
 ́ ̉ ̉ ́ ̉Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Modifying the Assignment &
Configuration File with the setacf Utility

Modifying the Assignment & Configuration File with
the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Compiling the alt_mf Library

Compiling the alt_mf Library
If your VHDL design uses functions from the alt_mf library, you must compile this library. To compile the alt_mf
library, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Cadence Working Environment. For example, you must ensure that the appropriate directories are
specified in the cds.lib file located in your working directory.

2. Change to the alt_mf directory by typing cd /usr/maxplus2/simlib/concept/alt_mf at the UNIX
prompt.

3. Edit the hdl.var file located in your working directory to include the following line:

DEFINE work alt_mf

4. Type the following commands at the UNIX prompt from the /usr/maxplus2/simlib/concept/alt_mf directory
to compile the library:

cv -message -file ./src/mf.vhd
cv -message -file ./src/mf_components.vhd

<<<<<<< alt_mf.htm

Technical Feedback

=======

Feedback

>>>>>>> 1.7

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Compiling the VITAL Library for Use
with Leapfrog Software

Compiling the VITAL Library for Use with Leapfrog
Software

If you wish to use MAX+PLUS® II-generated Standard Delay Format (SDF) Output Files (.sdo) that contain
timing information when performing post-compilation timing simulation with Leapfrog software, you must first
compile the VITAL library source files. The VITAL Timing and Primitive package files are located in the
$CDS_INST_DIR/tools/leapfrog/files/IEEE.src directory.

To compile the alt_vtl library, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment. For example, you must ensure that the appropriate directories are
specified in the cds.lib file that is located in your working directory.

2. Create a VHDL design, as described in Creating VHDL Designs for Use with MAX+PLUS II Software and
save it in your working directory.

3. Change to the alt_vtl directory by typing cd /usr/maxplus2/simlib/concept/alt_vtl at the UNIX
prompt.

4. Edit the hdl.var file located in your working directory to include the following line:

DEFINE WORK alt_vtl

5. Create the /usr/maxplus2/simlib/concept/alt_vtl/lib directory.

6. Type the following commands at the UNIX prompt from the /usr/maxplus2/simlib/concept/alt_vtl directory
to compile the library:

cv -message -file alt_vtl.vhd
cv -message -file alt_vtl.cmp

<<<<<<< alt_vtl.htm

Technical Feedback

=======

Feedback

>>>>>>> 1.7

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / BackAnnotating MAX+PLUS II Pin
Assignments to Design Architect Symbols

BackAnnotating MAX+PLUS II Pin Assignments to
Design Architect Symbols

Type annotate_pin -h at the UNIX prompt to display information on how to use this utility.

The MAX+PLUS ® II/Mentor Graphics software interface includes the annotate_pin utility. This utility allows
you to back-annotate the pin assignments from the MAX+PLUS II-generated Fit File (.fit) back to the symbol for
the design file. The annotate_pin utility has the following syntax:

annotate_pin [-p <property name>] <symbol name> <chip name> <Fit File name>

where <property name> is the default name for the pin assignment (default is PIN_NO), <symbol name> is the
pathname of the directory that contains the symbol, <chip name> is the chip name specified in the Fit File, and
<Fit File name> is the name of the Fit File that contains the pin assignment information for back-annotation. If the
<property name> is not found at a pin number, that pin will not be back-annotated. If the <chip name> is not
found in the Fit File, the annotate_pin utility stops the back-annotation process.

For example:

annotate_pin -p PIN_NO /usr/examples/decode decode decode.fit

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Mentor Graphics Design
Architect & MAX+PLUS II Software

Using Mentor Graphics Design Architect &
MAX+PLUS II Software

The following topics describe how to use the Mentor Graphics Design Architect software with MAX+PLUS® II
software. Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Design Entry

Design Entry Flow
Creating Design Architect Schematics for Use with MAX+PLUS II Software

Instantiating the clklock Megafunction in Design Architect Schematics
Instantiating LPM Functions in Design Architect Schematics

Entering Resource Assignments
Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Creating Hierarchical Projects with Design Architect Software
Converting Design Architect Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the
ENWrite Utility

Simulation

Performing a Functional Simulation with DVE & QuickSim II Software
Performing a Functional Simulation with QuickHDL Pro Software

Related Links

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Mentor Graphics web site (http://www.mentor.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-archall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-require.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dir_strc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-file_org.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsn_ntry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clklock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lpm_func.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-holowbdy.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-enwrite.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-enwrite.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dveqksim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/content/www/us/en/support/programmable/support-resources/programming/overview.html
http://www.mentor.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Mentor Graphics Design
Architect & MAX+PLUS II Software

Using Mentor Graphics Design Architect &
MAX+PLUS II Software

The following topics describe how to use the Mentor Graphics Design Architect software with MAX+PLUS® II
software. Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Design Entry

Design Entry Flow
Creating Design Architect Schematics for Use with MAX+PLUS II Software

Instantiating the clklock Megafunction in Design Architect Schematics
Instantiating LPM Functions in Design Architect Schematics

Entering Resource Assignments
Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Creating Hierarchical Projects with Design Architect Software
Converting Design Architect Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the
ENWrite Utility

Simulation

Performing a Functional Simulation with DVE & QuickSim II Software
Performing a Functional Simulation with QuickHDL Pro Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information.
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics, which are available on the web, for additional information:

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using a C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

MAX+PLUS II Development Software
Altera Programming Hardware
Mentor Graphics web site (http://www.mentor.com)

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

To use the MAX+PLUS ® II software with Mentor Graphics/Exemplar Logic software, you must install the
MAX+PLUS II software, then establish an environment that facilitates entering and processing designs. The
MAX+PLUS II/Mentor Graphics/Exemplar Logic interface is installed automatically when you install the
MAX+PLUS II software on your computer.

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to MAX+PLUS
II/Mentor Graphics/Exemplar Logic Interface File Organization for information about the MAX+PLUS II/Mentor
Graphics directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Mentor Graphics interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Mentor Graphics software versions
described in MAX+PLUS II/Mentor Graphics Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2
setenv MGC_WD <user-specified working directory>
setenv MGC_HOME <Mentor Graphics system directory>
setenv MAX2_MENTOR /usr/maxplus2/mentor/max2
setenv MGC_LOCATION_MAP <user-specified location_map file>
setenv EXEMPLAR <Galileo or Leonardo system directory>

Installing the Altera® provided MAX+PLUS II/Mentor Graphics interface on your computer
automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/.cshrc file.

3. Add the $MGC_HOME/bin, $MAX2_MENTOR/bin, $ALT_HOME/bin, $EXEMPLAR/bin/<os>, and
$ALT_HOME/bin directories to the PATH environment variable in your .cshrc file, where <os> is the
operating system, e.g., SUN4 for SunOS; SUN5 for Solaris.

4. If you plan to use the Altera Schematic Express (sch_exprss) utility or the Altera VHDL Express
(vhd_exprss) utility, add the following environment variable to your .cshrc file:

setenv MAX2_QSIM /usr/maxplus2/simlib/mentor/max2sim

5. Type source ‾/.cshrc at a UNIX prompt to source the .cshrc file and validate the settings in steps 1 through 4.

6. Add the following lines to your MGC_location_map file:

$MAX2_MENTOR
/usr/maxplus2/mentor/max2

$MGC_GENLIB
/<user-specified Mentor Graphics GEN_LIB directory>
$MGC_LSLIB
/<user-specified Mentor Graphics LS_LIB directory>
$MAX2_EXAMPLES
/<user-specified example directory>
$MAX2_LMCLIB
/<user-specified Logic Modeling directory>
$MAX2_GENLIB
/usr/maxplus2/simlib/mentor/alt_max2
$MAX2_QSIM
/usr/maxplus2/simlib/mentor/max2sim
$MAX2_FONT
/usr/maxplus2/mentor/max2/fonts
$MGC_SYS1076_STD
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ std
$MGC_SYS1076_ARITHMETIC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/arithmetic
$MGC_SYS1076_PORTABLE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/mgc_portable
$MGC_SYS1076_IEEE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ieee
$MGC_SYS1076_SRC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ src
$MAX2_MFLIB
/usr/maxplus2/simlib/mentor/alt_mf

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your
computer automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/location_map/location_map file.

7. If you want to use QuickHDL software to simulate VHDL or Verilog HDL designs, add the following line in
the [library] section of your quickhdl.ini file: altera = $MAX2_MFLIB.

8. If you plan to use QuickHDL software to simulate VITAL-compliant VHDL files, add the following lines to
your MGC_location_map file:

$MAX2_VTLLIB
/usr/maxplus2/simlib/mentor/alt_vtl

9. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME
chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as Alteraprovided logic and symbol library paths and the current
project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini file to

Mentor Graphics Exemplar Altera
version C.1:
System_1076 Compiler
QuickSim II
Design Architect
ENRead
ENWrite
GEN_LIB library

QuickHDL
QuickHDL Pro
QuickPath
LS_LIB library (optional)
DVE

Galileo Extreme
version 4.1.1

Leonardo
version 4.1.3

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Mentor Graphics
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

You can create your own libraries of custom functions for use in Design Architect schematics and VHDL and
Verilog HDL design files. You can use custom functions to incorporate an EDIF Input File (.edf), Text Design
File (.tdf), or any other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses
the Altera® provided mnt8_bas.lmf and exemplar.lmf Library Mapping Files to map standard Design Architect
symbols and VHDL and Verilog HDL functions to equivalent MAX+PLUS II logic functions. To use custom
functions, you can create a custom LMF that maps your custom functions to the equivalent EDIF input file, TDF,
or other design file. Go to "Library Mapping File" in MAX+PLUS II Help for more information.

the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Mentor Graphics Software Requirements

The following products are used to generate, process, synthesize, and verify a project with the MAX+PLUS ® II
software and Mentor Graphics software:

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS ® II/Mentor Graphics environment provides libraries for compiling, synthesizing, and simulating
designs.

Design Architect Libraries

Table 1. MAX+PLUS II-Specific Logic Functions

Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX ® 5000, MAX 7000 , and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (2)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help menu
for detailed information on these functions.

You can enter a Design Architect schematic with logic functions from these Altera-provided symbol libraries:
ALTERA LPMLIB, ALTERA GENLIB, LSTTL BY TYPE, and LSTTL ALL PARTS. You can access these
libraries by choosing Altera Libraries (Libraries menu) in the Design Architect software. For information on using
library of parameterized modules (LPM) functions, see ALTERA LPMLIB Library below.

ALTERA GENLIB Library (Design Architect) & Altera (VHDL) Libraries

The ALTERA GENLIB symbol library (called the Altera library for VHDL) includes several MAX+PLUS II
primitives for controlling design synthesis and fitting. It also includes four macrofunctions (8count, 8mcomp, 8fadd,
and 81mux) that are optimized for different Altera device families, and the clklock phase-locked loop
megafunction, which is supported for some FLEX ® 10K devices.

The following table shows the MAX+PLUS II-specific logic functions.

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd instead.

2. If you want to use QuickHDL software, make sure you have updated your quickhdl.ini file, as described in
step 7 of Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment.

3. For designs that are targeted for FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

ALTERA LPMLIB Library

The Alteraprovided ALTERA LPMLIB library, which is available for Design Architect schematics and VHDL
designs, includes standard functions from the library of parameterized modules (LPM) 2.1.0, except the truth table,
finite state machine, and pad functions. The LPM standard defines a set of parameterized modules (i.e.,
parameterized functions) and their corresponding representations in an EDIF netlist file. These logic functions
allow you to create and functionally simulate an LPM-based design without targeting a specific device family.
After the design is completed, you can target the design to any device family. The parameters you specify for each
LPM function determine which simulation models are generated.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices
MAX Devices
Classic Device Family

Local Work Area Directory Structure

Design Architect software automatically creates and maintains the project directory structure required for all stages
of design entry. Galileo Extreme, Leonardo, and ENWrite software create a max2 subdirectory, if it does not
already exist, under the project directory. These software applications also generate EDIF netlist files, and copy
them from the <project name> directory to this max2 subdirectory. All MAX+PLUS ® II Compiler output files are
created in the max2 subdirectory.

Simulation files created with Mentor Graphics applications and Logic Modeling files are located in the board-level
simulation subdirectory of the project directory. You can use these files during simulation with QuickSim II
software.

The only directory you need to create is the local work directory, which should contain all project directories.
Figure 1 shows the recommended file structure.

Figure 1. Recommended File Structure

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

MAX+PLUS II Project Directory Structure
Mentor Graphics Project Directory Structure

Mentor Graphics Project Directory Structure

Design Architect software generates the following files for each schematic:

<drawing name>/mgc_component.attr
<drawing name>/part.Eddm_part.attr
<drawing name>/part.part_1
<drawing name>/schematic.mgc_schematic.attr
<drawing name>/schematic/schem_id
<drawing name>/schematic/sheet1.mgc_sheet.attr
<drawing name>/schematic/sheet1.sgfx_1
<drawing name>/schematic/sheet1.ssht_1

The files generated for each schematic are stored in the schematic's <drawing name> directory and should not be
edited. Mentor Graphics software automatically manages file storage and retrieval operations through this
<drawing name> directory structure, which does not reflect hierarchical design relationships. Figure 1 shows a
sample file structure with project1 as the UNIX project directory, and design1, subdesign1, and subdesign2 as the
directories for the top-level design and subdesigns of the project.

Figure 1. Design Architect Project File Structure

When the ENWrite utility converts the schematic into an EDIF netlist file, it processes the design information and
all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF netlist
file is named <project name>.edf, where <project name> is the name of the top-level design file. The <project
name>.edf file is automatically moved to the max2 directory under the project directory.

For information on the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II
File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
MAX+PLUS II Project Directory Structure

MAX+PLUS II Project Directory Structure

In the MAX+PLUS ® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, VHDL, or Verilog HDL netlist file; an Altera Hardware Description
Language (AHDL) Text Design File (TDF); or any other MAX+PLUS II-supported design file. The EDIF netlist
file must be created by ENWrite, Galileo Extreme, or Leonardo software and imported into MAX+PLUS II as an
EDIF Input File (.edf). Figure 1 shows an example of a MAX+PLUS II project directory.

Figure 1. Sample MAX+PLUS II Project Directory

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure

MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

The following table shows the MAX+PLUS ® II/Mentor Graphics interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Table 1. MAX+PLUS II Directory Organization

Directory Description

.lmf
Contains the Altera-provided Library Mapping Files, mnt8_bas.lmf and exemplar.lmf,
that map Mentor Graphics and Exemplar Logic logic functions to equivalent MAX+PLUS
II logic functions.

./mentor Contains the AMPLE userware for the MAX+PLUS II/Mentor Graphics interface.

./simlib/mentor/alt_max2
Contains MAX+PLUS II primitives such as CARRY, CASCADE, EXP, GLOBAL, LCELL, SOFT,
OPNDRN, DFFE, and DFFE6K (D flipflop with Clock Enable) for use in Design Architect
schematics.

./simlib/mentor/max2sim Contains the MAX+PLUS II/Mentor Graphics simulation model library, max2sim, for use
with QuickSim II and QuickPath software.

./simlib/mentor/synlib Contains the MAX+PLUS II synthesis library for use with AutoLogic II software, which
supports synthesis for users running Mentor Graphics version B1.

./simlib/mentor/alt_mf Contains the MAX+PLUS II macrofunction and megafunction libraries.

./simlib/mentor/alt_vtl Contains the MAX+PLUS II VITAL library.

Figure 1. MAX+PLUS II/Mentor Graphics/Exemplar Logic Design Entry
Flow

Alteraprovided items are shown in
blue.

Mentor Graphics/Exemplar Logic Design Entry Flow

The following figure shows the design entry flow for the MAX+PLUS® II/Mentor Graphics/Exemplar Logic
interface.

Creating Design Architect Schematics for Use with MAX+PLUS II Software

You can create Design Architect schematics and convert them into EDIF Input Files (.edf) that can be processed
with the MAX+PLUS ® II Compiler.

To create a Design Architect schematic for use with MAX+PLUS II software, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Start the MAX+PLUS II/Mentor Graphics interface by typing max2_dmgr at a UNIX prompt.

3. Start the Design Architect software by double-clicking Button 1 on the max2_da icon in the Design Manager
tools window. You can also start Design Architect software by typing max2_da at the UNIX prompt.

4. Use the graphical user interface to structure and organize your files to create an environment that facilitates
entering and processing designs. Go to the following topics for more information:

Local Work Area Directory Structure
MAX+PLUS II Project Directory Structure
Mentor Graphics Project Directory Structure

5. Choose the OPEN SHEET button in the Design Architect session_palette, then specify a name for your
project in the Component Name box. Choose OK.

6. Enter logic functions from the following Altera® provided libraries:

ALTERA LPMLIB includes library of parameterized modules (LPM) functions
ALTERA GENLIB includes primitives and macrofunctions
LSTTL includes 74-series macrofunctions

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPPSM). The OpenCore feature in the MAX+PLUS II
software allows you to instantiate, compile, and simulate MegaCore functions before deciding
whether to purchase a license for full device programming and post-compilation simulation
support.

The following topics describe special steps needed to instantiate LPM and clklock functions:

Instantiating LPM Functions in Design Architect Schematics
Instantiating the clklock Megafunction in Design Architect Schematics

7. (Optional) To create a hierarchical design that contains symbols representing other design files, such as
AHDL or VHDL design files, go to Creating Hierarchical Projects with Design Architect Software.

8. If you wish to make resource assignments in a Design Architect schematic, go to Entering Resource
Assignments. You can also enter resource assignments from within the MAX+PLUS II software.

9. Choose Check Sheet for Altera (Check menu) to save and check your design. If your design contains LPM
functions , the Design Architect software will ask whether you want to compile the LPM model. Choose
YES if you want to compile the VHDL code for the LPM functions. The software will automatically select
the corresponding compiler: System 1076 for B.(x) releases and QuickHDL compilers for releases C.1 and
later.

10. (Optional) If your schematic design includes models for VHDL or Verilog HDL designs, perform a

functional simulation with the QuickHDL Pro software, as described in Performing a Functional Simulation
with QuickHDL Pro Software. If it does not, you can perform a functional simulation with the QuickSim
software, as described in Performing a Functional Simulation with DVE & QuickSim II Software.

11. Once you have created a schematic, you can generate an EDIF netlist file that can be imported into the
MAX+PLUS II software with either of the following methods:

You can create an EDIF netlist file, as described in Converting Design Architect Schematics into
MAX+PLUS II-Compatible EDIF Netlist Files with the ENWrite Utility.

You can use the Altera Schematic Express utility, sch_exprss, to automatically create an EDIF netlist
file, compile it with the MAX+PLUS II Compiler, generate an EDIF Output File (.edo), and prepare
the EDIF Output File for simulation with ENRead and Design Viewpoint Editor (DVE), as described
in Using the Altera Schematic Express (sch_exprss) Utility.

Even if your design is a hierarchical design incorporating files created with multiple design entry methods,
both the ENWrite and Altera Schematic Express utilities generate EDIF files for all files in the design.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample Design Architect schematic files:

/usr/maxplus2/examples/mentor/example1/fulladd
/usr/maxplus2/examples/mentor/example3/fulladd2
/usr/maxplus2/examples/mentor/example7/fifo

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Instantiating the clklock Megafunction in Design Architect Schematics

You can instantiate the Altera® provided clklock phase-locked loop megafunction, which is supported for some
FLEX ® 10K devices, in a Design Architect schematic.

To instantiate the clklock megafunction in a Design Architect schematic, follow these steps:

1. Choose Altera Libraries (Library menu).

2. Choose ALTERA GENLIB (Altera Libraries menu).

3. Choose clklock (ALTERA GENLIB menu).

4. Specify appropriate values for the CLOCKBOOST and INPUT_FREQUENCY variables. Choose
Megafunctions/LPM from the MAX+PLUS ® II Help menu for detailed information on the clklock
megafunction.

5. Choose OK.

6. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUS II Software.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example7/fifo,
which includes clklock megafunction instantiation.

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating LPM Functions in Design Architect Schematics

Design Architect software allows you to instantiate functions included in the library of parameterized modules
(LPM) from the ALTERA LPMLIB library.

Go through the following steps to instantiate LPM functions in a Design Architect schematic:

1. While you are entering your Design Architect schematic, choose Altera Libraries (Library menu).

2. Choose ALTERA LPMLIB (Altera Libraries menu).

3. Choose from the available LPM functions on the ALTERA GENLIB menu.

4. In the LPM_<function name> dialog box, specify appropriate values for the variables displayed for the LPM
function you chose in step 3. Make sure that any hexadecimal (Intel-format) file that you use to specify the
initial content of a memory function does not have the same name as the design file name. Choose
Megafunctions/LPM from the MAX+PLUS II Help menu for detailed information on LPM functions.

5. Choose OK to generate a symbol for the LPM function you chose in step 3 and a corresponding VHDL
simulation model.

6. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUS II Software.

7. When you save the schematic, the Design Architect software will ask whether you want to compile the LPM
model. Choose YES if you want to compile the VHDL code for the LPM functions. The software will
automatically select the corresponding compiler: System 1076 for B.(x) releases and QuickHDL compilers
for releases C.1 and later.

Installing the Altera® provided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example7/fifo,
which includes LPM instantiation.

Entering Resource Assignments

The MAX+PLUS ® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Design Architect Schematics

In Design Architect schematics, you can assign a limited subset of these resource assignments by assigning
properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II software

After you compile a project, you can back-annotate pin assignments, as described in BackAnnotating
MAX+PLUS II Pin Assignments to Design Architect Symbols.

automatically converts assignment information from the EDIF Input File into the ACF format. For information on
making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example4/fa2,
which includes resource assignments.

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. Go to Modifying the Assignment & Configuration File with the setacf Utility for more
information.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Design Architect software. For information on entering assignments in MAX+PLUS II software with Assign
menu commands or in an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using
Search for Help on (Help menu).

Assigning Pins, Logic Cells & Chips

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in some EDA
tools or in the MAX+PLUS® II software.

Use the following syntax for chip, pin, and logic cell assignments:

To assign a logic function to a chip:

CHIP_PIN_LC=<chip name>

For example: CHIP_PIN_LC=chip1

To assign a pin number within a chip:

CHIP_PIN_LC=<chip name>@<pin number>

To assign a clique, use the following syntax:

CLIQUE=<clique name>

For example: CLIQUE=fast1

For example: CHIP_PIN_LC=chip1@K2

To assign a logic cell, I/O cell, or embedded cell number:

CHIP_PIN_LC=<chip name>@LC<logic cell number>

CHIP_PIN_LC=<chip name>@IOC<I/O cell number>

CHIP_PIN_LC=<chip name>@EC<embedded cell number>

For example: CHIP_PIN_LC=chip1@LC44

Related Topics:

Refer to the following sources for additional information:
Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on
device pin-outs and assigning devices, respectively, in the MAX+PLUS II software.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.

Assigning Cliques

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project
does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000, FLEX
10K, and MAX® 9000 devices the Compiler also attempts to place the logic in LABs in the same row. Cliques
therefore allow you to partition a project so that only a minimum number of signals travel between LABs, and to
ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

Related Topics:

Go to the following topics in MAX+PLUS II Help for related information:
Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Assigning Logic Options

Logic option and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device-family-specific default logic synthesis style for
each project.

If you wish to functionally simulate a hierarchical design that uses multiple design entry methods, you should use
QuickHDL Pro rather than QuickSim. Refer to Performing a Functional Simulation with QuickHDL Pro Software
for more information.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis
style assignments, including definitions and syntax of these assignments.

Performing a Functional Simulation with DVE & QuickSim II Software

You can perform a functional simulation of a Design Architect schematic with the Mentor Graphics Design
Viewpoint Editor (DVE) and QuickSim II software before compiling your project with the MAX+PLUS ® II
Compiler.

To functionally simulate a Design Architect schematic, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a Design Architect schematic that follows the guidelines in Creating Design Architect Schematics for
Use with MAX+PLUS II Software.

3. In the Navigator window, select your project's folder, press Button 3, and choose Open max2_fve to start
DVE. DVE checks the design and creates a viewpoint (called altera_fsim by default) for functional
simulation with QuickSim II software.

4. Select the altera_fsim icon, press Button 3, and choose Open max2_qsim from the Navigator window to
start the QuickSim II software. You can also start the QuickSim II software by typing max2_qsim at the
UNIX prompt.

5. Set the appropriate options and simulate your design.

6. Use the ENWrite utility to generate an EDIF netlist file that can be imported into the MAX+PLUS II
software, as described in Converting Design Architect Schematics into MAX+PLUS II-Compatible EDIF
Netlist Files with the ENWrite Utility.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Creating Hierarchical Projects with Design Architect Software

If you wish to create a hierarchical schematic design that contains symbols representing other design files, such as
AHDL Text Design Files (.tdf), VHDL Design Files (.vhd), or Verilog Design Files (.v), you can create a hollow-
body symbol for the design file and then instantiate it in your top-level design file.

To create a hollow-body symbol for a lower-level design file, follow these steps:

1. (Optional) If you are creating a hollow-body symbol for a VHDL or Verilog HDL design file, you can first
functionally simulate the VHDL or Verilog HDL file, as described in Performing a Functional Simulation

with QuickHDL Software.

2. Start the Design Architect software by double-clicking Button 1 on the max2_da icon in the Design Manager
tools window. You can also start Design Architect software by typing max2_da at the UNIX prompt.

3. Choose the OPEN SYMBOL button in the Design Architect session_palette to open the Symbol Editor.
Type the lower-level design file name, including the directory path, in the Component Name box. Choose
OK.

4. Create a symbol that represents the inputs and outputs of the lower-level file.

5. Assign PINTYPE properties of IN or OUT to the inputs and outputs of the symbol, and assign appropriate values
to any other properties of the symbol so that it can be identified in the top-level schematic.

If you are creating a hollow-body symbol for a VHDL design file, be sure to assign the value qvpro to
the symbol's model property so that it can be identified as a VHDL component in the top-level
schematic.

6. Check and save the symbol, then close the Symbol Editor.

7. To enter the symbol, choose the CHOOSE SYMBOL button from the Design Architect session_palette.

8. Select the symbol file from the Navigator menu and choose OK.

9. The MAX+PLUS® II software uses the Altera® provided mnt8_bas.lmf Library Mapping File to map
Design Architect symbols to equivalent MAX+PLUS II logic functions. To use custom symbols, you must
create a custom LMF that maps your custom symbols to the equivalent EDIF Input File, Text Design File
(TDF), or other design file. You will also need to specify this LMF in the EDIF Netlist Reader Settings
dialog box before compiling the design with the MAX+PLUS II software. See Compiling Projects with
MAX+PLUS II Software for more information.

10. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUS II Software.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample hierarchical Design Architect schematic file
/usr/maxplus2/examples/mentor/example3/fulladd2.

Converting Design Architect Schematics into MAX+PLUS II- Compatible EDIF Netlist
Files with the ENWrite Utility

After you have created a Design Architect schematic or a hierarchical schematic design that uses multiple design
entry methods, you can use the Mentor Graphics ENWrite utility to convert it into an EDIF netlist file that can be
processed with the MAX+PLUS ® II software.

To generate an EDIF netlist file for use with the MAX+PLUS II Compiler, go through the following steps:

1. Create a Design Architect Schematic that follows the guidelines described in Creating Design Architect
Schematics for Use with MAX+PLUS II Software.

2. Select the folder for your project, press Button 3, and choose Open max2_enw from the Navigator window
to open Design Viewpoint Editor (DVE), then ENWrite. You can also start the ENWrite utility by typing
max2_enw at the UNIX prompt.

3. Choose OK in the $invoke_enw dialog box to accept the default names for the DVE viewpoint altera_edif,

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly
with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the
Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within
the MAX+PLUS II Compiler window.

which is used internally by ENWrite, and the ENWrite hierarchical EDIF netlist file <design name>.edf.
Specify OFF for the port array construct in the EDIF netlist file.

The MAX+PLUS II software supports bus constructs in EDIF 2 0 0 and 3 0 0 netlist files, which allow
you to retain any bus structures in your design. To preserve a bus in the EDIF netlist file, turn on the
port array construct option in the $invoke_enw dialog box. However, if your design contains library
of parameterized modules (LPM) functions, you should not use this feature because LPM 2.0.1 and
2.1.0 functions do not support EDIF bus constructs.

After DVE checks the Design Architect schematic, ENWrite generates <design name>.edf and automatically
copies it to your project's directory.

4. Compile the resulting EDIF netlist file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File

(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Tools with
MAX+PLUS II Software

Using Cadence Tools with MAX+PLUS II Software

The following topics describe how to use a variety of Cadence tools as part of a complete design flow that includes
the MAX+PLUS® II software. If you use only one Cadence tool, click List by Tool and select the tool name to
view the list of topics only for that tool. Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
Setting Up the MAX+PLUS II/Cadence Concept Work Environment for a Sun SPARCstation Running
SunOS Software
MAX+PLUS II/Cadence Interface File Organization
MAX+PLUS II Directory Structure
Concept & RapidSIM Local Work Area Directory Structure
Concept & HDL Direct Project Directory Structure
Composer Project File Directory Structure
Altera-Provided Logic & Symbol Libraries
Compiling the VITAL Library for Use with Leapfrog Software
Compiling the alt_mf Library

Design Flow for All Cadence Tools

Design Entry

Design Entry Flow

Concept

Creating Concept Schematics for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in Concept Schematics
Instantiating LPM & Other Parameterized Functions in Concept Schematics

Entering Resource Assignments
Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility & Verilog-XL
Software
Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-XL Software
Creating Hierarchical Projects in Concept Schematics
Converting Concept Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the
concept2alt Utility

Composer

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Creating Composer Schematics for Use with MAX+PLUS II Software
Entering Resource Assignments

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation of a Composer Schematic with Verilog-XL Software
Creating Hierarchical Projects in Composer Schematics
Converting Composer Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the altout
Utility

VHDL

Creating VHDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Verilog HDL

Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Synthesis & Optimization

VHDL

Synthesizing & Optimizing VHDL Files with Synergy Software
Converting VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the vlog2alt or
altout Utility

Verilog HDL

Synthesizing & Optimizing Verilog HDL Files with Synergy Software
Converting Verilog HDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the
vlog2alt Utility

Compilation

Project Compilation Flow
Compiling Projects with MAX+PLUS II Software

Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with RapidSIM Software
Performing a Timing Simulation with Verilog-XL Software
Performing a Timing Simulation with Leapfrog Software

The information presented here assumes that you are using the C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

Compiling the VITAL Library for Use with Leapfrog Software
Compiling the alt_mf Library

Device Programming

Programming Altera Devices

Related Topics:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Setting Up the MAX+PLUS II/Cadence Working Environment

To use MAX+PLUS® II software with Cadence software, you must first install the MAX+PLUS II software, then
establish an environment that facilitates entering and processing designs. The MAX+PLUS II/Cadence interface is
installed automatically when you install the MAX+PLUS II software on your computer. Go to MAX+PLUS II
Installation in the MAX+PLUS II Getting Started manual for more information on installation and details on the
directories that are created during MAX+PLUS II installation. Go to MAX+PLUS II/Cadence Interface File
Organization for information about the MAX+PLUS II/Cadence directories that are created during MAX+PLUS II
installation.

To set up your working environment for the MAX+PLUS II/Cadence interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Cadence software versions described in the
MAX+PLUS II/Cadence Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2

setenv CDS_INST_DIR <Cadence system directory path>

3. Add the $ALT_HOME/cadence/bin and $CDS_INST_DIR/tools/bin directories to the PATH environment
variable in your .cshrc file. Make sure these paths are placed before the Cadence hierarchy path.

4. Add /usr/dt/lib and /usr/ucb/lib to the LD_LIBRARY_PATH environment variable in your .cshrc file.

5. Create a new cds.lib file in your working directory or edit an existing one so that it includes all of the
following lines that apply to the Cadence tools you have installed:

DEFINE alt_syn ${ALT_HOME}/simlib/concept/alt_syn

DEFINE lpm_syn ${ALT_HOME}/simlib/concept/lpm_syn

DEFINE alt_lpm ${ALT_HOME}/simlib/concept/alt_lpm

DEFINE alt_mf ${ALT_HOME}/simlib/concept/alt_mf

DEFINE alt max2 ${ALT HOME}/simlib/concept/alt max2

DEFINE alt_max2 ${ALT_HOME}/simlib/composer/alt_max2/alt_max2

DEFINE alt_vtl $ALT_HOME/simlib/concept/alt_vtl/lib

DEFINE altera $ALT_HOME/simlib/concept/alt_mf/lib

SOFTINCLUDE $CDS_INST_DIR/tools/leapfrog/files/cds.lib

DEFINE <design name>.

6. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

7. If you are using Concept on a Sun SPARCstation running SunOS, go to Setting Up the MAX+PLUS
II/Cadence Concept Work Environment for a Sun SPARCstation Running SunOS Software to install the
redifnet EDIF netlist reader utility.

8. If you are using Synergy software, edit the hdl.var file located in your working directory to include the
following line:

DEFINE work <design name>

9. Set up an appropriate directory structure for the tool(s) you are using. See the following topics for
information:

Composer Project File Directory Structure
Concept & RapidSIM Local Work Area Directory Structure

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Cadence Software Requirements

Cadence Altera
version 97A:
Concept
Composer
ValidCOMPILER
concept2alt
vlog2alt
altout

VerilogLink
Synergy
HDL Direct (Concept 2.0 or later)
Non-Graphic Simulation Environment (SE)
RapidSIM, Verilog-XL, or Leapfrog
redifnet (SunOS only)

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Cadence software
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

Table 1. MAX+PLUS II Directory Organization

Directory Description

The following table shows the software applications that are used to generate, process, synthesize, and verify a
project with MAX+PLUS® II and Cadence software:

Setting Up the MAX+PLUS II/Cadence Concept Work Environment for a Sun
SPARCstation Running SunOS Software

If you are using Concept software on a Sun SPARCstation running SunOS software, you should also install the
redifnet EDIF netlist reader utility to convert Concept schematics into MAX+PLUS II-compatible EDIF netlist
files. To install the redifnet utility, follow these steps:

1. Copy the redifnet directory from the /usr/maxplus2/simlib/concept/edifnet directory to the Cadence system
directory.

2. Copy the redifnet and pinmap_start files from the /usr/maxplus2/simlib/concept/edifnet/bin directory to
the /<Cadence system directory path>/tools/bin.

3. Specify the -/usr/maxplus2/simlib/concept/edifnet/max2sim map file as a PIN_MAP_FILE in the
redifnet.cmd file.

4. (Optional) Modify existing templates for directive files such as compiler.cmd, vloglink.cmd, and
global.cmd. These templates are located in the /usr/maxplus2/simlib/concept/edifnet/templates directory.

5. (Optional) Modify the expansion.dat and max2sim.map files in the /usr/maxplus2/simlib/concept/edifnet
directory.

MAX+PLUS II/Cadence Interface File Organization

Table 1 shows the MAX+PLUS® II/Cadence interface subdirectories that are created in the MAX+PLUS II system
directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation. For information on the other
directories that are created during MAX+PLUS II installation, see "MAX+PLUS II File Organization" in
MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

./lmf
Contains the Altera-provided Library Mapping File, cadence.lmf, that
maps Cadence logic functions to equivalent MAX+PLUS II logic
functions.

./examples/cadence
Contains the sample files for Cadence software discussed in these
ACCESSSM Key Guidelines.

./cadence Contains the AMPLE userware for the MAX+PLUS II/Cadence interface.

./simlib/concept/alt_max2

Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for
FLEX® 6000 devices only) for use with Concept software.

./simlib/composer/alt_max2
Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for FLEX
6000 devices only) for use with Composer software.

./simlib/concept/alt_lpm Contains the MAX+PLUS II megafunctions, including library of
parameterized modules (LPM) functions, for use with Concept software.

./simlib/concept/max2sim Contains the MAX+PLUS II/Concept simulation model library, max2_sim,
for use with RapidSIM software.

./simlib/concept/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Concept software, and the vlog2alt utility.

./simlib/composer/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Composer software.

./simlib/concept/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Concept software.

./simlib/composer/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Composer software.

./simlib/concept/alt_mf Contains the MAX+PLUS II VHDL logic function library. (a_8count is for
the MAX® 7000 and MAX 9000 device families only.)

./simlib/concept/edifnet/templates Contains template files for Concept directives, i.e., global.cmd,
compiler.cmd, vloglink.cmd, verilog.cmd, and master.local.

./simlib/concept/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Concept software.

./simlib/composer/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Composer software.

./simlib/concept/alt_vtl

./simlib/composer/alt_vtl
Contains VITAL library source files for use with Concept or Composer
software.

./simlib/composer/alt_max2/verilog Contains simulation modules for all symbols in the alt_max2 Composer
library.

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

FLEX Devices
MAX Devices
Classic Device Family

Directory: Description:

./source Create Concept schematics and generate EDIF netlist files with the wedifnet utility in the source
directory.

./max2 Copy the EDIF Input File (.edf) from the source directory to this directory to compile the file with the
MAX+PLUS® II software.

./dest Copy the EDIF Output File (.edo) from the max2 directory to this directory to run the redifnet and
RapidSIM software.

MAX+PLUS II Directory Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL Text Design File (TDF);
or any other MAX+PLUS II-supported design file. The EDIF netlist file must be created by the altout or
concept2alt utility and imported into the MAX+PLUS II software as an EDIF Input File (.edf).

Project design files and output files are stored in the project directory, with the exception of standard library
functions provided by Altera or another EDA tool vendor. The MAX+PLUS II software stores the connectivity data
on the links between design files in a hierarchical project in a Hierarchy Interconnect File (.hif), but refers to the
entire project only by its project name. The MAX+PLUS II Compiler uses the HIF to build a single, fully flattened
project database that integrates all design files in a project hierarchy.

Concept & RapidSIM Local Work Area Directory Structure

When the redifnet utility imports an EDIF netlist file for the RapidSIM software, it creates a SCALD directory for
your project. However, creating this directory may overwrite the directory that was created for the original Concept
schematic. To prevent overwriting this directory, you should create a file structure that helps you manage your
design files.

Altera recommends that you create the following three directories for your design files.

Copies of the appropriate directives files for Cadence tools must be present in both the source and dest directories.
Figure 1 shows Altera's recommended file structure.

Figure 1. Recommended File Structure

Concept & HDL Direct Project Directory Structure

Concept software generates the following files for each schematic:

<drawing name>/logic.1.1
<drawing name>/logic_bn.1.1
<drawing name>/logic_cn.1.1
<drawing name>/logic_dp.1.1

For designs that use HDL Direct software, Concept software also generates the following files:

<drawing name>/logic_dp.1.1
<drawing name>/logic_vd.1.1
<drawing name>/logic/verilog.v
<drawing name>/logic/vhdl.vhd
<drawing name>/logic/hdldirect.dat
<drawing name>/entity/vhdl.vhd

These files are stored in their own <drawing name> directories. However, hierarchical relationships between files
are not reflected in the file directory structure.

The local SCALD directory has an entry for all <drawing name> directories. Cadence software automatically

You can create your own libraries of custom symbols and logic functions in Concept and Composer. You can use
custom symbols to incorporate an EDIF Input File, Text Design File (TDF), or any other MAX+PLUS II-
supported design file into a project. MAX+PLUS II uses the cadence.lmf Library Mapping File to map standard
Concept or Composer symbols to equivalent MAX+PLUS II logic functions. To use custom symbols, you can
create a custom LMF that maps your custom symbols to the equivalent MAX+PLUS II-supported design file.

manages drawing storage and retrieval operations through this special directory. The SCALD directory should have
the same name as the UNIX project directory, but with the extension .wrk. Figure 1 shows a sample file structure,
with project1 as the UNIX project directory, and project1.wrk as the SCALD directory.

When the concept2alt utility converts the schematic into an EDIF netlist file, it processes the design information
and all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF
netlist file is named <project name>.edf, where <project name> is the name of the top-level design file. Figure 1
shows the Cadence project file structure.

Figure 1. Cadence Project File Structure

Composer Project File Directory Structure

The Composer software generates the following files for each schematic (where x represents a Composer-generated
number):

<drawing name>_x/schema_59.0_x
<drawing name>_x/schema_59.0_x%

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS® II/Cadence environment provides four logic and symbol libraries that are used for compiling,
synthesizing, and simulating designs.

You must also specify the directory that contains the MAX+PLUS II-supported design file(s) as a user library
with the MAX+PLUS II User Libraries command (Options menu). Go to "Library Mapping File" and "Cadence
Library Mapping File (cadence.lmf)" in MAX+PLUS II Help for more information.

The alt_max2 Library

You can enter a Concept or Composer Design Architect schematic with primitives and macrofunctions from the
Altera-provided symbol library alt_max2. The alt_max2 library includes 74-series macrofunctions and several
MAX+PLUS II primitives with corresponding Verilog HDL simulation models for controlling design synthesis and
fitting. It also includes four macrofunctions--a_8count, a_8mcomp, a_8fadd, and a_81mux--that are optimized for
different device families, and the clklock phase-locked loop megafunction, which is supported by some FLEX®

10K devices, with corresponding Verilog HDL and VHDL simulation models. See Table 1. Choose Old-Style
Macrofunctions and/or Primitives from the MAX+PLUS II Help menu for more information on functions in the
alt_max2 library.

The alt_lpm Library

The Altera-provided alt_lpm library, which is available for Concept and Verilog HDL designs, includes standard
functions from the library of parameterized modules (LPM) 2.1.0, except the truth table, finite state machine, and
pad functions. Other parameterized functions, including cycle-shared FIFO (csfifo) and cycle-shared dual-port
RAM (csdpram) are also included. The LPM standard defines a set of parameterized modules (i.e., parameterized
megafunctions) and their corresponding representations in an EDIF netlist file. These logic functions allow you to
create and functionally simulate an LPM-based design without targeting a specific device family. The parameters
you specify for each LPM function determine the simulation models that will be generated. After the design is
completed, you can target the design to any device family. In designs created with Concept, the Altera alt_lpm
library works only with HDL Direct and the hdlconfig utility. Choose Megafunctions/LPM from the MAX+PLUS
II Help menu for more information about LPM functions in the alt_lpm library.

The lpm_syn Library

The lpm_syn library contains the Altera-provided parameterized functions. The lpm_syn library is similar to the
alt_lpm library, except that it contains VHDL and Verilog HDL logic functions for use with Synergy, Concept, and
Composer software.

The alt_mf Library

Altera provides a VHDL logic function library, alt_mf, that currently includes four macrofunctions--a_8count,
a_8mcomp, a_8fadd, and a_81mux--for controlling design synthesis and fitting. These elements can be instantiated
directly in your VHDL file. To designate that these logic functions should pass untouched through the EDIF netlist
file to the MAX+PLUS II Compiler, you must select the Maintain attribute constraint for instances of these
functions before running the Synergy software. These models allow you to perform functional VHDL simulation
while maintaining an architecture-independent VHDL description.

Table 1 shows the MAX+PLUS II-specific logic functions.

Table 1. MAX+PLUS II-Specific Logic Functions
Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
Note (2)

8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (3)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. The a_8count logic function is for the MAX 7000 and MAX 9000 device families only.

3. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Topics:

Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

Compiling the VITAL Library for Use with Leapfrog Software

If you wish to use MAX+PLUS® II-generated Standard Delay Format (SDF) Output Files (.sdo) that contain
timing information when performing post-compilation timing simulation with Leapfrog software, you must first
compile the VITAL library source files. The VITAL Timing and Primitive package files are located in the
$CDS_INST_DIR/tools/leapfrog/files/IEEE.src directory.

To compile the alt_vtl library, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment. For example, you must ensure that the appropriate directories are
specified in the cds.lib file that is located in your working directory.

2. Create a VHDL design, as described in Creating VHDL Designs for Use with MAX+PLUS II Software and
save it in your working directory.

3. Change to the alt_vtl directory by typing cd /usr/maxplus2/simlib/concept/alt_vtl at the UNIX
prompt.

4. Edit the hdl.var file located in your working directory to include the following line:

DEFINE WORK alt_vtl

5. Create the /usr/maxplus2/simlib/concept/alt_vtl/lib directory.

6. Type the following commands at the UNIX prompt from the /usr/maxplus2/simlib/concept/alt_vtl directory
to compile the library:

cv -message -file alt_vtl.vhd

cv -message -file alt_vtl.cmp

Compiling the alt_mf Library

If your VHDL design uses functions from the alt_mf library, you must compile this library. To compile the alt_mf
library, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Cadence Working Environment. For example, you must ensure that the appropriate directories are
specified in the cds.lib file located in your working directory.

2. Change to the alt_mf directory by typing cd /usr/maxplus2/simlib/concept/alt_mf at the UNIX
prompt.

3. Edit the hdl.var file located in your working directory to include the following line:

DEFINE work alt_mf

4. Type the following commands at the UNIX prompt from the /usr/maxplus2/simlib/concept/alt_mf directory
to compile the library:

cv -message -file ./src/mf.vhd
cv -message -file ./src/mf_components.vhd

Design Flow for All Cadence Tools

Figure 1 shows the typical design flow for logic circuits created and processed with Cadence and MAX+PLUS® II
software. Design Entry Flow, Project Compilation Flow, Project Simulation Flow, and Device Programming Flow
show detailed diagrams of each stage of the design flow.

Figure 1. MAX+PLUS II/Cadence Design Entry Flow

Altera-provided items are shown in blue.

Figure 1. Design Flow between Cadence & MAX+PLUS II Software

Cadence Design Entry Flow

Figure 1 shows the design entry flow for the MAX+PLUS® II/Cadence interface.

Creating Concept Schematics for Use with MAX+PLUS II Software

You can create Concept schematics and convert them to EDIF Input Files (.edf) that can be processed with the
MAX+PLUS® II Compiler. To create a Concept schematic for use with the MAX+PLUS II software, go through
the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Make sure the required directive files are in the /<working directory>/<design name>/source directory. If
not, you can use the Altera-provided template files located in the following directories:

/usr/maxplus2/simlib/concept/edifnet/templates
/usr/maxplus2/simlib/concept/edifnet/redifnet

3. Start the Concept schematic editor by typing concept <design name> at a UNIX prompt from the
/<working directory>/source directory. Use the graphical user interface to structure and organize your files to
create an environment that facilitates entering and processing designs. Go to Concept & RapidSIM Local
Work Area Directory Structure for more information on directories in Concept.

4. To write a Verilog HDL text file whenever the design is saved, choose the Block button in the Concept
window.

To use the HDL Direct utility to process your design, turn on the HDL Direct On option in the
Concept window. Go to Concept & HDL Direct Project Directory Structure for information on the
files generated by Concept software when using the HDL Direct utility.

5. Enter primitives, megafunctions, and macrofunctions from the following Altera-provided component
libraries:

alt_max2 includes macrofunctions, megafunctions, and primitives.
alt_lpm includes library of parameterized modules (LPM) functions (available only if you use HDL
Direct software).

See the following topics for instructions for specific functions:

Instantiating LPM & Other Parameterized Functions in Concept Schematics
Instantiating the clklock Megafunction in Concept Schematics

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

6. If you wish to create a hierarchical design that contains symbols representing other design files, such as
Altera® Hardware Description Language (AHDL) Text Design Files, go to Creating Hierarchical Projects in
Concept Schematics.

7. Enter meaningful instance names for all symbols and functions so that you can easily trace internal node
names during simulation and debugging operations. For example, if an a161 macrofunction is instantiated
several times in one design, you should define a unique name for each instance. The instance name for each
symbol is controlled by INST property. For more information on assigning properties, refer to the Cadence
Concept Schematic User Guide.

8. Enter input, output, and bidirectional ports:

If you turned on the HDL Direct On option in step 4, add inport and outport symbols from the
hdl_direct_lib library to the interface symbols.

If you are not using HDL Direct, use flag symbols from the standard library to indicate input, output,
and bidirectional ports. Be sure to end pin names with ¥I to identify them as interface signals.

If a pin is not used, leave it floating. The concept2alt utility removes all unconnected pins when it
generates an EDIF netlist file.

9. (Optional) To enter resource assignments in your Concept schematic, go to Entering Resource Assignments.
You can also enter resource assignments from within the MAX+PLUS II software.

10. (Optional) Perform a functional simulation, as described in one of the following topics:

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility & Verilog-XL
Software
Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-XL Software

11. Use the concept2alt utility to generate an EDIF netlist file that can be imported into the MAX+PLUS II
software, as described in Converting Concept Schematics into MAX+PLUS II-Compatible EDIF Netlist Files
with the concept2alt utility.

12. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept schematic files:

/usr/maxplus2/examples/cadence/example1/fulladd
/usr/maxplus2/examples/cadence/example4/fulladd2
/usr/maxplus2/examples/cadence/example6/fa2
/usr/maxplus2/examples/cadence/example12/fifo

Instantiating the clklock Megafunction in Concept Schematics

You can instantiate the clklock phase-locked loop megafunction, which is supported in selected FLEX® 10K
devices, in a Concept schematic. that employ a phase-locked loop (PLL).

To instantiate the clklock megafunction in Cadence Concept schematics, follow these steps:

1. Choose the Add Part button from the toolbar or type add in the Concept window to open the Component
Browser window.

2. Enter the clklock megafunction:

1. Choose alt_max2 (Library menu) and select clklock from the list box.

2. Type attribute, then select the clklock component. Change the CLOCKBOOST and
INPUT_FREQUENCY values as needed. For detailed information on the clklock megafunction,
choose Megafunctions/LPM from the MAX+PLUS® II Help menu.

3. Choose Done.

4. Continue with the steps necessary to complete your Concept schematic, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept schematic file, which includes clklock instantiation:

/usr/maxplus2/examples/cadence/example12/fifo

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information. >

Instantiating LPM & Other Parameterized Functions in Concept Schematics

You can use library of parameterized modules (LPM) functions and other Altera® -provided parameterized
functions in Concept schematics if you also use the HDL Direct utility.

To instantiate LPM functions, go through the following steps:

1. Choose the Add Part button from the toolbar or type add from the Concept window to open the Component
Browser window.

2. Choose alt_lpm (Library menu). All functions in the alt_lpm library are MAX+PLUS® II-compatible.
Choose Megafunctions/LPM from the MAX+PLUS II Help menu to get detailed information on all
supported parameterized functions.

3. Type attribute, then click on each component to set parameters for each function. See General Guidelines
below for additional information.

4. Add inport and outport symbols from the hdl_direct_lib library to the interface signals. Use the supply_0
and supply_1 symbols from the hdl_direct_lib library to connect a net to GND or VCC.

5. Continue with the steps necessary to complete your Concept schematic, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept schematic file, which includes LPM function instantiation:

/usr/maxplus2/examples/cadence/example12/fifo

General Guidelines

If a pin is not used, leave it floating. The concept2alt utility removes all unconnected pins when it generates
an EDIF netlist file.

For the csfifo function, the value of the LPM_NUMWORDS parameter must be between
2LPM_WIDTHAD-1 and 2LPM_WIDTHAD.

Make sure that any hexadecimal (Intel-format) file (.hex) that you use to specify the initial content of a
memory does not have the same name as the design file name.

Make sure that all properties and value strings are in uppercase letters, except the filename specified with the
LPM_FILE property, which should use the actual case of the filename.

Choose the Set button in the Concept window and choose CAPS_LOCK_OFF for the CAPS LOCK option.

Only the LPM_POLARITY parameter (which can be set to INVERT or NORMAL) can determine the polarity of the
bus or pin. You can display a bubble in the Concept schematic to indicate an inverted pin by typing BUBBLE
in the Concept command window and selecting the appropriate pin. However, the bubble does not determine
the polarity of the pin or bus.

Avoid using the Replace button in the Concept window to replace old symbols with new ones: you may
accidentally set unwanted properties. Instead, you should use the Delete button to delete old symbols and the
Add button to add new symbol(s).

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Concept & Composer Schematics

In both Concept and Composer schematics, you can assign a limited subset of these resource assignments by
assigning properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II

software automatically converts assignment information from the EDIF Input File into the ACF format. For
information on making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Go to the Cadence Concept Schematic User Guide and Composer Reference User Guide for details on how to
assign properties. Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party
Design Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Concept and Composer.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept and Composer schematic files, which include resource assignments:

/usr/maxplus2/examples/cadence/example6/fa2 (Concept)
/usr/maxplus2/examples/cadence/example7/fa2 (Composer)

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. For information on using the setacf utility, go to Modifying the Assignment &
Configuration File with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in an
ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on (Help
menu).

Assigning Pins, Logic Cells & Chips

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in some EDA
tools or in the MAX+PLUS® II software.

Use the following syntax for chip, pin, and logic cell assignments:

To assign a logic function to a chip:

CHIP_PIN_LC=<chip name>

For example: CHIP_PIN_LC=chip1

To assign a pin number within a chip:

To assign a clique, use the following syntax:

CLIQUE=<clique name>

For example: CLIQUE=fast1

CHIP_PIN_LC=<chip name>@<pin number>

For example: CHIP_PIN_LC=chip1@K2

To assign a logic cell, I/O cell, or embedded cell number:

CHIP_PIN_LC=<chip name>@LC<logic cell number>

CHIP_PIN_LC=<chip name>@IOC<I/O cell number>

CHIP_PIN_LC=<chip name>@EC<embedded cell number>

For example: CHIP_PIN_LC=chip1@LC44

Related Topics:

Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on device
pin-outs and assigning devices, respectively, in the MAX+PLUS II software.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.

Assigning Cliques

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project
does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000, FLEX
10K, and MAX® 9000 devices the Compiler also attempts to place the logic in LABs in the same row. Cliques
therefore allow you to partition a project so that only a minimum number of signals travel between LABs, and to
ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

Related Topics:

Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Assigning Logic Options

Logic option and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device-family-specific default logic synthesis style for
each project.

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design Editor" in

MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis style
assignments, including definitions and syntax of these assignments.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility &
Verilog-XL Software

You can perform a functional simulation of a Concept schematic with the hdlconfig utility and Verilog-XL
software before compiling your project with the MAX+PLUS® II software.

To functionally simulate a Concept schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

3. Use the hdlconfig utility to create a Verilog HDL text file that contains the entire design. Type the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

hdlconfig -a -c -r <design name> -o <design name>.v logic verilog_lib

4. If your design contains RAM or ROM functions (e.g., lpm_ram_dq, lpm_ram_io, lpm_rom, scfifo, dcfifo,
altdpram, and csdpram), run the vconfig utility to link the object convert_hex2ver.o to build a new Verilog-
XL file that supports these functions by following these steps:

1. Create a copy of the Verilog executable file by typing the following command at the UNIX prompt:

cp -p $CDS_INST_DIR/tools/verilog/bin/verilog $CDS_INST_DIR/tools /verilog/bin/
verilog.bak.

2. Type vconfig at the UNIX prompt from the /usr/maxplus2/cadence/bin directory to start the
script.

3. Accept cr_vlog as the name of the output script.

4. Accept 1 as the stand-alone target.

5. Type new_verilog as the name for the Verilog-XL target.

6. Respond Yes when you are prompted to compile for the Verilog-XL environment.

7. Respond No when you are prompted to include the Dynamic LAI, STATIC LOGIC AUTOMATION,
LMSI HARDWARE MODELER, Verilog Mixed-Signal, and CDC interfaces in this executable.

8. Respond Yes when you are prompted to include the Standard Delay File Annotator (SDF).

9. Specify /usr/maxplus2/verilog/veriuser.c when you are asked the name of the user template file. For

more information about the contents of the veriuser.c file, you can refer to the veriuser.doc file, which
is available in the Cadence Openbook product documentation. To locate this document, start
Openbook, and choose Alphabetical List of Products from the main menu. Scroll through the pages
until you locate the PLI 1.0 User Guide & Reference in the PLI section, and then continue to scroll
through the document until you locate the veriuser.doc file under "Section A" and "PLI Code
Examples."

10. When you are asked the name of files to be linked with the Verilog-XL simulator, specify the
hexadecimal (Intel-format) conversion file /usr/maxplus2/cadence/share/verilog/convert_hex2ver.o,
followed by a single period (.).

11. Run the output script cr_vlog to build the new Verilog-XL executable in the
/usr/maxplus2/cadence/bin directory. Make sure that the $CDS_INST_DIR/tools/bin path appears at
the beginning of the PATH statement in the .cshrc file.

12. If your C language library installation is different from the default location /usr/lang/SC3.0.1, type the
following command at the UNIX prompt:

setenv C_DIR <C language library installation directory>

13. If successful, replace the old Verilog executable file with the new one by typing the following
command at the UNIX prompt:

cp -p new_verilog $CDS_INST_DIR/tools/verilog/bin/verilog

5. Generate the stimulus file for the design and start the Verilog-XL simulator by typing the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

verilog -y /usr/maxplus2/simlib/concept/alt_max2/verilogUdps +libext+.v+.V <stimulus file
name> <design name>.v

6. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the
concept2alt utility, as described in Converting Concept Schematics into MAX+PLUS II-Compatible EDIF
Netlist Files with the concept2alt Utility.

7. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-
XL Software

You can perform a functional simulation of a Concept schematic with VerilogLink and Verilog-XL software before
compiling your project with the MAX+PLUS® II software.

To functionally simulate a Concept schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

3. Generate the global.cmd, vloglink.cmd, verilog.cmd, and expansion.dat directive files.

4. Type vloglink <design name> from the /<working directory>/source directory to create a vloglink.v file
from the Concept schematic.

5. Generate the stimulus file for the design and start the Verilog-XL simulator by typing the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

verilog -y /usr/maxplus2/simlib/concept/alt_max2/verilogUdps +libext+.v+.V <stimulus file
name> vloglink.v

6. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the
concept2alt utility, as described in Converting Concept Schematics into MAX+PLUS II-Compatible EDIF
Netlist Files with the concept2alt Utility .

7. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Creating Hierarchical Projects in Concept Schematics

If you wish to create a hierarchical design that contains symbols representing other MAX+PLUS II-supported
design files, such as Altera® Hardware Description Language (AHDL) Text Design Files (.tdf), you can create a
hollow-body symbol that represents a design file and then instantiate it in your Concept schematic. To create a
hierarchical project in your Concept schematic, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Create the hollow-body symbol <design name> in Concept by typing the following command from the
<working directory>/source directory that contains the lower-level design file <design name>.<extension>:

concept <design name>.body

4. Create a part file to indicate that the body is hollow:

1. Add the DEFINE and DRAWING bodies to the part drawing. These bodies should be the only two bodies in
the drawing.

2. Add the TITLE=<design name> and the ABBREV=<design name> properties to the DRAWING body to
identify the drawing.

3. Save the part drawing with the name <design name>.part.1.1.

5. Regardless of the hardware description language (HDL) or schematic editor used to create the design, you
must create a dummy Verilog HDL module to indicate to the concept2alt utility that the design is a "black
box" that must pass untouched through the EDIF netlist file.

1. Type genview verilog in the Concept window.

2. Type logic when prompted for the Verilog View name.

3. If you are using VerilogLink, you must type genview verilog again, then type verilog_lib when
prompted for the Verilog View name.

4. Type cd <design name>/logic at the UNIX prompt from the /source directory to change to the
/source/<design name>/logic directory.

5. Edit the verilog.v file to add the cds_action = "ignore" parameter setting after the Input
Declarations and Output Declarations sections. This parameter setting specifies that the <design name>
should be treated as a "black box."

6. To enter the symbol in the higher-level Concept schematic, choose the Add Part button, choose the name of
the working SCALD directory, then choose the <design name> symbol from the Symbol menu.

7. The MAX+PLUS II software uses the cadence.lmf Library Mapping File to map Concept symbols to
equivalent MAX+PLUS II logic functions. To use custom symbols, you must create a custom LMF that maps
your custom symbols to the equivalent EDIF Input File, Text Design File (TDF), or other design file. You
will also need to specify this custom LMF in the EDIF Netlist Reader Settings dialog box before compiling
with the MAX+PLUS II software. See Compiling Projects with MAX+PLUS II Software for more
information.

8. Continue with the steps necessary to complete your Concept schematic, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample hierarchical AHDL and Concept schematic file:

/usr/maxplus2/examples/cadence/example4/fulladd2

Converting Concept Schematics into MAX+PLUS II- Compatible EDIF Netlist Files with
the concept2alt Utility

You can use the concept2alt utility to generate an EDIF netlist file from a Concept schematic. This file can then be
imported into the MAX+PLUS® II software as an EDIF Input File (.edf).

To convert a Concept schematic into an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Type the following command at the UNIX prompt from the /source directory that contains the schematic:

concept2alt -rundir ../max2 <design name>

If your design uses library of parameterized modules (LPM) functions, you must also include the -family
option. For example:

concept2 alt -family FLEX10K -rundirmax2 <design name>

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Creating Composer Schematics for Use with MAX+PLUS II Software

You can create Composer schematics and convert them into EDIF Input Files (.edf) that can be processed with the
MAX+PLUS® II Compiler. To create a Composer schematic for use with the MAX+PLUS II software, follow
these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Start the Composer schematic editor from the <working directory> by typing icds at a UNIX prompt. Use
the graphical user interface to structure and organize your files to create an environment that facilitates
entering and processing designs. Go to Composer Project File Directory Structure for more information on
directories in Composer.

3. Choose Library Path Editor (Tools menu) to create the <design name> library. In the Library dialog box,
type <project directory name> as the Library name and ./source/<design name> as the Path name. Choose
Save (File menu), then choose Exit (File menu) to save the path.

4. Choose Library Manager (Tools menu) to start Composer and create a new design.

5. Type <project directory name> as the Library name, <design name> as the Cell name, and schematic as the
View name in the Library Manager dialog box and press the key.

6. Enter primitives, megafunctions, and macrofunctions from the following libraries:

MAX+PLUS II-compatible primitives, megafunctions, and macrofunctions are available in the Altera-
provided alt_max2 component library.

Input, output, and bidirectional pins are available in the Cadence basic library located under
/cadence/etc/cdslib.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

If you wish to create a hierarchical design that contains symbols representing other design files, such
as Altera® Hardware Description Language (AHDL) Text Design Files, go to Creating Hierarchical
Projects in Composer Schematics.

7. Enter meaningful instance names for all symbols and functions so that you can easily trace internal node
names during simulation and debugging operations. For example, if an a161 macrofunction is instantiated
several times in one design, you should define a unique name for each instance. The instance name for each
symbol is controlled by INST property. For more information on assigning properties, refer to the Cadence
Composer User Guide.

8. (Optional) To enter resource assignments in your Composer schematic, go to Entering Resource
Assignments. You can also enter resource assignments from within the MAX+PLUS II software.

9. (Optional) Functionally simulate the design with the Verilog-XL simulator. Altera provides Verilog HDL

simulation modules in the /usr/maxplus2/simlib/composer/alt_max2/verilog and
/usr/maxplus2/simlib/composer/alt_max2/verilogUdps directories. Go to Performing a Functional
Simulation of a Composer Schematic with Verilog-XL Software for more information.

10. Use the altout utility to generate an EDIF netlist file that can be imported into the MAX+PLUS II software,
as described in Converting Composer Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with
the altout Utility.

11. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Composer schematic files:

/usr/maxplus2/examples/cadence/example2/fulladd
/usr/maxplus2/examples/cadence/example5/fulladd2
/usr/maxplus2/examples/cadence/example7/fa2

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Concept & Composer Schematics

In both Concept and Composer schematics, you can assign a limited subset of these resource assignments by
assigning properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II
software automatically converts assignment information from the EDIF Input File into the ACF format. For
information on making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Go to the Cadence Concept Schematic User Guide and Composer Reference User Guide for details on how to
assign properties. Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party
Design Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Concept and Composer.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept and Composer schematic files, which include resource assignments:

/usr/maxplus2/examples/cadence/example6/fa2 (Concept)
/usr/maxplus2/examples/cadence/example7/fa2 (Composer)

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to

enter resource assignments. For information on using the setacf utility, go to Modifying the Assignment &
Configuration File with the setacf Utility.

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in an
ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on (Help
menu).

Assigning Pins, Logic Cells & Chips

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in some EDA
tools or in the MAX+PLUS® II software.

Use the following syntax for chip, pin, and logic cell assignments:

To assign a logic function to a chip:

CHIP_PIN_LC=<chip name>

For example: CHIP_PIN_LC=chip1

To assign a pin number within a chip:

CHIP_PIN_LC=<chip name>@<pin number>

For example: CHIP_PIN_LC=chip1@K2

To assign a logic cell, I/O cell, or embedded cell number:

CHIP_PIN_LC=<chip name>@LC<logic cell number>

CHIP_PIN_LC=<chip name>@IOC<I/O cell number>

CHIP_PIN_LC=<chip name>@EC<embedded cell number>

For example: CHIP_PIN_LC=chip1@LC44

Related Topics:

Refer to the following sources for additional information:

Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on device
pin-outs and assigning devices, respectively, in the MAX+PLUS II software.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.

To assign a clique, use the following syntax:

CLIQUE=<clique name>

For example: CLIQUE=fast1

Assigning Cliques

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project
does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000, FLEX
10K, and MAX® 9000 devices the Compiler also attempts to place the logic in LABs in the same row. Cliques
therefore allow you to partition a project so that only a minimum number of signals travel between LABs, and to
ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

Related Topics:

Go to the following topics in MAX+PLUS II Help for related information:

Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Assigning Logic Options

Logic option and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device-family-specific default logic synthesis style for
each project.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design Editor" in
MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis style

assignments, including definitions and syntax of these assignments.
version 97A:
Concept
Composer
ValidCOMPILER
concept2alt
vlog2alt
altout

VerilogLink
Synergy
HDL Direct (Concept 2.0 or later)
Non-Graphic Simulation Environment (SE)
RapidSIM, Verilog-XL, or Leapfrog
redifnet (SunOS only)

MAX+PLUS II
version 9.4

Description
Name

Description

MAX 7000A,
MAX 7000AE,
MAX 7000B,
MAX 7000S
MAX 9000

&
MAX 9000A

Devices

./lmfContains the Altera-provided Library Mapping File, cadence.lmf, that maps Cadence logic functions to
equivalent MAX+PLUS II logic functions.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Performing a Functional Simulation of a Composer Schematic with Verilog-XL Software

You can perform a functional simulation of a Cadence Composer schematic with the Verilog-XL simulator before
compiling your project with the MAX+PLUS® II software.

To functionally simulate a Composer schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the
MAX+PLUS II/Cadence Working Environment.

2. Create a Composer schematic and save it in your working directory, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

3. In Composer, select Simulation from the Tools drop-down list.

4. Select Verilog-XL to start the Verilog-XL Integration Control window.

5. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the altout
utility, as described in Converting Composer Schematics into MAX+PLUS II-Compatible EDIF Netlist Files
with the altout Utility.

6. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Creating Hierarchical Projects in Composer Schematics

If you wish to create a hierarchical design that contains symbols representing other design files, such as Altera®

Hardware Description Language (AHDL) Text Design Files (.tdf), you can create a hollow-body symbol that
represents a design file and then instantiate it in your Composer schematic.

To create a hierarchical project in your Composer schematic, follow these steps:

®

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Composer schematic and save it in your working directory, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Create the hollow-body symbol <design name> in Composer by typing icds from the <working
directory> at the UNIX prompt.

4. Choose Library Path Editor (Tools menu) to create the <design name> library. Type <design name> as the
Library name and ./source/<design name> as the Path name. Choose Save (File menu), then choose Exit
(File menu) to save the path and exit from the Library Path Editor.

5. Choose Library Manager (Tools menu) to start Composer and create a symbol for your design. Type
<project directory name> as the Library name, <lower-level design name> as the Cell name, symbol as the
View name, and then press .

6. Create a hollow-body symbol that represents the inputs and outputs of your design.

7. Enter input and output pins for the symbol.

8. Save the symbol.

9. To enter the symbol in your higher-level schematic design, choose the Component button and type <project
directory name> as the Library name, <lower-level design name> as the Cell name, and symbol as the View
name.

10. The MAX+PLUS II software uses the cadence.lmf Library Mapping File to map Concept symbols to
equivalent MAX+PLUS II logic functions. To use custom symbols, you must create a custom LMF that maps
your custom symbols to the equivalent EDIF Input File, Text Design File (TDF), or other design file. You
will also need to specify this custom LMF in the EDIF Netlist Reader Settings dialog box before compiling
with the MAX+PLUS II software. See Compiling Projects with MAX+PLUS II Software for more
information.

11. Continue with the steps necessary to complete your Composer schematic, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample hierarchical AHDL and Composer schematic file:

/usr/maxplus2/examples/cadence/example5/fulladd2

Converting Composer Schematics into MAX+PLUS II- Compatible EDIF Netlist Files with
the altout Utility

You can use the altout utility to generate an EDIF netlist file from a Composer schematic. This file can then be
imported into the MAX+PLUS® II software as an EDIF Input File (.edf).

To convert Composer schematics into MAX+PLUS II-compatible EDIF netlist files, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Composer schematic and save it in your working directory, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Type the following command at the UNIX prompt from the working directory that contains the schematic:

altout -lib <design name> -rundir max2 <design name>

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Creating VHDL Designs for Use with MAX+PLUS II Software

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and save
them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements in text files in
different colors to distinguish them from other forms of syntax.

To create a VHDL design that can be synthesized and optimized with Synergy software, follow these steps:

1. You can instantiate the following MAX+PLUS II-provided logic functions in your VHDL design:

The alt_mf library contains the Altera® VHDL logic function library, which includes the a_8count,
a_8mcomp, a_8fadd, and a_81mux macrofunctions. If you wish to instantiate alt_mf logic functions in
your VHDL design, you must first compile this library, as described in Compiling the alt_mf Library.

The clklock megafunction, which enables the phase-locked loop, or ClockLock , circuitry available
on selected Altera FLEX® 10K devices. Go to Instantiating the clklock Megafunction in VHDL or
Verilog HDL for information.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

2. If you wish to use Standard Delay Format (SDF) Output Files (.sdo) that contain timing information when
performing post-compilation timing simulation with Leapfrog software, you must first compile the VITAL
library source files, as described in Compiling the alt_vtl Library for for Use with Leapfrog Software.

3. (Optional) To enter resource assignments in your VHDL design, go to Entering Resource Assignments. You

In MAX+PLUS II version 8.3 and lower, running genclklk on a PC always creates files named as clklock.vhd,
clklock.cmp, and clklock.v, regardless of the ClockBoost and input frequency values you specify.

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;

can also enter resource assignments from within the MAX+PLUS II software.

4. After you have completed your VHDL design, synthesize and optimize it with Synergy software, as
described in Synthesizing & Optimizing VHDL Files with Synergy Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample VHDL files, the latter of which includes macrofunction instantiation.

/usr/maxplus2/examples/cadence/example9/count4.vhd
/usr/maxplus2/examples/cadence/example10/adder16.vhd

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating the clklock Megafunction in VHDL or Verilog HDL

MAX+PLUS® II interfaces to other EDA tools support the clklock phase-locked loop megafunction, which can be
used with some FLEX® 10K devices, with the gencklk utility, which is available in the MAX+PLUS II system
directory. Type gencklk -h at the DOS or UNIX prompt to display information on how to use this utility. The
gencklk utility generates VHDL or Verilog HDL functional simulation models and a VHDL Component
Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the DOS or UNIX prompt to generate the clklock_x_y function, where x is
the ClockBoost value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

2. Create a design file that instantiates the clklock_x_y.vhd or clklock_x_y.v file. The gencklk utility
automatically generates a VHDL Component Declaration template in the clklock_x_y.cmp file that you can
incorporate into a VHDL design file.

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);
 END structure;

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Concept & Composer Schematics

In both Concept and Composer schematics, you can assign a limited subset of these resource assignments by
assigning properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II
software automatically converts assignment information from the EDIF Input File into the ACF format. For
information on making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Go to the Cadence Concept Schematic User Guide and Composer Reference User Guide for details on how to
assign properties. Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party
Design Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Concept and Composer.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept and Composer schematic files, which include resource assignments:

/usr/maxplus2/examples/cadence/example6/fa2 (Concept)

/usr/maxplus2/examples/cadence/example7/fa2 (Composer)

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. For information on using the setacf utility, go to Modifying the Assignment &
Configuration File with the setacf Utility.

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in an
ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on (Help
menu).

./examples/cadenceContains the sample files for Cadence software discussed in these ACCESSSM Key Guidelines.

./cadenceContains the AMPLE userware for the MAX+PLUS II/Cadence interface.
FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE Devices

In-System
Programming/
Configuration

./simlib/concept/alt_max2Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP, GLOBAL, LCELL,
SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and DFFE6K (D flipflop with Clock Enable and both Clear and
Preset for FLEX® 6000 devices only) for use with Concept software.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Creating Verilog HDL Designs for Use with MAX+PLUS II Software

You can create Verilog HDL design files with the MAX+PLUS® II Text Editor or another standard text editor and
save them in the appropriate directory for you project. The MAX+PLUS II Text Editor offers the following
advantages:

Verilog HDL templates are available with the Verilog Templates command (Templates menu). These
templates are also available in the ASCII verilog.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your Verilog HDL design, you can use the Syntax
Coloring command (Options menu). The Syntax Coloring feature displays keywords and other elements of
text in text files in different colors to distinguish them from other forms of syntax.

To create a Verilog HDL design that can be synthesized and optimized with Synergy software, go through the
following steps:

1. You can instantiate the following MAX+PLUS II-provided logic functions in your Verilog HDL design:

The alt_max2 library, which contains the a_8count, a_8mcomp, a_8fadd, and a_81mux macrofunctions
that are optimized for different Altera device families.

The clklock megafunction which enables phase-locked loop, or ClockLock , circuitry available on
selected Altera FLEX® 10K devices. Go to Instantiating the clklock Megafunction in VHDL or
Verilog HDL for information.

The lpm_syn library, which contains the Cadence LPM megafunction library for use with Synergy
Software and Concept or Composer software.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

2. You can enter resource assignments in your Verilog HDL design, as described in Entering Resource
Assignments.

3. After you have completed your Verilog HDL design, synthesize and optimize it with Synergy software, as
described in Synthesizing & Optimizing Verilog HDL Files with Synergy Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Verilog HDL files, the latter of which includes LPM function instantiation.

/usr/maxplus2/examples/cadence/example11/count8.v
/usr/maxplus2/examples/cadence/example13/rom_test.v

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating the clklock Megafunction in VHDL or Verilog HDL

MAX+PLUS® II interfaces to other EDA tools support the clklock phase-locked loop megafunction, which can be
used with some FLEX® 10K devices, with the gencklk utility, which is available in the MAX+PLUS II system
directory. Type gencklk -h at the DOS or UNIX prompt to display information on how to use this utility. The
gencklk utility generates VHDL or Verilog HDL functional simulation models and a VHDL Component
Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the DOS or UNIX prompt to generate the clklock_x_y function, where x is
the ClockBoost value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

In MAX+PLUS II version 8.3 and lower, running genclklk on a PC always creates files named as clklock.vhd,
clklock.cmp, and clklock.v, regardless of the ClockBoost and input frequency values you specify.

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

2. Create a design file that instantiates the clklock_x_y.vhd or clklock_x_y.v file. The gencklk utility
automatically generates a VHDL Component Declaration template in the clklock_x_y.cmp file that you can
incorporate into a VHDL design file.

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);
 END structure;

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Concept & Composer Schematics

In both Concept and Composer schematics, you can assign a limited subset of these resource assignments by
assigning properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II
software automatically converts assignment information from the EDIF Input File into the ACF format. For

information on making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Go to the Cadence Concept Schematic User Guide and Composer Reference User Guide for details on how to
assign properties. Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party
Design Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Concept and Composer.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept and Composer schematic files, which include resource assignments:

/usr/maxplus2/examples/cadence/example6/fa2 (Concept)
/usr/maxplus2/examples/cadence/example7/fa2 (Composer)

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. For information on using the setacf utility, go to Modifying the Assignment &
Configuration File with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in an
ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on (Help
menu).

./simlib/composer/alt_max2Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP, GLOBAL,
LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and DFFE6K (D flipflop with Clock Enable and both
Clear and Preset for FLEX 6000 devices only) for use with Composer software. ./simlib/concept/alt_lpmContains
the MAX+PLUS II megafunctions, including library of parameterized modules (LPM) functions, for use with
Concept software. ./simlib/concept/max2simContains the MAX+PLUS II/Concept simulation model library,
max2_sim, for use with RapidSIM software.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Synthesizing & Optimizing VHDL Files with Synergy Software

You can use Cadence Synergy software to synthesize and optimize your VHDL files and convert them to EDIF
input files that can be processed by the MAX+PLUS® II Compiler. The information presented here describes only
how to use VHDL files that have been processed by Synergy software. For information on direct MAX+PLUS II
support for VHDL Design Files, go to MAX+PLUS II VHDL Help.

To process a VHDL file with Synergy software for use with MAX+PLUS II software, go through the following
steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a VHDL file <design name>.vhd using the MAX+PLUS II Text Editor or another standard text editor
and save it in a working directory. Go to Creating VHDL Designs for Use with MAX+PLUS II Software for
more information on VHDL design entry.

3. Start Synergy by typing synergy -lang vhdl at a UNIX prompt from the working directory.

4. Analyze your source file <design name>.vhd:

1. Choose Analyze Files (File menu) to open the Select Design dialog box.

2. Click on the Analyze Files tab.

3. Select the design name from the Files list.

4. Choose Analyze to analyze the source file(s).

5. Choose the Select Design tab from the Select Design dialog box and specify the following options:

1. Select the design architecture from the hierarchical list. The design architecture should appear in the
Design box.

2. Specify <design name>.run1 as the Run Directory.

3. Type alt_syn as the Target Library name.

4. (Optional) If you want to use the Synergy library of parameterized modules (LPM) synthesis
capability, choose the Macro Libraries ellipse button and select lpm_syn in the Select From box.

5. (Optional) If you want to view a synthesized schematic in Concept or Composer, go through the
following steps:

1. Choose Schematic Generation (Utilities menu).

2. Select either Concept or Composer in the Generate From box.

3. Type alt_max2 in the Symbol Libraries box.

4. Choose Apply, then Close.

6. Choose the Select Design button from the Select Design window.

7. Indicate to the Synergy software that any clklock megafunction or any macrofunction instantiated in your
VHDL design is a "black box" that must pass untouched through the EDIF netlist file:

1. Choose Synthesis (Constraints menu), then choose Hierarchy Control.

2. Select the module or instance name from the hierarchical View list for Module/Instance.

3. Turn on Maintain Option in the Synthesis Constraints box.

4. Select Module/Instance and Tree Below in the Apply To box.

5. Choose Apply.

6. Repeat steps a through e for each instance of the function.

8. Choose Synthesize (Synthesis menu) from the Synergy window and specify the following options:

1. Click on the Synthesize tab.

2. Turn on the Generate Schematic option.

3. Select either Composer or Concept from the Type list box.

4. Choose Synthesize to start synthesizing your design.

9. Generate an EDIF netlist file that can be compiled with MAX+PLUS II software, as described in Converting
VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the vlog2alt or altout Utility.

10. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample VHDL files:

/usr/maxplus2/examples/cadence/example9/count4.vhd
/usr/maxplus2/examples/cadence/example10/adder16.vhd

Converting VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the
vlog2alt or altout Utility

You can convert a VHDL design into an EDIF netlist file with the extension .edf. This file can then be imported
into the MAX+PLUS® II software as an EDIF Input File (.edf).

To convert a VHDL design into an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Synthesize and optimize your VHDL design with Synergy, as described in Synthesizing & Optimizing
VHDL Files with Synergy Software.

3. Depending on whether or not you have installed the Concept alt_syn library, perform one of the following
steps to create <design name>.edf in the working directory:

If you have installed the Concept alt_syn library, type the following command at the UNIX prompt from
your working directory:

vlog2alt <design name> -rundir max2 -vfiles <design name>.run1/syn.v

or:

If you have not installed the Concept alt_syn library, follow these steps:

1. Edit the cds.lib file, which is located in your working directory, to include the following line:

DEFINE Opt <working directory>/<design name>.run1/Opt

2. Type the following command at the UNIX prompt from the working directory:

altout -lib Opt -rundir max2 <design name>

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample VHDL files:

/usr/maxplus2/examples/cadence/example9/count4.vhd
/usr/maxplus2/examples/cadence/example10/adder16.vhd

Synthesizing & Optimizing Verilog HDL Files with Synergy Software

You can create and process Verilog HDL files and convert them into EDIF input files that can be processed by the
MAX+PLUS® II Compiler. To process a Verilog HDL file with Synergy software for use with the MAX+PLUS II
software, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting up the MAX+PLUS II/Cadence
Working Environment.

2. Create a Verilog HDL file <design name>.v using the MAX+PLUS II Text Editor or another standard text
editor and save it in a working directory. Go to Creating Verilog HDL Designs for Use with MAX+PLUS II
Software for more information on Verilog HDL design entry.

3. Start Synergy by typing synergy -lang verilog at a UNIX prompt from your working directory.

4. Choose Select Design (File menu) from the Synergy window and specify the following options:

1. Select <design name>.v from the Verilog Files list.

2. Choose the Verilog Option tab from the Select Design dialog box.

3. Specify <design name>.run1 as the Run Directory.

4. Type /usr/maxplus2/simlib/concept/alt_max2/<design name>/verilog_lib/verilog.v
<working directory>/ in the Library Files (-v) box.

5. (Optional) If your design includes library of parameterized modules (LPM) functions, type
+define+SYNTH in the Other Compilations box.

6. Choose Select Design.

5. Choose the Design tab from the Select Design dialog box and set the target library:

1. Type alt_syn as the Target Library name.

2. (Optional) To use the Synergy LPM synthesis capability, type lpm_syn as the Library name in the
Macro Cell Library box.

3. Choose OK.

6. (Optional) To view the synthesized schematic in Concept or Composer, go through the following steps:

1. Select Schematic Generation (Utilities menu).

2. Select either Concept or Composer in the Generate From box.

3. Type alt_max2 in the Symbol Libraries box.

4. Choose Apply, then Close.

7. Choose Select Design from the Select Design window.

8. Choose Synthesize (Synthesis menu) from the Synergy window and specify the following options:

1. Click on the Synthesize tab.

2. Turn on the Generate Schematic option.

3. Select either Composer or Concept from the Type list box.

4. Choose Synthesize to start synthesizing your design.

9. Generate an EDIF netlist file that can be compiled by the MAX+PLUS II Compiler, as described in
Converting Verilog HDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files.

10. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Verilog HDL files:

/usr/maxplus2/examples/cadence/example11/count8.v
/usr/maxplus2/examples/cadence/example13/rom_test.v

Converting Verilog HDL Designs into MAX+PLUS II-
Compatible EDIF Netlist Files with the vlog2alt Utility

You can use the vlog2alt utility to convert your Verilog HDL design into an EDIF netlist file. This file can then be
imported into the MAX+PLUS® II software as an EDIF Input File with the extension .edf.

To convert a Verilog HDL design into an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Synthesize and optimize your Verilog HDL design with Synergy, as described in Synthesizing & Optimizing
Verilog HDL Files with Synergy Software.

3. To convert your Verilog HDL design into an EDIF netlist file, type the following command at the UNIX
prompt from your working directory:

vlog2alt <design name> -rundir max2 -vfiles <design name>.run1/syn.v

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Verilog HDL files:

/usr/maxplus2/examples/cadence/example11/count8.v
/usr/maxplus2/examples/cadence/example13/rom_test.v

Figure 1. MAX+PLUS II/Cadence Project Compilation Flow

Altera-provided items are shown in blue.

Project Compilation Flow

Figure 1 shows the MAX+PLUS® II/Cadence project compilation flow.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly with
the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the Synopsys
Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within the
MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal

names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Figure 1. MAX+PLUS II/Cadence Project Simulation Flow

generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Project Simulation Flow

Figure 1 shows the project simulation flow for the MAX+PLUS® II/Cadence interface.

Altera-provided items are shown in blue.

1. The add_dc script gives a message if the directory contains both a VHDL Output File and a Verilog Output

Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation

Altera provides the add_dc script, which is availiable in the MAX+PLUS II system directory, to allow you to
process MAX+PLUS II-generated Verilog Output Files (.vo) and VHDL Output Files (.vho) to prepare these files
for simulation with another EDA tool. The add_dc script runs the add_dclr utility, which inserts a device_clear
signal that is used for power-up initialization of all registers or flipflops in the design.

The script adds in a top-level signal named device_clear and connects it to the CLRN pin in all flipflops that should
initialize to 0, and to the PRN pin of all flipflops that should initialize to 1. If the CLRN or PRN pin of a flipflop is
already being used (i.e., is already connected to a signal), the script modifies the Verilog Output File or VHDL
Output File so that the AND of the original signal and the device_clear pin feed the CLRN or PRN pin.

To use the add_dc script to process Verilog Output Files and VHDL Output Files before simulation with another
EDA tool, follow these steps:

1. Make sure that your design file is located in the current directory, or change to the directory in which the
design file is located.

2. Type the following command at the command prompt:

¥<path name of add_dc.bat file>¥add_dc <design name> <path name of add_dclr.exe file>

For example, if the both the add_dc.bat and the add_dclr.exe files are located in the d:¥maxplus2¥exew
directory, and the d:¥maxplus2¥exew directory is specified in the search path, you can type the following
command at a command prompt to add a device_clear signal to a design named myfifo in the file myfifo.vo:

add_dc myfifo d:¥maxplus2¥exew

File with the same name (<design name>.vo and <design>.vho). You should delete or rename whichever
of those files should not have the device_clear signal added. The add_dc script can modify only one
design file at a time.

