

Software Design Example for Configuration via

Avalon-ST (AVST) Scheme

Date: December 2019

Revision: 1.0

Intel Corporation. All rights reserved. Agilex, Altera, Arria, Cyclone, Enpirion, Intel, the Intel logo, MAX, Nios,
Quartus and Stratix words and logos are trademarks of Intel Corporation or its subsidiaries in the U.S.
and/or other countries. Intel warrants performance of its FPGA and semiconductor products to current
specifications in accordance with Intel's standard warranty, but reserves the right to make changes to any
products and services at any time without notice. Intel assumes no responsibility or liability arising out of
the application or use of any information, product, or service described herein except as expressly agreed to
in writing by Intel. Intel customers are advised to obtain the latest version of device specifications before
relying on any published information and before placing orders for products or services. *Other names and
brands may be claimed as the property of others.

Page 2 of 13

Contents

1 Introduction ... 3

2 Prerequisite ... 4

3 Hardware and Software Requirements ... 4

3.1 Hardware Requirements ... 4

3.2 Software Requirements ... 4

4 Block Diagram ... 5

5 FPGA Configuration Bitstream .. 6

6 Software Flow Diagram ... 6

7 Using the Design Example .. 8

7.1 Install the Design Example Files ... 8

7.2 Running the Design ... 8

7.3 Hardware Design Compilation .. 10

7.4 Software Design Compilation .. 10

7.5 Bitstream Files Conversion ... 11

8 Revision History .. 13

Page 3 of 13

1 Introduction
The Avalon-ST configuration scheme is the fastest configuration scheme for Intel Stratix 10 FPGA, in

which it replaces the FPP mode in previous device families. This scheme requires an external host to drive

the configuration process. The external host can be a microprocessor or a hardware logic controller. The

host is responsible for:

• Initiate the FPGA configuration

• Transfer the configuration data (or bitstream) from some external non-volatile memory (such as

flash) to the FPGA

• Monitor the FPGA enter usermode successfully

Intel provides the hardware controller intellectual property (IP) for use with Avalon-ST scheme, namely the

Intel FPGA Parallel Flash Loader II (PFL II). This IP is usually programmed to a CPLD device which

connects with the FPGA. Such CPLD includes MAX II, MAX V or MAX 10 devices. To read more about the

PFL II, refer to the Intel Stratix 10 Configuration User Guide.

You may use a general-purpose microprocessor as the Avalon-ST external host. The Avalon-ST signals

on the FPGA end shall be connected to the general purpose I/O (GPIO) of the microprocessor. Since the

microprocessor does not have hardware logic that can perform the configuration, the control and execution

flow shall be implemented using software code.

In this design, we demonstrate how to configure the Stratix 10 FPGA using embedded software for

microprocessor. To illustrate the example, we use the Nios II processor as the host to perform the Stratix

10 configuration. This design is based on the Intel Stratix 10 SoC FPGA development kit. The Nios II

processor that we use is programmed onto the MAX10 device on the board, in which it serves as system

controller for the development kit. Nios II reads the Stratix 10 configuration image from the flash and send

to the Stratix 10 via the AVST x16 interface, as highlighted in the box of Figure 1.

This software example is written for Nios II processor; however, it should be portable to other

microprocessor architecture by modifying the source codes.

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-config.pdf

Page 4 of 13

Figure 1. Stratix 10 SoC development kit block diagram

2 Prerequisite
You need to have knowledge in Avalon-ST configuration scheme as outline in Intel Stratix 10 Configuration

User Guider, to be familiar with this design example. As this example is developed with Nios II processor,

you may find more related information in the Nios II Software Developer Handbook.

