sal_nrbgHealthTest
	7.2.4.9.1 Syntax
	7.2.4.9.2 Parameters
	7.2.4.9.3 Return Value
	Code Meaning

	7.2.4.9.4 Sample Code

	7.2.4.10 DRBG Health Test and cpaCyDrbgSessionInit Implementation Detail

	7.2.5 User Space Access Configuration Functions
	7.2.5.1 icp_sal_userStart
	7.2.5.1.1 Syntax
	7.2.5.1.2 Parameters
	7.2.5.1.3 Return Value
	Code Meaning

	7.2.5.1.4 Notes

	7.2.5.2 icp_sal_userStartMultiProcess
	7.2.5.2.1 Syntax
	7.2.5.2.2 Parameters
	7.2.5.2.3 Return Value
	Code Meaning

	7.2.5.2.4 icp_sal_userStartMultiProcess Usage

	7.2.5.3 icp_sal_userStop
	7.2.5.3.1 Syntax
	7.2.5.3.2 Parameters
	7.2.5.3.3 Return Value
	7.2.5.3.4 Code Meaning
	7.2.5.3.5 Notes

	7.2.6 User Space Heartbeat Functions
	7.2.6.1 icp_sal_check_device
	7.2.6.1.1 Syntax
	7.2.6.1.2 Parameters
	7.2.6.1.3 Return Value
	Code Meaning

	7.2.6.1.4 Notes

	7.2.6.2 icp_sal_check_all_devices
	7.2.6.2.1 Syntax
	7.2.6.2.2 Parameters
	7.2.6.2.3 Return Value
	Code Meaning

	7.2.7 Version Information Function
	7.2.7.1 icp_sal_getDevVersionInfo
	7.2.7.1.1 Syntax
	7.2.7.1.2 Parameters
	7.2.7.1.3 Return Value
	Code Meaning

	7.2.8 Reset Device Function
	7.2.8.1 icp_sal_reset_device
	7.2.8.1.1 Syntax
	7.2.8.1.2 Parameters
	7.2.8.1.3 Return Value
	Code Meaning

	7.2.9 Thread-less APIs
	7.2.9.1 icp_sal_poll_device_events
	7.2.9.1.1 Syntax
	7.2.9.1.2 Parameters
	7.2.9.1.3 Return Value
	Code Meaning

	7.2.9.2 icp_sal_find_new_devices
	7.2.9.2.1 Syntax
	7.2.9.2.2 Parameters
	7.2.9.2.3 Return Value
	Code Meaning

	8 Application Usage Guidelines
	8.1 Mapping Service Instances to Hardware Accelerators on the PCH
	8.1.1 Processor and PCH Device Communication
	8.1.2 Service Instances and Interaction with the Hardware
	8.1.3 Service Instance Configuration
	8.1.4 Guidelines for Using Multiple Intel® QuickAssist Instances for Load Balancing in Cryptography Applications

	8.2 Cryptography Applications
	8.2.1 IPsec and SSL VPNs
	8.2.2 Encrypted Storage
	8.2.3 Web Proxy Appliances

	8.3 Data Compression Applications
	8.3.1 Compression for Storage
	8.3.2 Data Deduplication and WAN Acceleration

	Appendix A Acceleration Driver Configuration File - Earlier File Format
	A.1 Configuration File Overview
	A.2 General Section
	A.2.1 General Parameters
	A.2.2 QAT Parameters
	A.2.3 Statistics Parameters
	A.3 [AcceleratorX] Section
	A.3.1 Interrupt Coalescing Parameters
	A.3.2 Affinity Parameters
	A.4 Logical Instances Section
	A.4.1 [KERNEL] Section
	A.4.1.1 Cryptographic Logical Instance Parameters
	A.4.1.2 Data Compression Logical Instance Parameters
	A.4.2 User Process Instance [xxxxx] Sections
	A.5 Sample Configuration File (V1)
	Appendix B Glossary