2. When the add_dc script processes the Verilog Output File or VHDL Output File, it creates a backup copy
of the original file, with the extension .ori.

3. The add_dc script works only for Verilog Output Files and VHDL Output Files that are generated by
MAX+PLUS II.

After you have used the add_dc script and are ready to simulate the resulting Verilog Output File or VHDL Output
File with another EDA tool, you should assert the active low device_clear pin for a period of time that is long
enough for the design to initialize. You can then de-assert the pin, and apply simulation vectors to the design.

Performing a Timing Simulation with RapidSIM Software

You can use the Cadence redifnet utility to read MAX+PLUS® II-generated EDIF Output Files and prepare them
for timing simulation with RapidSIM software. RapidSIM software can simulate both the functionality and the
timing of your design. It also checks setup time requirements, hold time requirements, and Clock duty cycle timing
requirements on registers.

To simulate projects with RapidSIM software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Generate an EDIF Output File (.edo), as described in Compiling Projects with MAX+PLUS II Software.

3. Copy the EDIF Output File <file name>.edo from the /<working directory>/max2 directory to the /<working
directory>/dest directory.

4. Convert the EDIF Output File into the SCALD project format by typing redifnet <design name> at the
UNIX prompt from the /<working directory>/dest directory.

5. Type lwb_rapidsim at the UNIX prompt to generate the global.cmd directive file.

6. Choose the RapidSIM button from the Logic Workbench window to start RapidSIM and simulate your
EDIF Output File.

Performing a Timing Simulation with Verilog-XL Software

Once the MAX+PLUS® II software has compiled a project and generated a Verilog Output File (.vo), you can
perform a timing simulation using Cadence Verilog-XL software.

To simulate Verilog output files with the Verilog-XL timing simulator, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Generate Verilog Output Files (.vo), as described in Compiling Projects with MAX+PLUS II Software. The
MAX+PLUS II Compiler generates the <design name>.vo and alt_max2.vo files for use with Verilog-XL
software.

3. Using any standard text editor, create a stimulus file that includes test vectors for your design.

4. Start the Verilog-XL simulator and simulate your Verilog output files by typing the following command at
the UNIX prompt:

verilog <stimulus filename(s)> <design name> alt_max2.vo

Performing a Timing Simulation with Leapfrog Software

Once the MAX+PLUS® II software has compiled a project and generated a VHDL Output File (.vho), you can a
perform timing simulation using Cadence Leapfrog software.

To simulate a VHDL output file with the Leapfrog timing simulator, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. If you wish to use MAX+PLUS II-generated Standard Delay Format (SDF) Output Files (.sdo) that contain
timing information, compile the VITAL library source files, as described in Compiling the VITAL Library
for Use with Leapfrog Software.

3. If your design uses functions from the alt_mf library, compile the library, as described in Compiling the
alt_mf Library.

4. Generate a VHDL Output File (.vho) and an optional SDF Output File, as described in Compiling Projects
with MAX+PLUS II Software.

5. Using any standard text editor, create a stimulus file that includes test vectors for <design name>.

6. Start the Leapfrog simulator and simulate the MAX+PLUS II-created VHDL Output File <design name>.vho
by typing leapfrog at the UNIX prompt. Refer to Chapter 5: SDF Back-Annotation in Leapfrog in the
VHDL Simulator User Guide or refer to the Cadence Openbook for more information.

Compiling the VITAL Library for Use with Leapfrog Software

If you wish to use MAX+PLUS® II-generated Standard Delay Format (SDF) Output Files (.sdo) that contain
timing information when performing post-compilation timing simulation with Leapfrog software, you must first
compile the VITAL library source files. The VITAL Timing and Primitive package files are located in the
$CDS_INST_DIR/tools/leapfrog/files/IEEE.src directory.

To compile the alt_vtl library, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment. For example, you must ensure that the appropriate directories are
specified in the cds.lib file that is located in your working directory.

2. Create a VHDL design, as described in Creating VHDL Designs for Use with MAX+PLUS II Software and
save it in your working directory.

3. Change to the alt_vtl directory by typing cd /usr/maxplus2/simlib/concept/alt_vtl at the UNIX
prompt.

4. Edit the hdl.var file located in your working directory to include the following line:

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

DEFINE WORK alt_vtl

5. Create the /usr/maxplus2/simlib/concept/alt_vtl/lib directory.

6. Type the following commands at the UNIX prompt from the /usr/maxplus2/simlib/concept/alt_vtl directory
to compile the library:

cv -message -file alt_vtl.vhd
cv -message -file alt_vtl.cmp

Compiling the alt_mf Library

If your VHDL design uses functions from the alt_mf library, you must compile this library. To compile the alt_mf
library, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Cadence Working Environment. For example, you must ensure that the appropriate directories are
specified in the cds.lib file located in your working directory.

2. Change to the alt_mf directory by typing cd /usr/maxplus2/simlib/concept/alt_mf at the UNIX
prompt.

3. Edit the hdl.var file located in your working directory to include the following line:

DEFINE work alt_mf

4. Type the following commands at the UNIX prompt from the /usr/maxplus2/simlib/concept/alt_mf directory
to compile the library:

cv -message -file ./src/mf.vhd
cv -message -file ./src/mf_components.vhd

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Assigning Cliques

Assigning Cliques

To assign a clique, use the following syntax:

CLIQUE=<clique name>

For example: CLIQUE=fast1

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project
does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000, FLEX
10K, and MAX® 9000 devices the Compiler also attempts to place the logic in LABs in the same row. Cliques
therefore allow you to partition a project so that only a minimum number of signals travel between LABs, and to
ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

Related Topics:

Go to the following topics in MAX+PLUS II Help for related information:
Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project
does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000,
MAX® 9000, and FLEX 10K devices, the Compiler also attempts to place the logic in LABs in the same row.
Cliques therefore allow you to partition a project so that only a minimum number of signals travel between LABs,
and to ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

To make pin, logic cell, and chip assignments, use the set_attribute command at a dc_shell prompt. Before
using the set_attribute command, add the following line to your .synopsys_dc.setup file:

edifout_write_properties_list= {LOGIC_OPTION, CLIQUE, CHIP_PIN_LC}

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

To assign a clique, type the following command at a dc_shell prompt:
set_attribute find(<design object>,(<instance name>))"CLIQUE" -type string "<clique name>"
For example:
set_attribute find (cell, (U1)) "CLIQUE" -type string "fast1"

Related Topics:

Go to the following topics in MAX+PLUS II Help for related information:
Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating the clklock Megafunction
in Design Architect Schematics

Instantiating the clklock Megafunction in Design
Architect Schematics

You can instantiate the clklock phase-locked loop megafunction, which is supported in selected FLEX® 10K
devices, in a Concept schematic. that employ a phase-locked loop (PLL).

To instantiate the clklock megafunction in Cadence Concept schematics, follow these steps:

1. Choose the Add Part button from the toolbar or type add in the Concept window to open the Component
Browser window.

2. Enter the clklock megafunction:
1. Choose alt_max2 (Library menu) and select clklock from the list box.
2. Type attribute, then select the clklock component. Change the CLOCKBOOST and

INPUT_FREQUENCY values as needed. For detailed information on the clklock megafunction,
choose Megafunctions/LPM from the MAX+PLUS® II Help menu.

3. Choose Done.
4. Continue with the steps necessary to complete your Concept schematic, as described in Creating Concept

Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept schematic file, which includes clklock instantiation:

/usr/maxplus2/examples/cadence/example12/fifo

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

You can instantiate the Altera Approvided clklock phase-locked loop megafunction, which is supported for some
FLEX® 10K devices, in a Design Architect schematic.

To instantiate the clklock megafunction in a Design Architect schematic, follow these steps:

1. Choose Altera Libraries (Library menu).

2. Choose ALTERA GENLIB (Altera Libraries menu).

3. Choose clklock (ALTERA GENLIB menu).

4. Specify appropriate values for the CLOCKBOOST and INPUT_FREQUENCY variables. Choose
Megafunctions/LPM from the MAX+PLUS Â® Â II Help menu for detailed information on the clklock
megafunction.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altmax2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1#GENLIB

5. Choose OK.

6. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUSÂ II Software.

Installing the AlteraÂprovided MAX+PLUSÂ II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example7/fifo,
which includes clklock megafunction instantiation.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating the clklock Megafunction
in VHDL or Verilog HDL

Instantiating the clklock Megafunction in VHDL or
Verilog HDL

In MAX+PLUS II version 8.3 and lower, running genclklk on a PC always creates files named as clklock.vhd,
clklock.cmp, and clklock.v, regardless of the ClockBoost and input frequency values you specify.

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;

MAX+PLUS® II interfaces to other EDA tools support the clklock phase-locked loop megafunction, which can be
used with some FLEX® 10K devices, with the gencklk utility. Type gencklk -h at the DOS or UNIX prompt to
display information on how to use this utility. The gencklk utility generates VHDL or Verilog HDL functional
simulation models and a VHDL Component Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the DOS or UNIX prompt to generate the clklock_x_y function, where x is
the ClockBoost™ value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

2. Create a design file that instantiates the clklock_x_y.vhd or clklock_x_y.v file. The gencklk utility
automatically generates a VHDL Component Declaration template in the clklock_x_y.cmp file that you can
incorporate into a VHDL design file.

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);
 END structure;

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),

 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Powerview Command-Line Syntax

Powerview Command-Line Syntax

Action Command
Start VHDL Analyzer software vhdl -v <project name>
Start ViewSynthesis software vhdldes

Load Altera® technology library vhdldes> technology altera

Compile a VHDL design vhdldes> vhdl <project name>
Synthesize a design vhdldes> synthesize

Generate wirelist file vhdldes> wir

Create a schematic representation vhdldes> viewgen

Generate a synthesis report file vhdldes> report

Start the graphical user interface for
ViewSynthesis vhdldes> vdesgui

Start the VHDL-to-symbol utility vhdl2sym <project name>
Start vsm vsm <project name>
Start ViewSim simulator viewsim <project name> -<project name>.cmd

Start edifneto edifneto -f <project name>-l (std or altera) <project
name>.edf

Start Vantage VHDL Analyzer software analyze -src <design file>
Start MOTIVE for Powerview software mfp

Table 1 shows the command-line syntax for using Powerview functions.

Table 1. Powerview Command-Line Syntax

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Composer &
MAX+PLUS II Software

Using Cadence Composer & MAX+PLUS II Software

The following topics describe how to use the Cadence Composer software with MAX+PLUS® II software. Click
on one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
MAX+PLUS II Directory Structure
MAX+PLUS II/Cadence Interface File Organization
Composer Project File Directory Structure
Altera-Provided Logic & Symbol Libraries

Design Entry

Design Entry Flow
Creating Composer Schematics for Use with MAX+PLUS II Software
Entering Resource Assignments

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Creating Hierarchical Projects in Composer Schematics
Converting Composer Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the altout Utility

Functional Simulation

Performing a Functional Simulation of a Composer Schematic with Verilog-XL Software

Related Links:

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2dir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fg15cad.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hierarch.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogcom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.cadence.com/
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Composer &
MAX+PLUS II Software

Using Cadence Composer & MAX+PLUS II Software

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

The following topics describe how to use the Cadence Composer software with MAX+PLUS® II software. Click
on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
MAX+PLUS II Directory Structure
MAX+PLUS II/Cadence Interface File Organization
Composer Project File Directory Structure
Altera-Provided Logic & Symbol Libraries

Design Entry

Design Entry Flow
Creating Composer Schematics for Use with MAX+PLUS II Software
Entering Resource Assignments

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Creating Hierarchical Projects in Composer Schematics
Converting Composer Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the altout Utility

Functional Simulation

Performing a Functional Simulation of a Composer Schematic with Verilog-XL Software

Related Topics:

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using the C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

Setting Up the MAX+PLUS II/Cadence Working Environment

To use MAX+PLUS® II software with Cadence software, you must first install the MAX+PLUS II software, then
establish an environment that facilitates entering and processing designs. The MAX+PLUS II/Cadence interface is
installed automatically when you install the MAX+PLUS II software on your computer. Go to MAX+PLUS II
Installation in the MAX+PLUS II Getting Started manual for more information on installation and details on the
directories that are created during MAX+PLUS II installation. Go to MAX+PLUS II/Cadence Interface File
Organization for information about the MAX+PLUS II/Cadence directories that are created during MAX+PLUS II
installation.

To set up your working environment for the MAX+PLUS II/Cadence interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Cadence software versions described in the
MAX+PLUS II/Cadence Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2

setenv CDS_INST_DIR <Cadence system directory path>

3. Add the $ALT_HOME/cadence/bin and $CDS_INST_DIR/tools/bin directories to the PATH environment
variable in your .cshrc file. Make sure these paths are placed before the Cadence hierarchy path.

4. Add /usr/dt/lib and /usr/ucb/lib to the LD_LIBRARY_PATH environment variable in your .cshrc file.

5. Create a new cds.lib file in your working directory or edit an existing one so that it includes all of the
following lines that apply to the Cadence tools you have installed:

DEFINE alt_syn ${ALT_HOME}/simlib/concept/alt_syn

DEFINE lpm_syn ${ALT_HOME}/simlib/concept/lpm_syn

DEFINE alt_lpm ${ALT_HOME}/simlib/concept/alt_lpm

DEFINE alt_mf ${ALT_HOME}/simlib/concept/alt_mf

DEFINE alt_max2 ${ALT_HOME}/simlib/concept/alt_max2

DEFINE alt_max2 ${ALT_HOME}/simlib/composer/alt_max2/alt_max2

DEFINE alt_vtl $ALT_HOME/simlib/concept/alt_vtl/lib

DEFINE altera $ALT_HOME/simlib/concept/alt_mf/lib

SOFTINCLUDE $CDS_INST_DIR/tools/leapfrog/files/cds.lib

DEFINE <design name>.

6. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

7. If you are using Concept on a Sun SPARCstation running SunOS, go to Setting Up the MAX+PLUS
II/Cadence Concept Work Environment for a Sun SPARCstation Running SunOS Software to install the
redifnet EDIF netlist reader utility.

8. If you are using Synergy software, edit the hdl.var file located in your working directory to include the
following line:

DEFINE work <design name>

9. Set up an appropriate directory structure for the tool(s) you are using. See the following topics for
information:

Composer Project File Directory Structure
Concept & RapidSIM Local Work Area Directory Structure

Related Topics:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II Directory Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL Text Design File (TDF);
or any other MAX+PLUS II-supported design file. The EDIF netlist file must be created by the altout or
concept2alt utility and imported into the MAX+PLUS II software as an EDIF Input File (.edf).

Project design files and output files are stored in the project directory, with the exception of standard library
functions provided by Altera or another EDA tool vendor. The MAX+PLUS II software stores the connectivity data
on the links between design files in a hierarchical project in a Hierarchy Interconnect File (.hif), but refers to the
entire project only by its project name. The MAX+PLUS II Compiler uses the HIF to build a single, fully flattened
project database that integrates all design files in a project hierarchy.

MAX+PLUS II/Cadence Interface File Organization

Table 1. MAX+PLUS II Directory Organization

Directory Description

./lmf
Contains the Altera-provided Library Mapping File, cadence.lmf, that
maps Cadence logic functions to equivalent MAX+PLUS II logic
functions.

./examples/cadence
Contains the sample files for Cadence software discussed in these
ACCESSSM Key Guidelines.

./cadence Contains the AMPLE userware for the MAX+PLUS II/Cadence interface.

./simlib/concept/alt_max2

Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for
FLEX® 6000 devices only) for use with Concept software.

./simlib/composer/alt_max2
Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for FLEX
6000 devices only) for use with Composer software.

./simlib/concept/alt_lpm Contains the MAX+PLUS II megafunctions, including library of
parameterized modules (LPM) functions, for use with Concept software.

./simlib/concept/max2sim Contains the MAX+PLUS II/Concept simulation model library, max2_sim,
for use with RapidSIM software.

./simlib/concept/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Concept software, and the vlog2alt utility.

./simlib/composer/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Composer software.

./simlib/concept/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Concept software.

./simlib/composer/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Composer software.

./simlib/concept/alt_mf Contains the MAX+PLUS II VHDL logic function library. (a_8count is for
the MAX® 7000 and MAX 9000 device families only.)

./simlib/concept/edifnet/templates Contains template files for Concept directives, i.e., global.cmd,
compiler.cmd, vloglink.cmd, verilog.cmd, and master.local.

./simlib/concept/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Concept software.

./simlib/composer/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Composer software.

./simlib/concept/alt_vtl

./simlib/composer/alt_vtl
Contains VITAL library source files for use with Concept or Composer
software.

./simlib/composer/alt_max2/verilog Contains simulation modules for all symbols in the alt_max2 Composer
library.

Table 1 shows the MAX+PLUS® II/Cadence interface subdirectories that are created in the MAX+PLUS II system
directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation. For information on the other
directories that are created during MAX+PLUS II installation, see "MAX+PLUS II File Organization" in
MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Related Topics:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)

You can create your own libraries of custom symbols and logic functions in Concept and Composer. You can use
custom symbols to incorporate an EDIF Input File, Text Design File (TDF), or any other MAX+PLUS II-
supported design file into a project. MAX+PLUS II uses the cadence.lmf Library Mapping File to map standard
Concept or Composer symbols to equivalent MAX+PLUS II logic functions. To use custom symbols, you can
create a custom LMF that maps your custom symbols to the equivalent MAX+PLUS II-supported design file.
You must also specify the directory that contains the MAX+PLUS II-supported design file(s) as a user library
with the MAX+PLUS II User Libraries command (Options menu). Go to "Library Mapping File" and "Cadence
Library Mapping File (cadence.lmf)" in MAX+PLUS II Help for more information.

This manual is also available in 4 parts:
Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

FLEX Devices
MAX Devices
Classic Device Family

Composer Project File Directory Structure

The Composer software generates the following files for each schematic (where x represents a Composer-generated
number):

<drawing name>_x/schema_59.0_x
<drawing name>_x/schema_59.0_x%

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS® II/Cadence environment provides four logic and symbol libraries that are used for compiling,
synthesizing, and simulating designs.

The alt_max2 Library

You can enter a Concept or Composer Design Architect schematic with primitives and macrofunctions from the
Altera-provided symbol library alt_max2. The alt_max2 library includes 74-series macrofunctions and several
MAX+PLUS II primitives with corresponding Verilog HDL simulation models for controlling design synthesis and
fitting. It also includes four macrofunctions--a_8count, a_8mcomp, a_8fadd, and a_81mux--that are optimized for
different device families, and the clklock phase-locked loop megafunction, which is supported by some FLEX®

10K devices, with corresponding Verilog HDL and VHDL simulation models. See Table 1. Choose Old-Style
Macrofunctions and/or Primitives from the MAX+PLUS II Help menu for more information on functions in the
alt_max2 library.

The alt_lpm Library

The Altera-provided alt_lpm library, which is available for Concept and Verilog HDL designs, includes standard
functions from the library of parameterized modules (LPM) 2.1.0, except the truth table, finite state machine, and
pad functions. Other parameterized functions, including cycle-shared FIFO (csfifo) and cycle-shared dual-port
RAM (csdpram) are also included. The LPM standard defines a set of parameterized modules (i.e., parameterized
megafunctions) and their corresponding representations in an EDIF netlist file. These logic functions allow you to
create and functionally simulate an LPM-based design without targeting a specific device family. The parameters
you specify for each LPM function determine the simulation models that will be generated. After the design is
completed, you can target the design to any device family. In designs created with Concept, the Altera alt_lpm
library works only with HDL Direct and the hdlconfig utility. Choose Megafunctions/LPM from the MAX+PLUS
II Help menu for more information about LPM functions in the alt_lpm library.

The lpm_syn Library

The lpm_syn library contains the Altera-provided parameterized functions. The lpm_syn library is similar to the
alt_lpm library, except that it contains VHDL and Verilog HDL logic functions for use with Synergy, Concept, and
Composer software.

The alt_mf Library

Altera provides a VHDL logic function library, alt_mf, that currently includes four macrofunctions--a_8count,
a_8mcomp, a_8fadd, and a_81mux--for controlling design synthesis and fitting. These elements can be instantiated
directly in your VHDL file. To designate that these logic functions should pass untouched through the EDIF netlist
file to the MAX+PLUS II Compiler, you must select the Maintain attribute constraint for instances of these
functions before running the Synergy software. These models allow you to perform functional VHDL simulation
while maintaining an architecture-independent VHDL description.

Table 1 shows the MAX+PLUS II-specific logic functions.

Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
Note (2)

8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (3)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. The a_8count logic function is for the MAX 7000 and MAX 9000 device families only.

3. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Topics:

Table 1. MAX+PLUS II-Specific Logic Functions

You can create your own libraries of custom symbols and logic functions in Concept and Composer. You can use
custom symbols to incorporate an EDIF Input File, Text Design File (TDF), or any other MAX+PLUS II-
supported design file into a project. MAX+PLUS II uses the cadence.lmf Library Mapping File to map standard
Concept or Composer symbols to equivalent MAX+PLUS II logic functions. To use custom symbols, you can
create a custom LMF that maps your custom symbols to the equivalent MAX+PLUS II-supported design file.
You must also specify the directory that contains the MAX+PLUS II-supported design file(s) as a user library
with the MAX+PLUS II User Libraries command (Options menu). Go to "Library Mapping File" and "Cadence
Library Mapping File (cadence.lmf)" in MAX+PLUS II Help for more information.

Figure 1. MAX+PLUS II/Cadence Design Entry Flow

Altera-provided items are shown in blue.

FLEX Devices
MAX Devices
Classic Device Family

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Cadence Design Entry Flow

Figure 1 shows the design entry flow for the MAX+PLUS® II/Cadence interface.

Creating Composer Schematics for Use with MAX+PLUS II Software

You can create Composer schematics and convert them into EDIF Input Files (.edf) that can be processed with the
MAX+PLUS® II Compiler. To create a Composer schematic for use with the MAX+PLUS II software, follow
these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Start the Composer schematic editor from the <working directory> by typing icds at a UNIX prompt. Use
the graphical user interface to structure and organize your files to create an environment that facilitates
entering and processing designs. Go to Composer Project File Directory Structure for more information on
directories in Composer.

3. Choose Library Path Editor (Tools menu) to create the <design name> library. In the Library dialog box,
type <project directory name> as the Library name and ./source/<design name> as the Path name. Choose
Save (File menu), then choose Exit (File menu) to save the path.

4. Choose Library Manager (Tools menu) to start Composer and create a new design.

5. Type <project directory name> as the Library name, <design name> as the Cell name, and schematic as the
View name in the Library Manager dialog box and press the key.

6. Enter primitives, megafunctions, and macrofunctions from the following libraries:

MAX+PLUS II-compatible primitives, megafunctions, and macrofunctions are available in the Altera-

provided alt_max2 component library.

Input, output, and bidirectional pins are available in the Cadence basic library located under
/cadence/etc/cdslib.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

If you wish to create a hierarchical design that contains symbols representing other design files, such
as Altera® Hardware Description Language (AHDL) Text Design Files, go to Creating Hierarchical
Projects in Composer Schematics.

7. Enter meaningful instance names for all symbols and functions so that you can easily trace internal node
names during simulation and debugging operations. For example, if an a161 macrofunction is instantiated
several times in one design, you should define a unique name for each instance. The instance name for each
symbol is controlled by INST property. For more information on assigning properties, refer to the Cadence
Composer User Guide.

8. (Optional) To enter resource assignments in your Composer schematic, go to Entering Resource
Assignments. You can also enter resource assignments from within the MAX+PLUS II software.

9. (Optional) Functionally simulate the design with the Verilog-XL simulator. Altera provides Verilog HDL
simulation modules in the /usr/maxplus2/simlib/composer/alt_max2/verilog and
/usr/maxplus2/simlib/composer/alt_max2/verilogUdps directories. Go to Performing a Functional
Simulation of a Composer Schematic with Verilog-XL Software for more information.

10. Use the altout utility to generate an EDIF netlist file that can be imported into the MAX+PLUS II software,
as described in Converting Composer Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with
the altout Utility.

11. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Composer schematic files:

/usr/maxplus2/examples/cadence/example2/fulladd
/usr/maxplus2/examples/cadence/example5/fulladd2
/usr/maxplus2/examples/cadence/example7/fa2

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Concept & Composer Schematics

In both Concept and Composer schematics, you can assign a limited subset of these resource assignments by
assigning properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II
software automatically converts assignment information from the EDIF Input File into the ACF format. For
information on making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Go to the Cadence Concept Schematic User Guide and Composer Reference User Guide for details on how to
assign properties. Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party
Design Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Concept and Composer.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept and Composer schematic files, which include resource assignments:

/usr/maxplus2/examples/cadence/example6/fa2 (Concept)
/usr/maxplus2/examples/cadence/example7/fa2 (Composer)

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. For information on using the setacf utility, go to Modifying the Assignment &
Configuration File with the setacf Utility.

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in an
ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on (Help
menu).

Assigning Pins, Logic Cells & Chips

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in some EDA
tools or in the MAX+PLUS® II software.

Use the following syntax for chip, pin, and logic cell assignments:

To assign a logic function to a chip:

CHIP_PIN_LC=<chip name>

For example: CHIP_PIN_LC=chip1

To assign a pin number within a chip:

Altera-provided items are shown in blue.

To assign a clique, use the following syntax:

CLIQUE=<clique name>

For example: CLIQUE=fast1

CHIP_PIN_LC=<chip name>@<pin number>

For example: CHIP_PIN_LC=chip1@K2

To assign a logic cell, I/O cell, or embedded cell number:

CHIP_PIN_LC=<chip name>@LC<logic cell number>

CHIP_PIN_LC=<chip name>@IOC<I/O cell number>

CHIP_PIN_LC=<chip name>@EC<embedded cell number>

For example: CHIP_PIN_LC=chip1@LC44

Related Topics:

Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on device
pin-outs and assigning devices, respectively, in the MAX+PLUS II software.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.

Name
./lmfContains the Altera-provided Library Mapping File, cadence.lmf, that maps Cadence logic functions to
equivalent MAX+PLUS II logic functions.

Assigning Cliques

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project
does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000, FLEX
10K, and MAX® 9000 devices the Compiler also attempts to place the logic in LABs in the same row. Cliques
therefore allow you to partition a project so that only a minimum number of signals travel between LABs, and to
ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

Related Topics:

Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Assigning Logic Options

Logic option and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device-family-specific default logic synthesis style for
each project.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis
style assignments, including definitions and syntax of these assignments.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Creating Hierarchical Projects in Composer Schematics

If you wish to create a hierarchical design that contains symbols representing other design files, such as Altera®

Hardware Description Language (AHDL) Text Design Files (.tdf), you can create a hollow-body symbol that
represents a design file and then instantiate it in your Composer schematic.

To create a hierarchical project in your Composer schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Cadence Working Environment.

2. Create a Composer schematic and save it in your working directory, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Create the hollow-body symbol <design name> in Composer by typing icds from the <working
directory> at the UNIX prompt.

4. Choose Library Path Editor (Tools menu) to create the <design name> library. Type <design name> as the
Library name and ./source/<design name> as the Path name. Choose Save (File menu), then choose Exit
(File menu) to save the path and exit from the Library Path Editor.

5. Choose Library Manager (Tools menu) to start Composer and create a symbol for your design. Type
<project directory name> as the Library name, <lower-level design name> as the Cell name, symbol as the
View name, and then press .

6. Create a hollow-body symbol that represents the inputs and outputs of your design.

7. Enter input and output pins for the symbol.

8. Save the symbol.

9. To enter the symbol in your higher-level schematic design, choose the Component button and type <project
directory name> as the Library name, <lower-level design name> as the Cell name, and symbol as the View
name.

10. The MAX+PLUS II software uses the cadence.lmf Library Mapping File to map Concept symbols to
equivalent MAX+PLUS II logic functions. To use custom symbols, you must create a custom LMF that maps
your custom symbols to the equivalent EDIF Input File, Text Design File (TDF), or other design file. You
will also need to specify this custom LMF in the EDIF Netlist Reader Settings dialog box before compiling
with the MAX+PLUS II software. See Compiling Projects with MAX+PLUS II Software for more
information.

11. Continue with the steps necessary to complete your Composer schematic, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample hierarchical AHDL and Composer schematic file:

/usr/maxplus2/examples/cadence/example5/fulladd2

Converting Composer Schematics into MAX+PLUS II- Compatible EDIF Netlist Files with
the altout Utility

You can use the altout utility to generate an EDIF netlist file from a Composer schematic. This file can then be
imported into the MAX+PLUS® II software as an EDIF Input File (.edf).

To convert Composer schematics into MAX+PLUS II-compatible EDIF netlist files, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Composer schematic and save it in your working directory, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Type the following command at the UNIX prompt from the working directory that contains the schematic:

altout -lib <design name> -rundir max2 <design name>

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Performing a Functional Simulation of a Composer Schematic with Verilog-XL Software

You can perform a functional simulation of a Cadence Composer schematic with the Verilog-XL simulator before
compiling your project with the MAX+PLUS® II software.

To functionally simulate a Composer schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the
MAX+PLUS II/Cadence Working Environment.

2. Create a Composer schematic and save it in your working directory, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

3. In Composer, select Simulation from the Tools drop-down list.

4. Select Verilog-XL to start the Verilog-XL Integration Control window.

5. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the altout
utility, as described in Converting Composer Schematics into MAX+PLUS II-Compatible EDIF Netlist Files
with the altout Utility.

6. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly with
the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the Synopsys
Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within the
MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,

the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX

workstations.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster
Download Cable
ByteBlasterMV
Download Cable
MasterBlaster
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

Last updated on December 6, 1999 for the MAX+PLUS II software version 9.4.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Composer Project File Directory
Structure

Composer Project File Directory Structure
The Composer software generates the following files for each schematic (where x represents a Composer-generated
number):

<drawing name>_x/schema_59.0_x
<drawing name>_x/schema_59.0_x%

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Project Compilation Flow

Project Compilation Flow

Figure 1. MAX+PLUS II/Cadence Project Compilation Flow

Altera-provided items are shown in blue.

Figure 1. MAX+PLUS II/Mentor Graphics/Exemplar Logic Project
Compilation Flow

Figure 1 shows the MAX+PLUS® II/Cadence project compilation flow.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

The following figure shows the MAX+PLUS ® II/Mentor Graphics/Exemplar Logic project compilation flow.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

Alteraprovided items are shown in
blue.

Figure 1. MAX+PLUS II/Synplicity Project Compilation Flow

Altera-provided items are shown in blue.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

Figure 1 shows the MAX+PLUS® II/Synplicity project compilation flow.

https://mysupport.altera.com/eservice/

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Compiling Projects with MAX+PLUS
II Software

Compiling Projects with MAX+PLUS II Software

Refer to the following sources for additional information:

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly with
the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the Synopsys
Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within the
MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1.

2. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

3. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

4. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

5. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-syncom.html?csf=1&web=1

6. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1.

2. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

3. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

4. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

5. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

6. Choose OK.

7. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

8. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

9. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1.

2. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gleocomp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dswrcomp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compset.html?csf=1&web=1

timing SNF.

3. If you wish to generate EDIF Output Files (.edo), go through these steps:

1.

2. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

3. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

4. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

4. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

5. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

10. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

11. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)

SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Links:

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.
Go to the following topics for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all
liability for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synplicity Synplify-Specific Compiler
Settings

Synplicity Synplify-Specific Compiler Settings
If you are using the MAX+PLUS® II Compiler to compile a design that has been synthesized and optimized with
Synplify software, go through the following additional compilation steps:

1. Choose Global Project Logic Synthesis (Assign menu) to open the Global Project Logic Synthesis dialog
box.

2. Select the appropriate logic synthesis style under the Global Project Synthesis Style:
If you turned on the Map Logic to LCELLs option in the Synplify Set Device Options dialog box when
synthesizing a FLEX® device design with Synplify software, select WYSIWYG or Fast in the Global
Project Synthesis Style box.

or:

If you did not turn on the Map Logic to LCELLs option in the Synplify Set Device Options dialog box
when synthesizing your design with Synplify software, or if you are using a MAX® or Classic™ device,
select Normal in the Global Project Synthesis Style box.

3. For FLEX devices, choose Define Synthesis Style to display the Define Synthesis Style dialog box. Choose
Advanced Options to display the Advanced Options dialog box and turn off the NOT Gate Push-Back
option. Choose OK twice to close the dialog box.

4. Choose OK to close the Global Project Logic Synthesis dialog box.
5. Continue with the steps necessary to compile your project, as described in Compiling Projects with

MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Concept &
MAX+PLUS II Software

Using Cadence Concept & MAX+PLUS II Software

The following topics describe how to use the Cadence Concept software with MAX+PLUS® II software. Click on
one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
Setting Up the MAX+PLUS II/Cadence Concept Work Environment for a Sun SPARCstation Running
SunOS Software
MAX+PLUS II Directory Structure
MAX+PLUS II/Cadence Interface File Organization
Concept & RapidSIM Local Work Area Directory Structure
Concept & HDL Direct Project Directory Structure
Altera-Provided Logic & Symbol Libraries

Design Entry

Design Entry Flow
Creating Concept Schematics for Use with MAX+PLUS II Software

Instantiating the clklock Megafunction in Concept Schematics
Instantiating LPM & Other Parameterized Functions in Concept Schematics

Entering Resource Assignments
Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Creating Hierarchical Projects in Concept Schematics
Converting Concept Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the concept2alt
Utility

Functional Simulation

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility & Verilog-XL
Software
Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-XL Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

The information presented here assumes that you are using the C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

Setting Up the MAX+PLUS II/Cadence Working Environment

To use MAX+PLUS® II software with Cadence software, you must first install the MAX+PLUS II software, then
establish an environment that facilitates entering and processing designs. The MAX+PLUS II/Cadence interface is
installed automatically when you install the MAX+PLUS II software on your computer. Go to MAX+PLUS II
Installation in the MAX+PLUS II Getting Started manual for more information on installation and details on the
directories that are created during MAX+PLUS II installation. Go to MAX+PLUS II/Cadence Interface File
Organization for information about the MAX+PLUS II/Cadence directories that are created during MAX+PLUS II
installation.

To set up your working environment for the MAX+PLUS II/Cadence interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Cadence software versions described in the
MAX+PLUS II/Cadence Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2

setenv CDS_INST_DIR <Cadence system directory path>

3. Add the $ALT_HOME/cadence/bin and $CDS_INST_DIR/tools/bin directories to the PATH environment
variable in your .cshrc file. Make sure these paths are placed before the Cadence hierarchy path.

4. Add /usr/dt/lib and /usr/ucb/lib to the LD_LIBRARY_PATH environment variable in your .cshrc file.

5. Create a new cds.lib file in your working directory or edit an existing one so that it includes all of the
following lines that apply to the Cadence tools you have installed:

DEFINE alt_syn ${ALT_HOME}/simlib/concept/alt_syn

DEFINE lpm_syn ${ALT_HOME}/simlib/concept/lpm_syn

DEFINE alt_lpm ${ALT_HOME}/simlib/concept/alt_lpm

DEFINE alt_mf ${ALT_HOME}/simlib/concept/alt_mf

DEFINE alt_max2 ${ALT_HOME}/simlib/concept/alt_max2

DEFINE alt_max2 ${ALT_HOME}/simlib/composer/alt_max2/alt_max2

DEFINE alt_vtl $ALT_HOME/simlib/concept/alt_vtl/lib

DEFINE altera $ALT_HOME/simlib/concept/alt_mf/lib

SOFTINCLUDE $CDS_INST_DIR/tools/leapfrog/files/cds.lib

DEFINE <design name>.

6. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

7. If you are using Concept on a Sun SPARCstation running SunOS, go to Setting Up the MAX+PLUS
II/Cadence Concept Work Environment for a Sun SPARCstation Running SunOS Software to install the
redifnet EDIF netlist reader utility.

8. If you are using Synergy software, edit the hdl.var file located in your working directory to include the
following line:

DEFINE work <design name>

9. Set up an appropriate directory structure for the tool(s) you are using. See the following topics for
information:

Composer Project File Directory Structure
Concept & RapidSIM Local Work Area Directory Structure

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Setting Up the MAX+PLUS II/Cadence Concept Work Environment for a Sun
SPARCstation Running SunOS Software

If you are using Concept software on a Sun SPARCstation running SunOS software, you should also install the
redifnet EDIF netlist reader utility to convert Concept schematics into MAX+PLUS II-compatible EDIF netlist

Table 1. MAX+PLUS II Directory Organization

Directory Description

./lmf
Contains the Altera-provided Library Mapping File, cadence.lmf, that
maps Cadence logic functions to equivalent MAX+PLUS II logic
functions.

./examples/cadence
Contains the sample files for Cadence software discussed in these
ACCESSSM Key Guidelines.

./cadence Contains the AMPLE userware for the MAX+PLUS II/Cadence interface.

./simlib/concept/alt_max2

Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for
FLEX® 6000 devices only) for use with Concept software.
Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,

files. To install the redifnet utility, follow these steps:

1. Copy the redifnet directory from the /usr/maxplus2/simlib/concept/edifnet directory to the Cadence system
directory.

2. Copy the redifnet and pinmap_start files from the /usr/maxplus2/simlib/concept/edifnet/bin directory to
the /<Cadence system directory path>/tools/bin.

3. Specify the -/usr/maxplus2/simlib/concept/edifnet/max2sim map file as a PIN_MAP_FILE in the
redifnet.cmd file.

4. (Optional) Modify existing templates for directive files such as compiler.cmd, vloglink.cmd, and
global.cmd. These templates are located in the /usr/maxplus2/simlib/concept/edifnet/templates directory.

5. (Optional) Modify the expansion.dat and max2sim.map files in the /usr/maxplus2/simlib/concept/edifnet
directory.

MAX+PLUS II Directory Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL Text Design File (TDF);
or any other MAX+PLUS II-supported design file. The EDIF netlist file must be created by the altout or
concept2alt utility and imported into the MAX+PLUS II software as an EDIF Input File (.edf).

Project design files and output files are stored in the project directory, with the exception of standard library
functions provided by Altera or another EDA tool vendor. The MAX+PLUS II software stores the connectivity data
on the links between design files in a hierarchical project in a Hierarchy Interconnect File (.hif), but refers to the
entire project only by its project name. The MAX+PLUS II Compiler uses the HIF to build a single, fully flattened
project database that integrates all design files in a project hierarchy.

MAX+PLUS II/Cadence Interface File Organization

Table 1 shows the MAX+PLUS® II/Cadence interface subdirectories that are created in the MAX+PLUS II system
directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation. For information on the other
directories that are created during MAX+PLUS II installation, see "MAX+PLUS II File Organization" in
MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

./simlib/composer/alt_max2 GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for FLEX
6000 devices only) for use with Composer software.

./simlib/concept/alt_lpm Contains the MAX+PLUS II megafunctions, including library of
parameterized modules (LPM) functions, for use with Concept software.

./simlib/concept/max2sim Contains the MAX+PLUS II/Concept simulation model library, max2_sim,
for use with RapidSIM software.

./simlib/concept/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Concept software, and the vlog2alt utility.

./simlib/composer/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Composer software.

./simlib/concept/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Concept software.

./simlib/composer/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Composer software.

./simlib/concept/alt_mf Contains the MAX+PLUS II VHDL logic function library. (a_8count is for
the MAX® 7000 and MAX 9000 device families only.)

./simlib/concept/edifnet/templates Contains template files for Concept directives, i.e., global.cmd,
compiler.cmd, vloglink.cmd, verilog.cmd, and master.local.

./simlib/concept/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Concept software.

./simlib/composer/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Composer software.

./simlib/concept/alt_vtl

./simlib/composer/alt_vtl
Contains VITAL library source files for use with Concept or Composer
software.

./simlib/composer/alt_max2/verilog Contains simulation modules for all symbols in the alt_max2 Composer
library.

Directory: Description:

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

FLEX Devices
MAX Devices
Classic Device Family

Concept & RapidSIM Local Work Area Directory Structure

When the redifnet utility imports an EDIF netlist file for the RapidSIM software, it creates a SCALD directory for
your project. However, creating this directory may overwrite the directory that was created for the original Concept
schematic. To prevent overwriting this directory, you should create a file structure that helps you manage your
design files.

Altera recommends that you create the following three directories for your design files.

./source Create Concept schematics and generate EDIF netlist files with the wedifnet utility in the source
directory.

./max2 Copy the EDIF Input File (.edf) from the source directory to this directory to compile the file with the
MAX+PLUS® II software.

./dest Copy the EDIF Output File (.edo) from the max2 directory to this directory to run the redifnet and
RapidSIM software.

Copies of the appropriate directives files for Cadence tools must be present in both the source and dest directories.
Figure 1 shows Altera's recommended file structure.

Figure 1. Recommended File Structure

Concept & HDL Direct Project Directory Structure

Concept software generates the following files for each schematic:

<drawing name>/logic.1.1
<drawing name>/logic_bn.1.1
<drawing name>/logic_cn.1.1
<drawing name>/logic_dp.1.1

You can create your own libraries of custom symbols and logic functions in Concept and Composer. You can use
custom symbols to incorporate an EDIF Input File, Text Design File (TDF), or any other MAX+PLUS II-

For designs that use HDL Direct software, Concept software also generates the following files:

<drawing name>/logic_dp.1.1
<drawing name>/logic_vd.1.1
<drawing name>/logic/verilog.v
<drawing name>/logic/vhdl.vhd
<drawing name>/logic/hdldirect.dat
<drawing name>/entity/vhdl.vhd

These files are stored in their own <drawing name> directories. However, hierarchical relationships between files
are not reflected in the file directory structure.

The local SCALD directory has an entry for all <drawing name> directories. Cadence software automatically
manages drawing storage and retrieval operations through this special directory. The SCALD directory should have
the same name as the UNIX project directory, but with the extension .wrk. Figure 1 shows a sample file structure,
with project1 as the UNIX project directory, and project1.wrk as the SCALD directory.

When the concept2alt utility converts the schematic into an EDIF netlist file, it processes the design information
and all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF
netlist file is named <project name>.edf, where <project name> is the name of the top-level design file. Figure 1
shows the Cadence project file structure.

Figure 1. Cadence Project File Structure

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS® II/Cadence environment provides four logic and symbol libraries that are used for compiling,
synthesizing, and simulating designs.

supported design file into a project. MAX+PLUS II uses the cadence.lmf Library Mapping File to map standard
Concept or Composer symbols to equivalent MAX+PLUS II logic functions. To use custom symbols, you can
create a custom LMF that maps your custom symbols to the equivalent MAX+PLUS II-supported design file.
You must also specify the directory that contains the MAX+PLUS II-supported design file(s) as a user library
with the MAX+PLUS II User Libraries command (Options menu). Go to "Library Mapping File" and "Cadence
Library Mapping File (cadence.lmf)" in MAX+PLUS II Help for more information.

The alt_max2 Library

You can enter a Concept or Composer Design Architect schematic with primitives and macrofunctions from the
Altera-provided symbol library alt_max2. The alt_max2 library includes 74-series macrofunctions and several
MAX+PLUS II primitives with corresponding Verilog HDL simulation models for controlling design synthesis and
fitting. It also includes four macrofunctions--a_8count, a_8mcomp, a_8fadd, and a_81mux--that are optimized for
different device families, and the clklock phase-locked loop megafunction, which is supported by some FLEX®

10K devices, with corresponding Verilog HDL and VHDL simulation models. See Table 1. Choose Old-Style
Macrofunctions and/or Primitives from the MAX+PLUS II Help menu for more information on functions in the
alt_max2 library.

The alt_lpm Library

The Altera-provided alt_lpm library, which is available for Concept and Verilog HDL designs, includes standard
functions from the library of parameterized modules (LPM) 2.1.0, except the truth table, finite state machine, and
pad functions. Other parameterized functions, including cycle-shared FIFO (csfifo) and cycle-shared dual-port
RAM (csdpram) are also included. The LPM standard defines a set of parameterized modules (i.e., parameterized
megafunctions) and their corresponding representations in an EDIF netlist file. These logic functions allow you to
create and functionally simulate an LPM-based design without targeting a specific device family. The parameters
you specify for each LPM function determine the simulation models that will be generated. After the design is
completed, you can target the design to any device family. In designs created with Concept, the Altera alt_lpm
library works only with HDL Direct and the hdlconfig utility. Choose Megafunctions/LPM from the MAX+PLUS
II Help menu for more information about LPM functions in the alt_lpm library.

The lpm_syn Library

The lpm_syn library contains the Altera-provided parameterized functions. The lpm_syn library is similar to the
alt_lpm library, except that it contains VHDL and Verilog HDL logic functions for use with Synergy, Concept, and
Composer software.

The alt_mf Library

Altera provides a VHDL logic function library, alt_mf, that currently includes four macrofunctions--a_8count,
a_8mcomp, a_8fadd, and a_81mux--for controlling design synthesis and fitting. These elements can be instantiated
directly in your VHDL file. To designate that these logic functions should pass untouched through the EDIF netlist
file to the MAX+PLUS II Compiler, you must select the Maintain attribute constraint for instances of these
functions before running the Synergy software. These models allow you to perform functional VHDL simulation
while maintaining an architecture-independent VHDL description.

Table 1 shows the MAX+PLUS II-specific logic functions.

Table 1. MAX+PLUS II-Specific Logic Functions
Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer

Figure 1. MAX+PLUS II/Cadence Design Entry Flow

Altera-provided items are shown in blue.

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
Note (2)

8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (3)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. The a_8count logic function is for the MAX 7000 and MAX 9000 device families only.

3. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Topics:

Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

Cadence Design Entry Flow

Figure 1 shows the design entry flow for the MAX+PLUS® II/Cadence interface.

Creating Concept Schematics for Use with MAX+PLUS II Software

You can create Concept schematics and convert them to EDIF Input Files (.edf) that can be processed with the
MAX+PLUS® II Compiler. To create a Concept schematic for use with the MAX+PLUS II software, go through
the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Make sure the required directive files are in the /<working directory>/<design name>/source directory. If
not, you can use the Altera-provided template files located in the following directories:

/usr/maxplus2/simlib/concept/edifnet/templates
/usr/maxplus2/simlib/concept/edifnet/redifnet

3. Start the Concept schematic editor by typing concept <design name> at a UNIX prompt from the
/<working directory>/source directory. Use the graphical user interface to structure and organize your files to
create an environment that facilitates entering and processing designs. Go to Concept & RapidSIM Local
Work Area Directory Structure for more information on directories in Concept.

4. To write a Verilog HDL text file whenever the design is saved, choose the Block button in the Concept
window.

To use the HDL Direct utility to process your design, turn on the HDL Direct On option in the
Concept window. Go to Concept & HDL Direct Project Directory Structure for information on the
files generated by Concept software when using the HDL Direct utility.

5. Enter primitives, megafunctions, and macrofunctions from the following Altera-provided component
libraries:

alt_max2 includes macrofunctions, megafunctions, and primitives.
alt_lpm includes library of parameterized modules (LPM) functions (available only if you use HDL
Direct software).

See the following topics for instructions for specific functions:

Instantiating LPM & Other Parameterized Functions in Concept Schematics
Instantiating the clklock Megafunction in Concept Schematics

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

6. If you wish to create a hierarchical design that contains symbols representing other design files, such as
Altera® Hardware Description Language (AHDL) Text Design Files, go to Creating Hierarchical Projects in
Concept Schematics.

7. Enter meaningful instance names for all symbols and functions so that you can easily trace internal node
names during simulation and debugging operations. For example, if an a161 macrofunction is instantiated
several times in one design, you should define a unique name for each instance. The instance name for each
symbol is controlled by INST property. For more information on assigning properties, refer to the Cadence
Concept Schematic User Guide.

8. Enter input, output, and bidirectional ports:

If you turned on the HDL Direct On option in step 4, add inport and outport symbols from the
hdl_direct_lib library to the interface symbols.

If you are not using HDL Direct, use flag symbols from the standard library to indicate input, output,
and bidirectional ports. Be sure to end pin names with ¥I to identify them as interface signals.

If a pin is not used, leave it floating. The concept2alt utility removes all unconnected pins when it
generates an EDIF netlist file.

9. (Optional) To enter resource assignments in your Concept schematic, go to Entering Resource Assignments.
You can also enter resource assignments from within the MAX+PLUS II software.

10. (Optional) Perform a functional simulation, as described in one of the following topics:

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility & Verilog-XL
Software
Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-XL Software

11. Use the concept2alt utility to generate an EDIF netlist file that can be imported into the MAX+PLUS II
software, as described in Converting Concept Schematics into MAX+PLUS II-Compatible EDIF Netlist Files
with the concept2alt utility.

12. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept schematic files:

/usr/maxplus2/examples/cadence/example1/fulladd
/usr/maxplus2/examples/cadence/example4/fulladd2
/usr/maxplus2/examples/cadence/example6/fa2
/usr/maxplus2/examples/cadence/example12/fifo

Instantiating the clklock Megafunction in Concept Schematics

You can instantiate the clklock phase-locked loop megafunction, which is supported in selected FLEX® 10K
devices, in a Concept schematic. that employ a phase-locked loop (PLL).

To instantiate the clklock megafunction in Cadence Concept schematics, follow these steps:

1. Choose the Add Part button from the toolbar or type add in the Concept window to open the Component
Browser window.

2. Enter the clklock megafunction:

1. Choose alt_max2 (Library menu) and select clklock from the list box.

2. Type attribute, then select the clklock component. Change the CLOCKBOOST and
INPUT_FREQUENCY values as needed. For detailed information on the clklock megafunction,
choose Megafunctions/LPM from the MAX+PLUS® II Help menu.

3. Choose Done.

4. Continue with the steps necessary to complete your Concept schematic, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept schematic file, which includes clklock instantiation:

/usr/maxplus2/examples/cadence/example12/fifo

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating LPM & Other Parameterized Functions in Concept Schematics

You can use library of parameterized modules (LPM) functions and other Altera® -provided parameterized
functions in Concept schematics if you also use the HDL Direct utility.

To instantiate LPM functions, go through the following steps:

1. Choose the Add Part button from the toolbar or type add from the Concept window to open the Component
Browser window.

2. Choose alt_lpm (Library menu). All functions in the alt_lpm library are MAX+PLUS® II-compatible.
Choose Megafunctions/LPM from the MAX+PLUS II Help menu to get detailed information on all
supported parameterized functions.

3. Type attribute, then click on each component to set parameters for each function. See General Guidelines
below for additional information.

4. Add inport and outport symbols from the hdl_direct_lib library to the interface signals. Use the supply_0
and supply_1 symbols from the hdl_direct_lib library to connect a net to GND or VCC.

5. Continue with the steps necessary to complete your Concept schematic, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept schematic file, which includes LPM function instantiation:

/usr/maxplus2/examples/cadence/example12/fifo

General Guidelines

If a pin is not used, leave it floating. The concept2alt utility removes all unconnected pins when it generates
an EDIF netlist file.

For the csfifo function, the value of the LPM_NUMWORDS parameter must be between
2LPM_WIDTHAD-1 and 2LPM_WIDTHAD.

Make sure that any hexadecimal (Intel-format) file (.hex) that you use to specify the initial content of a
memory does not have the same name as the design file name.

Make sure that all properties and value strings are in uppercase letters, except the filename specified with the
LPM_FILE property, which should use the actual case of the filename.

Choose the Set button in the Concept window and choose CAPS_LOCK_OFF for the CAPS LOCK option.

Only the LPM_POLARITY parameter (which can be set to INVERT or NORMAL) can determine the polarity of the
bus or pin. You can display a bubble in the Concept schematic to indicate an inverted pin by typing BUBBLE
in the Concept command window and selecting the appropriate pin. However, the bubble does not determine
the polarity of the pin or bus.

Avoid using the Replace button in the Concept window to replace old symbols with new ones: you may
accidentally set unwanted properties. Instead, you should use the Delete button to delete old symbols and the
Add button to add new symbol(s).

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Concept & Composer Schematics

In both Concept and Composer schematics, you can assign a limited subset of these resource assignments by
assigning properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II

software automatically converts assignment information from the EDIF Input File into the ACF format. For
information on making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Go to the Cadence Concept Schematic User Guide and Composer Reference User Guide for details on how to
assign properties. Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party
Design Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Concept and Composer.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept and Composer schematic files, which include resource assignments:

/usr/maxplus2/examples/cadence/example6/fa2 (Concept)
/usr/maxplus2/examples/cadence/example7/fa2 (Composer)

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. For information on using the setacf utility, go to Modifying the Assignment &
Configuration File with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in an
ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on (Help
menu).

Assigning Pins, Logic Cells & Chips

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in some EDA
tools or in the MAX+PLUS® II software.

Use the following syntax for chip, pin, and logic cell assignments:

To assign a logic function to a chip:

CHIP_PIN_LC=<chip name>

For example: CHIP_PIN_LC=chip1

To assign a pin number within a chip:

To assign a clique, use the following syntax:

CLIQUE=<clique name>

For example: CLIQUE=fast1

CHIP_PIN_LC=<chip name>@<pin number>

For example: CHIP_PIN_LC=chip1@K2

To assign a logic cell, I/O cell, or embedded cell number:

CHIP_PIN_LC=<chip name>@LC<logic cell number>

CHIP_PIN_LC=<chip name>@IOC<I/O cell number>

CHIP_PIN_LC=<chip name>@EC<embedded cell number>

For example: CHIP_PIN_LC=chip1@LC44

Related Topics:

Refer to the following sources for additional information:

Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on device
pin-outs and assigning devices, respectively, in the MAX+PLUS II software.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.

Assigning Cliques

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project
does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000, FLEX
10K, and MAX® 9000 devices the Compiler also attempts to place the logic in LABs in the same row. Cliques
therefore allow you to partition a project so that only a minimum number of signals travel between LABs, and to
ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

Related Topics:

Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Assigning Logic Options

Logic option and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device-family-specific default logic synthesis style for
each project.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design Editor" in
MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis style
assignments, including definitions and syntax of these assignments.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Creating Hierarchical Projects in Concept Schematics

If you wish to create a hierarchical design that contains symbols representing other MAX+PLUS II-supported
design files, such as Altera® Hardware Description Language (AHDL) Text Design Files (.tdf), you can create a
hollow-body symbol that represents a design file and then instantiate it in your Concept schematic. To create a
hierarchical project in your Concept schematic, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Create the hollow-body symbol <design name> in Concept by typing the following command from the
<working directory>/source directory that contains the lower-level design file <design name>.<extension>:

concept <design name>.body

4. Create a part file to indicate that the body is hollow:

1. Add the DEFINE and DRAWING bodies to the part drawing. These bodies should be the only two bodies in
the drawing.

2. Add the TITLE=<design name> and the ABBREV=<design name> properties to the DRAWING body to
identify the drawing.

3. Save the part drawing with the name <design name>.part.1.1.

5. Regardless of the hardware description language (HDL) or schematic editor used to create the design, you
must create a dummy Verilog HDL module to indicate to the concept2alt utility that the design is a "black
box" that must pass untouched through the EDIF netlist file.

1. Type genview verilog in the Concept window.

2. Type logic when prompted for the Verilog View name.

3. If you are using VerilogLink, you must type genview verilog again, then type verilog_lib when
prompted for the Verilog View name.

4. Type cd <design name>/logic at the UNIX prompt from the /source directory to change to the
/source/<design name>/logic directory.

5. Edit the verilog.v file to add the cds_action = "ignore" parameter setting after the Input
Declarations and Output Declarations sections. This parameter setting specifies that the <design name>
should be treated as a "black box."

6. To enter the symbol in the higher-level Concept schematic, choose the Add Part button, choose the name of
the working SCALD directory, then choose the <design name> symbol from the Symbol menu.

7. The MAX+PLUS II software uses the cadence.lmf Library Mapping File to map Concept symbols to
equivalent MAX+PLUS II logic functions. To use custom symbols, you must create a custom LMF that maps
your custom symbols to the equivalent EDIF Input File, Text Design File (TDF), or other design file. You
will also need to specify this custom LMF in the EDIF Netlist Reader Settings dialog box before compiling
with the MAX+PLUS II software. See Compiling Projects with MAX+PLUS II Software for more
information.

8. Continue with the steps necessary to complete your Concept schematic, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample hierarchical AHDL and Concept schematic file:

/usr/maxplus2/examples/cadence/example4/fulladd2

Converting Concept Schematics into MAX+PLUS II- Compatible EDIF Netlist Files with
the concept2alt Utility

You can use the concept2alt utility to generate an EDIF netlist file from a Concept schematic. This file can then be
imported into the MAX+PLUS® II software as an EDIF Input File (.edf).

To convert a Concept schematic into an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Type the following command at the UNIX prompt from the /source directory that contains the schematic:

concept2alt -rundir ../max2 <design name>

If your design uses library of parameterized modules (LPM) functions, you must also include the -family
option. For example:

concept2 alt -family FLEX10K -rundirmax2 <design name>

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility &
Verilog-XL Software

You can perform a functional simulation of a Concept schematic with the hdlconfig utility and Verilog-XL
software before compiling your project with the MAX+PLUS® II software.

To functionally simulate a Concept schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

3. Use the hdlconfig utility to create a Verilog HDL text file that contains the entire design. Type the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

hdlconfig -a -c -r <design name> -o <design name>.v logic verilog_lib

4. If your design contains RAM or ROM functions (e.g., lpm_ram_dq, lpm_ram_io, lpm_rom, scfifo, dcfifo,
altdpram, and csdpram), run the vconfig utility to link the object convert_hex2ver.o to build a new Verilog-
XL file that supports these functions by following these steps:

1. Create a copy of the Verilog executable file by typing the following command at the UNIX prompt:

cp -p $CDS_INST_DIR/tools/verilog/bin/verilog $CDS_INST_DIR/tools /verilog/bin/
verilog.bak.

2. Type vconfig at the UNIX prompt from the /usr/maxplus2/cadence/bin directory to start the
script.

3. Accept cr_vlog as the name of the output script.

4. Accept 1 as the stand-alone target.

5. Type new_verilog as the name for the Verilog-XL target.

6. Respond Yes when you are prompted to compile for the Verilog-XL environment.

7. Respond No when you are prompted to include the Dynamic LAI, STATIC LOGIC AUTOMATION,
LMSI HARDWARE MODELER, Verilog Mixed-Signal, and CDC interfaces in this executable.

8. Respond Yes when you are prompted to include the Standard Delay File Annotator (SDF).

9. Specify /usr/maxplus2/verilog/veriuser.c when you are asked the name of the user template file. For
more information about the contents of the veriuser.c file, you can refer to the veriuser.doc file, which
is available in the Cadence Openbook product documentation. To locate this document, start
Openbook, and choose Alphabetical List of Products from the main menu. Scroll through the pages
until you locate the PLI 1.0 User Guide & Reference in the PLI section, and then continue to scroll
through the document until you locate the veriuser.doc file under "Section A" and "PLI Code

Examples."

10. When you are asked the name of files to be linked with the Verilog-XL simulator, specify the
hexadecimal (Intel-format) conversion file /usr/maxplus2/cadence/share/verilog/convert_hex2ver.o,
followed by a single period (.).

11. Run the output script cr_vlog to build the new Verilog-XL executable in the
/usr/maxplus2/cadence/bin directory. Make sure that the $CDS_INST_DIR/tools/bin path appears at
the beginning of the PATH statement in the .cshrc file.

12. If your C language library installation is different from the default location /usr/lang/SC3.0.1, type the
following command at the UNIX prompt:

setenv C_DIR <C language library installation directory>

13. If successful, replace the old Verilog executable file with the new one by typing the following
command at the UNIX prompt:

cp -p new_verilog $CDS_INST_DIR/tools/verilog/bin/verilog

5. Generate the stimulus file for the design and start the Verilog-XL simulator by typing the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

verilog -y /usr/maxplus2/simlib/concept/alt_max2/verilogUdps +libext+.v+.V <stimulus file
name> <design name>.v

6. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the
concept2alt utility, as described in Converting Concept Schematics into MAX+PLUS II-Compatible EDIF
Netlist Files with the concept2alt Utility.

7. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-
XL Software

You can perform a functional simulation of a Concept schematic with VerilogLink and Verilog-XL software before
compiling your project with the MAX+PLUS® II software.

To functionally simulate a Concept schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

3. Generate the global.cmd, vloglink.cmd, verilog.cmd, and expansion.dat directive files.

4. Type vloglink <design name> from the /<working directory>/source directory to create a vloglink.v file
from the Concept schematic.

5. Generate the stimulus file for the design and start the Verilog-XL simulator by typing the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

verilog -y /usr/maxplus2/simlib/concept/alt_max2/verilogUdps +libext+.v+.V <stimulus file

name> vloglink.v

6. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the
concept2alt utility, as described in Converting Concept Schematics into MAX+PLUS II-Compatible EDIF
Netlist Files with the concept2alt Utility .

7. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly with
the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the Synopsys
Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within the
MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,

select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized

timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

MAX
7000A,
MAX FLEX® 6000,

Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Concept & HDL Direct Project
Directory Structure

Concept & HDL Direct Project Directory Structure
Concept software generates the following files for each schematic:

<drawing name>/logic.1.1
<drawing name>/logic_bn.1.1
<drawing name>/logic_cn.1.1
<drawing name>/logic_dp.1.1

For designs that use HDL Direct software, Concept software also generates the following files:

<drawing name>/logic_dp.1.1
<drawing name>/logic_vd.1.1
<drawing name>/logic/verilog.v
<drawing name>/logic/vhdl.vhd
<drawing name>/logic/hdldirect.dat
<drawing name>/entity/vhdl.vhd

These files are stored in their own <drawing name> directories. However, hierarchical relationships between files
are not reflected in the file directory structure.

The local SCALD directory has an entry for all <drawing name> directories. Cadence software automatically
manages drawing storage and retrieval operations through this special directory. The SCALD directory should have
the same name as the UNIX project directory, but with the extension .wrk. Figure 1 shows a sample file structure,
with project1 as the UNIX project directory, and project1.wrk as the SCALD directory.

When the concept2alt utility converts the schematic into an EDIF netlist file, it processes the design information
and all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF
netlist file is named <project name>.edf, where <project name> is the name of the top-level design file. Figure 1
shows the Cadence project file structure.

Figure 1. Cadence Project File Structure

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Setting Up Design Compiler & FPGA
Compiler Configuration Files

Setting Up Design Compiler & FPGA Compiler
Configuration Files

The .synopsys_dc.setup configuration file allows you to set both Design Compiler and FPGA Compiler variables.
The compilers read .synopsys_dc.setup files from three directories, in the following order:

1. The Synopsys root directory
2. Your home directory
3. The directory where you start the Design Compiler or FPGA Compiler software

The most recently read configuration file has highest priority. For example, a configuration file in the directory
where you start the Design Compiler or FPGA Compiler software has priority over the other configuration files,
and a configuration file in the home directory has priority over a configuration file in the root directory.

To set up your configuration files, follow these steps:

1. Add the lines shown in Figure 1 to your .synopsys_dc.setup configuration file. Altera provides a sample
.synopsys_dc.setup file in the ./synopsys/config directory. Figure 1 shows an excerpt from that sample file.

Figure 1. Excerpt from Sample .synopsys_dc.setup File
search_path = {./usr/maxplus2/synopsys/library/alt_syn/<device family>/lib};
target_library = {<technology library>};

symbol_library = {altera.sdb};

link_library = {<technology library>};

edifout_netlist_only = "true"

edifout_power_and_ground_representation = "net"

edifout_power_net_name = "VDD"

edifout_ground_net_name = "GND"

edifout_no_array = "false"

edifin_power_net_name = "VDD"

edifin_ground_net_name = "GND"

compile_fix_multiple_port_nets = "true"

bus_naming_style = "%s<%d>"

bus_dimension_separator_style = "><"

bus_inference_style = "%s<%d>"

2. Specify one of the Design Compiler & FPGA Compiler Technology Libraries for the target_library and
link_library parameters in the .synopsys_dc.setup file.

3. If you will instantiate architecture control logic functions from the alt_mf library, add the following line to
your .synopsys_dc.setup file:

define_design_lib altera -path /usr/maxplus2/synopsys/library/alt_mf/lib

If you wish to use the VHDL System Simulator (VSS) software to simulate a VHDL design containing
alt_mf library functions, you must compile this library with the analyze_vss script. See Setting Up

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-techlibs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vssconfig.html?csf=1&web=1

VSS Configuration Files for more information.

4. If you will use the DesignWare interface for FLEX® 6000, FLEX 8000, or FLEX 10K designs, enter
additional lines in your .synopsys_dc.setup file, as described in Setting Up the DesignWare Interface.

5. Specify one of the following families for the <device family> variable in the search_path parameter:
max5000, max7000, max9000, flex6000, flex8000, or flex10k.

6. If you wish to resynthesize a design for a different device family, modify the .synopsys_dc.setup file by
following the steps described in Resynthesizing a Design Using the alt_vtl Library & a MAX+PLUS II SDF
Output File.

Related Links:

Go to MAX+PLUS® II /Synopsys Interface File Organization in these MAX+PLUS II ACCESSSM Key
topics for related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vssconfig.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsnwrstp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Concept &
MAX+PLUS II Software

Using Cadence Concept & MAX+PLUS II Software

The following topics describe how to use the Cadence Concept software with MAX+PLUS® II software. Click on
one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
Setting Up the MAX+PLUS II/Cadence Concept Work Environment for a Sun SPARCstation Running
SunOS Software
MAX+PLUS II Directory Structure
MAX+PLUS II/Cadence Interface File Organization
Concept & RapidSIM Local Work Area Directory Structure
Concept & HDL Direct Project Directory Structure
Altera-Provided Logic & Symbol Libraries

Design Entry

Design Entry Flow
Creating Concept Schematics for Use with MAX+PLUS II Software

Instantiating the clklock Megafunction in Concept Schematics
Instantiating LPM & Other Parameterized Functions in Concept Schematics

Entering Resource Assignments
Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Creating Hierarchical Projects in Concept Schematics
Converting Concept Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the concept2alt
Utility

Functional Simulation

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility & Verilog-XL
Software
Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-XL Software

Related Links:

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-concpall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sparc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sparc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2dir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conrapd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-condir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fg15cad.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clklock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hierarch.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vloglink.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.cadence.com/

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Concept & RapidSIM Local Work
Area Directory Structure

Concept & RapidSIM Local Work Area Directory
Structure

Directory: Description:

./source Create Concept schematics and generate EDIF netlist files with the wedifnet utility in the source
directory.

./max2 Copy the EDIF Input File (.edf) from the source directory to this directory to compile the file with the
MAX+PLUS® II software.

./dest Copy the EDIF Output File (.edo) from the max2 directory to this directory to run the redifnet and
RapidSIM software.

When the redifnet utility imports an EDIF netlist file for the RapidSIM software, it creates a SCALD directory for
your project. However, creating this directory may overwrite the directory that was created for the original Concept
schematic. To prevent overwriting this directory, you should create a file structure that helps you manage your
design files.

Altera recommends that you create the following three directories for your design files.

Copies of the appropriate directives files for Cadence tools must be present in both the source and dest directories.
Figure 1 shows Altera's recommended file structure.

Figure 1. Recommended File Structure

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Intel® Documentation Conventions

Intel® Documentation Conventions

Visual Cue Meaning
Bold Initial
Capitals

Command names, dialog box titles, and button names are shown in bold type, with initial capital letters.
Examples: Find Text command, Save As dialog box, Start button.

bold type

Directory names, project names, disk drive names, filenames, filename extensions, and software utility
names are shown in bold type. Examples: Â¥maxplus2 directory, d: drive, chiptrip.gdf file. These items
are not case-sensitive in the Windows environment; however, they are case-sensitive in the UNIX
workstation environment. Intel documentation shows these items in the case appropriate to the
workstation environment.

Initial
Capitals

Keyboard keys, user-editable application window fields, and menu names are shown with initial capital
letters. Examples: Delete key, the Start Time field, the Options menu.

"Subheading
Title"

Subheadings within a document are enclosed in quotation marks. In manuals, titles of help topics are also
shown in quotation marks.

Italic Initial
Capitals

Help categories, section titles in books, application note and brief names, checkbox options, and options
in dialog boxes are shown in italic type with initial capital letters. Examples: Text Editor Procedures, the
Check Outputs option, the Directories box in the Open dialog box.

italic type Variables are enclosed in angle brackets (< >) and shown in italic type. Example: <filename>, <project
name>.acf file.

Bold Italic
Type

Book and CD-ROM titles are shown in bold italic type with initial capital letters. Example: MAX+PLUS
II Getting Started.

Monospace
font

Anything that must be typed exactly as it appears is shown in monospace font. For example: c:max work
tutorial chiptrip.gdf. Also, sections of an actual file, such as a Report File, references to parts of
files (e.g., the AHDL keyword SUBDESIGN), and logic function names (e.g., DFF and 16cudslr) are shown
in monospace font.

Bold
Monospace
font

In syntax descriptions, bold monospace font may be used to help distinguish literal text from variables.

1., 2., 3.,
and a., b.,
c.,...

Numbered steps are used in a list of items when the sequence of the items is important, such as the steps
listed in a procedure. Bullets are used in a list of items when the sequence of the items is not important.

The checkmark indicates a procedure that consists of one step only.
The hand points to information that requires special attention.

Intel documents use consistent conventions to make it easy for you to find and interpret information:

Typographic Conventions
Terminology
Backus-Naur Form (BNF)
Key Combinations

Typographic Conventions

Intel documentation uses the following typographic conventions:

Terminology

The following terminology is used throughout Intel documentation:

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Term Meaning
Button 1 Left mouse button.

Button 2 For PCs, the right button on a two-button mouse or the middle or right button on a three-button
mouse. For UNIX workstations, the right button on a three-button mouse.

"point to" Indicates that you should move the mouse so that the pointer is over the specified item.

"choose"

Indicates that you need to use a mouse or key combination to start an action. For example, when
you use the mouse to choose a button, you point to the button and click Button 1. When you use
the keyboard to choose a command, you type Alt and then type letters that are underlined in the
menu bar and menu. (In UNIX workstation-based MAX+PLUS® II software, you must use Ctrl
instead of Alt.)

"select"
Indicates that you need to highlight text, and/or objects, or an option in a dialog box with a key
combination or the mouse. A selection does not start an action. Example: Select the AND2
primitive, then choose Delete from the Edit menu.

"press" Indicates that you must hold down a mouse button or key.

"turn on"/"turn off" Indicates that you must click Button 1 on a checkbox or choose a menu command to turn a
function on or off.

"click" Indicates a quick press and release of a mouse button.
"double-click" Indicates two clicks in rapid succession.
"Related Links" "Related Links" show you where to go for more information.

Characters Meaning
::= "Is defined as"
<...> Identifiers (i.e., variables)
[...] Optional items
{ ... } Repeated items (zero or more times)
...|... Indicates a choice between items
:n:n Suffix indicates a range (e.g., <name char>:1:8 means "from 1 to 8 name characters")
italic type Variables in syntax descriptions, i.e., text
Monospace font Literal text in syntax descriptions that you must type
Bold Monospace font sometimes used to help distinguish literal text from italic variables in syntax descriptions

Format
Cue Meaning

Key1+Key2 A plus (+) symbol indicates that you must hold down the first key when you press the second key.
Example: Ctrl+L means that you must hold down Ctrl while pressing L, then release both keys.

Key1,Key2 A comma (,) indicates that you must press the keys sequentially. Example: Alt,F1 means that you must
press Alt and release it, then press F1 and release it.

Backus-Naur Form (BNF)

Backus-Naur Form (BNF) is used to define the syntax of typed commands, text file formats, and variables. BNF
uses the following notation:

Key Combinations

Key combinations and sequences appear in the following format:

Feedback

Did this information help you?

If no, Intel® Premier Support customers can file a case by logging into Intel® Premier Support.

Intel does not warrant that this solution will work for the customer's intended purpose and disclaims all liability for
use of or reliance on the solution.

https://www.intel.com/content/www/us/en/design/support/ips/training/access-and-login.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Creating Concept Schematics for Use
with MAX+PLUS II Software

Creating Concept Schematics for Use with MAX+PLUS
II Software

You can create Composer schematics and convert them into EDIF Input Files (.edf) that can be processed with the
MAX+PLUS® II Compiler. To create a Composer schematic for use with the MAX+PLUS II software, follow
these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Start the Composer schematic editor from the <working directory> by typing icds at a UNIX prompt. Use
the graphical user interface to structure and organize your files to create an environment that facilitates
entering and processing designs. Go to Composer Project File Directory Structure for more information on
directories in Composer.

3. Choose Library Path Editor (Tools menu) to create the <design name> library. In the Library dialog box,
type <project directory name> as the Library name and ./source/<design name> as the Path name. Choose
Save (File menu), then choose Exit (File menu) to save the path.

4. Choose Library Manager (Tools menu) to start Composer and create a new design.

5. Type <project directory name> as the Library name, <design name> as the Cell name, and schematic as the
View name in the Library Manager dialog box and press the key.

6. Enter primitives, megafunctions, and macrofunctions from the following libraries:

MAX+PLUS II-compatible primitives, megafunctions, and macrofunctions are available in the Altera-
provided alt_max2 component library.

Input, output, and bidirectional pins are available in the Cadence basic library located under
/cadence/etc/cdslib.

MegaCore™ functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP™). The OpenCore™ feature in the MAX+PLUS II software allows you to instantiate,
compile, and simulate MegaCore functions before deciding whether to purchase a license for full
device programming and post-compilation simulation support.

If you wish to create a hierarchical design that contains symbols representing other design files, such
as Altera® Hardware Description Language (AHDL) Text Design Files, go to Creating Hierarchical
Projects in Composer Schematics.

7. Enter meaningful instance names for all symbols and functions so that you can easily trace internal node
names during simulation and debugging operations. For example, if an a161 macrofunction is instantiated
several times in one design, you should define a unique name for each instance. The instance name for each
symbol is controlled by INST property. For more information on assigning properties, refer to the Cadence
Composer User Guide.

8. (Optional) To enter resource assignments in your Composer schematic, go to Entering Resource
Assignments. You can also enter resource assignments from within the MAX+PLUS II software.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altmax2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hierarch.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hierarch.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1

9. (Optional) Functionally simulate the design with the Verilog-XL simulator. Altera provides Verilog HDL
simulation modules in the /usr/maxplus2/simlib/composer/alt_max2/verilog and
/usr/maxplus2/simlib/composer/alt_max2/verilogUdps directories. Go to Performing a Functional
Simulation of a Composer Schematic with Verilog-XL Software for more information.

10. Use the altout utility to generate an EDIF netlist file that can be imported into the MAX+PLUS II software,
as described in Converting Composer Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with
the altout Utility.

11. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Composer schematic files:

/usr/maxplus2/examples/cadence/example2/fulladd
/usr/maxplus2/examples/cadence/example5/fulladd2
/usr/maxplus2/examples/cadence/example7/fa2

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

You can create Concept schematics and convert them to EDIF Input Files (.edf) that can be processed with the
MAX+PLUS® II Compiler. To create a Concept schematic for use with the MAX+PLUS II software, go through
the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Make sure the required directive files are in the /<working directory>/<design name>/source directory. If
not, you can use the Altera-provided template files located in the following directories:

/usr/maxplus2/simlib/concept/edifnet/templates
/usr/maxplus2/simlib/concept/edifnet/redifnet

3. Start the Concept schematic editor by typing concept <design name> at a UNIX prompt from the
/<working directory>/source directory. Use the graphical user interface to structure and organize your files to
create an environment that facilitates entering and processing designs. Go to Concept & RapidSIM Local
Work Area Directory Structure for more information on directories in Concept.

4. To write a Verilog HDL text file whenever the design is saved, choose the Block button in the Concept
window.

To use the HDL Direct utility to process your design, turn on the HDL Direct On option in the
Concept window. Go to Concept & HDL Direct Project Directory Structure for information on the
files generated by Concept software when using the HDL Direct utility.

5. Enter primitives, megafunctions, and macrofunctions from the following Altera-provided component
libraries:

alt_max2 includes macrofunctions, megafunctions, and primitives.
alt_lpm includes library of parameterized modules (LPM) functions (available only if you use HDL
Direct software).

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogcom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogcom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conrapd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conrapd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-condir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altmax2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altlpm

See the following topics for instructions for specific functions:

Instantiating LPM & Other Parameterized Functions in Concept Schematics
Instantiating the clklock Megafunction in Concept Schematics

You can instantiate MegaCore™ functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP™). The OpenCore™ feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

6. If you wish to create a hierarchical design that contains symbols representing other design files, such as
Altera® Hardware Description Language (AHDL) Text Design Files, go to Creating Hierarchical Projects in
Concept Schematics.

7. Enter meaningful instance names for all symbols and functions so that you can easily trace internal node
names during simulation and debugging operations. For example, if an a161 macrofunction is instantiated
several times in one design, you should define a unique name for each instance. The instance name for each
symbol is controlled by INST property. For more information on assigning properties, refer to the Cadence
Concept Schematic User Guide.

8. Enter input, output, and bidirectional ports:
If you turned on the HDL Direct On option in step 4, add inport and outport symbols from the
hdl_direct_lib library to the interface symbols.
If you are not using HDL Direct, use flag symbols from the standard library to indicate input, output,
and bidirectional ports. Be sure to end pin names with ¥I to identify them as interface signals.

If a pin is not used, leave it floating. The concept2alt utility removes all unconnected pins when it
generates an EDIF netlist file.

9. (Optional) To enter resource assignments in your Concept schematic, go to Entering Resource Assignments.
You can also enter resource assignments from within the MAX+PLUS II software.

10. (Optional) Perform a functional simulation, as described in one of the following topics:
Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility & Verilog-XL
Software
Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-XL Software

11. Use the concept2alt utility to generate an EDIF netlist file that can be imported into the MAX+PLUS II
software, as described in Converting Concept Schematics into MAX+PLUS II-Compatible EDIF Netlist Files
with the concept2alt utility.

12. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept schematic files:

/usr/maxplus2/examples/cadence/example1/fulladd
/usr/maxplus2/examples/cadence/example4/fulladd2
/usr/maxplus2/examples/cadence/example6/fa2
/usr/maxplus2/examples/cadence/example12/fifo

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clklock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hierarch.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hierarch.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vloglink.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Creating Verilog HDL Designs for
Use with MAX+PLUS II Software

Creating Verilog HDL Designs for Use with
MAX+PLUS II Software

You can create Verilog HDL design files with the MAX+PLUS® II Text Editor or another standard text editor and
save them in the appropriate directory for you project. The MAX+PLUS II Text Editor offers the following
advantages:

Verilog HDL templates are available with the Verilog Templates command (Templates menu). These
templates are also available in the ASCII verilog.tmp file, which is located in the /usr/maxplus2 directory.
If you use the MAX+PLUS II Text Editor to create your Verilog HDL design, you can use the Syntax
Coloring command (Options menu). The Syntax Coloring feature displays keywords and other elements of
text in text files in different colors to distinguish them from other forms of syntax.

To create a Verilog HDL design that can be synthesized and optimized with Synergy software, go through the
following steps:

1. You can instantiate the following MAX+PLUS II-provided logic functions in your Verilog HDL design:
The alt_max2 library, which contains the a_8count, a_8mcomp, a_8fadd, and a_81mux macrofunctions
that are optimized for different Altera device families.
The clklock megafunction which enables phase-locked loop, or ClockLock™ , circuitry available on
selected Altera FLEX® 10K devices. Go to Instantiating the clklock Megafunction in VHDL or
Verilog HDL for information.
The lpm_syn library, which contains the Cadence LPM megafunction library for use with Synergy
Software and Concept or Composer software.
MegaCore™ functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP™). The OpenCore™ feature in the MAX+PLUS II software allows you to instantiate,
compile, and simulate MegaCore functions before deciding whether to purchase a license for full
device programming and post-compilation simulation support.

2. You can enter resource assignments in your Verilog HDL design, as described in Entering Resource
Assignments.

3. After you have completed your Verilog HDL design, synthesize and optimize it with Synergy software, as
described in Synthesizing & Optimizing Verilog HDL Files with Synergy Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Verilog HDL files, the latter of which includes LPM function instantiation.

/usr/maxplus2/examples/cadence/example11/count8.v
/usr/maxplus2/examples/cadence/example13/rom_test.v

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altmax2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#lpmsyn
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogsyn.html?csf=1&web=1
https://mysupport.altera.com/eservice/

You can create Verilog HDL design files with the MAX+PLUS® II Text Editor, the FPGA Express internal text
editor, or another standard text editor and save them in the appropriate directory for your project. The MAX+PLUS
II and FPGA Express text editors offer different advantages; use either or both depending on your personal
preferences:

The MAX+PLUS II Text Editor offers Verilog HDL templates with the Verilog HDL Templates command
(Templates menu) and syntax coloring with the Syntax Coloring command (Options menu).

The FPGA Express internal text editor provides automatic error location when you double-click an error in
the Output window.

To create a Verilog HDL design that can be synthesized and optimized with the FPGA Express software, follow
these steps:

1.

2. Describe your design using FPGA Express-supported Verilog HDL constructs. For information on
synthesizable Verilog HDL constructs, refer to the online HDL Reference Manual provided with the FPGA
Express software. The following topics describe how to instantiate additional Altera-specific logic functions
in your design:

Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating RAM & ROM Functions in Verilog HDL
Instantiating LPM Functions in Verilog HDL

You can instantiate MegaCore™ functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP™). The OpenCore™ feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Once you have created a design, synthesize and optimize it, as described in Synthesizing & Optimizing
VHDL or Verilog HDL Files with FPGA Express Software.

Related Links:

Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.
Go to the following topics for additional information:

Altera Megafunction Partners Program (AMPP)
Altera Megafunctions

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

You can create Verilog HDL design files with the MAX+PLUS® II Text Editor or another standard text editor and

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxramv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxlpmv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://www.intel.com/www/us/en/programmable/solutions/partners/ip-partners.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
https://mysupport.altera.com/eservice/

save them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following
advantages:

Verilog HDL templates are available with the Verilog Templates command (Templates menu). These
templates are also available in the ASCII verilog.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your Verilog HDL design, you can use the Syntax
Coloring command (Options menu). The Syntax Coloring feature displays keywords and other elements of
text in text files in different colors to distinguish them from other forms of syntax.

To create a Verilog HDL design and convert it to an EDIF netlist file for use with MAX+PLUS II software, follow
these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Synplicity Working Environment.

2. Instantiate any MAX+PLUS II-supported logic function in your Verilog HDL design. You can enter the
following functions:

Parameterized and non-parameterized megafunctions. MAX+PLUS II software also supports all
functions in the library of parameterized modules (LPM) 2.1.0, except the truth table, finite state
machine, and pad functions.

Macrofunctions, including 74-series functions.

Buffer primitives, including lcell, soft, global, carry, and cascade. The Synplicity altera.v library
provides synthesis support for these functions.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

Choose Primitives, Old-Style Macrofunctions, and Megafunctions/LPM from the MAX+PLUS II Help
menu for information on all MAX+PLUS II-supported functions.

3. If your design uses functions from the altera.v library, add the library file name to the top of the Source Files
list in the Synplify window.

4. For each MAX+PLUS II-supported logic function, include a black_box synthesis directive. You can omit
this step for functions from the altera.v library.

5. For any parameterized function, you must declare all parameters used in the function, and their values. Figure
1 shows a Verilog HDL file that instantiates the lpm_ram_dq function. A comment in the Module Declaration
contains the synthesis black_box directive and parameter names and values. This comment must
immediately follow the port list and precede the closing semicolon (;). When you instantiate an LPM
function, the LPM function name must be specified as the value of the LPM_TYPE parameter. In addition, each
parameter must be listed on a separate line. See Figure 1.

Figure 1. Verilog HDL Design File with LPM Function Instantiation

// Define the black box
module myram_64x16 (data, address, inclock, outclock, we, q)
/* synthesis black_box

 LPM_WIDTH=16
 LPM_WIDTHAD=6
 LPM_TYPE="LPM_RAM_DQ" */ ;

input [15:0] data;

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synlib.html?csf=1&web=1

input [5:0] address;
input inclock, outclock;
input we;
output [15:0] q;

endmodule

// Instantiate the LPM parameterized module in the
// higher-level module myram
module myram(clock, we, data, address, q);
input clock, we;
input [15:0] data;
input [5:0] address;
output [15:0] q;

 myram_64x16 inst1 (data, address, clock, clock, we, q);

endmodule

6. (Optional) Enter resource assignments for your Verilog HDL design, as described in Entering Resource
Assignments.

7. After you have completed your Verilog HDL design, synthesize and optimize it with Synplify software, as
described in Synthesizing & Optimizing VHDL or Verilog HDL Files with Synplify Software.

Related Links

Compiling Projects with MAX+PLUS II Software

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpvhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Creating VHDL Designs for Use with
MAX+PLUS II Software

Creating VHDL Designs for Use with MAX+PLUS II
Software

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and save
them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.
If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements in text files in
different colors to distinguish them from other forms of syntax.