Related information:

• Intel Stratix 10 Configuration User Guide

• Nios II Software Developer Handbook

3 Hardware and Software Requirements

3.1 Hardware Requirements
This design requires the following hardware:

• Stratix 10 SoC FPGA Development Kit Revision A (which has the CFI flash being mounted on

board at U44 and U45)

• Micro USB cable for programming the device

3.2 Software Requirements
To program the CFI flash, download Nios II design to MAX10, and compile Nios II software code, use

• Quartus Prime version 19.1.0 Standard Edition and above

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-config.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/nios2/n2sw_nii5v2gen2.pdf

Page 5 of 13

4 Block Diagram
Figure 2 shows the design example hardware block diagram. The Nios II processor subsystem consists of

the on-chip memory and general purpose I/O. The software code resides on the memory and the I/O are

used to interface with the flash memory and Stratix 10 Avalon-ST interface. This complete processor

subsystem is programmed onto the MAX10.

Figure 2: Design example block diagram

If you are migrating this example to another hardware platform, here are the requirements on the system:

1. Input-Output (I/O) pins to interface with the FPGA Configuration and Avalon-ST interface signals as

shown in Table 1.

Signal Name Direction (with

reference to Stratix 10)

Description

nSTATUS Output Assert when configuration error

happened

nCONFIG Input Input to start configuration

CONF_DONE Output Assert when configuration is completed

MSEL[2:0]1 Input Configuration mode selection

AVST_READY Output Assert when the FPGA Avalon-ST

interface is ready to receive data

AVST_VALID Input Assert by the host to FPGA for indicating

valid data cycle

AVST_DATA[31:0] or

[15:0] or [7:0]2

Input Avalon-ST data bus

AVST_CLK Input Clock which is provided by the host to

FPGA Avalon-ST interface. Require to

clock all the Avalon-ST signals.

Table 1: FPGA Configuration and Avalon-ST Signals

Note to the table:

1 MSEL should be set to 000, 101 or 110 for Avalon-ST x32, x16 or x8 correspondingly.

2 AVST_DATA bus width equals to the Avalon-ST mode being chosen namely Avalon-ST x32, x16 or x8.

For more information, refer to Chapter 3.1 Avalon-ST Configuration of Intel Stratix 10 Configuration User

Guide

Nios® II

Processor

On-Chip

Memory

General

Purpose

I/O

General

Purpose

I/O

Flash Memory

MAX 10

https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-config.pdf
https://www.intel.com/content/dam/www/programmable/us/en/pdfs/literature/hb/stratix-10/ug-s10-config.pdf

Page 6 of 13

2. Flash memory which is used to store the configuration bitstream file and is accessible by the

microprocessor. You need flash programming tool to store the bitstream file into the flash memory.

5 FPGA Configuration Bitstream
You should use the raw binary file (RBF) with the Avalon-ST configuration scheme via external host such

as microprocessor. You can program the RBF file into flash memory via the programmer that supports it.

The external host retrieves the configuration data from the flash during the Avalon-ST configuration

process.

You obtain the RBF file by converting your Stratix 10 project from SOF file to RBF. In this example, we use

the Quartus Programmer to program the RBF into the CFI flash. See section 7.5 of this document for

instructions of RBF conversion and flash programming.

6 Software Flow Diagram
Figure 3 shows the software flow diagram of the design example. This section highlights the software flow

in general to perform the Avalon-ST configuration.

Page 7 of 13

Figure 3: Avalon-ST Software Flow Diagram

The Avalon-ST configuration software example reads the whole bitstream in RBF from flash and send to

the FPGA. Hence, the RBF file size in total number of bytes should be defined in the software. Likewise,

the flash offset of the RBF first byte of data should be defined.

Page 8 of 13

The configuration is initiated by driving the nCONFIG signal to LOW (0) and monitor the nSTATUS change

to LOW. Next drive the nCONFIG to HIGH (1) and followed by monitoring the nSTATUS signal change to

HIGH, otherwise keep waiting. There is an erratum for Stratix 10 on unexpected AVST_READY signal

behavior after power-on-reset. After powering up the FPGA device power supplies in the proper sequence,

the device asserts a Power-On-Reset (POR). When you drive the nCONFIG pin high, subsequently

the nSTATUS pin goes high. If you use either of the Avalon-ST configuration scheme(s) (32/16/8 bits), you

may notice an unexpected low pulse (20 to 100 µs) on AVST_READY pin. Hence, additional delay in

software is used to mitigate this erratum and ensure the FPGA is truly ready. See the errata for more

information.