To create a VHDL design that can be synthesized and optimized with Synergy software, follow these steps:

1. You can instantiate the following MAX+PLUS II-provided logic functions in your VHDL design:
The alt_mf library contains the Altera® VHDL logic function library, which includes the a_8count,
a_8mcomp, a_8fadd, and a_81mux macrofunctions. If you wish to instantiate alt_mf logic functions in
your VHDL design, you must first compile this library, as described in Compiling the alt_mf Library.
The clklock megafunction, which enables the phase-locked loop, or ClockLock™ , circuitry available
on selected Altera FLEX® 10K devices. Go to Instantiating the clklock Megafunction in VHDL or
Verilog HDL for information.
MegaCore™ functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP™). The OpenCore™ feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

2. If you wish to use Standard Delay Format (SDF) Output Files (.sdo) that contain timing information when
performing post-compilation timing simulation with Leapfrog software, you must first compile the VITAL
library source files, as described in Compiling the alt_vtl Library for for Use with Leapfrog Software.

3. (Optional) To enter resource assignments in your VHDL design, go to Entering Resource Assignments. You
can also enter resource assignments from within the MAX+PLUS II software.

4. After you have completed your VHDL design, synthesize and optimize it with Synergy software, as
described in Synthesizing & Optimizing VHDL Files with Synergy Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample VHDL files, the latter of which includes macrofunction instantiation.

/usr/maxplus2/examples/cadence/example9/count4.vhd
/usr/maxplus2/examples/cadence/example10/adder16.vhd

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altmf
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_vtl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_vtl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_vtl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

You can create VHDL design files with the MAX+PLUS® II Text Editor, the FPGA Express internal text editor, or
another standard text editor and save them in the appropriate directory for your project. The MAX+PLUS II and
FPGA Express text editors offer different advantages; use either or both depending on your personal preferences:

The MAX+PLUS II Text Editor offers VHDL templates with the VHDL Templates command (Templates
menu) and syntax coloring with the Syntax Coloring command (Options menu).

The FPGA Express internal text editor provides automatic error location when you double-click an error in
the Output window.

To create a VHDL design that can be synthesized and optimized with the FPGA Express software, follow these
steps:

1.

2. Describe your design using FPGA Express-supported VHDL constructs. For information on synthesizable
VHDL constructs, refer to the online VHDL Reference Manual provided with the FPGA Express software.
The following topics describe how to instantiate additional Altera-specific logic functions in your design:

Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating RAM & ROM Functions in VHDL
Instantiating LPM Functions in VHDL

You can instantiate MegaCore™ functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP™). The OpenCore™ feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Once you have created a design, synthesize and optimize it, as described in Synthesizing & Optimizing
VHDL or Verilog HDL Files with FPGA Express Software.

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Using Synopsys VSS & MAX+PLUS II Software
Compiling Projects with MAX+PLUS II Software

Go to the following topics for additional information:
Altera Megafunction Partners Program (AMPP)
Altera Megafunctions

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and save
them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following advantages:

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxramvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxlpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsspage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://www.intel.com/www/us/en/programmable/solutions/partners/ip-partners.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
https://mysupport.altera.com/eservice/

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements of text in text
files in different colors to distinguish them from other forms of syntax.

To create a VHDL design and convert it to an EDIF netlist file for use with MAX+PLUS II software, follow these
steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Synplicity Working Environment.

2. Instantiate any MAX+PLUS II-supported logic function in your VHDL design. You can enter the following
functions:

Parameterized and non-parameterized megafunctions. MAX+PLUS II software also supports all
functions in the library of parameterized modules (LPM) 2.1.0, except the truth table, finite state
machine, and pad functions.

Macrofunctions, including 74-series functions.

Buffer primitives, including lcell, soft, global, carry, and cascade. The Synplicity altera.vhd
library provides synthesis support for these functions.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

Choose Primitives, Old-Style Macrofunctions, and Megafunctions/LPM from the MAX+PLUS II Help
menu for information on all MAX+PLUS II-supported functions.

3. If your design uses functions from the altera.vhd library, add the following Library and Use clauses to the
top of a file that instantiates the macrofunction(s):

library altera;
use altera.maxplus2.all;

4. For each MAX+PLUS II-supported logic function, include a black_box synthesis directive. See Figure 1.
You can omit this step for functions from the altera.vhd library.

5. For any parameterized function, declare all parameters used in the function, their types, and their values.
Attribute Declarations are used to declare the black_box attribute and the name and type of each parameter.
The black_box attribute has the boolean type; refer to MAX+PLUS II Help for information on whether a
parameter is of integer or string type. Attribute Specifications then assign values to each parameter. Figure
1 shows a VHDL design file that instantiates the lpm_ram_dq function.

Figure 1. VHDL Design File with LPM Function Instantiation

entity myram is
port (clock, we: in bit;
 data : in bit_vector (3 downto 0);
 address: in bit_vector (1 downto 0);
 q: out bit_vector (3 downto 0));
end myram;

architecture arch1 of myram is

 -- Declare the component

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synlib.html?csf=1&web=1

 component myram_4x4
 port (data: in bit_vector (3 downto 0);
 address: in bit_vector (1 downto 0);
 inclock, outclock, we: in bit;
 q: out bit_vector (3 downto 0));
 end component;

-- Declare the black_box and parameters and their types

attribute black_box: boolean;
attribute LPM_WIDTH: integer;
attribute LPM_WIDTHAD: integer;
attribute LPM_TYPE: string;

-- Assign values to each attribute

attribute black_box of myram_4x4: component is true;
attribute LPM_WIDTH of myram_4x4: component is 4;
attribute LPM_WIDTHAD of myram_4x4: component is 2;
-- Specify the name of the LPM function as the value of the
-- LPM_TYPE attribute
attribute LPM_TYPE of myram_4x4: component is "LPM_RAM_DQ"

begin
 -- Instantiate the LPM component
 u1: myram_4x4 port map(data, address, clock,
 clock, we, q);

end arch1;

6. (Optional) Enter resource assignments for your VHDL design, as described in Entering Resource
Assignments.

7. After you have completed your VHDL design, synthesize and optimize it with Synplify software, as
described in Synthesizing & Optimizing VHDL or Verilog HDL Files with Synplify Software.

Related Links:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpvhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Synopsys Design Compiler or
FPGA Compiler & MAX+PLUS II Software

Using Synopsys Design Compiler or FPGA Compiler &
MAX+PLUS II Software

The following topics describe how to use the Synopsys Design Compiler and FPGA Compiler software with the
MAX+PLUS® II software. Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Synopsys Working Environment

Software Requirements
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up the DesignWare Interface

Updating DesignWare Libraries
Libraries

Design Compiler & FPGA Compiler Technology Libraries
VHDL & Verilog HDL alt_mf Logic Function Library
DesignWare FLEX 6000, FLEX 8000 & FLEX 10K Synthetic Libraries
Post-Synthesis Libraries

MAX+PLUS II/Synopsys Interface File Organization
MAX+PLUS II Project File Structure

Design Entry

Design Entry Flow

VHDL

Creating VHDL Designs for Use with MAX+PLUS II Software
Instantiating RAM & ROM Functions in VHDL (includes examples)
Instantiating the clklock Megafunction in VHDL or Verilog HDL (includes examples)

Additional examples:
Primitive & Old-Style Macrofunction Instantiation Example for VHDL
Architecture Control Logic Function Instantiation Example for VHDL
DesignWare Up/Down Counter Function Instantiation Example for VHDL

Verilog HDL

Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Instantiating RAM or ROM Functions in Verilog HDL (includes examples)
Instantiating the clklock Megafunction in VHDL or Verilog HDL (includes examples)

Additional examples:
Primitive & Old-Style Macrofunction Instantiation Example for Verilog HDL
Architecture Control Logic Function Instantiation Example for Verilog HDL

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Synthesis & Optimization

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Synopsys Software
Using FPGA Compiler N-Input LUT Optimization for FLEX 6000, FLEX 8000, or FLEX 10K
Devices

Examples:
MAX 7000 & MAX 9000 Synthesis Example
DesignWare FLEX 8000 Synthesis Example

Entering Resource Assignments
Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf utility
Converting Synopsys Timing Constraints into MAX+PLUS II-Compatible Format with the syn2acf
Utility
Converting Synopsys Hierarchical Timing Constraints into MAX+PLUS II-Compatible Format with
the gen_iacf and gen_hacf Utilities

Performing a Pre-Routing or Functional Simulation with VSS
Resynthesizing a Design Using the alt.vtl Library & a MAX+PLUS II SDF Output File

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
Using Synopsys FPGA Express & MAX+PLUS II Software
Using Synopsys PrimeTime & MAX+PLUS II Software
Using Synopsys VSS & MAX+PLUS II Software
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Synopsys web site (http://www.synopsys.com)

Setting Up the MAX+PLUS II/Synopsys Working Environment

To use the MAX+PLUS® II software with Synopsys software, you must first install the MAX+PLUS II
software, then establish an environment that facilitates entering and processing designs by modifying your
Synopsys configuration files. The MAX+PLUS II/Synopsys interface is installed automatically when you
install the MAX+PLUS II software on your workstation. Go to MAX+PLUS II Installation in the
MAX+PLUS II Getting Started manual for more information on installation and details on the directories
that are created during MAX+PLUS II installation. Go to MAX+PLUS II/Synopsys Interface File
Organization for information about the MAX+PLUS II/Synopsys directories that are created during
MAX+PLUS II installation.

The information presented here assumes that you are using C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

To set up your working environment for the MAX+PLUS II/Synopsys interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Synopsys software versions described
in the MAX+PLUS II/Synopsys Software Requirements.

Synopsys Altera
version 1998.02:
Design Compiler
FPGA Compiler
Design Analyzer (optional)
VHDL Compiler

HDL Compiler for Verilog
VHDL System Simulator (VSS) (optional)
PrimeTime version 1998.02-PT2.1(optional)

MAX+PLUS II
version 9.4

2. Add technology, synthetic, and link library settings to your .synopsys_dc.setup configuration file, as
described in Setting Up Design Compiler & FPGA Compiler Configuration Files.

To use the DesignWare interface with FLEX® 6000, FLEX 8000, and FLEX 10K devices, follow the
steps in Setting Up the DesignWare Interface.

3. Add simulation library settings to your .synopsys_vss.setup file, and analyze the libraries, as described
in Setting Up VSS Configuration Files.

4. Add the /usr/maxplus2/bin directory to the PATH environment variable in your .cshrc file in order to
run the MAX+PLUS II software.

(Optional) Change the path in the first line of the perl script files, which are located in the
$ALT_HOME/synopsys/bin directory to specify the correct path of your local perl executable file.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Synopsys Software Requirements

The following applications are used to generate, process, synthesize, and verify a project with MAX+PLUS® II and
Synopsys software:

Compilation with the Synopsys Design Compiler and FPGA Compiler is available only on Sun SPARCstations
running Solaris 2.4 or higher.

The MAX+PLUS II read.me file provides up-to-date information on which versions of Synopsys applications are
supported by the current version of MAX+PLUS II. It also provides information on installation and operating
requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS II software.
After installation, you can open the read.me file from the MAX+PLUS II Help menu.

Setting Up Design Compiler & FPGA Compiler Configuration Files

The .synopsys_dc.setup configuration file allows you to set both Design Compiler and FPGA Compiler variables.
The compilers read .synopsys_dc.setup files from three directories, in the following order:

1. The Synopsys root directory

2. Your home directory
3. The directory where you start the Design Compiler or FPGA Compiler software

The most recently read configuration file has highest priority. For example, a configuration file in the directory
where you start the Design Compiler or FPGA Compiler software has priority over the other configuration files,
and a configuration file in the home directory has priority over a configuration file in the root directory.

To set up your configuration files, follow these steps:

1. Add the lines shown in Figure 1 to your .synopsys_dc.setup configuration file. Altera provides a sample
.synopsys_dc.setup file in the ./synopsys/config directory. Figure 1 shows an excerpt from that sample file.

Figure 1. Excerpt from Sample .synopsys_dc.setup File
search_path = {./usr/maxplus2/synopsys/library/alt_syn/<device family>/lib};
target_library = {<technology library>};

symbol_library = {altera.sdb};

link_library = {<technology library>};

edifout_netlist_only = "true"

edifout_power_and_ground_representation = "net"

edifout_power_net_name = "VDD"

edifout_ground_net_name = "GND"

edifout_no_array = "false"

edifin_power_net_name = "VDD"

edifin_ground_net_name = "GND"

compile_fix_multiple_port_nets = "true"

bus_naming_style = "%s<%d>"

bus_dimension_separator_style = "><"

bus_inference_style = "%s<%d>"

2. Specify one of the Design Compiler & FPGA Compiler Technology Libraries for the target_library and
link_library parameters in the .synopsys_dc.setup file.

3. If you will instantiate architecture control logic functions from the alt_mf library, add the following line to
your .synopsys_dc.setup file:

define_design_lib altera -path /usr/maxplus2/synopsys/library/alt_mf/lib

If you wish to use the VHDL System Simulator (VSS) software to simulate a VHDL design containing
alt_mf library functions, you must compile this library with the analyze_vss script. See Setting Up VSS
Configuration Files for more information.

4. If you will use the DesignWare interface for FLEX® 6000, FLEX 8000, or FLEX 10K designs, enter
additional lines in your .synopsys_dc.setup file, as described in Setting Up the DesignWare Interface.

5. Specify one of the following families for the <device family> variable in the search_path parameter:
max5000, max7000, max9000, flex6000, flex8000, or flex10k.

6. If you wish to resynthesize a design for a different device family, modify the .synopsys_dc.setup file by
following the steps described in Resynthesizing a Design Using the alt_vtl Library & a MAX+PLUS II SDF
Output File.

Related Topics:

Go to MAX+PLUS® II /Synopsys Interface File Organization in these MAX+PLUS II ACCESSSM Key
topics for related information.
Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

Setting Up the DesignWare Interface

The DesignWare interface synthesizes FLEX® 6000 , FLEX 8000 and FLEX 10K designs by operator inference. It
replaces the HDL operators +, -, >, <, >=, and <= with FLEX-optimized design implementations.

Altera provides DesignWare Synthetic Libraries that are pre-compiled for the current version of Synopsys tools.
These library files are located in the /usr/maxplus2/synopsys/library/alt_syn/<device family>/lib directory.

To use the DesignWare interface with FLEX 6000, FLEX 8000 and FLEX 10K devices, follow these steps:

1. Add synthetic_library and define_design_lib parameters to your .synopsys_dc.setup configuration file
and modify the link_library parameter as shown in Table 1 or Table 2.

Table 1. DesignWare Parameters to Add to the .synopsys_dc.setup File for the Design Compiler Software
Device
Family Parameters to Add to the .synopsys_dc.setup File

FLEX
6000

synthetic_library = {flex6000<speed grade>.sldb};
link_library = {flex6000<speed grade>.sldb flex6000<speed grade>.db};
define_design_lib DW_FLEX6000<speed grade> -path
/usr/maxplus2/synopsys/library/alt_syn/flex6000/lib/
dw_flex6000<speed grade>

FLEX
8000

synthetic_library = {flex8000[<speed grade>].sldb};
link_library = {flex8000[<speed grade>].sldb flex8000[<speed grade>].db};
define_design_lib DW_FLEX8000[<speed grade>] -path
/usr/maxplus2/synopsys/library/alt_syn/flex8000
/lib/dw_flex8000[<speed grade>]

FLEX 10K

synthetic_library = {flex10k[<speed grade >].sldb};
link_library = {flex10k[<speed grade>].sldb flex10k[<speed grade>].db};
define_design_lib DW_FLEX10k[<speed grade>] -path
/usr/maxplus2/synopsys/library/alt_syn/flex10k/lib
/dw_flex10k[<speed grade>]

Table 2. DesignWare Parameters to Add to the .synopsys_dc.setup File for the FPGA Compiler Software
Device
Family Parameters to Add to the .synopsys_dc.setup File

FLEX
6000

synthetic_library = {flex6000
<speed grade>_fpga.sldb};
link_library = {flex6000<speed grade>_fpga.sldb flex6000<speed grade>_fpga.db};
define_design_lib DW_FLEX6000<speed grade>_FPGA -path
/usr/maxplus2/synopsys/library/alt_syn/flex6000
/lib/dw_flex6000<speed grade>_fpga

FLEX
8000

synthetic_library = {flex8000[<speed grade>]_fpga.sldb};
link_library = {flex8000[<speed grade>]_fpga.sldb flex8000[<speed
grade>]_fpga.db};
define_design_lib DW_FLEX8000[<speed grade>]_FPGA -path

/usr/maxplus2/synopsys/library/alt_syn/flex8000/lib /dw_flex8000[<speed
grade>]_fpga

FLEX
10K

synthetic_library = {flex10k[<speed grade>]_fpga.sldb};
link_library = {flex10k[<speed grade>]_fpga.sldb flex10k[<speed grade>]_fpga.db};

define_design_lib DW_FLEX10k[<speed grade>]_FPGA -path
/usr/maxplus2/synopsys/library/alt_syn/flex10k/lib /dw_flex10k[<speed grade>]_fpga

2. Specify the libraries listed in Table 3 as your synthetic library and as the first of your link libraries.

For FLEX 6000 devices, you must specify either -2 or -3 for the <speed grade> variable. For FLEX 8000
and FLEX 10K devices, you can specify -2, -3, -4, -5, or -6; or -2, -3, -4, or -5; respectively, for the
<speed grade> variable. If you do not specify a speed grade for FLEX 8000 or FLEX 10K devices, the
MAX+PLUS® II software selects the fastest device in the specified family as the target device.

Table 3. FLEX 6000, FLEX 8000 & FLEX 10K DesignWare Synthetic Libraries
Altera® Device Family Synopsys Design Compiler Synopsys FPGA Compiler
FLEX 6000
Synthetic Library

flex6000-2.sldb
flex6000-3.sldb

flex6000-2_fpga.sldb
flex6000-3_fpga.sldb

FLEX 8000
Synthetic Library

flex8000.sldb
flex8000-2.sldb
flex8000-3.sldb
flex8000-4.sldb
flex8000-5.sldb
flex8000-6.sldb

flex8000_fpga.sldb
flex8000-2_fpga.sldb
flex8000-3_fpga.sldb
flex8000-4_fpga.sldb
flex8000-5_fpga.sldb
flex8000-6_fpga.sldb

FLEX 10K
Synthetic Library

flex10k.sldb
flex10k-2.sldb
flex10k-3.sldb
flex10k-4.sldb
flex10k-5.sldb

flex10k_fpga.sldb
flex10k-2_fpga.sldb
flex10k-3_fpga.sldb
flex10k-4_fpga.sldb
flex10k-5_fpga.sldb

3. If necessary, compile the DesignWare libraries, as described in Updating DesignWare Libraries. Altera
provides pre-compiled DesignWare libraries, as described above. However, Altera also provides compatible
source files and scripts that allow you to automate the compilation process. These source files allow you to
use DesignWare with any version of the Design Compiler. They also allow you to install components whose
source is written in VHDL, even if you are licensed only for the HDL Compiler for Verilog.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Setting Up Design Compiler & FPGA Compiler Configuration Files
DesignWare FLEX 8000 Synthesis Example
Design Compiler & FPGA Compiler Technology Libraries

Go to the following topics, which are available on the web, for additional information:
FLEX 6000 Device Family
FLEX 8000 Device Family
FLEX 10K Device Family

Updating DesignWare Libraries

Although Altera provides DesignWare libraries that are pre-compiled for the current version of Synopsys tools, you

Table 1. Commands for Compiling the Library

Device Family Synopsys Compiler Commands for Compiling the Library Note (1)

FLEX®6000

Design Compiler
cd /usr/maxplus2/synopsys/library/alt_syn/flex6000/
src/dw_flex6000<speed grade>
dw_flex6000.script

FPGA Compiler
cd/usr/maxplus2/synopsys/library/alt_syn/flex6000/
src/dw_flex6000<speed grade>_fpga
dw_flex6000.script

FLEX 8000

Design Compiler
cd/usr/maxplus2/synopsys/library/alt_syn/flex8000/
src/dw_flex8000[<speed grade>]
dw_flex8000.script

FPGA Compiler
cd/usr/maxplus2/synopsys/library/alt_syn/flex8000/
src/dw_flex8000[<speed grade>]_fpga
dw_flex8000.script

FLEX 10K

Design Compiler
cd/usr/maxplus2/synopsys/library/alt_syn/flex10k/
src/dw_flex10k[<speed grade>]
dw_flex10k.script

FPGA Compiler
cd/usr/maxplus2/synopsys/library/alt_syn/flex10k/
src/dw_flex10k[<speed grade>]_fpga
dw_flex10k.script

may wish to recompile the libraries.

Altera provides compilable source files and scripts that allow you to automate the compilation process. These
source files allow you to use DesignWare software with any version of the Design Compiler or FPGA Compiler
software.They also allow you to install components whose source is written in VHDL, even if you are licensed only
for the Verilog HDL Compiler software.

Source files for the Design Compiler software are automatically installed in the following directories:

/usr/maxplus2/synopsys/library/alt_syn/flex10k/src/dw_flex10k[<speed grade>]
/usr/maxplus2/synopsys/library/alt_syn/flex8000/src/dw_flex8000[<speed grade>]
/usr/maxplus2/synopsys/library/alt_syn/flex6000/src/dw_flex6000<speed grade>

Source files for the FPGA Compiler are automatically installed in the following directories:

/usr/maxplus2/synopsys/library/alt_syn/flex10k/src/dw_flex10k[<speed grade>]_fpga
/usr/maxplus2/synopsys/library/alt_syn/flex8000/src/dw_flex8000[<speed grade>]_fpga
/usr/maxplus2/synopsys/library/alt_syn/flex6000/src/dw_flex6000<speed grade>_fpga

1. For FLEX 6000 devices, you must specify either -2 or -3 for the <speed grade> variable. For FLEX 8000
and FLEX 10K devices, you must specify -2, -3, -4, -5, or -6; or -1, -2, -3, -4, or -5; respectively, for the
<speed grade> variable.

Go to the following topics for additional information:

Setting Up the DesignWare Interface
Setting Up the MAX+PLUS II/Synopsys Working Environment
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up VSS Configuration Files

Go to the following topics, which are available on the web, for additional information:

Table 1. Altera-Provided Primitives

Name
Note
(1),

Note (2)
Description Name Description

LCELL Logic cell buffer primitive EXP MAX® 5000, MAX 7000, and MAX 9000
Expander buffer primitive

GLOBAL Global input buffer primitive SOFT Soft buffer primitive

CASCADE FLEX® 6000, FLEX 8000, and FLEX 10K
cascade buffer primitive OPNDRN

FLEX 6000, FLEX 8000, and FLEX 10K Open-
drain buffer primitive

CARRY
FLEX 6000, FLEX 8000, and FLEX 10K cascade
buffer primitive

DFF
DFFE
DFFS
Note
(2)

D-type flipflop with Clock Enable primitive

LATCH Latch primitive

TFF
TFFE
TFFS
Note
(2)

T-type flipflop primitive

TRIBUF Tri-state buffer primitive

FLEX 6000 Device Family
FLEX 8000 Device Family
FLEX 10K Device Family

Design Compiler & FPGA Compiler Technology Libraries

The Altera® -provided Design Compiler and FPGA Compiler technology libraries contain primitives that the
Synopsys compilers use to map your designs to the target device architecture. These primitives contain timing and
area information that the Synopsys compilers use to meet area and performance requirements. Table 1 shows the
functions provided in these libraries. Choose Primitives from the MAX+PLUS II Help menu for detailed
information on these functions.

Altera recommends instantiating these functions directly in your designs only if the Synopsys compilers do not
appear to recognize the functions when synthesizing your design, or if you prefer to hand-optimize certain portions
of your design.

Notes:

(1) All buffer primitive names except OPNDRN must be prefixed with an "A" in FLEX 6000, FLEX 8000, and FLEX
10K designs. The TRIBUF primitive is equivalent to the TRI primitive in the MAX+PLUS II software.

(2) The DFFE and TFFE primitives include a Clock Enable input; the DFFS and TFFS primitives are equivalent to DFF
and TFF primitives without Clear or Preset inputs. For designs that are targeted to FLEX 6000 devices, you should
use the DFFE or TFFE primitive only if the design contains either a Clear or Preset signal, but not both. If your
design contains both a Clear and a Preset signal, you must use the DFFE6K primitive.

The VHDL simulation model /usr/maxplus2/synopsys/library/alt_pre/<device family>/src/<device

Table 2. Altera Technology Libraries

Altera Device Family Synopsys Design Compiler Synopsys FPGA Compiler

FLEX® 10K devices

flex10k.db
flex10k-2.db
flex10k-3.db
flex10k-4.db
flex10k-5.db

flex10k_fpga.db
flex10k-2_fpga.db
flex10k-3_fpga.db
flex10k-4_fpga.db
flex10k-5_fpga.db

FLEX 8000 devices

flex8000.db
flex8000-2.db
flex8000-3.db
flex8000-4.db
flex8000-5.db
flex8000-6.db

flex8000_fpga.db
flex8000-2_fpga.db
flex8000-3_fpga.db
flex8000-4_fpga.db
flex8000-5_fpga.db
flex8000-6_fpga.db

FLEX 6000 devices flex6000-2.db
flex6000-3.db

flex6000-2_fpga.db
flex6000-3_fpga.db

MAX® 9000 devices max9000.db max9000_fpga.db
MAX 7000, MAX 7000E,
MAX 7000S, & MAX 7000A devices max7000.db max7000_fpga.db

MAX 5000 & Classic® devices max5000.db max5000_fpga.db

Table 1. Altera-Provided Architecture Control Logic Functions

Name Description
a_8fadd 8-bit full adder
a_8mcomp 8-bit magnitude comparator
a_8count 8-bit up/down counter

family>_components.vhd file shows the exact cell and pin names for each device family. The Verilog HDL
simulation file /usr/maxplus2/synopsys/library/alt_pre/verilog/src/altera.v shows the functionality of these cells.

Table 2 lists the technology library names.

Related Topics:

Go to MAX+PLUS® II /Synopsys Interface File Organization in these MAX+PLUS II ACCESSSM Key
topics for related information.
Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

Altera VHDL & Verilog HDL alt_mf Logic Function Library

The alt_mf library contains behavioral VHDL and Verilog HDL models of the Altera® logic functions shown in
Table 1. VHDL or Verilog HDL files that instantiate these functions can be simulated with the VHDL System
Simulator (VSS) software or the Cadence Verilog-XL simulator, respectively, both before and after being compiled
with the Synopsys Design Compiler or FPGA Compiler software.

a_81mux 8-to-1 multiplexer

File: Description:
mf.vhd Contains behavioral VHDL descriptions of the logic functions.
mf_components.vhd Contains VHDL Component Declarations for the logic functions.
mf.v Contains behavioral Verilog HDL descriptions of the logic functions.

Table 1. FLEX 6000, FLEX 8000 & FLEX 10K DesignWare Synthetic
Libraries

Altera Device Family Synopsys Design Compiler Synopsys FPGA Compiler
FLEX 6000
Synthetic Library

flex6000-2.sldb
flex6000-3.sldb

flex6000-2_fpga.sldb
flex6000-3_fpga.sldb

FLEX 8000

flex8000.sldb
flex8000-2.sldb
flex8000-3.sldb

flex8000_fpga.sldb
flex8000-2_fpga.sldb
flex8000-3_fpga.sldb

For detailed information on these functions, choose Search for Help on from the MAX+PLUS® II Help menu and
type the function name, without the "a_" prefix.

The behavioral descriptions of these four functions are contained in the
/usr/maxplus2/synopsys/library/alt_mf/src directory, which contains the following files:

If you wish to simulate a VHDL design containing these logic functions, you can use the Altera-provided shell
script analyze_vss to create a design library called altera. This library allows you to reference the functions
through the VHDL Library and Use Clauses, which direct the Design Compiler or FPGA Compiler software to
incorporate the library files when it compiles your top-level design file. The analyze_vss shell script creates the
altera design library by analyzing the VHDL System Simulator (VSS) simulation models in the
/usr/maxplus2/synopsys/library/alt_mf/lib directory. See Setting Up VSS Configuration Files for more
information on using the analyze_vss shell script.

Complete VHDL and Verilog HDL behavioral descriptions of these logic functions are included in the mf.vhd and
mf.v files so that you can optionally retarget your design to other technology libraries.

Altera DesignWare FLEX 6000, FLEX 8000 & FLEX 10K Synthetic Libraries

The Altera® DesignWare interface for the FLEX® 6000, FLEX 8000, and FLEX 10K device families provides
accurate area and timing prediction for designs that have been synthesized by the Synopsys design tools and
targeted for FLEX devices. Altera's DesignWare interface also ensures that the area and timing information closely
matches the final FLEX device implementation generated by the MAX+PLUS® II Compiler. The DesignWare
interface synthesizes FLEX 6000 , FLEX 8000 and FLEX 10K designs by operator inference. This interface
supports bus widths of up to 32 bits, except adder functions, which support bus widths of up to 64 bits.

The Altera DesignWare interface for FLEX devices offers three major advantages to Synopsys designers:

Automatic access to FLEX carry and cascade chain functions
Optimal routing of FLEX designs
Improved area and performance prediction capability in Synopsys tools

Table 1 lists the Altera DesignWare synthetic libraries for FLEX 6000, FLEX 8000, and FLEX 10K devices.

Synthetic Library flex8000-4.sldb
flex8000-5.sldb
flex8000-6.sldb

flex8000-4_fpga.sldb
flex8000-5_fpga.sldb
flex8000-6_fpga.sldb

FLEX 10K
Synthetic Library

flex10k.sldb
flex10k-2.sldb
flex10k-3.sldb
flex10k-4.sldb
flex10k-5.sldb

flex10k_fpga.sldb
flex10k-2_fpga.sldb
flex10k-3_fpga.sldb
flex10k-4_fpga.sldb
flex10k-5_fpga.sldb

Table 2. FLEX 6000, FLEX 8000, and FLEX 10K Synthetic Library
Functions

Name Function
flex_add Sum of A, B, and Carry-In
flex_carry Carry of A, B, and Carry-In
flex_sub Difference of A, B, and Borrow-In
flex_borrow Borrow of A, B, and Borrow-In
flex_gt, flex_sgt Greater than (flex_gt is unsigned; flex_sgt is signed)
flex_carry_gt Greater than Carry
flex_lt, flex_slt Less than (flex_lt is unsigned; flex_slt is signed)
flex_carry_lt Less than Carry
flex_gteq, flex_sgteq Greater than or equal to (flex_gteq is unsigned; flex_sgteq is signed)
flex_carry_gteq Greater than or equal to Carry
flex_inc Incrementer (Count = Count + 1)
flex_carry_inc Incrementer Carry (Count = Count + 1)
flex_dec Decrementer (Count = Count - 1)
flex_carry_dec Decrementer Carry (Count = Count - 1)
flex_lteq, flex_slteq Less than or equal to (flex_lteq is unsigned; flex_slteq is signed)
flex_carry_lteq Less than or equal to Carry
flex_count Counter
aflex_carry_count Counter Carry
flex_add_sub Adder/Subtractor
flex_inc_dec Incrementer/Decrementer
flex_umult, flex_smult Multiplier (flex_umult is unsigned; flex_smult is signed)

Table 2 lists functions included in the DesignWare FLEX 6000, FLEX 8000, and FLEX 10K synthetic libraries.
Refer to DesignWare FLEX 8000 Synthesis Example for an example showing how DesignWare synthesis affects
design processing.

Related Topics:

Go to the following sources for related information:
Setting Up the DesignWare Interface in these MAX+PLUS II ACCESSSM Key topics
Synopsys DesignWare Databook
VHDL Compiler Reference Manual

Go to the following topics, which are available on the web, for additional information:
FLEX 6000 Device Family
FLEX 8000 Device Family

Table 1. MAX+PLUS II Directory Organization

Directory Description

./synopsys/bin
Contains script programs to convert Synopsys timing constraints into
MAX+PLUS II Assignment & Configuration File (.acf) format, and to analyze
VHDL System Simulator simulation models.

./synopsys/config Contains sample .synopsys_dc.setup and .synopsys_vss.setup files.

./synopsys/examples Contains sample files, including those discussed in these ACCESS Key
Guidelines.

./synopsys/library/alt_pre/<device
family>/src

Contains VHDL simulation libraries for functional simulation of VHDL
projects.

./synopsys/library/alt_pre/verilog/src Contains the Verilog HDL functional simulation library for Verilog HDL
projects.

./synopsys/library/alt_pre/vital/src
Contains the VITAL 95 simulation library. You use this library when you
perform functional simulation of the design before compiling it with the
MAX+PLUS II software.

./synopsys/library/alt_syn//<device
family>/lib

Contains interface files for the MAX+PLUS II/Synopsys interface. Technology
libraries in this directory allow the Design Compiler and FPGA Compiler to
map designs to Altera® device architectures.

./synopsys/library/alt_mf/src
Contains behavioral VHDL models of some Altera macrofunctions, along with
their component declarations. The a_81mux, a_8count, a_8fadd, and a_8mcomp
macrofunctions are currently supported. Libraries in this directory allow you to
instantiate, synthesize, and simulate these macrofunctions.

./synopsys/library/alt_post/syn/lib Contains the post-synthesis library for technology mapping.

./synopsys/library/alt_post/sim/src
Contains the VHDL source files for the VITAL 95-compliant library. You use
this library when you perform simulation of the design after compiling it with
the MAX+PLUS II software.

FLEX 10K Device Family

Altera Post-Synthesis Libraries

The /usr/maxplus2/synopsys/library/alt_post/syn/lib directory contains the post-synthesis library for technology
mapping and timing back-annotation. The Altera® -provided alt_vtl.db file in this library contains over three dozen
MAX+PLUS® II -generated logic functions.

MAX+PLUS II/Synopsys Interface File Organization

Table 1 shows the MAX+PLUS® II /Synopsys interface subdirectories that are created in the MAX+PLUS II
system directory (by default, the /usr/maxplus2 directory) during the MAX+PLUS II software installation. For
information on the other directories that are created during the MAX+PLUS II software installation, see
"MAX+PLUS II File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

You must add the /usr/maxplus2/bin directory to the PATH environment variable in your .cshrc file in order to run
the MAX+PLUS II software.

Altera-provided items are shown in blue.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II Project File Structure

In MAX+PLUS® II, a project name is the name of a top-level design file, without the filename extension. This
design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL TDF; or any other MAX+PLUS II-
supported design file. The EDIF netlist file must be created by Synopsys and imported into MAX+PLUS II as an
EDIF Input File.

MAX+PLUS II stores the connectivity data on the links between design files in a hierarchical project in a
Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Synopsys Design Entry Flow

Figure 1 below shows the design entry flow for the MAX+PLUS® II /Synopsys interface.

Figure 1. MAX+PLUS II/Synopsys Design Entry Flow

Creating VHDL Designs for Use with MAX+PLUS II Software

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and save
them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements of text in text
files in different colors to distinguish them from other forms of syntax.

Once you have created a VHDL design, you can use the Design Compiler or FPGA Compiler to synthesize and
optimize it, and then generate an EDIF netlist file that can be processed with the MAX+PLUS II software.

To create a VHDL design that can be synthesized and optimized with the Design Compiler or FPGA Compiler,
follow these steps:

1. Instantiate logic functions with a Component Instantiation, and include a Component Declaration for each
function. Altera provides simulation models for the following types of logic functions:

Primitives in the Design Compiler & FPGA Compiler Technology Libraries. Go to Primitive & Old-
Style Macrofunction Instantiation Example for VHDL for an example.
Architecture Control Logic functions in the alt_mf library, which includes the a_8count, a_8mcomp,
a_8fadd, and a_81mux functions. See MAX+PLUS II Architecture Control Logic Function
Instantiation Example for VHDL for an example.
The DesignWare up/down counter function (DW03_updn_ctr). Go to DesignWare Up/Down Counter
Function Instantiation Example for VHDL for an example.
RAM and ROM functions generated with the genmem utility. Go to Instantiating RAM & ROM
Functions in VHDL for instructions.
The clklock megafunction, which is supported for selected FLEX 10K devices. This function is
generated with the gencklk utility. Go to Instantiating the clklock Megafunction in VHDL or Verilog

HDL for instructions.
MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

You can also instantiate any other Altera macrofunction or non-parameterized megafunction, i.e.,
functions not listed above, for which no simulation models or technology library support is available.
These functions are treated as "black boxes" during processing with the Design Compiler or FPGA
Compiler. See Primitive & Old-Style Macrofunction Instantiation Example for VHDL for an example.

For information on MAX+PLUS II primitives, megafunctions, and macrofunctions, choose Primitives,
Megafunctions/LPM, or Old-Style Macrofunctions from the MAX+PLUS II Help menu. When searching
for information on the alt_mf library functions, drop the initial "a_" from the function name.

2. (Optional) If you instantiate a "black box" logic function for which no simulation/techology library support is
available, create a hollow-body design description in order to prevent the Design Compiler or FPGA
Compiler from issuing a warning message. See Primitive & Old-Style Macrofunction Instantiation Example
for VHDL for an example.

If you instantiate a "black box" logic function, you must create a Library Mapping File (.lmf) to map the
function to an equivalent MAX+PLUS II function before you compile the project with the MAX+PLUS II
software. See Primitive & Old-Style Macrofunction Instantiation Example for VHDL for an example.

3. Once you have created a VHDL design, you can analyze it, synthesize it, (optional) perform a functional
simulation, and generate an EDIF netlist file that can be imported into the MAX+PLUS II software. Go to the
following topics for instructions:

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Synopsys Software
Performing a Pre-Routing or Function Simulation with VSS Software

Installing the Altera-provided MAX+PLUS II/Synopsys Logic interface on your computer automatically creates the
following VHDL sample files:

/usr/maxplus2/examples/mentor/examples/ministate.vhd
/usr/maxplus2/examples/mentor/examples/count8.vhd
/usr/maxplus2/examples/mentor/examples/tstrom.vhd

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Primitive & Old-Style Macrofunction Instantiation Example for VHDL

You can instantiate the MAX+PLUS® II primitives listed in Design Compiler & FPGA Compiler Technology
Libraries in VHDL designs. These primitives can be used to control synthesis in the MAX+PLUS II software. You
can also instantiate MAX+PLUS II megafunctions and old-style macrofunctions.

Go to the following topics for information and examples of how to instantiate functions that are not considered to
be hollow bodies, including functions in the alt_mf library, RAM and ROM, and the clklock megafunction:

Architecture Control Macrofunction Instantiation Example for VHDL
Instantiating RAM & ROM Functions in VHDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Figure 1. 4-Bit Adder Design with Registered Output (adder.vhd)

LIBRARY ieee;
 USE ieee.std_logic_1164.ALL;

ENTITY adder IS
 PORT (a, b : IN STD_LOGIC_VECTOR(4 DOWNTO 1);
 clk, rst : IN STD_LOGIC;

cout : OUT STD_LOGIC;
 regsum : OUT STD_LOGIC_VECTOR(4 DOWNTO 1));
 END adder;

ARCHITECTURE MAX7000 OF adder IS

SIGNAL sum : STD_LOGIC_VECTOR(4 DOWNTO 1);
SIGNAL ci, gclk, grst : STD_LOGIC;

-- Component Declaration for GLOBAL primitive
-- For FLEX devices, global, a_in, and a_out should be replaced with
-- aglobal, in1, and Y, respectively
COMPONENT global
 PORT (a_in : IN STD_LOGIC;
 a_out : OUT STD_LOGIC);
END COMPONENT;

-- Component Declaration for fa4 macrofunction
COMPONENT fa4
 PORT (c0,a1,b1,a2,b2,a3,b3,a4,b4 : IN STD_LOGIC;
 s1,s2,s3,s4,c4 : OUT STD_LOGIC);
END COMPONENT;

BEGIN
 ci <= '0';

-- FA4 Component Instantiation
 u0: fa4

Unlike other logic functions, MAX+PLUS II primitives do not need to be defined with Component Declarations
unless you wish to simulate the design with the VHDL System Simulator (VSS) software. Any references to these
primitives are resolved by the Synopsys compilers. All buffer primitives except the ATRIBUF and TRIBUF primitives
also have a "don't touch" attribute already assigned to them, which prevents the Synopsys compilers from
optimizing them. The Synopsys compilers also automatically treat mega- and macrofunctions that do not have
corresponding synthesis library models as "black boxes."

Figure 1 shows a 4-bit full adder with registered output that also instantiates an AGLOBAL or GLOBAL primitive. This
figure also illustrates the use of global Clock and global Reset pins in the MAX 7000 architecture. The design uses
an old-style 7483 macrofunction, which is represented as a hollow body named fa4.

PORT MAP (ci,a(1),b(1),a(2),b(2),a(3),b(3),a(4),b(4),
 sum(1),sum(2),sum(3),sum(4),cout);

-- GLOBAL Component Instantiation for Clock
-- For FLEX devices, global should be replaced with aglobal
 u1: global
 PORT MAP (clk, gclk);

-- GLOBAL Component Instantiation for Reset
-- For FLEX devices, global should be replaced with aglobal
 u2: global
 PORT MAP (rst, grst);

-- CLOCK process to create registered output
 clocked: PROCESS(gclk,grst)

BEGIN
 IF grst = '0' THEN
 regsum <= "0000"

ELSIF gclk'EVENT AND gclk = '1' THEN
 regsum <= sum;
 END IF;

END PROCESS clocked;

END MAX7000;

Figure 2. Hollow-Body Description of a 4-Bit Full Adder (7483)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

-- fa4 maps to 7483. The interface names do not have to match.

ENTITY fa4 IS

PORT (c0,a1,b1,a2,b2,a3,b3,a4,b4 : IN STD_LOGIC;
 s1,s2,s3,s4,c4 : OUT STD_LOGIC);

Before you can analyze the 4-bit adder design, you must first analyze the fa4 description in Figure 1 with the
Synopsys VHDL Compiler software. You can ignore the warning that is issued for any unknown function,
including the fa4 function in this example. If you wish, you can avoid receiving such warning messages by creating
a hollow-body description of the function.

A hollow-body VHDL description combines an Entity Declaration with an empty or null Architecture Body. An
empty Architecture Body contains the ARCHITECTURE IS clause, followed by the BEGIN and END keywords and a
semicolon (;). It does not include any information about the design's function or operation. Figure 2 shows the
hollow-body description for the fa4 function.

END fa4;

ARCHITECTURE map7483 OF fa4 IS

BEGIN

-- This architecture body is left blank, and will map to the
-- 7483 macrofunction in MAX+PLUS II.

END;

When you analyze the hollow-body design description with the Synopsys VHDL Compiler software, it produces a
hollow-body component that contains a single level of hierarchy with input and output pins, but does not contain
any underlying logic.

You can save the synthesized design as an EDIF netlist file (.edf) and compile it with the MAX+PLUS II software.
After the VHDL Compiler software has successfully processed the design, it generates the schematic shown in
Figure 3, which you can view with the Design Analyzer software.

Figure 3. Synthesized Design Generated by the Design Compiler

However, before you compile the EDIF netlist file with the MAX+PLUS II software, you must create the
adder.lmf file, shown in Figure 3, to map the fa4 function to the equivalent MAX+PLUS II function (7483). You
must then specify the LMF as LMF #2 in the expanded EDIF Netlist Reader Settings dialog box (Interfaces

Figure 3. Library Mapping File Excerpt for fa4

BEGIN
FUNCTION 7483 (c0, a1, b1, a2, b2, a3, b3, a4, b4,)
RETURNS (s1, s2, s3, s4, c4)

FUNCTION "fa4" ("c0", "a1", "b1", "a2", "b2", "a3",
 "b3","a4", "b4")
RETURNS ("s1", "s2", "s3", "s4", "c4")
END

Figure 1. Sample VHDL File with Logic Function Instantiation

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

LIBRARY altera;
USE altera.maxplus2.ALL;

ENTITY counter IS
PORT (clock,ena,load,dnup,set,clear : IN STD_LOGIC;
 i : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

menu) (LMF #1 is altsyn.lmf). For more information about creating LMFs, refer to "Library Mapping Files (.lmf)"
and "Library Mapping File Format" in MAX+PLUS II Help.

When you compile the design with the MAX+PLUS II software, you can disregard the warning "EDIF cell
<name> already has LMF mapping so CONTENTS construct has been ignored". To verify the global Clock
and global Reset usage, as well as the number of logic cells used, see the adder.rpt Report File generated by the
MAX+PLUS II Compiler.

MAX+PLUS II Architecture Control Logic Function Instantiation Example for VHDL

You can instantiate Altera® -provided logic functions from the alt_mf library, which includes the a_8fadd,
a_8mcomp, a_8count, and a_81mux functions, in VHDL designs. Altera provides behavioral descriptions of these
functions that support pre-synthesis/pre-route simulation of your top-level design with the VHDL System Simulator
(VSS).

When you instantiate one of these functions, you can either include a Component Declaration for the function, or
use the Altera-provided shell script analyze_vss to create a design library called altera so that you can reference
the functions through the VHDL Library and Use Clauses. The Library and Use Clauses direct the Design Compiler
or FPGA Compiler to incorporate the library files when it compiles your top-level design file. The analyze_vss
shell script creates the altera design library when it analyzes the VSS simulation models in the
/usr/maxplus2/synopsys/library/alt_mf/lib directory. See Setting up VSS Configuration Files for more
information on using the analyze_vss shell script.

Figure 1 shows an example of an 8-bit counter that is instantiated using the a_8count function.

cout : OUT STD_LOGIC);
END counter;

ARCHITECTURE structure OF counter IS

BEGIN
 u1 : a_8count

PORT MAP (a=>i(0), b=>i(1), c=>i(2), d=>i(3), e=>i(4),
 f=>i(5), g=>i(6), h=>i(7), ldn=>load, gn=>ena,
 dnup=>dnup, setn=>set, clrn=>clear, clk=>clock,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3), qe=>q(4),
 qf=>q(5), qg=>q(6), qh=>q(7), cout=>cout);

END structure;

CONFIGURATION conf OF counter IS
 FOR structure
 END FOR;
END conf;

Figure 1 shows a VHDL file excerpt with DW03_updn_ctr instantiation.

Figure 1. VHDL File Excerpt with Up/Down Counter Instantiation

LIBRARY ieee,DW03;
USE ieee.std_logic_1164.all;
USE DW03.DW03_components.all;

ENTITY updn_4 IS
 PORT (D : IN STD_LOGIC_VECTOR(4-1 DOWNTO 0);
 UP_DN, LD, CE, CLK, RST: IN STD_LOGIC;
 TERCNT : OUT STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(4-1 DOWNTO 0));
END updn_4;

ARCHITECTURE structure OF updn_4 IS

BEGIN
 u0: DW03_updn_ctr

DesignWare Up/Down Counter Function Instantiation Example for VHDL

The Altera DesignWare Libraries for FLEX devices allow you to instantiate the DW03_updn_ctr function, which is
the same as the Synopsys DW03 up/down counter. This function allows you to use the same VHDL code regardless
of which FLEX® device is targeted.

 GENERIC MAP(width => 4)
 PORT MAP (data => d, clk => clk, reset => rst, up_dn => up_dn,
 load => ld, tercnt => tercnt, cen => ce, count => q);
END structure;

Related Topics:

Go to Setting Up the DesignWare Interface in these MAX+PLUS II ACCESSSM Key topics for related
information.
Go to the following topics, which are available on the web, for additional information:

FLEX 6000 Device Family
FLEX 8000 Device Family
FLEX 10K Device Family

Instantiating RAM & ROM Functions in VHDL

The MAX+PLUS® II /Synopsys interface offers full support for the memory capabilities of the FLEX® 10K device
family, including synchronous and asynchronous RAM and ROM, cycle-shared dual port RAM, dual-port RAM,
single-Clock FIFO, and dual-clock FIFO functions. You can use the Altera® -provided genmem utility to generate
functional simulation models and timing models for these functions. Type genmem at the UNIX prompt to display
information on how to use this utility, as well as a list of the functions you can generate.

To instantiate a RAM or ROM function in VHDL, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX prompt:

genmem <memory type> <memory size> -vhdl

For example: genmem asynrom 256x15 -vhdl

2. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name> function.

Figure 1 shows a VHDL design that instantiates asyn_rom_256x15.vhd, a 256 x 15 ROM function.

Figure 1. VHDL Design File with ROM Instantiation (tstrom.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tstrom IS
 PORT (
 addr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 memenab : IN STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR (14 DOWNTO 0));
END tstrom;

ARCHITECTURE behavior OF tstrom IS

COMPONENT asyn_rom_256x15
-- pragma translate_off
 GENERIC (LPM_FILE : string);

-- pragma translate_on
 PORT (Address : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 MemEnab : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(14 DOWNTO 0)
);
END COMPONENT;

BEGIN

 u1: asyn_rom_256x15
-- pragma translate_off
 GENERIC MAP (LPM_FILE => "u1.hex")
-- pragma translate_on
 PORT MAP (Address => addr, MemEnab => memenab, Q =>q);
END behavior;

3. (Optional for RAM functions) Specify an initial memory content file:

For ROM functions, you must specify the filename of an initial memory content file in the Intel
hexadecimal format (.hex) or the Altera® Memory Initialization File (.mif) format in the Generic Map
Clause, with the LPM_FILE parameter. See Figure 1. The filename must be the same as the instance
name; e.g., the u1 instance name must be unique throughout the whole project, and must contain only
valid VHDL name characters. The initialization file must reside in the directory containing the project's
design files.

For RAM functions, specifying a memory initialization file is optional. If you want to use it, you must
specify it in the Generic Map Clause as described above. If you do not use an initialization file, you
should not declare or use the Generic Clause.

1. The MIF format is supported only for specifying initial memory content when compiling designs
within MAX+PLUS II software. You cannot use a MIF to perform simulation with Synopsys tools
prior to MAX+PLUS II compilation.

2. If you use an Intel hexadecimal format file and wish to simulate the design with the VHDL System
Simulator (VSS) after MAX+PLUS II compilation, you should use the Synopsys intelhex utility to
translate the Intel hexadecimal fomat file into a VSS-compatible Synopsys memory file. Refer to the
Synopsys VHDL System Simulator Software Tool manual for details about using the intelhex utility.

4. In the VHDL design file, add the compiler directive -- pragma translate_off before the Generic
Clause and Generic Map Clause, and add -- pragma translate_on after the Generic Clause and Generic
Map Clause. These directives tell the VHDL Compiler software when to stop and start synthesizing. For
example, in Figure 1, the --pragma translate_off directive instructs the VHDL Compiler software to skip
syntax checking until the --pragma translate_on directive is read.

5. Because the VHDL Compiler software does not support the data type string for the Generic Clause, you
must also enter the following command before you read the design:

hdlin_translate_off_skip_text=true

6. The timing model (.lib) generated by the genmem utility contains pin-to-pin delay information that can be
used by the Synopsys Design Compiler and FPGA Compiler software. You must add this timing model to the
existing library so that the compiler can access the timing information. Type the following commands at the
dc_shell prompt:

read -f db flex10k[<speed grade>].db
update_lib flex10k[<speed grade>] <RAM/ROM function name>.lib

7. (Optional) Enter the following command to update your flex10k[<speed grade>].db file with the
RAM/ROM timing information:

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;

write_lib flex10k[<speed grade>] -o flex10k.db

8. When you generate the EDIF netlist file from the design, include the bus structure from the RAM or ROM
function(s). Go to Setting Up Synopsys Configuration Files for more information.

9. Continue with the steps necessary to complete your VHDL design, as described in Creating VHDL Designs
for Use with MAX+PLUS II Software.

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating the clklock Megafunction in VHDL or Verilog HDL

MAX+PLUS® II interfaces with other EDA tools support the clklock phase-locked loop megafunction, which can
be used with some FLEX® 10K devices, with the gencklk utility. Type gencklk -h at the UNIX prompt to
display information on how to use this utility. The gencklk utility generates VHDL or Verilog HDL functional
simulation models and a VHDL Component Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the UNIX prompt to generate the clklock_x_y file, where x is the
ClockBoost value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

2. Create a design file that instantiates the clklock_x_y function. The gencklk utility automatically generates a
VHDL Component Declaration template in the clklock_x_y.cmp file that you can incorporate into a VHDL
design file.

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);
 END structure;

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));

A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Creating Verilog HDL Designs for Use with MAX+PLUS II Software

You can create Verilog HDL design files with the MAX+PLUS® II Text Editor or another standard text editor and
save them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following
advantages:

Verilog HDL templates are available with the Verilog HDL Templates command (Templates menu). These
templates are also available in the ASCII verilog.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your Verilog HDL design, you can use the Syntax
Coloring command (Options menu). The Syntax Coloring feature displays keywords and other elements of
text in text files in different colors to distinguish them from other forms of syntax.

Once you have created a Verilog HDL design, you can use the Design Compiler or FPGA Compiler to synthesize
and optimize it, and then generate an EDIF netlist file that can be processed with the MAX+PLUS II software.

To create a Verilog HDL design that can be synthesized and optimized with the Design Compiler or FPGA
Compiler, follow these steps:

1. Instantiate logic functions with a Module Instantiation, and include a Module Declaration for each function.
Altera provides simulation models for the following types of logic functions:

Primitives in the Design Compiler & FPGA Compiler Technology Libraries. Go to Primitive & Old-
Style Macrofunction Instantiation Example for Verilog HDL for an example.
Architecture Control Logic functions in the alt_mf library, which includes the a_8count, a_8mcomp,
a_8fadd, and a_81mux functions. See MAX+PLUS II Architecture Control Logic Function
Instantiation Example for Verilog HDL for an example.
RAM and ROM functions generated with the genmem utility. Go to Instantiating RAM & ROM
Functions in VHDL for instructions.
The clklock megafunction, which is supported for selected FLEX 10K devices. This function is
generated with the gencklk utility. Go to Instantiating the clklock Megafunction in VHDL or Verilog
HDL for instructions.
MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

You can also instantiate any other Altera macrofunction or non-parameterized megafunction, i.e., functions
not listed above, for which no simulation models or technology library support is available. These functions

are treated as "black boxes" during processing with the Design Compiler or FPGA Compiler. See Primitive
& Old-Style Macrofunction Instantiation Example for Verilog HDL for an example.

For information on MAX+PLUS II primitives, megafunctions, and macrofunctions, choose Primitives,
Megafunctions/LPM, or Old-Style Macrofunctions from the MAX+PLUS II Help menu. When searching
for information on the alt_mf library functions, drop the initial "a_" from the function name.

2. (Optional) If you instantiate a "black box" logic function for which no simulation/techology library support is
available, create a hollow-body design description in order to prevent the Design Compiler or FPGA
Compiler from issuing a warning message. See Primitive & Old-Style Macrofunction Instantiation Example
for Verilog HDL for an example.

If you instantiate a "black box" logic function, you must create a Library Mapping File (.lmf) to map the
function to an equivalent MAX+PLUS II function before you compile the project with the MAX+PLUS II
software. See Primitive & Old-Style Macrofunction Instantiation Example for VHDL for an example.

3. Once you have created a VHDL design, you can analyze it, synthesize it, (optional) perform a functional
simulation, and generate an EDIF netlist file that can be imported into the MAX+PLUS II software. Go to the
following topics for instructions:

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Synopsys Software
Performing a Pre-Routing or Function Simulation with VSS Software

Installing the Altera-provided MAX+PLUS II/Synopsys Logic interface on your computer automatically
creates the following VHDL sample files:

/usr/maxplus2/examples/mentor/examples/ministate.v
/usr/maxplus2/examples/mentor/examples/count8.v
/usr/maxplus2/examples/mentor/examples/tstrom.v

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key
topics for related information.

Primitive & Old-Style Macrofunction Instantiation Example for Verilog HDL

You can instantiate the MAX+PLUS® II primitives listed in Design Compiler & FPGA Compiler
Technology Libraries in Verilog HDL designs. These primitives can be used to control synthesis in the
MAX+PLUS II software. You can also instantiate MAX+PLUS II megafunctions and old-style
macrofunctions.

Go to the following topics for information and examples of how to instantiate functions that are not
considered to be hollow bodies, including functions in the alt_mf library, RAM and ROM, and the clklock
megafunction:

Architecture Control Macrofunction Instantiation Example for Verilog HDL
Instantiating RAM & ROM Functions in Verilog HDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Unlike other logic functions, MAX+PLUS II primitives do not need to be defined with hollow-body
functions unless you wish to simulate the design with the VHDL System Simulator (VSS) software. Any
references to these primitives are resolved by the Synopsys compilers. All buffer primitives except the
ATRIBUF and TRIBUF primitives also have a "don't touch" attribute already assigned to them, which prevents
the Synopsys compilers from optimizing them. The Synopsys compilers also automatically treat mega- and

macrofunctions that do not have corresponding synthesis library models as "black boxes."

Figure 1 shows a 4-bit full adder with registered output that also instantiates an AGLOBAL or GLOBAL primitive.
This figure also illustrates the use of global Clock and global Reset pins in the MAX 7000 architecture. The
design uses an old-style 7483 macrofunction, which is represented as a hollow body named fa4.

Figure 1. 4-Bit Adder Design with Registered Output (adder.v)

module adder (a, b, clk, rst, cout, regsum);

output cout;
output[4:1] regsum;
input[4:1] a, b;
input clk, rst;
wire[4:1] sum;
reg[4:1] regsum_int;
wire grst, gclk;
wire ci;
assign ci = 0;

// module instantiation
fa4 u0 (.c0(ci), .a1(a[1]), .b1(b[1]), .a2(a[2]),
 .b2(b[2]), .a3(a[3]), .b3(b[3]), .a4(a[4]),
 .b4(b[4]), .s1(sum[1]), .s2(sum[2]),
 .s3(sum[3]), .s4(sum[4]), .c4(cout));
// For FLEX devices, GLOBAL, A_IN, and A_OUT should be replaced
// with AGLOBAL, IN1, and Y, respectively
GLOBAL u1 (.A_IN(clk), .A_OUT(gclk));
GLOBAL u2 (.A_IN(rst), .A_OUT(grst));

always @(posedge gclk or negedge grst)
 if (!grst)
 regsum_int = 4'b0;
 else regsum_int = sum;
assign regsum = regsum_int;
endmodule

// module declaration for fa4 module
module fa4 (c0, a1, b1, a2, b2, a3, b3, a4, b4, s1, s2, s3, s4, c4);

output s1, s2, s3, s4, c4;
 input c0, a1, b1, a2, b2, a3, b3, a4, b4;
 endmodule

// module declaration for GLOBAL primitive
// For FLEX devices, GLOBAL, A_IN, and A_OUT should be replaced
// with AGLOBAL, IN1, and Y, respectively
module GLOBAL (A_OUT, A_IN);

input A_IN;
 output A_OUT;
 endmodule

You can analyze the 4-bit adder design with the Synopsys HDL Compiler for Verilog software. The hollow-
body description of the fa4 function is required. It contains port declarations and does not include any
information about the design's function or operation. However, the hollow-body description can be in the
design file, as shown in Figure 1, or in a separate file, as shown in Figure 2.

Figure 2. Hollow-Body Description of a 4-Bit Full Adder (7483)

module fa4 (c0, a1, b1, a2, b2, a3, b3, a4, b4, s1, s2, s3, s4, c4);
 output s1, s2, s3, s4, c4;
 input c0, a1, b1, a2, b2, a3, b3, a4, b4;
 endmodule

If the hollow-body description is in a separate file, you must analyze it before analyzing the higher-level
function with the HDL Compiler for Verilog to produce a hollow-body component. This component contains
a single level of hierarchy with input and output pins, but does not contain any underlying logic.

You can save the synthesized design as an EDIF netlist file (.edf) and compile it with the MAX+PLUS II
software. After the HDL Compiler for Verilog software has successfully processed the design, it generates
the schematic shown in Figure 3, which you can view with the Design Analyzer software.

Figure 3. Synthesized Design Generated by the Design Compiler

However, before you compile the EDIF netlist file with the MAX+PLUS II software, you must create the
adder.lmf file, shown in Figure 3, to map the fa4 function to the equivalent MAX+PLUS II function (7483).
You must then specify the LMF as LMF #2 in the expanded EDIF Netlist Reader Settings dialog box
(Interfaces menu) (LMF #1 is altsyn.lmf). For more information about creating LMFs, refer to "Library
Mapping Files (.lmf)" and "Library Mapping File Format" in MAX+PLUS II Help.

Figure 3. Library Mapping File Excerpt for fa4

BEGIN
FUNCTION 7483 (c0, a1, b1, a2, b2, a3, b3, a4, b4,)
RETURNS (s1, s2, s3, s4, c4)

FUNCTION "fa4" ("c0", "a1", "b1", "a2", "b2", "a3",
 "b3","a4", "b4")
RETURNS ("s1", "s2", "s3", "s4", "c4")
END

When you compile the design with the MAX+PLUS II software, you can disregard the warning "EDIF cell
<name> already has LMF mapping so CONTENTS construct has been ignored". To verify the global
Clock and global Reset usage, as well as the number of logic cells used, see the adder.rpt Report File
generated by the MAX+PLUS II Compiler.

MAX+PLUS II Architecture Control Logic Function Instantiation Example for
Verilog HDL

You can instantiate Altera® -provided logic functions from the alt_mf library, which includes the a_8fadd,
a_8mcomp, a_8count, and a_81mux functions, in Verilog HDL designs. Altera provides behavioral Verilog
HDL descriptions of these functions.

Figure 1 shows an example of an 8-bit counter that is instantiated using the a_8count function. Because
Verilog HDL is case-sensitive, be sure to use uppercase letters for all of the macrofunction's module names
and port names.

Figure 1. Sample Verilog HDL File with Logic Function Instantiation (counter.v)

module counter (clock, ena, load, dnup, set, clear, i, q, cout);
output cout;
output[7:0] q;
input[7:0] i;
input clock, ena, load, dnup, set, clear;
A_8COUNT u1 (.A(i[0]), .B(i[1]), .C(i[2]), .D(i[3]),
 .E(i[4]), .F(i[5]), .G(i[6]), .H(i[7]),
 .LDN(load), .GN(ena), .DNUP(dnup), .SETN(set),
 .CLRN(clear), .CLK(clock), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]),
 .QG(q[6]), .QH(q[7]), .COUT(cout));
endmodule

The sample file shown in Figure 1 can be synthesized with the Design Compiler or FPGA Compiler. You can
also simulate it with the Cadence Verilog-XL Simulator by typing the following command at the dc_shell
prompt:

verilog counter.v /usr/maxplus2/synopsys/library/alt_mf/src/mf.v

Instantiating RAM & ROM Functions in Verilog HDL

The MAX+PLUS® II /Synopsys interface offers full support for the memory capabilities of the FLEX® 10K
device family, including synchronous and asynchronous RAM and ROM, cycle-shared dual port RAM, dual-
port RAM, single-Clock FIFO, and dual-clock FIFO functions. You can use the Altera® -provided genmem
utility to generate functional simulation models and timing models for these functions. Type genmem at the

UNIX prompt to display information on how to use this utility, as well as a list of the functions you can
generate.

To instantiate a RAM or ROM function in Verilog HDL, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX
prompt:

genmem <memory type> <memory size> -verilog

For example: genmem asynrom 256x15 -verilog

2. Create a Verilog HDL design that instantiates the <memory name> function.

Figure 1 shows a Verilog HDL design that instantiates asyn_rom_256x15.v, a 256 x 15 ROM
function.

Figure 1. Verilog HDL File with ROM Instantiation (tstrom.v)

module tstrom (addr, enab, q);
parameter LPM_FILE = "u1.hex"
input [7:0] addr;
input enab;
output [14:0] q;

asyn_rom_256x15
// synopsys translate_off
 #(LPM_FILE)

// synopsys translate_on
 u1 (.Address(addr), .Q(q), .MemEnab(enab));

endmodule

3. (Optional for RAM functions) Specify an initial memory content file:

For ROM functions, you must specify the filename of an initial memory content file in the Intel
hexadecimal format (.hex) or the Altera® Memory Initialization File (.mif) format in the
Parameter Statement, with the LPM_FILE parameter. See Figure 1. The filename must be the
same as the instance name; e.g., the u1 instance name must be unique throughout the whole
project. The initialization file must reside in the directory containing the project's design files.

For RAM functions, specifying a memory initialization file is optional. If you want to use it, you
must specify it in a Parameter Statement, as described above.

1. The MIF format is supported only for specifying initial memory content when compiling designs
within MAX+PLUS II software. You cannot use a MIF to perform simulation with Synopsys
tools prior to MAX+PLUS II compilation.

2. If you use an Intel hexadecimal format file and wish to simulate the design with the VHDL
System Simulator (VSS) after MAX+PLUS II compilation, you should use the Synopsys
intelhex utility to translate the Intel hexadecimal fomat file into a VSS-compatible Synopsys
memory file. Refer to the Synopsys VHDL System Simulator Software Tool manual for details
about using the intelhex utility.

4. In the Verilog HDL design, add // synopsys translate_off before the Parameter Statement, and
add // synopsys translate_on after the Parameter Statement. These directives tell the HDL

Compiler for Verilog when to stop and start synthesizing. See Figure 1.

5. The timing model (.lib) generated by the genmem utility contains pin-to-pin delay information that can
be used by the Synopsys Design Compiler and FPGA Compiler software. You must add this timing
model to the existing library so that the compiler can access the timing information. Type the following
commands at the dc_shell prompt:

read -f db flex10k[<speed grade>].db
update_lib flex10k[<speed grade>] <RAM/ROM function name>.lib

6. (Optional) Include the following command to update your flex10k[<speed grade>].db file with the
RAM/ROM timing information:

write_lib flex10k[<speed grade>] -o flex10k.db

7. When you generate the EDIF netlist file from the design, include the bus structure from the RAM or
ROM function(s). Go to Setting Up Synopsys Configuration Files for more information.

8. Continue with the steps necessary to complete your Verilog HDL design, as described in Creating
Verilog HDL Designs for Use with MAX+PLUS II Software.

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Synopsys Software

The MAX+PLUS® II Compiler can process a VHDL or Verilog HDL file that has been synthesized by the
Synopsys Design Compiler or FPGA Compiler software, saved as an EDIF 2 0 0 or 3 0 0 netlist file, and
imported into the MAX+PLUS II software. The procedure below explains how to run Synopsys tools
separately from MAX+PLUS II Software.

You can also run Synopsys tools from within the MAX+PLUS II software to automatically generate and
import an EDIF file. Refer to Running Synopsys Compilers from MAX+PLUS II Software for more
information. In addition, if your MAX+PLUS II development system includes VHDL or Verilog HDL
synthesis support, the MAX+PLUS II Compiler can directly synthesize VHDL or Verilog HDL logic. For
more information, go to MAX+PLUS II VHDL or Verilog HDL Help.

The following steps explain how to synthesize and optimize a VHDL or Verilog HDL design for use with
MAX+PLUS II software:

4. Be sure to set up your design environment correctly. This step includes specifying the target device family
for the design. See the following topics:

Setting Up the Synopsys/MAX+PLUS II Working Environment
Setting Up the Design Compiler and FPGA Compiler Configuration Files
Setting Up the DesignWare Interface
Setting Up the VSS Configuration Files

5. Create a VHDL file, <design name>.vhd, or a Verilog HDL design, <design name>.v, using the
MAX+PLUS II Text Editor or another standard text editor and save it in a project directory under your login
directory. See the following topics for instructions:

Creating VHDL Designs for Use with MAX+PLUS II Software.
Creating Verilog HDL Designs for Use with MAX+PLUS II Software.

6. Start the Design Compiler or FPGA Compiler software by typing either dc_shell or fpga_shell at the
command line, respectively. To work within the graphical user interface, type design_analyzer for either
tool.

7. Analyze and then compile the design with the Design Compiler, FPGA Compiler, or Design Analyzer
software. The VHDL Compiler or HDL Compiler for Verilog software automatically translates the design
into Synopsys database (.db) format. Specific steps are necessary for some types of projects before you
process the design:

1. If your FLEX 10K design includes RAM or ROM functions, follow these steps:

1. (VHDL designs only) Because the VHDL Compiler software does not support the data type
string for the Generic Clause, you must also enter the following command at the dc_shell
prompt before you read the design:

hdlin_translate_off_skip_text=true

2. The timing model (.lib) generated by the genmem utility contains pin-to-pin delay information
that can be used by the Synopsys Design Compiler and FPGA Compiler software. You must add
this timing model to the existing library so that the compiler can access the timing information.
Type the following commands at the dc_shell prompt:

read -f db flex10k[<speed grade>].db
update_lib flex10k[<speed grade>] <RAM/ROM function name>.lib

3. (Optional) Enter the following command to update your flex10k[<speed grade>].db file with
the RAM/ROM timing information:

write_lib flex10k[<speed grade>] -o flex10k.db

See Instantiating RAM & ROM Functions in VHDL or Instantiating RAM & ROM functions in
Verilog HDL for additional information.

2. If you wish to allow the FPGA Compiler to perform N-input look-up table (LUT) optimization for a
FLEX 6000, FLEX 8000, or FLEX 10K design, enter the following command at the dc_shell prompt
before compiling the design:

edifout_write_properties_list = "lut function"

Go to Using FPGA Compiler N-Input LUT Optimization for FLEX 6000, FLEX 8000, or FLEX 10K
Devices for more information.

3. If you wish to enter resource assignments, go to Entering Resource Assignments.

4. If you wish to direct the Design Compiler or FPGA Compiler to use sum-of-products logic in
processing a MAX 7000 or MAX 9000 design, type the following commands at the dc_shell prompt
before compiling the design:

set_structure false
set_flatten -effort low

See MAX 7000 & MAX 9000 Synthesis Example for more information.

For additional information on how the Design Compiler and FPGA Compiler synthesize and optimize
a design, see the following topics:

Synopsys Design Compiler Reference Manual or Design Analyzer Reference Manual

DesignWare FLEX 8000 Synthesis Example

8. (Optional) View the optimized project with the Design Analyzer. The Design Analyzer uses the altera.sdb
library to display optimized projects generated by the Design Compiler or FPGA Compiler.

9. (Optional) To view Synopsys-generated timing information and generate a file detailing primitive usage, type
the following commands:

report_timing
report_reference > <filename>

10. (Optional) To functionally verify the project prior to processing with the MAX+PLUS II software, save the
design as a VHDL netlist file, and simulate it as described in Performing a Pre-Routing or Functional
Simulation with VSS Software.

11. Save the optimized project as an EDIF netlist file with the extension .edf.

12. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with the MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Synopsys interface on your computer automatically creates the
following sample VHDL and Verilog HDL files:

/usr/maxplus2/synopsys/examples/ministate.vhd
/usr/maxplus2/synopsys/examples/ministate.v

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Resynthesizing a Design Using the alt_vtl Library and a MAX+PLUS II SDF Output File
Programming Altera Devices

MAX 7000 & MAX 9000 Synthesis Example

The MAX® 7000 (including MAX 7000E, MAX 7000S, and MAX 7000A) and MAX 9000 device families have a
sum-of-products architecture. To obtain optimum timing and area results, you can direct the Synopsys Design
Compiler or FPGA Compiler software to synthesize your logic into a sum-of-products form. To assist the Synopsys
compilers in meeting the timing and area constraints of your designs, the Altera® technology libraries provide
models that approximate the timing of the MAX 7000 and MAX 9000 logic cells.

Figure 1 shows two timing models: the standard Altera MAX 7000 timing model and a Synopsys timing model that
approximates the MAX 7000 model. The Synopsys model is built on the following three conditions and
assumptions:

1. The combinatorial delay in logic cells has been equally divided between product terms and OR gates. Because
the product-term delay equals the OR-gate delay, the Synopsys compilers treat them equally, producing a
sum-of-products structure. On top of this structure, inverters are used where necessary.

2. A shared expander product term is always used to create combinatorial logic.

3. The Synopsys Design Compiler and FPGA Compiler software do not distinguish between array and global
Clocks. Therefore, to estimate setup and hold timing most accurately, you must instantiate GLOBAL buffers
to indicate a global clock in either your VHDL or Verilog HDL design.

Figure 1. Standard MAX 7000 Timing Model vs. Synopsys Approximation of Timing Model

If you wish to direct the Synopsys Design Compiler or FPGA Compiler software to produce sum-of-products logic
that approximates the MAX 7000 or MAX 9000 timing model, you can type the following dc_shell prompt
commands at the command line before compiling the design:

set_structure false

set_flatten -effort low

When set_structure is set to false, structuring is turned off, and the Synopsys Design Compiler and FPGA
Compiler software cannot factor and share logic between functions. If you do not enter these commands, the
Synopsys compilers may add logic, which can create additional area and timing delays.

Figure 2 shows a combinatorial design that is predictable when structuring is turned off, but is unpredictable when
structuring is turned on.

Figure 2. Nonstructured vs. Structured Combinatorial Design

When you use low as the argument to the set_flatten -effort command, the Synopsys compilers use the
shortest compilation time to create the sum-of-products implementation of your design. If you use the medium or
high argument, the Synopsys compilers create optimally flattened designs, but usually require greater compilation
time and offer little improvement in timing and area results.

You can type report_timing after compilation to view Synopsys-generated timing information.

If you wish to calculate the area of your design, you can obtain an approximate logic cell count in several ways.
Altera recommends that you add the number of registers and combinatorial outputs in a design. Depending on your
design, this number may be slightly lower than the final number reported by the MAX+PLUS II software.

To create a file detailing primitive usage in the design, type report_reference> <filename> after Synopsys
compilation.

To obtain accurate timing information about your design, you must use the MAX+PLUS II Timing Analyzer to
analyze your design. For accurate area information, consult the Report File (.rpt) generated by the MAX+PLUS II
software.

Related Topics:

Refer to the following sources for related information:

Figure 1 shows a sample VHDL design, design_one.vhd, which illustrates
component inference with the DesignWare interface for FLEX® 8000
devices.

Figure 1. VHDL Design File (design_one.vhd)
This design illustrates the sum of A + B.
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY design_one IS
 PORT (a,b : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 f : OUT STD_LOGIC_VECTOR (7 DOWNTO 0));
END design_one;

ARCHITECTURE add_design OF design_one IS

BEGIN
 f <= a + b;
END add_design;

Synopsys Design Compiler Reference Manual or Synopsys Command Reference Manual
FPGA Compiler User Guide
Synthesizing & Optimizing VHDL & Verilog HDL Pojects with Synopsys Software
Go to MAX Devices, which is available on the web, for additional information:

DesignWare FLEX 8000 Synthesis Example

When the VHDL Compiler or the HDL Compiler for Verilog software analyzes and elaborates the design, it
replaces the "+" operator with its synthetic operator equivalent.

Figure 2 shows the design as it appears in the Design Analyzer software after it has been analyzed and elaborated
by the VHDL Compiler software.

Figure 2. design_one.vhd after Analysis & Elaboration

When you synthesize a design, the Design Compiler or FPGA Compiler software uses the synthetic library to
match the synthetic operator to the FLEX-optimized logical implementation in the technology library. The
Synopsys Design Compiler or FPGA Compiler software then instantiates and interconnects the correct number of
flex_add and flex_carry functions to produce the 8-bit adder shown in Figure 1. When you save a compiled
design as a VHDL, Verilog HDL or EDIF file, the file preserves the number of flex_add and flex_carry

Table 2. FLEX 6000, FLEX 8000, and FLEX 10K Synthetic Library
Functions

Name Function
flex_add Sum of A, B, and Carry-In
flex_carry Carry of A, B, and Carry-In
flex_sub Difference of A, B, and Borrow-In
flex_borrow Borrow of A, B, and Borrow-In
flex_gt, flex_sgt Greater than (flex_gt is unsigned; flex_sgt is signed)
flex_carry_gt Greater than Carry
flex_lt, flex_slt Less than (flex_lt is unsigned; flex_slt is signed)
flex_carry_lt Less than Carry
flex_gteq, flex_sgteq Greater than or equal to (flex_gteq is unsigned; flex_sgteq is signed)
flex_carry_gteq Greater than or equal to Carry
flex_inc Incrementer (Count = Count + 1)
flex_carry_inc Incrementer Carry (Count = Count + 1)
flex_dec Decrementer (Count = Count - 1)
flex_carry_dec Decrementer Carry (Count = Count - 1)
flex_lteq, flex_slteq Less than or equal to (flex_lteq is unsigned; flex_slteq is signed)
flex_carry_lteq Less than or equal to Carry
flex_count Counter
aflex_carry_count Counter Carry
flex_add_sub Adder/Subtractor
flex_inc_dec Incrementer/Decrementer
flex_umult, flex_smult Multiplier (flex_umult is unsigned; flex_smult is signed)

functions, as well as their interconnections. Consequently, area and performance predictions that you make in the
Synopsys design environment closely match the final MAX+PLUS® II result.

Table 2 lists functions included in the DesignWare FLEX 6000, FLEX 8000, and FLEX 10K synthetic libraries.

Figure 3 shows design_one.vhd after it has been synthesized with the Design Compiler.

Figure 3. design_one.vhd Synthesized & Resolved for FLEX 6000, FLEX 8000 & FLEX 10K
Architecture

After you save the design as an EDIF Input File (.edf) and process it with the MAX+PLUS II Compiler, the
Compiler replaces instances of flex_add and flex_carry with FLEX-optimized versions, as shown in Figure 4.
The MAX+PLUS II Compiler maps these functions into a single logic element (LE). The result is a high-speed 8-
bit adder that fits into 8 LEs.

Figure 4. One Slice of the design_one 8-bit Adder Design with Optimized FLEX 8000 Functions

Related Topics:

Refer to the following sources for related information on DesignWare and the Synopsys VHDL Compiler:
Synopsys DesignWare Databook
VHDL Compiler Reference Manual

Go to FLEX Devices, which is available on the web, for additional information

Using FPGA Compiler N-Input LUT Optimization for FLEX 6000, FLEX 8000 &
FLEX 10K Devices

The Synopsys FPGA Compiler software supports an N-input look-up table (LUT) function that improves the
quality of the results and the predictability of delay and resource estimates. All Altera® FPGA Compiler
libraries for FLEX® 6000, FLEX 8000, and FLEX 10K devices support the N-input LUT function.

Figure 1 shows a sample command sequence that FPGA Compiler might require for N-input LUT
optimization. To use N-input LUT optimization, include the edifout_write_properties_list =
"lut_function" command.

Figure 1. Sample Command Sequence for N-Input LUT Optimization
read -f vhdl <design name>.vhd
current_design = <design name>
set_max_area 0
uniquify
ungroup -all -flatten
compile -ungroup_all
report_area > <design name>.rpa
report_fpga > <design name>.rpf
report_cell > <design name>.rpc
edifout_write_properties_list = "lut_function"
write -f edif -hierarchy -o <design name>.edf

Use the area report to determine the circuit area.

If you wish to maintain area report estimates as closely as possible during MAX+PLUS® II processing,
Altera recommends that you select the WYSIWYG setting for the Global Project Synthesis Style in the Global
Project Logic Synthesis dialog box (Assign menu). However, selecting the Normal or Fast style may yield a
better result.

Related Topics:

For more information on how to use the FPGA Compiler software optimize your design for FLEX
8000 devices, refer to Chapter 5: Optimization for the Altera FLEX 8000 Architecture in the Synopsys
FPGA Compiler User Guide.
Go to FLEX Devices, which is available on the web, for additional information:

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your
projects. Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell,
embedded cell, row, column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local
routing, logic option, timing requirement, or connected pin group. In the MAX+PLUS II software, you can
enter all types of resource and device assignments with Assign menu commands. You can also enter pin,
logic cell, I/O cell, embedded cell, LAB, EAB, row, and column assignments in the MAX+PLUS II
Floorplan Editor. The Assign menu commands and the Floorplan Editor all save assignment information in
the ASCII Assignment & Configuration File (.acf) for the project.

In designs targeted for the Synopsys Design Compiler and FPGA Compiler software, you can assign a
limited subset of these resource assignments by setting attributes in the VHDL or Verilog HDL design files
with the set_attribute command. These attributes are incorporated into the EDIF netlist file(s). The

MAX+PLUS II software automatically converts assignment information from the EDIF Input File (.edf) into
the ACF format. For information on making MAX+PLUS II-compatible resource assignments with the
set_attribute command, go to the following topics:

Assigning Pins, Logic Cells, & Chips
Assigning Cliques
Assigning Logic Options

You can also modify the ACF for a design to contain timing requirements and other assignments, as
described in the following topics:

Modifying the Assignment & Configuration File with the setacf utility
Converting Synopsys Timing Constraints into MAX+PLUS II-Compatible Format with the syn2acf
Utility
Converting Synopsys Hierarchical Timing Constraints into MAX+PLUS II-Compatible Format with
the gen_iacf and gen_hacf Utilities

Related Topics:

Refer to the following sources for related information:
Synopsys documentation for additional information on how to assign properties
"Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for more information on assignments or properties that can be
assigned in Synopsys
"resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu), for information on entering assignments in the MAX+PLUS II software with
Assign menu commands or in an ACF

Assigning Pins, Logic Cells & Chips

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells)
within a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions
defined as a single, named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin,
regardless of future changes to the project. If you wish to set and maintain the performance of your project,
assigning logic to a specific logic cell within a chip can minimize timing delays. In a project that is
partitioned among multiple devices, you can assign logic functions that must be kept together in the same
device to a chip. Chip assignments allow you to split a project so that only a minimum number of signals
travel between devices, and to ensure that no unnecessary device-to-device delays exist on critical timing
paths. You can assign a chip to a device in MAX+PLUS® II software.

To make pin, logic cell, and chip assignments, use the set_attribute command at a dc_shell prompt.
Before using the set_attribute command, add the following line to your .synopsys_dc.setup file:

edifout_write_properties_list = {LOGIC_OPTION, CLIQUE, CHIP_PIN_LC}

Table 1 shows the syntax to use for chip, pin, and logic cell assignments:

Table 1. Commands for Chip, Pin, & Logic Cell Assignments
Assignment

Type Command to Type Note (1)

Chip set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type

string "<chip name>"

Pin set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type
string "<chip name>@<pin number>"

Logic cell
number

set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type
string "<chip name>@LC<logic cell number>"

I/O cell
number

set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type
string "<chip name>@IOC<I/O cell number>"

Embedded
cell number

set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type
string "<chip name>@EC<embedded cell number>"

Note:

1. In this table, <design object> represents ports, references, cells, nets, or pins.

Examples:

set_attribute find (cell, (U1)) "CHIP_PIN_LC" -type string "chip1"

set_attribute find (cell, (U1)) "CHIP_PIN_LC" -type string "chip1@K2"

set_attribute find (cell, (U1)) "CHIP_PIN_LC" -type string "chip1@LC44"

Related Topics:

Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on
device pin-outs and assigning devices, respectively, in the MAX+PLUS II software.

Assigning Cliques

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II
Compiler attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum
speed. If the project does not use multi-LAB devices, or if it is not possible to fit all clique members into a
single LAB, the clique assignment ensures that all members of a clique are placed in the same device. In
FLEX® 6000, FLEX 8000, MAX® 9000, and FLEX 10K devices, the Compiler also attempts to place the
logic in LABs in the same row. Cliques therefore allow you to partition a project so that only a minimum
number of signals travel between LABs, and to ensure that no unnecessary LAB-to-LAB or device-to-device
delays exist on critical timing paths.

To make pin, logic cell, and chip assignments, use the set_attribute command at a dc_shell prompt.
Before using the set_attribute command, add the following line to your .synopsys_dc.setup file:

edifout_write_properties_list = {LOGIC_OPTION, CLIQUE, CHIP_PIN_LC}

To assign a clique, type the following command at a dc_shell prompt:
set_attribute find(<design object>,(<instance name>))"CLIQUE" -type string "<clique
name>"
For example:
set_attribute find (cell, (U1)) "CLIQUE" -type string "fast1"

Related Topics:

Go to the following topics in MAX+PLUS II Help for related information:
Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Assigning Logic Options

Logic options and logic synthesis style assignments allow you to guide logic synthesis with logic
optimization features that are specific to Altera® devices. You can assign logic options and styles to
individual logic functions in your design. The MAX+PLUS® II Compiler also uses a device family-specific
default logic synthesis style for each project.

To make pin, logic cell, and chip assignments, use the set_attribute command at a dc_shell prompt.
Before using the set_attribute command, add the following line to your .synopsys_dc.setup file:

edifout_write_properties_list = {LOGIC_OPTION, CLIQUE, CHIP_PIN_LC}

To assign a logic option or a logic synthesis style, type the following command at a dc_shell prompt:
set_attribute find(<design object>, (<instance name>)) "LOGIC_OPTION"
-type string "<logic option>=<value>"
For example:
set_attribute find (cell, (U1)) "LOGIC_OPTION" -type string
"STYLE=FAST"
To specify multiple logic options, use commas as separators.
For example:
set_attribute find (cell, (U1))"LOGIC_OPTION" -type string "STYLE=FAST,
CARRY_CHAIN=MANUAL"

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on logic option and logic
synthesis style assignments, including definitions and syntax of these assignments.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from
the command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt
to get help on this utility.

Converting Synopsys Timing Constraints into MAX+PLUS II-Compatible Format
with the syn2acf Utility

Altera provides the syn2acf utility, which is an interface program that converts Synopsys timing constraints
from non-hierarchical designs into the MAX+PLUS® II Assignment & Configuration File (.acf) format. For

information on converting timing constraints from hierarchical designs, refer to Converting Synopsys
Hierarchical Timing Constraints into MAX+PLUS II-Compatible Format with the gen_iacf and gen_hacf
Utilities.

The syn2acf utility requires the following input files:

Flattened EDIF netlist file
dc_shell script file
Standard Delay Format (SDF) constraints construct
SDF timing delay construct

To use the syn2acf utility, follow these steps:

1. Set the timing constraints by using one of the following methods:

Start the Synopsys Design Analyzer and specify timing constraints by choosing appropriate menu
commands.

or:

Create the <design name>.cmd file for use with a dc_shell script. See Figure 1.

The syn2acf utility does not support set_arrival timing constraints for internal nodes.

Figure 1. Sample Command File (.cmd) for Setting Timing Constraints

create_clock -period 50 -waveform {0 25} CLK
set_clock_skew -delay 2 CLK
set_input_delay 10 IN2
set_input_delay 5 -clock CLK IN1
set_output_delay 20 OUT2
set_output_delay 5 -clock CLK OUT1
set_max_delay 25 -to OUT1
set_max_delay 35 -to OUT2
set_multicycle_path 2 -to n20_reg

1. Compile the design and run the syn2acf utility either from the command line or with a Design
Compiler dc script:

Compile the design, then type the following command from the UNIX prompt to start the syn2acf
utility:

/usr/maxplus2/synopsys/bin/syn2acf <design name>

or:

Run a dc script inside the dc_shell script that reads the VHDL design, compiles it, and runs the
syn2acf utility. Figure 2 shows a sample dc script.

The syn2acf utility uses the ALT_HOME environment variable, if it has been specified, to determine the
MAX+PLUS II system directory; otherwise, it uses the /usr/maxplus2 directory. To specify a different
MAX+PLUS II system directory with the ALT_HOME environment variable, you can either edit the

.cshrc file to specify the correct directory or type the following command at the UNIX prompt:

setenv ALT_HOME <MAX+PLUS II system directory>

Figure 2. Sample Script for Running the syn2acf Utility

/* dc_script example to interface with syn2acf */

dc_shell <<!

read -f vhdl <design name>.vhd

include <design name>.cmd /*set timing constraints*/

compile

current_design=<design name>
include /usr/maxplus2/synopsys/bin/syn2acf.cmd /*generate required files*/

sh /usr/maxplus2/synopsys/bin/syn2acf <design name> /*invoke syn2acf utility*/

quit

!

The syn2acf utility cannot support maximum Clock frequency (fMAX) correctly if more than one
Clock skew is specified in the dc_shell command script. This problem occurs because the Synopsys
write_script command drops the Clock skew information for the registers. The syn2acf utility will
use the last Clock skew number to calculate fMAX.

The sample dc script includes the Altera® -provided syn2acf.cmd file, shown in Figure 3, to generate
the required input files for the syn2acf utility.

Figure 3. Altera-Provided syn2acf.cmd File

ungroup -flatten -all
write -f edif
write_script > altsyn.dc
write_constraints -format sdf -cover_design
write_timing -format sdf

All timing assignments generated by the syn2acf utility are written to the Timing Requirement
Assignments Section of the project's ACF, with the assignment source identifier {synopsys} at the end
of each line. Figure 4 shows a sample ACF excerpt that contains Synopsys timing constraints generated
by the syn2acf utility.

Figure 4. Sample ACF Excerpt with Synopsys Timing Constraints

TIMING_POINT
BEGIN
 "|OUT2" : TCO = 15.00ns {synopsys};
 "|IN1" : TPD = 10.00ns {synopsys};
 "|IN2" : TPD = 5.00ns {synopsys};
 "|OUT1" : TCO = 20.00ns {synopsys};
 "|IN1" : TSU = 20.00ns {synopsys};
 "|IN2" : TSU = 117.00ns {synopsys};
 "|CLK" : FREQUENCY = 50.00ns {synopsys};
 "|n10_reg" : FREQUENCY = 100.00ns {synopsys};
END;

Altera provides sample files for these utilities in the /usr/maxplus2/synopsys/bin directory.

Converting Synopsys Hierarchical Timing Constraints into MAX+PLUS II-
Compatible Format with the gen_iacf and gen_hacf Utilities

Altera provides the gen_hacf and gen_iacf utilities, which convert Synopsys timing constraints into
the MAX+PLUS® II Assignment & Configuration File (.acf) format. For information on converting
timing constraints from non-hierarchical designs, refer to Converting Synopsys Timing Constraints
into MAX+PLUS II-Compatible Format with the syn2acf Utility. The gen_iacf utility generates
intermediate, individual ACFs with the extension .iacf for each subdesign. The gen_hacf utility merges
the individual .iacf files into a single ACF for the whole design.

To use the gen_iacf and gen_hacf utilities, follow these steps:

You can create a dc_shell script that performs most of these steps. Refer to Figure 2 for a sample
dc_shell script.

1. Make sure that you have specified the correct path of your local Perl executable, as specified in
step 5 of Setting Up the MAX+PLUS II/Synopsys Working Environment.

The gen_iacf and gen_hacf utilities use the ALT_HOME environment variable, if it has been
specified, to determine the MAX+PLUS II system directory; otherwise, it uses the
/usr/maxplus2 directory. To specify a different MAX+PLUS II system directory with the
ALT_HOME environment variable, you can either edit the .cshrc file to specify the correct
directory or type the following command at the UNIX prompt:

setenv ALT_HOME <MAX+PLUS II system directory>

2. Once you have synthesized your design with Design Compiler or FPGA Compiler, generate an
hierarchical EDIF netlist file for the top-level design by typing the following command at the
dc_shell prompt:

write -f edif -hierarchy <top-level design name> -o <top-level design name>.hier.edf

3. Generate intermediate ACF files (.iacf) for all subdesigns that have constraints, including the
top-level design.

1. Generate the following input files for the gen_iacf utility by using a gen_iacf.cmd file.
Figure 1 shows a sample gen_iacf.cmd file.

Flattened EDIF netlist file
dc_shell script file
Standard Delay Format (SDF) constraints construct
SDF timing delay construct

The gen_iacf and gen_hacf utilities do not support set_arrival timing constraints for
internal nodes.

Figure 1. Sample gen_iacf.cmd File

ungroup -flatten -all

write -f edif

write_script > <design_name> + "_setup.dc"

write constraints -format sdf -cover design

write_timing -format sdf

This sample command file assumes that the design_name variable has been set before the
command file is included.

2. Run the gen_iacf utility for each design that has timing constraints (including the top-level
design) by typing the following command at the UNIX prompt:

gen_iacf <design name>

4. Rename the top-level hierarchichal EDIF netlist file to <top-level design name>.edf, if you have
not already done so.

5. Use the gen_hacf utility to merge the .iacf files for the top-level design and subdesigns into a
single hierarchical ACF file, called <top level design name>.acf. Type the following command
at the dc_shell prompt to start the gen_hacf utility and merge the files:

gen_hacf <top-level design name>[<sub-design file list>]

Figure 2 shows a sample dc_shell script, which includes all of the steps for using the gen_iacf and
gen_hacf utilities.

Figure 2. Sample Script for Running the gen_iacf and gen_hacf Utilities

/* Sample dc_shell script for converting hierarchical
Synopsys timing constraints to the ACF format
The example design TOP has 3 lower-level
subdesigns - LOWER1, LOWER2, LOWER3. Only
LOWER1, LOWER2 and TOP designs have constraints. */

link_library = flex10k-3.db
target_library = flex10k-3.db
synthetic_library = flex10k-3.sldb

read -f vhdl LOWER1.vhd
read -f vhdl LOWER2.vhd
read -f vhdl LOWER3.vhd
read -f vhdl TOP.vhd

elaborate LOWER1
current_design=LOWER1

/* Include user-defined timing constraints for LOWER1 */

include timing1.cmd
compile
design_name=LOWER1

/* generate input files for gen_iacf */

include /usr/maxplus2/synopsys/bin/gen_iacf.cmd

/* generate an intermediate ACF (.iacf) file for LOWER1 design */

sh /usr/maxplus2/synopsys/bin/gen_iacf LOWER1

elaborate LOWER2
current_design=LOWER2

/* Include user-defined timing constraints for LOWER2 */

include timing2.cmd
compile
design_name=LOWER2

/* generate input files for gen_iacf */

include /usr/maxplus2/synopsys/bin/gen_iacf.cmd

/* generate an intermediate ACF (.iacf) file for LOWER2 design */

sh /usr/maxplus2/synopsys/bin/gen_iacf LOWER2

elaborate TOP
current_design=TOP

/* Include user-defined timing constraints for TOP */

include timing3.cmd
compile

/* generate a hierarchical EDIF netlist file for
the top-level design before it is flattened by
the gen_iacf.cmd utility */

write -f edif -hierarchy TOP -o TOP.hier.edf

design_name=TOP

/* generate input files for gen_iacf */

include /usr/maxplus2/synopsys/bin/gen_iacf.cmd

/* generate an intermediate ACF (.iacf) file for design TOP */

sh /usr/maxplus2/synopsys/bin/gen_iacf TOP

/* Rename the hierarchical EDIF netlist file generated
earlier to <top level design>.edf, which is required by
gen_hacf utility and MAX+PLUS II */

sh mv TOP.hier.edf TOP.edf

/* Merge all .iacf files to generate the final top-level ACF
File subdesign.list in the following command lists the names
of subdesigns that have timing constraints, one per line.
In this example it has 2 lines, one each for LOWER1 and LOWER2.
Top-level design name should not be specified in this file. */

sh /usr/maxplus2/synopsys/bin/gen_hacf TOP subdesign.list

quit

The gen_iacf utility cannot support maximum Clock frequency (fMAX) correctly if more than one
Clock skew is specified in the dc_shell command script. This problem occurs because the Synopsys
write_script command drops the Clock skew information for the registers. The gen_iacf utility will
use the last Clock skew number to calculate fMAX.

All timing assignments generated by the gen_iacf utility are written to the Timing Requirement
Assignments Section of the project's ACF, with the assignment source identifier {synopsys} at the end
of each line. Figure 4 shows a sample ACF excerpt that contains Synopsys timing constraints generated
by the gen_iacf utility.

Figure 4. Sample ACF Excerpt with Synopsys Timing Constraints

TIMING_POINT
BEGIN
 "|OUT2" : TCO = 15.00ns {synopsys};
 "|IN1" : TPD = 10.00ns {synopsys};
 "|IN2" : TPD = 5.00ns {synopsys};
 "|OUT1" : TCO = 20.00ns {synopsys};
 "|IN1" : TSU = 20.00ns {synopsys};
 "|IN2" : TSU = 117.00ns {synopsys};
 "|CLK" : FREQUENCY = 50.00ns {synopsys};
 "|n10_reg" : FREQUENCY = 100.00ns {synopsys};
END;

The MAX+PLUS II Compiler flattens the design internally before compiling it, which may convert

some of the ports on the sub-designs into internal or buried nodes. In addition, the gen_iacf and
gen_hacf utilities will correctly pass tCO and tPD assignments made at lower levels of hierarchy to the
ACF, but the MAX+PLUS II Compiler will ignore them and generate one or more warning messages
(e.g., Warning: Ignored timing assignment for tsu|tpd|tco on buried node
|TIME_STATE_MACHING:U1|tb1_3:U115|:30). In addition, hierarchical timing constraints may result in
duplicate assignments in the ACF, and the MAX+PLUS II Compiler could generate an additional
warning (e.g., Warning: Ignored redefinition of resources assignment (logic option
assignment) for node 'CLK' Processing . . .).

Performing a Pre-Routing or Functional Simulation with VSS Software

After you have synthesized and optimized a VHDL or Verilog HDL design with the Design Compiler
or FPGA Compiler software, you can perform a pre-routing or functional simulation with the Synopsys
VHDL System Simulator (VSS) software.

To perform a pre-routing/functional simulation, follow these steps:

1. Be sure to set up the working environment correctly, as described in the following topics:

Setting Up the MAX+PLUS II/Synopsys Working Environment
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up the DesignWare Interface
Setting Up VSS Configuration Files

2. Create a VHDL or Verilog HDL design file that follows the guidelines described in one of the
following topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Creating Verilog HDL Designs for Use with MAX+PLUS II Software

3. Synthesize and optimize your design with the Design Compiler or FPGA Compiler, as described
in Synthesizing & Optimizing VHDL & Verilog HDL Files with Design Compiler or FPGA
Compiler Software.

4. Save your design as a VHDL Design File (.vhd).

VSS requires each architecture/entity pair in a VHDL Design File to have a configuration. The
Configuration Declaration is necessary for simulation, but not for synthesis.

5. Use VSS and one of the Altera pre-routing functional simulation libraries to simulate the design.

6. When you are ready to compile your project with MAX+PLUS II software, save the design as an
EDIF netlist file (.edf), then process it as described in Compiling Projects with MAX+PLUS II
Software.

Related Topics:

Refer to the following sources for related information:
VHDL System Simulator Core Programs Manual for more information about VSS
Performing a Timing Simulation with VSS Software

Resynthesizing a Design Using the alt_vtl Library & a MAX+PLUS II SDF

Output File

Altera provides the alt_vtl.db post-synthesis library for technology mapping or resynthesis. You can
use this library with the MAX+PLUS® II -generated Standard Delay Format (SDF) Output File (.sdo)
to retarget and resynthesize your design for another device family by performing the following steps:

To retarget and resynthsize a design, follow these steps:

1. Generate an EDIF Output File (.edo) and an SDF Output File (.sdo), as described in Compiling
Projects with MAX+PLUS II Software.

2. Modify your .synopsys_dc.setup file to include the following lines:

search_path = {./usr/maxplus2/synopsys/library/alt_post/syn/lib
<target library path>};
target_library = {<target library path>};
symbol_library = {<target library symbol file>};
link_library = {alt_vtl.db};

3. In the Design Compiler or FPGA Compiler software, type the following commands to read in the
EDIF and SDF output files:

read -f edif <design name>.edo
read_timing -load_delay net <design name>.sdo

4. Type the following commands to compile your design, report the timing information, and create
an EDIF netlist file (.edf) that can be processed with the MAX+PLUS II Compiler.

compile
report_timing
write -f edif -hierarchy -o <design name>.edf

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Synopsys Design Compiler or
FPGA Compiler & MAX+PLUS II Software

Using Synopsys Design Compiler or FPGA Compiler &
MAX+PLUS II Software

The following topics describe how to use the Synopsys Design Compiler and FPGA Compiler software with the
MAX+PLUS® II software. Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Synopsys Working Environment

Software Requirements
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up the DesignWare Interface

Updating DesignWare Libraries
Libraries

Design Compiler & FPGA Compiler Technology Libraries
VHDL & Verilog HDL alt_mf Logic Function Library
DesignWare FLEX 6000, FLEX 8000 & FLEX 10K Synthetic Libraries
Post-Synthesis Libraries

MAX+PLUS II/Synopsys Interface File Organization
MAX+PLUS II Project File Structure

Design Entry

Design Entry Flow

VHDL

Creating VHDL Designs for Use with MAX+PLUS II Software
Instantiating RAM & ROM Functions in VHDL (includes examples)
Instantiating the clklock Megafunction in VHDL or Verilog HDL (includes examples)

Additional examples:
Primitive & Old-Style Macrofunction Instantiation Example for VHDL
Architecture Control Logic Function Instantiation Example for VHDL
DesignWare Up/Down Counter Function Instantiation Example for VHDL

Verilog HDL

Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Instantiating RAM or ROM Functions in Verilog HDL (includes examples)
Instantiating the clklock Megafunction in VHDL or Verilog HDL (includes examples)

Additional examples:
Primitive & Old-Style Macrofunction Instantiation Example for Verilog HDL
Architecture Control Logic Function Instantiation Example for Verilog HDL

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dcfcall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sftreq2.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsnwrstp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-updswlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-techlibs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-flxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-postsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-m2pfilst.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-denflo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlproc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insaltmf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-updncntr.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vproc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inrromv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insvprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insaltmv.html?csf=1&web=1

Synthesis & Optimization

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Synopsys Software
Using FPGA Compiler N-Input LUT Optimization for FLEX 6000, FLEX 8000, or FLEX 10K
Devices

Examples:
MAX 7000 & MAX 9000 Synthesis Example
DesignWare FLEX 8000 Synthesis Example

Entering Resource Assignments
Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf utility
Converting Synopsys Timing Constraints into MAX+PLUS II-Compatible Format with the syn2acf
Utility
Converting Synopsys Hierarchical Timing Constraints into MAX+PLUS II-Compatible Format with
the gen_iacf and gen_hacf Utilities

Performing a Pre-Routing or Functional Simulation with VSS
Resynthesizing a Design Using the alt.vtl Library & a MAX+PLUS II SDF Output File

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
Using Synopsys FPGA Express & MAX+PLUS II Software
Using Synopsys PrimeTime & MAX+PLUS II Software
Using Synopsys VSS & MAX+PLUS II Software

Go to the following topics for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Synopsys web site (http://www.synopsys.com)

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lut.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lut.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lut.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-max79syn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dswsynex.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-reassn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-plcassn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logopt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-prrtsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpexpg.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsspage.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.synopsys.com/
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synopsys Design Entry Flow

Synopsys Design Entry Flow
Figure 1 below shows the design entry flow for the MAX+PLUS® II /Synopsys interface.

Figure 1. MAX+PLUS II/Synopsys Design Entry Flow

Altera-provided items are shown in blue.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Local Work Area Directory Structure

Local Work Area Directory Structure
Design Architect software automatically creates and maintains the project directory structure required for all stages
of design entry. Galileo Extreme, Leonardo, and ENWrite software create a max2 subdirectory, if it does not
already exist, under the project directory. These software applications also generate EDIF netlist files, and copy
them from the <project name> directory to this max2 subdirectory. All MAX+PLUS ® II Compiler output files are
created in the max2 subdirectory.

Simulation files created with Mentor Graphics applications and Logic Modeling files are located in the board-level
simulation subdirectory of the project directory. You can use these files during simulation with QuickSim II
software.

The only directory you need to create is the local work directory, which should contain all project directories.
Figure 1 shows the recommended file structure.

Figure 1. Recommended File Structure

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

MAX+PLUS II Project Directory Structure
Mentor Graphics Project Directory Structure

Feedback

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_file.html?csf=1&web=1

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synplicity Design Flow

Synplicity Design Flow
Figure 1 shows the typical design flow for logic circuits created and processed with Cadence and MAX+PLUS® II
software. Design Entry Flow, Project Compilation Flow, Project Simulation Flow, and Device Programming Flow
show detailed diagrams of each stage of the design flow.

Figure 1. Design Flow between Cadence & MAX+PLUS II Software

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fg15cad.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fig17.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://mysupport.altera.com/eservice/

The following figure shows the typical design flow for logic circuits created and processed with the MAX+PLUS ®
II and Mentor Graphics/Exemplar Logic software. Detailed diagrams for each stage of the design flow appear in
Design Entry Flow, Project Compilation Flow, Project Simulation/Timing Analysis Flow, and Device
Programming Flow.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

Figure 1 shows the typical design flow for logic circuits created and processed with Synplicity and MAX+PLUS®

II software. Design Entry Flow, Project Compilation Flow, and Device Programming Flow show detailed diagrams
of each stage of the design flow.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsn_ntry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-simflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://mysupport.altera.com/eservice/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sypfig1.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1

Figure 1. Design Flow between Synplicity & MAX+PLUS II Software

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Altera-Provided Logic & Symbol
Libraries

Altera-Provided Logic & Symbol Libraries

You can create your own libraries of custom symbols and logic functions for use in ViewDraw schematics and
VHDL design files. You can use custom symbols (and functions) to incorporate an EDIF Input File, TDF, or any
other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses the vwlogic.lmf
Library Mapping File to map ViewDraw symbols to equivalent MAX+PLUS II megafunctions, macrofunctions,
or primitives. To use custom symbols and functions, you can create a custom LMF that maps your custom
functions to equivalent EDIF Input Files, TDFs, or other MAX+PLUS II-supported design files. Go to "Library
Mapping File" and "Viewlogic Library Mapping File" in MAX+PLUS II Help for more information.

The MAX+PLUS® II/Viewlogic Powerview environment provides libraries for compiling, synthesizing, and
simulating designs.

Logic symbols used in ViewDraw software are available from the MAX+PLUS II alt_max2 library, the ViewDraw
builtin and 74ls libraries, and the ViewDatapath vdpath library. VHDL models of MAX+PLUS II logic functions
are available from the Altera-provided alt_mf library.

The alt_max2 Library

The alt_max2 library provides MAX+PLUS II-specific logic functions that can be used to take advantage of
special architectural features in each Altera® device family. See Table 1. Symbols and functional simulation
models are available for all of these elements.

The alt_mf Library

The Altera-provided alt_mf library, which supports the Viewlogic Vantage VHDL Analyzer software, contains
VHDL simulation models for all logic functions listed in the following table. The library is configured so that these
functions pass untouched through the EDIF netlist file to the MAX+PLUS II Compiler, providing you with optimal
control over design processing. Altera also provides models for all of the logic functions that you can synthesize
and simulate. These models allow you to perform functional VHDL simulation while maintaining an architecture-
independent VHDL description.

Table 1. Architecture Control Logic Functions
Name Note

(1), Note
(2)

Description Name Description Name Description

8fadd
8-bit full adder
macrofunction LCELL Logic cell buffer primitive EXP

MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer
primitive

8mcomp
8-bit magnitude
comparator
macrofunction

GLOBAL Global input buffer primitive SOFT Soft buffer primitive

8count
8-bit up/down
counter
macrofunction

CASCADE
FLEX® 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

OPNDRN Open-drain buffer primitive

81mux
8-to-1 multiplexer
macrofunction CARRY

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

DFFE
Note
(2)

D-type flipflop with Clock
Enable primitive

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1

clklock
Phase-locked loop
megafunction

Notes:

1. Logic function names that begin with a number must be prefixed with "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Links:

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help
menu for detailed information on these functions.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Mentor Graphics/Exemplar Logic
Design Entry Flow

Mentor Graphics/Exemplar Logic Design Entry Flow

Figure 1. MAX+PLUS II/Mentor Graphics/Exemplar Logic Design Entry
Flow

Alteraprovided items are shown in
blue.

The following figure shows the design entry flow for the MAX+PLUS® II/Mentor Graphics/Exemplar Logic
interface.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Setting Up the DesignWare Interface

Setting Up the DesignWare Interface
The DesignWare interface synthesizes FLEX® 6000 , FLEX 8000 and FLEX 10K designs by operator inference. It
replaces the HDL operators +, -, >, <, >=, and <= with FLEX-optimized design implementations.

Altera provides DesignWare Synthetic Libraries that are pre-compiled for the current version of Synopsys tools.
These library files are located in the /usr/maxplus2/synopsys/library/alt_syn/<device family>/lib directory.

To use the DesignWare interface with FLEX 6000, FLEX 8000 and FLEX 10K devices, follow these steps:

1. Add synthetic_library and define_design_lib parameters to your .synopsys_dc.setup configuration file
and modify the link_library parameter as shown in Table 1 or Table 2.

Table 1. DesignWare Parameters to Add to the .synopsys_dc.setup File for the Design Compiler Software
Device
Family Parameters to Add to the .synopsys_dc.setup File

FLEX
6000

synthetic_library = {flex6000<speed grade>.sldb};
link_library = {flex6000<speed grade>.sldb flex6000<speed grade>.db};
define_design_lib DW_FLEX6000<speed grade> -path
/usr/maxplus2/synopsys/library/alt_syn/flex6000/lib/
dw_flex6000<speed grade>

FLEX
8000

synthetic_library = {flex8000[<speed grade>].sldb};
link_library = {flex8000[<speed grade>].sldb flex8000[<speed grade>].db};
define_design_lib DW_FLEX8000[<speed grade>] -path
/usr/maxplus2/synopsys/library/alt_syn/flex8000
/lib/dw_flex8000[<speed grade>]

FLEX 10K

synthetic_library = {flex10k[<speed grade >].sldb};
link_library = {flex10k[<speed grade>].sldb flex10k[<speed grade>].db};
define_design_lib DW_FLEX10k[<speed grade>] -path
/usr/maxplus2/synopsys/library/alt_syn/flex10k/lib
/dw_flex10k[<speed grade>]

Table 2. DesignWare Parameters to Add to the .synopsys_dc.setup File for the FPGA Compiler Software
Device
Family Parameters to Add to the .synopsys_dc.setup File

FLEX
6000

synthetic_library = {flex6000
<speed grade>_fpga.sldb};
link_library = {flex6000<speed grade>_fpga.sldb flex6000<speed grade>_fpga.db};
define_design_lib DW_FLEX6000<speed grade>_FPGA -path
/usr/maxplus2/synopsys/library/alt_syn/flex6000
/lib/dw_flex6000<speed grade>_fpga

FLEX
8000

synthetic_library = {flex8000[<speed grade>]_fpga.sldb};
link_library = {flex8000[<speed grade>]_fpga.sldb flex8000[<speed
grade>]_fpga.db};
define_design_lib DW_FLEX8000[<speed grade>]_FPGA -path
/usr/maxplus2/synopsys/library/alt_syn/flex8000/lib /dw_flex8000[<speed

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-flxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

grade>]_fpga

FLEX
10K

synthetic_library = {flex10k[<speed grade>]_fpga.sldb};
link_library = {flex10k[<speed grade>]_fpga.sldb flex10k[<speed grade>]_fpga.db};

define_design_lib DW_FLEX10k[<speed grade>]_FPGA -path
/usr/maxplus2/synopsys/library/alt_syn/flex10k/lib /dw_flex10k[<speed grade>]_fpga

2. Specify the libraries listed in Table 3 as your synthetic library and as the first of your link libraries.

For FLEX 6000 devices, you must specify either -2 or -3 for the <speed grade> variable. For FLEX 8000
and FLEX 10K devices, you can specify -2, -3, -4, -5, or -6; or -2, -3, -4, or -5; respectively, for the
<speed grade> variable. If you do not specify a speed grade for FLEX 8000 or FLEX 10K devices, the
MAX+PLUS® II software selects the fastest device in the specified family as the target device.

Table 3. FLEX 6000, FLEX 8000 & FLEX 10K DesignWare Synthetic Libraries
Altera® Device Family Synopsys Design Compiler Synopsys FPGA Compiler
FLEX 6000
Synthetic Library

flex6000-2.sldb
flex6000-3.sldb

flex6000-2_fpga.sldb
flex6000-3_fpga.sldb

FLEX 8000
Synthetic Library

flex8000.sldb
flex8000-2.sldb
flex8000-3.sldb
flex8000-4.sldb
flex8000-5.sldb
flex8000-6.sldb

flex8000_fpga.sldb
flex8000-2_fpga.sldb
flex8000-3_fpga.sldb
flex8000-4_fpga.sldb
flex8000-5_fpga.sldb
flex8000-6_fpga.sldb

FLEX 10K
Synthetic Library

flex10k.sldb
flex10k-2.sldb
flex10k-3.sldb
flex10k-4.sldb
flex10k-5.sldb

flex10k_fpga.sldb
flex10k-2_fpga.sldb
flex10k-3_fpga.sldb
flex10k-4_fpga.sldb
flex10k-5_fpga.sldb

3. If necessary, compile the DesignWare libraries, as described in Updating DesignWare Libraries. Altera
provides pre-compiled DesignWare libraries, as described above. However, Altera also provides compatible
source files and scripts that allow you to automate the compilation process. These source files allow you to
use DesignWare with any version of the Design Compiler. They also allow you to install components whose
source is written in VHDL, even if you are licensed only for the HDL Compiler for Verilog.

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Setting Up Design Compiler & FPGA Compiler Configuration Files
DesignWare FLEX 8000 Synthesis Example
Design Compiler & FPGA Compiler Technology Libraries

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-updswlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dswsynex.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-techlibs.html?csf=1&web=1

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synopsys DesignWare-Specific
Compiler Settings

Synopsys DesignWare-Specific Compiler Settings
If you are compiling a design that was created with the Synopsys DesignWare software, follow these additional
steps:

1. Choose Global Project Logic Synthesis (Assign menu).
2. Select the desired style in the Global Project Synthesis Style box.
3. Choose the Define Synthesis Style button to check and/or edit the selected style.
4. In the Define Synthesis Style dialog box, select Manual in the Carry Chain box and also in the Cascade

Chain box.
5. Choose the Advanced Options button in the Define Synthesis Style dialog box.
6. Turn on the SOFT Buffer Insertion logic option in the Advanced Options dialog box if it is not on already.

This option should be turned on in all Synopsys designs.
7. Choose OK three times to close all dialog boxes.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / DesignWare FLEX 8000 Synthesis
Example

DesignWare FLEX 8000 Synthesis Example
Figure 1 shows a sample VHDL design, design_one.vhd, which illustrates
component inference with the DesignWare interface for FLEX 8000
devices.

Figure 1. VHDL Design File (design_one.vhd)
This design illustrates the sum of A + B.
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY design_one IS
 PORT (a,b : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 f : OUT STD_LOGIC_VECTOR (7 DOWNTO 0));
END design_one;

ARCHITECTURE add_design OF design_one IS

BEGIN
 f <= a + b;
END add_design;

When the VHDL Compiler or the HDL Compiler for Verilog software analyzes and elaborates the design, it
replaces the "+" operator with its synthetic operator equivalent.

Figure 2 shows the design as it appears in the Design Analyzer software after it has been analyzed and elaborated
by the VHDL Compiler software.

Figure 2. design_one.vhd after Analysis & Elaboration

When you synthesize a design, the Design Compiler or FPGA Compiler software uses the synthetic library to
match the synthetic operator to the FLEX-optimized logical implementation in the technology library. The
Synopsys Design Compiler or FPGA Compiler software then instantiates and interconnects the correct number of
flex_add and flex_carry functions to produce the 8-bit adder shown in Figure 1. When you save a compiled
design as a VHDL, Verilog HDL or EDIF file, the file preserves the number of flex_add and flex_carry
functions, as well as their interconnections. Consequently, area and performance predictions that you make in the

®

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Table 2. FLEX 6000, FLEX 8000, and FLEX 10K Synthetic Library
Functions

Name Function
flex_add Sum of A, B, and Carry-In
flex_carry Carry of A, B, and Carry-In
flex_sub Difference of A, B, and Borrow-In
flex_borrow Borrow of A, B, and Borrow-In
flex_gt, flex_sgt Greater than (flex_gt is unsigned; flex_sgt is signed)
flex_carry_gt Greater than Carry
flex_lt, flex_slt Less than (flex_lt is unsigned; flex_slt is signed)
flex_carry_lt Less than Carry
flex_gteq, flex_sgteq Greater than or equal to (flex_gteq is unsigned; flex_sgteq is signed)
flex_carry_gteq Greater than or equal to Carry
flex_inc Incrementer (Count = Count + 1)
flex_carry_inc Incrementer Carry (Count = Count + 1)
flex_dec Decrementer (Count = Count - 1)
flex_carry_dec Decrementer Carry (Count = Count - 1)
flex_lteq, flex_slteq Less than or equal to (flex_lteq is unsigned; flex_slteq is signed)
flex_carry_lteq Less than or equal to Carry
flex_count Counter
aflex_carry_count Counter Carry
flex_add_sub Adder/Subtractor
flex_inc_dec Incrementer/Decrementer
flex_umult, flex_smult Multiplier (flex_umult is unsigned; flex_smult is signed)

Synopsys design environment closely match the final MAX+PLUS II result.

Table 2 lists functions included in the DesignWare FLEX 6000, FLEX 8000, and FLEX 10K synthetic libraries.

Figure 3 shows design_one.vhd after it has been synthesized with the Design Compiler.

Figure 3. design_one.vhd Synthesized & Resolved for FLEX 6000, FLEX 8000 & FLEX 10K
Architecture

After you save the design as an EDIF Input File (.edf) and process it with the MAX+PLUS II Compiler, the
Compiler replaces instances of flex_add and flex_carry with FLEX-optimized versions, as shown in Figure 4.
The MAX+PLUS II Compiler maps these functions into a single logic element (LE). The result is a high-speed 8-
bit adder that fits into 8 LEs.

Figure 4. One Slice of the design_one 8-bit Adder Design with Optimized FLEX 8000 Functions

Related Links:

Refer to the following sources for related information on DesignWare and the Synopsys VHDL Compiler:
Synopsys DesignWare Databook
VHDL Compiler Reference Manual

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Functional Simulation
with DVE & QuickSim II Software

Performing a Functional Simulation with DVE &
QuickSim II Software

If you wish to functionally simulate a hierarchical design that uses multiple design entry methods, you should use
QuickHDL Pro rather than QuickSim. Refer to Performing a Functional Simulation with QuickHDL Pro Software
for more information.

You can perform a functional simulation of a Design Architect schematic with the Mentor Graphics Design
Viewpoint Editor (DVE) and QuickSim II software before compiling your project with the MAX+PLUS ® II
Compiler.

To functionally simulate a Design Architect schematic, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a Design Architect schematic that follows the guidelines in Creating Design Architect Schematics for
Use with MAX+PLUS II Software.

3. In the Navigator window, select your project's folder, press Button 3, and choose Open max2_fve to start
DVE. DVE checks the design and creates a viewpoint (called altera_fsim by default) for functional
simulation with QuickSim II software.

4. Select the altera_fsim icon, press Button 3, and choose Open max2_qsim from the Navigator window to
start the QuickSim II software. You can also start the QuickSim II software by typing max2_qsim at the
UNIX prompt.

5. Set the appropriate options and simulate your design.

6. Use the ENWrite utility to generate an EDIF netlist file that can be imported into the MAX+PLUS II
software, as described in Converting Design Architect Schematics into MAX+PLUS II-Compatible EDIF
Netlist Files with the ENWrite Utility.

Related Links:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-enwrite.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-enwrite.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Converting Concept Schematics into
MAX+PLUS II-Compatible EDIF Netlist Files with the concept2alt Utility

Converting Concept Schematics into MAX+PLUS II-
Compatible EDIF Netlist Files with the concept2alt
Utility

You can use the altout utility to generate an EDIF netlist file from a Composer schematic. This file can then be
imported into the MAX+PLUS® II software as an EDIF Input File (.edf).

To convert Composer schematics into MAX+PLUS II-compatible EDIF netlist files, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Composer schematic and save it in your working directory, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Type the following command at the UNIX prompt from the working directory that contains the schematic:

altout -lib <design name> -rundir max2 <design name>

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

You can use the concept2alt utility to generate an EDIF netlist file from a Concept schematic. This file can then be
imported into the MAX+PLUS® II software as an EDIF Input File (.edf).

To convert a Concept schematic into an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1

Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Type the following command at the UNIX prompt from the /source directory that contains the schematic:

concept2alt -rundir ../max2 <design name>

If your design uses library of parameterized modules (LPM) functions, you must also include the -family
option. For example:

concept2 alt -family FLEX10K -rundirmax2 <design name>

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Converting Design Architect
Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the ENWrite Utility

Converting Design Architect Schematics into
MAX+PLUS II-Compatible EDIF Netlist Files with the
ENWrite Utility

After you have created a Design Architect schematic or a hierarchical schematic design that uses multiple design
entry methods, you can use the Mentor Graphics ENWrite utility to convert it into an EDIF netlist file that can be
processed with the MAX+PLUS ® II software.

To generate an EDIF netlist file for use with the MAX+PLUS II Compiler, go through the following steps:

1. Create a Design Architect Schematic that follows the guidelines described in Creating Design Architect
Schematics for Use with MAX+PLUS II Software.

2. Select the folder for your project, press Button 3, and choose Open max2_enw from the Navigator window
to open Design Viewpoint Editor (DVE), then ENWrite. You can also start the ENWrite utility by typing
max2_enw at the UNIX prompt.

3. Choose OK in the $invoke_enw dialog box to accept the default names for the DVE viewpoint altera_edif,
which is used internally by ENWrite, and the ENWrite hierarchical EDIF netlist file <design name>.edf.
Specify OFF for the port array construct in the EDIF netlist file.

The MAX+PLUS II software supports bus constructs in EDIF 2 0 0 and 3 0 0 netlist files, which allow
you to retain any bus structures in your design. To preserve a bus in the EDIF netlist file, turn on the
port array construct option in the $invoke_enw dialog box. However, if your design contains library
of parameterized modules (LPM) functions, you should not use this feature because LPM 2.0.1 and
2.1.0 functions do not support EDIF bus constructs.

After DVE checks the Design Architect schematic, ENWrite generates <design name>.edf and automatically
copies it to your project's directory.

4. Compile the resulting EDIF netlist file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Cadence Design Entry Flow

Cadence Design Entry Flow

Figure 1. MAX+PLUS II/Cadence Design Entry Flow

Altera-provided items are shown in blue.

Figure 1 shows the design entry flow for the MAX+PLUS® II/Cadence interface.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Project Simulation Flow

Project Simulation Flow

Figure 1. MAX+PLUS II/Cadence Project Simulation Flow

Altera-provided items are shown in blue.

Figure 1 shows the project simulation flow for the MAX+PLUS® II/Cadence interface.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/Mentor
Graphics/Exemplar Logic Interface File Organization

MAX+PLUS II/Mentor Graphics/Exemplar Logic
Interface File Organization

For information on the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II
File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Table 1. MAX+PLUS II Directory Organization

Directory Description

.lmf
Contains the Altera-provided Library Mapping Files, mnt8_bas.lmf and exemplar.lmf,
that map Mentor Graphics and Exemplar Logic logic functions to equivalent MAX+PLUS
II logic functions.

./mentor Contains the AMPLE userware for the MAX+PLUS II/Mentor Graphics interface.

./simlib/mentor/alt_max2
Contains MAX+PLUS II primitives such as CARRY, CASCADE, EXP, GLOBAL, LCELL, SOFT,
OPNDRN, DFFE, and DFFE6K (D flipflop with Clock Enable) for use in Design Architect
schematics.

./simlib/mentor/max2sim Contains the MAX+PLUS II/Mentor Graphics simulation model library, max2sim, for use
with QuickSim II and QuickPath software.

./simlib/mentor/synlib Contains the MAX+PLUS II synthesis library for use with AutoLogic II software, which
supports synthesis for users running Mentor Graphics version B1.

./simlib/mentor/alt_mf Contains the MAX+PLUS II macrofunction and megafunction libraries.

./simlib/mentor/alt_vtl Contains the MAX+PLUS II VITAL library.

The following table shows the MAX+PLUS ® II/Mentor Graphics interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/Synopsys Interface
File Organization

MAX+PLUS II/Synopsys Interface File Organization
Table 1 shows the MAX+PLUS® II /Synopsys interface subdirectories that
are created in the MAX+PLUS II system directory (by default, the
/usr/maxplus2 directory) during the MAX+PLUS II software installation.
For information on the other directories that are created during the
MAX+PLUS II software installation, see "MAX+PLUS II File
Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting
Started manual.

You must add the /usr/maxplus2/bin directory to the PATH environment variable in your .cshrc file in order to
run the MAX+PLUS II software.

Table 1. MAX+PLUS II Directory Organization

Directory Description

./synopsys/bin
Contains script programs to convert Synopsys timing constraints into
MAX+PLUS II Assignment & Configuration File (.acf) format, and to analyze
VHDL System Simulator simulation models.

./synopsys/config Contains sample .synopsys_dc.setup and .synopsys_vss.setup files.

./synopsys/examples Contains sample files, including those discussed in these ACCESS Key
Guidelines.

./synopsys/library/alt_pre/<device
family>/src

Contains VHDL simulation libraries for functional simulation of VHDL
projects.

./synopsys/library/alt_pre/verilog/src Contains the Verilog HDL functional simulation library for Verilog HDL
projects.

./synopsys/library/alt_pre/vital/src
Contains the VITAL 95 simulation library. You use this library when you
perform functional simulation of the design before compiling it with the
MAX+PLUS II software.

./synopsys/library/alt_syn//<device
family>/lib

Contains interface files for the MAX+PLUS II/Synopsys interface. Technology
libraries in this directory allow the Design Compiler and FPGA Compiler to
map designs to Altera® device architectures.

./synopsys/library/alt_mf/src
Contains behavioral VHDL models of some Altera macrofunctions, along with
their component declarations. The a_81mux, a_8count, a_8fadd, and a_8mcomp
macrofunctions are currently supported. Libraries in this directory allow you to
instantiate, synthesize, and simulate these macrofunctions.

./synopsys/library/alt_post/syn/lib Contains the post-synthesis library for technology mapping.

./synopsys/library/alt_post/sim/src
Contains the VHDL source files for the VITAL 95-compliant library. You use
this library when you perform simulation of the design after compiling it with
the MAX+PLUS II software.

Related Links:

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Go to the following topics for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs1.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs2.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs3.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs4.pdf
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/Synplicity Interface
File Organization

MAX+PLUS II/Synplicity Interface File Organization

Table 1. MAX+PLUS II Directory Organization

Directory Description

./lmf Contains the Altera-provided Library Mapping File, synplcty.lmf, which maps Synplicity logic functions to
equivalent MAX+PLUS II logic functions.

Table 1 shows the MAX+PLUS® II/Synplicity interface subdirectories that are created in the MAX+PLUS II
system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation. For information on
the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II File Organization" in
MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Related Links:

Go to the following topics for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs1.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs2.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs3.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs4.pdf
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Altera DesignWare FLEX 6000,
FLEX 8000 & FLEX 10K Synthetic Libraries

Altera DesignWare FLEX 6000, FLEX 8000 & FLEX
10K Synthetic Libraries

Table 1. FLEX 6000, FLEX 8000 & FLEX 10K DesignWare Synthetic
Libraries

Altera Device Family Synopsys Design Compiler Synopsys FPGA Compiler
FLEX 6000
Synthetic Library

flex6000-2.sldb
flex6000-3.sldb

flex6000-2_fpga.sldb
flex6000-3_fpga.sldb

FLEX 8000
Synthetic Library

flex8000.sldb
flex8000-2.sldb
flex8000-3.sldb
flex8000-4.sldb
flex8000-5.sldb
flex8000-6.sldb

flex8000_fpga.sldb
flex8000-2_fpga.sldb
flex8000-3_fpga.sldb
flex8000-4_fpga.sldb
flex8000-5_fpga.sldb
flex8000-6_fpga.sldb

FLEX 10K
Synthetic Library

flex10k.sldb
flex10k-2.sldb
flex10k-3.sldb
flex10k-4.sldb
flex10k-5.sldb

flex10k_fpga.sldb
flex10k-2_fpga.sldb
flex10k-3_fpga.sldb
flex10k-4_fpga.sldb
flex10k-5_fpga.sldb

Table 2. FLEX 6000, FLEX 8000, and FLEX 10K Synthetic Library
Functions

Name Function
flex_add Sum of A, B, and Carry-In
flex_carry Carry of A, B, and Carry-In

The Altera® DesignWare interface for the FLEX® 6000, FLEX 8000, and FLEX 10K device families provides
accurate area and timing prediction for designs that have been synthesized by the Synopsys design tools and
targeted for FLEX devices. Altera's DesignWare interface also ensures that the area and timing information closely
matches the final FLEX device implementation generated by the MAX+PLUS® II Compiler. The DesignWare
interface synthesizes FLEX 6000 , FLEX 8000 and FLEX 10K designs by operator inference. This interface
supports bus widths of up to 32 bits, except adder functions, which support bus widths of up to 64 bits.

The Altera DesignWare interface for FLEX devices offers three major advantages to Synopsys designers:

Automatic access to FLEX carry and cascade chain functions
Optimal routing of FLEX designs
Improved area and performance prediction capability in Synopsys tools

Table 1 lists the Altera DesignWare synthetic libraries for FLEX 6000, FLEX 8000, and FLEX 10K devices.

Table 2 lists functions included in the DesignWare FLEX 6000, FLEX 8000, and FLEX 10K synthetic libraries.
Refer to DesignWare FLEX 8000 Synthesis Example for an example showing how DesignWare synthesis affects
design processing.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dswsynex.html?csf=1&web=1

flex_sub Difference of A, B, and Borrow-In
flex_borrow Borrow of A, B, and Borrow-In
flex_gt, flex_sgt Greater than (flex_gt is unsigned; flex_sgt is signed)
flex_carry_gt Greater than Carry
flex_lt, flex_slt Less than (flex_lt is unsigned; flex_slt is signed)
flex_carry_lt Less than Carry
flex_gteq, flex_sgteq Greater than or equal to (flex_gteq is unsigned; flex_sgteq is signed)
flex_carry_gteq Greater than or equal to Carry
flex_inc Incrementer (Count = Count + 1)
flex_carry_inc Incrementer Carry (Count = Count + 1)
flex_dec Decrementer (Count = Count - 1)
flex_carry_dec Decrementer Carry (Count = Count - 1)
flex_lteq, flex_slteq Less than or equal to (flex_lteq is unsigned; flex_slteq is signed)
flex_carry_lteq Less than or equal to Carry
flex_count Counter
aflex_carry_count Counter Carry
flex_add_sub Adder/Subtractor
flex_inc_dec Incrementer/Decrementer
flex_umult, flex_smult Multiplier (flex_umult is unsigned; flex_smult is signed)

Related Links

Setting Up the DesignWare Interface in these MAX+PLUS II ACCESSSM Key topics
Synopsys DesignWare Databook
VHDL Compiler Reference Manual

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsnwrstp.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Synopsys FPGA Express &
MAX+PLUS II Software

Using Synopsys* FPGA Express and MAX+PLUS® II
Software

The following topics describe how to use the FPGA Express and MAX+PLUS® II software. Choose one of the
following topics for more information:

Open a printable version of all topics listed on this page.

Software Requirements

Design Flow for FPGA Express Software

Design Entry

Design Entry Flow

VHDL

Creating VHDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating LPM Functions in VHDL
Instantiating RAM & ROM Functions in VHDL

Verilog HDL

Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating LPM Functions in Verilog HDL
Instantiating RAM & ROM Functions in Verilog HDL

Synthesis & Optimization

Synthesizing & Optimizing VHDL or Verilog HDL Files with FPGA Express Software
Entering Resource, Device & Global Logic Synthesis Assignments

Assigning a Device & Clock Frequency (fMAX)
Assigning Pins, Logic Options, and tSU, tCO and tPD Timing Constraints
Specifying the MAX+PLUS II Logic Synthesis Style with FPGA Express Software
Using ACFs Generated by FPGA Express Software
Modifying the Assignment & Configuration File with the setacf Utility

Analyzing Estimated Timing with the FPGA Express Time Tracker
Specifying Speed/Area & CPU Effort Settings with the FPGA Express Software

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsoftr.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdsflo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdent.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxlpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxramvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxlpmv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxramv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxreasn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsycon.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxtime.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxopt.html?csf=1&web=1

Compilation

Project Compilation Flow
Compiling Projects with MAX+PLUS II Software

Related Links

Programming Altera Devices
Using Synopsys Design Compiler or FPGA Compiler & MAX+PLUS II Software
Using Synopsys PrimeTime & MAX+PLUS II Software
Using Synopsys VSS & MAX+PLUS II Software
About the MAX+PLUS II Software
Altera Programming Hardware
Synopsys web site (http://www.synopsys.com)

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpjflo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dcpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsspage.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.synopsys.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using ACFs Generated by FPGA
Express Software

Using ACFs Generated by FPGA Express Software

If an existing ACF has been modified by FPGA Express, then processed by the MAX+PLUS II Compiler, the
resulting ACF may specify an incorrect LMF. If so, the MAX+PLUS II software displays the error message
Can't find design file <cell name>. You can correct this error in MAX+PLUS II software by specifying the
FPGA Express-generated <project name>.lmf file in the LMF #1 box in the EDIF Netlist Reader Settings
dialog box. See Compiling Projects with MAX+PLUS II Software for more information.

With FPGA Express software, you can either generate a new Assignment & Configuration File (.acf), along with an
EDIF netlist file (.edf) and Library Mapping File (.lmf), to be imported into the MAX+PLUS® II software, or you
can place a copy of an existing ACF in the FPGA Express output directory. If you use an existing ACF, FPGA
Express updates the ACF with additional information, such as the global project synthesis style, as it processes the
design. Each line in the ACF that is modified by the FPGA Express software is marked with a {synopsys}
comment at the end. You should then place this ACF in the MAX+PLUS II project directory.

The ACF incorporates the following assignments from FPGA Express software and passes them to the
MAX+PLUS II software:

The Altera device family and optional specific device and speed grade specified in the Create
Implementation dialog box
The global project logic synthesis style specified in the Create Implementation dialog box
The Clock frequency (fMAX) specified in the Create Implementation dialog box or the Clocks constraint
table
Clock speeds (tPD) specified in the Clocks constraint table
Path group constraints specified in the Paths constraint table
Pin assignments; settings for the Slow Slew Rate and Fast I/O logic options; and input-to-setup (tSU) and
clock-to-output (tCO) delays specified in the Ports constraint table

Figure 1 shows an example of a typical ACF generated by the FPGA Express software.

Figure 1. FPGA Express-Generated Assignment & Configuration File

CHIP my_chip
 DEVICE = EPF10K100GC503-3 {synopsys};
 "|_CONFIG" : PIN = P40 {synopsys};
 "|_STATUS" : PIN = P41 {synopsys};

GLOBAL_PROJECT_SYNTHESIS_ASSIGNMENT_OPTIONS
 DEVICE_FAMILY = FLEX10K {synopsys};
 STYLE = WYSIWYG {synopsys};
 OPTIMIZE_FOR_SPEED = 5 {synopsys};
 AUTO_GLOBAL_CLOCK = ON {synopsys};

LOGIC_OPTIONS
 "|TX_FIFOA_D6" : IO_CELL_REGISTER = ON {synopsys};
 "|DEST_RAM_D6" : SLOW_SLEW_RATE = ON {synopsys};
 "|DEST_RAM_D5" : SLOW_SLEW_RATE = OFF {synopsys};

COMPILER_INTERFACES_CONFIGURATION
 EDIF_INPUT_VCC = VDD {synopsys};
 EDIF_INPUT_GND = GND {synopsys};
 EDIF_INPUT_USE_LMF1 = ON {synopsys};
 EDIF_INPUT_LMF1 = "my_chip.lmf" {synopsys};

TIMING_POINT
 FREQUENCY = 50MHz {synopsys};
 "CLK80" : FREQUENCY = 80MHz {synopsys};
 "G" : FREQUENCY = 25MHz {synopsys};

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1

FPGA Express-generated ACFs show the Fast I/O logic option as IO_CELL_REGISTER. The MAX+PLUS II
software automatically interprets this assignment as a FAST_IO assignment.

 TPD = 10ns {synopsys};
 "inp1" : TSU = 20ns {synopsys};
 "out1" : TCO = 15ns {synopsys};

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Synopsys FPGA Express &
MAX+PLUS II Software

Using Synopsys FPGA Express & MAX+PLUS II
Software

The following topics describe how to use the FPGA Express and MAX+PLUS® II software. Choose one of the
following topics for more information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Software Requirements

Design Flow for FPGA Express Software

Design Entry

Design Entry Flow

VHDL

Creating VHDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating LPM Functions in VHDL
Instantiating RAM & ROM Functions in VHDL

Verilog HDL

Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating LPM Functions in Verilog HDL
Instantiating RAM & ROM Functions in Verilog HDL

Synthesis & Optimization

Synthesizing & Optimizing VHDL or Verilog HDL Files with FPGA Express Software
Entering Resource, Device & Global Logic Synthesis Assignments

Assigning a Device & Clock Frequency (fMAX)
Assigning Pins, Logic Options, and tSU, tCO and tPD Timing Constraints
Specifying the MAX+PLUS II Logic Synthesis Style with FPGA Express Software
Using ACFs Generated by FPGA Express Software
Modifying the Assignment & Configuration File with the setacf Utility

Analyzing Estimated Timing with the FPGA Express Time Tracker
Specifying Speed/Area & CPU Effort Settings with the FPGA Express Software

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Table 1 shows the software applications that are used to generate, process,
synthesize, and verify a project with MAX+PLUS® II and FPGA Express
software:

Table 1. Software Requirements
Synopsys Altera

FPGA Express
version 2.1

MAX+PLUS II
version 9.3 and higher

Compilation

Project Compilation Flow
Compiling Projects with MAX+PLUS II Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Programming Altera Devices
Using Synopsys Design Compiler or FPGA Compiler & MAX+PLUS II Software
Using Synopsys PrimeTime & MAX+PLUS II Software
Using Synopsys VSS & MAX+PLUS II Software

Go to the following topics for additional information:
About the MAX+PLUS II Software
Altera Programming Hardware
Synopsys web site (http://www.synopsys.com)

MAX+PLUS II/FPGA Express Software Requirements

The FPGA Express software supports devices from all FLEX device families and the MAX 7000 and MAX 9000
device families.

Related Topics:

Go to the FPGA Express release notes for information on installing the FPGA Express software and a
description of its latest changes. These notes are available in the readme.htm file on the FPGA Express
installation CD-ROM.
Go to the following topics for additional information:

FLEX Devices
MAX 7000 Devices
MAX 9000 Devices

Design Flow for FPGA Express Software

Figure 1 shows the design flow for the MAX+PLUS® II /FPGA Express interface.

Figure 1. MAX+PLUS II/FPGA Express Design Flow

The MAX+PLUS II read.me file provides up-to-date information on which versions of Synopsys applications are
supported by the current version of the MAX+PLUS II software. It also provides information on installation and
operating requirements. You should read the read.me file on the MAX+PLUS II CD-ROM before installing the
MAX+PLUS II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

Altera-provided items are shown in blue.

FPGA Express Design Entry Flow

Figure 1 shows the design entry flow for the MAX+PLUS® II /FPGA Express interface.

Figure 1. MAX+PLUS II/FPGA Express Design Entry Flow

Creating VHDL Designs for Use with MAX+PLUS II Software

You can create VHDL design files with the MAX+PLUS® II Text Editor, the FPGA Express internal text editor, or
another standard text editor and save them in the appropriate directory for your project. The MAX+PLUS II and
FPGA Express text editors offer different advantages; use either or both depending on your personal preferences:

The MAX+PLUS II Text Editor offers VHDL templates with the VHDL Templates command (Templates
menu) and syntax coloring with the Syntax Coloring command (Options menu).

The FPGA Express internal text editor provides automatic error location when you double-click an error in
the Output window.

To create a VHDL design that can be synthesized and optimized with the FPGA Express software, follow these
steps:

1.

2. Describe your design using FPGA Express-supported VHDL constructs. For information on synthesizable
VHDL constructs, refer to the online VHDL Reference Manual provided with the FPGA Express software.
The following topics describe how to instantiate additional Altera-specific logic functions in your design:

Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating RAM & ROM Functions in VHDL

In MAX+PLUS II version 8.3 and lower, running genclklk on a PC always creates files named as clklock.vhd,

Instantiating LPM Functions in VHDL

You can instantiate MegaCore™ functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP™). The OpenCore™ feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Once you have created a design, synthesize and optimize it, as described in Synthesizing & Optimizing
VHDL or Verilog HDL Files with FPGA Express Software.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Using Synopsys VSS & MAX+PLUS II Software
Compiling Projects with MAX+PLUS II Software

Go to the following topics for additional information:

Altera Megafunction Partners Program (AMPP)
Altera Megafunctions

Instantiating the clklock Megafunction in VHDL or Verilog HDL

MAX+PLUS® II interfaces to other EDA tools support the clklock phase-locked loop megafunction, which can be
used with some FLEX® 10K devices, with the gencklk utility. Type gencklk -h at the DOS or UNIX prompt to
display information on how to use this utility. The gencklk utility generates VHDL or Verilog HDL functional
simulation models and a VHDL Component Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1.

2. Type the following command at the DOS or UNIX prompt to generate the clklock_x_y function, where x is
the ClockBoost™ value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

3. Create a design file that instantiates the clklock_x_y.vhd or clklock_x_y.v file. The gencklk utility
automatically generates a VHDL Component Declaration template in the clklock_x_y.cmp file that you can
incorporate into a VHDL design file.

clklock.cmp, and clklock.v, regardless of the ClockBoost and input frequency values you specify.

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);
 END structure;

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating LPM Functions in VHDL

You can enter library of parameterized modules (LPM) functions in your VHDL design. The MAX+PLUS® II
software supports all LPM functions except the truth table, finite state machine, and pad functions. The FPGA
Express software supports all LPM functions that are supported in the MAX+PLUS II software except the lpm_and,
lpm_or, lpm_xor, and lpm_mux functions. Choose Megafunctions/LPM from the MAX+PLUS II Help menu for
detailed information on all LPM functions.

To instantiate an LPM function in a VHDL design, follow these steps:

1.

2. Create an instance of an LPM function in VHDL with a Component Instantiation Statement. VHDL
Component Declarations for LPM functions are available in MAX+PLUS II Help and also installed
automatically in the following FPGA Express directory:

<drive>:Â¥synopsysÂ¥fpga_expressÂ¥libÂ¥packagesÂ¥lpmÂ¥lpm_components.vhd

Use named association to specify parameter values in the Generic Map Clauses of LPM function
instantiations. Figure 1 shows the Component Declaration for the lpm_ram_dq function.

Figure 1. Component Declaration for lpm_ram_dq (from lpm_components.vhd)

COMPONENT lpm_ram_dq
 GENERIC (
 LPM WIDTH: POSITIVE;

 LPM_TYPE : STRING := L_RAM_DQ;
 LPM_WIDTHAD: POSITIVE;
 LPM_NUMWORDS: STRING := UNUSED;
 LPM_FILE: STRING := UNUSED;
 LPM_INDATA: STRING := REGISTERED;
 LPM_ADDRESS_CONTROL : STRING := REGISTERED;
 LPM_OUTDATA: STRING := REGISTERED
);
 PORT (
 data : IN STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0);
 we : IN STD_LOGIC := '1';
 inclock : IN STD_LOGIC := '1';
 outclock : IN STD_LOGIC := '1';
 address : IN STD_LOGIC_VECTOR(LPM_WIDTHAD-1 DOWNTO 0);
 q : OUT STD_LOGIC_VECTOR (LPM_WIDTH-1 DOWNTO 0)
);
END COMPONENT;

3. Manually tie any pins that require an initial value of logic 1 to vcc. The FPGA Express software does not
support initial values of logic 1 in Component Declarations. However, it does support initial values of logic
0.

Figure 2 shows an example of instantiating an lpm_ram_dq function in VHDL.

Figure 2. VHDL Design File with lpm_ram_dq Instantiation

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY design IS
 PORT(
 din : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 we : IN STD_LOGIC;
 clk : IN STD_LOGIC;
 addr : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 dat : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)
);
END design;

ARCHITECTURE struct OF design IS
 SIGNAL vcc : STD_LOGIC;

BEGIN -- struct
 vcc <= '1';

u1: lpm_ram_dq
 GENERIC MAP(
 LPM_WIDTH => 16,
 LPM_WIDTHAD => 4,
 LPM_INDATA => "UNREGISTERED",
 LPM_OUTDATA => "UNREGISTERED"
)

 PORT MAP(
 data => din,
 address => addr,
 we => we,
 q => dat,
 inclock => vcc,
 outclock => clk
);
END struct;

4. Continue with the steps necessary to complete your VHDL design, as described in Creating VHDL Designs
for Use with MAX+PLUS II Software.

Instantiating RAM & ROM Functions in VHDL

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1

Follow the guidelines in Instantiating LPM Functions in VHDL.

The MAX+PLUS® II /Synopsys interface offers full support for the memory capabilities of the FLEX®10K device
family, including synchronous and asynchronous RAM and ROM, cycle-shared dual port RAM, dual-port RAM,
single-Clock FIFO, and dual-clock FIFO functions. Altera recommends using the LPM functions lpm_ram_dq,
lpm_ram_io, and lpm_rom to instantiate synchronous and asynchronous RAM and ROM. However, if you wish to
enter cycle-shared dual port RAM (csdpram), dual-port RAM (altdpram), single-Clock FIFO (scfifo), and dual-
clock FIFO (dcfifo) functions, or if you wish to create simulation models for any supported RAM or ROM
function, you can use the Altera-provided genmem utility. Instantiations created with genmem for use with other
Synopsys products, such as FPGA Compiler or Design Compiler, are supported for backward compatibility. Type
genmem at the DOS or UNIX prompt to display information on how to use this utility, as well as a list of the
functions you can generate.

To instantiate an lpm_ram_dq, lpm_ram_io, or lpm_rom function:

To instantiate other RAM and ROM functions in VHDL, follow these steps:

1.

2. Use the genmem utility to generate a memory model by typing the following command at the DOS or UNIX
prompt:

genmem <memory type> <memory size> -vhdl

For example: genmem scfifo 16x8 -vhdl

3. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name>.vhd function. The genmem utility produces
files with descriptive names that typically include both the memory type and the memory size (e.g.,
scfifo_16x8_d.vhd).

In MAX+PLUS II version 8.3 and lower, running genmem on a PC always creates files named as
genmem.vhd, genmem.cmp, and genmem.v, regardless of the memory type and memory size you
specify.

1. (Optional for RAM functions) Specify an initial memory content file:

For ROM functions, you must specify the filename of an initial memory content file in the Intel
hexadecimal format (.hex) or the Altera® Memory Initialization File (.mif) format in the Generic Map
Clause, with the LPM_FILE parameter. The filename must be the same as the instance name; e.g., the u1
instance name shown in Figure 1 must be unique throughout the whole project, and must contain only
valid VHDL name characters. The initialization file must reside in the directory containing the project's
design files.

For RAM functions, specifying memory initialization file is optional. If you want to use it, you must
specify it in the Generic Map Clause as described above. If you do not use an initialization file, you
should not declare or use the Generic Clause.

1.

2. The MIF format is supported only for specifying initial memory content when compiling
designs within MAX+PLUS II software. You cannot use an MIF to perform simulation
with Synopsys tools prior to MAX+PLUS II compilation.

3. If you use an Intel hexadecimal format file and wish to simulate the file with the VHDL
System Simulator (VSS) after MAX+PLUS II compilation, you should use the Synopsys
intelhex utility to translate the Intel hexadecimal fomat file into a VSS-compatible
Synopsys memory file. Refer to the Synopsys VHDL System Simulator Software Tool
manual for details about using the intelhex utility.

2. Continue with the steps necessary to complete your VHDL design, as described in Creating VHDL Designs
for Use with MAX+PLUS II Software.

Related Topics:

Go to Using Synopsys VSS & MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.
Go to FLEX 10K Device Family, which is available on the web, for additional information.

Creating Verilog HDL Designs for Use with MAX+PLUS II Software

You can create Verilog HDL design files with the MAX+PLUS® II Text Editor, the FPGA Express internal text
editor, or another standard text editor and save them in the appropriate directory for your project. The MAX+PLUS
II and FPGA Express text editors offer different advantages; use either or both depending on your personal
preferences:

The MAX+PLUS II Text Editor offers Verilog HDL templates with the Verilog HDL Templates command
(Templates menu) and syntax coloring with the Syntax Coloring command (Options menu).

The FPGA Express internal text editor provides automatic error location when you double-click an error in
the Output window.

To create a Verilog HDL design that can be synthesized and optimized with the FPGA Express software, follow
these steps:

1.

2. Describe your design using FPGA Express-supported Verilog HDL constructs. For information on
synthesizable Verilog HDL constructs, refer to the online HDL Reference Manual provided with the FPGA
Express software. The following topics describe how to instantiate additional Altera-specific logic functions
in your design:

Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating RAM & ROM Functions in Verilog HDL
Instantiating LPM Functions in Verilog HDL

You can instantiate MegaCore™ functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP™). The OpenCore™ feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Once you have created a design, synthesize and optimize it, as described in Synthesizing & Optimizing
VHDL or Verilog HDL Files with FPGA Express Software.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.
Go to the following topics for additional information:

Altera Megafunction Partners Program (AMPP)
Altera Megafunctions

Instantiating LPM Functions in Verilog HDL

You can enter library of parameterized modules (LPM) functions in your Verilog HDL design. The MAX+PLUS®

II software supports all LPM functions except the truth table, finite state machine, and pad functions. The FPGA
Express software supports all LPM functions that are supported in the MAX+PLUS II software except the lpm_and,
lpm_or, lpm_xor, and lpm_mux functions. Choose Megafunctions/LPM from the MAX+PLUS II Help menu for
detailed information on all LPM functions.

To instantiate an LPM function in a Verilog HDL design, follow these steps:

1.

2. Use a Module Instantiation to instantiate an LPM function. You must associate all parameters, and only
positional association is allowed.

Figure 1 shows an example of instantiating an lpm_ram_dq function in Verilog HDL.

Figure 1. Verilog HDL Design File with lpm_ram_dq Instantiation

// RAM design

module design(din, we, clk, addr, dat);

input [15:0] din;
input we, clk;
input [3:0] addr;
output [15:0] dat;

supply1 vcc;

lpm_ram_dq #(
16, // LPM_WIDTH
"LPM_RAM_DQ", // LPM_TYPE
4, // LPM_WIDTHAD
16, // LPM_NUMWORDS
"UNUSED", // LPM_FILE
"UNREGISTERED", // LPM_INDATA
"UNREGISTERED", // LPM_ADDRESS_CONTROL
"UNREGISTERED" // LPM_OUTDATA
)

u1(
.data(din),
.address(addr),
.we(we),
.q(dat),
.inclock(vcc),
.outclock(clk)
);

endmodule

3. Continue with the steps necessary to complete your Verilog HDL design file, as described in Creating
Verilog HDL Designs for Use with MAX+PLUS II Software.

Follow the guidelines in Instantiating LPM Functions in Verilog HDL.

1. The MIF format is supported only for specifying initial memory content when compiling designs within
MAX+PLUS II software. You cannot use an MIF to perform simulation with Synopsys tools prior to
MAX+PLUS II compilation.

Instantiating RAM & ROM Functions in Verilog HDL

The MAX+PLUS® II /Synopsys interface offers full support for the memory capabilities of the FLEX® 10K device
family, including synchronous and asynchronous RAM and ROM, cycle-shared dual port RAM, dual-port RAM,
single-Clock FIFO, and dual-clock FIFO functions. Altera recommends using the LPM functions lpm_ram_dq,
lpm_ram_io, and lpm_rom to instantiate synchronous and asynchronous RAM and ROM. However, if you wish to
enter cycle-shared dual port ram (csdpram), dual-port RAM (altdpram), single-Clock FIFO (scfifo), and dual-
clock FIFO (dcfifo) functions, or if you wish create simulation models for any supported RAM or ROM function,
you can use the Altera-provided genmem utility. Designs that instantiate genmem-generated synchronous and
asynchronous RAM and ROM -- such as those used with FPGA Compiler or Design Compiler -- are supported for
backward compatibility. Type genmem at the DOS or UNIX prompt to display information on how to use this
utility, as well as a list of the functions you can generate.

To instantiate an lpm_ram_dq, lpm_ram_io, or lpm_rom function:

To instantiate other RAM and ROM functions in Verilog HDL, follow these steps:

1.

2. Use the genmem utility to generate a memory model by typing the following command at a DOS or UNIX
prompt:

genmem <memory type> <memory size> -verilog

For example: genmem scfifo 16x8 -verilog

3. Create a Verilog HDL design that instantiates the <memory name>.v function. The genmem utility produces
files with descriptive names that typically include both the memory type and the memory size (e.g.,
scfifo_16x8_d.v).

In MAX+PLUS II version 8.3 and lower, running genmem on a PC always creates files named as
genmem.vhd, genmem.cmp, and genmem.v, regardless of the memory type and memory size values
you specify.

1.

2. (Optional for RAM functions) Specify an initial memory content file:

For ROM functions, you must specify the filename of an initial memory content file in the Intel
hexadecimal format (.hex) or the Altera® Memory Initialization File (.mif) format in the Parameter
Statement, using the LPM_FILE parameter. The filename must be the same as the instance name; e.g.,
the u1 instance name must be unique throughout the whole project, and must contain only valid
Verilog HDL name characters. The initialization file must reside in the directory containing the
project's design files.

For RAM functions, specifying a memory initialization file is optional. If you want to use it, you must
specify it in the Parameter Statement as described above.

2. If you use an Intel hexadecimal format file and wish to simulate the file with the VHDL System Simulator
Software (VSS) after MAX+PLUS II compilation, you should use the Synopsys intelhex utility to translate
the Intel hexadecimal fomat file into a VSS-compatible Synopsys memory file. Refer to the Synopsys
VHDL System Simulator Software Tool manual for details about using the intelhex utility.

1.

2. Continue with the steps necessary to complete your Verilog HDL design, as described in Creating Verilog
HDL Designs for Use with MAX+PLUS II Software.

Related Topics:

Go to FLEX 10K Devices, which is available on the web, for additional information.

Synthesizing & Optimizing VHDL or Verilog HDL Files with FPGA Express Software

You can analyze, synthesize, and optimize design files using the FPGA Express software, then convert them to
EDIF netlist files that can be processed by the MAX+PLUS® II software.

To process a VHDL or Verilog HDL design for use with MAX+PLUS II software, follow these steps:

1.

2. Create a VHDL file, <design name>.vhd, or Verilog HDL file, <design name>.v, using the MAX+PLUS II
Text Editor or another standard text editor and save it in your working directory. Go to Creating VHDL
Designs for Use with MAX+PLUS II Software or Creating Verilog HDL Designs for Use with MAX+PLUS
II Software for more information on VHDL or Verilog HDL design entry.

3. Start the FPGA Express software. Select Create a new project in the Startup dialog box and choose OK.
The Create Project Folder dialog box is displayed. You can also view the Create Project Folder dialog
box by choosing New (File menu).

4. Specify the full file and path name of the project in the Create Project Folder dialog box and choose Create.
The FPGA Express software creates the project and opens the Identify Source File dialog box.

5. Identify and analyze the source files for the project by selecting them in the Identify Source File dialog box
and choosing Add. The FPGA Express internal text editor automatically analyzes each source file as it
appears on the left-hand side of the Project window. A green checkmark appears to the left of each filename
for the files that have no errors or warnings; a red cross appears for files with errors; and an exclamation
point appears for files with warnings.

6. Select the source file icon to display any errors or warnings in the Output window. To fix an error, double-
click on the error. The FPGA Express internal text editor automatically displays the source file and highlights
the line containing the error or warning in red. To view help on the error or warning, double-click on the
error or warning code number (shown in parentheses) in the Output window.

FPGA Express software does not copy source files; it identifies and analyzes them in their current
location. Refer to FPGA Express Help for more information.

7. Specify the MAX+PLUS II logic synthesis style. Refer to Specifying the MAX+PLUS II Logic Synthesis
Style with FPGA Express software for more information.

8. From the Project window, identify the top-level design for your project. Select the top-level design from the

Top-Level Design drop-down list on the toolbar. The Create Implementation dialog box is displayed.

9. In the Create Implementation dialog box, specify the following options:
1.

2. Assign a device and the Clock frequency. Refer to Assigning a Device & Clock Frequency (fMAX) for
more information.

3. Select a global optimization goal (speed or area) and a CPU effort designation (high or low). Refer to
Specifying the Speed/Area & CPU Effort Settings with the FPGA Express Software for information.

4. Close the Create Implementation dialog box by choosing OK.

The FPGA Express software processes each source file and determines the complete hierarchical structure
and topology of the design, including multi-level links and references between subdesigns. With this
information, the FPGA Express software produces an intermediate, unoptimized design implementation. The
right-hand side of the Project window displays the implementation name and target device. The
implementation icon also indicates any errors, warnings, or other information. To correct error or warning
conditions, refer to step 5.

10. (Optional) Select the design implementation icon in the Chips window, press Button 2, and choose the Edit
Constraints command from the pop-up menu to display the Altera-specific constraint tables. These
constraint tables allow you to specify pin, logic option, and timing assignments for your design. All design-
specific information, such as Clock names, port names, and design hierarchy assignments is extracted
automatically from the design. Altera recommends entering specific requirements directly into these tables to
obtain the desired optimization. Refer to Entering Resource, Device & Global Logic Synthesis Assignments
for information.

11. Optimize the design by selecting the design implementation in the Project window and choosing the
Optimize button on the toolbar. A new optimized implementation icon appears beneath the original
implementation icon. When you open the optimized implementation, the constraint tables are back-annotated
with the optimization results. The FPGA Express software optimizes a design for either speed or area, based
on the settings you specified in step 8.

12. Identify and optimize critical paths in your design with the Time Tracker static timing analyzer, as described
in Analyzing Estimated Timing with the FPGA Express Time Tracker.

13. Generate a project report by selecting the optimized design implementation and clicking the Report icon on
the toolbar. An FPGA Express project report documents the design through the synthesis and optimization
design flow. The report includes information about design source data, constraints, and optimization options.

14. Generate MAX+PLUS II-compatible EDIF netlist files by selecting the optimized design implementation and
choosing the Export Netlist button on the toolbar. In the Export dialog box, specify the following options:

1.

2. Specify the name and location of the directory for the EDIF netlist files in the Export Directory box.

3. Select the EDIF netlist file's output bus from the Bus Style drop-down list. The MAX+PLUS II
software accepts either flattened or unflattened buses. In the FPGA Express software, the default
setting, EXPAND, flattens each bus by writing each bus bit as an individual I/O port. To export an
EDIF netlist file without flattening the bus names, select any of the other settings, which include
delimiters for different bus notations:[], <>, (), and {}.

4. If you wish to generate a VHDL or Verilog HDL netlist file for functional simulation prior to
MAX+PLUS II compilation, select a language option (VHDL or Verilog) from the Output Format
drop-down list. Otherwise, select NONE for this option instead.

5. Turn on the Export Primitives option to export VHDL or Verilog HDL primitives into the simulation
netlist file. However, if the simulation is to be performed with an external library, turn the option off.

6. Close the Export dialog box by choosing OK. The FPGA Express software creates the following
MAX+PLUS II-compatible files:

<design name>.edf (EDIF format)
<design name>.acf, an Assignment & Configuration File that contains design constraints
<design name>.lmf, a Library Mapping File that maps FPGA Express functions to MAX+PLUS
II functions

15. Copy all three types of output files (EDIF netlist file(s), ACF, and LMF) to a MAX+PLUS II project
directory. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling
Projects with MAX+PLUS II Software.

Entering Resource, Device & Global Logic Synthesis Assignments

The MAX+PLUS® II software allows you to enter a variety of resource, device, and global logic synthesis
assignments for your projects. Resource assignments are used to assign logic functions to a particular pin, logic
cell, I/O cell, embedded cell, row, column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique,
local routing, logic option, timing requirement, or connected pin group. With MAX+PLUS II software, you can
enter all types of resource, device, and global logic synthesis assignments with Assign menu commands. You can
also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB, row, and column assignments in the MAX+PLUS II
Floorplan Editor. The Assign menu commands and the Floorplan Editor all save assignment information in the
ASCII Assignment & Configuration File (.acf) for the project.

In the Synopsys FPGA Express software, you can assign a limited subset of these assignments in the Create
Implementation dialog box, in the Options dialog box, and by specifying options in constraint tables. These
attributes are incorporated into the ACF generated by the FPGA Express software. Refer to the following topics for
more information:

Assigning a Device & Clock Frequency (fMAX)
Assigning Pins, Logic Options, and tSU, tCO & tPD Timing Constraints
Specifying the MAX+PLUS II Logic Synthesis Style with FPGA Express Software
Using ACFs Generated by FPGA Express Software
Modifying the Assignment & Configuration File with the setacf utility

Related Topics:

Go to the following sources for related information:
FPGA Express Help
"resource assignments" or "ACF, format" in MAX+PLUS II Help
Specifying the Speed/Area & CPU Effort Settings with the FPGA Express Software in these
MAX+PLUS II ACCESSSM Key topics

Assigning a Device & Clock Frequency (fMAX)

You can specify the desired Clock frequency (called fMAX in the MAX+PLUS® II software) and the target device
family before synthesizing and optimizing the design with the FPGA Express software. You can optionally select a
specific device and speed grade within the target device family. These assignments are stored in the design's

You can also edit the Clock frequency by double-clicking on the design implementation name to open the
constraint tables and entering information on the Clock tab. For more information, refer to Assigning Pins, Logic
Options, and tSU, tCO & tPD Timing Constraints.

Assignment & Configuration File, <design name>.acf, which is generated automatically by the FPGA Express
software.

To assign a device or device family and the Clock frequency, follow these steps:

1.

2. If you have not already done so, identify the top-level design for your project from the Design Sources
window. Select the top-level design from the Top-Level Design drop-down list on the toolbar. The Create
Implementation dialog box is displayed.

3. Enter an implementation name in the Implementation Name box. If you do not enter a name, FPGA Express
software automatically creates a unique implementation name.

4. Select Altera from the Vendor list.

5. Select the appropriate Altera device family from the Family list.

6. (Optional) Select a specific device from the Device list, and select a specific speed grade from the Speed
Grade list.

7. Type the desired Clock frequency in the Clock Frequency text box. This Clock frequency is used as the
default value for all Clock signals in the design.

8. (Optional) Select speed/area and CPU effort settings, as described in Specifying the Speed/Area & CPU
Effort Settings with the FPGA Express Software.

9. Continue with the steps necessary to process your design, as described in Synthesizing & Optimizing VHDL
or Verilog HDL Files with FPGA Express Software.

Related Topics:

Go to the following sources for related information:
FPGA Express Help
"Guidelines for Achieving Maximum Speed Performance" in MAX+PLUS II Help

Assigning Pins, Logic Options, and tSU, tCO & tPD Timing Constraints

You can assign pins, logic options, or timing constraints to your design in FPGA Express constraint tables. Some
design-specific information is extracted automatically from your design and displayed in the constraint tables; you
can also manually enter specific assignments in these tables. The FPGA Express software saves the assignments to
an Assignment & Configuration File (.acf) when it synthesizes and optimizes the design. The MAX+PLUS® II
software uses the assignment information from the ACF when it processes the design. Refer to Using ACFs
Generated by FPGA Express Software for more information.

To enter resource assignments in FPGA Express software, follow these steps:

1.

2. Select the design implementation icon in the Chips window, press Button 2, and choose the Edit Constraints

commmand from the pop-up menu to display the Altera-specific constraint tables. These tables allow you to
specify resource assignments for your design. All design-specific information such as Clock names, port
names, and design hierarchy is extracted automatically from the design. Altera recommends entering specific
requirements directly into these tables to obtain the desired optimization. For information on creating a
design implementation, refer to steps 1 through 8 in Synthesizing & Optimizing VHDL or Verilog HDL Files
with FPGA Express Software.

3. Enter assignments in the appropriate constraint tables. You can click on a tab to toggle between tables. Refer
to Table 1, which shows the available MAX+PLUS II resource assignment options in the FPGA Express
constraint tables. The Clock and Path tables already contain information that you previously entered in the
Create Implementation dialog box. Refer to Assigning a Device & Clock Frequency (fMAX) for more
information.

Table 1. MAX+PLUS II Resource Assignments in FPGA Express Constraint Tables

MAX+PLUS II Resource
Assignment

Equivalent FPGA Express Constraint Table Setting
Tab

Name Action

Pin assignment Ports Specify the pin number in the Pad Location column.
tSU timing assignment Ports Specify the time in the Input Delay column.
tCO timing assignment Ports Specify the time in the Output Delay column.
Slow Slew Rate logic
option assignment Ports Click on the appropriate cell in the Slew Rate column and select

<default>, FAST, or SLOW from the list.
Fast I/O logic option
assignment Ports Click on the appropriate cell in the Use I/O Reg column and select

<default>, ON, or OFF from the list.
tPD timing assignment Paths Specify the time in the Delay column.

4. Choose Save and then Close to exit from the FPGA Express constraint tables.

Related Topics:

Go to the following sources for related information:
FPGA Express Help
"Guidelines for Achieving Maximum Speed Performance" in MAX+PLUS II Help
Specifying the MAX+PLUS II Logic Synthesis Style with the FPGA Express Software in these
MAX+PLUS II ACCESSSM Key topics

Specifying the MAX+PLUS II Logic Synthesis Style with FPGA Express Software

You can specify the MAX+PLUS® II global project logic synthesis style for FLEX® devices from within the
FPGA Express software. To specify the global project logic synthesis style, follow these steps:

1. Choose Options (Synthesis menu) to display the Options dialog box.
2. Choose the Behavior tab.
3. Turn the Insert LCELL Buffers, Style WYSIWYG (Altera FLEX Only) option on or off:

Turning this option on is the equivalent of specifying the WYSIWYG (What You See Is What You
Get) logic synthesis style in the MAX+PLUS II software. The WYSIWYG style directs the Compiler's
Logic Synthesizer module to change the logic in your project as little as possible during compilation.
The WYSIWYG style avoids removing or inserting additional logic, and turns off many logic options
that might help the project to fit. In addition, if this option is turned on, the FPGA Express software

If an existing ACF has been modified by FPGA Express, then processed by the MAX+PLUS II Compiler, the
resulting ACF may specify an incorrect LMF. If so, the MAX+PLUS II software displays the error message
Can't find design file <cell name>. You can correct this error in MAX+PLUS II software by specifying the
FPGA Express-generated <project name>.lmf file in the LMF #1 box in the EDIF Netlist Reader Settings
dialog box. See Compiling Projects with MAX+PLUS II Software for more information.

inserts LCELL buffers for look-up table (LUT) outputs so that the MAX+PLUS II software will not alter
the logic cell implementations. This option is recommended when a design's area optimization has
priority over its speed.

Turning this option off is the equivalent of specifying the Fast logic synthesis style in the MAX+PLUS
II software. The Fast style directs the Compiler's Logic Synthesizer module to optimize your project
for maximum speed, rather than for minimum silicon usage. In addition, if this option is turned off, the
FPGA Express software does not insert LCELL buffers, thereby allowing the MAX+PLUS II software
to optimize the LUT logic to improve performance.

4. Choose OK.

Related Topics:

Go to the following topics for additional information:
FLEX Devices
MAX® Devices
Classic Device Family

Using ACFs Generated by FPGA Express Software

With FPGA Express software, you can either generate a new Assignment & Configuration File (.acf), along with an
EDIF netlist file (.edf) and Library Mapping File (.lmf), to be imported into the MAX+PLUS® II software, or you
can place a copy of an existing ACF in the FPGA Express output directory. If you use an existing ACF, FPGA
Express updates the ACF with additional information, such as the global project synthesis style, as it processes the
design. Each line in the ACF that is modified by the FPGA Express software is marked with a {synopsys}
comment at the end. You should then place this ACF in the MAX+PLUS II project directory.

The ACF incorporates the following assignments from FPGA Express software and passes them to the
MAX+PLUS II software:

The Altera device family and optional specific device and speed grade specified in the Create
Implementation dialog box
The global project logic synthesis style specified in the Create Implementation dialog box
The Clock frequency (fMAX) specified in the Create Implementation dialog box or the Clocks constraint
table
Clock speeds (tPD) specified in the Clocks constraint table
Path group constraints specified in the Paths constraint table
Pin assignments; settings for the Slow Slew Rate and Fast I/O logic options; and input-to-setup (tSU) and
clock-to-output (tCO) delays specified in the Ports constraint table

Figure 1 shows an example of a typical ACF generated by the FPGA Express software.

Figure 1. FPGA Express-Generated Assignment & Configuration File

CHIP my_chip
 DEVICE = EPF10K100GC503-3 {synopsys};
 "|_CONFIG" : PIN = P40 {synopsys};
 "|_STATUS" : PIN = P41 {synopsys};

FPGA Express-generated ACFs show the Fast I/O logic option as IO_CELL_REGISTER. The MAX+PLUS II
software automatically interprets this assignment as a FAST_IO assignment.

GLOBAL_PROJECT_SYNTHESIS_ASSIGNMENT_OPTIONS
 DEVICE_FAMILY = FLEX10K {synopsys};
 STYLE = WYSIWYG {synopsys};
 OPTIMIZE_FOR_SPEED = 5 {synopsys};
 AUTO_GLOBAL_CLOCK = ON {synopsys};

LOGIC_OPTIONS
 "|TX_FIFOA_D6" : IO_CELL_REGISTER = ON {synopsys};
 "|DEST_RAM_D6" : SLOW_SLEW_RATE = ON {synopsys};
 "|DEST_RAM_D5" : SLOW_SLEW_RATE = OFF {synopsys};

COMPILER_INTERFACES_CONFIGURATION
 EDIF_INPUT_VCC = VDD {synopsys};
 EDIF_INPUT_GND = GND {synopsys};
 EDIF_INPUT_USE_LMF1 = ON {synopsys};
 EDIF_INPUT_LMF1 = "my_chip.lmf" {synopsys};

TIMING_POINT
 FREQUENCY = 50MHz {synopsys};
 "CLK80" : FREQUENCY = 80MHz {synopsys};
 "G" : FREQUENCY = 25MHz {synopsys};
 TPD = 10ns {synopsys};
 "inp1" : TSU = 20ns {synopsys};
 "out1" : TCO = 15ns {synopsys};

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Analyzing Estimated Timing with the FPGA Express Time Tracker

You can use the FPGA Express Time Tracker static timing analyzer to display estimated delays of critical paths in
your project. This timing analyzer provides timing information and a detailed listing of critical paths.