The Avalon-ST clock is toggled (drive AVST_CLK HIGH and to LOW) and then check nSTATUS to ensure

the FPGA is ready before we start. Next, retrieve the bitstream from flash and set it to the AVST_DATA

bus. If the AVST_READY signal is LOW then the process is repeated.

Once the AVST_READY signal is HIGH, proceed to set the AVST_VALID to HIGH followed by toggling the

AVST_CLK, and finally set the AVST_VALID to LOW. This whole process is to set the data on the

AVST_DATA bus to be valid, so the FPGA will capture that. When this is done, the flash address pointer

shall be incremented to continue with the next bitstream data. This entire process is repeated until the last

data in the RBF file is sent to the FPGA.

Finally, the CONFDONE signal is monitored until it is HIGH which indicate the FPGA configuration is done

and we can safely end the process. While the CONFDONE is LOW, you should continue toggle the

AVST_CLK.

7 Using the Design Example

7.1 Install the Design Example Files
Before you start, download the design example from Design Store and restore the project to your

<project_directory>.

1. quartus_sh --platform_install –package <your directory>/avst_config_sw_de.par

2. quartus_sh --platform -name avst_config_sw_de -output <project_directory>

7.2 Running the Design
This section describes the instructions to run the design example using the prebuilt binary files. The next

sections cover the steps to re-compile both the hardware and software designs.

This design example demonstrates the FPGA configuration process. The design being configured is an

LED blinker application, hence at the end of these instructions you should see the FPGA configuration is

successful and the LEDs on the board are blinking.

1. Setup the Stratix 10 SoC board:

a. Switch SW1: Set the second bit (M10B) to OFF, and the remaining bits all to ON

b. Switch SW2: Set MSEL to ON-OFF-ON-ON (AVSTx16 configuration mode)

c. Connect micro USB cable to J57

d. Turn on board SW7

2. Launch Quartus Prime version 19.1.0 Standard Edition

a. Click Tools -> Programmer

https://www.intel.com/content/www/us/en/programmable/documentation/rfk1517437380831.html#cjb1542221175621

Page 9 of 13

b. Click Auto Detact, select 10M50DA if prompted

3. Program the CFI flash with Stratix 10 configuration image. This step is only needed for once, or when you

need re-program new configuration image into flash

a. Right click on CFI_1Gb, and select Change File

b. Browse to <project_directory>/prebuilt_binary and choose s10_led_hex.pof

c. Check Program/Configure box

d. Click Start. See Figure 4 for the Programmer setup.

e. Wait for the CFI flash programming to complete. This will program the Stratix 10 configuration

image into the flash.

Figure 4: Programming CFI Flash with Stratix 10 Design Bitstream

4. Program the MAX10 with this design example

a. Power off and on the board (if you continue from step 3)

b. Make sure the Program/Configure box for CFI_1Gb is unchecked

c. Right click on 10M50DA, and select Change File

d. Browse to <project_directory>/prebuilt_binary and choose max10_system.sof

e. Check Program/Configure box

f. Click Start. Figure 5 shows the setup in Programmer.

Figure 5: Program MAX10 with the Hardware Design

Page 10 of 13

5. Launch Nios II software

a. Launch Nios II Command Shell (use the Windows search to find the shell executable)

b. Change directory to <project_directory>/prebuilt_binary

c. Type nios2-download -g nios_software.elf && nios2-terminal

This will download the NIos II software and open the JTAG UART terminal.

You should see the following messages in the shell upon configuration successful.

On the development kit, you should see LEDs (D21, D23, D25, D27) under USER_FPGA blinking.

7.3 Hardware Design Compilation
This section describes the instructions to re-compile the hardware design in Quartus Prime. The focus is

on the Nios II processor design (which target the MAX10).