To use the Time Tracker timing analyzer, follow these steps:

1.

2. Select the design implementation icon in the Chips window, press Button 2, and choose the View Results
commmand from the pop-up menu to display the Time Tracker tabs.

3. Analyze the timing of your design by viewing the different tables within the Clocks, Paths, and Ports Time
Tracker tabs:

To analyze the Clock frequency (fMAX), select the Clocks tab. The table on the Clocks tab contains a
column showing the actual Clock frequency for each Clock in your design next to the desired
frequency derived from your timing constraints. Clocks that fail to meet their constraints are
highlighted in red.

To check critical timing paths, select the Paths tab. The table on the Paths tab contains an Est. Delay
column displaying path delays. Paths that fail to meet constraints are highlighted in red. You can select
a path or path group to display additional tables with increasing detail, in order to identify exactly

which paths failed to meet their timing constraints.

To view I/O port delays, select the Ports tab. The Ports tab displays the slack for each I/O port, i.e.,
the Clock period minus the propagation delay through the port in the Input Slack column for input
ports and the Output Slack column for output ports. Negative values are highlighted in red, indicating
that the propagation delay exceeds the Clock period, causing a timing violation.

4. If necessary, change the design logic or adjust your timing constraints as described in Assigning Pins, Logic
Options, and tSU, tCO & tPD Timing Constraints, then re-optimize the design.

5. Continue with the steps necessary to process your design, as described in Synthesizing & Optimizing VHDL
or Verilog HDL Files with FPGA Express Software.

Specifying Speed/Area & CPU Effort Settings with the FPGA Express Software

FPGA Express software allows you to choose either speed or area options and to specify either high or low CPU
effort in logic optimization. Optimization goals are set on a global basis or on particular levels of hierarchy.

To set global optimization controls in the FPGA Express software, follow these steps:

1.

2. If you have not already done so, identify the top-level design for your project in the Design Sources window.
Select the top-level design from the Top-Level Design drop-down list on the toolbar. The Create
Implementation dialog box is displayed.

3. Select either speed or area under Optimize for to specify the optimization goal for the entire design:

Selecting the speed option minimizes delay by synthesizing circuits to contain the least number of
levels of combinatorial logic, sometimes yielding increased design area. This setting maximizes
operating frequency and minimizes combinatorial path delays.

Selecting the area option minimizes the combinatorial logic resources used, sometimes yielding
reduced speed. This setting minimizes combinatorial logic usage. Altera also recommends selecting the
WYSIWYG synthesis style when optimizing for area, as described in Specifying the MAX+PLUS II
Logic Synthesis Style with FPGA Express Software.

4. Select either high or low under Effort to specify the CPU effort level:

Selecting the low option increases compilation speed at the expense of larger combinatorial area. This
option is most useful for minimizing compilation time for very large designs when neither speed nor
area are critical.

Selecting the high option decreases the combinatorial area at the expense of compilation speed. This
option is recommended in speed- or area-critical designs.

You can set the same optimization controls on individual levels of hierarchy for greater control. This strategy is
useful when your design contains hierarchical blocks with different requirements. For example, some blocks may
be time-critical while others are not. To obtain the best resuls, you should optimize time-critical blocks for speed
and other blocks for area.

Optimization settings are the same for an entire design file, regardless of its level of hierarchy.

Altera-provided items are shown in blue.

To set optimization goals on a particular level of hierarchy, follow these steps:

1. Select the pre-optimized chip icon in the Chips window, press Button 2 and choose Edit Constraints to
display the constraints tables.

2. Select the Modules tab.
3. Find the row that displays the level of hierarchy for which you want to set an optimization goal.
4. In the Optimize for column of that row, click inside the cell and select either speed or area from the options

that appear.
5. In the Effort column of that row, click inside the cell and select either high or low from the available options.

1.

2. If you have not already done so, assign a device and Clock frequency, as described in Assigning a Device &
Clock Frequency (fMAX).

3. Continue with the steps necessary to process your design, as described in Synthesizing & Optimizing VHDL
or Verilog HDL Files with FPGA Express Software.

MAX+PLUS II/FPGA Express Project Compilation Flow

Figure 1 below shows the project compilation flow for the MAX+PLUS® II /FPGA Express interface.

Figure 1. MAX+PLUS II/FPGA Express Project Compilation Flow

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the
Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from
within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1.

2. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II

SM

ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

3. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

4. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

5. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

6. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1.

2. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

3. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

4. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

5. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the

LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

6. Choose OK.

7. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

8. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

9. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1.

2. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

3. If you wish to generate EDIF Output Files (.edo), go through these steps:

1.

2. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

3. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

4. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

4. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select

VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

5. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

10. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

11. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX 7000
&

MAX
7000E

Devices

MAX
7000A,
MAX

7000AE,
MAX 7000S
MAX 9000

&
MAX 9000A

Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic
Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable

software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Links

MAX+PLUS II Development Software
Altera Programming Hardware

https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / FPGA Express Design Entry Flow

FPGA Express Design Entry Flow

Altera-provided items are shown in blue.

Figure 1 shows the design entry flow for the MAX+PLUS® II /FPGA Express interface.

Figure 1. MAX+PLUS II/FPGA Express Design Entry Flow

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Assigning a Device & Clock
Frequency (fMAX)

Assigning a Device & Clock Frequency (fMAX)

You can also edit the Clock frequency by double-clicking on the design implementation name to open the
constraint tables and entering information on the Clock tab. For more information, refer to Assigning Pins, Logic
Options, and tSU, tCO & tPD Timing Constraints.

You can specify the desired Clock frequency (called fMAX in the MAX+PLUS® II software) and the target device
family before synthesizing and optimizing the design with the FPGA Express software. You can optionally select a
specific device and speed grade within the target device family. These assignments are stored in the design's
Assignment & Configuration File, <design name>.acf, which is generated automatically by the FPGA Express
software.

To assign a device or device family and the Clock frequency, follow these steps:

1. If you have not already done so, identify the top-level design for your project from the Design Sources
window. Select the top-level design from the Top-Level Design drop-down list on the toolbar. The Create
Implementation dialog box is displayed.

2. Enter an implementation name in the Implementation Name box. If you do not enter a name, FPGA Express
software automatically creates a unique implementation name.

3. Select Altera from the Vendor list.

4. Select the appropriate Altera device family from the Family list.

5. (Optional) Select a specific device from the Device list, and select a specific speed grade from the Speed
Grade list.

6. Type the desired Clock frequency in the Clock Frequency text box. This Clock frequency is used as the
default value for all Clock signals in the design.

7. (Optional) Select speed/area and CPU effort settings, as described in Specifying the Speed/Area & CPU
Effort Settings with the FPGA Express Software.

8. Continue with the steps necessary to process your design, as described in Synthesizing & Optimizing VHDL
or Verilog HDL Files with FPGA Express Software.

Related Topics:

Go to the following sources for related information:
FPGA Express Help
"Guidelines for Achieving Maximum Speed Performance" in MAX+PLUS II Help

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxopt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxopt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Design Flow for FPGA Express
Software

Design Flow for FPGA Express Software
Figure 1 shows the design flow for the MAX+PLUS® II /FPGA Express interface.

Figure 1. MAX+PLUS II/FPGA Express Design Flow

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating LPM Functions in VHDL

Instantiating LPM Functions in VHDL
You can enter library of parameterized modules (LPM) functions in your VHDL design. The MAX+PLUS® II
software supports all LPM functions except the truth table, finite state machine, and pad functions. The FPGA
Express software supports all LPM functions that are supported in the MAX+PLUS II software except the lpm_and,
lpm_or, lpm_xor, and lpm_mux functions. Choose Megafunctions/LPM from the MAX+PLUS II Help menu for
detailed information on all LPM functions.

To instantiate an LPM function in a VHDL design, follow these steps:

1. Create an instance of an LPM function in VHDL with a Component Instantiation Statement. VHDL
Component Declarations for LPM functions are available in MAX+PLUS II Help and also installed
automatically in the following FPGA Express directory:

<drive>:Ã‚Â¥synopsysÃ‚Â¥fpga_expressÃ‚Â¥libÃ‚Â¥packagesÃ‚Â¥lpmÃ‚Â¥lpm_components.vhd

Use named association to specify parameter values in the Generic Map Clauses of LPM function
instantiations. Figure 1 shows the Component Declaration for the lpm_ram_dq function.

Figure 1. Component Declaration for lpm_ram_dq (from lpm_components.vhd)

COMPONENT lpm_ram_dq
 GENERIC (
 LPM_WIDTH: POSITIVE;
 LPM_TYPE : STRING := L_RAM_DQ;
 LPM_WIDTHAD: POSITIVE;
 LPM_NUMWORDS: STRING := UNUSED;
 LPM_FILE: STRING := UNUSED;
 LPM_INDATA: STRING := REGISTERED;
 LPM_ADDRESS_CONTROL : STRING := REGISTERED;
 LPM_OUTDATA: STRING := REGISTERED
);
 PORT (
 data : IN STD_LOGIC_VECTOR(LPM_WIDTH-1 DOWNTO 0);
 we : IN STD_LOGIC := '1';
 inclock : IN STD_LOGIC := '1';
 outclock : IN STD_LOGIC := '1';
 address : IN STD_LOGIC_VECTOR(LPM_WIDTHAD-1 DOWNTO 0);
 q : OUT STD_LOGIC_VECTOR (LPM_WIDTH-1 DOWNTO 0)
);
END COMPONENT;

2. Manually tie any pins that require an initial value of logic 1 to vcc. The FPGA Express software does not
support initial values of logic 1 in Component Declarations. However, it does support initial values of logic
0.

Figure 2 shows an example of instantiating an lpm_ram_dq function in VHDL.

Figure 2. VHDL Design File with lpm_ram_dq Instantiation

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY lpm;
USE lpm.lpm_components.all;

ENTITY design IS
 PORT(
 din : IN STD_LOGIC_VECTOR(15 DOWNTO 0);
 we : IN STD_LOGIC;
 clk : IN STD_LOGIC;
 addr : IN STD_LOGIC_VECTOR(3 DOWNTO 0);
 dat : OUT STD_LOGIC_VECTOR(15 DOWNTO 0)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

);
END design;

ARCHITECTURE struct OF design IS
 SIGNAL vcc : STD_LOGIC;

BEGIN -- struct
 vcc <= '1';

u1: lpm_ram_dq
 GENERIC MAP(
 LPM_WIDTH => 16,
 LPM_WIDTHAD => 4,
 LPM_INDATA => "UNREGISTERED",
 LPM_OUTDATA => "UNREGISTERED"
)

 PORT MAP(
 data => din,
 address => addr,
 we => we,
 q => dat,
 inclock => vcc,
 outclock => clk
);
END struct;

3. Continue with the steps necessary to complete your VHDL design, as described in Creating VHDL Designs
for Use with MAX+PLUS II Software.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating LPM Functions in
Verilog HDL

Instantiating LPM Functions in Verilog HDL
You can enter library of parameterized modules (LPM) functions in your Verilog HDL design. The MAX+PLUS®

II software supports all LPM functions except the truth table, finite state machine, and pad functions. The FPGA
Express software supports all LPM functions that are supported in the MAX+PLUS II software except the lpm_and,
lpm_or, lpm_xor, and lpm_mux functions. Choose Megafunctions/LPM from the MAX+PLUS II Help menu for
detailed information on all LPM functions.

To instantiate an LPM function in a Verilog HDL design, follow these steps:

1. Use a Module Instantiation to instantiate an LPM function. You must associate all parameters, and only
positional association is allowed.

Figure 1 shows an example of instantiating an lpm_ram_dq function in Verilog HDL.

Figure 1. Verilog HDL Design File with lpm_ram_dq Instantiation

// RAM design

module design(din, we, clk, addr, dat);

input [15:0] din;
input we, clk;
input [3:0] addr;
output [15:0] dat;

supply1 vcc;

lpm_ram_dq #(
16, // LPM_WIDTH
"LPM_RAM_DQ", // LPM_TYPE
4, // LPM_WIDTHAD
16, // LPM_NUMWORDS
"UNUSED", // LPM_FILE
"UNREGISTERED", // LPM_INDATA
"UNREGISTERED", // LPM_ADDRESS_CONTROL
"UNREGISTERED" // LPM_OUTDATA
)

u1(
.data(din),
.address(addr),
.we(we),
.q(dat),
.inclock(vcc),
.outclock(clk)
);

endmodule

2. Continue with the steps necessary to complete your Verilog HDL design file, as described in Creating
Verilog HDL Designs for Use with MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Specifying Speed/Area & CPU Effort
Settings with the FPGA Express Software

Specifying Speed/Area & CPU Effort Settings with the
FPGA Express Software

Optimization settings are the same for an entire design file, regardless of its level of hierarchy.

FPGA Express software allows you to choose either speed or area options and to specify either high or low CPU
effort in logic optimization. Optimization goals are set on a global basis or on particular levels of hierarchy.

To set global optimization controls in the FPGA Express software, follow these steps:

1. If you have not already done so, identify the top-level design for your project in the Design Sources window.
Select the top-level design from the Top-Level Design drop-down list on the toolbar. The Create
Implementation dialog box is displayed.

2. Select either speed or area under Optimize for to specify the optimization goal for the entire design:
Selecting the speed option minimizes delay by synthesizing circuits to contain the least number of
levels of combinatorial logic, sometimes yielding increased design area. This setting maximizes
operating frequency and minimizes combinatorial path delays.
Selecting the area option minimizes the combinatorial logic resources used, sometimes yielding
reduced speed. This setting minimizes combinatorial logic usage. Altera also recommends selecting the
WYSIWYG synthesis style when optimizing for area, as described in Specifying the MAX+PLUSÂ II
Logic Synthesis Style with FPGA Express Software.

3. Select either high or low under Effort to specify the CPU effort level:
Selecting the low option increases compilation speed at the expense of larger combinatorial area. This
option is most useful for minimizing compilation time for very large designs when neither speed nor
area are critical.
Selecting the high option decreases the combinatorial area at the expense of compilation speed. This
option is recommended in speed- or area-critical designs.

You can set the same optimization controls on individual levels of hierarchy for greater control. This strategy is
useful when your design contains hierarchical blocks with different requirements. For example, some blocks may
be time-critical while others are not. To obtain the best resuls, you should optimize time-critical blocks for speed
and other blocks for area.

To set optimization goals on a particular level of hierarchy, follow these steps:

1. Select the pre-optimized chip icon in the Chips window, press Button 2 and choose Edit Constraints to
display the constraints tables.

2. Select the Modules tab.
3. Find the row that displays the level of hierarchy for which you want to set an optimization goal.
4. In the Optimize for column of that row, click inside the cell and select either speed or area from the options

that appear.
5. In the Effort column of that row, click inside the cell and select either high or low from the available options.

1. If you have not already done so, assign a device and Clock frequency, as described in Assigning a Device &
Clock Frequency (fMAX).

2. Continue with the steps necessary to process your design, as described in Synthesizing & Optimizing VHDL
or Verilog HDL Files with FPGA Express Software.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsycon.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsycon.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conventions.html?csf=1&web=1#button2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Assigning Pins, Logic Options, and
tSU, tCO & tPD Timing Constraints

Assigning Pins, Logic Options, and tSU, tCO & tPD
Timing Constraints

You can assign pins, logic options, or timing constraints to your design in FPGA Express constraint tables. Some
design-specific information is extracted automatically from your design and displayed in the constraint tables; you
can also manually enter specific assignments in these tables. The FPGA Express software saves the assignments to
an Assignment & Configuration File (.acf) when it synthesizes and optimizes the design. The MAX+PLUS® II
software uses the assignment information from the ACF when it processes the design. Refer to Using ACFs
Generated by FPGA Express Software for more information.

To enter resource assignments in FPGA Express software, follow these steps:

1. Select the design implementation icon in the Chips window, press Button 2, and choose the Edit Constraints
commmand from the pop-up menu to display the Altera-specific constraint tables. These tables allow you to
specify resource assignments for your design. All design-specific information such as Clock names, port
names, and design hierarchy is extracted automatically from the design. Altera recommends entering specific
requirements directly into these tables to obtain the desired optimization. For information on creating a
design implementation, refer to steps 1 through 8 in Synthesizing & Optimizing VHDL or Verilog HDL Files
with FPGA Express Software.

2. Enter assignments in the appropriate constraint tables. You can click on a tab to toggle between tables. Refer
to Table 1, which shows the available MAX+PLUS II resource assignment options in the FPGA Express
constraint tables. The Clock and Path tables already contain information that you previously entered in the
Create Implementation dialog box. Refer to Assigning a Device & Clock Frequency (fMAX) for more
information.

Table 1. MAX+PLUS II Resource Assignments in FPGA Express Constraint Tables

MAX+PLUS II Resource
Assignment

Equivalent FPGA Express Constraint Table Setting
Tab

Name Action

Pin assignment Ports Specify the pin number in the Pad Location column.
tSU timing assignment Ports Specify the time in the Input Delay column.
tCO timing assignment Ports Specify the time in the Output Delay column.
Slow Slew Rate logic
option assignment Ports Click on the appropriate cell in the Slew Rate column and select

<default>, FAST, or SLOW from the list.
Fast I/O logic option
assignment Ports Click on the appropriate cell in the Use I/O Reg column and select

<default>, ON, or OFF from the list.
tPD timing assignment Paths Specify the time in the Delay column.

3. Choose Save and then Close to exit from the FPGA Express constraint tables.

Related Links:

Go to the following sources for related information:
FPGA Express Help
"Guidelines for Achieving Maximum Speed Performance" in MAX+PLUS II Help
Specifying the MAX+PLUS II Logic Synthesis Style with the FPGA Express Software in these

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conventions.html?csf=1&web=1#button2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsycon.html?csf=1&web=1

MAX+PLUS II ACCESSSM Key topics

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/FPGA Express Project
Compilation Flow

MAX+PLUS II/FPGA Express Project Compilation
Flow

Altera-provided items are shown in blue.

Figure 1 below shows the project compilation flow for the MAX+PLUS® II /FPGA Express interface.

Figure 1. MAX+PLUS II/FPGA Express Project Compilation Flow

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating RAM & ROM Functions
in Verilog HDL

Instantiating RAM & ROM Functions in Verilog HDL

Follow the guidelines in Instantiating LPM Functions in Verilog HDL.

1. The MIF format is supported only for specifying initial memory content when compiling designs within
MAX+PLUS II software. You cannot use an MIF to perform simulation with Synopsys tools prior to
MAX+PLUS II compilation.

The MAX+PLUS® II /Synopsys interface offers full support for the memory capabilities of the FLEX® 10K device
family, including synchronous and asynchronous RAM and ROM, cycle-shared dual port RAM, dual-port RAM,
single-Clock FIFO, and dual-clock FIFO functions. Altera recommends using the LPM functions lpm_ram_dq,
lpm_ram_io, and lpm_rom to instantiate synchronous and asynchronous RAM and ROM. However, if you wish to
enter cycle-shared dual port ram (csdpram), dual-port RAM (altdpram), single-Clock FIFO (scfifo), and dual-
clock FIFO (dcfifo) functions, or if you wish create simulation models for any supported RAM or ROM function,
you can use the Altera-provided genmem utility. Designs that instantiate genmem-generated synchronous and
asynchronous RAM and ROM -- such as those used with FPGA Compiler or Design Compiler -- are supported for
backward compatibility. Type genmem at the DOS or UNIX prompt to display information on how to use this
utility, as well as a list of the functions you can generate.

To instantiate an lpm_ram_dq, lpm_ram_io, or lpm_rom function:

To instantiate other RAM and ROM functions in Verilog HDL, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at a DOS or UNIX
prompt:

genmem <memory type> <memory size> -verilog

For example: genmem scfifo 16x8 -verilog

2. Create a Verilog HDL design that instantiates the <memory name>.v function. The genmem utility produces
files with descriptive names that typically include both the memory type and the memory size (e.g.,
scfifo_16x8_d.v).

In MAX+PLUS II version 8.3 and lower, running genmem on a PC always creates files named as
genmem.vhd, genmem.cmp, and genmem.v, regardless of the memory type and memory size values
you specify.

1. (Optional for RAM functions) Specify an initial memory content file:

For ROM functions, you must specify the filename of an initial memory content file in the Intel
hexadecimal format (.hex) or the Altera® Memory Initialization File (.mif) format in the Parameter
Statement, using the LPM_FILE parameter. The filename must be the same as the instance name; e.g.,
the u1 instance name must be unique throughout the whole project, and must contain only valid
Verilog HDL name characters. The initialization file must reside in the directory containing the
project's design files.

For RAM functions, specifying a memory initialization file is optional. If you want to use it, you must
specify it in the Parameter Statement as described above.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxlpmv.html?csf=1&web=1

2. If you use an Intel hexadecimal format file and wish to simulate the file with the VHDL System Simulator
Software (VSS) after MAX+PLUS II compilation, you should use the Synopsys intelhex utility to translate
the Intel hexadecimal fomat file into a VSS-compatible Synopsys memory file. Refer to the Synopsys
VHDL System Simulator Software Tool manual for details about using the intelhex utility.

1. Continue with the steps necessary to complete your Verilog HDL design, as described in Creating Verilog
HDL Designs for Use with MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating RAM & ROM Functions
in VHDL

Instantiating RAM & ROM Functions in VHDL

Follow the guidelines in Instantiating LPM Functions in VHDL.

The MAX+PLUS® II /Synopsys interface offers full support for the memory capabilities of the FLEX®10K device
family, including synchronous and asynchronous RAM and ROM, cycle-shared dual port RAM, dual-port RAM,
single-Clock FIFO, and dual-clock FIFO functions. Altera recommends using the LPM functions lpm_ram_dq,
lpm_ram_io, and lpm_rom to instantiate synchronous and asynchronous RAM and ROM. However, if you wish to
enter cycle-shared dual port RAM (csdpram), dual-port RAM (altdpram), single-Clock FIFO (scfifo), and dual-
clock FIFO (dcfifo) functions, or if you wish to create simulation models for any supported RAM or ROM
function, you can use the Altera-provided genmem utility. Instantiations created with genmem for use with other
Synopsys products, such as FPGA Compiler or Design Compiler, are supported for backward compatibility. Type
genmem at the DOS or UNIX prompt to display information on how to use this utility, as well as a list of the
functions you can generate.

To instantiate an lpm_ram_dq, lpm_ram_io, or lpm_rom function:

To instantiate other RAM and ROM functions in VHDL, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the DOS or UNIX
prompt:

genmem <memory type> <memory size> -vhdl

For example: genmem scfifo 16x8 -vhdl

2. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name>.vhd function. The genmem utility produces
files with descriptive names that typically include both the memory type and the memory size (e.g.,
scfifo_16x8_d.vhd).

In MAX+PLUS II version 8.3 and lower, running genmem on a PC always creates files named as
genmem.vhd, genmem.cmp, and genmem.v, regardless of the memory type and memory size you
specify.

1. (Optional for RAM functions) Specify an initial memory content file:

For ROM functions, you must specify the filename of an initial memory content file in the Intel
hexadecimal format (.hex) or the Altera® Memory Initialization File (.mif) format in the Generic Map
Clause, with the LPM_FILE parameter. The filename must be the same as the instance name; e.g., the u1
instance name shown in Figure 1 must be unique throughout the whole project, and must contain only
valid VHDL name characters. The initialization file must reside in the directory containing the project's
design files.
For RAM functions, specifying memory initialization file is optional. If you want to use it, you must
specify it in the Generic Map Clause as described above. If you do not use an initialization file, you
should not declare or use the Generic Clause.

1. The MIF format is supported only for specifying initial memory content when compiling
designs within MAX+PLUS II software. You cannot use an MIF to perform simulation
with Synopsys tools prior to MAX+PLUS II compilation.

2. If you use an Intel hexadecimal format file and wish to simulate the file with the VHDL
System Simulator (VSS) after MAX+PLUS II compilation, you should use the Synopsys

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxlpm.html?csf=1&web=1

intelhex utility to translate the Intel hexadecimal fomat file into a VSS-compatible
Synopsys memory file. Refer to the Synopsys VHDL System Simulator Software Tool
manual for details about using the intelhex utility.

2. Continue with the steps necessary to complete your VHDL design, as described in Creating VHDL Designs
for Use with MAX+PLUS II Software.

Related Links:

Go to Using Synopsys VSS & MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsspage.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Entering Resource, Device & Global
Logic Synthesis Assignments

Entering Resource, Device & Global Logic Synthesis
Assignments

The MAX+PLUS® II software allows you to enter a variety of resource, device, and global logic synthesis
assignments for your projects. Resource assignments are used to assign logic functions to a particular pin, logic
cell, I/O cell, embedded cell, row, column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique,
local routing, logic option, timing requirement, or connected pin group. With MAX+PLUS II software, you can
enter all types of resource, device, and global logic synthesis assignments with Assign menu commands. You can
also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB, row, and column assignments in the MAX+PLUS II
Floorplan Editor. The Assign menu commands and the Floorplan Editor all save assignment information in the
ASCII Assignment & Configuration File (.acf) for the project.

In the Synopsys FPGA Express software, you can assign a limited subset of these assignments in the Create
Implementation dialog box, in the Options dialog box, and by specifying options in constraint tables. These
attributes are incorporated into the ACF generated by the FPGA Express software. Refer to the following topics for
more information:

Assigning a Device & Clock Frequency (fMAX)
Assigning Pins, Logic Options, and tSU, tCO & tPD Timing Constraints
Specifying the MAX+PLUS II Logic Synthesis Style with FPGA Express Software
Using ACFs Generated by FPGA Express Software
Modifying the Assignment & Configuration File with the setacf utility

Related Links:

Go to the following sources for related information:
FPGA Express Help
"resource assignments" or "ACF, format" in MAX+PLUS II Help
Specifying the Speed/Area & CPU Effort Settings with the FPGA Express Software in these
MAX+PLUS II ACCESSSM Key topics

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsycon.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxopt.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/FPGA Express
Software Requirements

MAX+PLUS II/FPGA Express Software Requirements
Table 1 shows the software applications that are used to generate, process,
synthesize, and verify a project with MAX+PLUS® II and FPGA Express
software:

Table 1. Software Requirements
Synopsys Altera

FPGA Express
version 3.0

MAX+PLUS II
version 9.3 and higher

The MAX+PLUS II read.me file provides up-to-date information on which versions of Synopsys applications are
supported by the current version of the MAX+PLUS II software. It also provides information on installation and
operating requirements. You should read the read.me file on the MAX+PLUS II CD-ROM before installing the
MAX+PLUS II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

The FPGA Express software supports devices from all FLEX device families and the MAX 7000 and MAX 9000
device families.

Related Links:

Go to the FPGA Express release notes for information on installing the FPGA Express software and a
description of its latest changes. These notes are available in the readme.htm file on the FPGA Express
installation CD-ROM.
Go to the following topics for additional information:

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Specifying the MAX+PLUS II Logic
Synthesis Style with FPGA Express Software

Specifying the MAX+PLUS II Logic Synthesis Style
with FPGA Express Software

You can specify the MAX+PLUS® II global project logic synthesis style for FLEX® devices from within the
FPGA Express software. To specify the global project logic synthesis style, follow these steps:

1. Choose Options (Synthesis menu) to display the Options dialog box.
2. Choose the Behavior tab.
3. Turn the Insert LCELL Buffers, Style WYSIWYG (Altera FLEX Only) option on or off:

Turning this option on is the equivalent of specifying the WYSIWYG (What You See Is What You
Get) logic synthesis style in the MAX+PLUS II software. The WYSIWYG style directs the Compiler's
Logic Synthesizer module to change the logic in your project as little as possible during compilation.
The WYSIWYG style avoids removing or inserting additional logic, and turns off many logic options
that might help the project to fit. In addition, if this option is turned on, the FPGA Express software
inserts LCELL buffers for look-up table (LUT) outputs so that the MAX+PLUS II software will not alter
the logic cell implementations. This option is recommended when a design's area optimization has
priority over its speed.
Turning this option off is the equivalent of specifying the Fast logic synthesis style in the MAX+PLUS
II software. The Fast style directs the Compiler's Logic Synthesizer module to optimize your project
for maximum speed, rather than for minimum silicon usage. In addition, if this option is turned off, the
FPGA Express software does not insert LCELL buffers, thereby allowing the MAX+PLUS II software
to optimize the LUT logic to improve performance.

4. Choose OK.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synthesizing & Optimizing VHDL or
Verilog HDL Files with FPGA Express Software

Synthesizing & Optimizing VHDL or Verilog HDL Files
with FPGA Express Software

You can analyze, synthesize, and optimize design files using the FPGA Express software, then convert them to
EDIF netlist files that can be processed by the MAX+PLUSÂ®Â II software.

To process a VHDL or Verilog HDL design for use with MAX+PLUSÂ II software, follow these steps:

1. Create a VHDL file, <design name>.vhd, or Verilog HDL file, <design name>.v, using the MAX+PLUSÂ
II Text Editor or another standard text editor and save it in your working directory. Go to Creating VHDL
Designs for Use with MAX+PLUSÂ II Software or Creating Verilog HDL Designs for Use with
MAX+PLUSÂ II Software for more information on VHDL or Verilog HDL design entry.

2. Start the FPGA Express software. Select Create a new project in the Startup dialog box and choose OK.
The Create Project Folder dialog box is displayed. You can also view the Create Project Folder dialog
box by choosing New (File menu).

3. Specify the full file and path name of the project in the Create Project Folder dialog box and choose Create.
The FPGA Express software creates the project and opens the Identify Source File dialog box.

4. Identify and analyze the source files for the project by selecting them in the Identify Source File dialog box
and choosing Add. The FPGA Express internal text editor automatically analyzes each source file as it
appears on the left-hand side of the Project window. A green checkmark appears to the left of each filename
for the files that have no errors or warnings; a red cross appears for files with errors; and an exclamation
point appears for files with warnings.

5. Select the source file icon to display any errors or warnings in the Output window. To fix an error, double-
click on the error. The FPGA Express internal text editor automatically displays the source file and highlights
the line containing the error or warning in red. To view help on the error or warning, double-click on the
error or warning code number (shown in parentheses) in the Output window.

FPGA Express software does not copy source files; it identifies and analyzes them in their current
location. Refer to FPGA Express Help for more information.

6. Specify the MAX+PLUSÂ II logic synthesis style. Refer to Specifying the MAX+PLUSÂ II Logic Synthesis
Style with FPGA Express software for more information.

7. From the Project window, identify the top-level design for your project. Select the top-level design from the
Top-Level Design drop-down list on the toolbar. The Create Implementation dialog box is displayed.

8. In the Create Implementation dialog box, specify the following options:
1. Assign a device and the Clock frequency. Refer to Assigning a Device & Clock Frequency (fMAX) for

more information.
2. Select a global optimization goal (speed or area) and a CPU effort designation (high or low). Refer to

Specifying the Speed/Area & CPU Effort Settings with the FPGA Express Software for information.
3. Close the Create Implementation dialog box by choosing OK.

The FPGA Express software processes each source file and determines the complete hierarchical structure
and topology of the design, including multi-level links and references between subdesigns. With this
information, the FPGA Express software produces an intermediate, unoptimized design implementation. The
right-hand side of the Project window displays the implementation name and target device. The
implementation icon also indicates any errors, warnings, or other information. To correct error or warning
conditions, refer to step 5.

9. (Optional) Select the design implementation icon in the Chips window, press Button 2, and choose the Edit
Constraints command from the pop-up menu to display the Altera-specific constraint tables. These
constraint tables allow you to specify pin, logic option, and timing assignments for your design. All design-
specific information, such as Clock names, port names, and design hierarchy assignments is extracted

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsycon.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsycon.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxdevas.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxopt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conventions.html?csf=1&web=1#button2

automatically from the design. Altera recommends entering specific requirements directly into these tables to
obtain the desired optimization. Refer to Entering Resource, Device & Global Logic Synthesis Assignments
for information.

10. Optimize the design by selecting the design implementation in the Project window and choosing the
Optimize button on the toolbar. A new optimized implementation icon appears beneath the original
implementation icon. When you open the optimized implementation, the constraint tables are back-annotated
with the optimization results. The FPGA Express software optimizes a design for either speed or area, based
on the settings you specified in step 8.

11. Identify and optimize critical paths in your design with the Time Tracker static timing analyzer, as described
in Analyzing Estimated Timing with the FPGA Express Time Tracker.

12. Generate a project report by selecting the optimized design implementation and clicking the Report icon on
the toolbar. An FPGA Express project report documents the design through the synthesis and optimization
design flow. The report includes information about design source data, constraints, and optimization options.

13. Generate MAX+PLUSÂ II-compatible EDIF netlist files by selecting the optimized design implementation
and choosing the Export Netlist button on the toolbar. In the Export dialog box, specify the following
options:

1. Specify the name and location of the directory for the EDIF netlist files in the Export Directory box.
2. Select the EDIF netlist file's output bus from the Bus Style drop-down list. The MAX+PLUSÂ II

software accepts either flattened or unflattened buses. In the FPGA Express software, the default
setting, EXPAND, flattens each bus by writing each bus bit as an individual I/O port. To export an
EDIF netlist file without flattening the bus names, select any of the other settings, which include
delimiters for different bus notations:[], <>, (), and {}.

3. If you wish to generate a VHDL or Verilog HDL netlist file for functional simulation prior to
MAX+PLUSÂ II compilation, select a language option (VHDL or Verilog) from the Output Format
drop-down list. Otherwise, select NONE for this option instead.

4. Turn on the Export Primitives option to export VHDL or Verilog HDL primitives into the simulation
netlist file. However, if the simulation is to be performed with an external library, turn the option off.

5. Close the Export dialog box by choosing OK. The FPGA Express software creates the following
MAX+PLUSÂ II-compatible files:

<design name>.edf (EDIF format)
<design name>.acf, an Assignment & Configuration File that contains design constraints
<design name>.lmf, a Library Mapping File that maps FPGA Express functions to
MAX+PLUSÂ II functions

14. Copy all three types of output files (EDIF netlist file(s), ACF, and LMF) to a MAX+PLUSÂ II project
directory. Process the <design name>.edf file with the MAX+PLUSÂ II Compiler, as described in
Compiling Projects with MAX+PLUSÂ II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxreasn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxtime.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Analyzing Estimated Timing with the
FPGA Express Time Tracker

Analyzing Estimated Timing with the FPGA Express
Time Tracker

You can use the FPGA Express Time Tracker static timing analyzer to display estimated delays of critical paths in
your project. This timing analyzer provides timing information and a detailed listing of critical paths.

To use the Time Tracker timing analyzer, follow these steps:

1. Select the design implementation icon in the Chips window, press Button 2, and choose the View Results
commmand from the pop-up menu to display the Time Tracker tabs.

2. Analyze the timing of your design by viewing the different tables within the Clocks, Paths, and Ports Time
Tracker tabs:

To analyze the Clock frequency (fMAX), select the Clocks tab. The table on the Clocks tab contains a
column showing the actual Clock frequency for each Clock in your design next to the desired
frequency derived from your timing constraints. Clocks that fail to meet their constraints are
highlighted in red.
To check critical timing paths, select the Paths tab. The table on the Paths tab contains an Est. Delay
column displaying path delays. Paths that fail to meet constraints are highlighted in red. You can select
a path or path group to display additional tables with increasing detail, in order to identify exactly
which paths failed to meet their timing constraints.
To view I/O port delays, select the Ports tab. The Ports tab displays the slack for each I/O port, i.e.,
the Clock period minus the propagation delay through the port in the Input Slack column for input
ports and the Output Slack column for output ports. Negative values are highlighted in red, indicating
that the propagation delay exceeds the Clock period, causing a timing violation.

3. If necessary, change the design logic or adjust your timing constraints as described in Assigning Pins, Logic
Options, and tSU, tCO & tPD Timing Constraints, then re-optimize the design.

4. Continue with the steps necessary to process your design, as described in Synthesizing & Optimizing VHDL
or Verilog HDL Files with FPGA Express Software.

Analyzing Estimated Timing with the FPGA Express Time Tracker

You can use the FPGA Express Time Tracker static timing analyzer to display estimated delays of critical paths in
your project. This timing analyzer provides timing information and a detailed listing of critical paths.

To use the Time Tracker timing analyzer, follow these steps:

1. Select the design implementation icon in the Chips window, press Button 2, and choose the View Results
commmand from the pop-up menu to display the Time Tracker tabs.

2. Analyze the timing of your design by viewing the different tables within the Clocks, Paths, and Ports Time
Tracker tabs:

To analyze the Clock frequency (fMAX), select the Clocks tab. The table on the Clocks tab contains a
column showing the actual Clock frequency for each Clock in your design next to the desired
frequency derived from your timing constraints. Clocks that fail to meet their constraints are
highlighted in red.
To check critical timing paths, select the Paths tab. The table on the Paths tab contains an Est. Delay
column displaying path delays. Paths that fail to meet constraints are highlighted in red. You can select
a path or path group to display additional tables with increasing detail, in order to identify exactly
which paths failed to meet their timing constraints.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conventions.html?csf=1&web=1#button2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conventions.html?csf=1&web=1#button2

To view I/O port delays, select the Ports tab. The Ports tab displays the slack for each I/O port, i.e.,
the Clock period minus the propagation delay through the port in the Input Slack column for input
ports and the Output Slack column for output ports. Negative values are highlighted in red, indicating
that the propagation delay exceeds the Clock period, causing a timing violation.

3. If necessary, change the design logic or adjust your timing constraints as described in Assigning Pins, Logic
Options, and tSU, tCO & tPD Timing Constraints, then re-optimize the design.

4. Continue with the steps necessary to process your design, as described in Synthesizing & Optimizing VHDL
or Verilog HDL Files with FPGA Express Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxpin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpxsynt.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Tools with
MAX+PLUS II Software

Using Cadence Tools with MAX+PLUS II Software

The following topics describe how to use a variety of Cadence tools as part of a complete design flow that includes
the MAX+PLUS® II software. If you use only one Cadence tool, click List by Tool and select the tool name to
view the list of topics only for that tool. Click on one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
Setting Up the MAX+PLUS II/Cadence Concept Work Environment for a Sun SPARCstation Running
SunOS Software
MAX+PLUS II/Cadence Interface File Organization
MAX+PLUS II Directory Structure
Concept & RapidSIM Local Work Area Directory Structure
Concept & HDL Direct Project Directory Structure
Composer Project File Directory Structure
Altera-Provided Logic & Symbol Libraries
Compiling the VITAL Library for Use with Leapfrog Software
Compiling the alt_mf Library

Design Flow for All Cadence Tools

Design Entry

Design Entry Flow

Concept

Creating Concept Schematics for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in Concept Schematics
Instantiating LPM & Other Parameterized Functions in Concept Schematics

Entering Resource Assignments
Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility & Verilog-XL
Software
Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-XL Software
Creating Hierarchical Projects in Concept Schematics
Converting Concept Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the
concept2alt Utility

Composer

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-tools.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-cadenall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sparc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sparc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2dir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conrapd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-condir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_vtl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clklock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vloglink.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hierarch.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1

Creating Composer Schematics for Use with MAX+PLUS II Software
Entering Resource Assignments

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation of a Composer Schematic with Verilog-XL Software
Creating Hierarchical Projects in Composer Schematics
Converting Composer Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the altout
Utility

VHDL

Creating VHDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Verilog HDL

Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Synthesis & Optimization

VHDL

Synthesizing & Optimizing VHDL Files with Synergy Software
Converting VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the vlog2alt or
altout Utility

Verilog HDL

Synthesizing & Optimizing Verilog HDL Files with Synergy Software
Converting Verilog HDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the
vlog2alt Utility

Compilation

Project Compilation Flow
Compiling Projects with MAX+PLUS II Software

Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with RapidSIM Software
Performing a Timing Simulation with Verilog-XL Software
Performing a Timing Simulation with Leapfrog Software

Compiling the VITAL Library for Use with Leapfrog Software

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogcom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hierarch.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fig17.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-initial.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-rapidsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-verilogx.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leapfrog.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_vtl.html?csf=1&web=1

Compiling the alt_mf Library

Device Programming

Programming Altera Devices

Related Links:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.cadence.com/
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Leapfrog &
MAX+PLUS II Software

Using Cadence Leapfrog & MAX+PLUS II Software

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

The following topics describe how to use the Cadence Leapfrog software with the MAX+PLUS® II software. Click
on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
MAX+PLUS II Directory Structure
MAX+PLUS II/Cadence Interface File Organization
Compiling the VITAL Library for Use with Leapfrog Software
Compiling the alt_mf Library

Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with Leapfrog Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Setting Up the MAX+PLUS II/Cadence Working Environment

To use MAX+PLUS® II software with Cadence software, you must first install the MAX+PLUS II software, then
establish an environment that facilitates entering and processing designs. The MAX+PLUS II/Cadence interface is
installed automatically when you install the MAX+PLUS II software on your computer. Go to MAX+PLUS II
Installation in the MAX+PLUS II Getting Started manual for more information on installation and details on the
directories that are created during MAX+PLUS II installation. Go to MAX+PLUS II/Cadence Interface File

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using the C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

Organization for information about the MAX+PLUS II/Cadence directories that are created during MAX+PLUS II
installation.

To set up your working environment for the MAX+PLUS II/Cadence interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Cadence software versions described in the
MAX+PLUS II/Cadence Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2

setenv CDS_INST_DIR <Cadence system directory path>

3. Add the $ALT_HOME/cadence/bin and $CDS_INST_DIR/tools/bin directories to the PATH environment
variable in your .cshrc file. Make sure these paths are placed before the Cadence hierarchy path.

4. Add /usr/dt/lib and /usr/ucb/lib to the LD_LIBRARY_PATH environment variable in your .cshrc file.

5. Create a new cds.lib file in your working directory or edit an existing one so that it includes all of the
following lines that apply to the Cadence tools you have installed:

DEFINE alt_syn ${ALT_HOME}/simlib/concept/alt_syn

DEFINE lpm_syn ${ALT_HOME}/simlib/concept/lpm_syn

DEFINE alt_lpm ${ALT_HOME}/simlib/concept/alt_lpm

DEFINE alt_mf ${ALT_HOME}/simlib/concept/alt_mf

DEFINE alt_max2 ${ALT_HOME}/simlib/concept/alt_max2

DEFINE alt_max2 ${ALT_HOME}/simlib/composer/alt_max2/alt_max2

DEFINE alt_vtl $ALT_HOME/simlib/concept/alt_vtl/lib

DEFINE altera $ALT_HOME/simlib/concept/alt_mf/lib

SOFTINCLUDE $CDS_INST_DIR/tools/leapfrog/files/cds.lib

DEFINE <design name>.

6. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Cadence Altera
version 97A:
Concept
Composer
ValidCOMPILER
concept2alt
vlog2alt
altout

VerilogLink
Synergy
HDL Direct (Concept 2.0 or later)
Non-Graphic Simulation Environment (SE)
RapidSIM, Verilog-XL, or Leapfrog
redifnet (SunOS only)

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Cadence software
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

Normally, you do not have to edit your local copy of maxplus2.ini because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

7. If you are using Concept on a Sun SPARCstation running SunOS, go to Setting Up the MAX+PLUS
II/Cadence Concept Work Environment for a Sun SPARCstation Running SunOS Software to install the
redifnet EDIF netlist reader utility.

8. If you are using Synergy software, edit the hdl.var file located in your working directory to include the
following line:

DEFINE work <design name>

9. Set up an appropriate directory structure for the tool(s) you are using. See the following topics for
information:

Composer Project File Directory Structure
Concept & RapidSIM Local Work Area Directory Structure

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Cadence Software Requirements

The following table shows the software applications that are used to generate, process, synthesize, and verify a
project with MAX+PLUS® II and Cadence software:

Table 1. MAX+PLUS II Directory Organization

Directory Description

./lmf
Contains the Altera-provided Library Mapping File, cadence.lmf, that
maps Cadence logic functions to equivalent MAX+PLUS II logic
functions.

./examples/cadence
Contains the sample files for Cadence software discussed in these
ACCESSSM Key Guidelines.

./cadence Contains the AMPLE userware for the MAX+PLUS II/Cadence interface.

./simlib/concept/alt_max2

Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for
FLEX® 6000 devices only) for use with Concept software.

./simlib/composer/alt_max2
Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for FLEX
6000 devices only) for use with Composer software.

./simlib/concept/alt_lpm Contains the MAX+PLUS II megafunctions, including library of
parameterized modules (LPM) functions, for use with Concept software.

./simlib/concept/max2sim Contains the MAX+PLUS II/Concept simulation model library, max2_sim,
for use with RapidSIM software.

./simlib/concept/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Concept software, and the vlog2alt utility.

./simlib/composer/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Composer software.

./simlib/concept/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Concept software.

./simlib/composer/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Composer software.
Contains the MAX+PLUS II VHDL logic function library. (a_8count is for

MAX+PLUS II Directory Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL Text Design File (TDF);
or any other MAX+PLUS II-supported design file. The EDIF netlist file must be created by the altout or
concept2alt utility and imported into the MAX+PLUS II software as an EDIF Input File (.edf).

Project design files and output files are stored in the project directory, with the exception of standard library
functions provided by Altera or another EDA tool vendor. The MAX+PLUS II software stores the connectivity data
on the links between design files in a hierarchical project in a Hierarchy Interconnect File (.hif), but refers to the
entire project only by its project name. The MAX+PLUS II Compiler uses the HIF to build a single, fully flattened
project database that integrates all design files in a project hierarchy.

MAX+PLUS II/Cadence Interface File Organization

Table 1 shows the MAX+PLUS® II/Cadence interface subdirectories that are created in the MAX+PLUS II system
directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation. For information on the other
directories that are created during MAX+PLUS II installation, see "MAX+PLUS II File Organization" in
MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

./simlib/concept/alt_mf
the MAX® 7000 and MAX 9000 device families only.)

./simlib/concept/edifnet/templates Contains template files for Concept directives, i.e., global.cmd,
compiler.cmd, vloglink.cmd, verilog.cmd, and master.local.

./simlib/concept/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Concept software.

./simlib/composer/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Composer software.

./simlib/concept/alt_vtl

./simlib/composer/alt_vtl
Contains VITAL library source files for use with Concept or Composer
software.

./simlib/composer/alt_max2/verilog Contains simulation modules for all symbols in the alt_max2 Composer
library.

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

FLEX Devices
MAX Devices
Classic Device Family

Compiling the VITAL Library for Use with Leapfrog Software

If you wish to use MAX+PLUS® II-generated Standard Delay Format (SDF) Output Files (.sdo) that contain
timing information when performing post-compilation timing simulation with Leapfrog software, you must first
compile the VITAL library source files. The VITAL Timing and Primitive package files are located in the
$CDS_INST_DIR/tools/leapfrog/files/IEEE.src directory.

To compile the alt_vtl library, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment. For example, you must ensure that the appropriate directories are
specified in the cds.lib file that is located in your working directory.

2. Create a VHDL design, as described in Creating VHDL Designs for Use with MAX+PLUS II Software and
save it in your working directory.

3. Change to the alt_vtl directory by typing cd /usr/maxplus2/simlib/concept/alt_vtl at the UNIX
prompt.

4. Edit the hdl.var file located in your working directory to include the following line:

DEFINE WORK alt_vtl

5. Create the /usr/maxplus2/simlib/concept/alt_vtl/lib directory.

6. Type the following commands at the UNIX prompt from the /usr/maxplus2/simlib/concept/alt_vtl directory
to compile the library:

Figure 1. MAX+PLUS II/Cadence Project Simulation Flow

Altera-provided items are shown in blue.

cv -message -file alt_vtl.vhd
cv -message -file alt_vtl.cmp

Compiling the alt_mf Library

If your VHDL design uses functions from the alt_mf library, you must compile this library. To compile the alt_mf
library, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Cadence Working Environment. For example, you must ensure that the appropriate directories are
specified in the cds.lib file located in your working directory.

2. Change to the alt_mf directory by typing cd /usr/maxplus2/simlib/concept/alt_mf at the UNIX
prompt.

3. Edit the hdl.var file located in your working directory to include the following line:

DEFINE work alt_mf

4. Type the following commands at the UNIX prompt from the /usr/maxplus2/simlib/concept/alt_mf directory
to compile the library:

cv -message -file ./src/mf.vhd
cv -message -file ./src/mf_components.vhd

Project Simulation Flow

Figure 1 shows the project simulation flow for the MAX+PLUS® II/Cadence interface.

1. The add_dc script gives a message if the directory contains both a VHDL Output File and a Verilog Output
File with the same name (<design name>.vo and <design>.vho). You should delete or rename whichever
of those files should not have the device_clear signal added. The add_dc script can modify only one
design file at a time.

Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation

Altera provides the add_dc script, which is availiable in the MAX+PLUS II system directory, to allow you to
process MAX+PLUS II-generated Verilog Output Files (.vo) and VHDL Output Files (.vho) to prepare these files
for simulation with another EDA tool. The add_dc script runs the add_dclr utility, which inserts a device_clear
signal that is used for power-up initialization of all registers or flipflops in the design.

The script adds in a top-level signal named device_clear and connects it to the CLRN pin in all flipflops that should
initialize to 0, and to the PRN pin of all flipflops that should initialize to 1. If the CLRN or PRN pin of a flipflop is
already being used (i.e., is already connected to a signal), the script modifies the Verilog Output File or VHDL
Output File so that the AND of the original signal and the device_clear pin feed the CLRN or PRN pin.

To use the add_dc script to process Verilog Output Files and VHDL Output Files before simulation with another
EDA tool, follow these steps:

1. Make sure that your design file is located in the current directory, or change to the directory in which the
design file is located.

2. Type the following command at the command prompt:

¥<path name of add_dc.bat file>¥add_dc <design name> <path name of add_dclr.exe file>

For example, if the both the add_dc.bat and the add_dclr.exe files are located in the d:¥maxplus2¥exew
directory, and the d:¥maxplus2¥exew directory is specified in the search path, you can type the following
command at a command prompt to add a device_clear signal to a design named myfifo in the file myfifo.vo:

add_dc myfifo d:¥maxplus2¥exew

2. When the add_dc script processes the Verilog Output File or VHDL Output File, it creates a backup copy
of the original file, with the extension .ori.

3. The add_dc script works only for Verilog Output Files and VHDL Output Files that are generated by
MAX+PLUS II.

After you have used the add_dc script and are ready to simulate the resulting Verilog Output File or VHDL Output
File with another EDA tool, you should assert the active low device_clear pin for a period of time that is long
enough for the design to initialize. You can then de-assert the pin, and apply simulation vectors to the design.

Performing a Timing Simulation with Leapfrog Software

Once the MAX+PLUS® II software has compiled a project and generated a VHDL Output File (.vho), you can a
perform timing simulation using Cadence Leapfrog software.

To simulate a VHDL output file with the Leapfrog timing simulator, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. If you wish to use MAX+PLUS II-generated Standard Delay Format (SDF) Output Files (.sdo) that contain
timing information, compile the VITAL library source files, as described in Compiling the VITAL Library
for Use with Leapfrog Software.

3. If your design uses functions from the alt_mf library, compile the library, as described in Compiling the
alt_mf Library.

4. Generate a VHDL Output File (.vho) and an optional SDF Output File, as described in Compiling Projects
with MAX+PLUS II Software.

5. Using any standard text editor, create a stimulus file that includes test vectors for <design name>.

6. Start the Leapfrog simulator and simulate the MAX+PLUS II-created VHDL Output File <design name>.vho
by typing leapfrog at the UNIX prompt. Refer to Chapter 5: SDF Back-Annotation in Leapfrog in the
VHDL Simulator User Guide or refer to the Cadence Openbook for more information.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly with
the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the Synopsys
Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within the
MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the

LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the

Figure 1. MAX+PLUS II Device Programming Flow

EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / View by Function

ACCESS Partner EDA Tools, Listed by Function
Click on one of the following tool names for information on using it with the MAX+PLUS® II software:

Design Entry

Composer (Cadence)
Concept (Cadence)
Design Architect (Mentor Graphics)

Synthesis & Optimization

Certify (Synplicity)
Design Compiler (Synopsys)
FPGA Compiler (Synopsys)
FPGA Express (Synopsys)
Galileo Extreme (Exemplar Logic)
Leonardo (Exemplar Logic)
Synergy (Cadence)
Synplify (Synplicity)

Simulation

Design Viewpoint Editor (see QuickSim II)
Leapfrog (Cadence)
QuickHDL and QuickHDL Pro (Mentor Graphics)
QuickSim II (Mentor Graphics)
RapidSIM (Cadence)
Verilog-XL (Cadence)
VHDL System Simulator [VSS] (Synopsys)

Timing Analysis/Verification

MOTIVE and MOTIVE for Powerview (Viewlogic)
PrimeTime (Synopsys)
QuickPath (Mentor Graphics)

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-comover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-arch_toc.html?csf=1&web=1
http://www.synplicity.com/products/certify/index.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dcpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dcpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpexpg.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gleo_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leon_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qsim_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leapover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdl_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qsim_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-rapover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-verover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsspage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mot_over.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qpth_toc.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Functional Simulation
with QuickHDL Software

Performing a Functional Simulation with QuickHDL
Software

If you wish to functionally simulate a hierarchical design that uses multiple design entry methods, you should use
QuickHDL Pro rather than QuickHDL. Refer to Performing a Functional Simulation with QuickHDL Pro
Software for more information.

You can use Mentor Graphics QuickHDL software to functionally simulate VHDL or Verilog HDL design files
before compiling them with the MAX+PLUS ® II Compiler.

To functionally simulate a VHDL or Verilog HDL design, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL or Verilog HDL design file that follows the guidelines described in Creating VHDL &
Verilog HDL Designs for Use with MAX+PLUS II Software.

3. Start Design Architect by double-clicking Button 1 on the max_da icon in the Design Manager tools
window. You can also start Design Architect software by typing max2_da at the UNIX prompt.

4. Choose Lib (QuickHDL menu) and specify your work library name as the Work Library name. Choose OK.

5. Choose Map (QuickHDL menu) to map the instantiated function to the equivalent function in the Altera
logic function library. Choose Set to specify altera as the Logical Name and $MAX2_MFLIB as the Physical
Name. Choose OK.

6. Choose Compile (QuickHDL menu) and use the Navigator window to select the icon for your project.
Specify your work library name as the Work Library name and select the Simulation setting in the Set VHDL
Compilation Options or Set Verilog HDL Compilation Options window. Choose OK to compile.

7. Choose Simulate (QuickHDL menu) and specify your work library name as the Work Library name. Choose
OK to start the QuickHDL Startup window.

8. Select the icon for your project in the Entity Configuration window and choose OK to simulate the design.

9. Synthesize and optimize the design, as described in Synthesizing & Optimizing VHDL & Verilog HDL
Projects with Galileo Extreme Software or Synthesizing & Optimizing VHDL & Verilog HDL Projects with
Leonardo Software.

If your Verilog HDL design uses memory functions (RAM or ROM) that can be initialized with a hexadecimal file
(Intel-format) initialization, you must convert these files into Verilog HDL format using the Programming
Language Interface (PLI). To use the Altera-provided source code for PLI, perform the following steps:

1. Download the file http://www.edif.org/lpmweb/convert_hex2ver.c to your project directory.

2. Copy the following two files from the $MGC_HOME/shared/pkgs/quickhdl/include directory into the
/usr/maxplus2 directory:

$MGC_HOME/shared/pkgs/quickhdl/include/veriuser
$MGC_HOME/shared/pkgs/quickhdl/include/acc_user

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-galileo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-galileo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leonardo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leonardo.html?csf=1&web=1
http://www.edif.org/lpmweb/convert_hex2ver.c
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

Refer to the Mentor Graphics QuickHDL User's Reference Manual, version 8.5-4.6i, for information on
compiling the PLI application on different platforms and using the Verilog HDL PLI.

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Performing a Timing Simulation with QuickHDL Software
Performing a Functional Simulation with QuickHDL Pro Software

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quickhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Exemplar Logic Galileo
Extreme & MAX+PLUS II Software

Using Exemplar Logic Galileo Extreme & MAX+PLUS
II Software

The following topic describes how to use the Exemplar Logic Galileo Extreme software with MAX+PLUS® II
software. Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS ® II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Design Entry

Design Entry Flow
Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software
Performing a Functional Simulation with QuickHDL Pro Software

Synthesis & Optimization

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Exemplar Logic web site (http://www.exemplar.com)
Mentor Graphics web site (http://www.mentor.com)

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

To use the MAX+PLUS ® II software with Mentor Graphics/Exemplar Logic software, you must install the
MAX+PLUS II software, then establish an environment that facilitates entering and processing designs. The
MAX+PLUS II/Mentor Graphics/Exemplar Logic interface is installed automatically when you install the
MAX+PLUS II software on your computer.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using a C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to MAX+PLUS
II/Mentor Graphics/Exemplar Logic Interface File Organization for information about the MAX+PLUS II/Mentor
Graphics directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Mentor Graphics interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Mentor Graphics software versions
described in MAX+PLUS II/Mentor Graphics Software Requirements.

2. Add the following environment variables to your .cshrc file:
setenv ALT_HOME /usr/maxplus2
setenv MGC_WD <user-specified working directory>
setenv MGC_HOME <Mentor Graphics system directory>
setenv MAX2_MENTOR /usr/maxplus2/mentor/max2
setenv MGC_LOCATION_MAP <user-specified location_map file>
setenv EXEMPLAR <Galileo or Leonardo system directory>

Installing the Altera® provided MAX+PLUS II/Mentor Graphics interface on your computer
automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/.cshrc file.

3. Add the $MGC_HOME/bin, $MAX2_MENTOR/bin, $ALT_HOME/bin, $EXEMPLAR/bin/<os>, and
$ALT_HOME/bin directories to the PATH environment variable in your .cshrc file, where <os> is the
operating system, e.g., SUN4 for SunOS; SUN5 for Solaris.

4. If you plan to use the Altera Schematic Express (sch_exprss) utility or the Altera VHDL Express
(vhd_exprss) utility, add the following environment variable to your .cshrc file:
setenv MAX2_QSIM /usr/maxplus2/simlib/mentor/max2sim

5. Type source ?/.cshrc at a UNIX prompt to source the .cshrc file and validate the settings in steps 1
through 4.

6. Add the following lines to your MGC_location_map file:
$MAX2_MENTOR
/usr/maxplus2/mentor/max2
$MGC_GENLIB
/<user-specified Mentor Graphics GEN_LIB directory>
$MGC_LSLIB
/<user-specified Mentor Graphics LS_LIB directory>
$MAX2_EXAMPLES
/<user-specified example directory>
$MAX2_LMCLIB
/<user-specified Logic Modeling directory>
$MAX2_GENLIB
/usr/maxplus2/simlib/mentor/alt_max2
$MAX2_QSIM
/usr/maxplus2/simlib/mentor/max2sim
$MAX2_FONT
/usr/maxplus2/mentor/max2/fonts
$MGC_SYS1076_STD
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ std

Mentor Graphics Exemplar Altera
version C.1:
System_1076 Compiler QuickHDL Galileo Extreme

$MGC_SYS1076_ARITHMETIC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/arithmetic
$MGC_SYS1076_PORTABLE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/mgc_portable
$MGC_SYS1076_IEEE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ieee
$MGC_SYS1076_SRC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ src
$MAX2_MFLIB
/usr/maxplus2/simlib/mentor/alt_mf

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your
computer automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/location_map/location_map file.

7. If you want to use QuickHDL software to simulate VHDL or Verilog HDL designs, add the following line in
the [library] section of your quickhdl.ini file: altera = $MAX2_MFLIB.

8. If you plan to use QuickHDL software to simulate VITAL-compliant VHDL files, add the following lines to
your MGC_location_map file:
$MAX2_VTLLIB
/usr/maxplus2/simlib/mentor/alt_vtl

9. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:
cp /usr/maxplus2/maxplus2.ini $HOME
chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as Alteraprovided logic and symbol library paths and the current
project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini file to
the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Mentor Graphics Software Requirements

The following products are used to generate, process, synthesize, and verify a project with the MAX+PLUS ® II
software and Mentor Graphics software:

QuickSim II
Design Architect
ENRead
ENWrite
GEN_LIB library

QuickHDL Pro
QuickPath
LS_LIB library (optional)
DVE

version 4.1.1

Leonardo
version 4.1.3

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Mentor Graphics
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

You can create your own libraries of custom functions for use in Design Architect schematics and VHDL and
Verilog HDL design files. You can use custom functions to incorporate an EDIF Input File (.edf), Text Design
File (.tdf), or any other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses
the Altera® provided mnt8_bas.lmf and exemplar.lmf Library Mapping Files to map standard Design Architect
symbols and VHDL and Verilog HDL functions to equivalent MAX+PLUS II logic functions. To use custom
functions, you can create a custom LMF that maps your custom functions to the equivalent EDIF input file, TDF,
or other design file. Go to "Library Mapping File" in MAX+PLUS II Help for more information.

Table 1. MAX+PLUS II-Specific Logic Functions

Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX ® 5000, MAX 7000 , and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1

DFFE

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS ® II/Mentor Graphics environment provides libraries for compiling, synthesizing, and simulating
designs.

Design Architect Libraries

You can enter a Design Architect schematic with logic functions from these Altera-provided symbol libraries:
ALTERA LPMLIB, ALTERA GENLIB, LSTTL BY TYPE, and LSTTL ALL PARTS. You can access these
libraries by choosing Altera Libraries (Libraries menu) in the Design Architect software. For information on using
library of parameterized modules (LPM) functions, see ALTERA LPMLIB Library below.

ALTERA GENLIB Library (Design Architect) & Altera (VHDL) Libraries

The ALTERA GENLIB symbol library (called the Altera library for VHDL) includes several MAX+PLUS II
primitives for controlling design synthesis and fitting. It also includes four macrofunctions (8count, 8mcomp, 8fadd,
and 81mux) that are optimized for different Altera device families, and the clklock phase-locked loop
megafunction, which is supported for some FLEX ® 10K devices.

The following table shows the MAX+PLUS II-specific logic functions.

multiplexer
CARRY

FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer DFFE6K

Note (2)
D-type flipflop with Clock Enable

clklock
Phase-locked
loop

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help menu
for detailed information on these functions.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd instead.

2. If you want to use QuickHDL software, make sure you have updated your quickhdl.ini file, as described in
step 7 of Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment.

3. For designs that are targeted for FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

ALTERA LPMLIB Library

The Alteraprovided ALTERA LPMLIB library, which is available for Design Architect schematics and VHDL
designs, includes standard functions from the library of parameterized modules (LPM) 2.1.0, except the truth table,
finite state machine, and pad functions. The LPM standard defines a set of parameterized modules (i.e.,
parameterized functions) and their corresponding representations in an EDIF netlist file. These logic functions
allow you to create and functionally simulate an LPM-based design without targeting a specific device family.
After the design is completed, you can target the design to any device family. The parameters you specify for each
LPM function determine which simulation models are generated.

Related Topics:

FLEX Devices
MAX Devices
Classic Device Family

Local Work Area Directory Structure

Design Architect software automatically creates and maintains the project directory structure required for all stages
of design entry. Galileo Extreme, Leonardo, and ENWrite software create a max2 subdirectory, if it does not
already exist, under the project directory. These software applications also generate EDIF netlist files, and copy
them from the <project name> directory to this max2 subdirectory. All MAX+PLUS ® II Compiler output files are
created in the max2 subdirectory.

Simulation files created with Mentor Graphics applications and Logic Modeling files are located in the board-level
simulation subdirectory of the project directory. You can use these files during simulation with QuickSim II
software.

The only directory you need to create is the local work directory, which should contain all project directories.
Figure 1 shows the recommended file structure.

Figure 1. Recommended File Structure

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
MAX+PLUS II Project Directory Structure
Mentor Graphics Project Directory Structure

Mentor Graphics Project Directory Structure

Design Architect software generates the following files for each schematic:

<drawing name>/mgc_component.attr
<drawing name>/part.Eddm_part.attr
<drawing name>/part.part_1
<drawing name>/schematic.mgc_schematic.attr
<drawing name>/schematic/schem_id
<drawing name>/schematic/sheet1.mgc_sheet.attr
<drawing name>/schematic/sheet1.sgfx_1
<drawing name>/schematic/sheet1.ssht_1

The files generated for each schematic are stored in the schematic's <drawing name> directory and should not be
edited. Mentor Graphics software automatically manages file storage and retrieval operations through this
<drawing name> directory structure, which does not reflect hierarchical design relationships. Figure 1 shows a
sample file structure with project1 as the UNIX project directory, and design1, subdesign1, and subdesign2 as the
directories for the top-level design and subdesigns of the project.

Figure 1. Design Architect Project File Structure

When the ENWrite utility converts the schematic into an EDIF netlist file, it processes the design information and
all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF netlist
file is named <project name>.edf, where <project name> is the name of the top-level design file. The <project
name>.edf file is automatically moved to the max2 directory under the project directory.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
MAX+PLUS II Project Directory Structure

MAX+PLUS II Project Directory Structure

In the MAX+PLUS ® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, VHDL, or Verilog HDL netlist file; an Altera Hardware Description
Language (AHDL) Text Design File (TDF); or any other MAX+PLUS II-supported design file. The EDIF netlist
file must be created by ENWrite, Galileo Extreme, or Leonardo software and imported into MAX+PLUS II as an
EDIF Input File (.edf). Figure 1 shows an example of a MAX+PLUS II project directory.

For information on the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II
File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Table 1. MAX+PLUS II Directory Organization

Directory Description

.lmf
Contains the Altera-provided Library Mapping Files, mnt8_bas.lmf and exemplar.lmf,
that map Mentor Graphics and Exemplar Logic logic functions to equivalent MAX+PLUS
II logic functions.

./mentor Contains the AMPLE userware for the MAX+PLUS II/Mentor Graphics interface.

./simlib/mentor/alt_max2
Contains MAX+PLUS II primitives such as CARRY, CASCADE, EXP, GLOBAL, LCELL, SOFT,
OPNDRN, DFFE, and DFFE6K (D flipflop with Clock Enable) for use in Design Architect
schematics.

./simlib/mentor/max2sim Contains the MAX+PLUS II/Mentor Graphics simulation model library, max2sim, for use
with QuickSim II and QuickPath software.

./simlib/mentor/synlib Contains the MAX+PLUS II synthesis library for use with AutoLogic II software, which
supports synthesis for users running Mentor Graphics version B1.

./simlib/mentor/alt_mf Contains the MAX+PLUS II macrofunction and megafunction libraries.

./simlib/mentor/alt_vtl Contains the MAX+PLUS II VITAL library.

Figure 1. Sample MAX+PLUS II Project Directory

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure

MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

The following table shows the MAX+PLUS ® II/Mentor Graphics interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Figure 1. MAX+PLUS II/Mentor Graphics/Exemplar Logic Design Entry
Flow

Alteraprovided items are shown in
blue.

Mentor Graphics/Exemplar Logic Design Entry Flow

The following figure shows the design entry flow for the MAX+PLUS® II/Mentor Graphics/Exemplar Logic
interface.

Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software

You can create VHDL and Verilog HDL design files with the MAX+PLUS ® II Text Editor or another standard
text editor and save them in the appropriate directory for your project.

The MAX+PLUS II Text Editor offers the following advantages:

Templates are available with the VHDL Templates and Verilog Templates commands (Template menu).
These templates are also available in the ASCII vhdl.tmp and verilog.tmp files, respectively, which are
located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can turn on the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements of text in text
files in different colors to distinguish them from other forms of syntax.

To create a VHDL or Verilog HDL design file for use with the MAX+PLUS II software, go through the following
steps:

1. Enter a VHDL or Verilog HDL design in the MAX+PLUS II Text Editor or another standard text editor and

save it in your working directory.

2. Enter primitives, macrofunctions, and megafunctions in your VHDL or Verilog HDL design from the Altera
library.

The following topics describe special steps needed to instantiate LPM and clklock functions:

Instantiating LPM Functions in VHDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

You can instantiate MegaCore™ functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP™). The OpenCore™ feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. (Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a
Functional Simulation with QuickHDL Software and Performing a Functional Simulation with QuickHDL
Pro Software.

4. Once you have created a VHDL or Verilog HDL design, you can generate an EDIF netlist file that can be
imported into the MAX+PLUS II software with either of the following methods:

You can synthesize and optimize your design and create an EDIF netlist file, as described in
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software or
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software.

You can use the Altera VHDL Express utility, vhd_exprss, to automatically create an EDIF netlist file,
compile it with the MAX+PLUS II Compiler, generate an EDIF Output File (.edo), and prepare the
EDIF Output File for simulation with QuickHDL software, as described in Using the Altera Schematic
Express (vhd_exprss) Utility.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL design files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software

After you have created a VHDL or Verilog HDL design, you can use Exemplar Logic's Galileo Extreme software
to synthesize and optimize your VHDL Design File (.vhd) or Verilog Design File (.v) and prepare it for
compilation with the MAX+PLUS ® II Compiler.

To synthesize and optimize your project and generate an EDIF netlist file with Galileo Extreme software, go
through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL or Verilog HDL design that follows the guidelines described in Creating VHDL & Verilog

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly
with the MAX+PLUS II Compiler.
Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the
Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within
the MAX+PLUS II Compiler window.

HDL Designs for Use with MAX+PLUS II Software.
3. (Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a

Functional Simulation with QuickHDL Software.
4. Select the icon for your design file in the appropriate directory, press Button 3, and choose max2_galileo in

the Navigator window to start the Galileo Extreme software. You can also start Galileo Extreme software by
typing max2_galileo at the UNIX prompt.

5. Specify settings for the Filename and Format options under INPUT DESIGN.
6. Specify settings for the Filename, Format, and Technology options under OUTPUT DESIGN. Verify that

EDIF is specified in the Format box.
7. Choose the Altera Output Options button if you want to specify settings for various parameters, including

Maximum Fanin for MAX devices and Part Number for FLEX devices. You can also turn on the Run
MAX+PLUS II option for design compilation, which specifies that the MAX+PLUS II Compiler should start
processing your design immediately after you run Galileo Extreme. Choose OK to save any setting changes.

8. Choose Start Run. The Galileo Extreme software generates <design name>.edf in the <project
directory>/max2 subdirectory and then closes, returning you to the Navigator window.

9. Process your design with the MAX+PLUS II Compiler, as described in Compiling Projects with
MAX+PLUS II Software. If you turned on the Run MAX+PLUS II option in step 7, the MAX+PLUS II
Compiler automatically starts processing your design after you run Galileo Extreme.

Installing the Altera® provided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL Design Files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software
Performing a Timing Simulation with QuickHDL Software
Performing a Timing Analysis with QuickPath Software

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.
3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project

Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.
6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic

functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:
Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing

analysis with another EDA tool, go through the following steps:
1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the

output file(s). Turning on this command can reduce the size of output netlists by up to 30%.
This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:
1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist

Writer Settings command (Interfaces menu).
2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that

vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.
10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog

HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware PCs

UNIX
Work-

MAX®
3000A

Classic®
&

MAX

MAX
7000

&
MAX

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
In-System

Programming/

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

Option stations Devices 5000
Devices 7000E

Devices
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX 10KB,
&

FLEX 10KE
Devices

Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all
liability for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synthesizing & Optimizing VHDL &
Verilog HDL Projects with Galileo Extreme Software

Synthesizing & Optimizing VHDL & Verilog HDL
Projects with Galileo Extreme Software

After you have created a VHDL or Verilog HDL design, you can use Exemplar Logic's Galileo Extreme software
to synthesize and optimize your VHDL Design File (.vhd) or Verilog Design File (.v) and prepare it for
compilation with the MAX+PLUS ® II Compiler.

To synthesize and optimize your project and generate an EDIF netlist file with Galileo Extreme software, go
through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL or Verilog HDL design that follows the guidelines described in Creating VHDL & Verilog
HDL Designs for Use with MAX+PLUS II Software.

3. (Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a
Functional Simulation with QuickHDL Software.

4. Select the icon for your design file in the appropriate directory, press Button 3, and choose max2_galileo in
the Navigator window to start the Galileo Extreme software. You can also start Galileo Extreme software by
typing max2_galileo at the UNIX prompt.

5. Specify settings for the Filename and Format options under INPUT DESIGN.

6. Specify settings for the Filename, Format, and Technology options under OUTPUT DESIGN. Verify that
EDIF is specified in the Format box.

7. Choose the Altera Output Options button if you want to specify settings for various parameters, including
Maximum Fanin for MAX devices and Part Number for FLEX devices. You can also turn on the Run
MAX+PLUS II option for design compilation, which specifies that the MAX+PLUS II Compiler should start
processing your design immediately after you run Galileo Extreme. Choose OK to save any setting changes.

8. Choose Start Run. The Galileo Extreme software generates <design name>.edf in the <project
directory>/max2 subdirectory and then closes, returning you to the Navigator window.

9. Process your design with the MAX+PLUS II Compiler, as described in Compiling Projects with
MAX+PLUS II Software. If you turned on the Run MAX+PLUS II option in step 7, the MAX+PLUS II
Compiler automatically starts processing your design after you run Galileo Extreme.

Installing the Altera® provided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL Design Files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software
Performing a Timing Simulation with QuickHDL Software
Performing a Timing Analysis with QuickPath Software

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leonardo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quickhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quikpath.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Converting Synopsys Hierarchical
Timing Constraints into MAX+PLUS II-Compatible Format with the gen_iacf and gen_hacf Utilities

Converting Synopsys Hierarchical Timing Constraints
into MAX+PLUS II-Compatible Format with the
gen_iacf and gen_hacf Utilities

You can create a dc_shell script that performs most of these steps. Refer to Figure 2 for a sample dc_shell script.

Altera provides the gen_hacf and gen_iacf utilities, which convert Synopsys timing constraints into the
MAX+PLUS® II Assignment & Configuration File (.acf) format. For information on converting timing constraints
from non-hierarchical designs, refer to Converting Synopsys Timing Constraints into MAX+PLUS II-Compatible
Format with the syn2acf Utility. The gen_iacf utility generates intermediate, individual ACFs with the extension
.iacf for each subdesign. The gen_hacf utility merges the individual .iacf files into a single ACF for the whole
design.

To use the gen_iacf and gen_hacf utilities, follow these steps:

1. Make sure that you have specified the correct path of your local Perl executable, as specified in step 5 of
Setting Up the MAX+PLUS II/Synopsys Working Environment.

The gen_iacf and gen_hacf utilities use the ALT_HOME environment variable, if it has been specified, to
determine the MAX+PLUS II system directory; otherwise, it uses the /usr/maxplus2 directory. To
specify a different MAX+PLUS II system directory with the ALT_HOME environment variable, you can
either edit the .cshrc file to specify the correct directory or type the following command at the UNIX
prompt:

setenv ALT_HOME <MAX+PLUS II system directory>

2. Once you have synthesized your design with Design Compiler or FPGA Compiler, generate an hierarchical
EDIF netlist file for the top-level design by typing the following command at the dc_shell prompt:

write -f edif -hierarchy <top-level design name> -o <top-level design name>.hier.edf

3. Generate intermediate ACF files (.iacf) for all subdesigns that have constraints, including the top-level
design.

1. Generate the following input files for the gen_iacf utility by using a gen_iacf.cmd file. Figure 1 shows
a sample gen_iacf.cmd file.

Flattened EDIF netlist file
dc_shell script file
Standard Delay Format (SDF) constraints construct
SDF timing delay construct

The gen_iacf and gen_hacf utilities do not support set_arrival timing constraints for internal
nodes.

Figure 1. Sample gen_iacf.cmd File

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-timcons.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1

ungroup -flatten -all

write -f edif

write_script > <design_name> + "_setup.dc"

write_constraints -format sdf -cover_design

write_timing -format sdf

This sample command file assumes that the design_name variable has been set before the
command file is included.

2. Run the gen_iacf utility for each design that has timing constraints (including the top-level design) by
typing the following command at the UNIX prompt:

gen_iacf <design name>

4. Rename the top-level hierarchichal EDIF netlist file to <top-level design name>.edf, if you have not already
done so.

5. Use the gen_hacf utility to merge the .iacf files for the top-level design and subdesigns into a single
hierarchical ACF file, called <top level design name>.acf. Type the following command at the dc_shell
prompt to start the gen_hacf utility and merge the files:

gen_hacf <top-level design name>[<sub-design file list>]

Figure 2 shows a sample dc_shell script, which includes all of the steps for using the gen_iacf and gen_hacf
utilities.

Figure 2. Sample Script for Running the gen_iacf and gen_hacf Utilities

/* Sample dc_shell script for converting hierarchical
Synopsys timing constraints to the ACF format
The example design TOP has 3 lower-level
subdesigns - LOWER1, LOWER2, LOWER3. Only
LOWER1, LOWER2 and TOP designs have constraints. */

link_library = flex10k-3.db
target_library = flex10k-3.db
synthetic_library = flex10k-3.sldb

read -f vhdl LOWER1.vhd
read -f vhdl LOWER2.vhd
read -f vhdl LOWER3.vhd
read -f vhdl TOP.vhd

elaborate LOWER1
current_design=LOWER1

/* Include user-defined timing constraints for LOWER1 */

include timing1.cmd
compile
design_name=LOWER1

/* generate input files for gen_iacf */

include /usr/maxplus2/synopsys/bin/gen_iacf.cmd

/* generate an intermediate ACF (.iacf) file for LOWER1 design */

sh /usr/maxplus2/synopsys/bin/gen_iacf LOWER1

elaborate LOWER2
current_design=LOWER2

/* Include user-defined timing constraints for LOWER2 */

The gen_iacf utility cannot support maximum Clock frequency (fMAX) correctly if more than one Clock skew is
specified in the dc_shell command script. This problem occurs because the Synopsys write_script command
drops the Clock skew information for the registers. The gen_iacf utility will use the last Clock skew number to
calculate fMAX.

Figure 4. Sample ACF Excerpt with Synopsys Timing Constraints

TIMING_POINT
BEGIN
 "|OUT2" : TCO = 15.00ns {synopsys};
 "|IN1" : TPD = 10.00ns {synopsys};
 "|IN2" : TPD = 5.00ns {synopsys};
 "|OUT1" : TCO = 20.00ns {synopsys};

include timing2.cmd
compile
design_name=LOWER2

/* generate input files for gen_iacf */

include /usr/maxplus2/synopsys/bin/gen_iacf.cmd

/* generate an intermediate ACF (.iacf) file for LOWER2 design */

sh /usr/maxplus2/synopsys/bin/gen_iacf LOWER2

elaborate TOP
current_design=TOP

/* Include user-defined timing constraints for TOP */

include timing3.cmd
compile

/* generate a hierarchical EDIF netlist file for
the top-level design before it is flattened by
the gen_iacf.cmd utility */

write -f edif -hierarchy TOP -o TOP.hier.edf

design_name=TOP

/* generate input files for gen_iacf */

include /usr/maxplus2/synopsys/bin/gen_iacf.cmd

/* generate an intermediate ACF (.iacf) file for design TOP */

sh /usr/maxplus2/synopsys/bin/gen_iacf TOP

/* Rename the hierarchical EDIF netlist file generated
earlier to <top level design>.edf, which is required by
gen_hacf utility and MAX+PLUS II */

sh mv TOP.hier.edf TOP.edf

/* Merge all .iacf files to generate the final top-level ACF
File subdesign.list in the following command lists the names
of subdesigns that have timing constraints, one per line.
In this example it has 2 lines, one each for LOWER1 and LOWER2.
Top-level design name should not be specified in this file. */

sh /usr/maxplus2/synopsys/bin/gen_hacf TOP subdesign.list

quit

All timing assignments generated by the gen_iacf utility are written to the Timing Requirement Assignments
Section of the project's ACF, with the assignment source identifier {synopsys} at the end of each line. Figure 4
shows a sample ACF excerpt that contains Synopsys timing constraints generated by the gen_iacf utility.

 "|IN1" : TSU = 20.00ns {synopsys};
 "|IN2" : TSU = 117.00ns {synopsys};
 "|CLK" : FREQUENCY = 50.00ns {synopsys};
 "|n10_reg" : FREQUENCY = 100.00ns {synopsys};
END;

The MAX+PLUS II Compiler flattens the design internally before compiling it, which may convert some of the
ports on the sub-designs into internal or buried nodes. In addition, the gen_iacf and gen_hacf utilities will
correctly pass tCO and tPD assignments made at lower levels of hierarchy to the ACF, but the MAX+PLUS II
Compiler will ignore them and generate one or more warning messages (e.g., Warning: Ignored timing
assignment for tsu|tpd|tco on buried node |TIME_STATE_MACHING:U1|tb1_3:U115|:30). In addition,
hierarchical timing constraints may result in duplicate assignments in the ACF, and the MAX+PLUS II Compiler
could generate an additional warning (e.g., Warning: Ignored redefinition of resources assignment
(logic option assignment) for node 'CLK' Processing . . .).

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Exemplar Logic Galileo
Extreme & MAX+PLUS II Software

Using Exemplar Logic Galileo Extreme & MAX+PLUS
II Software

The following topic describes how to use the Exemplar Logic Galileo Extreme software with MAX+PLUS® II
software. Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS ® II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Design Entry

Design Entry Flow
Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software
Performing a Functional Simulation with QuickHDL Pro Software

Synthesis & Optimization

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Exemplar Logic web site (http://www.exemplar.com)
Mentor Graphics web site (http://www.mentor.com)

Feedback

Did this information help you?

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-galilall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-require.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dir_strc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-file_org.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsn_ntry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-galileo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.exemplar.com/
http://www.mentor.com/

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Exemplar Logic Galileo
ExtremeSpecific Compiler Settings

Exemplar Logic Galileo ExtremeSpecific Compiler
Settings

If you are using MAX+PLUS ® II software to compile a FLEX ® design that was created with Galileo Extreme
software, go through the following additional compilation steps:

1. Choose Global Project Logic Synthesis (Assign menu) to open the Global Project Logic Synthesis dialog
box.

2. Select the appropriate logic synthesis style under Global Project Logic Synthesis Style:

If you turned on the Lock Lcells option under SYNTHESIS SWITCHES in the Galileo Extreme Altera
FLEX Output Options dialog box when synthesizing your design with Galileo Extreme software, select
WYSIWIG in the Global Project Synthesis Style box.

or:

If you did not turn on the Lock Lcells option, select FAST in the Global Project Synthesis Style box.

3. Automatic Fast I/O
Automatic Register Packing
(FLEX 10K devices only) Automatic Implement in EAB

(Optional) Turning on one or more of the following options may help to improve area usage and timing
delays:

4. Choose OK to close the Global Project Logic Synthesis dialog box.

5. Continue with the steps necessary to compile your project, as described in Compiling Projects with
MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Viewlogic Powerview Graphical User
Interface & the Altera Toolbox

Viewlogic Powerview Graphical User Interface & the
Altera Toolbox

Table 1. Max2 Express Drawer Tools

Tool Description
max2_VDraw Launches the Powerview ViewDraw schematic entry tool.

VHDL<->max2 Launches all tools necessary to synthesize a VHDL design, compile for an Altera device, and
generate a .vsm file for simulation with the Powerview ViewSim simulator.

SCH<->max2
Launches all tools necessary to compile a schematic design entered with Powerview ViewDraw
software for an Altera device and to generate a .vsm file for simulation with Powerview ViewSim
and .edo, .sdo, and .vmo files for timing analysis with MOTIVE for Powerview.

max2_VSim Launches the Powerview ViewSim simulator.
max2_VTrace Launches the Powerview ViewTrace simulation waveform editor.
max2_MOTIVE Launches the MOTIVE for Powerview ViewDraw static timing verification tool.

Table 2. Design Tools Drawer Tools

Tool Description
max2_VDraw Launches the Powerview ViewDraw schematic entry tool.
max2_analyzer Launches the Powerview VHDL Analyzer software.
max2_syn Launches the Powerview VHDL synthesis tool.
max2_chk Launches the Powerview schematic verification tool.
max2_vsmnet Launches the Powerview vsm utility that converts a wirelist file into a .vsm file.
max2_VSim Launches the Powerview ViewSim simulator.
max2_VTrace Launches the Powerview ViewTrace simulator.
max2_edifo Launches the Powerview EDIF netlist writer, edifneto.
max2_VGen Launches the Powerview ViewGen utility that generates a schematic from a wirelist file.
max2 Launches the MAX+PLUS II Compiler.
max2_edifi Launches the Powerview EDIF Netlist Reader, edifneti.
max2_vhdl2sym Launches the Powerview vhdl2sym utility that generates a symbol from a VHDL file.

Launches the Powerview Vantage VHDL Library Manager tool.

You use the Powerview graphical interface manager, the Cockpit, and the Altera® Toolbox to start all Powerview
and Altera tools. Within the Altera Toolbox, you can specify the Max2 Express Drawer or the Design Tools Drawer
to work with the Altera/Viewlogic Powerview interface.

The Max2 Express Drawer provides a quick and seamless way to transfer designs created in Powerview to the
MAX+PLUS® II software for compilation, then return the compiled designs to Powerview for simulation and
timing verification. Table 1 describes the Max2 Express Drawer tools.

The Design Tools Drawer provides tools that enable you to create a design with the Powerview tools, compile the
design in the MAX+PLUS II software, and simulate and verify the design with Powerview software. Table 2
describes the Design Tools Drawer tools.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

max2_VantgMgr
max2_VantgAnlz Launches the Vantage VHDL Analyzer software.
max2_VCS Launches the Fusion/VCS Simulator.
max2_MOTIVE Launches the MOTIVE for Powerview static timing verification tool.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Analyzing VHDL or Verilog HDL
Designs with the Synplify HDL Analyst

Analyzing VHDL or Verilog HDL Designs with the
Synplify HDL Analyst

You can use the optional Synplify HDL Analyst to analyze and evaluate the performance of your design
graphically. The Synplify HDL Analyst instantly generates Register Transfer Level (RTL) schematics, as well as
technology-mapped, gate-level schematics. You can instantly identify and fix potential problems earlier in the
design cycle by cross-probing between the RTL schematics, gate-level schematics, and HDL source code. The
Synplify HDL Analyst also highlights critical paths within the design to show which signals require optimization
for performance. After you determine the critical speed paths, you can add timing constraints either to the VHDL or
Verilog HDL source file or to a separate Synplify Design Constraints File (.sdc) to improve design performance.

To use the Synplify HDL Analyst after synthesizing your design with Synplify software, go through the following
steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Synplicity Working Environment.

2. Create a VHDL or Verilog HDL design and save it in your working directory, as described in Creating
VHDL Designs for Use with MAX+PLUS II Software or Creating Verilog HDL Designs for Use with
MAX+PLUS II Software.

3. Synthesize and optimize your VHDL or Verilog HDL design with Synplify software, as described in
Synthesizing & Optimizing VHDL or Verilog HDL Files with Synplify Software.

4. Choose an HDL Analyst view:

Choose RTL View (HDL_Analyst menu) to view the RTL schematic. When you select this view, the
HDL Analyst displays a graphical representation of the design and the mouse pointer becomes a plus (+)
symbol.

or:

Choose Technology View (HDL_Analyst menu) to view the gate-level schematic. When you select this
view, the HDL Analyst displays a graphical representation of the design and the mouse pointer becomes a
plus (+) symbol.

5. In either the RTL or Technology View, perform one or more of the following actions:

Double-click the plus (+) symbol pointer on a port name or symbol to cross-probe your VHDL or
Verilog HDL source design files.

Because Synplify combines the a + b and a - b operations, cross-probing will highlight the
Case Statement that defines both functions.

Choose Find (HDL_Analyst menu) to select specific signals quickly in your design.

Choose Show Critical Path (HDL_Analyst menu) to highlight the critical paths in the design.

Select Filter Schematic (HDL_Analyst menu) to show only the nodes you have selected.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpvhdl.html?csf=1&web=1

6. If necessary, correct the design and repeat the steps described in Synthesizing & Optimizing VHDL or
Verilog HDL Files with Synplify Software.

7. Process your design with the MAX+PLUS II Compiler, as described in Compiling Projects with
MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpvhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpvhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Functional Simulation of
a Concept Schematic with the hdlconfig Utility & Verilog-XL Software

Performing a Functional Simulation of a Concept
Schematic with the hdlconfig Utility & Verilog-XL
Software

You can perform a functional simulation of a Concept schematic with the hdlconfig utility and Verilog-XL
software before compiling your project with the MAX+PLUS® II software.

To functionally simulate a Concept schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

3. Use the hdlconfig utility to create a Verilog HDL text file that contains the entire design. Type the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

hdlconfig -a -c -r <design name> -o <design name>.v logic verilog_lib

4. If your design contains RAM or ROM functions (e.g., lpm_ram_dq, lpm_ram_io, lpm_rom, scfifo, dcfifo,
altdpram, and csdpram), run the vconfig utility to link the object convert_hex2ver.o to build a new Verilog-
XL file that supports these functions by following these steps:

1. Create a copy of the Verilog executable file by typing the following command at the UNIX prompt:

cp -p $CDS_INST_DIR/tools/verilog/bin/verilog $CDS_INST_DIR/tools /verilog/bin/
verilog.bak.

2. Type vconfig at the UNIX prompt from the /usr/maxplus2/cadence/bin directory to start the
script.

3. Accept cr_vlog as the name of the output script.

4. Accept 1 as the stand-alone target.

5. Type new_verilog as the name for the Verilog-XL target.

6. Respond Yes when you are prompted to compile for the Verilog-XL environment.

7. Respond No when you are prompted to include the Dynamic LAI, STATIC LOGIC AUTOMATION,
LMSI HARDWARE MODELER, Verilog Mixed-Signal, and CDC interfaces in this executable.

8. Respond Yes when you are prompted to include the Standard Delay File Annotator (SDF).

9. Specify /usr/maxplus2/verilog/veriuser.c when you are asked the name of the user template file. For
more information about the contents of the veriuser.c file, you can refer to the veriuser.doc file, which
is available in the Cadence Openbook product documentation. To locate this document, start
Openbook, and choose Alphabetical List of Products from the main menu. Scroll through the pages
until you locate the PLI 1.0 User Guide & Reference in the PLI section, and then continue to scroll

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

through the document until you locate the veriuser.doc file under "Section A" and "PLI Code
Examples."

10. When you are asked the name of files to be linked with the Verilog-XL simulator, specify the
hexadecimal (Intel-format) conversion file /usr/maxplus2/cadence/share/verilog/convert_hex2ver.o,
followed by a single period (.).

11. Run the output script cr_vlog to build the new Verilog-XL executable in the
/usr/maxplus2/cadence/bin directory. Make sure that the $CDS_INST_DIR/tools/bin path appears at
the beginning of the PATH statement in the .cshrc file.

12. If your C language library installation is different from the default location /usr/lang/SC3.0.1, type the
following command at the UNIX prompt:

setenv C_DIR <C language library installation directory>

13. If successful, replace the old Verilog executable file with the new one by typing the following
command at the UNIX prompt:

cp -p new_verilog $CDS_INST_DIR/tools/verilog/bin/verilog

1. Generate the stimulus file for the design and start the Verilog-XL simulator by typing the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

verilog -y /usr/maxplus2/simlib/concept/alt_max2/verilogUdps +libext+.v+.V <stimulus
file name> <design name>.v

2. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the
concept2alt utility, as described in Converting Concept Schematics into MAX+PLUS II-Compatible
EDIF Netlist Files with the concept2alt Utility.

3. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling
Projects with MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all
liability for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Creating VHDL & Verilog HDL
Designs for Use with MAX+PLUSÂ II Software

Creating VHDL & Verilog HDL Designs for Use with
MAX+PLUSÂ II Software

You can create VHDL and Verilog HDL design files with the MAX+PLUS Â® Â II Text Editor or another standard
text editor and save them in the appropriate directory for your project.

The MAX+PLUSÂ II Text Editor offers the following advantages:

Templates are available with the VHDL Templates and Verilog Templates commands (Template menu).
These templates are also available in the ASCII vhdl.tmp and verilog.tmp files, respectively, which are
located in the /usr/maxplus2 directory.

If you use the MAX+PLUSÂ II Text Editor to create your VHDL design, you can turn on the Syntax
Coloring command (Options menu). The Syntax Coloring feature displays keywords and other elements of
text in text files in different colors to distinguish them from other forms of syntax.

To create a VHDL or Verilog HDL design file for use with the MAX+PLUSÂ II software, go through the
following steps:

1. Enter a VHDL or Verilog HDL design in the MAX+PLUSÂ II Text Editor or another standard text editor
and save it in your working directory.

2. Enter primitives, macrofunctions, and megafunctions in your VHDL or Verilog HDL design from the Altera
library.

The following topics describe special steps needed to instantiate LPM and clklock functions:

Instantiating LPM Functions in VHDL
Instantiating the clklock Megafunction in VHDL or VerilogÂ HDL

You can instantiate MegaCore™ functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP™). The OpenCore™ feature in the MAX+PLUSÂ II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. (Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a
Functional Simulation with QuickHDL Software and Performing a Functional Simulation with QuickHDL
Pro Software.

4. Once you have created a VHDL or Verilog HDL design, you can generate an EDIF netlist file that can be
imported into the MAX+PLUSÂ II software with either of the following methods:

You can synthesize and optimize your design and create an EDIF netlist file, as described in
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software or
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software.

You can use the Altera VHDL Express utility, vhd_exprss, to automatically create an EDIF netlist file,
compile it with the MAX+PLUSÂ II Compiler, generate an EDIF Output File (.edo), and prepare the
EDIF Output File for simulation with QuickHDL software, as described in Using the Altera Schematic
Express (vhd_exprss) Utility.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1#GENLIB
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdl_lpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-galileo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leonardo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1

Installing the AlteraÂprovided MAX+PLUSÂ II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL design files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Links:

Go to Compiling Projects with MAX+PLUSÂ II Software in these MAX+PLUSÂ II ACCESSSM Key topics
for related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Creating Hierarchical Projects in
Concept Schematics

Creating Hierarchical Projects in Concept Schematics
If you wish to create a hierarchical design that contains symbols representing other design files, such as Altera®

Hardware Description Language (AHDL) Text Design Files (.tdf), you can create a hollow-body symbol that
represents a design file and then instantiate it in your Composer schematic.

To create a hierarchical project in your Composer schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Cadence Working Environment.

2. Create a Composer schematic and save it in your working directory, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Create the hollow-body symbol <design name> in Composer by typing icds from the <working
directory> at the UNIX prompt.

4. Choose Library Path Editor (Tools menu) to create the <design name> library. Type <design name> as the
Library name and ./source/<design name> as the Path name. Choose Save (File menu), then choose Exit
(File menu) to save the path and exit from the Library Path Editor.

5. Choose Library Manager (Tools menu) to start Composer and create a symbol for your design. Type
<project directory name> as the Library name, <lower-level design name> as the Cell name, symbol as the
View name, and then press .

6. Create a hollow-body symbol that represents the inputs and outputs of your design.

7. Enter input and output pins for the symbol.

8. Save the symbol.

9. To enter the symbol in your higher-level schematic design, choose the Component button and type <project
directory name> as the Library name, <lower-level design name> as the Cell name, and symbol as the View
name.

10. The MAX+PLUS II software uses the cadence.lmf Library Mapping File to map Concept symbols to
equivalent MAX+PLUS II logic functions. To use custom symbols, you must create a custom LMF that maps
your custom symbols to the equivalent EDIF Input File, Text Design File (TDF), or other design file. You
will also need to specify this custom LMF in the EDIF Netlist Reader Settings dialog box before compiling
with the MAX+PLUS II software. See Compiling Projects with MAX+PLUS II Software for more
information.

11. Continue with the steps necessary to complete your Composer schematic, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1

following sample hierarchical AHDL and Composer schematic file:

/usr/maxplus2/examples/cadence/example5/fulladd2

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

If you wish to create a hierarchical design that contains symbols representing other MAX+PLUS II-supported
design files, such as Altera® Hardware Description Language (AHDL) Text Design Files (.tdf), you can create a
hollow-body symbol that represents a design file and then instantiate it in your Concept schematic. To create a
hierarchical project in your Concept schematic, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Create the hollow-body symbol <design name> in Concept by typing the following command from the
<working directory>/source directory that contains the lower-level design file <design name>.<extension>:

concept <design name>.body

4. Create a part file to indicate that the body is hollow:

1. Add the DEFINE and DRAWING bodies to the part drawing. These bodies should be the only two bodies in
the drawing.

2. Add the TITLE=<design name> and the ABBREV=<design name> properties to the DRAWING body to
identify the drawing.

3. Save the part drawing with the name <design name>.part.1.1.

5. Regardless of the hardware description language (HDL) or schematic editor used to create the design, you
must create a dummy Verilog HDL module to indicate to the concept2alt utility that the design is a "black
box" that must pass untouched through the EDIF netlist file.

1. Type genview verilog in the Concept window.

2. Type logic when prompted for the Verilog View name.

3. If you are using VerilogLink, you must type genview verilog again, then type verilog_lib when

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1

prompted for the Verilog View name.

4. Type cd <design name>/logic at the UNIX prompt from the /source directory to change to the
/source/<design name>/logic directory.

5. Edit the verilog.v file to add the cds_action = "ignore" parameter setting after the Input
Declarations and Output Declarations sections. This parameter setting specifies that the <design name>
should be treated as a "black box."

6. To enter the symbol in the higher-level Concept schematic, choose the Add Part button, choose the name of
the working SCALD directory, then choose the <design name> symbol from the Symbol menu.

7. The MAX+PLUS II software uses the cadence.lmf Library Mapping File to map Concept symbols to
equivalent MAX+PLUS II logic functions. To use custom symbols, you must create a custom LMF that maps
your custom symbols to the equivalent EDIF Input File, Text Design File (TDF), or other design file. You
will also need to specify this custom LMF in the EDIF Netlist Reader Settings dialog box before compiling
with the MAX+PLUS II software. See Compiling Projects with MAX+PLUS II Software for more
information.

8. Continue with the steps necessary to complete your Concept schematic, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample hierarchical AHDL and Concept schematic file:

/usr/maxplus2/examples/cadence/example4/fulladd2

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Creating Hierarchical Projects with
Design Architect Software

Creating Hierarchical Projects with Design Architect
Software

If you wish to create a hierarchical schematic design that contains symbols representing other design files, such as
AHDL Text Design Files (.tdf), VHDL Design Files (.vhd), or Verilog Design Files (.v), you can create a hollow-
body symbol for the design file and then instantiate it in your top-level design file.

To create a hollow-body symbol for a lower-level design file, follow these steps:

1. (Optional) If you are creating a hollow-body symbol for a VHDL or Verilog HDL design file, you can first
functionally simulate the VHDL or Verilog HDL file, as described in Performing a Functional Simulation
with QuickHDL Software.

2. Start the Design Architect software by double-clicking Button 1 on the max2_da icon in the Design Manager
tools window. You can also start Design Architect software by typing max2_da at the UNIX prompt.

3. Choose the OPEN SYMBOL button in the Design Architect session_palette to open the Symbol Editor.
Type the lower-level design file name, including the directory path, in the Component Name box. Choose
OK.

4. Create a symbol that represents the inputs and outputs of the lower-level file.

5. Assign PINTYPE properties of IN or OUT to the inputs and outputs of the symbol, and assign appropriate values
to any other properties of the symbol so that it can be identified in the top-level schematic.

If you are creating a hollow-body symbol for a VHDL design file, be sure to assign the value qvpro to
the symbol's model property so that it can be identified as a VHDL component in the top-level
schematic.

6. Check and save the symbol, then close the Symbol Editor.

7. To enter the symbol, choose the CHOOSE SYMBOL button from the Design Architect session_palette.

8. Select the symbol file from the Navigator menu and choose OK.

9. The MAX+PLUS® II software uses the Altera® provided mnt8_bas.lmf Library Mapping File to map
Design Architect symbols to equivalent MAX+PLUS II logic functions. To use custom symbols, you must
create a custom LMF that maps your custom symbols to the equivalent EDIF Input File, Text Design File
(TDF), or other design file. You will also need to specify this LMF in the EDIF Netlist Reader Settings
dialog box before compiling the design with the MAX+PLUS II software. See Compiling Projects with
MAX+PLUS II Software for more information.

10. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUS II Software.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample hierarchical Design Architect schematic file
/usr/maxplus2/examples/mentor/example3/fulladd2.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/Viewlogic Powerview
Timing Verification Flow

MAX+PLUS II/Viewlogic Powerview Timing
Verification Flow

Figure 1 shows the timing verification flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Project Timing Verification Flow

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Initializing Registers in VHDL &
Verilog Output Files for Power-Up before Simulation

Initializing Registers in VHDL & Verilog Output Files
for Power-Up before Simulation

1. The add_dc script gives a message if the directory contains both a VHDL Output File and a Verilog Output
File with the same name (<design name>.vo and <design>.vho). You should delete or rename whichever
of those files should not have the device_clear signal added. The add_dc script can modify only one
design file at a time.

2. When the add_dc script processes the Verilog Output File or VHDL Output File, it creates a backup copy
of the original file, with the extension .ori.

3. The add_dc script works only for Verilog Output Files and VHDL Output Files that are generated by
MAX+PLUS II.

Altera provides the add_dc script, which is availiable in the MAX+PLUS II system directory, to allow you to
process MAX+PLUS II-generated Verilog Output Files (.vo) and VHDL Output Files (.vho) to prepare these files
for simulation with another EDA tool. The add_dc script runs the add_dclr utility, which inserts a device_clear
signal that is used for power-up initialization of all registers or flipflops in the design.

The script adds in a top-level signal named device_clear and connects it to the CLRN pin in all flipflops that should
initialize to 0, and to the PRN pin of all flipflops that should initialize to 1. If the CLRN or PRN pin of a flipflop is
already being used (i.e., is already connected to a signal), the script modifies the Verilog Output File or VHDL
Output File so that the AND of the original signal and the device_clear pin feed the CLRN or PRN pin.

To use the add_dc script to process Verilog Output Files and VHDL Output Files before simulation with another
EDA tool, follow these steps:

1. Make sure that your design file is located in the current directory, or change to the directory in which the
design file is located.

2. Type the following command at the command prompt:

Â¥<path name of add_dc.bat file>Â¥add_dc <design name> <path name of add_dclr.exe file>

For example, if the both the add_dc.bat and the add_dclr.exe files are located in the d:Â¥maxplus2Â¥exew
directory, and the d:Â¥maxplus2Â¥exew directory is specified in the search path, you can type the following
command at a command prompt to add a device_clear signal to a design named myfifo in the file myfifo.vo:

add_dc myfifo d:Â¥maxplus2Â¥exew

After you have used the add_dc script and are ready to simulate the resulting Verilog Output File or VHDL Output
File with another EDA tool, you should assert the active low device_clear pin for a period of time that is long
enough for the design to initialize. You can then de-assert the pin, and apply simulation vectors to the design.

Feedback

Did this information help you?

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Altera VHDL & Verilog HDL alt_mf
Logic Function Library

Altera VHDL & Verilog HDL alt_mf Logic Function
Library

Table 1. Altera-Provided Architecture Control Logic Functions

Name Description
a_8fadd 8-bit full adder
a_8mcomp 8-bit magnitude comparator
a_8count 8-bit up/down counter
a_81mux 8-to-1 multiplexer

For detailed information on these functions, choose Search for Help on from the MAX+PLUS® II Help menu
and type the function name, without the "a_" prefix.

File: Description:
mf.vhd Contains behavioral VHDL descriptions of the logic functions.
mf_components.vhd Contains VHDL Component Declarations for the logic functions.
mf.v Contains behavioral Verilog HDL descriptions of the logic functions.

The alt_mf library contains behavioral VHDL and Verilog HDL models of the Altera® logic functions shown in
Table 1. VHDL or Verilog HDL files that instantiate these functions can be simulated with the VHDL System
Simulator (VSS) software or the Cadence Verilog-XL simulator, respectively, both before and after being compiled
with the Synopsys Design Compiler or FPGA Compiler software.

The behavioral descriptions of these four functions are contained in the
/usr/maxplus2/synopsys/library/alt_mf/src directory, which contains the following files:

If you wish to simulate a VHDL design containing these logic functions, you can use the Altera-provided shell
script analyze_vss to create a design library called altera. This library allows you to reference the functions
through the VHDL Library and Use Clauses, which direct the Design Compiler or FPGA Compiler software to
incorporate the library files when it compiles your top-level design file. The analyze_vss shell script creates the
altera design library by analyzing the VHDL System Simulator (VSS) simulation models in the
/usr/maxplus2/synopsys/library/alt_mf/lib directory. See Setting Up VSS Configuration Files for more
information on using the analyze_vss shell script.

Complete VHDL and Verilog HDL behavioral descriptions of these logic functions are included in the mf.vhd and
mf.v files so that you can optionally retarget your design to other technology libraries.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vssconfig.html?csf=1&web=1
https://mysupport.altera.com/eservice/

for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating RAM & ROM Functions
in VHDL

Instantiating RAM & ROM Functions in VHDL
The MAX+PLUS® II /Synopsys interface offers full support for the memory capabilities of the FLEX® 10K device
family, including synchronous and asynchronous RAM and ROM, cycle-shared dual port RAM, dual-port RAM,
single-Clock FIFO, and dual-clock FIFO functions. You can use the Altera® -provided genmem utility to generate
functional simulation models and timing models for these functions. Type genmem at the UNIX prompt to display
information on how to use this utility, as well as a list of the functions you can generate.

To instantiate a RAM or ROM function in VHDL, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX prompt:

genmem <memory type> <memory size> -vhdl

For example: genmem asynrom 256x15 -vhdl

2. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name> function.

Figure 1 shows a VHDL design that instantiates asyn_rom_256x15.vhd, a 256 x 15 ROM function.

Figure 1. VHDL Design File with ROM Instantiation (tstrom.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tstrom IS
 PORT (
 addr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 memenab : IN STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR (14 DOWNTO 0));
END tstrom;

ARCHITECTURE behavior OF tstrom IS

COMPONENT asyn_rom_256x15
-- pragma translate_off
 GENERIC (LPM_FILE : string);

-- pragma translate_on
 PORT (Address : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 MemEnab : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(14 DOWNTO 0)
);
END COMPONENT;

BEGIN

 u1: asyn_rom_256x15
-- pragma translate_off
 GENERIC MAP (LPM_FILE => "u1.hex")
-- pragma translate_on
 PORT MAP (Address => addr, MemEnab => memenab, Q =>q);

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

END behavior;

3. (Optional for RAM functions) Specify an initial memory content file:
For ROM functions, you must specify the filename of an initial memory content file in the Intel
hexadecimal format (.hex) or the Altera® Memory Initialization File (.mif) format in the Generic Map
Clause, with the LPM_FILE parameter. See Figure 1. The filename must be the same as the instance
name; e.g., the u1 instance name must be unique throughout the whole project, and must contain only
valid VHDL name characters. The initialization file must reside in the directory containing the project's
design files.
For RAM functions, specifying a memory initialization file is optional. If you want to use it, you must
specify it in the Generic Map Clause as described above. If you do not use an initialization file, you
should not declare or use the Generic Clause.

1. The MIF format is supported only for specifying initial memory content when compiling designs
within MAX+PLUS II software. You cannot use a MIF to perform simulation with Synopsys
tools prior to MAX+PLUS II compilation.

2. If you use an Intel hexadecimal format file and wish to simulate the design with the VHDL
System Simulator (VSS) after MAX+PLUS II compilation, you should use the Synopsys
intelhex utility to translate the Intel hexadecimal fomat file into a VSS-compatible Synopsys
memory file. Refer to the Synopsys VHDL System Simulator Software Tool manual for details
about using the intelhex utility.

4. In the VHDL design file, add the compiler directive -- pragma translate_off before the Generic
Clause and Generic Map Clause, and add -- pragma translate_on after the Generic Clause and Generic
Map Clause. These directives tell the VHDL Compiler software when to stop and start synthesizing. For
example, in Figure 1, the --pragma translate_off directive instructs the VHDL Compiler software to skip
syntax checking until the --pragma translate_on directive is read.

5. Because the VHDL Compiler software does not support the data type string for the Generic Clause, you
must also enter the following command before you read the design:

hdlin_translate_off_skip_text=true

6. The timing model (.lib) generated by the genmem utility contains pin-to-pin delay information that can be
used by the Synopsys Design Compiler and FPGA Compiler software. You must add this timing model to the
existing library so that the compiler can access the timing information. Type the following commands at the
dc_shell prompt:
read -f db flex10k[<speed grade>].db
update_lib flex10k[<speed grade>] <RAM/ROM function name>.lib

7. (Optional) Enter the following command to update your flex10k[<speed grade>].db file with the
RAM/ROM timing information:

write_lib flex10k[<speed grade>] -o flex10k.db

8. When you generate the EDIF netlist file from the design, include the bus structure from the RAM or ROM
function(s). Go to Setting Up Synopsys Configuration Files for more information.

9. Continue with the steps necessary to complete your VHDL design, as described in Creating VHDL Designs
for Use with MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlproc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlproc.html?csf=1&web=1
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating RAM & ROM Functions
in Verilog HDL

Instantiating RAM & ROM Functions in Verilog HDL
The MAX+PLUS® II /Synopsys interface offers full support for the memory capabilities of the FLEX® 10K device
family, including synchronous and asynchronous RAM and ROM, cycle-shared dual port RAM, dual-port RAM,
single-Clock FIFO, and dual-clock FIFO functions. You can use the Altera® -provided genmem utility to generate
functional simulation models and timing models for these functions. Type genmem at the UNIX prompt to display
information on how to use this utility, as well as a list of the functions you can generate.

To instantiate a RAM or ROM function in Verilog HDL, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX prompt:

genmem <memory type> <memory size> -verilog

For example: genmem asynrom 256x15 -verilog

2. Create a Verilog HDL design that instantiates the <memory name> function.

Figure 1 shows a Verilog HDL design that instantiates asyn_rom_256x15.v, a 256 x 15 ROM function.

Figure 1. Verilog HDL File with ROM Instantiation (tstrom.v)

module tstrom (addr, enab, q);
parameter LPM_FILE = "u1.hex"
input [7:0] addr;
input enab;
output [14:0] q;

asyn_rom_256x15
// synopsys translate_off
 #(LPM_FILE)

// synopsys translate_on
 u1 (.Address(addr), .Q(q), .MemEnab(enab));

endmodule

3. (Optional for RAM functions) Specify an initial memory content file:
For ROM functions, you must specify the filename of an initial memory content file in the Intel
hexadecimal format (.hex) or the Altera® Memory Initialization File (.mif) format in the Parameter
Statement, with the LPM_FILE parameter. See Figure 1. The filename must be the same as the instance
name; e.g., the u1 instance name must be unique throughout the whole project. The initialization file
must reside in the directory containing the project's design files.
For RAM functions, specifying a memory initialization file is optional. If you want to use it, you must
specify it in a Parameter Statement, as described above.

1. The MIF format is supported only for specifying initial memory content when compiling designs
within MAX+PLUS II software. You cannot use a MIF to perform simulation with Synopsys
tools prior to MAX+PLUS II compilation.

2. If you use an Intel hexadecimal format file and wish to simulate the design with the VHDL
System Simulator (VSS) after MAX+PLUS II compilation, you should use the Synopsys

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

intelhex utility to translate the Intel hexadecimal fomat file into a VSS-compatible Synopsys
memory file. Refer to the Synopsys VHDL System Simulator Software Tool manual for details
about using the intelhex utility.

4. In the Verilog HDL design, add // synopsys translate_off before the Parameter Statement, and add
// synopsys translate_on after the Parameter Statement. These directives tell the HDL Compiler for
Verilog when to stop and start synthesizing. See Figure 1.

5. The timing model (.lib) generated by the genmem utility contains pin-to-pin delay information that can be
used by the Synopsys Design Compiler and FPGA Compiler software. You must add this timing model to the
existing library so that the compiler can access the timing information. Type the following commands at the
dc_shell prompt:
read -f db flex10k[<speed grade>].db
update_lib flex10k[<speed grade>] <RAM/ROM function name>.lib

6. (Optional) Include the following command to update your flex10k[<speed grade>].db file with the
RAM/ROM timing information:

write_lib flex10k[<speed grade>] -o flex10k.db

7. When you generate the EDIF netlist file from the design, include the bus structure from the RAM or ROM
function(s). Go to Setting Up Synopsys Configuration Files for more information.

8. Continue with the steps necessary to complete your Verilog HDL design, as described in Creating Verilog
HDL Designs for Use with MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vproc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vproc.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II Architecture Control
Logic Function Instantiation Example for VHDL

MAX+PLUS II Architecture Control Logic Function
Instantiation Example for VHDL

Figure 1. Sample VHDL File with Logic Function Instantiation

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

LIBRARY altera;
USE altera.maxplus2.ALL;

ENTITY counter IS
PORT (clock,ena,load,dnup,set,clear : IN STD_LOGIC;
 i : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

cout : OUT STD_LOGIC);
END counter;

ARCHITECTURE structure OF counter IS

BEGIN
 u1 : a_8count

PORT MAP (a=>i(0), b=>i(1), c=>i(2), d=>i(3), e=>i(4),
 f=>i(5), g=>i(6), h=>i(7), ldn=>load, gn=>ena,
 dnup=>dnup, setn=>set, clrn=>clear, clk=>clock,

You can instantiate Altera® -provided logic functions from the alt_mf library, which includes the a_8fadd,
a_8mcomp, a_8count, and a_81mux functions, in VHDL designs. Altera provides behavioral descriptions of these
functions that support pre-synthesis/pre-route simulation of your top-level design with the VHDL System Simulator
(VSS).

When you instantiate one of these functions, you can either include a Component Declaration for the function, or
use the Altera-provided shell script analyze_vss to create a design library called altera so that you can reference
the functions through the VHDL Library and Use Clauses. The Library and Use Clauses direct the Design Compiler
or FPGA Compiler to incorporate the library files when it compiles your top-level design file. The analyze_vss
shell script creates the altera design library when it analyzes the VSS simulation models in the
/usr/maxplus2/synopsys/library/alt_mf/lib directory. See Setting up VSS Configuration Files for more
information on using the analyze_vss shell script.

Figure 1 shows an example of an 8-bit counter that is instantiated using the a_8count function.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vssconfig.html?csf=1&web=1

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3), qe=>q(4),
 qf=>q(5), qg=>q(6), qh=>q(7), cout=>cout);

END structure;

CONFIGURATION conf OF counter IS
 FOR structure
 END FOR;
END conf;

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II Architecture Control
Logic Function Instantiation Example for Verilog HDL

MAX+PLUS II Architecture Control Logic Function
Instantiation Example for Verilog HDL

You can instantiate Altera® -provided logic functions from the alt_mf library, which includes the a_8fadd,
a_8mcomp, a_8count, and a_81mux functions, in Verilog HDL designs. Altera provides behavioral Verilog HDL
descriptions of these functions.

Figure 1 shows an example of an 8-bit counter that is instantiated using the a_8count function. Because Verilog
HDL is case-sensitive, be sure to use uppercase letters for all of the macrofunction's module names and port names.

Figure 1. Sample Verilog HDL File with Logic Function Instantiation (counter.v)

module counter (clock, ena, load, dnup, set, clear, i, q, cout);
output cout;
output[7:0] q;
input[7:0] i;
input clock, ena, load, dnup, set, clear;
A_8COUNT u1 (.A(i[0]), .B(i[1]), .C(i[2]), .D(i[3]),
 .E(i[4]), .F(i[5]), .G(i[6]), .H(i[7]),
 .LDN(load), .GN(ena), .DNUP(dnup), .SETN(set),
 .CLRN(clear), .CLK(clock), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]),
 .QG(q[6]), .QH(q[7]), .COUT(cout));
endmodule

The sample file shown in Figure 1 can be synthesized with the Design Compiler or FPGA Compiler. You can also
simulate it with the Cadence Verilog-XL Simulator by typing the following command at the dc_shell prompt:

verilog counter.v /usr/maxplus2/synopsys/library/alt_mf/src/mf.v

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Primitive & Old-Style Macrofunction
Instantiation Example for Verilog HDL

Primitive & Old-Style Macrofunction Instantiation
Example for Verilog HDL

Go to the following topics for information and examples of how to instantiate functions that are not considered to
be hollow bodies, including functions in the alt_mf library, RAM and ROM, and the clklock megafunction:

Architecture Control Macrofunction Instantiation Example for Verilog HDL
Instantiating RAM & ROM Functions in Verilog HDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Figure 1 shows a 4-bit full adder with registered output that also instantiates an AGLOBAL or GLOBAL
primitive. This figure also illustrates the use of global Clock and global Reset pins in the MAX 7000

architecture. The design uses an old-style 7483 macrofunction, which is represented as a hollow body named fa4.

Figure 1. 4-Bit Adder Design with Registered Output (adder.v)

module adder (a, b, clk, rst, cout, regsum);

output cout;
output[4:1] regsum;
input[4:1] a, b;
input clk, rst;
wire[4:1] sum;
reg[4:1] regsum_int;
wire grst, gclk;
wire ci;
assign ci = 0;

// module instantiation
fa4 u0 (.c0(ci), .a1(a[1]), .b1(b[1]), .a2(a[2]),
 .b2(b[2]), .a3(a[3]), .b3(b[3]), .a4(a[4]),
 .b4(b[4]), .s1(sum[1]), .s2(sum[2]),
 .s3(sum[3]), .s4(sum[4]), .c4(cout));
// For FLEX devices, GLOBAL, A_IN, and A_OUT should be replaced
// with AGLOBAL, IN1, and Y, respectively
GLOBAL u1 (.A_IN(clk), .A_OUT(gclk));
GLOBAL u2 (.A_IN(rst), .A_OUT(grst));

You can instantiate the MAX+PLUS® II primitives listed in Design Compiler & FPGA Compiler Technology
Libraries in Verilog HDL designs. These primitives can be used to control synthesis in the MAX+PLUS II
software. You can also instantiate MAX+PLUS II megafunctions and old-style macrofunctions.

Unlike other logic functions, MAX+PLUS II primitives do not need to be defined with hollow-body functions
unless you wish to simulate the design with the VHDL System Simulator (VSS) software. Any references to these
primitives are resolved by the Synopsys compilers. All buffer primitives except the ATRIBUF and TRIBUF primitives
also have a "don't touch" attribute already assigned to them, which prevents the Synopsys compilers from
optimizing them. The Synopsys compilers also automatically treat mega- and macrofunctions that do not have
corresponding synthesis library models as "black boxes."

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insaltmv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inrromv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-phoo.html?csf=1&web=1

always @(posedge gclk or negedge grst)
 if (!grst)
 regsum_int = 4'b0;
 else regsum_int = sum;
assign regsum = regsum_int;
endmodule

// module declaration for fa4 module
module fa4 (c0, a1, b1, a2, b2, a3, b3, a4, b4, s1, s2, s3, s4, c4);

output s1, s2, s3, s4, c4;
 input c0, a1, b1, a2, b2, a3, b3, a4, b4;
 endmodule

// module declaration for GLOBAL primitive
// For FLEX devices, GLOBAL, A_IN, and A_OUT should be replaced
// with AGLOBAL, IN1, and Y, respectively
module GLOBAL (A_OUT, A_IN);

input A_IN;
 output A_OUT;
 endmodule

Figure 2. Hollow-Body Description of a 4-Bit Full Adder (7483)

module fa4 (c0, a1, b1, a2, b2, a3, b3, a4, b4, s1, s2, s3, s4, c4);
 output s1, s2, s3, s4, c4;
 input c0, a1, b1, a2, b2, a3, b3, a4, b4;
 endmodule

You can analyze the 4-bit adder design with the Synopsys HDL Compiler for Verilog software. The hollow-body
description of the fa4 function is required. It contains port declarations and does not include any information about
the design's function or operation. However, the hollow-body description can be in the design file, as shown in
Figure 1, or in a separate file, as shown in Figure 2.

If the hollow-body description is in a separate file, you must analyze it before analyzing the higher-level function
with the HDL Compiler for Verilog to produce a hollow-body component. This component contains a single level
of hierarchy with input and output pins, but does not contain any underlying logic.

You can save the synthesized design as an EDIF netlist file (.edf) and compile it with the MAX+PLUS II software.
After the HDL Compiler for Verilog software has successfully processed the design, it generates the schematic
shown in Figure 3, which you can view with the Design Analyzer software.

Figure 3. Library Mapping File Excerpt for fa4

BEGIN
FUNCTION 7483 (c0, a1, b1, a2, b2, a3, b3, a4, b4,)
RETURNS (s1, s2, s3, s4, c4)

FUNCTION "fa4" ("c0", "a1", "b1", "a2", "b2", "a3",
 "b3","a4", "b4")
RETURNS ("s1", "s2", "s3", "s4", "c4")
END

Figure 3. Synthesized Design Generated by the Design Compiler

However, before you compile the EDIF netlist file with the MAX+PLUS II software, you must create the
adder.lmf file, shown in Figure 3, to map the fa4 function to the equivalent MAX+PLUS II function (7483). You
must then specify the LMF as LMF #2 in the expanded EDIF Netlist Reader Settings dialog box (Interfaces
menu) (LMF #1 is altsyn.lmf). For more information about creating LMFs, refer to "Library Mapping Files (.lmf)"
and "Library Mapping File Format" in MAX+PLUS II Help.

When you compile the design with the MAX+PLUS II software, you can disregard the warning "EDIF cell
<name> already has LMF mapping so CONTENTS construct has been ignored". To verify the global Clock
and global Reset usage, as well as the number of logic cells used, see the adder.rpt Report File generated by the
MAX+PLUS II Compiler.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Setting Up the MAX+PLUS
II/Cadence Working Environment

Setting Up the MAX+PLUS II/Cadence Working
Environment

The information presented here assumes that you are using the C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

To use MAX+PLUS® II software with Cadence software, you must first install the MAX+PLUS II software, then
establish an environment that facilitates entering and processing designs. The MAX+PLUS II/Cadence interface is
installed automatically when you install the MAX+PLUS II software on your computer. Go to MAX+PLUS II
Installation in the MAX+PLUS II Getting Started manual for more information on installation and details on the
directories that are created during MAX+PLUS II installation. Go to MAX+PLUS II/Cadence Interface File
Organization for information about the MAX+PLUS II/Cadence directories that are created during MAX+PLUS II
installation.

To set up your working environment for the MAX+PLUS II/Cadence interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Cadence software versions described in the
MAX+PLUS II/Cadence Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2

setenv CDS_INST_DIR <Cadence system directory path>

3. Add the $ALT_HOME/cadence/bin and $CDS_INST_DIR/tools/bin directories to the PATH environment
variable in your .cshrc file. Make sure these paths are placed before the Cadence hierarchy path.

4. Add /usr/dt/lib and /usr/ucb/lib to the LD_LIBRARY_PATH environment variable in your .cshrc file.

5. Create a new cds.lib file in your working directory or edit an existing one so that it includes all of the
following lines that apply to the Cadence tools you have installed:

DEFINE alt_syn ${ALT_HOME}/simlib/concept/alt_syn

DEFINE lpm_syn ${ALT_HOME}/simlib/concept/lpm_syn

DEFINE alt_lpm ${ALT_HOME}/simlib/concept/alt_lpm

DEFINE alt_mf ${ALT_HOME}/simlib/concept/alt_mf

DEFINE alt_max2 ${ALT_HOME}/simlib/concept/alt_max2

DEFINE alt_max2 ${ALT_HOME}/simlib/composer/alt_max2/alt_max2

DEFINE alt_vtl $ALT_HOME/simlib/concept/alt_vtl/lib

DEFINE altera $ALT_HOME/simlib/concept/alt_mf/lib

SOFTINCLUDE $CDS_INST_DIR/tools/leapfrog/files/cds.lib

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/sysdir.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/mp2file.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/mp2file.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/softreq.html

DEFINE <design name>.

6. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

7. If you are using Concept on a Sun SPARCstation running SunOS, go to Setting Up the MAX+PLUS
II/Cadence Concept Work Environment for a Sun SPARCstation Running SunOS Software to install the
redifnet EDIF netlist reader utility.

8. If you are using Synergy software, edit the hdl.var file located in your working directory to include the
following line:

DEFINE work <design name>

9. Set up an appropriate directory structure for the tool(s) you are using. See the following topics for
information:

Composer Project File Directory Structure
Concept & RapidSIM Local Work Area Directory Structure

Related Links:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/sparc.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/sparc.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/compdir.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/conrapd.html
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs1.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs2.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs3.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs4.pdf
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Timing Simulation with
Leapfrog Software

Performing a Timing Simulation with Leapfrog
Software

Once the MAX+PLUS® II software has compiled a project and generated a VHDL Output File (.vho), you can a
perform timing simulation using Cadence Leapfrog software.

To simulate a VHDL output file with the Leapfrog timing simulator, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. If you wish to use MAX+PLUS II-generated Standard Delay Format (SDF) Output Files (.sdo) that contain
timing information, compile the VITAL library source files, as described in Compiling the VITAL Library
for Use with Leapfrog Software.

3. If your design uses functions from the alt_mf library, compile the library, as described in Compiling the
alt_mf Library.

4. Generate a VHDL Output File (.vho) and an optional SDF Output File, as described in Compiling Projects
with MAX+PLUS II Software.

5. Using any standard text editor, create a stimulus file that includes test vectors for <design name>.

6. Start the Leapfrog simulator and simulate the MAX+PLUS II-created VHDL Output File <design name>.vho
by typing leapfrog at the UNIX prompt. Refer to Chapter 5: SDF Back-Annotation in Leapfrog in the
VHDL Simulator User Guide or refer to the Cadence Openbook for more information.

<<<<<<< leapfrog.htm

Technical Feedback

=======

Feedback

>>>>>>> 1.7

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_vtl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_vtl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Leapfrog &
MAX+PLUS II Software

Using Cadence Leapfrog & MAX+PLUS II Software

The following topics describe how to use the Cadence Leapfrog software with the MAX+PLUS® II software.
Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
MAX+PLUS II Directory Structure
MAX+PLUS II/Cadence Interface File Organization
Compiling the VITAL Library for Use with Leapfrog Software
Compiling the alt_mf Library

Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with Leapfrog Software

Related Links:

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-frogall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2dir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_vtl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-alt_mf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fig17.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-initial.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leapfrog.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.cadence.com/
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Exemplar Logic Leonardo &
MAX+PLUS II Software

Using Exemplar Logic Leonardo & MAX+PLUS II
Software

The following topic describes how to use the Exemplar Logic Leonardo software with MAX+PLUS® II software.
Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Design Entry

Design Entry Flow
Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software
Performing a Functional Simulation with QuickHDL Pro Software

Synthesis & Optimization

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software

Related Links

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Exemplar Logic web site (http://www.exemplar.com)
Mentor Graphics web site (http://www.mentor.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leonall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-require.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dir_strc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-file_org.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsn_ntry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leonardo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.exemplar.com/
http://www.mentor.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Exemplar Logic Leonardo &
MAX+PLUS II Software

Using Exemplar Logic Leonardo & MAX+PLUS II
Software

The following topic describes how to use the Exemplar Logic Leonardo software with MAX+PLUS® II software.
Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Design Entry

Design Entry Flow
Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software
Performing a Functional Simulation with QuickHDL Pro Software

Synthesis & Optimization

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Exemplar Logic web site (http://www.exemplar.com)
Mentor Graphics web site (http://www.mentor.com)

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

To use the MAX+PLUS ® II software with Mentor Graphics/Exemplar Logic software, you must install the

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using a C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

MAX+PLUS II software, then establish an environment that facilitates entering and processing designs. The
MAX+PLUS II/Mentor Graphics/Exemplar Logic interface is installed automatically when you install the
MAX+PLUS II software on your computer.

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to MAX+PLUS
II/Mentor Graphics/Exemplar Logic Interface File Organization for information about the MAX+PLUS II/Mentor
Graphics directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Mentor Graphics interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Mentor Graphics software versions
described in MAX+PLUS II/Mentor Graphics Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2
setenv MGC_WD <user-specified working directory>
setenv MGC_HOME <Mentor Graphics system directory>
setenv MAX2_MENTOR /usr/maxplus2/mentor/max2
setenv MGC_LOCATION_MAP <user-specified location_map file>
setenv EXEMPLAR <Galileo or Leonardo system directory>

Installing the Altera® provided MAX+PLUS II/Mentor Graphics interface on your computer
automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/.cshrc file.

3. Add the $MGC_HOME/bin, $MAX2_MENTOR/bin, $ALT_HOME/bin, $EXEMPLAR/bin/<os>, and
$ALT_HOME/bin directories to the PATH environment variable in your .cshrc file, where <os> is the
operating system, e.g., SUN4 for SunOS; SUN5 for Solaris.

4. If you plan to use the Altera Schematic Express (sch_exprss) utility or the Altera VHDL Express
(vhd_exprss) utility, add the following environment variable to your .cshrc file:

setenv MAX2_QSIM /usr/maxplus2/simlib/mentor/max2sim

5. Type source ‾/.cshrc at a UNIX prompt to source the .cshrc file and validate the settings in steps 1 through 4.

6. Add the following lines to your MGC_location_map file:

$MAX2_MENTOR
/usr/maxplus2/mentor/max2
$MGC_GENLIB
/<user-specified Mentor Graphics GEN_LIB directory>
$MGC_LSLIB
/<user-specified Mentor Graphics LS_LIB directory>
$MAX2_EXAMPLES
/<user-specified example directory>
$MAX2_LMCLIB

/<user-specified Logic Modeling directory>
$MAX2_GENLIB
/usr/maxplus2/simlib/mentor/alt_max2
$MAX2_QSIM
/usr/maxplus2/simlib/mentor/max2sim
$MAX2_FONT
/usr/maxplus2/mentor/max2/fonts
$MGC_SYS1076_STD
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ std
$MGC_SYS1076_ARITHMETIC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/arithmetic
$MGC_SYS1076_PORTABLE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/mgc_portable
$MGC_SYS1076_IEEE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ieee
$MGC_SYS1076_SRC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ src
$MAX2_MFLIB
/usr/maxplus2/simlib/mentor/alt_mf

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your
computer automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/location_map/location_map file.

7. If you want to use QuickHDL software to simulate VHDL or Verilog HDL designs, add the following line in
the [library] section of your quickhdl.ini file: altera = $MAX2_MFLIB.

8. If you plan to use QuickHDL software to simulate VITAL-compliant VHDL files, add the following lines to
your MGC_location_map file:

$MAX2_VTLLIB
/usr/maxplus2/simlib/mentor/alt_vtl

9. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME
chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as Alteraprovided logic and symbol library paths and the current
project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini file to
the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

Related Links:

Mentor Graphics Exemplar Altera
version C.1:
System_1076 Compiler
QuickSim II
Design Architect
ENRead
ENWrite
GEN_LIB library

QuickHDL
QuickHDL Pro
QuickPath
LS_LIB library (optional)
DVE

Galileo Extreme
version 4.1.1

Leonardo
version 4.1.3

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Mentor Graphics
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

You can create your own libraries of custom functions for use in Design Architect schematics and VHDL and
Verilog HDL design files. You can use custom functions to incorporate an EDIF Input File (.edf), Text Design
File (.tdf), or any other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses
the Altera® provided mnt8_bas.lmf and exemplar.lmf Library Mapping Files to map standard Design Architect
symbols and VHDL and Verilog HDL functions to equivalent MAX+PLUS II logic functions. To use custom
functions, you can create a custom LMF that maps your custom functions to the equivalent EDIF input file, TDF,
or other design file. Go to "Library Mapping File" in MAX+PLUS II Help for more information.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Mentor Graphics Software Requirements

The following products are used to generate, process, synthesize, and verify a project with the MAX+PLUS ® II
software and Mentor Graphics software:

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS ® II/Mentor Graphics environment provides libraries for compiling, synthesizing, and simulating
designs.

Design Architect Libraries

You can enter a Design Architect schematic with logic functions from these Altera-provided symbol libraries:
ALTERA LPMLIB, ALTERA GENLIB, LSTTL BY TYPE, and LSTTL ALL PARTS. You can access these
libraries by choosing Altera Libraries (Libraries menu) in the Design Architect software. For information on using
library of parameterized modules (LPM) functions, see ALTERA LPMLIB Library below.

ALTERA GENLIB Library (Design Architect) & Altera (VHDL) Libraries

The ALTERA GENLIB symbol library (called the Altera library for VHDL) includes several MAX+PLUS II
primitives for controlling design synthesis and fitting. It also includes four macrofunctions (8count, 8mcomp, 8fadd,

Table 1. MAX+PLUS II-Specific Logic Functions

Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX ® 5000, MAX 7000 , and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (2)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help menu
for detailed information on these functions.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

and 81mux) that are optimized for different Altera device families, and the clklock phase-locked loop
megafunction, which is supported for some FLEX ® 10K devices.

The following table shows the MAX+PLUS II-specific logic functions.

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd instead.

2. If you want to use QuickHDL software, make sure you have updated your quickhdl.ini file, as described in
step 7 of Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment.

3. For designs that are targeted for FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

ALTERA LPMLIB Library

The Alteraprovided ALTERA LPMLIB library, which is available for Design Architect schematics and VHDL
designs, includes standard functions from the library of parameterized modules (LPM) 2.1.0, except the truth table,
finite state machine, and pad functions. The LPM standard defines a set of parameterized modules (i.e.,
parameterized functions) and their corresponding representations in an EDIF netlist file. These logic functions
allow you to create and functionally simulate an LPM-based design without targeting a specific device family.
After the design is completed, you can target the design to any device family. The parameters you specify for each
LPM function determine which simulation models are generated.

Related Links:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices
MAX Devices
Classic Device Family

Local Work Area Directory Structure

Design Architect software automatically creates and maintains the project directory structure required for all stages
of design entry. Galileo Extreme, Leonardo, and ENWrite software create a max2 subdirectory, if it does not
already exist, under the project directory. These software applications also generate EDIF netlist files, and copy
them from the <project name> directory to this max2 subdirectory. All MAX+PLUS ® II Compiler output files are
created in the max2 subdirectory.

Simulation files created with Mentor Graphics applications and Logic Modeling files are located in the board-level
simulation subdirectory of the project directory. You can use these files during simulation with QuickSim II
software.

The only directory you need to create is the local work directory, which should contain all project directories.
Figure 1 shows the recommended file structure.

Figure 1. Recommended File Structure

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
MAX+PLUS II Project Directory Structure
Mentor Graphics Project Directory Structure

Mentor Graphics Project Directory Structure

Design Architect software generates the following files for each schematic:

<drawing name>/mgc_component.attr
<drawing name>/part.Eddm_part.attr

<drawing name>/part.part_1
<drawing name>/schematic.mgc_schematic.attr
<drawing name>/schematic/schem_id
<drawing name>/schematic/sheet1.mgc_sheet.attr
<drawing name>/schematic/sheet1.sgfx_1
<drawing name>/schematic/sheet1.ssht_1

The files generated for each schematic are stored in the schematic's <drawing name> directory and should not be
edited. Mentor Graphics software automatically manages file storage and retrieval operations through this
<drawing name> directory structure, which does not reflect hierarchical design relationships. Figure 1 shows a
sample file structure with project1 as the UNIX project directory, and design1, subdesign1, and subdesign2 as the
directories for the top-level design and subdesigns of the project.

Figure 1. Design Architect Project File Structure

When the ENWrite utility converts the schematic into an EDIF netlist file, it processes the design information and
all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF netlist
file is named <project name>.edf, where <project name> is the name of the top-level design file. The <project
name>.edf file is automatically moved to the max2 directory under the project directory.

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
MAX+PLUS II Project Directory Structure

MAX+PLUS II Project Directory Structure

Table 1. MAX+PLUS II Directory Organization

Directory Description

.lmf
Contains the Altera-provided Library Mapping Files, mnt8_bas.lmf and exemplar.lmf,
that map Mentor Graphics and Exemplar Logic logic functions to equivalent MAX+PLUS
II logic functions.

./mentor Contains the AMPLE userware for the MAX+PLUS II/Mentor Graphics interface.
Contains MAX+PLUS II primitives such as CARRY, CASCADE, EXP, GLOBAL, LCELL, SOFT,

In the MAX+PLUS ® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, VHDL, or Verilog HDL netlist file; an Altera Hardware Description
Language (AHDL) Text Design File (TDF); or any other MAX+PLUS II-supported design file. The EDIF netlist
file must be created by ENWrite, Galileo Extreme, or Leonardo software and imported into MAX+PLUS II as an
EDIF Input File (.edf). Figure 1 shows an example of a MAX+PLUS II project directory.

Figure 1. Sample MAX+PLUS II Project Directory

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure

MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

The following table shows the MAX+PLUS ® II/Mentor Graphics interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Related Links:

For information on the other directories that are created during MAX+PLUS II installation, see
"MAX+PLUS II File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started
manual.

./simlib/mentor/alt_max2 OPNDRN, DFFE, and DFFE6K (D flipflop with Clock Enable) for use in Design Architect
schematics.

./simlib/mentor/max2sim Contains the MAX+PLUS II/Mentor Graphics simulation model library, max2sim, for use
with QuickSim II and QuickPath software.

./simlib/mentor/synlib Contains the MAX+PLUS II synthesis library for use with AutoLogic II software, which
supports synthesis for users running Mentor Graphics version B1.

./simlib/mentor/alt_mf Contains the MAX+PLUS II macrofunction and megafunction libraries.

./simlib/mentor/alt_vtl Contains the MAX+PLUS II VITAL library.

Figure 1. MAX+PLUS II/Mentor Graphics/Exemplar Logic Design Entry
Flow

Alteraprovided items are shown in
blue.

Mentor Graphics/Exemplar Logic Design Entry Flow

The following figure shows the design entry flow for the MAX+PLUS® II/Mentor Graphics/Exemplar Logic
interface.

Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software

You can create VHDL and Verilog HDL design files with the MAX+PLUS ® II Text Editor or another standard
text editor and save them in the appropriate directory for your project.

The MAX+PLUS II Text Editor offers the following advantages:

Templates are available with the VHDL Templates and Verilog Templates commands (Template menu).

These templates are also available in the ASCII vhdl.tmp and verilog.tmp files, respectively, which are
located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can turn on the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements of text in text
files in different colors to distinguish them from other forms of syntax.

To create a VHDL or Verilog HDL design file for use with the MAX+PLUS II software, go through the following
steps:

1. Enter a VHDL or Verilog HDL design in the MAX+PLUS II Text Editor or another standard text editor and
save it in your working directory.

2. Enter primitives, macrofunctions, and megafunctions in your VHDL or Verilog HDL design from the Altera
library.

The following topics describe special steps needed to instantiate LPM and clklock functions:

Instantiating LPM Functions in VHDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3.

(Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a
Functional Simulation with QuickHDL Software and Performing a Functional Simulation with QuickHDL
Pro Software.

4. Once you have created a VHDL or Verilog HDL design, you can generate an EDIF netlist file that can be
imported into the MAX+PLUS II software with either of the following methods:

You can synthesize and optimize your design and create an EDIF netlist file, as described in
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software or
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software.

You can use the Altera VHDL Express utility, vhd_exprss, to automatically create an EDIF netlist file,
compile it with the MAX+PLUS II Compiler, generate an EDIF Output File (.edo), and prepare the
EDIF Output File for simulation with QuickHDL software, as described in Using the Altera Schematic
Express (vhd_exprss) Utility.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL design files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Links:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software

After you have created a VHDL or Verilog HDL design, you can use Exemplar Logic's Leonardo software to
synthesize and optimize your VHDL Design File (.vhd) or Verilog Design File (.v) and prepare it for compilation
with the MAX+PLUS ® II Compiler.

To synthesize and optimize your project and generate an EDIF netlist file with Leonardo software, go through the
following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL or Verilog HDL design that follows the guidelines described in Creating VHDL & Verilog
HDL Designs for Use with MAX+PLUS II Software.

3. (Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a
Functional Simulation with QuickHDL Software.

4. Select the icon for your project's design file from the Navigator window, press Button 3, and choose
max2_leonardo to start the Leonardo software and open the Exemplar Logic Leonardo window. You can
also start Leonardo by typing max2_leonardo at the UNIX prompt.

5. Click Button 1 on the Flow Guide toolbar button to open the Customize Flow Guide dialog box.

6. Turn on the Altera EDIF Output File checkbox under Output Flow.

7. Choose Run Flow Guide to open the Flow Guide window and specify the appropriate options in the
following modules to synthesize your project:

1. Choose Load Library to open the Load Library dialog box. If necessary, select FPGA Enhanced
from the Tech Type drop-down list box. Select the target Altera® device family from the list of
supported device families and choose Load to close the dialog box.

2. Choose Read to open the Read dialog box. Turn on VHDL or Verilog HDL under Format, ensure that
the appropriate library name appears under Work Library, and type the name of your design file in the
Filename box or select it from the Select a File dialog box. Choose Read to close the dialog box.

3. Choose Pre-Optimize to open the Pre-Optimize dialog box. Choose Pre-Optimize to accept the
default pre-optimization settings and close the dialog box.

4. Choose Optimize to open the Optimize dialog box. Choose Optimize to accept the default
optimization settings and close the dialog box.

5. Choose Write Altera to open the Convenience Procedures dialog box. Type write_altera in the
Procedure box or select write_altera from the list box and choose Run to automatically generate
<design name>.edf.

6. Choose Exit Flow Guide to return to the Leonardo window.

8. Process your design with the MAX+PLUS II Compiler, as described in Compiling Projects with
MAX+PLUS II Software.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL Design Files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd

/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Links:

Go to Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software in these
MAX+PLUS II ACCESSSM Key topics for related information.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Links:

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the
Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from
within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.

If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware PCs

UNIX
Work-

MAX®
3000A

Classic®
&

MAX

MAX
7000

&

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
In-System

Programming/

Related Links:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

Option stations Devices 5000
Devices

MAX
7000E

Devices
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX 10KB,
&

FLEX 10KE
Devices

Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Links:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synthesizing & Optimizing VHDL &
Verilog HDL Projects with Leonardo Software

Synthesizing & Optimizing VHDL & Verilog HDL
Projects with Leonardo Software

After you have created a VHDL or Verilog HDL design, you can use Exemplar Logic's Leonardo software to
synthesize and optimize your VHDL Design File (.vhd) or Verilog Design File (.v) and prepare it for compilation
with the MAX+PLUS ® II Compiler.

To synthesize and optimize your project and generate an EDIF netlist file with Leonardo software, go through the
following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL or Verilog HDL design that follows the guidelines described in Creating VHDL & Verilog
HDL Designs for Use with MAX+PLUS II Software.

3. (Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a
Functional Simulation with QuickHDL Software.

4. Select the icon for your project's design file from the Navigator window, press Button 3, and choose
max2_leonardo to start the Leonardo software and open the Exemplar Logic Leonardo window. You can
also start Leonardo by typing max2_leonardo at the UNIX prompt.

5. Click Button 1 on the Flow Guide toolbar button to open the Customize Flow Guide dialog box.

6. Turn on the Altera EDIF Output File checkbox under Output Flow.

7. Choose Run Flow Guide to open the Flow Guide window and specify the appropriate options in the
following modules to synthesize your project:

1. Choose Load Library to open the Load Library dialog box. If necessary, select FPGA Enhanced
from the Tech Type drop-down list box. Select the target Altera® device family from the list of
supported device families and choose Load to close the dialog box.

2. Choose Read to open the Read dialog box. Turn on VHDL or Verilog HDL under Format, ensure that
the appropriate library name appears under Work Library, and type the name of your design file in the
Filename box or select it from the Select a File dialog box. Choose Read to close the dialog box.

3. Choose Pre-Optimize to open the Pre-Optimize dialog box. Choose Pre-Optimize to accept the
default pre-optimization settings and close the dialog box.

4. Choose Optimize to open the Optimize dialog box. Choose Optimize to accept the default
optimization settings and close the dialog box.

5. Choose Write Altera to open the Convenience Procedures dialog box. Type write_altera in the
Procedure box or select write_altera from the list box and choose Run to automatically generate
<design name>.edf.

6. Choose Exit Flow Guide to return to the Leonardo window.

8. Process your design with the MAX+PLUS II Compiler, as described in Compiling Projects with

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1

MAX+PLUS II Software.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL Design Files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Links:

Go to Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software in these
MAX+PLUS II ACCESSSM Key topics for related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-galileo.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Altera-Provided Logic & Symbol
Libraries

Altera-Provided Logic & Symbol Libraries

You can create your own libraries of custom functions for use in Design Architect schematics and VHDL and
Verilog HDL design files. You can use custom functions to incorporate an EDIF Input File (.edf), Text Design
File (.tdf), or any other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses
the Altera® provided mnt8_bas.lmf and exemplar.lmf Library Mapping Files to map standard Design Architect
symbols and VHDL and Verilog HDL functions to equivalent MAX+PLUS II logic functions. To use custom
functions, you can create a custom LMF that maps your custom functions to the equivalent EDIF input file, TDF,
or other design file. Go to "Library Mapping File" in MAX+PLUS II Help for more information.

Table 1. MAX+PLUS II-Specific Logic Functions

Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX ® 5000, MAX 7000 , and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (2)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

The MAX+PLUS ® II/Mentor Graphics environment provides libraries for compiling, synthesizing, and simulating
designs.

Design Architect Libraries

You can enter a Design Architect schematic with logic functions from these Altera-provided symbol libraries:
ALTERA LPMLIB, ALTERA GENLIB, LSTTL BY TYPE, and LSTTL ALL PARTS. You can access these
libraries by choosing Altera Libraries (Libraries menu) in the Design Architect software. For information on using
library of parameterized modules (LPM) functions, see ALTERA LPMLIB Library below.

ALTERA GENLIB Library (Design Architect) & Altera (VHDL) Libraries

The ALTERA GENLIB symbol library (called the Altera library for VHDL) includes several MAX+PLUS II
primitives for controlling design synthesis and fitting. It also includes four macrofunctions (8count, 8mcomp, 8fadd,
and 81mux) that are optimized for different Altera device families, and the clklock phase-locked loop
megafunction, which is supported for some FLEX ® 10K devices.

The following table shows the MAX+PLUS II-specific logic functions.

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help menu
for detailed information on these functions.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

8fadd must be specified as a_8fadd instead.
2. If you want to use QuickHDL software, make sure you have updated your quickhdl.ini file, as described in

step 7 of Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment.
3. For designs that are targeted for FLEX 6000 devices, you should use the DFFE primitive only if the design

contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

ALTERA LPMLIB Library

ALTERA LPMLIB Library

The Alteraprovided ALTERA LPMLIB library, which is available for Design Architect schematics and VHDL
designs, includes standard functions from the library of parameterized modules (LPM) 2.1.0, except the truth table,
finite state machine, and pad functions. The LPM standard defines a set of parameterized modules (i.e.,
parameterized functions) and their corresponding representations in an EDIF netlist file. These logic functions
allow you to create and functionally simulate an LPM-based design without targeting a specific device family.
After the design is completed, you can target the design to any device family. The parameters you specify for each
LPM function determine which simulation models are generated.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Assigning the Implement in EAB
Logic Option

Assigning the Implement in EAB Logic Option

If your design uses resource assignment attributes that you wish to pass to the MAX+PLUS II software, you
should save your file in EDIF netlist file format. See Entering Resource Assignments for more information.

Logic option and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device-family-specific default logic synthesis style for
each project.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis
style assignments, including definitions and syntax of these assignments.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

You can assign the Implement in EAB logic option to individual logic functions in a FLEX® 10K design. This
option directs the MAX+PLUS® II Compiler's Logic Synthesizer module to implement the function in an
embedded array block (EAB) rather than in logic cell(s). You can specify the Implement in EAB Logic Option in
VHDL or Verilog HDL designs, or in a Synplify Design Constraints File (.sdc). If you add timing constraints or
resource assignments in a separate Synplify Design Constraints File (.sdc), you must add the Synplify Design
Constraints File (.sdc) to the project by adding it to the Source Files list in the Synplify window.

VHDL Syntax

Use the following syntax to assign the Implement in EAB logic option in VHDL:

attribute altera_implement_in_eab : boolean;
attribute altera_implement_in_eab of <port name>: label is true;

Example:

attribute altera_implement_in_eab of U1: label is true;
 begin
 U1: mymux port map (in1 => a, sel => s, dout => o);

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://mysupport.altera.com/eservice/

Verilog HDL Syntax

Use the following syntax to assign the Implement in EAB logic option in Verilog HDL:

<module or architecture name> /* synthesis altera_implement_in_eab=1 */;

Example:

sqrtb sq (.z(sqa), .a(a)) /* synthesis altera_implement_in_eab=1 */;
defparam sq.asize = 8;

Synplify Design Constraints File Syntax

Use the following syntax to assign the Implement in EAB logic option in a Synplify Design Constraints File (.sdc):

define_attribute {<module or architecture name>} altera_implement_in_eab 1

Example:

define_attribute {inst1.sqrt8} altera_implement_in_eab 1

Related Links:

Refer to the following sources for more information:
Go to Entering Resource Assignments in these MAX+PLUS II ACCESSSM Key topics for information
on entering other types of assignments.
Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on other logic options and
logic synthesis style assignments, including definitions and syntax of these assignments.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Assigning Logic Options

Assigning Logic Options

To assign a logic option or a logic synthesis style, type the following command at a dc_shell prompt:
set_attribute find(<design object>, (<instance name>)) "LOGIC_OPTION"
-type string "<logic option>=<value>"
For example:
set_attribute find (cell, (U1)) "LOGIC_OPTION" -type string
"STYLE=FAST"
To specify multiple logic options, use commas as separators.
For example:
set_attribute find (cell, (U1))"LOGIC_OPTION" -type string "STYLE=FAST,
CARRY_CHAIN=MANUAL"

Logic options and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device family-specific default logic synthesis style for each
project.

To make pin, logic cell, and chip assignments, use the set_attribute command at a dc_shell prompt. Before
using the set_attribute command, add the following line to your .synopsys_dc.setup file:

edifout_write_properties_list = {LOGIC_OPTION, CLIQUE, CHIP_PIN_LC}

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis
style assignments, including definitions and syntax of these assignments.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating LPM & Other
Parameterized Functions in Concept Schematics

Instantiating LPM & Other Parameterized Functions in
Concept Schematics

You can use library of parameterized modules (LPM) functions and other Altera® -provided parameterized
functions in Concept schematics if you also use the HDL Direct utility.

To instantiate LPM functions, go through the following steps:

1. Choose the Add Part button from the toolbar or type add from the Concept window to open the Component
Browser window.

2. Choose alt_lpm (Library menu). All functions in the alt_lpm library are MAX+PLUS® II-compatible.
Choose Megafunctions/LPM from the MAX+PLUS II Help menu to get detailed information on all
supported parameterized functions.

3. Type attribute, then click on each component to set parameters for each function. See General Guidelines
below for additional information.

4. Add inport and outport symbols from the hdl_direct_lib library to the interface signals. Use the supply_0
and supply_1 symbols from the hdl_direct_lib library to connect a net to GND or VCC.

5. Continue with the steps necessary to complete your Concept schematic, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept schematic file, which includes LPM function instantiation:

/usr/maxplus2/examples/cadence/example12/fifo

General Guidelines

If a pin is not used, leave it floating. The concept2alt utility removes all unconnected pins when it generates
an EDIF netlist file.
For the csfifo function, the value of the LPM_NUMWORDS parameter must be between
2LPM_WIDTHAD-1 and 2LPM_WIDTHAD.
Make sure that any hexadecimal (Intel-format) file (.hex) that you use to specify the initial content of a
memory does not have the same name as the design file name.
Make sure that all properties and value strings are in uppercase letters, except the filename specified with the
LPM_FILE property, which should use the actual case of the filename.
Choose the Set button in the Concept window and choose CAPS_LOCK_OFF for the CAPS LOCK option.
Only the LPM_POLARITY parameter (which can be set to INVERT or NORMAL) can determine the polarity of the
bus or pin. You can display a bubble in the Concept schematic to indicate an inverted pin by typing BUBBLE
in the Concept command window and selecting the appropriate pin. However, the bubble does not determine
the polarity of the pin or bus.
Avoid using the Replace button in the Concept window to replace old symbols with new ones: you may
accidentally set unwanted properties. Instead, you should use the Delete button to delete old symbols and the
Add button to add new symbol(s).

Feedback

Did this information help you?

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altlpm
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating LPM Functions in Design
Architect Schematics

Instantiating LPM Functions in Design Architect
Schematics

Design Architect software allows you to instantiate functions included in the library of parameterized modules
(LPM) from the ALTERA LPMLIB library.

Go through the following steps to instantiate LPM functions in a Design Architect schematic:

1. While you are entering your Design Architect schematic, choose Altera Libraries (Library menu).

2. Choose ALTERA LPMLIB (Altera Libraries menu).

3. Choose from the available LPM functions on the ALTERA GENLIB menu.

4. In the LPM_<function name> dialog box, specify appropriate values for the variables displayed for the LPM
function you chose in step 3. Make sure that any hexadecimal (Intel-format) file that you use to specify the
initial content of a memory function does not have the same name as the design file name. Choose
Megafunctions/LPM from the MAX+PLUS II Help menu for detailed information on LPM functions.

5. Choose OK to generate a symbol for the LPM function you chose in step 3 and a corresponding VHDL
simulation model.

6. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUS II Software.

7. When you save the schematic, the Design Architect software will ask whether you want to compile the LPM
model. Choose YES if you want to compile the VHDL code for the LPM functions. The software will
automatically select the corresponding compiler: System 1076 for B.(x) releases and QuickHDL compilers
for releases C.1 and later.

Installing the Altera® provided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example7/fifo,
which includes LPM instantiation.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1#LPMLIB
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using FPGA Compiler N-Input LUT
Optimization for FLEX 6000, FLEX 8000 & FLEX 10K Devices

Using FPGA Compiler N-Input LUT Optimization for
FLEX 6000, FLEX 8000 & FLEX 10K Devices

Figure 1 shows a sample command sequence that FPGA Compiler might
require for N-input LUT optimization. To use N-input LUT optimization,
include the edifout_write_properties_list = "lut_function" command.

Figure 1. Sample Command Sequence for N-Input LUT Optimization
read -f vhdl <design name>.vhd
current_design = <design name>
set_max_area 0
uniquify
ungroup -all -flatten
compile -ungroup_all
report_area > <design name>.rpa
report_fpga > <design name>.rpf
report_cell > <design name>.rpc
edifout_write_properties_list = "lut_function"
write -f edif -hierarchy -o <design name>.edf

The Synopsys FPGA Compiler software supports an N-input look-up table (LUT) function that improves the
quality of the results and the predictability of delay and resource estimates. All Altera® FPGA Compiler libraries
for FLEX® 6000, FLEX 8000, and FLEX 10K devices support the N-input LUT function.

Use the area report to determine the circuit area.

If you wish to maintain area report estimates as closely as possible during MAX+PLUS® II processing, Altera
recommends that you select the WYSIWYG setting for the Global Project Synthesis Style in the Global Project
Logic Synthesis dialog box (Assign menu). However, selecting the Normal or Fast style may yield a better result.

Related Links:

For more information on how to use the FPGA Compiler software optimize your design for FLEX 8000
devices, refer to Chapter 5: Optimization for the Altera FLEX 8000 Architecture in the Synopsys FPGA
Compiler User Guide.
Go to FLEX Devices, which is available on the web, for additional information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://www.intel.com/www/us/en/programmable/products/mature-devices/mat-index.html
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS IIProject File Structure

MAX+PLUS IIProject File Structure
In MAX+PLUS® II, a project name is the name of a top-level design file, without the filename extension. This
design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL TDF; or any other MAX+PLUS II-
supported design file. The EDIF netlist file must be created by Synopsys and imported into MAX+PLUS II as an
EDIF Input File.

MAX+PLUS II stores the connectivity data on the links between design files in a hierarchical project in a
Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX 7000 & MAX 9000 Synthesis
Example

MAX 7000 & MAX 9000 Synthesis Example
The MAX® 7000 (including MAX 7000E, MAX 7000S, and MAX 7000A) and MAX 9000 device families have a
sum-of-products architecture. To obtain optimum timing and area results, you can direct the Synopsys Design
Compiler or FPGA Compiler software to synthesize your logic into a sum-of-products form. To assist the Synopsys
compilers in meeting the timing and area constraints of your designs, the Altera® technology libraries provide
models that approximate the timing of the MAX 7000 and MAX 9000 logic cells.

Figure 1 shows two timing models: the standard Altera MAX 7000 timing model and a Synopsys timing model that
approximates the MAX 7000 model. The Synopsys model is built on the following three conditions and
assumptions:

1. The combinatorial delay in logic cells has been equally divided between product terms and OR gates. Because
the product-term delay equals the OR-gate delay, the Synopsys compilers treat them equally, producing a
sum-of-products structure. On top of this structure, inverters are used where necessary.

2. A shared expander product term is always used to create combinatorial logic.

3. The Synopsys Design Compiler and FPGA Compiler software do not distinguish between array and global
Clocks. Therefore, to estimate setup and hold timing most accurately, you must instantiate GLOBAL buffers
to indicate a global clock in either your VHDL or Verilog HDL design.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-techlibs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-techlibs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-techlibs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-techlibs.html?csf=1&web=1

Figure 1. Standard MAX 7000 Timing Model vs. Synopsys Approximation of Timing Model

If you wish to direct the Synopsys Design Compiler or FPGA Compiler software to produce sum-of-products logic
that approximates the MAX 7000 or MAX 9000 timing model, you can type the following dc_shell prompt
commands at the command line before compiling the design:

set_structure false

set_flatten -effort low

When set_structure is set to false, structuring is turned off, and the Synopsys Design Compiler and FPGA
Compiler software cannot factor and share logic between functions. If you do not enter these commands, the
Synopsys compilers may add logic, which can create additional area and timing delays.

Figure 2 shows a combinatorial design that is predictable when structuring is turned off, but is unpredictable when
structuring is turned on.

To obtain accurate timing information about your design, you must use the MAX+PLUS II Timing Analyzer to
analyze your design. For accurate area information, consult the Report File (.rpt) generated by the MAX+PLUS
II software.

Figure 2. Nonstructured vs. Structured Combinatorial Design

When you use low as the argument to the set_flatten -effort command, the Synopsys compilers use the
shortest compilation time to create the sum-of-products implementation of your design. If you use the medium or
high argument, the Synopsys compilers create optimally flattened designs, but usually require greater compilation
time and offer little improvement in timing and area results.

You can type report_timing after compilation to view Synopsys-generated timing information.

If you wish to calculate the area of your design, you can obtain an approximate logic cell count in several ways.
Altera recommends that you add the number of registers and combinatorial outputs in a design. Depending on your
design, this number may be slightly lower than the final number reported by the MAX+PLUS II software.

To create a file detailing primitive usage in the design, type report_reference> <filename> after Synopsys
compilation.

Related Links:

Refer to the following sources for related information:

Synopsys Design Compiler Reference Manual or Synopsys Command Reference Manual
FPGA Compiler User Guide
Synthesizing & Optimizing VHDL & Verilog HDL Pojects with Synopsys Software
Go to MAX Devices, which is available on the web, for additional information:

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsynt.html?csf=1&web=1
https://www.intel.com/www/us/en/programmable/products/mature-devices/mat-index.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Mentor Graphics & Exemplar
Logic Tools with MAX+PLUS II Software

Using Mentor Graphics & Exemplar Logic Tools with
MAX+PLUS II Software

The following topics describe how to use a variety of Mentor Graphics and Exemplar Logic tools as part of a
complete design flow that includes the MAX+PLUS® II software. If you use only one Mentor Graphics or
Exemplar Logic tool, click List by Tool and select the tool name to view the list of topics only for that tool. Click
on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Design Flow For All Mentor Graphics/Exemplar Logic Tools

Design Entry

Design Entry Flow

Design Architect

Creating Design Architect Schematics for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in Design Architect Schematics
Instantiating LPM Functions in Design Architect Schematics

Entering Resource Assignments
Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility
BackAnnotating MAX+PLUS II Pin Assignments to Design Architect Symbols

Creating Hierarchical Projects with Design Architect Software
Performing a Functional Simulation with DVE & QuickSim II Software
Performing a Functional Simulation with QuickHDL Pro Software
Converting Design Architect Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the
ENWrite Utility

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

VHDL & Verilog HDL

Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating LPM Functions in VHDL

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation with QuickHDL Software
Performing a Functional Simulation with QuickHDL Pro Software
Creating Hierarchical Projects with Design Architect Software

Synthesis & Optimization

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software

Compilation

Project Compilation Flow
Compiling Projects with MAX+PLUS II Software

Exemplar Logic Galileo ExtremeSpecific Compiler Settings
Using the Altera Schematic Express (sch_exprss) Utility
Using the Altera VHDL Express (vhd_exprss) Utility

BackAnnotation

BackAnnotating MAX+PLUS II Pin Assignments to Design Architect Symbols

Simulation/Timing Analysis

Project Simulation/Timing Analysis Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with DVE & QuickSim II Software
Performing a Timing Simulation with QuickHDL Software
Performing a Timing Analysis with QuickPath Software

Device Programming

Programming Altera Devices

Related Topics:

MAX+PLUS II Development Software
Altera Programming Hardware
Mentor Graphics web site (http://www.mentor.com)

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

To use the MAX+PLUS ® II software with Mentor Graphics/Exemplar Logic software, you must install the
MAX+PLUS II software, then establish an environment that facilitates entering and processing designs. The
MAX+PLUS II/Mentor Graphics/Exemplar Logic interface is installed automatically when you install the
MAX+PLUS II software on your computer.

The information presented here assumes that you are using a C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to MAX+PLUS
II/Mentor Graphics/Exemplar Logic Interface File Organization for information about the MAX+PLUS II/Mentor
Graphics directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Mentor Graphics interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Mentor Graphics software versions
described in MAX+PLUS II/Mentor Graphics Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2
setenv MGC_WD <user-specified working directory>
setenv MGC_HOME <Mentor Graphics system directory>
setenv MAX2_MENTOR /usr/maxplus2/mentor/max2
setenv MGC_LOCATION_MAP <user-specified location_map file>
setenv EXEMPLAR <Galileo or Leonardo system directory>

Installing the Altera® provided MAX+PLUS II/Mentor Graphics interface on your computer
automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/.cshrc file.

3. Add the $MGC_HOME/bin, $MAX2_MENTOR/bin, $ALT_HOME/bin, $EXEMPLAR/bin/<os>, and
$ALT_HOME/bin directories to the PATH environment variable in your .cshrc file, where <os> is the
operating system, e.g., SUN4 for SunOS; SUN5 for Solaris.

4. If you plan to use the Altera Schematic Express (sch_exprss) utility or the Altera VHDL Express
(vhd_exprss) utility, add the following environment variable to your .cshrc file:

setenv MAX2_QSIM /usr/maxplus2/simlib/mentor/max2sim

5. Type source â€¾/.cshrc at a UNIX prompt to source the .cshrc file and validate the settings in steps 1
through 4.

6. Add the following lines to your MGC_location_map file:

$MAX2_MENTOR
/usr/maxplus2/mentor/max2
$MGC_GENLIB
/<user-specified Mentor Graphics GEN_LIB directory>
$MGC_LSLIB
/<user-specified Mentor Graphics LS_LIB directory>
$MAX2_EXAMPLES
/<user-specified example directory>
$MAX2_LMCLIB
/<user-specified Logic Modeling directory>

$MAX2_GENLIB
/usr/maxplus2/simlib/mentor/alt_max2
$MAX2_QSIM
/usr/maxplus2/simlib/mentor/max2sim
$MAX2_FONT
/usr/maxplus2/mentor/max2/fonts
$MGC_SYS1076_STD
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ std
$MGC_SYS1076_ARITHMETIC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/arithmetic
$MGC_SYS1076_PORTABLE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/mgc_portable
$MGC_SYS1076_IEEE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ieee
$MGC_SYS1076_SRC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ src
$MAX2_MFLIB
/usr/maxplus2/simlib/mentor/alt_mf

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your
computer automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/location_map/location_map file.

7. If you want to use QuickHDL software to simulate VHDL or Verilog HDL designs, add the following line in
the [library] section of your quickhdl.ini file: altera = $MAX2_MFLIB.

8. If you plan to use QuickHDL software to simulate VITAL-compliant VHDL files, add the following lines to
your MGC_location_map file:

$MAX2_VTLLIB
/usr/maxplus2/simlib/mentor/alt_vtl

9. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME
chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as Alteraprovided logic and symbol library paths and the current
project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini file to
the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)

Mentor Graphics Exemplar Altera
version C.1:
System_1076 Compiler
QuickSim II
Design Architect
ENRead
ENWrite
GEN_LIB library

QuickHDL
QuickHDL Pro
QuickPath
LS_LIB library (optional)
DVE

Galileo Extreme
version 4.1.1

Leonardo
version 4.1.3

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Mentor Graphics
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

You can create your own libraries of custom functions for use in Design Architect schematics and VHDL and
Verilog HDL design files. You can use custom functions to incorporate an EDIF Input File (.edf), Text Design
File (.tdf), or any other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses
the Altera® provided mnt8_bas.lmf and exemplar.lmf Library Mapping Files to map standard Design Architect
symbols and VHDL and Verilog HDL functions to equivalent MAX+PLUS II logic functions. To use custom
functions, you can create a custom LMF that maps your custom functions to the equivalent EDIF input file, TDF,
or other design file. Go to "Library Mapping File" in MAX+PLUS II Help for more information.

This manual is also available in 4 parts:
Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Mentor Graphics Software Requirements

The following products are used to generate, process, synthesize, and verify a project with the MAX+PLUS ® II
software and Mentor Graphics software:

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS ® II/Mentor Graphics environment provides libraries for compiling, synthesizing, and simulating
designs.

Design Architect Libraries

You can enter a Design Architect schematic with logic functions from these Altera-provided symbol libraries:
ALTERA LPMLIB, ALTERA GENLIB, LSTTL BY TYPE, and LSTTL ALL PARTS. You can access these
libraries by choosing Altera Libraries (Libraries menu) in the Design Architect software. For information on using
library of parameterized modules (LPM) functions, see ALTERA LPMLIB Library below.

ALTERA GENLIB Library (Design Architect) & Altera (VHDL) Libraries

The ALTERA GENLIB symbol library (called the Altera library for VHDL) includes several MAX+PLUS II
primitives for controlling design synthesis and fitting. It also includes four macrofunctions (8count, 8mcomp, 8fadd,
and 81mux) that are optimized for different Altera device families, and the clklock phase-locked loop
megafunction, which is supported for some FLEX ® 10K devices.

Table 1. MAX+PLUS II-Specific Logic Functions

Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX ® 5000, MAX 7000 , and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (2)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help menu
for detailed information on these functions.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

The following table shows the MAX+PLUS II-specific logic functions.

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd instead.

2. If you want to use QuickHDL software, make sure you have updated your quickhdl.ini file, as described in
step 7 of Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment.

3. For designs that are targeted for FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

ALTERA LPMLIB Library

The Alteraprovided ALTERA LPMLIB library, which is available for Design Architect schematics and VHDL
designs, includes standard functions from the library of parameterized modules (LPM) 2.1.0, except the truth table,
finite state machine, and pad functions. The LPM standard defines a set of parameterized modules (i.e.,
parameterized functions) and their corresponding representations in an EDIF netlist file. These logic functions
allow you to create and functionally simulate an LPM-based design without targeting a specific device family.
After the design is completed, you can target the design to any device family. The parameters you specify for each
LPM function determine which simulation models are generated.

Related Topics:

Go to the following topics, which are available on the web, for additional information:=
FLEX Devices
MAX Devices
Classic Device Family

Local Work Area Directory Structure

Design Architect software automatically creates and maintains the project directory structure required for all stages
of design entry. Galileo Extreme, Leonardo, and ENWrite software create a max2 subdirectory, if it does not
already exist, under the project directory. These software applications also generate EDIF netlist files, and copy
them from the <project name> directory to this max2 subdirectory. All MAX+PLUS ® II Compiler output files are
created in the max2 subdirectory.

Simulation files created with Mentor Graphics applications and Logic Modeling files are located in the board-level
simulation subdirectory of the project directory. You can use these files during simulation with QuickSim II
software.

The only directory you need to create is the local work directory, which should contain all project directories.
Figure 1 shows the recommended file structure.

Figure 1. Recommended File Structure

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
MAX+PLUS II Project Directory Structure
Mentor Graphics Project Directory Structure

Mentor Graphics Project Directory Structure

Design Architect software generates the following files for each schematic:

<drawing name>/mgc_component.attr
<drawing name>/part.Eddm_part.attr
<drawing name>/part.part_1
<drawing name>/schematic.mgc_schematic.attr
<drawing name>/schematic/schem_id

<drawing name>/schematic/sheet1.mgc_sheet.attr
<drawing name>/schematic/sheet1.sgfx_1
<drawing name>/schematic/sheet1.ssht_1

The files generated for each schematic are stored in the schematic's <drawing name> directory and should not be
edited. Mentor Graphics software automatically manages file storage and retrieval operations through this
<drawing name> directory structure, which does not reflect hierarchical design relationships. Figure 1 shows a
sample file structure with project1 as the UNIX project directory, and design1, subdesign1, and subdesign2 as the
directories for the top-level design and subdesigns of the project.

Figure 1. Design Architect Project File Structure

When the ENWrite utility converts the schematic into an EDIF netlist file, it processes the design information and
all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF netlist
file is named <project name>.edf, where <project name> is the name of the top-level design file. The <project
name>.edf file is automatically moved to the max2 directory under the project directory.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
MAX+PLUS II Project Directory Structure

MAX+PLUS II Project Directory Structure

In the MAX+PLUS ® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, VHDL, or Verilog HDL netlist file; an Altera Hardware Description

Table 1. MAX+PLUS II Directory Organization

Directory Description

.lmf
Contains the Altera-provided Library Mapping Files, mnt8_bas.lmf and exemplar.lmf,
that map Mentor Graphics and Exemplar Logic logic functions to equivalent MAX+PLUS
II logic functions.

./mentor Contains the AMPLE userware for the MAX+PLUS II/Mentor Graphics interface.

./simlib/mentor/alt_max2
Contains MAX+PLUS II primitives such as CARRY, CASCADE, EXP, GLOBAL, LCELL, SOFT,
OPNDRN, DFFE, and DFFE6K (D flipflop with Clock Enable) for use in Design Architect
schematics.