1. Launch Quartus Prime version 19.1.0 Standard Edition

2. Click File -> Open Project and navigate to <project_directory>/ and open top.qpf

3. Click Processing -> Start Compilation to start the compilation

4. You find the re-compile SOF file in <project_directory>/output_files directory

5. Optional step:

a. To view the Nios II subsystem, click Tools -> Platform Designer

b. In Platform Designer, browse to <project_directory>/ and open nios_avst_cfi.qsys

7.4 Software Design Compilation
This section describes the instructions to re-compile the Nios II software program into executable (.elf file).

1. Launch the Nios II Command Shell

$ nios2-download -g nios_software.elf && nios2-terminal

Using cable "Stratix 10L SoC Dev Kit [USB-1]", device 1, instance 0x00

Pausing target processor: OK

Initializing CPU cache (if present)

OK

Downloaded 30KB in 0.0s

Verified OK

Starting processor at address 0x01020238

nios2-terminal: connected to hardware target using JTAG UART on cable

nios2-terminal: "Stratix 10L SoC Dev Kit [USB-1]", device 1, instance 0

nios2-terminal: (Use the IDE stop button or Ctrl-C to terminate)

Start FPGA Configuration

CONF_DONE is high

AVST Configuration completed successfully

Page 11 of 13

2. In the shell, change directory to <project_directory>/software/

3. Change the script files to executable permission:

a. chmod +x nios_software/create-this-app

b. chmod +x nios_software_bsp/create-this-bsp

4. Change directory to <project_directory>/software/nios_software/

5. Run the create-this-app script by typing ./create-this-app

6. You find the executable file nios_software.elf at <project_directory>/software/nios_software/

7. Repeat the steps in section 7.2 to program the MAX10 and run the Nios II software

7.5 Bitstream Files Conversion
This section discusses how to convert your Stratix 10 design into the RBF file should you wish to replace

the LED blinker image with your design.

It is important to ensure that your Stratix 10 Quartus project is set to AVST as your configuration scheme:

1. Click Assignments -> Device

2. Select Device and Pin Options

3. In the Configuration category, choose AVST x16 (or AVST x8/x32) under “Configuration Scheme”

drop-down.

When you successfully compile your Quartus project, you should observe SOF file in your

project/output_files directory. The following steps illustrate how to convert SOF to RBF using command

line tools.

1. Launch the Nios II Command Shell

2. In the shell, navigate to your Stratix 10 project/output_files directory

3. In the shell, type quartus_pfg -c <your sof file name> <output rbf name>

4. You find the rbf file in the same directory

You use the obtained rbf file from above and program to the flash memory via the programming tool of
your choice. In this example, we are using the Quartus Programmer tool to program the CFI flash on the
Stratix 10 development kit.

The Quartus Programmer tool does not program RBF file directly to CFI flash, and the following steps
illustrate how to further convert the RBF file to POF file. Note that this is not needed if your flash
programming tool is able to program the raw binary (RBF) directly onto your flash.
1. Convert the RBF to Intel HEX file. You may use software tools like srec_cat (from SRecord package)

for this. The following is the actual command for srec_cat

a. srec_cat.exe <rbf file> -binary -output <Intel hex file> -Intel

2. Once you have the Intel HEX file, go to Quartus File -> Programming File Generator

Page 12 of 13

3. In the Output Files tab, choose your output directory and the output file name. Make sure to check

Programmer Object File (.pof) box. The complete setup is shown in Figure 6.

4. Next, on to the Input Files tab, click Add Raw Data. Browse to the HEX file that you created in Step 1.

5. Next, on to the Configuration Device tab, click Add Device. Select your flash memory from the list of

devices. In this example, we are using the CFI 1Gb flash. Click OK to finish.

6. Select the device that you added, click Add Partition. You may leave the partition name as default

value. Select the Input file as the HEX file you are using. The complete setup is shown in Figure 7.

7. Click Generate when you are done. You observe the output POF file generated in your directory.

8. Repeat Step 2 in section 7.2 to program the generated POF onto the CFI Flash via Quartus

Programmer.

Figure 6: Output Files Setting in Programming File Generator

Page 13 of 13

Figure 7: Create partition for flash device

8 Revision History
Revision Description

1.0 Initial version