Language (AHDL) Text Design File (TDF); or any other MAX+PLUS II-supported design file. The EDIF netlist
file must be created by ENWrite, Galileo Extreme, or Leonardo software and imported into MAX+PLUS II as an
EDIF Input File (.edf). Figure 1 shows an example of a MAX+PLUS II project directory.

Figure 1. Sample MAX+PLUS II Project Directory

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure

MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

The following table shows the MAX+PLUS ® II/Mentor Graphics interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Related Topics:

For information on the other directories that are created during MAX+PLUS II installation, see
"MAX+PLUS II File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started
manual.

./simlib/mentor/max2sim Contains the MAX+PLUS II/Mentor Graphics simulation model library, max2sim, for use
with QuickSim II and QuickPath software.

./simlib/mentor/synlib Contains the MAX+PLUS II synthesis library for use with AutoLogic II software, which
supports synthesis for users running Mentor Graphics version B1.

./simlib/mentor/alt_mf Contains the MAX+PLUS II macrofunction and megafunction libraries.

./simlib/mentor/alt_vtl Contains the MAX+PLUS II VITAL library.

Altera/Mentor Graphics/Exemplar Logic Design Flow

The following figure shows the typical design flow for logic circuits created and processed with the MAX+PLUS ®
II and Mentor Graphics/Exemplar Logic software. Detailed diagrams for each stage of the design flow appear in
Design Entry Flow, Project Compilation Flow, Project Simulation/Timing Analysis Flow, and Device
Programming Flow.

Mentor Graphics/Exemplar Logic Design Entry Flow

The following figure shows the design entry flow for the MAX+PLUS® II/Mentor Graphics/Exemplar Logic

Figure 1. MAX+PLUS II/Mentor Graphics/Exemplar Logic Design Entry
Flow

Alteraprovided items are shown in
blue.

interface.

Creating Design Architect Schematics for Use with MAX+PLUS II Software

You can create Design Architect schematics and convert them into EDIF Input Files (.edf) that can be processed
with the MAX+PLUS ® II Compiler.

To create a Design Architect schematic for use with MAX+PLUS II software, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Start the MAX+PLUS II/Mentor Graphics interface by typing max2_dmgr at a UNIX prompt.

3. Start the Design Architect software by double-clicking Button 1 on the max2_da icon in the Design Manager
tools window. You can also start Design Architect software by typing max2_da at the UNIX prompt.

4. Use the graphical user interface to structure and organize your files to create an environment that facilitates
entering and processing designs. Go to the following topics for more information:

Local Work Area Directory Structure
MAX+PLUS II Project Directory Structure
Mentor Graphics Project Directory Structure

5. Choose the OPEN SHEET button in the Design Architect session_palette, then specify a name for your
project in the Component Name box. Choose OK.

6. Enter logic functions from the following Altera® provided libraries:

ALTERA LPMLIB includes library of parameterized modules (LPM) functions
ALTERA GENLIB includes primitives and macrofunctions
LSTTL includes 74-series macrofunctions

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPPSM). The OpenCore feature in the MAX+PLUS II
software allows you to instantiate, compile, and simulate MegaCore functions before deciding
whether to purchase a license for full device programming and post-compilation simulation
support.

The following topics describe special steps needed to instantiate LPM and clklock functions:

Instantiating LPM Functions in Design Architect Schematics
Instantiating the clklock Megafunction in Design Architect Schematics

7. (Optional) To create a hierarchical design that contains symbols representing other design files, such as
AHDL or VHDL design files, go to Creating Hierarchical Projects with Design Architect Software.

8. If you wish to make resource assignments in a Design Architect schematic, go to Entering Resource
Assignments. You can also enter resource assignments from within the MAX+PLUS II software.

9. Choose Check Sheet for Altera (Check menu) to save and check your design. If your design contains LPM
functions , the Design Architect software will ask whether you want to compile the LPM model. Choose
YES if you want to compile the VHDL code for the LPM functions. The software will automatically select
the corresponding compiler: System 1076 for B.(x) releases and QuickHDL compilers for releases C.1 and
later.

10. (Optional) If your schematic design includes models for VHDL or Verilog HDL designs, perform a
functional simulation with the QuickHDL Pro software, as described in Performing a Functional Simulation
with QuickHDL Pro Software. If it does not, you can perform a functional simulation with the QuickSim
software, as described in Performing a Functional Simulation with DVE & QuickSim II Software.

11. Once you have created a schematic, you can generate an EDIF netlist file that can be imported into the
MAX+PLUS II software with either of the following methods:

You can create an EDIF netlist file, as described in Converting Design Architect Schematics into
MAX+PLUS II-Compatible EDIF Netlist Files with the ENWrite Utility.

You can use the Altera Schematic Express utility, sch_exprss, to automatically create an EDIF netlist
file, compile it with the MAX+PLUS II Compiler, generate an EDIF Output File (.edo), and prepare
the EDIF Output File for simulation with ENRead and Design Viewpoint Editor (DVE), as described
in Using the Altera Schematic Express (sch_exprss) Utility.

Even if your design is a hierarchical design incorporating files created with multiple design entry methods,
both the ENWrite and Altera Schematic Express utilities generate EDIF files for all files in the design.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample Design Architect schematic files:

/usr/maxplus2/examples/mentor/example1/fulladd
/usr/maxplus2/examples/mentor/example3/fulladd2
/usr/maxplus2/examples/mentor/example7/fifo

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Instantiating the clklock Megafunction in Design Architect Schematics

You can instantiate the Altera® provided clklock phase-locked loop megafunction, which is supported for some
FLEX ® 10K devices, in a Design Architect schematic.

To instantiate the clklock megafunction in a Design Architect schematic, follow these steps:

1. Choose Altera Libraries (Library menu).

2. Choose ALTERA GENLIB (Altera Libraries menu).

3. Choose clklock (ALTERA GENLIB menu).

4. Specify appropriate values for the CLOCKBOOST and INPUT_FREQUENCY variables. Choose
Megafunctions/LPM from the MAX+PLUS ® II Help menu for detailed information on the clklock
megafunction.

5. Choose OK.

6. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUS II Software.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example7/fifo,
which includes clklock megafunction instantiation.

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating LPM Functions in Design Architect Schematics

Design Architect software allows you to instantiate functions included in the library of parameterized modules
(LPM) from the ALTERA LPMLIB library.

Go through the following steps to instantiate LPM functions in a Design Architect schematic:

1. While you are entering your Design Architect schematic, choose Altera Libraries (Library menu).

2. Choose ALTERA LPMLIB (Altera Libraries menu).

3. Choose from the available LPM functions on the ALTERA GENLIB menu.

4. In the LPM_<function name> dialog box, specify appropriate values for the variables displayed for the LPM
function you chose in step 3. Make sure that any hexadecimal (Intel-format) file that you use to specify the
initial content of a memory function does not have the same name as the design file name. Choose
Megafunctions/LPM from the MAX+PLUS II Help menu for detailed information on LPM functions.

5. Choose OK to generate a symbol for the LPM function you chose in step 3 and a corresponding VHDL

After you compile a project, you can back-annotate pin assignments, as described in BackAnnotating
MAX+PLUS II Pin Assignments to Design Architect Symbols.

simulation model.

6. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUS II Software.

7. When you save the schematic, the Design Architect software will ask whether you want to compile the LPM
model. Choose YES if you want to compile the VHDL code for the LPM functions. The software will
automatically select the corresponding compiler: System 1076 for B.(x) releases and QuickHDL compilers
for releases C.1 and later.

Installing the Altera® provided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example7/fifo,
which includes LPM instantiation.

Entering Resource Assignments

The MAX+PLUS ® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Design Architect Schematics

In Design Architect schematics, you can assign a limited subset of these resource assignments by assigning
properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II software
automatically converts assignment information from the EDIF Input File into the ACF format. For information on
making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example4/fa2,
which includes resource assignments.

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. Go to Modifying the Assignment & Configuration File with the setacf Utility for more
information.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design

Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Design Architect software. For information on entering assignments in MAX+PLUS II software with Assign
menu commands or in an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using
Search for Help on (Help menu).

Assigning Pins, Logic Cells & Chips

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in some EDA
tools or in the MAX+PLUS® II software.

Use the following syntax for chip, pin, and logic cell assignments:

To assign a logic function to a chip:

CHIP_PIN_LC=<chip name>

For example: CHIP_PIN_LC=chip1

To assign a pin number within a chip:

CHIP_PIN_LC=<chip name>@<pin number>

For example: CHIP_PIN_LC=chip1@K2

To assign a logic cell, I/O cell, or embedded cell number:

CHIP_PIN_LC=<chip name>@LC<logic cell number>

CHIP_PIN_LC=<chip name>@IOC<I/O cell number>

CHIP_PIN_LC=<chip name>@EC<embedded cell number>

For example: CHIP_PIN_LC=chip1@LC44

Related Topics:

Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on device
pin-outs and assigning devices, respectively, in the MAX+PLUS II software.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.

Assigning Cliques

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project

To assign a clique, use the following syntax:

CLIQUE=<clique name>

For example: CLIQUE=fast1

does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000, FLEX
10K, and MAX® 9000 devices the Compiler also attempts to place the logic in LABs in the same row. Cliques
therefore allow you to partition a project so that only a minimum number of signals travel between LABs, and to
ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

Related Topics:

Go to the following topics in MAX+PLUS II Help for related information:
Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Assigning Logic Options

Logic option and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device-family-specific default logic synthesis style for
each project.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis
style assignments, including definitions and syntax of these assignments.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

BackAnnotating MAX+PLUS II Pin Assignments to Design Architect Symbols

The MAX+PLUS ® II/Mentor Graphics software interface includes the annotate_pin utility. This utility allows
you to back-annotate the pin assignments from the MAX+PLUS II-generated Fit File (.fit) back to the symbol for
the design file. The annotate_pin utility has the following syntax:

annotate_pin [-p <property name>] <symbol name> <chip name> <Fit File name>

where <property name> is the default name for the pin assignment (default is PIN_NO), <symbol name> is the
pathname of the directory that contains the symbol, <chip name> is the chip name specified in the Fit File, and
<Fit File name> is the name of the Fit File that contains the pin assignment information for back-annotation. If the

Type annotate_pin -h at the UNIX prompt to display information on how to use this utility.

<property name> is not found at a pin number, that pin will not be back-annotated. If the <chip name> is not
found in the Fit File, the annotate_pin utility stops the back-annotation process.

For example:

annotate_pin -p PIN_NO /usr/examples/decode decode decode.fit

Creating Hierarchical Projects with Design Architect Software

If you wish to create a hierarchical schematic design that contains symbols representing other design files, such as
AHDL Text Design Files (.tdf), VHDL Design Files (.vhd), or Verilog Design Files (.v), you can create a hollow-
body symbol for the design file and then instantiate it in your top-level design file.

To create a hollow-body symbol for a lower-level design file, follow these steps:

1. (Optional) If you are creating a hollow-body symbol for a VHDL or Verilog HDL design file, you can first
functionally simulate the VHDL or Verilog HDL file, as described in Performing a Functional Simulation
with QuickHDL Software.

2. Start the Design Architect software by double-clicking Button 1 on the max2_da icon in the Design Manager
tools window. You can also start Design Architect software by typing max2_da at the UNIX prompt.

3. Choose the OPEN SYMBOL button in the Design Architect session_palette to open the Symbol Editor.
Type the lower-level design file name, including the directory path, in the Component Name box. Choose
OK.

4. Create a symbol that represents the inputs and outputs of the lower-level file.

5. Assign PINTYPE properties of IN or OUT to the inputs and outputs of the symbol, and assign appropriate values
to any other properties of the symbol so that it can be identified in the top-level schematic.

If you are creating a hollow-body symbol for a VHDL design file, be sure to assign the value qvpro to
the symbol's model property so that it can be identified as a VHDL component in the top-level
schematic.

6. Check and save the symbol, then close the Symbol Editor.

7. To enter the symbol, choose the CHOOSE SYMBOL button from the Design Architect session_palette.

8. Select the symbol file from the Navigator menu and choose OK.

9. The MAX+PLUS® II software uses the Altera® provided mnt8_bas.lmf Library Mapping File to map
Design Architect symbols to equivalent MAX+PLUS II logic functions. To use custom symbols, you must
create a custom LMF that maps your custom symbols to the equivalent EDIF Input File, Text Design File
(TDF), or other design file. You will also need to specify this LMF in the EDIF Netlist Reader Settings
dialog box before compiling the design with the MAX+PLUS II software. See Compiling Projects with
MAX+PLUS II Software for more information.

10. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUS II Software.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample hierarchical Design Architect schematic file

If you wish to functionally simulate a hierarchical design that uses multiple design entry methods, you should use
QuickHDL Pro rather than QuickSim. Refer to Performing a Functional Simulation with QuickHDL Pro Software
for more information.

/usr/maxplus2/examples/mentor/example3/fulladd2.

Performing a Functional Simulation with DVE & QuickSim II Software

You can perform a functional simulation of a Design Architect schematic with the Mentor Graphics Design
Viewpoint Editor (DVE) and QuickSim II software before compiling your project with the MAX+PLUS ® II
Compiler.

To functionally simulate a Design Architect schematic, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a Design Architect schematic that follows the guidelines in Creating Design Architect Schematics for
Use with MAX+PLUS II Software.

3. In the Navigator window, select your project's folder, press Button 3, and choose Open max2_fve to start
DVE. DVE checks the design and creates a viewpoint (called altera_fsim by default) for functional
simulation with QuickSim II software.

4. Select the altera_fsim icon, press Button 3, and choose Open max2_qsim from the Navigator window to
start the QuickSim II software. You can also start the QuickSim II software by typing max2_qsim at the
UNIX prompt.

5. Set the appropriate options and simulate your design.

6. Use the ENWrite utility to generate an EDIF netlist file that can be imported into the MAX+PLUS II
software, as described in Converting Design Architect Schematics into MAX+PLUS II-Compatible EDIF
Netlist Files with the ENWrite Utility.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Converting Design Architect Schematics into MAX+PLUS II- Compatible EDIF Netlist
Files with the ENWrite Utility

After you have created a Design Architect schematic or a hierarchical schematic design that uses multiple design
entry methods, you can use the Mentor Graphics ENWrite utility to convert it into an EDIF netlist file that can be
processed with the MAX+PLUS ® II software.

To generate an EDIF netlist file for use with the MAX+PLUS II Compiler, go through the following steps:

1. Create a Design Architect Schematic that follows the guidelines described in Creating Design Architect
Schematics for Use with MAX+PLUS II Software.

2. Select the folder for your project, press Button 3, and choose Open max2_enw from the Navigator window
to open Design Viewpoint Editor (DVE), then ENWrite. You can also start the ENWrite utility by typing

max2_enw at the UNIX prompt.

3. Choose OK in the $invoke_enw dialog box to accept the default names for the DVE viewpoint altera_edif,
which is used internally by ENWrite, and the ENWrite hierarchical EDIF netlist file <design name>.edf.
Specify OFF for the port array construct in the EDIF netlist file.

The MAX+PLUS II software supports bus constructs in EDIF 2 0 0 and 3 0 0 netlist files, which allow
you to retain any bus structures in your design. To preserve a bus in the EDIF netlist file, turn on the
port array construct option in the $invoke_enw dialog box. However, if your design contains library
of parameterized modules (LPM) functions, you should not use this feature because LPM 2.0.1 and
2.1.0 functions do not support EDIF bus constructs.

After DVE checks the Design Architect schematic, ENWrite generates <design name>.edf and automatically
copies it to your project's directory.

4. Compile the resulting EDIF netlist file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software

You can create VHDL and Verilog HDL design files with the MAX+PLUS ® II Text Editor or another standard
text editor and save them in the appropriate directory for your project.

The MAX+PLUS II Text Editor offers the following advantages:

Templates are available with the VHDL Templates and Verilog Templates commands (Template menu).
These templates are also available in the ASCII vhdl.tmp and verilog.tmp files, respectively, which are
located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can turn on the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements of text in text
files in different colors to distinguish them from other forms of syntax.

To create a VHDL or Verilog HDL design file for use with the MAX+PLUS II software, go through the following
steps:

1. Enter a VHDL or Verilog HDL design in the MAX+PLUS II Text Editor or another standard text editor and
save it in your working directory.

2. Enter primitives, macrofunctions, and megafunctions in your VHDL or Verilog HDL design from the Altera
library.

The following topics describe special steps needed to instantiate LPM and clklock functions:

Instantiating LPM Functions in VHDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3.

(Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a

Functional Simulation with QuickHDL Software and Performing a Functional Simulation with QuickHDL
Pro Software.

4. Once you have created a VHDL or Verilog HDL design, you can generate an EDIF netlist file that can be
imported into the MAX+PLUS II software with either of the following methods:

You can synthesize and optimize your design and create an EDIF netlist file, as described in
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software or
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software.

You can use the Altera VHDL Express utility, vhd_exprss, to automatically create an EDIF netlist file,
compile it with the MAX+PLUS II Compiler, generate an EDIF Output File (.edo), and prepare the
EDIF Output File for simulation with QuickHDL software, as described in Using the Altera Schematic
Express (vhd_exprss) Utility.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL design files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Instantiating the clklock Megafunction in VHDL & Verilog HDL Designs

Altera provides the gencklk utility to allow you to instantiate clklock (phaselocked loop) functions in Mentor
Graphics/Exemplar Logic software. The gencklk utility appends the parameter values to the clklock function
name, so you don't need to declare attributes explicitly. The naming rule for the clklock function is
clklock_ <ClockBoost>_<inputfrequency>. The gencklk utility has the following syntax:

gencklk <ClockBoost> <inputfrequency> [vhdl] [verilog]

For the <ClockBoost> variable, you should specify a ClockBoost value of 1 or 2 (default value is 1). For the
<inputfrequency> variable, you should specify a decimal value in MHz (default value is 50). To generate a VHDL
file (which is the default if no option is present), specify vhdl; to generate a Verilog HDL file, specify verilog.

For example, to create the VHDL file clklock_2_50.vhd and the corresponding Component Declaration file
clklock_2_50.cmp, type the following command at the UNIX prompt:

gencklk 2 50 -vhdl

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics interface on your computer automatically creates
the sample VHDL design file /usr/maxplus2/examples/mentor/example6/count8.vhd, which includes clklock
megafunction instantiation.

Instantiating LPM Functions in VHDL

You can use Mentor Graphics Design Architect software to help you instantiate library of parameterized modules
(LPM) functions in your VHDL design files.

To incorporate an LPM function into a VHDL design file, perform the following steps:

1. Be sure to set up the Design Architect working environment correctly, as described in Setting Up the
MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment.

2. Open a dummy schematic in the Design Architect software:

1. Start the Altera® /Mentor Graphics interface by typing max2_dmgr at a UNIX prompt.

2. Start the Design Architect software by double-clicking Button 1 on the max2_da icon in the Design
Manager tools window.

3. Choose the OPEN_SHEET button in the Design Architect session_palette, then specify your project
name in the Component Name box. Choose OK.

3.

Instantiate the desired LPM function in the dummy schematic:

1. Choose Altera Libraries (Library menu).

2. Choose ALTERA LPMLIB (Altera Libraries menu).

3. Choose from the available LPM functions on the ALTERA LPMLIB menu.

4. In the LPM_<lpm function> dialog box, specify a name for the LPM function in the Cell Name box
and appropriate values for the function's parameters. Make sure that any hexadecimal (Intel-format)
file that you use to specify the initial content of a memory function does not have the same name as the
design file name. Choose Megafunctions/LPM from the MAX+PLUS® II Help menu for detailed
information about LPM functions.

5. Choose OK to generate the LPM function, the corresponding VHDL simulation model, and a VHDL
Component Declaration/Attribute Declaration/Attribute Specification (.cmp) template.

4.

Close the Design Architect software without saving the dummy schematic.

5. Instantiate the function created in step 2 in your design file. Use the template file to help prevent syntax and
other errors.

6. Continue with the steps necessary to complete your design file, as described in Creating VHDL & Verilog
HDL Designs for Use with MAX+PLUS ® II Software.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample hierarchical VHDL design file
/usr/maxplus2/examples/mentor/example8/adder16.vhd, which includes LPM function instantiation.

Entering Resource Assignments

The MAX+PLUS ® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,

After you compile a project, you can back-annotate pin assignments, as described in BackAnnotating
MAX+PLUS II Pin Assignments to Design Architect Symbols.

If you wish to functionally simulate a hierarchical design that uses multiple design entry methods, you should use
QuickHDL Pro rather than QuickHDL. Refer to Performing a Functional Simulation with QuickHDL Pro
Software for more information.

row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Design Architect Schematics

In Design Architect schematics, you can assign a limited subset of these resource assignments by assigning
properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II software
automatically converts assignment information from the EDIF Input File into the ACF format. For information on
making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example4/fa2,
which includes resource assignments.

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. Go to Modifying the Assignment & Configuration File with the setacf Utility for more
information.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Design Architect software. For information on entering assignments in MAX+PLUS II software with Assign
menu commands or in an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using
Search for Help on (Help menu).

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get help on
this utility.

Performing a Functional Simulation with QuickHDL Software

You can use Mentor Graphics QuickHDL software to functionally simulate VHDL or Verilog HDL design files
before compiling them with the MAX+PLUS ® II Compiler.

To functionally simulate a VHDL or Verilog HDL design, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL or Verilog HDL design file that follows the guidelines described in Creating VHDL &
Verilog HDL Designs for Use with MAX+PLUS II Software.

3. Start Design Architect by double-clicking Button 1 on the max_da icon in the Design Manager tools
window. You can also start Design Architect software by typing max2_da at the UNIX prompt.

4. Choose Lib (QuickHDL menu) and specify your work library name as the Work Library name. Choose OK.

5. Choose Map (QuickHDL menu) to map the instantiated function to the equivalent function in the Altera
logic function library. Choose Set to specify altera as the Logical Name and $MAX2_MFLIB as the Physical
Name. Choose OK.

6. Choose Compile (QuickHDL menu) and use the Navigator window to select the icon for your project.
Specify your work library name as the Work Library name and select the Simulation setting in the Set VHDL
Compilation Options or Set Verilog HDL Compilation Options window. Choose OK to compile.

7. Choose Simulate (QuickHDL menu) and specify your work library name as the Work Library name. Choose
OK to start the QuickHDL Startup window.

8. Select the icon for your project in the Entity Configuration window and choose OK to simulate the design.

9. Synthesize and optimize the design, as described in Synthesizing & Optimizing VHDL & Verilog HDL
Projects with Galileo Extreme Software or Synthesizing & Optimizing VHDL & Verilog HDL Projects with
Leonardo Software.

If your Verilog HDL design uses memory functions (RAM or ROM) that can be initialized with a hexadecimal file
(Intel-format) initialization, you must convert these files into Verilog HDL format using the Programming
Language Interface (PLI). To use the Altera-provided source code for PLI, perform the following steps:

1. Download the file http://www.edif.org/lpmweb/convert_hex2ver.c to your project directory.

2. Copy the following two files from the $MGC_HOME/shared/pkgs/quickhdl/include directory into the
/usr/maxplus2 directory:

$MGC_HOME/shared/pkgs/quickhdl/include/veriuser
$MGC_HOME/shared/pkgs/quickhdl/include/acc_user

Refer to the Mentor Graphics QuickHDL User's Reference Manual, version 8.5-4.6i, for information on
compiling the PLI application on different platforms and using the Verilog HDL PLI.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Performing a Timing Simulation with QuickHDL Software
Performing a Functional Simulation with QuickHDL Pro Software

Performing a Functional Simulation with QuickHDL Pro Software

You can use Mentor Graphics QuickHDL Pro software to functionally simulate mixed-level schematic and VHDL

designs before compiling them with the MAX+PLUS ® II Compiler.

Refer to Mentor Graphics Getting Started with QuickHDL Pro page 2-1 and 3-1 for compatible design
configurations.

To functionally simulate a QuickHDL at Top Level design, follow the steps in Getting Started with QuickHDL Pro,
Chapter 2.

To functionally simulate a QuickSim II at Top Level design, go through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a schematic design using QuickHDL models. Refer to Creating Design Architect Schematics for Use
with MAX+PLUS II Software.

3. Compile the QuickHDL model using the QuickHDL Compiler with the -qhpro_syminfo option. (This is
done automatically for LPM functions if you choose to compile the LPM models when saving the
schematic.)

4. Start Design Architect by double-clicking Button 1 on the max_da icon in the Design Manager tools
window.

5. Choose Open from the File menu, then choose Sheet from the Open menu to open the top level schematic.
6. Select the symbol for the VHDL model and choose Begin Edit Symbol from the Edit menu.
7. Press Button 3 to display the the Design Architect pop-up menu. Choose Add Menu from the Other Menus

menu, then choose Set VHDL Info. Choose Import from Entity to display the "Import Entity Info" dialog
box.

8. Specify the following options in the "Import Entity Info" dialog box:

1. QHDL InitFile: Specify your quickhdl.ini file.

2. Library Logical Name: Click on Choose Library button and fill the "Choose VHDL Library" form
with your work library.

3. Entity Name: Click on Choose Entity button and select the name of your entity.

4. Default Architecture: Click on Choose Arch button and select corresponding architecture for the
entity.

After filling in the above information, click on OK to close the form.

Check the symbol with defaults. If there are no errors, save the symbol with default registration by choosing Save
Symbol from the File menu, then choose Default Registration.

Choose End Edit Symbol from the Edit menu to close the Symbol Editor session. In the schematic window,
select the symbol you have just edited and choose Object from the Report menu, then choose All from the Selected
menu. In the report transcript, make sure the MODEL property is set to qhpro to ensure that the model will work
with QuickHDL Pro.

Select the folder for your project, press button 3, and choose Open max2_qvpro to start QuickHDL Pro. You
can also start QuickHDL Pro by typing max2_qvpro at the UNIX prompt. In the QVHDL Pro System dialog
box, make sure EDDM Design is selected for Invoke on and the correct path name is specified for the design.
Choose OK to start the QuickHDL Pro. A QHPro (QuickSim II) window and a QHPro (QuickHDL) window
appear on the screen.

Use the QuickSim II window to simulate the top level schematic and the QuickHDL window to simulate the
VHDL portion of the design.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software

Instantiating LPM Functions in Design Architect Schematics
Performing a Functional Simulation with QuickHDL Software

Creating Hierarchical Projects with Design Architect Software

If you wish to create a hierarchical schematic design that contains symbols representing other design files, such as
AHDL Text Design Files (.tdf), VHDL Design Files (.vhd), or Verilog Design Files (.v), you can create a hollow-
body symbol for the design file and then instantiate it in your top-level design file.

To create a hollow-body symbol for a lower-level design file, follow these steps:

1. (Optional) If you are creating a hollow-body symbol for a VHDL or Verilog HDL design file, you can first
functionally simulate the VHDL or Verilog HDL file, as described in Performing a Functional Simulation
with QuickHDL Software.

2. Start the Design Architect software by double-clicking Button 1 on the max2_da icon in the Design Manager
tools window. You can also start Design Architect software by typing max2_da at the UNIX prompt.

3. Choose the OPEN SYMBOL button in the Design Architect session_palette to open the Symbol Editor.
Type the lower-level design file name, including the directory path, in the Component Name box. Choose
OK.

4. Create a symbol that represents the inputs and outputs of the lower-level file.

5. Assign PINTYPE properties of IN or OUT to the inputs and outputs of the symbol, and assign appropriate values
to any other properties of the symbol so that it can be identified in the top-level schematic.

If you are creating a hollow-body symbol for a VHDL design file, be sure to assign the value qvpro to
the symbol's model property so that it can be identified as a VHDL component in the top-level
schematic.

6. Check and save the symbol, then close the Symbol Editor.

7. To enter the symbol, choose the CHOOSE SYMBOL button from the Design Architect session_palette.

8. Select the symbol file from the Navigator menu and choose OK.

9. The MAX+PLUS® II software uses the Altera® provided mnt8_bas.lmf Library Mapping File to map
Design Architect symbols to equivalent MAX+PLUS II logic functions. To use custom symbols, you must
create a custom LMF that maps your custom symbols to the equivalent EDIF Input File, Text Design File
(TDF), or other design file. You will also need to specify this LMF in the EDIF Netlist Reader Settings
dialog box before compiling the design with the MAX+PLUS II software. See Compiling Projects with
MAX+PLUS II Software for more information.

10. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUS II Software.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample hierarchical Design Architect schematic file
/usr/maxplus2/examples/mentor/example3/fulladd2.

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software

After you have created a VHDL or Verilog HDL design, you can use Exemplar Logic's Galileo Extreme software

to synthesize and optimize your VHDL Design File (.vhd) or Verilog Design File (.v) and prepare it for
compilation with the MAX+PLUS ® II Compiler.

To synthesize and optimize your project and generate an EDIF netlist file with Galileo Extreme software, go
through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL or Verilog HDL design that follows the guidelines described in Creating VHDL & Verilog
HDL Designs for Use with MAX+PLUS II Software.

3. (Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a
Functional Simulation with QuickHDL Software.

4. Select the icon for your design file in the appropriate directory, press Button 3, and choose max2_galileo in
the Navigator window to start the Galileo Extreme software. You can also start Galileo Extreme software by
typing max2_galileo at the UNIX prompt.

5. Specify settings for the Filename and Format options under INPUT DESIGN.

6. Specify settings for the Filename, Format, and Technology options under OUTPUT DESIGN. Verify that
EDIF is specified in the Format box.

7. Choose the Altera Output Options button if you want to specify settings for various parameters, including
Maximum Fanin for MAX devices and Part Number for FLEX devices. You can also turn on the Run
MAX+PLUS II option for design compilation, which specifies that the MAX+PLUS II Compiler should start
processing your design immediately after you run Galileo Extreme. Choose OK to save any setting changes.

8. Choose Start Run. The Galileo Extreme software generates <design name>.edf in the <project
directory>/max2 subdirectory and then closes, returning you to the Navigator window.

9. Process your design with the MAX+PLUS II Compiler, as described in Compiling Projects with
MAX+PLUS II Software. If you turned on the Run MAX+PLUS II option in step 7, the MAX+PLUS II
Compiler automatically starts processing your design after you run Galileo Extreme.

Installing the Altera® provided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL Design Files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software
Performing a Timing Simulation with QuickHDL Software
Performing a Timing Analysis with QuickPath Software

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software

After you have created a VHDL or Verilog HDL design, you can use Exemplar Logic's Leonardo software to
synthesize and optimize your VHDL Design File (.vhd) or Verilog Design File (.v) and prepare it for compilation
with the MAX+PLUS ® II Compiler.

To synthesize and optimize your project and generate an EDIF netlist file with Leonardo software, go through the
following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL or Verilog HDL design that follows the guidelines described in Creating VHDL & Verilog
HDL Designs for Use with MAX+PLUS II Software.

3. (Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a
Functional Simulation with QuickHDL Software.

4. Select the icon for your project's design file from the Navigator window, press Button 3, and choose
max2_leonardo to start the Leonardo software and open the Exemplar Logic Leonardo window. You can
also start Leonardo by typing max2_leonardo at the UNIX prompt.

5. Click Button 1 on the Flow Guide toolbar button to open the Customize Flow Guide dialog box.

6. Turn on the Altera EDIF Output File checkbox under Output Flow.

7. Choose Run Flow Guide to open the Flow Guide window and specify the appropriate options in the
following modules to synthesize your project:

1. Choose Load Library to open the Load Library dialog box. If necessary, select FPGA Enhanced
from the Tech Type drop-down list box. Select the target Altera® device family from the list of
supported device families and choose Load to close the dialog box.

2. Choose Read to open the Read dialog box. Turn on VHDL or Verilog HDL under Format, ensure that
the appropriate library name appears under Work Library, and type the name of your design file in the
Filename box or select it from the Select a File dialog box. Choose Read to close the dialog box.

3. Choose Pre-Optimize to open the Pre-Optimize dialog box. Choose Pre-Optimize to accept the
default pre-optimization settings and close the dialog box.

4. Choose Optimize to open the Optimize dialog box. Choose Optimize to accept the default
optimization settings and close the dialog box.

5. Choose Write Altera to open the Convenience Procedures dialog box. Type write_altera in the
Procedure box or select write_altera from the list box and choose Run to automatically generate
<design name>.edf.

6. Choose Exit Flow Guide to return to the Leonardo window.

8. Process your design with the MAX+PLUS II Compiler, as described in Compiling Projects with
MAX+PLUS II Software.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL Design Files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Topics:

Go to Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software in these

Figure 1. MAX+PLUS II/Mentor Graphics/Exemplar Logic Project
Compilation Flow

Alteraprovided items are shown in
blue.

MAX+PLUS II ACCESSSM Key topics for related information.

Project Compilation Flow

The following figure shows the MAX+PLUS ® II/Mentor Graphics/Exemplar Logic project compilation flow.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly with
the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the Synopsys
Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within the
MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal

names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files

generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Exemplar Logic Galileo ExtremeSpecific Compiler Settings

If you are using MAX+PLUS ® II software to compile a FLEX ® design that was created with Galileo Extreme
software, go through the following additional compilation steps:

1. Choose Global Project Logic Synthesis (Assign menu) to open the Global Project Logic Synthesis dialog
box.

2. Select the appropriate logic synthesis style under Global Project Logic Synthesis Style:

If you turned on the Lock Lcells option under SYNTHESIS SWITCHES in the Galileo Extreme Altera
FLEX Output Options dialog box when synthesizing your design with Galileo Extreme software, select
WYSIWIG in the Global Project Synthesis Style box.

or:

If you did not turn on the Lock Lcells option, select FAST in the Global Project Synthesis Style box.

3.

(Optional) Turning on one or more of the following options may help to improve area usage and timing
delays:

Automatic Fast I/O
Automatic Register Packing
(FLEX 10K devices only) Automatic Implement in EAB

Choose OK to close the Global Project Logic Synthesis dialog box.

Continue with the steps necessary to compile your project, as described in Compiling Projects with MAX+PLUS
II Software.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices
MAX® Devices
Classic Device Family

Using the Altera Schematic Express (sch_exprss) Utility

Once you have created a Design Architect schematic, you can use the Altera Schematic Express utility
(sch_exprss) to generate a Design Viewpoint Editor (DVE) viewpoint and an EDIF netlist file from the schematic;
process the EDIF Input File (.edf) with the MAX+PLUS ® II software to generate an EDIF Output File (.edo);
process the EDIF Output File with ENRead and DVE software; and generate an altera_asim viewpoint for
simulation. The sch_exprss utility creates all necessary subdirectories and copies all of the files to the correct
locations.

To use the sch_exprss utility, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a Design Architect schematic that follows the guidelines described in Creating Design Architect
Schematics for Use with MAX+PLUS II Software.

3. Select your project's folder, press Button 3, and choose Open sch_exprss from the Mentor Graphics
Navigator window to start the Altera Schematic Express tool.

4. Specify settings for the Input Schematic, Altera Device Family, MAX+PLUS II Synthesis Style, Process
Direction, and Verbose options in the sch_exprss dialog box and choose OK to generate the altera_asim file
for simulation with QuickSim II software.

5. If necessary, correct any errors in the Design Architect schematic design file and recompile the project. The
sch_exprss utility generates the altera_asim viewpoint in the appropriate directory.

6. Simulate your project, as described in Performing a Timing Simulation with DVE & QuickSim II Software.

Related Topics:

Go to Performing a Timing Analysis with QuickPath Software in these MAX+PLUS II ACCESSSM Key
topics for related information.

Using the Altera VHDL Express (vhd_exprss) Utility

Once you have created a VHDL Design File (.vhd) for your project, you can use the Altera ® VHDL Express
(vhd_exprss) utility to synthesize and optimize the design and generate an EDIF netlist file with Galileo Extreme
software; process the EDIF netlist file with the MAX+PLUS II software to generate a VHDL Output File (.vho);
and prepare the VHDL Output File for simulation with QuickHDL software. The vhd_exprss utility creates all
necessary subdirectories and copies all files to the correct locations.

To use the vhd_exprss utility, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL Design File that follows the guidelines described in Creating VHDL & Verilog HDL
Designs for Use with MAX+PLUS II Software.

3. Select the VHDL Design File for your project, press Button 3, and choose Open vhd_exprss from the
Navigator window to start the Altera VHDL Express tool.

4. Specify settings for the Input HDL File, Altera Device Family, Max2 Synthesis Style, Process Direction, and
Verbose options, and the Optimize and Effort runtime options, in the vhd_exprss dialog box, and choose
OK.

5. If necessary, correct any errors in the VHDL Design File and recompile the project. The vhd_exprss utility
generates a VHDL output file in the appropriate directory.

6. Simulate your project, as described in Performing a Timing Simulation with QuickHDL Software.

Related Topics:

Go to Performing a Timing Analysis with QuickPath Software in these MAX+PLUS II ACCESSSM Key
topics for related information.

BackAnnotating MAX+PLUS II Pin Assignments to Design Architect Symbols

The MAX+PLUS ® II/Mentor Graphics software interface includes the annotate_pin utility. This utility allows
you to back-annotate the pin assignments from the MAX+PLUS II-generated Fit File (.fit) back to the symbol for
the design file. The annotate_pin utility has the following syntax:

annotate_pin [-p <property name>] <symbol name> <chip name> <Fit File name>

where <property name> is the default name for the pin assignment (default is PIN_NO), <symbol name> is the

Type annotate_pin -h at the UNIX prompt to display information on how to use this utility.

Figure 1. MAX+PLUS II/Mentor Graphics Project Simulation/Timing
Analysis Flow

Alteraprovided items are shown in
blue.

pathname of the directory that contains the symbol, <chip name> is the chip name specified in the Fit File, and
<Fit File name> is the name of the Fit File that contains the pin assignment information for back-annotation. If the
<property name> is not found at a pin number, that pin will not be back-annotated. If the <chip name> is not
found in the Fit File, the annotate_pin utility stops the back-annotation process.

For example:

annotate_pin -p PIN_NO /usr/examples/decode decode decode.fit

Project Simulation/Timing Analysis Flow

The following figure shows the project simulation and timing analysis flow for the MAX+PLUS® II /Mentor
Graphics interface.

Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation

Altera provides the add_dc script, which is availiable in the MAX+PLUS II system directory, to allow you to
process MAX+PLUS II-generated Verilog Output Files (.vo) and VHDL Output Files (.vho) to prepare these files
for simulation with another EDA tool. The add_dc script runs the add_dclr utility, which inserts a device_clear
signal that is used for power-up initialization of all registers or flipflops in the design.

1. The add_dc script gives a message if the directory contains both a VHDL Output File and a Verilog Output
File with the same name (<design name>.vo and <design>.vho). You should delete or rename whichever
of those files should not have the device_clear signal added. The add_dc script can modify only one
design file at a time.

2. When the add_dc script processes the Verilog Output File or VHDL Output File, it creates a backup copy
of the original file, with the extension .ori.

3. The add_dc script works only for Verilog Output Files and VHDL Output Files that are generated by
MAX+PLUS II.

The script adds in a top-level signal named device_clear and connects it to the CLRN pin in all flipflops that should
initialize to 0, and to the PRN pin of all flipflops that should initialize to 1. If the CLRN or PRN pin of a flipflop is
already being used (i.e., is already connected to a signal), the script modifies the Verilog Output File or VHDL
Output File so that the AND of the original signal and the device_clear pin feed the CLRN or PRN pin.

To use the add_dc script to process Verilog Output Files and VHDL Output Files before simulation with another
EDA tool, follow these steps:

1. Make sure that your design file is located in the current directory, or change to the directory in which the
design file is located.

2. Type the following command at the command prompt:

Â¥<path name of add_dc.bat file>Â¥add_dc <design name> <path name of add_dclr.exe file>

For example, if the both the add_dc.bat and the add_dclr.exe files are located in the d:Â¥maxplus2Â¥exew
directory, and the d:Â¥maxplus2Â¥exew directory is specified in the search path, you can type the following
command at a command prompt to add a device_clear signal to a design named myfifo in the file myfifo.vo:

add_dc myfifo d:Â¥maxplus2Â¥exew

After you have used the add_dc script and are ready to simulate the resulting Verilog Output File or VHDL Output
File with another EDA tool, you should assert the active low device_clear pin for a period of time that is long
enough for the design to initialize. You can then de-assert the pin, and apply simulation vectors to the design.

Performing a Timing Simulation with DVE & QuickSim II Software

After you have compiled a design with the MAX+PLUS® II Compiler, you can prepare the MAX+PLUS
IIgenerated EDIF Output File (.edo) with Mentor Graphics Design Viewpoint Editor (DVE) and simulate it with
the Mentor Graphics QuickSim II software.

To simulate an EDIF Output File with the QuickSim II software, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Generate an EDIF Output File for your project, as described in Compiling Projects with MAX+PLUS II
Software or Using the Altera Schematic Express (sch_exprss) Utility.

3. If you used the Altera Schematic Express (sch_exprss) utility to process your design, skip to step 5.
Otherwise, go to step 4.

4. In the Navigator window, select your project's icon, press Button 3, and choose Open max2_enr to read your

project's EDIF Output File with the ENRead utility. You can also start ENRead software by typing max2_enr
 at the UNIX prompt.

5. Select your project's folder, press Button 3, and choose Open max2_ave to open DVE, which will prepare
your project's simulation component for QuickSim II timing simulation. DVE automatically generates an
appropriately named viewpoint for your project. You can also start DVE by typing max2_ave at the UNIX
prompt.

6. Select your project's folder, press Button 3, and choose Open max2_qsim to simulate your project and its
DVE viewpoint with QuickSim II software. You can also start QuickSim II by typing max2_qsim at the
UNIX prompt.

7. In the Altera QuickSim dialog box, type the name of your project's viewpoint in the Viewpoint Name box.
Select Timing as the Timing Mode. Select the Max timing option. Choose Scale Factor for Delay Scale, and
be sure that 0.1 is specified for the Value. Choose OK.

If the delay scale value is not set to 0.1 (i.e., divided by ten), the QuickSim II software will not reflect
the correct timing simulation values.

Related Topics:

Go to Performing a Timing Analysis with QuickPath Software in these MAX+PLUS II ACCESSSM Key
topics for related information.

Preparing EDIF Output Files for Timing Simulation with Logic Modeling SmartModel
Software

Once you have generated an EDIF Output File (.edo) for a design with the MAX+PLUS® II Compiler, you can use
Logic Modeling SmartModel software to prepare it for simulation.

To use Logic Modeling SmartModel software, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Generate an EDIF Output File for your project, as described in Compiling Projects with MAX+PLUS II
Software.

3. In the Navigator window, select your project's icon, press Button 3, and choose Open max2_lmi to start the
Logic Modeling EDIF2SCF compiler and create a SmartModel Configuration Format File, as described in
Creating a Logic Modeling SmartModel Configuration Format File.

4. Create a schematic, as described in Creating Design Architect Schematics for Use with MAX+PLUS II
Software, that contains an instance of a Logic Modeling SmartModel for the Altera® device specified in your
project:

1. Start Design Architect by double-clicking on your project's icon in the Design Manager tools window.

2. Choose Altera Libraries (Libraries menu) and choose LOGIC MODELING (Altera Libraries menu).
Select the appropriate device model for the Altera device specified in your project.

3. Change the PLDFILE property for the Altera device model to the full pathname of the SmartModel
Configuration Format File generated in step 2.

Table 1. EDIF2SCF Options for Logic Modeling SmartModel

Setting(s) Effect on EDIF2SCF

help_type option is turned on Compiles with the h
option

netlist_type option is set to extract Compiles with the x
option

netlist_type option is set to windows Compiles with no
options

netlist_type option is set to windows and the window_file option is set to the pathname of the
windows definition file

Compiles with the w
option

netlist_type option is set to windows and the output_file option is set to the pathname of a
<filename>.scf file

Compiles with the o
option

netlist_type option is set to windows and the interface_file option is set to the pathname of a
custom <filename>.inf file

Compiles with the i
option

4. Add pins to the device model.
5. Check and save the schematic in your project directory.

5.

Select the icon for the folder representing the schematic generated in step 3, press Button 3, and choose Open
max2_lve to open DVE and prepare your EDIF Output File for QuickSim II timing simulation. DVE
generates a viewpoint named altera_lsim.

6. Select the icon for the folder representing the schematic generated in steps 2a through 2e, press Button 3, and
perform a timing simulation on your project, as described in steps 5 and 6 of Performing a Timing Simulation
with DVE & QuickSim II Software.

Creating a Logic Modeling SmartModel Configuration Format File

The Logic Modeling SmartModel EDIF2SCF for Windows Compiler reads the <project name>.edo file generated
by the MAX+PLUS® II Compiler and creates the <project name>.scf file. The EDIF2SCF compiler also extracts
all state and internal net information for simulation of internal nodes (with the x and w options).

When the EDIF2SCF compiler opens, an Options prompt appears, providing options for the help_type, netlist_type,
design_name, window_file, output_file, and interface_file. If some fields are not visible, press the TAB key to cycle
through all six fields. The information you enter in these fields configures the EDIF2SCF compiler, and is
equivalent to setting the various commandline options when compiling with EDIF2SCF.

Refer to the following table when setting options at the EDIF2SCF compiler's Options prompt. For information on
these options, refer to EDIF2SCF Compiler in the Logic Modeling SmartModel Library Reference Manual.

Performing a Timing Simulation with QuickHDL Software

After you have entered a VHDL or Verilog HDL design file and compiled it with the MAX+PLUS ® II Compiler,
you can use Mentor Graphics QuickHDL software to simulate the MAX+PLUS IIgenerated VHDL Output File
(.vhd) or Verilog Output File (.vo) and the Standard Delay Format (SDF) Output File (.sdo).

To simulate your VHDL or Verilog HDL design, go through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Generate a VHDL or Verilog HDL output file and an SDF output file for your project, as described in
Compiling Projects with MAX+PLUS II Software.

3. Change to your project's directory.

4. Copy your quickhdl.ini file to the same directory as your VHDL or Verilog HDL file.

5. Type the following sets of commands at the UNIX prompt to create the work library and compile your
project's VHDL or Verilog HDL output file:

VHDL: Verilog HDL:
setenv MGC_WD 'pwd'
qhlib work
qvhcom <project name>.vho

setenv MGC_WD 'pwd'
qhlib work
qvlcom <project name>.vo

6.

Type qhsim -sdftyp <project name>.sdo at the UNIX prompt to perform timing back-annotation and
simulation and to display the QuickHDL simulation window.

If your Verilog HDL design uses memory functions (RAM or ROM) that can be initialized with a hexadecimal file
(Intel-format) initialization, you must convert these files into Verilog HDL format using the Programming
Language Interface (PLI). To use the Altera-provided source code for PLI, perform the following steps:

1. Download the file http://www.edif.org/lpmweb/convert_hex2ver.c to your project directory.

2. Copy the following two files from the $MGC_HOME/shared/pkgs/quickhdl/include directory into the
/usr/maxplus2 directory:

$MGC_HOME/shared/pkgs/quickhdl/include/veriuser
$MGC_HOME/shared/pkgs/quickhdl/include/acc_user

Refer to the Mentor Graphics QuickHDL User's Reference Manual, version 8.5-4.6i, for information on
compiling the PLI application on different platforms and using the Verilog HDL PLI.

Related Topics:

Go to Performing a Functional Simulation with QuickHDL Software in these MAX+PLUS II ACCESSSM

Key topics for related information.

Performing a Timing Analysis with QuickPath Software

After you have compiled your project with the MAX+PLUS ® II Compiler and generated an EDIF Output File
(.edo), you can use Mentor Graphics QuickPath software to perform a timing analysis of your project.

To perform a timing analysis with QuickPath software, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Generate an EDIF Output File for your project using one of the following methods:

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer

Compiling Projects with MAX+PLUS II Software
Using the Altera Schematic Express (sch_exprss) Utility
Using the Altera VHDL Express (vhd_exprss) Utility

3. Select your project's folder from the ALTERA directory, press Button 3, and choose Open max2_qpath to
start the QuickPath software. You can also start the QuickPath software by typing max2_qpath at the
UNIX prompt.

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Mentor Graphics Project Directory
Structure

Mentor Graphics Project Directory Structure
Design Architect software generates the following files for each schematic:

<drawing name>/mgc_component.attr
<drawing name>/part.Eddm_part.attr
<drawing name>/part.part_1
<drawing name>/schematic.mgc_schematic.attr
<drawing name>/schematic/schem_id
<drawing name>/schematic/sheet1.mgc_sheet.attr
<drawing name>/schematic/sheet1.sgfx_1
<drawing name>/schematic/sheet1.ssht_1

The files generated for each schematic are stored in the schematic's <drawing name> directory and should not be
edited. Mentor Graphics software automatically manages file storage and retrieval operations through this
<drawing name> directory structure, which does not reflect hierarchical design relationships. Figure 1 shows a
sample file structure with project1 as the UNIX project directory, and design1, subdesign1, and subdesign2 as the
directories for the top-level design and subdesigns of the project.

Figure 1. Design Architect Project File Structure

When the ENWrite utility converts the schematic into an EDIF netlist file, it processes the design information and
all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF netlist
file is named <project name>.edf, where <project name> is the name of the top-level design file. The <project

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

name>.edf file is automatically moved to the max2 directory under the project directory.

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
MAX+PLUS II Project Directory Structure

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dir_strc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2_file.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Mentor Graphics & Exemplar
Logic Tools with MAX+PLUS II Software

Using Mentor Graphics & Exemplar Logic Tools with
MAX+PLUS II Software

The following topics describe how to use a variety of Mentor Graphics and Exemplar Logic tools as part of a
complete design flow that includes the MAX+PLUS® II software. If you use only one Mentor Graphics or
Exemplar Logic tool, click List by Tool and select the tool name to view the list of topics only for that tool. Click
on one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Design Flow For All Mentor Graphics/Exemplar Logic Tools

Design Entry

Design Entry Flow

Design Architect

Creating Design Architect Schematics for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in Design Architect Schematics
Instantiating LPM Functions in Design Architect Schematics

Entering Resource Assignments
Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility
BackAnnotating MAX+PLUS II Pin Assignments to Design Architect Symbols

Creating Hierarchical Projects with Design Architect Software
Performing a Functional Simulation with DVE & QuickSim II Software
Performing a Functional Simulation with QuickHDL Pro Software
Converting Design Architect Schematics into MAX+PLUS II-Compatible EDIF Netlist Files with the
ENWrite Utility

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-tools.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mentrall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-require.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dir_strc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-file_org.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsn_ntry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clklock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lpm_func.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-holowbdy.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dveqksim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-enwrite.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-enwrite.html?csf=1&web=1

VHDL & Verilog HDL

Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating LPM Functions in VHDL

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation with QuickHDL Software
Performing a Functional Simulation with QuickHDL Pro Software
Creating Hierarchical Projects with Design Architect Software

Synthesis & Optimization

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software

Compilation

Project Compilation Flow
Compiling Projects with MAX+PLUS II Software

Exemplar Logic Galileo ExtremeSpecific Compiler Settings
Using the Altera Schematic Express (sch_exprss) Utility
Using the Altera VHDL Express (vhd_exprss) Utility

BackAnnotation

BackAnnotating MAX+PLUS II Pin Assignments to Design Architect Symbols

Simulation/Timing Analysis

Project Simulation/Timing Analysis Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with DVE & QuickSim II Software
Performing a Timing Simulation with QuickHDL Software
Performing a Timing Analysis with QuickPath Software

Device Programming

Programming Altera Devices

Related Links:

MAX+PLUS II Development Software
Altera Programming Hardware
Mentor Graphics web site (http://www.mentor.com)

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdl_lpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-holowbdy.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-galileo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leonardo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gleocomp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gleocomp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gleocomp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhd_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhd_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhd_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-simflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-initial.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quicksim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quickhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quikpath.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.mentor.com/
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Viewlogic MOTIVE &
MOTIVE for Powerview Software with MAX+PLUS II Software

Using Viewlogic MOTIVE & MOTIVE for Powerview
Software with MAX+PLUS II Software

The following topics describe how to use the Viewlogic MOTIVE and MOTIVE for Powerview software with
MAX+PLUS® II software. Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
MAX+PLUS II/Viewlogic Powerview Project File Structure

Timing Verification

Timing Verification Flow
Performing Timing Verification of EDIF Output Files (.edo) with MOTIVE & MOTIVE for Powerview
Software
Performing Timing Verification of Verilog Output Files (.vo) with MOTIVE Software

Related Links

Viewlogic Powerview Graphical User Interface & the Altera Toolbox
Powerview Command-Line Syntax
Compiling Projects with MAX+PLUS II Software
Programming AlteraÂ® Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motiveall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-projstrc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-imflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motive.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motive.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motvlog.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gui.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-cmdsyntx.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.viewlogic.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing Timing Verification of
EDIF Output Files (.edo) with MOTIVE & MOTIVE for Powerview Software

Performing Timing Verification of EDIF Output Files
(.edo) with MOTIVE & MOTIVE for Powerview
Software

After you have compiled a project and generated an EDIF Output File (.edo) with the MAX+PLUS® II software,
you can use Viewlogic MOTIVE or MOTIVE for Powerview software to perform timing verification. The
max2_MOTIVE tool is located in both the Altera® Toolbox Design Tools Drawer and the Altera Toolbox Max2
Express Drawer. The MOTIVE timing model library, motive.lib, provides models of basic primitives and the
clklock megafunction for timing verification.

To perform timing verification for EDIF Output Files with MOTIVE or MOTIVE for Powerview software, follow
these steps:

1. Set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Viewlogic
Powerview Working Environment.

2. Generate an EDIF Output File (.edo) by compiling your design with the MAX+PLUS II software, as
described in Compiling Projects with MAX+PLUS II Software.

3. Start the MOTIVE for Powerview software by double-clicking Button 1 on the max2_MOTIVE icon in the
Altera Toolbox Design Tools Drawer. The MOTIVE for Powerview Control Panel opens.

4. Choose Setup Environment (File menu) to open the Environment Parameters dialog box, and specify the
following options:

1. Specify the directory for the Project Directory option.

2. Specify /usr/maxplus2/vwlogic/library/alt_time/motive.lib for the Model Library Search Path option.

3. Select EDIF for the Netlist Input Format option.

4. Choose Accept. The MOTIVE for Powerview software automatically creates a tim subdirectory,
which contains MOTIVE design cases and related files, in the current working directory.

5. Choose Save Parameters (File menu) to save your customized project setup.

6. To specify the project name, choose the New Design button to open the Adding a New Design dialog box.
Type the design name in the New Design box. Choose Accept, then Dismiss.

7. To specify the case name, choose the New Case button to open the Adding a New Case dialog box. Type the
case name in the New Case box. Select Default as the New Case Type. Choose Accept, then Dismiss.

8. Choose Browse Cases (File menu) to open the Case Display dialog box. In the Case Display dialog box,
double-click Button 1 on the field that contains the case for the project. Double-clicking on the field opens a
file manager listing all the project files located under that case. Choose Dismiss in the Case Display dialog
box.

1. Choose the Get File button from the file manager to display the Get File box at the bottom of the
window. This box allows you to specify which file(s) you would like to add to the list of files for the
current case.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

2. Type /<working directory>/<project name>.edo in the Get File box and choose Copy. The new file
appears in the list of design files.

3. Type /<working directory>/<project name>.sdo in the Get File box and choose Copy.

4. Type /<working directory>/<project name>.ref in the Get File box and choose Copy.

5. If your project contains memory functions, such as ram, rom, dpram, scfifo, dcfifo, altdpram, or
clklock, type <project name>.vmo in the Get File box and choose Copy to add the MAX+PLUS II-
generated VHDL Memory Model Output File (.vmo) to the list of files for the case. The MAX+PLUS
II Compiler automatically generates this file for a project that contains memory functions.

Every MOTIVE analysis requires a MOTIVE Clock Reference File (.ref). If the project is
simple, you can create the file in the Setup Advisor. Otherwise, you must create the file in a text
editor using MOTIVE syntax. For more information on the purpose, function, and syntax of
MOTIVE Clock Reference Files, see the MOTIVE System Reference.

6. Choose Dismiss.

9. Choose the Netlister button in the MOTIVE for Powerview Control Panel to open the EDIF Netlist
Parameters dialog box. To create a FutureNet Format Netlist File (.pin) with the EEDIF Netlister for your
design, follow these steps:

1. Choose the Select Design button to open the Select Design dialog box.

2. Double-click Button 1 on the project name to open the Select Case dialog box.

3. Double-click Button 1 on the case name in the Select Case dialog box to open the Select File dialog
box.

4. Double-click Button 1 on the EDIF Output File, <project name>.edo, in the Select File dialog box.

5. Select Keep for all Case Sensitivity options in the EDIF Netlist Parameters dialog box.

6. Choose Accept, then Dismiss to close the EDIF Netlist Parameters dialog box.

10. Choose the SDF2MTV button in the Control Panel to open the SDF2MTV (MOTIVE SDF Reader)
Parameters dialog box and specify the following options:

1. Choose the Select button next to the SDF Filename box to open the Select File dialog box.

2. Double-click Button 1 on the project's Standard Delay Format (SDF) Output File, <project name>.sdo,
in the Select File dialog box. The SDF2MTV utility creates a MOTIVE Model Pre-Processor (MMP)
Control File (.ctl) that allows you to annotate the parameterized library, and an Interconnect Delay
Data File (.idd).

3. Choose Accept, then Dismiss to close the Select File dialog box.

11. If your project contains ram, rom, dpram, scfifo, dcfifo, altdpram, or clklock megafunctions, use the
genmtv utility to back-annotate the MMP Control File and to allow the MMP Control File to recognize the
function. The input to the genmtv utility is the VHDL Memory Model Output File (.vmo) described above.
From the /<working directory>/<project name>/<case name> directory, type the following command at the
UNIX prompt:

genmtv <project name>

12. If your project contains RAM or ROM functions and you turned on the Flatten Bus option in the
MAX+PLUS II Compiler's EDIF Netlist Writer Settings dialog box when you compiled your project, you
must edit the mem.lib file, i.e., the MOTIVE Model Pre-Processor timing library file created with the
genmtv utility. You must remove bracket [] characters from all occurrences of the address bus, e.g., change
A[0] to A0, in both the INPUTS and MIXED sections of every RAM and ROM cell definition in mem.lib.

13. Choose the MMP button from the Control Panel to open the MOTIVE Model Pre-processor (MMP)
Parameters dialog box and specify the following options:

1. Choose the Select button next to the MMP Ctl File box to open the Select File dialog box.

2. Double-click Button 1 on the project's MMP Control File, <project name>.ctl, in the Select File dialog
box.

3. In the MOTIVE Model Pre-processor (MMP) Parameters dialog box, choose the Setup Model
Libraries button to display boxes on the right side of the dialog box that allow you to list additional
source model libraries. In one of these boxes, type the following path and filename:

/usr/maxplus2/vwlogic/library/alt_time/motive.drv

4. If your project contains RAM or ROM functions, repeat step 13c but specify the pathname of the
mem.lib file created in step 12. For example:

/usr/maxplus2/<working directory>/..../<case name>/mem.lib

5. In the MOTIVE Model Pre-processor (MMP) Parameters dialog box, choose Accept, then
Dismiss. The MMP utility creates a design-specific Timing Model Library File (.mod).

14. Choose the Analyze button from the Control Panel to expand the Control Panel.

15. Double-click Button 1 on the project name in the Select Design box in the Control Panel to open the Select
Case box.

16. Select the specific case of the project in the Select Case box and double-click Button 1 on the case name to
open MOTIVE software and its Setup Advisor. The Setup Advisor helps guide you through the following
steps to set up and configure a case analysis:

1. In the Setup Advisor window, choose the Continue button to open the Project Name Selection dialog
box, which displays the project name.

2. Choose the Begin analysis button to open the Checking for existing project dialog box.

3. Choose Continue to open the Design Specific Flow(s) dialog box and set up the project through the
Setup Advisor. The Design Name option lists the project filename.

4. Choose Continue to open the Flow and Translation Selection dialog box.

5. Select the Manual Translation Flow option to specify input files and the steps to perform in the timing
verification flow for MOTIVE software. Choose Continue to open the Manual Flow Selection dialog
box and specify the following options:

Option: Setting:
Netlist/Pinlist FutureNet (.pin)
Parametric OVI Verilog (.sdf)

In the Other box, select Use available MOTIVE files to use the input files you created in previous
steps. Choose Continue to open the FutureNet Pinlist Preparation dialog box.

6. Type the project name in the Root Block box. Choose Continue to open the OVI Standard
Parametric Back-annotation dialog box.

7. Type <project name>.sdo in the OVI (SDF) back-annotation file box. Choose Continue to open the
MOTIVE Model Compilation dialog box.

8. Replace the entry in the Control file(s) box with <project name>.ctl. Type the following two
filenames, which must be separated by a space, in the Libraries(s) box:

/usr/maxplus2/vwlogic/library/alt_time/motive.lib
/usr/maxplus2/vwlogic/library/alt_time/motive.drv

9. If your project contains RAM or ROM functions, add the mem.lib file to the directories specified in
step 16h.

10. Choose Continue to open the Quick Definition of Existing MOTIVE Files dialog box. The <project
name>.ref filename appears in the Clock Reference File (.ref) box.

11. Replace the entry in the Design's (pre-compiled) Model File (.mod) box with <project name>.mod.
Choose Continue to open the Congratulations dialog box.

12. Choose Continue to open the Cleaning up dialog box after completing the Setup Advisor interview.
Select Save under Project name to save your setup, and choose Continue to close the Setup Advisor
window.

17. In the MOTIVE window, choose Verify (Analyze menu) and then choose Execute to start verification. To
view the output files, choose Output Files (View menu).

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Viewlogic MOTIVE &
MOTIVE for Powerview Software with MAX+PLUS II Software

Using Viewlogic MOTIVE & MOTIVE for Powerview
Software with MAX+PLUS II Software

The following topics describe how to use the Viewlogic MOTIVE and MOTIVE for Powerview software with
MAX+PLUS® II software. Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
MAX+PLUS II/Viewlogic Powerview Project File Structure

Timing Verification

Timing Verification Flow
Performing Timing Verification of EDIF Output Files (.edo) with MOTIVE & MOTIVE for Powerview
Software
Performing Timing Verification of Verilog Output Files (.vo) with MOTIVE Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Viewlogic Powerview Graphical User Interface & the Altera Toolbox
Powerview Command-Line Syntax
Compiling Projects with MAX+PLUS II Software
Programming Altera® Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

To use the MAX+PLUS® II software with Viewlogic's Powerview software, you must install the MAX+PLUS II
software, familiarize yourself with the Altera® Toolbox in the Powerview Cockpit, and then establish an
environment that facilitates entering and processing designs. The MAX+PLUS II /Viewlogic Powerview interface
is installed automatically when you install the MAX+PLUS II software on your workstation.

To set up your working environment for the MAX+PLUS II/Viewlogic Powerview interface, follow these steps:

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

1. Ensure that you have correctly installed the MAX+PLUS II and Viewlogic software versions described in
MAX+PLUS II/Viewlogic Powerview Software Requirements.

2. Add the following environment variable to your .cshrc file to specify /usr/maxplus2 as the MAX+PLUS II
system directory:

setenv ALT_HOME /usr/maxplus2

3. Add the $ALT_HOME/viewlogic/standard, $ALT_HOME/bin, and $ALT_HOME/viewlogic/bin
directories to the PATH environment variable in your .cshrc file.

4. Add the $ALT_HOME/viewlogic/standard directory to the WDIR environment variable in your .cshrc file
using the following syntax:

setenv WDIR $ALT_HOME/viewlogic/standard:/<Powerview system directory>/standard

Make sure the $ALT_HOME/viewlogic/standard directory is the first directory in your WDIR path.

5. Source your .cshrc file by typing source .cshrc at the UNIX prompt.

6. Create the Viewlogic Powerview viewdraw.ini configuration file.

7. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

8. If you plan to instantiate Library of Parameterized Modules (LPM) functions in ViewDraw schematics, you
must create a new file with the name vdraw.vs. The vdraw.vs file must include the following line:

load ("vdpath")

You must also make sure that you specify the vdraw.vs file in your WDIR path.

9. Set up a directory structure that facilitates working with the MAX+PLUS II/Viewlogic Powerview interface.
Refer to MAX+PLUS II/Viewlogic Powerview Project File Structure.

Related Topics:

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to
MAX+PLUS II/Viewlogic Powerview Interface File Organization for information about the MAX+PLUS
II/Viewlogic Powerview directories that are created during MAX+PLUS II installation.
Go to the following topics, which are available on the web, for additional information:

Viewlogic Altera

ViewDraw ViewGen MAX+PLUS II
version 9.4

VHDL Analyzer ViewPath (optional)
Vantage VHDL Analyzer ViewTrace
VHDL -> sym ViewData Path
edifneto MOTIVE version 5.1.6 Note (1)

edifneti MOTIVE for Powerview version 3.2.1 (optional) Note
(1)

EEDIF (optional) SDF2MTV (optional)
MMP (optional) Fusion/VCS
vsm
Note:

(1)
MOTIVE for Powerview, a wrapper application for MOTIVE, provides a graphical user interface for the utilities
(i.e., EEDIF, SDF2MTV, and MMP) used during a static timing verification with MOTIVE. MOTIVE alone
does not accept EDIF files through the Setup Advisor.

The MAX+PLUS II read.me file provides up-to-date information on which versions of Viewlogic Powerview
applications the current version of the MAX+PLUS II software supports. It also provides information on
installation and operating requirements. You should read the read.me file on the CD-ROM before installing the
MAX+PLUS II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

For information on the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II
File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Directory Description

./lmf Contains the Altera-provided Library Mapping File, vwlogic.lmf, that maps Viewlogic
logic functions to equivalent MAX+PLUS II logic functions.

./viewlogic Contains the alt_edif.cfg EDIF configuration file that is used with the edifneti utility.
Also contains the library and sample subdirectories.

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Viewlogic Powerview Software Requirements

The following applications and utilities are used to generate, process, synthesize, and verify a project with
MAX+PLUS® II and Viewlogic Powerview software.

MAX+PLUS II/Viewlogic Powerview Interface File Organization

Table 1 shows the MAX+PLUS® II/Viewlogic Powerview interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Table 1. MAX+PLUS II Directory Organization

./viewlogic/examples Contains the sample Viewlogic designs.

./viewlogic/library/max2sim Contains the MAX+PLUS II simulation model library (max2_sim) for use in ViewSim
software.

./viewlogic/library/alt_max2

Contains MAX+PLUS II primitives (EXP, GLOBAL, LCELL, SOFT, CARRY, CASCADE, DFFE,
DFFE6K, and OPNDRN), macrofunctions (a_8fadd, a_8mcomp, a_8count, a_81mux), and
megafunctions (clklock) for use in ViewDraw schematics. These logic functions
support specific architectural features of Altera® devices. The alt_max2 library also
contains modified versions of the ViewDraw primitives that use tri-state buffers, because
these primitives require special handling in the MAX+PLUS II /Viewlogic Powerview
interface.

./viewlogic/library/synlib
Contains the Altera-provided synthesis library altera, which includes MAX+PLUS II
primitives, the altera.sml file, a sym directory, and a wir directory for use with
ViewSynthesis software.

./viewlogic/library/alt_mf
Contains the VHDL models for the MAX+PLUS II primitives (EXP, GLOBAL, LCELL,
SOFT, CARRY, CASCADE, DFFE, and OPNDRN), macrofunctions (clklock) for use with
ViewSynthesis software, the Vantage VHDL Analyzer software, and the VHDL source
files. These logic functions are used to maintain portability to other architectures.

./viewlogic/library/alt_time Contains MOTIVE timing models for MAX+PLUS II logic functions (motive.lib),
including the clklock megafunction, and MAX+PLUS II driver models (motive.drv).

./viewlogic/library/alt_vtl Contains the VHDL source files for the VITAL 3.0-compliant library. This library is
available for ViewSim software.

./viewlogic/bin Contains all MAX+PLUS II, Viewlogic, and interface-related scripts.

./viewlogic/standard Contains all standard .ini files and standard tools.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Viewlogic Powerview Project File Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an Altera® Hardware Description
Language (AHDL) TDF; or any other MAX+PLUS II- supported design file. The EDIF netlist file must be created
by Powerview and imported into the MAX+PLUS II software as an EDIF Input File (.edf). Figure 1 shows an
example of MAX+PLUS II project directory structure that includes Powerview-generated files.

Figure 1. Sample MAX+PLUS II Project Organization

ViewDraw files are identified by their directories and not by their extensions, so it is easy to overwrite files
unintentionally. To avoid overwriting files, Altera recommends that you create a new project directory, <project
name>/max2/sim, where you can generate all the files needed for simulation.

Directory Topics

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Unlike Powerview, the MAX+PLUS II software does not automatically create a project directory when you create a
project. A single directory can contain several MAX+PLUS II design files, and you can specify any one of the
designs in the directory as a project in the MAX+PLUS II software.

Viewlogic Powerview Local Work Area Structure

When you create a project with the Powerview Cockpit's Create command (Project menu), the project directory is
created. You should generate design files and functional simulation files under this directory. A max2 subdirectory
is automatically created under your current project directory when you generate an EDIF file from your schematic
or VHDL file. The <project name>.edf file is stored in the max2 subdirectory. All MAX+PLUS® II Compiler
output files are created in the /<project name>/max2 subdirectory.

ViewDraw Project File Structure

Each ViewDraw project directory contains three subdirectories: wir, sch, and sym. See Table 1.

Table 1. ViewDraw Subdirectories

./wir Wirelist files that contain connectivity information for a particular logic block

./sch Schematics that contain logic

./sym Symbol files that are the ViewDraw graphical representation of the logic blocks

Directory Topics
./synth All synthesis-related files and directories
./synth/<entity> Four types of files: <entity>.pdf, <entity>.opt, <entity>.sta, and <entity>.gnl
./wir Wirelist for synthesized VHDL modules

For each VHDL entity in the design, there is a corresponding ./synth/<entity> directory.

Each file type uses the filename extension .1. Different file types are distinguished only by their directory:
/lib/wir/<project name>.1 is a wirelist file; /lib/sch/<project name>.1 is the corresponding schematic file; and
/lib/sym/<project name>.1 is the corresponding symbol.

VHDL Project File Structure

Each VHDL project directory contains three subdirectories. See Table 2.

Table 2. VHDL Subdirectories

MAX+PLUS II/Viewlogic Powerview Timing Verification Flow

Figure 1 shows the timing verification flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Project Timing Verification Flow

Performing Timing Verification of EDIF Output Files (.edo) with MOTIVE & MOTIVE
for Powerview Software

After you have compiled a project and generated an EDIF Output File (.edo) with the MAX+PLUS® II software,
you can use Viewlogic MOTIVE or MOTIVE for Powerview software to perform timing verification. The
max2_MOTIVE tool is located in both the Altera® Toolbox Design Tools Drawer and the Altera Toolbox Max2
Express Drawer. The MOTIVE timing model library, motive.lib, provides models of basic primitives and the
clklock megafunction for timing verification.

To perform timing verification for EDIF Output Files with MOTIVE or MOTIVE for Powerview software, follow
these steps:

1. Set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Viewlogic
Powerview Working Environment.

2. Generate an EDIF Output File (.edo) by compiling your design with the MAX+PLUS II software, as
described in Compiling Projects with MAX+PLUS II Software.

3. Start the MOTIVE for Powerview software by double-clicking Button 1 on the max2_MOTIVE icon in the
Altera Toolbox Design Tools Drawer. The MOTIVE for Powerview Control Panel opens.

4. Choose Setup Environment (File menu) to open the Environment Parameters dialog box, and specify the
following options:

1. Specify the directory for the Project Directory option.

2. Specify /usr/maxplus2/vwlogic/library/alt_time/motive.lib for the Model Library Search Path option.

3. Select EDIF for the Netlist Input Format option.

4. Choose Accept. The MOTIVE for Powerview software automatically creates a tim subdirectory,
which contains MOTIVE design cases and related files, in the current working directory.

5. Choose Save Parameters (File menu) to save your customized project setup.

6. To specify the project name, choose the New Design button to open the Adding a New Design dialog box.
Type the design name in the New Design box. Choose Accept, then Dismiss.

7. To specify the case name, choose the New Case button to open the Adding a New Case dialog box. Type the
case name in the New Case box. Select Default as the New Case Type. Choose Accept, then Dismiss.

8. Choose Browse Cases (File menu) to open the Case Display dialog box. In the Case Display dialog box,
double-click Button 1 on the field that contains the case for the project. Double-clicking on the field opens a
file manager listing all the project files located under that case. Choose Dismiss in the Case Display dialog
box.

1. Choose the Get File button from the file manager to display the Get File box at the bottom of the
window. This box allows you to specify which file(s) you would like to add to the list of files for the
current case.

2. Type /<working directory>/<project name>.edo in the Get File box and choose Copy. The new file
appears in the list of design files.

3. Type /<working directory>/<project name>.sdo in the Get File box and choose Copy.

4. Type /<working directory>/<project name>.ref in the Get File box and choose Copy.

5. If your project contains memory functions, such as ram, rom, dpram, scfifo, dcfifo, altdpram, or
clklock, type <project name>.vmo in the Get File box and choose Copy to add the MAX+PLUS II-
generated VHDL Memory Model Output File (.vmo) to the list of files for the case. The MAX+PLUS
II Compiler automatically generates this file for a project that contains memory functions.

Every MOTIVE analysis requires a MOTIVE Clock Reference File (.ref). If the project is
simple, you can create the file in the Setup Advisor. Otherwise, you must create the file in a text
editor using MOTIVE syntax. For more information on the purpose, function, and syntax of
MOTIVE Clock Reference Files, see the MOTIVE System Reference.

6. Choose Dismiss.

9. Choose the Netlister button in the MOTIVE for Powerview Control Panel to open the EDIF Netlist
Parameters dialog box. To create a FutureNet Format Netlist File (.pin) with the EEDIF Netlister for your
design, follow these steps:

1. Choose the Select Design button to open the Select Design dialog box.

2. Double-click Button 1 on the project name to open the Select Case dialog box.

3. Double-click Button 1 on the case name in the Select Case dialog box to open the Select File dialog

box.

4. Double-click Button 1 on the EDIF Output File, <project name>.edo, in the Select File dialog box.

5. Select Keep for all Case Sensitivity options in the EDIF Netlist Parameters dialog box.

6. Choose Accept, then Dismiss to close the EDIF Netlist Parameters dialog box.

10. Choose the SDF2MTV button in the Control Panel to open the SDF2MTV (MOTIVE SDF Reader)
Parameters dialog box and specify the following options:

1. Choose the Select button next to the SDF Filename box to open the Select File dialog box.

2. Double-click Button 1 on the project's Standard Delay Format (SDF) Output File, <project name>.sdo,
in the Select File dialog box. The SDF2MTV utility creates a MOTIVE Model Pre-Processor (MMP)
Control File (.ctl) that allows you to annotate the parameterized library, and an Interconnect Delay
Data File (.idd).

3. Choose Accept, then Dismiss to close the Select File dialog box.

11. If your project contains ram, rom, dpram, scfifo, dcfifo, altdpram, or clklock megafunctions, use the
genmtv utility to back-annotate the MMP Control File and to allow the MMP Control File to recognize the
function. The input to the genmtv utility is the VHDL Memory Model Output File (.vmo) described above.
From the /<working directory>/<project name>/<case name> directory, type the following command at the
UNIX prompt:

genmtv <project name>

12. If your project contains RAM or ROM functions and you turned on the Flatten Bus option in the
MAX+PLUS II Compiler's EDIF Netlist Writer Settings dialog box when you compiled your project, you
must edit the mem.lib file, i.e., the MOTIVE Model Pre-Processor timing library file created with the
genmtv utility. You must remove bracket [] characters from all occurrences of the address bus, e.g., change
A[0] to A0, in both the INPUTS and MIXED sections of every RAM and ROM cell definition in mem.lib.

13. Choose the MMP button from the Control Panel to open the MOTIVE Model Pre-processor (MMP)
Parameters dialog box and specify the following options:

1. Choose the Select button next to the MMP Ctl File box to open the Select File dialog box.

2. Double-click Button 1 on the project's MMP Control File, <project name>.ctl, in the Select File dialog
box.

3. In the MOTIVE Model Pre-processor (MMP) Parameters dialog box, choose the Setup Model
Libraries button to display boxes on the right side of the dialog box that allow you to list additional
source model libraries. In one of these boxes, type the following path and filename:

/usr/maxplus2/vwlogic/library/alt_time/motive.drv

4. If your project contains RAM or ROM functions, repeat step 13c but specify the pathname of the
mem.lib file created in step 12. For example:

/usr/maxplus2/<working directory>/..../<case name>/mem.lib

5. In the MOTIVE Model Pre-processor (MMP) Parameters dialog box, choose Accept, then
Dismiss. The MMP utility creates a design-specific Timing Model Library File (.mod).

14. Choose the Analyze button from the Control Panel to expand the Control Panel.

15. Double-click Button 1 on the project name in the Select Design box in the Control Panel to open the Select
Case box.

16. Select the specific case of the project in the Select Case box and double-click Button 1 on the case name to
open MOTIVE software and its Setup Advisor. The Setup Advisor helps guide you through the following
steps to set up and configure a case analysis:

1. In the Setup Advisor window, choose the Continue button to open the Project Name Selection dialog
box, which displays the project name.

2. Choose the Begin analysis button to open the Checking for existing project dialog box.

3. Choose Continue to open the Design Specific Flow(s) dialog box and set up the project through the
Setup Advisor. The Design Name option lists the project filename.

4. Choose Continue to open the Flow and Translation Selection dialog box.

5. Select the Manual Translation Flow option to specify input files and the steps to perform in the timing
verification flow for MOTIVE software. Choose Continue to open the Manual Flow Selection dialog
box and specify the following options:

Option: Setting:
Netlist/Pinlist FutureNet (.pin)
Parametric OVI Verilog (.sdf)

In the Other box, select Use available MOTIVE files to use the input files you created in previous
steps. Choose Continue to open the FutureNet Pinlist Preparation dialog box.

6. Type the project name in the Root Block box. Choose Continue to open the OVI Standard
Parametric Back-annotation dialog box.

7. Type <project name>.sdo in the OVI (SDF) back-annotation file box. Choose Continue to open the
MOTIVE Model Compilation dialog box.

8. Replace the entry in the Control file(s) box with <project name>.ctl. Type the following two
filenames, which must be separated by a space, in the Libraries(s) box:

/usr/maxplus2/vwlogic/library/alt_time/motive.lib
/usr/maxplus2/vwlogic/library/alt_time/motive.drv

9. If your project contains RAM or ROM functions, add the mem.lib file to the directories specified in
step 16h.

10. Choose Continue to open the Quick Definition of Existing MOTIVE Files dialog box. The <project
name>.ref filename appears in the Clock Reference File (.ref) box.

11. Replace the entry in the Design's (pre-compiled) Model File (.mod) box with <project name>.mod.
Choose Continue to open the Congratulations dialog box.

12. Choose Continue to open the Cleaning up dialog box after completing the Setup Advisor interview.
Select Save under Project name to save your setup, and choose Continue to close the Setup Advisor
window.

17. In the MOTIVE window, choose Verify (Analyze menu) and then choose Execute to start verification. To
view the output files, choose Output Files (View menu).

Performing Timing Verification of Verilog Output Files (.vo) with MOTIVE Software

After you have compiled a project and generated a Verilog Output File (.vo) with the MAX+PLUS II Software, you
can use Viewlogic MOTIVE to perform timing verification. The MOTIVE timing model library, motive.lib,
provides basic primitives and the clklock megafunction for timing verification.

To perform timing verification for Verilog Output Files with MOTIVE software, follow these steps:

1. Set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Viewlogic
Powerview Working Environment.

2. Generate a Verilog Output File by compiling your design with the MAX+PLUS II software, as described in
Compiling Projects with MAX+PLUS II Software.

3. Start the MOTIVE software by typing motive at the UNIX prompt. The MOTIVE Session Log and Setup
Advisor windows are displayed. Choose OK.

4. Choose Project on the vertical menubar in the Setup Advisor, then choose the Name (Select project name)
tab and specify the name of the project for Project name. The directory in which you started MOTIVE will
be selected automatically for Current directory. Choose Accept. MOTIVE then searches for the <project
name>.stm file. If this is a new file, a message will appear in the Session Log window that mentions that
MOTIVE found a license and the message could not open the <project name>.stm file -- assuming
a new design.

5. Choose Flow from the vertical menubar, then choose the Type (Select flow type) tab. Select the Using
Verilog and SDF option and choose Accept.

6. Choose Options from the vertical menubar, then choose the Options (Miscellaneous usage options) tab. If
desired, specify a different value for the MOTIVE analysis cycle time option. Choose Accept.

7. Choose Verilog on the vertical menubar and specify the following Verilog HDL input options:

1. Choose the Translate (Translate Verilog netlist file) tab. Specify the name of the MAX+PLUS II-
generated Verilog Output File (.vo) for the Verilog netlist option. Choose the Common Options
button to display the Common Options dialog box. Select the Special Options option and turn on the
Skip Behavioral Constructs option. Type either pinlist or a period (.) for the Generated pin files
option. Choose OK to close the Common Options dialog box and return to the Translate tab.

2. Specify the location of the MAX+PLUS II-generated alt_max2.vo file for the Vendor module
definition option. Choose the Translate button. The Process Execution Log & Tips dialog box
displays the current status of the translation to .pin files. Choose OK after successful translation.

3. Choose the Import (Confirm Adding hierarchical blocks) tab. Choose the Import Blocks button. The
MOTIVE Interaction Log & Tips dialog displays the current import status. Choose OK after a
successful completion.

4. Select the Hierarchy (Configure hierarchy options) tab. Type the name of the rootblock for the
Rootblock of design option, or choose the Find Rootblock button to display the rootblock name.
Choose Accept.

8. Choose the Check (Review and/or build the netlist database) tab. Choose the Incremental Build button. The
MOTIVE Interaction Log & Tips dialog displays the current build status. Choose OK after a successful
completion.

9. Select SDF on the vertical menubar, then select the Translate (SDF model preparation) tab. Type <project
name>.sdo for the SDF file option, making sure that you specify the .sdo extension. Type <project
name>.ctl for the MPP control file name, and <project name>.idd for the IDD file name.

10. Choose the Process SDF File button.

11. If your project contains the clklock megafunction, use the genmtv utility to back-annotate the MPP Control
File and to allow the MPP Control File to recognize the clklock function. The input to the genmtv utility is
the Verilog netlist file (.vo). From the /<working directory>/<project name>/<case name> directory, type the
following command at the UNIX prompt:

genmtv -v <project name>

12. If your project contains RAM or ROM functions and you turned on the Flatten Bus option the MAX+PLUS
II Compiler's Verilog Netlist Writer Settings dialog box when you compiled your project, you must edit the
mem.lib file, i.e., the MOTIVE Model Pre-Processor timing library file generated with the genmtv utility.
You must remove the bracket [] characters from all occurrences of the address bus, e.g., change A[0] to A0,
in both the INPUTS and MIXED sections of every RAM and ROM cell definition in mem.lib.

13. Select the MPP (MOTIVE model compilation) tab. Type <project name>.ctl for the Control file option.
Type /usr/maxplus2/viewlogic/library/alt_time/motive.lib
/usr/maxplus2/viewlogic/library/alt_time/motive.drv for the Libraries option. If the project contains
memory functions, you should also specify the location of the mem.lib file for the Libraries option. Type
<project name>.mod for the Generated model file option and <project name>.rcf for the Revised control file
option. Choose the RUN MMP button. The MOTIVE Execution Log & Tips dialog displays and shows the
current status. Choose OK after a successful completion.

14. Select Save from the File menu in the Setup Advisor to write all the selections made so far to the <project
name>.stm file.

15. Select Clock on the vertical menubar, then choose the File (Check reference file and timebase options) tab.
The correct name of the Clock Reference File (.ref) should be displayed for the Clock reference file option.
Choose Accept.

Every MOTIVE analysis requires a MOTIVE Clock Reference File. If the project is simple, you can
create the file in the Setup Advisor. Otherwise, you must create the file with a text editor using
MOTIVE syntax. For more information on the purpose, function, and syntax of MOTIVE Clock
Reference Files, see the MOTIVE System Reference.

16. Choose the Edit (Simple clock reference generation) tab. Specify the names for the Clock reference and
Clock net name options. Choose Generate.

17. Choose the Check (Choose incremental definitions) tab, then choose the Load Clock button.

18. Choose Finish from the vertical menubar, then choose the Build button. The MOTIVE Interaction Log &
Tips dialog displays the current status. Choose OK after a successful completion.

19. Select Save from the File menu in the Setup Advisor.

20. In the MOTIVE Session Log window, choose Verify (Analyze menu) and then choose the Execute button to
start verification. To view the output files, choose Output Files (View menu).

Alternatively, you can run MOTIVE analysis on the command line by following these steps:

1. Type the following commands at the UNIX prompt:

vtran <project name>.vo -b -h -u alt_max2.vo (generates .pin files)

sdf2mtv <project name>.sdfo (generates .ctl files)

2. If your project contains ram, rom, dpram, or clklock functions, you should also type the following commands

Tool Description
max2_VDraw Launches the Powerview ViewDraw schematic entry tool.

VHDL<->max2 Launches all tools necessary to synthesize a VHDL design, compile for an Altera device, and
generate a .vsm file for simulation with the Powerview ViewSim simulator.

SCH<->max2
Launches all tools necessary to compile a schematic design entered with Powerview ViewDraw
software for an Altera device and to generate a .vsm file for simulation with Powerview ViewSim
and .edo, .sdo, and .vmo files for timing analysis with MOTIVE for Powerview.

max2_VSim Launches the Powerview ViewSim simulator.
max2_VTrace Launches the Powerview ViewTrace simulation waveform editor.
max2_MOTIVE Launches the MOTIVE for Powerview ViewDraw static timing verification tool.

Tool Description
max2_VDraw Launches the Powerview ViewDraw schematic entry tool.
max2_analyzer Launches the Powerview VHDL Analyzer software.
max2_syn Launches the Powerview VHDL synthesis tool.
max2_chk Launches the Powerview schematic verification tool.
max2_vsmnet Launches the Powerview vsm utility that converts a wirelist file into a .vsm file.
max2_VSim Launches the Powerview ViewSim simulator.
max2_VTrace Launches the Powerview ViewTrace simulator.
max2_edifo Launches the Powerview EDIF netlist writer, edifneto.
max2_VGen Launches the Powerview ViewGen utility that generates a schematic from a wirelist file.

at the UNIX prompt:

genmtv -v <project name>

mmp <project name>.ctl -l /usr/maxplus2/viewlogic/library/alt_time/motive.lib -l
/usr/maxplus2/viewlogic/library/alt_time/motive/drv -l mem.lib

3. Type the following command at the UNIX prompt:

amtv <project name>

Viewlogic Powerview Graphical User Interface & the Altera Toolbox

You use the Powerview graphical interface manager, the Cockpit, and the Altera® Toolbox to start all Powerview
and Altera tools. Within the Altera Toolbox, you can specify the Max2 Express Drawer or the Design Tools Drawer
to work with the Altera/Viewlogic Powerview interface.

The Max2 Express Drawer provides a quick and seamless way to transfer designs created in Powerview to the
MAX+PLUS® II software for compilation, then return the compiled designs to Powerview for simulation and
timing verification. Table 1 describes the Max2 Express Drawer tools.

Table 1. Max2 Express Drawer Tools

The Design Tools Drawer provides tools that enable you to create a design with the Powerview tools, compile the
design in the MAX+PLUS II software, and simulate and verify the design with Powerview software. Table 2
describes the Design Tools Drawer tools.

Table 2. Design Tools Drawer Tools

max2 Launches the MAX+PLUS II Compiler.
max2_edifi Launches the Powerview EDIF Netlist Reader, edifneti.
max2_vhdl2sym Launches the Powerview vhdl2sym utility that generates a symbol from a VHDL file.
max2_VantgMgr Launches the Powerview Vantage VHDL Library Manager tool.
max2_VantgAnlz Launches the Vantage VHDL Analyzer software.
max2_VCS Launches the Fusion/VCS Simulator.
max2_MOTIVE Launches the MOTIVE for Powerview static timing verification tool.

Action Command
Start VHDL Analyzer software vhdl -v <project name>
Start ViewSynthesis software vhdldes

Load Altera® technology library vhdldes> technology altera

Compile a VHDL design vhdldes> vhdl <project name>
Synthesize a design vhdldes> synthesize

Generate wirelist file vhdldes> wir

Create a schematic representation vhdldes> viewgen

Generate a synthesis report file vhdldes> report

Start the graphical user interface for
ViewSynthesis vhdldes> vdesgui

Start the VHDL-to-symbol utility vhdl2sym <project name>
Start vsm vsm <project name>
Start ViewSim simulator viewsim <project name> -<project name>.cmd

Start edifneto edifneto -f <project name>-l (std or altera) <project
name>.edf

Start Vantage VHDL Analyzer software analyze -src <design file>
Start MOTIVE for Powerview software mfp

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly
with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the
Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within
the MAX+PLUS II Compiler window.

Powerview Command-Line Syntax

Table 1 shows the command-line syntax for using Powerview functions.

Table 1. Powerview Command-Line Syntax

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to

show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select

VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing Timing Verification of
Verilog Output Files (.vo) with MOTIVE Software

Performing Timing Verification of Verilog Output Files
(.vo) with MOTIVE Software

After you have compiled a project and generated a Verilog Output File (.vo) with the MAX+PLUS II Software, you
can use Viewlogic MOTIVE to perform timing verification. The MOTIVE timing model library, motive.lib,
provides basic primitives and the clklock megafunction for timing verification.

To perform timing verification for Verilog Output Files with MOTIVE software, follow these steps:

1. Set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Viewlogic
Powerview Working Environment.

2. Generate a Verilog Output File by compiling your design with the MAX+PLUS II software, as described in
Compiling Projects with MAX+PLUS II Software.

3. Start the MOTIVE software by typing motive at the UNIX prompt. The MOTIVE Session Log and Setup
Advisor windows are displayed. Choose OK.

4. Choose Project on the vertical menubar in the Setup Advisor, then choose the Name (Select project name)
tab and specify the name of the project for Project name. The directory in which you started MOTIVE will
be selected automatically for Current directory. Choose Accept. MOTIVE then searches for the <project
name>.stm file. If this is a new file, a message will appear in the Session Log window that mentions that
MOTIVE found a license and the message could not open the <project name>.stm file -- assuming
a new design.

5. Choose Flow from the vertical menubar, then choose the Type (Select flow type) tab. Select the Using
Verilog and SDF option and choose Accept.

6. Choose Options from the vertical menubar, then choose the Options (Miscellaneous usage options) tab. If
desired, specify a different value for the MOTIVE analysis cycle time option. Choose Accept.

7. Choose Verilog on the vertical menubar and specify the following Verilog HDL input options:

1. Choose the Translate (Translate Verilog netlist file) tab. Specify the name of the MAX+PLUS II-
generated Verilog Output File (.vo) for the Verilog netlist option. Choose the Common Options
button to display the Common Options dialog box. Select the Special Options option and turn on the
Skip Behavioral Constructs option. Type either pinlist or a period (.) for the Generated pin files
option. Choose OK to close the Common Options dialog box and return to the Translate tab.

2. Specify the location of the MAX+PLUS II-generated alt_max2.vo file for the Vendor module
definition option. Choose the Translate button. The Process Execution Log & Tips dialog box
displays the current status of the translation to .pin files. Choose OK after successful translation.

3. Choose the Import (Confirm Adding hierarchical blocks) tab. Choose the Import Blocks button. The
MOTIVE Interaction Log & Tips dialog displays the current import status. Choose OK after a
successful completion.

4. Select the Hierarchy (Configure hierarchy options) tab. Type the name of the rootblock for the
Rootblock of design option, or choose the Find Rootblock button to display the rootblock name.
Choose Accept.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1

8. Choose the Check (Review and/or build the netlist database) tab. Choose the Incremental Build button. The
MOTIVE Interaction Log & Tips dialog displays the current build status. Choose OK after a successful
completion.

9. Select SDF on the vertical menubar, then select the Translate (SDF model preparation) tab. Type <project
name>.sdo for the SDF file option, making sure that you specify the .sdo extension. Type <project
name>.ctl for the MPP control file name, and <project name>.idd for the IDD file name.

10. Choose the Process SDF File button.

11. If your project contains the clklock megafunction, use the genmtv utility to back-annotate the MPP Control
File and to allow the MPP Control File to recognize the clklock function. The input to the genmtv utility is
the Verilog netlist file (.vo). From the /<working directory>/<project name>/<case name> directory, type the
following command at the UNIX prompt:

genmtv -v <project name>

12. If your project contains RAM or ROM functions and you turned on the Flatten Bus option the MAX+PLUS
II Compiler's Verilog Netlist Writer Settings dialog box when you compiled your project, you must edit the
mem.lib file, i.e., the MOTIVE Model Pre-Processor timing library file generated with the genmtv utility.
You must remove the bracket [] characters from all occurrences of the address bus, e.g., change A[0] to A0,
in both the INPUTS and MIXED sections of every RAM and ROM cell definition in mem.lib.

13. Select the MPP (MOTIVE model compilation) tab. Type <project name>.ctl for the Control file option.
Type /usr/maxplus2/viewlogic/library/alt_time/motive.lib
/usr/maxplus2/viewlogic/library/alt_time/motive.drv for the Libraries option. If the project contains
memory functions, you should also specify the location of the mem.lib file for the Libraries option. Type
<project name>.mod for the Generated model file option and <project name>.rcf for the Revised control file
option. Choose the RUN MMP button. The MOTIVE Execution Log & Tips dialog displays and shows the
current status. Choose OK after a successful completion.

14. Select Save from the File menu in the Setup Advisor to write all the selections made so far to the <project
name>.stm file.

15. Select Clock on the vertical menubar, then choose the File (Check reference file and timebase options) tab.
The correct name of the Clock Reference File (.ref) should be displayed for the Clock reference file option.
Choose Accept.

Every MOTIVE analysis requires a MOTIVE Clock Reference File. If the project is simple, you can
create the file in the Setup Advisor. Otherwise, you must create the file with a text editor using
MOTIVE syntax. For more information on the purpose, function, and syntax of MOTIVE Clock
Reference Files, see the MOTIVE System Reference.

16. Choose the Edit (Simple clock reference generation) tab. Specify the names for the Clock reference and
Clock net name options. Choose Generate.

17. Choose the Check (Choose incremental definitions) tab, then choose the Load Clock button.

18. Choose Finish from the vertical menubar, then choose the Build button. The MOTIVE Interaction Log &
Tips dialog displays the current status. Choose OK after a successful completion.

19. Select Save from the File menu in the Setup Advisor.

20. In the MOTIVE Session Log window, choose Verify (Analyze menu) and then choose the Execute button to
start verification. To view the output files, choose Output Files (View menu).

Alternatively, you can run MOTIVE analysis on the command line by following these steps:

1. Type the following commands at the UNIX prompt:

vtran <project name>.vo -b -h -u alt_max2.vo (generates .pin files)

sdf2mtv <project name>.sdfo (generates .ctl files)

2. If your project contains ram, rom, dpram, or clklock functions, you should also type the following commands
at the UNIX prompt:

genmtv -v <project name>

mmp <project name>.ctl -l /usr/maxplus2/viewlogic/library/alt_time/motive.lib -l
/usr/maxplus2/viewlogic/library/alt_time/motive/drv -l mem.lib

3. Type the following command at the UNIX prompt:

amtv <project name>

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II Directory Structure
(Synplicity Environment)

MAX+PLUS II Directory Structure (Synplicity
Environment)

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL Text Design File (TDF);
or any other MAX+PLUS II-supported design file. You can use a standard EDA tool to create an EDIF netlist file
and import it into MAX+PLUS II software as an EDIF Input File (.edf).

Project design files and output files are stored in the project directory, with the exception of standard library
functions provided by Altera or another EDA tool vendor. The MAX+PLUS II software stores the connectivity data
on the links between design files in a hierarchical project in a Hierarchy Interconnect File (.hif) in the project
directory, but refers to the entire project only by its project name. The MAX+PLUS II Compiler uses the HIF to
build a single, fully flattened project database that integrates all the design files in a project hierarchy.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II Project Directory
Structure

MAX+PLUS II Project Directory Structure
In the MAX+PLUS ® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, VHDL, or Verilog HDL netlist file; an Altera Hardware Description
Language (AHDL) Text Design File (TDF); or any other MAX+PLUS II-supported design file. The EDIF netlist
file must be created by ENWrite, Galileo Extreme, or Leonardo software and imported into MAX+PLUS II as an
EDIF Input File (.edf). Figure 1 shows an example of a MAX+PLUS II project directory.

Figure 1. Sample MAX+PLUS II Project Directory

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dir_strc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_file.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II Directory Structure

MAX+PLUS II Directory Structure
In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL Text Design File (TDF);
or any other MAX+PLUS II-supported design file. The EDIF netlist file must be created by the altout or
concept2alt utility and imported into the MAX+PLUS II software as an EDIF Input File (.edf).

Project design files and output files are stored in the project directory, with the exception of standard library
functions provided by Altera or another EDA tool vendor. The MAX+PLUS II software stores the connectivity data
on the links between design files in a hierarchical project in a Hierarchy Interconnect File (.hif), but refers to the
entire project only by its project name. The MAX+PLUS II Compiler uses the HIF to build a single, fully flattened
project database that integrates all design files in a project hierarchy.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUSÂ II/Viewlogic
Powerview Interface File Organization

MAX+PLUSÂ II/Viewlogic Powerview Interface File
Organization

Table 1. MAX+PLUS II Directory Organization

Directory Description

./lmf
Contains the Altera-provided Library Mapping File, cadence.lmf, that
maps Cadence logic functions to equivalent MAX+PLUS II logic
functions.

./examples/cadence
Contains the sample files for Cadence software discussed in these
ACCESSSM Key Guidelines.

./cadence Contains the AMPLE userware for the MAX+PLUS II/Cadence interface.

./simlib/concept/alt_max2

Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for
FLEX® 6000 devices only) for use with Concept software.

./simlib/composer/alt_max2
Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for FLEX
6000 devices only) for use with Composer software.

./simlib/concept/alt_lpm Contains the MAX+PLUS II megafunctions, including library of
parameterized modules (LPM) functions, for use with Concept software.

./simlib/concept/max2sim Contains the MAX+PLUS II/Concept simulation model library, max2_sim,
for use with RapidSIM software.

./simlib/concept/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Concept software, and the vlog2alt utility.

./simlib/composer/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Composer software.

./simlib/concept/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Concept software.

./simlib/composer/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Composer software.

./simlib/concept/alt_mf Contains the MAX+PLUS II VHDL logic function library. (a_8count is for
the MAX® 7000 and MAX 9000 device families only.)

./simlib/concept/edifnet/templates Contains template files for Concept directives, i.e., global.cmd,
compiler.cmd, vloglink.cmd, verilog.cmd, and master.local.

./simlib/concept/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Concept software.

./simlib/composer/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Composer software.

Table 1 shows the MAX+PLUS® II/Cadence interface subdirectories that are created in the MAX+PLUS II system
directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation. For information on the other
directories that are created during MAX+PLUS II installation, see "MAX+PLUS II File Organization" in
MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altmax2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altmax2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altlpm
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#lpmsyn
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#lpmsyn
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1#altmf
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

./simlib/concept/alt_vtl

./simlib/composer/alt_vtl
Contains VITAL library source files for use with Concept or Composer
software.

./simlib/composer/alt_max2/verilog Contains simulation modules for all symbols in the alt_max2 Composer
library.

For information on the other directories that are created during MAX+PLUSÂ II installation, see "MAX+PLUSÂ
II File Organization" in MAX+PLUSÂ II Installation in the MAX+PLUSÂ II Getting Started manual.

Table 1. MAX+PLUSÂ II Directory Organization

Directory Description

./lmf Contains the Altera-provided Library Mapping File, vwlogic.lmf, that maps Viewlogic
logic functions to equivalent MAX+PLUSÂ II logic functions.

./viewlogic Contains the alt_edif.cfg EDIF configuration file that is used with the edifneti utility.
Also contains the library and sample subdirectories.

./viewlogic/examples Contains the sample Viewlogic designs.

./viewlogic/library/max2sim Contains the MAX+PLUSÂ II simulation model library (max2_sim) for use in
ViewSim software.

./viewlogic/library/alt_max2

Contains MAX+PLUSÂ II primitives (EXP, GLOBAL, LCELL, SOFT, CARRY, CASCADE, DFFE,
DFFE6K, and OPNDRN), macrofunctions (a_8fadd, a_8mcomp, a_8count, a_81mux), and
megafunctions (clklock) for use in ViewDraw schematics. These logic functions
support specific architectural features of AlteraÂ® devices. The alt_max2 library also
contains modified versions of the ViewDraw primitives that use tri-state buffers, because
these primitives require special handling in the MAX+PLUSÂ II /Viewlogic Powerview
interface.

./viewlogic/library/synlib
Contains the Altera-provided synthesis library altera, which includes MAX+PLUSÂ II
primitives, the altera.sml file, a sym directory, and a wir directory for use with

Related Links:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

Table 1 shows the MAX+PLUS® II/Viewlogic Powerview interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUSÂ II installation.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1#altmax2
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs1.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs2.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs3.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs4.pdf
https://mysupport.altera.com/eservice/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

ViewSynthesis software.

./viewlogic/library/alt_mf
Contains the VHDL models for the MAX+PLUSÂ II primitives (EXP, GLOBAL, LCELL,
SOFT, CARRY, CASCADE, DFFE, and OPNDRN), macrofunctions (clklock) for use with
ViewSynthesis software, the Vantage VHDL Analyzer software, and the VHDL source
files. These logic functions are used to maintain portability to other architectures.

./viewlogic/library/alt_time Contains MOTIVE timing models for MAX+PLUSÂ II logic functions (motive.lib),
including the clklock megafunction, and MAX+PLUSÂ II driver models (motive.drv).

./viewlogic/library/alt_vtl Contains the VHDL source files for the VITAL 3.0-compliant library. This library is
available for ViewSim software.

./viewlogic/bin Contains all MAX+PLUSÂ II, Viewlogic, and interface-related scripts.

./viewlogic/standard Contains all standard .ini files and standard tools.

Related Links:

Go to the following topics for additional information:
MAX+PLUSÂ II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUSÂ II Installation
Section 2: MAX+PLUSÂ II - A Perspective
Section 3: MAX+PLUSÂ II Tutorial
Appendices, Glossary & Index

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1#altmf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs1.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs2.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs3.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs4.pdf
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / The vdpath & mega_lpm Libraries

The vdpath & mega_lpm Libraries

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

Intel does not warrant that this solution will work for the customer's intended purpose and disclaims all liability for use of or reliance on the
solution.

The library of parameterized modules (LPM) 2.1.0 standard defines a set of parameterized functions and their
corresponding representations in an EDIF netlist file. These logic functions allow you to create and functionally
simulate an LPM-based design without targeting a specific device family. After the design is completed, you can
target the design to any device family.

When the MAX+PLUS® II software processes projects that include Viewlogic-provided vdpath LPM functions, it
uses functions from the Altera-provided mega_lpm library. This library includes all standard LPM functions except
the truth table, finite state machine, and pad functions. Altera does not directly support the lpm_ram_dq,
lpm_ram_io, and lpm_rom functions. Refer to Instantiating RAM & ROM Functions in Viewlogic Powerview
Designs for instructions on instantiating RAM and ROM functions.

Support

Intel Community Forums provides a place to ask and answer questions about Intel products.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ramrom.html?csf=1&web=1
https://community.intel.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating the clklock Megafunction
in VHDL or Verilog HDL

Instantiating the clklock Megafunction in VHDL or
Verilog HDL

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

MAX+PLUS® II interfaces with other EDA tools support the clklock phase-locked loop megafunction, which can
be used with some FLEX® 10K devices, with the gencklk utility. Type gencklk -h at the UNIX prompt to
display information on how to use this utility. The gencklk utility generates VHDL or Verilog HDL functional
simulation models and a VHDL Component Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the UNIX prompt to generate the clklock_x_y file, where x is the
ClockBoost value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

2. Create a design file that instantiates the clklock_x_y function. The gencklk utility automatically generates a
VHDL Component Declaration template in the clklock_x_y.cmp file that you can incorporate into a VHDL
design file.

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);
 END structure;

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Assigning Pins

Assigning Pins
You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in some EDA
tools or in the MAX+PLUS® II software.

Use the following syntax for chip, pin, and logic cell assignments:

To assign a logic function to a chip:

CHIP_PIN_LC=<chip name>

For example: CHIP_PIN_LC=chip1

To assign a pin number within a chip:

CHIP_PIN_LC=<chip name>@<pin number>

For example: CHIP_PIN_LC=chip1@K2

To assign a logic cell, I/O cell, or embedded cell number:

CHIP_PIN_LC=<chip name>@LC<logic cell number>

CHIP_PIN_LC=<chip name>@IOC<I/O cell number>

CHIP_PIN_LC=<chip name>@EC<embedded cell number>

For example: CHIP_PIN_LC=chip1@LC44

Related Links:

Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on device
pin-outs and assigning devices, respectively, in the MAX+PLUS II software.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://mysupport.altera.com/eservice/

If your design uses resource assignment attributes that you wish to pass to the MAX+PLUS® II software, you
should save your file in EDIF netlist file format. See Entering Resource Assignments for more information.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

You can assign a single port to a specific pin to ensure that the signal is always associated with that pin, regardless
of future changes to the project. You can specify pins in VHDL or Verilog HDL designs, or in a Synplify Design
Constraints File (.sdc). If you add timing constraints or resource assignments in a separate Synplify Design
Constraints File (.sdc), you must add the Synplify Design Constraints File (.sdc) to the project by adding it to the
Source Files list in the Synplify window.

VHDL Syntax

Use the following syntax to assign a pin in VHDL:

attribute altera_chip_pin_lc : string;
attribute altera_chip_pin_lc of <port name> : signal is "@<pin number(s)>"

Example:

attribute altera_chip_pin_lc : string;
attribute altera_chip_pin_lc of result : signal is
 "@17, @166, @191, @152, @15, @148, @147, @149"

Verilog HDL Syntax

Use the following syntax to assign a pin in Verilog HDL:

<port name> /* synthesis altera_chip_pin_lc="@<pin number(s)>" */;

Example:

output [7:0] sum /* synthesis altera_chip_pin_lc="@17, @166, @191, @152, Â¥
 @15, @148, @147, @149" */;

Synplify Design Constraints File Syntax

Use the following syntax to assign a pin in a Synplify Design Constraints file:

define_attribute <port name> altera_chip_pin_lc "@<pin number>"

Example:

define_attribute {DATA0[7:0]} altera_chip_pin_lc "@115,@116,@117,
@118,@119,@120,@121,@122"

Related Links:

Refer to the following sources for related information:
Go to Entering Resource Assignments in these MAX+PLUS II ACCESSSM Key topics for information
on entering other types of assignments.
Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on
device pin-outs and assigning devices, respectively, in the MAX+PLUS II software.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Assigning Pins, Logic Cells & Chips

Assigning Pins, Logic Cells & Chips

Table 1. Commands for Chip, Pin, & Logic Cell Assignments

Assignment
Type Command to Type Note (1)

Chip set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type string
"<chip name>"

Pin set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type string
"<chip name>@<pin number>"

Logic cell
number

set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type string
"<chip name>@LC<logic cell number>"

I/O cell number set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type string
"<chip name>@IOC<I/O cell number>"

Embedded cell
number

set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type string
"<chip name>@EC<embedded cell number>"

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in
MAX+PLUS® II software.

To make pin, logic cell, and chip assignments, use the set_attribute command at a dc_shell prompt. Before
using the set_attribute command, add the following line to your .synopsys_dc.setup file:

edifout_write_properties_list= {LOGIC_OPTION, CLIQUE, CHIP_PIN_LC}

Table 1 shows the syntax to use for chip, pin, and logic cell assignments:

Note:

1. In this table, <design object> represents ports, references, cells, nets, or pins.

Examples:

set_attribute find (cell, (U1)) "CHIP_PIN_LC" -type string "chip1"

set_attribute find (cell, (U1)) "CHIP_PIN_LC" -type string "chip1@K2"

set_attribute find (cell, (U1)) "CHIP_PIN_LC" -type string "chip1@LC44"

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Related Topics:

Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on device
pin-outs and assigning devices, respectively, in the MAX+PLUS II software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Altera Post-Synthesis Libraries

Altera Post-Synthesis Libraries
The /usr/maxplus2/synopsys/library/alt_post/syn/lib directory contains the post-synthesis library for technology
mapping and timing back-annotation. The Altera® -provided alt_vtl.db file in this library contains over three dozen
MAX+PLUS® II -generated logic functions.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Programming Altera Devices

Programming Altera Devices

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware
Option

PCs
UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster

Once you have successfully compiled and simulated a project with the MAX+PLUS II software, you can program
an Altera device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Download Cable
ByteBlasterMV
Download Cable
MasterBlaster™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Links

Compiling Projects with MAX+PLUS II Software
MAX+PLUS II Development Software
Altera Programming Hardware

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/Viewlogic Powerview
Project File Structure

MAX+PLUS II/Viewlogic Powerview Project File
Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an Altera® Hardware Description
Language (AHDL) TDF; or any other MAX+PLUS II- supported design file. The EDIF netlist file must be created
by Powerview and imported into the MAX+PLUS II software as an EDIF Input File (.edf). Figure 1 shows an
example of MAX+PLUS II project directory structure that includes Powerview-generated files.

Figure 1. Sample MAX+PLUS II Project Organization

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Unlike Powerview, the MAX+PLUS II software does not automatically create a project directory when you create a
project. A single directory can contain several MAX+PLUS II design files, and you can specify any one of the
designs in the directory as a project in the MAX+PLUS II software.

Viewlogic Powerview Local Work Area Structure

When you create a project with the Powerview Cockpit's Create command (Project menu), the project directory is

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

ViewDraw files are identified by their directories and not by their extensions, so it is easy to overwrite files
unintentionally. To avoid overwriting files, Altera recommends that you create a new project directory, <project
name>/max2/sim, where you can generate all the files needed for simulation.

Table 1. ViewDraw Subdirectories

Directory Topics
./wir Wirelist files that contain connectivity information for a particular logic block
./sch Schematics that contain logic
./sym Symbol files that are the ViewDraw graphical representation of the logic blocks

Table 2. VHDL Subdirectories

Directory Topics
./synth All synthesis-related files and directories
./synth/<entity> Four types of files: <entity>.pdf, <entity>.opt, <entity>.sta, and <entity>.gnl
./wir Wirelist for synthesized VHDL modules

For each VHDL entity in the design, there is a corresponding ./synth/<entity> directory.

created. You should generate design files and functional simulation files under this directory. A max2 subdirectory
is automatically created under your current project directory when you generate an EDIF file from your schematic
or VHDL file. The <project name>.edf file is stored in the max2 subdirectory. All MAX+PLUS® II Compiler
output files are created in the /<project name>/max2 subdirectory.

ViewDraw Project File Structure

Each ViewDraw project directory contains three subdirectories: wir, sch, and sym. See Table 1.

Each file type uses the filename extension .1. Different file types are distinguished only by their directory:
/lib/wir/<project name>.1 is a wirelist file; /lib/sch/<project name>.1 is the corresponding schematic file; and
/lib/sym/<project name>.1 is the corresponding symbol.

VHDL Project File Structure

Each VHDL project directory contains three subdirectories. See Table 2.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Pre-Routing or
Functional Simulation with VSS Software

Performing a Pre-Routing or Functional Simulation
with VSS Software

After you have synthesized and optimized a VHDL or Verilog HDL design with the Design Compiler or FPGA
Compiler software, you can perform a pre-routing or functional simulation with the Synopsys VHDL System
Simulator (VSS) software.

To perform a pre-routing/functional simulation, follow these steps:

Be sure to set up the working environment correctly, as described in the following topics:
Setting Up the MAX+PLUS II/Synopsys Working Environment
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up the DesignWare Interface
Setting Up VSS Configuration Files
Create a VHDL or Verilog HDL design file that follows the guidelines described in one of the
following topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Synthesize and optimize your design with the Design Compiler or FPGA Compiler, as described
in Synthesizing & Optimizing VHDL & Verilog HDL Files with Design Compiler or FPGA
Compiler Software.
Save your design as a VHDL Design File (.vhd)

VSS requires each architecture/entity pair in a VHDL Design File to have a configuration.
The Configuration Declaration is necessary for simulation, but not for synthesis.

Use VSS and one of the Altera pre-routing functional simulation libraries to simulate the design.
When you are ready to compile your project with MAX+PLUS II software, save the design as an
EDIF netlist file (.edf), then process it as described in Compiling Projects with MAX+PLUS II
Software.

Related Links

VHDL System Simulator Core Programs Manual for more information about VSS
Performing a Timing Simulation with VSS Software

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsnwrstp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vssconfig.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlproc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vproc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vdsimlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pstrsim.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Timing Simulation with
VSS Software

Performing a Timing Simulation with VSS Software
Once the MAX+PLUS® II software has compiled a project and generated a VHDL Output File (.vho) and an
optional Standard Delay Format (SDF) Output File (.sdo), you can perform timing simulation with the Synopsys
VHDL Simulator Software (VSS).

To simulate a VHDL Output File with VSS, follow these steps:

Be sure to set up the working environment correctly, as described in the following topics:

Setting Up the MAX+PLUS II/Synopsys Working Environment
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up the DesignWare Interface
Setting Up VSS Configuration Files

1. Generate a VHDL Output File (.vho) and an optional SDF Output File (.sdo), as described in Compiling
Projects with MAX+PLUS II Software.

2. (Optional) Analyze the VITAL 95-compliant alt_vtl library , then back-annotate timing information through
the SDF Output File:

1. Use the analyze_vss script to analyze the alt_vtl Post-Routing Timing Simulation library, as described
in Setting Up VSS Configuration Files.

2. Enter the following command to back-annotate timing information through the SDF Output File:

vhdlsim -sdf_top /<design name>/<design name> -sdf
<design name>.sdo

3. Simulate the VHDL Output File with the VSS software.

Related Topics:

Go to the VSS User's Guide for more details on post-routing simulation.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsnwrstp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vssconfig.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-postsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vdsimlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vdsimlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Synopsys PrimeTime &
MAX+PLUS II Software

Using Synopsys PrimeTime & MAX+PLUS II Software

The information presented here assumes that you are using C shell and that your MAX+PLUS II system directory
is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment variables for
your shell.

The following topics describe how to use the Synopsys PrimeTime and MAX+PLUS® II software. Click on one of
the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Synopsys Working Environment

Software Requirements
MAX+PLUS II/Synopsys Interface File Organization
MAX+PLUS II Project File Structure

Timing Verification

Timing Verification Flow
Preparing Files for Timing Verification with PrimeTime Software using the genpt Utility

Related Topics:

Go to the following topics in these MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
Using Synopsys Design Compiler or FPGA Compiler & MAX+PLUS II Software
Using Synopsys FPGA Express and MAX+PLUS II Software
Using Synopsys VSS & MAX+PLUS II Software

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Synopsys web site (http://www.synopsys.com)

Setting Up the MAX+PLUS II/Synopsys Working Environment

To use the MAX+PLUS® II software with Synopsys software, you must first install the MAX+PLUS II software,
then establish an environment that facilitates entering and processing designs by modifying your Synopsys
configuration files. The MAX+PLUS II/Synopsys interface is installed automatically when you install the
MAX+PLUS II software on your workstation. Go to MAX+PLUS II Installation in the MAX+PLUS II Getting
Started manual for more information on installation and details on the directories that are created during
MAX+PLUS II installation. Go to MAX+PLUS II/Synopsys Interface File Organization for information about the
MAX+PLUS II/Synopsys directories that are created during MAX+PLUS II installation.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Table 1 shows the MAX+PLUS® II /Synopsys interface subdirectories that
are created in the MAX+PLUS II system directory (by default, the
/usr/maxplus2 directory) during the MAX+PLUS II software installation.
For information on the other directories that are created during the
MAX+PLUS II software installation, see "MAX+PLUS II File
Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting
Started manual.

You must add the /usr/maxplus2/bin directory to the PATH environment variable in your .cshrc file in order to
run the MAX+PLUS II software.

Table 1. MAX+PLUS II Directory Organization

Directory Description

./synopsys/bin
Contains script programs to convert Synopsys timing constraints into
MAX+PLUS II Assignment & Configuration File (.acf) format, and to analyze
VHDL System Simulator simulation models.

./synopsys/config Contains sample .synopsys_dc.setup and .synopsys_vss.setup files.
Contains sample files, including those discussed in these ACCESS Key

To set up your working environment for the MAX+PLUS II/Synopsys interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Synopsys software versions described in the
MAX+PLUS II/Synopsys Software Requirements.

2. Add technology, synthetic, and link library settings to your .synopsys_dc.setup configuration file, as
described in Setting Up Design Compiler & FPGA Compiler Configuration Files.

To use the DesignWare interface with FLEX® 6000, FLEX 8000, and FLEX 10K devices, follow the
steps in Setting Up the DesignWare Interface.

3. Add simulation library settings to your .synopsys_vss.setup file, and analyze the libraries, as described in
Setting Up VSS Configuration Files.

4. Add the /usr/maxplus2/bin directory to the PATH environment variable in your .cshrc file in order to run the
MAX+PLUS II software.
$ALT_HOME/synopsys/bin

Related Topics:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Synopsys Interface File Organization

./synopsys/examples Guidelines.

./synopsys/library/alt_pre/<device
family>/src

Contains VHDL simulation libraries for functional simulation of VHDL
projects.

./synopsys/library/alt_pre/verilog/src Contains the Verilog HDL functional simulation library for Verilog HDL
projects.

./synopsys/library/alt_pre/vital/src
Contains the VITAL 95 simulation library. You use this library when you
perform functional simulation of the design before compiling it with the
MAX+PLUS II software.

./synopsys/library/alt_syn//<device
family>/lib

Contains interface files for the MAX+PLUS II/Synopsys interface. Technology
libraries in this directory allow the Design Compiler and FPGA Compiler to
map designs to Altera® device architectures.

./synopsys/library/alt_mf/src
Contains behavioral VHDL models of some Altera macrofunctions, along with
their component declarations. The a_81mux, a_8count, a_8fadd, and a_8mcomp
macrofunctions are currently supported. Libraries in this directory allow you to
instantiate, synthesize, and simulate these macrofunctions.

./synopsys/library/alt_post/syn/lib Contains the post-synthesis library for technology mapping.

./synopsys/library/alt_post/sim/src
Contains the VHDL source files for the VITAL 95-compliant library. You use
this library when you perform simulation of the design after compiling it with
the MAX+PLUS II software.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II Project File Structure

In MAX+PLUS® II, a project name is the name of a top-level design file, without the filename extension. This
design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL™ TDF; or any other MAX+PLUS II-
supported design file. The EDIF netlist file must be created by Synopsys and imported into MAX+PLUS II as an
EDIF Input File.

MAX+PLUS II stores the connectivity data on the links between design files in a hierarchical project in a
Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

MAX+PLUS II/Synopsys PrimeTime Timing Verification Flow

Figure 1 shows the project timing verification flow for the MAX+PLUS® II/Synopsys PrimeTime interface.

Figure 1. MAX+PLUS II/Synopsys PrimeTime Project Timing Verification Flow

Preparing Files for Timing Verification with PrimeTime Software Using the genpt Utility

After you have compiled a project and generated an EDIF Output File (.edo), Verilog Output File (.vo), or VHDL
Output File (.vho) with the MAX+PLUS® II software, you can use Synopsys PrimeTime software to perform
timing verification. The Altera-provided genpt utility converts EDIF, Verilog HDL, and VHDL output files for use
with Synopsys PrimeTime software.

To prepare MAX+PLUS II-generated EDIF, Verilog HDL, or VHDL output files for timing verification with the
Synopsys PrimeTime software, follow these steps:

1. Set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Synopsys
Working Environment . Make sure that you have specified the correct path of your local Perl executable, as
described in step 4 of that procedure, and that the path in the genpt utility points to that executable.

2. Generate an EDIF Output File (.edo), Verilog Output File (.vo), or VHDL Output File (.vho) and a Standard
Delay Format (SDF) Output File (.sdo) by compiling your design with the MAX+PLUS II software, as
described in Compiling Projects with MAX+PLUS II Software .

3. Use the genpt utility to convert the EDIF, Verilog HDL, or VHDL output file(s) to PrimeTime-compatible
files by typing the following command at the UNIX prompt:

A PrimeTime-compatible Verilog HDL file <design name>_pt.v
A VHDL file <design name>_pt.vhd or an EDIF netlist file <design name>_pt.edif
An SDF file <design name>_pt.sdf.

genpt (-verilog | -vhdl | -edif) <design name> [<output netlist filename>]

where <design name> is the name of the MAX+PLUS II-generated output file, without the extension. For
example, you can type genpt -vhdl fifo at the UNIX prompt to convert MAX+PLUS II-generated
fifo.vhd and fifo.sdo files into PrimeTime-compatible VHDL and SDF files.

Based on your settings, the genpt utility generates the following files:

If the project contains RAM, ROM, dual-port RAM, or clklock functions, the genpt utility generates a
<design name>_<type>.db file, where <type> is ram, rom, dpram, or cklk, which contains compiled
STAMP library cell models for the PrimeTime software. The genpt utility also generates a <design
name>_setup.pt PrimeTime setup file, which contains PrimeTime setup commands for compiling generated
STAMP models and for reading in the EDIF, Verilog, or VHDL file and the SDF file.

4. Start the PrimeTime software by typing primetime at the UNIX prompt. You can also type pt_shell
at the UNIX prompt to run the PrimeTime software in command-line mode.

5. Source the <design name>_setup.pt PrimeTime setup file. Refer to Synopsys PrimeTime documentation for
information on how to perform timing verification with the PrimeTime software.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Preparing Files for Timing
Verification with PrimeTime Software Using the genpt Utility

Preparing Files for Timing Verification with PrimeTime
Software Using the genpt Utility

After you have compiled a project and generated an EDIF Output File (.edo), Verilog Output File (.vo), or VHDL
Output File (.vho) with the MAX+PLUS® II software, you can use Synopsys PrimeTime software to perform
timing verification. The Altera-provided genpt utility converts EDIF, Verilog HDL, and VHDL output files for use
with Synopsys PrimeTime software.

To prepare MAX+PLUS II-generated EDIF, Verilog HDL, or VHDL output files for timing verification with the
Synopsys PrimeTime software, follow these steps:

1. Set up your working environment correctly, as described in Setting Up the MAX+PLUS II/Synopsys
Working Environment. Make sure that you have specified the correct path of your local Perl executable, as
described in step 4 of that procedure, and that the path in the genpt utility points to that executable.

2. Generate an EDIF Output File (.edo), Verilog Output File (.vo), or VHDL Output File (.vho) and a Standard
Delay Format (SDF) Output File (.sdo) by compiling your design with the MAX+PLUS II software, as
described in Compiling Projects with MAX+PLUS II Software.

3. Use the genpt utility to convert the EDIF, Verilog HDL, or VHDL output file(s) to PrimeTime-compatible
files by typing the following command at the UNIX prompt:

genpt (-verilog | -vhdl | -edif) <design name> [<output netlist filename>]

where <design name> is the name of the MAX+PLUS II-generated output file, without the extension. For
example, you can type genpt -vhdl fifo at the UNIX prompt to convert MAX+PLUS II-generated
fifo.vhd and fifo.sdo files into PrimeTime-compatible VHDL and SDF files.

Based on your settings, the genpt utility generates the following files:

A PrimeTime-compatible Verilog HDL file <design name>_pt.v
A VHDL file <design name>_pt.vhd or an EDIF netlist file <design name>_pt.edif
An SDF file <design name>_pt.sdf.

If the project contains RAM, ROM, dual-port RAM, or clklock functions, the genpt utility generates a
<design name>_<type>.db file, where <type> is ram, rom, dpram, or cklk, which contains compiled
STAMP library cell models for the PrimeTime software. The genpt utility also generates a <design
name>_setup.pt PrimeTime setup file, which contains PrimeTime setup commands for compiling generated
STAMP models and for reading in the EDIF, Verilog, or VHDL file and the SDF file.

4. Start the PrimeTime software by typing primetime at the UNIX prompt. You can also type pt_shell
at the UNIX prompt to run the PrimeTime software in command-line mode.

5. Source the <design name>_setup.pt PrimeTime setup file. Refer to Synopsys PrimeTime documentation for
information on how to perform timing verification with the PrimeTime software.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Synopsys PrimeTime &
MAX+PLUS II Software

Using Synopsys PrimeTime & MAX+PLUS II Software

The following topics describe how to use the Synopsys PrimeTime and MAX+PLUS® II software. Choose one of
the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Synopsys Working Environment

Software Requirements
MAX+PLUS II/Synopsys Interface File Organization
MAX+PLUS II Project File Structure

Timing Verification

Timing Verification Flow
Preparing Files for Timing Verification with PrimeTime Software using the genpt Utility

Related Links

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
Using Synopsys Design Compiler or FPGA Compiler & MAX+PLUS II Software
Using Synopsys FPGA Express and MAX+PLUS II Software
Using Synopsys VSS & MAX+PLUS II Software
MAX+PLUS II Development Software
Altera Programming Hardware
Synopsys web site (http://www.synopsys.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sftreq2.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-m2pfilst.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptsetup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptgenpt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptgenpt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptgenpt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dcpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpexpg.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsspage.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.synopsys.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/Synopsys PrimeTime
Timing Verification Flow

MAX+PLUS II/Synopsys PrimeTime Timing
Verification Flow

Figure 1 shows the project timing verification flow for the MAX+PLUS® II/Synopsys PrimeTime interface.

Figure 1. MAX+PLUS II/Synopsys PrimeTime Project Timing Verification Flow

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Mentor Graphics QuickHDL
and QuickHDL Pro & MAX+PLUS II Software

Using Mentor Graphics QuickHDL and QuickHDL Pro
& MAX+PLUS II Software

The following topics describe how to use the Mentor Graphics QuickHDL and QuickHDL Pro software with
MAX+PLUS® II software. Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Functional Simulation

Design Entry Flow
Performing a Functional Simulation with QuickHDL Software
Performing a Functional Simulation with QuickHDL Pro Software

Timing Simulation

Project Simulation/Timing Analysis Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with QuickHDL Software

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Mentor Graphics web site (http://www.mentor.com)

Feedback

Did this information help you?

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-require.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dir_strc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-file_org.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsn_ntry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-simflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-initial.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quickhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.mentor.com/

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Mentor Graphics QuickHDL
and QuickHDL Pro & MAX+PLUS I

Using Mentor Graphics QuickHDL and QuickHDL Pro
& MAX+PLUS II Software

The following topics describe how to use the Mentor Graphics QuickHDL and QuickHDL Pro software with
MAX+PLUS® II software. Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Functional Simulation

Design Entry Flow
Performing a Functional Simulation with QuickHDL Software
Performing a Functional Simulation with QuickHDL Pro Software

Timing Simulation

Project Simulation/Timing Analysis Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with QuickHDL Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Mentor Graphics web site (http://www.mentor.com)

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

To use the MAX+PLUS ® II software with Mentor Graphics/Exemplar Logic software, you must install the
MAX+PLUS II software, then establish an environment that facilitates entering and processing designs. The
MAX+PLUS II/Mentor Graphics/Exemplar Logic interface is installed automatically when you install the

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using a C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

MAX+PLUS II software on your computer.

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to MAX+PLUS
II/Mentor Graphics/Exemplar Logic Interface File Organization for information about the MAX+PLUS II/Mentor
Graphics directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Mentor Graphics interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Mentor Graphics software versions
described in MAX+PLUS II/Mentor Graphics Software Requirements.

2. Add the following environment variables to your .cshrc file:
setenv ALT_HOME /usr/maxplus2
setenv MGC_WD <user-specified working directory>
setenv MGC_HOME <Mentor Graphics system directory>
setenv MAX2_MENTOR /usr/maxplus2/mentor/max2
setenv MGC_LOCATION_MAP <user-specified location_map file>
setenv EXEMPLAR <Galileo or Leonardo system directory>

Installing the Altera® provided MAX+PLUS II/Mentor Graphics interface on your computer
automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/.cshrc file.

3. Add the $MGC_HOME/bin, $MAX2_MENTOR/bin, $ALT_HOME/bin, $EXEMPLAR/bin/<os>, and
$ALT_HOME/bin directories to the PATH environment variable in your .cshrc file, where <os> is the
operating system, e.g., SUN4 for SunOS; SUN5 for Solaris.

4. If you plan to use the Altera Schematic Express (sch_exprss) utility or the Altera VHDL Express
(vhd_exprss) utility, add the following environment variable to your .cshrc file:
setenv MAX2_QSIM /usr/maxplus2/simlib/mentor/max2sim

5. Type source ‾/.cshrc at a UNIX prompt to source the .cshrc file and validate the settings in steps 1 through 4.
6. Add the following lines to your MGC_location_map file:

$MAX2_MENTOR
/usr/maxplus2/mentor/max2
$MGC_GENLIB
/<user-specified Mentor Graphics GEN_LIB directory>
$MGC_LSLIB
/<user-specified Mentor Graphics LS_LIB directory>
$MAX2_EXAMPLES
/<user-specified example directory>
$MAX2_LMCLIB
/<user-specified Logic Modeling directory>
$MAX2_GENLIB
/usr/maxplus2/simlib/mentor/alt_max2
$MAX2_QSIM
/usr/maxplus2/simlib/mentor/max2sim
$MAX2_FONT
/usr/maxplus2/mentor/max2/fonts
$MGC_SYS1076_STD

Mentor Graphics Exemplar Altera
version C.1:

/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ std
$MGC_SYS1076_ARITHMETIC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/arithmetic
$MGC_SYS1076_PORTABLE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/mgc_portable
$MGC_SYS1076_IEEE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ieee
$MGC_SYS1076_SRC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ src
$MAX2_MFLIB
/usr/maxplus2/simlib/mentor/alt_mf

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your
computer automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/location_map/location_map file.

7. If you want to use QuickHDL software to simulate VHDL or Verilog HDL designs, add the following line in
the [library] section of your quickhdl.ini file: altera = $MAX2_MFLIB .

8. If you plan to use QuickHDL software to simulate VITAL-compliant VHDL files, add the following lines to
your MGC_location_map file:
$MAX2_VTLLIB
/usr/maxplus2/simlib/mentor/alt_vtl

9. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:
cp /usr/maxplus2/maxplus2.ini $HOME
chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as Alteraprovided logic and symbol library paths and the current
project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini file to
the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Mentor Graphics Software Requirements

The following products are used to generate, process, synthesize, and verify a project with the MAX+PLUS ® II
software and Mentor Graphics software:

System_1076 Compiler
QuickSim II
Design Architect
ENRead
ENWrite
GEN_LIB library

QuickHDL
QuickHDL Pro
QuickPath
LS_LIB library (optional)
DVE

Galileo Extreme
version 4.1.1

Leonardo
version 4.1.3

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Mentor Graphics
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

You can create your own libraries of custom functions for use in Design Architect schematics and VHDL and
Verilog HDL design files. You can use custom functions to incorporate an EDIF Input File (.edf), Text Design
File (.tdf), or any other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses
the Altera® provided mnt8_bas.lmf and exemplar.lmf Library Mapping Files to map standard Design Architect
symbols and VHDL and Verilog HDL functions to equivalent MAX+PLUS II logic functions. To use custom
functions, you can create a custom LMF that maps your custom functions to the equivalent EDIF input file, TDF,
or other design file. Go to "Library Mapping File" in MAX+PLUS II Help for more information.

Table 1. MAX+PLUS II-Specific Logic Functions

Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX ® 5000, MAX 7000 , and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS ® II/Mentor Graphics environment provides libraries for compiling, synthesizing, and simulating
designs.

Design Architect Libraries

You can enter a Design Architect schematic with logic functions from these Altera-provided symbol libraries:
ALTERA LPMLIB, ALTERA GENLIB, LSTTL BY TYPE, and LSTTL ALL PARTS. You can access these
libraries by choosing Altera Libraries (Libraries menu) in the Design Architect software. For information on using
library of parameterized modules (LPM) functions, see ALTERA LPMLIB Library below.

ALTERA GENLIB Library (Design Architect) & Altera (VHDL) Libraries

The ALTERA GENLIB symbol library (called the Altera library for VHDL) includes several MAX+PLUS II
primitives for controlling design synthesis and fitting. It also includes four macrofunctions (8count, 8mcomp, 8fadd,
and 81mux) that are optimized for different Altera device families, and the clklock phase-locked loop
megafunction, which is supported for some FLEX ® 10K devices.

The following table shows the MAX+PLUS II-specific logic functions.

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (2)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help menu
for detailed information on these functions.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd instead.

2. If you want to use QuickHDL software, make sure you have updated your quickhdl.ini file, as described in
step 7 of Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment.

3. For designs that are targeted for FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

ALTERA LPMLIB Library

The Alteraprovided ALTERA LPMLIB library, which is available for Design Architect schematics and VHDL
designs, includes standard functions from the library of parameterized modules (LPM) 2.1.0, except the truth table,
finite state machine, and pad functions. The LPM standard defines a set of parameterized modules (i.e.,
parameterized functions) and their corresponding representations in an EDIF netlist file. These logic functions
allow you to create and functionally simulate an LPM-based design without targeting a specific device family.
After the design is completed, you can target the design to any device family. The parameters you specify for each
LPM function determine which simulation models are generated.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices
MAX Devices
Classic Device Family

Local Work Area Directory Structure

Design Architect software automatically creates and maintains the project directory structure required for all stages
of design entry. Galileo Extreme, Leonardo, and ENWrite software create a max2 subdirectory, if it does not
already exist, under the project directory. These software applications also generate EDIF netlist files, and copy
them from the <project name> directory to this max2 subdirectory. All MAX+PLUS ® II Compiler output files are
created in the max2 subdirectory.

Simulation files created with Mentor Graphics applications and Logic Modeling files are located in the board-level
simulation subdirectory of the project directory. You can use these files during simulation with QuickSim II
software.

The only directory you need to create is the local work directory, which should contain all project directories.
Figure 1 shows the recommended file structure.

Figure 1. Recommended File Structure

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
MAX+PLUS II Project Directory Structure
Mentor Graphics Project Directory Structure

Mentor Graphics Project Directory Structure

Design Architect software generates the following files for each schematic:

<drawing name>/mgc_component.attr
<drawing name>/part.Eddm_part.attr
<drawing name>/part.part_1
<drawing name>/schematic.mgc_schematic.attr
<drawing name>/schematic/schem_id
<drawing name>/schematic/sheet1.mgc_sheet.attr
<drawing name>/schematic/sheet1.sgfx_1
<drawing name>/schematic/sheet1.ssht_1

The files generated for each schematic are stored in the schematic's <drawing name> directory and should not be
edited. Mentor Graphics software automatically manages file storage and retrieval operations through this
<drawing name> directory structure, which does not reflect hierarchical design relationships. Figure 1 shows a
sample file structure with project1 as the UNIX project directory, and design1, subdesign1, and subdesign2 as the
directories for the top-level design and subdesigns of the project.

Figure 1. Design Architect Project File Structure

When the ENWrite utility converts the schematic into an EDIF netlist file, it processes the design information and
all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF netlist
file is named <project name>.edf, where <project name> is the name of the top-level design file. The <project
name>.edf file is automatically moved to the max2 directory under the project directory.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
MAX+PLUS II Project Directory Structure

MAX+PLUS II Project Directory Structure

In the MAX+PLUS ® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, VHDL, or Verilog HDL netlist file; an Altera Hardware Description
Language (AHDL) Text Design File (TDF); or any other MAX+PLUS II-supported design file. The EDIF netlist
file must be created by ENWrite, Galileo Extreme, or Leonardo software and imported into MAX+PLUS II as an
EDIF Input File (.edf). Figure 1 shows an example of a MAX+PLUS II project directory.

Table 1. MAX+PLUS II Directory Organization

Directory Description

.lmf
Contains the Altera-provided Library Mapping Files, mnt8_bas.lmf and exemplar.lmf,
that map Mentor Graphics and Exemplar Logic logic functions to equivalent MAX+PLUS
II logic functions.

./mentor Contains the AMPLE userware for the MAX+PLUS II/Mentor Graphics interface.

./simlib/mentor/alt_max2
Contains MAX+PLUS II primitives such as CARRY, CASCADE, EXP, GLOBAL, LCELL, SOFT,
OPNDRN, DFFE, and DFFE6K (D flipflop with Clock Enable) for use in Design Architect
schematics.

./simlib/mentor/max2sim Contains the MAX+PLUS II/Mentor Graphics simulation model library, max2sim, for use
with QuickSim II and QuickPath software.

./simlib/mentor/synlib Contains the MAX+PLUS II synthesis library for use with AutoLogic II software, which
supports synthesis for users running Mentor Graphics version B1.

Figure 1. Sample MAX+PLUS II Project Directory

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure

MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

The following table shows the MAX+PLUS ® II/Mentor Graphics interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Related Topics:

For information on the other directories that are created during MAX+PLUS II installation, see
"MAX+PLUS II File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started
manual.

./simlib/mentor/alt_mf Contains the MAX+PLUS II macrofunction and megafunction libraries.

./simlib/mentor/alt_vtl Contains the MAX+PLUS II VITAL library.

If you wish to functionally simulate a hierarchical design that uses multiple design entry methods, you should use
QuickHDL Pro rather than QuickHDL. Refer to Performing a Functional Simulation with QuickHDL Pro

Altera/Mentor Graphics/Exemplar Logic Design Flow

The following figure shows the typical design flow for logic circuits created and processed with the MAX+PLUS ®
II and Mentor Graphics/Exemplar Logic software. Detailed diagrams for each stage of the design flow appear in
Design Entry Flow, Project Compilation Flow, Project Simulation/Timing Analysis Flow, and Device
Programming Flow.

Performing a Functional Simulation with QuickHDL Software

You can use Mentor Graphics QuickHDL software to functionally simulate VHDL or Verilog HDL design files
before compiling them with the MAX+PLUS ® II Compiler.

Software for more information.

To functionally simulate a VHDL or Verilog HDL design, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL or Verilog HDL design file that follows the guidelines described in Creating VHDL &
Verilog HDL Designs for Use with MAX+PLUS II Software.

3. Start Design Architect by double-clicking Button 1 on the max_da icon in the Design Manager tools
window. You can also start Design Architect software by typing max2_da at the UNIX prompt.

4. Choose Lib (QuickHDL menu) and specify your work library name as the Work Library name. Choose OK.
5. Choose Map (QuickHDL menu) to map the instantiated function to the equivalent function in the Altera

logic function library. Choose Set to specify altera as the Logical Name and $MAX2_MFLIB as the Physical
Name. Choose OK.

6. Choose Compile (QuickHDL menu) and use the Navigator window to select the icon for your project.
Specify your work library name as the Work Library name and select the Simulation setting in the Set VHDL
Compilation Options or Set Verilog HDL Compilation Options window. Choose OK to compile.

7. Choose Simulate (QuickHDL menu) and specify your work library name as the Work Library name. Choose
OK to start the QuickHDL Startup window.

8. Select the icon for your project in the Entity Configuration window and choose OK to simulate the design.
9. Synthesize and optimize the design, as described in Synthesizing & Optimizing VHDL & Verilog HDL

Projects with Galileo Extreme Software or Synthesizing & Optimizing VHDL & Verilog HDL Projects with
Leonardo Software.

If your Verilog HDL design uses memory functions (RAM or ROM) that can be initialized with a hexadecimal file
(Intel-format) initialization, you must convert these files into Verilog HDL format using the Programming
Language Interface (PLI). To use the Altera-provided source code for PLI, perform the following steps:

1. Download the file http://www.edif.org/lpmweb/convert_hex2ver.c to your project directory.
2. Copy the following two files from the $MGC_HOME/shared/pkgs/quickhdl/include directory into the

/usr/maxplus2 directory:

$MGC_HOME/shared/pkgs/quickhdl/include/veriuser
$MGC_HOME/shared/pkgs/quickhdl/include/acc_user

Refer to the Mentor Graphics QuickHDL User's Reference Manual, version 8.5-4.6i, for information on
compiling the PLI application on different platforms and using the Verilog HDL PLI.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Performing a Timing Simulation with QuickHDL Software
Performing a Functional Simulation with QuickHDL Pro Software

Performing a Functional Simulation with QuickHDL Pro Software

You can use Mentor Graphics QuickHDL Pro software to functionally simulate mixed-level schematic and VHDL
designs before compiling them with the MAX+PLUS ® II Compiler.

Refer to Mentor Graphics Getting Started with QuickHDL Pro page 2-1 and 3-1 for compatible design
configurations.

To functionally simulate a QuickHDL at Top Level design, follow the steps in Getting Started with QuickHDL Pro,
Chapter 2.

Figure 1. MAX+PLUS II/Mentor Graphics Project Simulation/Timing

To functionally simulate a QuickSim II at Top Level design, go through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a schematic design using QuickHDL models. Refer to Creating Design Architect Schematics for Use
with MAX+PLUS II Software.

3. Compile the QuickHDL model using the QuickHDL Compiler with the -qhpro_syminfo option. (This is
done automatically for LPM functions if you choose to compile the LPM models when saving the
schematic.)

4. Start Design Architect by double-clicking Button 1 on the max_da icon in the Design Manager tools
window.

5. Choose Open from the File menu, then choose Sheet from the Open menu to open the top level schematic.
6. Select the symbol for the VHDL model and choose Begin Edit Symbol from the Edit menu.
7. Press Button 3 to display the the Design Architect pop-up menu. Choose Add Menu from the Other Menus

menu, then choose Set VHDL Info. Choose Import from Entity to display the "Import Entity Info" dialog
box.

8. Specify the following options in the "Import Entity Info" dialog box:
1. QHDL InitFile: Specify your quickhdl.ini file.
2. Library Logical Name: Click on Choose Library button and fill the "Choose VHDL Library" form

with your work library.
3. Entity Name: Click on Choose Entity button and select the name of your entity.
4. Default Architecture: Click on Choose Arch button and select corresponding architecture for the

entity.

After filling in the above information, click on OK to close the form.

9. Check the symbol with defaults. If there are no errors, save the symbol with default registration by choosing
Save Symbol from the File menu, then choose Default Registration.

10. Choose End Edit Symbol from the Edit menu to close the Symbol Editor session. In the schematic window,
select the symbol you have just edited and choose Object from the Report menu, then choose All from the
Selected menu. In the report transcript, make sure the MODEL property is set to qhpro to ensure that the
model will work with QuickHDL Pro.

11. Select the folder for your project, press button 3, and choose Open max2_qvpro to start QuickHDL Pro.
You can also start QuickHDL Pro by typing max2_qvpro at the UNIX prompt. In the QVHDL Pro
System dialog box, make sure EDDM Design is selected for Invoke on and the correct path name is specified
for the design. Choose OK to start the QuickHDL Pro. A QHPro (QuickSim II) window and a QHPro
(QuickHDL) window appear on the screen.

12. Use the QuickSim II window to simulate the top level schematic and the QuickHDL window to simulate the
VHDL portion of the design.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:<
Compiling Projects with MAX+PLUS II Software
Instantiating LPM Functions in Design Architect Schematics
Performing a Functional Simulation with QuickHDL Software

Project Simulation/Timing Analysis Flow

The following figure shows the project simulation and timing analysis flow for the MAX+PLUS® II /Mentor
Graphics interface.

Analysis Flow

Alteraprovided items are shown in
blue.

Performing a Timing Simulation with QuickHDL Software

After you have entered a VHDL or Verilog HDL design file and compiled it with the MAX+PLUS ® II Compiler,
you can use Mentor Graphics QuickHDL software to simulate the MAX+PLUS IIgenerated VHDL Output File
(.vhd) or Verilog Output File (.vo) and the Standard Delay Format (SDF) Output File (.sdo).

To simulate your VHDL or Verilog HDL design, go through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Generate a VHDL or Verilog HDL output file and an SDF output file for your project, as described in
Compiling Projects with MAX+PLUS II Software.

3. Change to your project's directory.

4. Copy your quickhdl.ini file to the same directory as your VHDL or Verilog HDL file.

5. Type the following sets of commands at the UNIX prompt to create the work library and compile your
project's VHDL or Verilog HDL output file:

VHDL: Verilog HDL:
setenv MGC_WD 'pwd'
qhlib work
qvhcom <project name>.vho

setenv MGC_WD 'pwd'
qhlib work
qvlcom <project name>.vo

6. Type qhsim -sdftyp <project name>.sdo at the UNIX prompt to perform timing back-annotation and

simulation and to display the QuickHDL simulation window.

If your Verilog HDL design uses memory functions (RAM or ROM) that can be initialized with a hexadecimal file
(Intel-format) initialization, you must convert these files into Verilog HDL format using the Programming
Language Interface (PLI). To use the Altera-provided source code for PLI, perform the following steps:

1. Download the file http://www.edif.org/lpmweb/convert_hex2ver.c to your project directory.

2. Copy the following two files from the $MGC_HOME/shared/pkgs/quickhdl/include directory into the
/usr/maxplus2 directory:

$MGC_HOME/shared/pkgs/quickhdl/include/veriuser
$MGC_HOME/shared/pkgs/quickhdl/include/acc_user

Refer to the Mentor Graphics QuickHDL User's Reference Manual, version 8.5-4.6i, for information on
compiling the PLI application on different platforms and using the Verilog HDL PLI.

Related Topics:

Go to Performing a Functional Simulation with QuickHDL Software in these MAX+PLUS II ACCESSSM

Key topics for related information.

Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software

You can create VHDL and Verilog HDL design files with the MAX+PLUS ® II Text Editor or another standard
text editor and save them in the appropriate directory for your project.

The MAX+PLUS II Text Editor offers the following advantages:

Templates are available with the VHDL Templates and Verilog Templates commands (Template menu).
These templates are also available in the ASCII vhdl.tmp and verilog.tmp files, respectively, which are
located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can turn on the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements of text in text
files in different colors to distinguish them from other forms of syntax.

To create a VHDL or Verilog HDL design file for use with the MAX+PLUS II software, go through the following
steps:

1. Enter a VHDL or Verilog HDL design in the MAX+PLUS II Text Editor or another standard text editor and
save it in your working directory.

2. Enter primitives, macrofunctions, and megafunctions in your VHDL or Verilog HDL design from the Altera
library.

The following topics describe special steps needed to instantiate LPM and clklock functions:

Instantiating LPM Functions in VHDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

You can instantiate MegaCore™ functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP™). The OpenCore™ feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. (Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a
Functional Simulation with QuickHDL Software and Performing a Functional Simulation with QuickHDL
Pro Software.

4. Once you have created a VHDL or Verilog HDL design, you can generate an EDIF netlist file that can be
imported into the MAX+PLUS II software with either of the following methods:

You can synthesize and optimize your design and create an EDIF netlist file, as described in
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software or
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software.

You can use the Altera VHDL Express utility, vhd_exprss, to automatically create an EDIF netlist file,
compile it with the MAX+PLUS II Compiler, generate an EDIF Output File (.edo), and prepare the
EDIF Output File for simulation with QuickHDL software, as described in Using the Altera Schematic
Express (vhd_exprss) Utility.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL design files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Refer to the following sources for additional information:
Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.
Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the
Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from
within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL

descriptions.
Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.
6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic

functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:
Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:
1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist

Writer Settings command (Interfaces menu).
2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that

vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.
10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog

HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

9000A
Devices

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Functional Simulation
with QuickHDL Pro Software

Performing a Functional Simulation with QuickHDL
Pro Software

You can use Mentor Graphics QuickHDL Pro software to functionally simulate mixed-level schematic and VHDL
designs before compiling them with the MAX+PLUS ® II Compiler.

Refer to Mentor Graphics Getting Started with QuickHDL Pro page 2-1 and 3-1 for compatible design
configurations.

To functionally simulate a QuickHDL at Top Level design, follow the steps in Getting Started with QuickHDL Pro,
Chapter 2.

To functionally simulate a QuickSim II at Top Level design, go through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a schematic design using QuickHDL models. Refer to Creating Design Architect Schematics for Use
with MAX+PLUS II Software.

3. Compile the QuickHDL model using the QuickHDL Compiler with the -qhpro_syminfo option. (This is
done automatically for LPM functions if you choose to compile the LPM models when saving the
schematic.)

4. Start Design Architect by double-clicking Button 1 on the max_da icon in the Design Manager tools
window.

5. Choose Open from the File menu, then choose Sheet from the Open menu to open the top level schematic.
6. Select the symbol for the VHDL model and choose Begin Edit Symbol from the Edit menu.
7. Press Button 3 to display the the Design Architect pop-up menu. Choose Add Menu from the Other Menus

menu, then choose Set VHDL Info. Choose Import from Entity to display the "Import Entity Info" dialog
box.

8. Specify the following options in the "Import Entity Info" dialog box:
1. QHDL InitFile: Specify your quickhdl.ini file.
2. Library Logical Name: Click on Choose Library button and fill the "Choose VHDL Library" form

with your work library.
3. Entity Name: Click on Choose Entity button and select the name of your entity.
4. Default Architecture: Click on Choose Arch button and select corresponding architecture for the

entity.

After filling in the above information, click on OK to close the form.

Check the symbol with defaults. If there are no errors, save the symbol with default registration by choosing
Save Symbol from the File menu, then choose Default Registration.
Choose End Edit Symbol from the Edit menu to close the Symbol Editor session. In the schematic window,
select the symbol you have just edited and choose Object from the Report menu, then choose All from the
Selected menu. In the report transcript, make sure the MODEL property is set to qhpro to ensure that the
model will work with QuickHDL Pro.
Select the folder for your project, press button 3, and choose Open max2_qvpro to start QuickHDL Pro.
You can also start QuickHDL Pro by typing max2_qvpro at the UNIX prompt. In the QVHDL Pro
System dialog box, make sure EDDM Design is selected for Invoke on and the correct path name is specified
for the design. Choose OK to start the QuickHDL Pro. A QHPro (QuickSim II) window and a QHPro
(QuickHDL) window appear on the screen.
Use the QuickSim II window to simulate the top level schematic and the QuickHDL window to simulate the
VHDL portion of the design.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1

Related Links:

Compiling Projects with MAX+PLUS II Software
Instantiating LPM Functions in Design Architect Schematics
Performing a Functional Simulation with QuickHDL Software

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lpm_func.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Mentor Graphics QuickPath &
MAX+PLUS II Software

Using Mentor Graphics QuickPath & MAX+PLUS II
Software

The following topics describe how to use the Mentor Graphics QuickPath software with MAX+PLUS® II software.
Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Timing Analysis

Project Simulation/Timing Analysis Flow
Performing a Timing Analysis with QuickPath Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Performing a Timing Simulation with DVE & QuickSim II Software
Programming Altera Devices

Go to the following topics for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Mentor Graphics web site (http://www.mentor.com)

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

To use the MAX+PLUS ® II software with Mentor Graphics/Exemplar Logic software, you must install the
MAX+PLUS II software, then establish an environment that facilitates entering and processing designs. The
MAX+PLUS II/Mentor Graphics/Exemplar Logic interface is installed automatically when you install the
MAX+PLUS II software on your computer.

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to MAX+PLUS
II/Mentor Graphics/Exemplar Logic Interface File Organization for information about the MAX+PLUS II/Mentor

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using a C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

Graphics directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Mentor Graphics interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Mentor Graphics software versions
described in MAX+PLUS II/Mentor Graphics Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2
setenv MGC_WD <user-specified working directory>
setenv MGC_HOME <Mentor Graphics system directory>
setenv MAX2_MENTOR /usr/maxplus2/mentor/max2
setenv MGC_LOCATION_MAP <user-specified location_map file>
setenv EXEMPLAR <Galileo or Leonardo system directory>

Installing the Altera® provided MAX+PLUS II/Mentor Graphics interface on your computer
automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/.cshrc file.

3. Add the $MGC_HOME/bin, $MAX2_MENTOR/bin, $ALT_HOME/bin, $EXEMPLAR/bin/<os>, and
$ALT_HOME/bin directories to the PATH environment variable in your .cshrc file, where <os> is the
operating system, e.g., SUN4 for SunOS; SUN5 for Solaris.

4. If you plan to use the Altera Schematic Express (sch_exprss) utility or the Altera VHDL Express
(vhd_exprss) utility, add the following environment variable to your .cshrc file:

setenv MAX2_QSIM /usr/maxplus2/simlib/mentor/max2sim

5. Type source ?/.cshrc at a UNIX prompt to source the .cshrc file and validate the settings in steps 1
through 4.

6. Add the following lines to your MGC_location_map file:

$MAX2_MENTOR
/usr/maxplus2/mentor/max2
$MGC_GENLIB
/<user-specified Mentor Graphics GEN_LIB directory>
$MGC_LSLIB
/<user-specified Mentor Graphics LS_LIB directory>
$MAX2_EXAMPLES
/<user-specified example directory>
$MAX2_LMCLIB
/<user-specified Logic Modeling directory>
$MAX2_GENLIB
/usr/maxplus2/simlib/mentor/alt_max2
$MAX2_QSIM

/usr/maxplus2/simlib/mentor/max2sim
$MAX2_FONT
/usr/maxplus2/mentor/max2/fonts
$MGC_SYS1076_STD
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ std
$MGC_SYS1076_ARITHMETIC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/arithmetic
$MGC_SYS1076_PORTABLE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/mgc_portable
$MGC_SYS1076_IEEE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ieee
$MGC_SYS1076_SRC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ src
$MAX2_MFLIB
/usr/maxplus2/simlib/mentor/alt_mf

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your
computer automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/location_map/location_map file.

7. If you want to use QuickHDL software to simulate VHDL or Verilog HDL designs, add the following line in
the [library] section of your quickhdl.ini file: altera = $MAX2_MFLIB.

8. If you plan to use QuickHDL software to simulate VITAL-compliant VHDL files, add the following lines to
your MGC_location_map file:

$MAX2_VTLLIB
/usr/maxplus2/simlib/mentor/alt_vtl

9. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME
chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as Alteraprovided logic and symbol library paths and the current
project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini file to
the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective

Mentor Graphics Exemplar Altera
version C.1:
System_1076 Compiler
QuickSim II
Design Architect
ENRead
ENWrite
GEN_LIB library

QuickHDL
QuickHDL Pro
QuickPath
LS_LIB library (optional)
DVE

Galileo Extreme
version 4.1.1

Leonardo
version 4.1.3

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Mentor Graphics
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

You can create your own libraries of custom functions for use in Design Architect schematics and VHDL and
Verilog HDL design files. You can use custom functions to incorporate an EDIF Input File (.edf), Text Design
File (.tdf), or any other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses
the Altera® provided mnt8_bas.lmf and exemplar.lmf Library Mapping Files to map standard Design Architect
symbols and VHDL and Verilog HDL functions to equivalent MAX+PLUS II logic functions. To use custom
functions, you can create a custom LMF that maps your custom functions to the equivalent EDIF input file, TDF,
or other design file. Go to "Library Mapping File" in MAX+PLUS II Help for more information.

Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Mentor Graphics Software Requirements

The following products are used to generate, process, synthesize, and verify a project with the MAX+PLUS ® II
software and Mentor Graphics software:

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS ® II/Mentor Graphics environment provides libraries for compiling, synthesizing, and simulating
designs.

Design Architect Libraries

You can enter a Design Architect schematic with logic functions from these Altera-provided symbol libraries:
ALTERA LPMLIB, ALTERA GENLIB, LSTTL BY TYPE, and LSTTL ALL PARTS. You can access these
libraries by choosing Altera Libraries (Libraries menu) in the Design Architect software. For information on using
library of parameterized modules (LPM) functions, see ALTERA LPMLIB Library below.

ALTERA GENLIB Library (Design Architect) & Altera (VHDL) Libraries

The ALTERA GENLIB symbol library (called the Altera library for VHDL) includes several MAX+PLUS II
primitives for controlling design synthesis and fitting. It also includes four macrofunctions (8count, 8mcomp, 8fadd,
and 81mux) that are optimized for different Altera device families, and the clklock phase-locked loop
megafunction, which is supported for some FLEX ® 10K devices.

The following table shows the MAX+PLUS II-specific logic functions.

Table 1. MAX+PLUS II-Specific Logic Functions

Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX ® 5000, MAX 7000 , and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (2)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help menu
for detailed information on these functions.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd instead.

2. If you want to use QuickHDL software, make sure you have updated your quickhdl.ini file, as described in
step 7 of Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment.

3. For designs that are targeted for FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

ALTERA LPMLIB Library

The Alteraprovided ALTERA LPMLIB library, which is available for Design Architect schematics and VHDL
designs, includes standard functions from the library of parameterized modules (LPM) 2.1.0, except the truth table,
finite state machine, and pad functions. The LPM standard defines a set of parameterized modules (i.e.,
parameterized functions) and their corresponding representations in an EDIF netlist file. These logic functions
allow you to create and functionally simulate an LPM-based design without targeting a specific device family.
After the design is completed, you can target the design to any device family. The parameters you specify for each
LPM function determine which simulation models are generated.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices
MAX Devices
Classic Device Family

Local Work Area Directory Structure

Design Architect software automatically creates and maintains the project directory structure required for all stages
of design entry. Galileo Extreme, Leonardo, and ENWrite software create a max2 subdirectory, if it does not

already exist, under the project directory. These software applications also generate EDIF netlist files, and copy
them from the <project name> directory to this max2 subdirectory. All MAX+PLUS ® II Compiler output files are
created in the max2 subdirectory.

Simulation files created with Mentor Graphics applications and Logic Modeling files are located in the board-level
simulation subdirectory of the project directory. You can use these files during simulation with QuickSim II
software.

The only directory you need to create is the local work directory, which should contain all project directories.
Figure 1 shows the recommended file structure.

Figure 1. Recommended File Structure

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
MAX+PLUS II Project Directory Structure
Mentor Graphics Project Directory Structure

Mentor Graphics Project Directory Structure

Design Architect software generates the following files for each schematic:

<drawing name>/mgc_component.attr
<drawing name>/part.Eddm_part.attr
<drawing name>/part.part_1
<drawing name>/schematic.mgc_schematic.attr
<drawing name>/schematic/schem_id
<drawing name>/schematic/sheet1.mgc_sheet.attr
<drawing name>/schematic/sheet1.sgfx_1

<drawing name>/schematic/sheet1.ssht_1

The files generated for each schematic are stored in the schematic's <drawing name> directory and should not be
edited. Mentor Graphics software automatically manages file storage and retrieval operations through this
<drawing name> directory structure, which does not reflect hierarchical design relationships. Figure 1 shows a
sample file structure with project1 as the UNIX project directory, and design1, subdesign1, and subdesign2 as the
directories for the top-level design and subdesigns of the project.

Figure 1. Design Architect Project File Structure

When the ENWrite utility converts the schematic into an EDIF netlist file, it processes the design information and
all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF netlist
file is named <project name>.edf, where <project name> is the name of the top-level design file. The <project
name>.edf file is automatically moved to the max2 directory under the project directory.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
MAX+PLUS II Project Directory Structure

MAX+PLUS II Project Directory Structure

In the MAX+PLUS ® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, VHDL, or Verilog HDL netlist file; an Altera Hardware Description
Language (AHDL) Text Design File (TDF); or any other MAX+PLUS II-supported design file. The EDIF netlist
file must be created by ENWrite, Galileo Extreme, or Leonardo software and imported into MAX+PLUS II as an

Table 1. MAX+PLUS II Directory Organization

Directory Description

.lmf
Contains the Altera-provided Library Mapping Files, mnt8_bas.lmf and exemplar.lmf,
that map Mentor Graphics and Exemplar Logic logic functions to equivalent MAX+PLUS
II logic functions.

./mentor Contains the AMPLE userware for the MAX+PLUS II/Mentor Graphics interface.

./simlib/mentor/alt_max2
Contains MAX+PLUS II primitives such as CARRY, CASCADE, EXP, GLOBAL, LCELL, SOFT,
OPNDRN, DFFE, and DFFE6K (D flipflop with Clock Enable) for use in Design Architect

EDIF Input File (.edf). Figure 1 shows an example of a MAX+PLUS II project directory.

Figure 1. Sample MAX+PLUS II Project Directory

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure

MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

The following table shows the MAX+PLUS ® II/Mentor Graphics interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Related Topics:

For information on the other directories that are created during MAX+PLUS II installation, see
"MAX+PLUS II File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started
manual.

schematics.

./simlib/mentor/max2sim Contains the MAX+PLUS II/Mentor Graphics simulation model library, max2sim, for use
with QuickSim II and QuickPath software.

./simlib/mentor/synlib Contains the MAX+PLUS II synthesis library for use with AutoLogic II software, which
supports synthesis for users running Mentor Graphics version B1.

./simlib/mentor/alt_mf Contains the MAX+PLUS II macrofunction and megafunction libraries.

./simlib/mentor/alt_vtl Contains the MAX+PLUS II VITAL library.

Figure 1. MAX+PLUS II/Mentor Graphics Project Simulation/Timing
Analysis Flow

Alteraprovided items are shown in
blue.

Project Simulation/Timing Analysis Flow

The following figure shows the project simulation and timing analysis flow for the MAX+PLUS® II /Mentor
Graphics interface.

Performing a Timing Analysis with QuickPath Software

After you have compiled your project with the MAX+PLUS ® II Compiler and generated an EDIF Output File
(.edo), you can use Mentor Graphics QuickPath software to perform a timing analysis of your project.

To perform a timing analysis with QuickPath software, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Generate an EDIF Output File for your project using one of the following methods:

Compiling Projects with MAX+PLUS II Software
Using the Altera Schematic Express (sch_exprss) Utility
Using the Altera VHDL Express (vhd_exprss) Utility

3. Select your project's folder from the ALTERA directory, press Button 3, and choose Open max2_qpath to
start the QuickPath software. You can also start the QuickPath software by typing max2_qpath at the
UNIX prompt.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the
Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from
within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list

box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-

optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)

Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Performing a Timing Simulation with DVE & QuickSim II Software

After you have compiled a design with the MAX+PLUS® II Compiler, you can prepare the MAX+PLUS
IIgenerated EDIF Output File (.edo) with Mentor Graphics Design Viewpoint Editor (DVE) and simulate it with
the Mentor Graphics QuickSim II software.

To simulate an EDIF Output File with the QuickSim II software, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Generate an EDIF Output File for your project, as described in Compiling Projects with MAX+PLUS II
Software or Using the Altera Schematic Express (sch_exprss) Utility.

3. If you used the Altera Schematic Express (sch_exprss) utility to process your design, skip to step 5.
Otherwise, go to step 4.

4. In the Navigator window, select your project's icon, press Button 3, and choose Open max2_enr to read your
project's EDIF Output File with the ENRead utility. You can also start ENRead software by typing max2_enr

 at the UNIX prompt.

5. Select your project's folder, press Button 3, and choose Open max2_ave to open DVE, which will prepare
your project's simulation component for QuickSim II timing simulation. DVE automatically generates an
appropriately named viewpoint for your project. You can also start DVE by typing max2_ave at the UNIX
prompt.

6. Select your project's folder, press Button 3, and choose Open max2_qsim to simulate your project and its
DVE viewpoint with QuickSim II software. You can also start QuickSim II by typing max2_qsim at the
UNIX prompt.

7. In the Altera QuickSim dialog box, type the name of your project's viewpoint in the Viewpoint Name box.
Select Timing as the Timing Mode. Select the Max timing option. Choose Scale Factor for Delay Scale, and
be sure that 0.1 is specified for the Value. Choose OK.

If the delay scale value is not set to 0.1 (i.e., divided by ten), the QuickSim II software will not reflect
the correct timing simulation values.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master

Related Topics:

Go to Performing a Timing Analysis with QuickPath Software in these MAX+PLUS II ACCESSSM Key
topics for related information.

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Mentor Graphics QuickPath &
MAX+PLUS II Software

Using Mentor Graphics QuickPath & MAX+PLUS II
Software

The following topics describe how to use the Mentor Graphics QuickPath software with MAX+PLUS® II software.
Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Timing Analysis

Project Simulation/Timing Analysis Flow
Performing a Timing Analysis with QuickPath Software

Related Links

Compiling Projects with MAX+PLUS II Software
Performing a Timing Simulation with DVE & QuickSim II Software
Programming Altera Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Mentor Graphics web site (http://www.mentor.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qpathall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-require.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dir_strc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-file_org.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-simflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quikpath.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quicksim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.mentor.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Mentor Graphics QuickSim II &
MAX+PLUS II Software

Using Mentor Graphics QuickSim II & MAX+PLUS II
Software

The following topics describe how to use the Mentor Graphics QuickSim II (and DVE) software with
MAX+PLUS® II software. Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Functional Simulation

Design Entry Flow
Performing a Functional Simulation with DVE & QuickSim II Software

Timing Simulation

Project Simulation/Timing Analysis Flow
Performing a Timing Simulation with DVE & QuickSim II Software

Related Links

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Mentor Graphics web site (http://www.mentor.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qsimall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-require.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dir_strc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-file_org.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsn_ntry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dveqksim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-simflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quicksim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.mentor.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Mentor Graphics QuickHDL
and QuickHDL Pro & MAX+PLUS II Software

Using Mentor Graphics QuickHDL and QuickHDL Pro
& MAX+PLUS II Software

The following topics describe how to use the Mentor Graphics QuickHDL and QuickHDL Pro software with
MAX+PLUS® II software. Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

Software Requirements
Altera-Provided Logic & Symbol Libraries
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure
MAX+PLUS II Project Directory Structure
MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

Functional Simulation

Design Entry Flow
Performing a Functional Simulation with QuickHDL Software
Performing a Functional Simulation with QuickHDL Pro Software

Timing Simulation

Project Simulation/Timing Analysis Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with QuickHDL Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Mentor Graphics web site (http://www.mentor.com)

Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment

To use the MAX+PLUS ® II software with Mentor Graphics/Exemplar Logic software, you must install the

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using a C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

MAX+PLUS II software, then establish an environment that facilitates entering and processing designs. The
MAX+PLUS II/Mentor Graphics/Exemplar Logic interface is installed automatically when you install the
MAX+PLUS II software on your computer.

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to MAX+PLUS
II/Mentor Graphics/Exemplar Logic Interface File Organization for information about the MAX+PLUS II/Mentor
Graphics directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Mentor Graphics interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Mentor Graphics software versions
described in MAX+PLUS II/Mentor Graphics Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2
setenv MGC_WD <user-specified working directory>
setenv MGC_HOME <Mentor Graphics system directory>
setenv MAX2_MENTOR /usr/maxplus2/mentor/max2
setenv MGC_LOCATION_MAP <user-specified location_map file>
setenv EXEMPLAR <Galileo or Leonardo system directory>

Installing the Altera® provided MAX+PLUS II/Mentor Graphics interface on your computer
automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/.cshrc file.

3. Add the $MGC_HOME/bin, $MAX2_MENTOR/bin, $ALT_HOME/bin, $EXEMPLAR/bin/<os>, and
$ALT_HOME/bin directories to the PATH environment variable in your .cshrc file, where <os> is the
operating system, e.g., SUN4 for SunOS; SUN5 for Solaris.

4. If you plan to use the Altera Schematic Express (sch_exprss) utility or the Altera VHDL Express
(vhd_exprss) utility, add the following environment variable to your .cshrc file:

setenv MAX2_QSIM /usr/maxplus2/simlib/mentor/max2sim

5. Type source ~/.cshrc at a UNIX prompt to source the .cshrc file and validate the settings in steps 1
through 4.

6. Add the following lines to your MGC_location_map file:

$MAX2_MENTOR
/usr/maxplus2/mentor/max2
$MGC_GENLIB
/<user-specified Mentor Graphics GEN_LIB directory>
$MGC_LSLIB
/<user-specified Mentor Graphics LS_LIB directory>
$MAX2_EXAMPLES
/<user-specified example directory>

$MAX2_LMCLIB
/<user-specified Logic Modeling directory>
$MAX2_GENLIB
/usr/maxplus2/simlib/mentor/alt_max2
$MAX2_QSIM
/usr/maxplus2/simlib/mentor/max2sim
$MAX2_FONT
/usr/maxplus2/mentor/max2/fonts
$MGC_SYS1076_STD
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ std
$MGC_SYS1076_ARITHMETIC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/arithmetic
$MGC_SYS1076_PORTABLE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/mgc_portable
$MGC_SYS1076_IEEE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ieee
$MGC_SYS1076_SRC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ src
$MAX2_MFLIB
/usr/maxplus2/simlib/mentor/alt_mf

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your
computer automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/location_map/location_map file.

7. If you want to use QuickHDL software to simulate VHDL or Verilog HDL designs, add the following line in
the [library] section of your quickhdl.ini file: altera = $MAX2_MFLIB.

8. If you plan to use QuickHDL software to simulate VITAL-compliant VHDL files, add the following lines to
your MGC_location_map file:

$MAX2_VTLLIB
/usr/maxplus2/simlib/mentor/alt_vtl

9. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME
chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as Alteraprovided logic and symbol library paths and the current
project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini file to
the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

Related Topics:

Mentor Graphics Exemplar Altera
version C.1:
System_1076 Compiler
QuickSim II
Design Architect
ENRead
ENWrite
GEN_LIB library

QuickHDL
QuickHDL Pro
QuickPath
LS_LIB library (optional)
DVE

Galileo Extreme
version 4.1.1

Leonardo
version 4.1.3

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Mentor Graphics
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

You can create your own libraries of custom functions for use in Design Architect schematics and VHDL and
Verilog HDL design files. You can use custom functions to incorporate an EDIF Input File (.edf), Text Design
File (.tdf), or any other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses
the Altera® provided mnt8_bas.lmf and exemplar.lmf Library Mapping Files to map standard Design Architect
symbols and VHDL and Verilog HDL functions to equivalent MAX+PLUS II logic functions. To use custom
functions, you can create a custom LMF that maps your custom functions to the equivalent EDIF input file, TDF,
or other design file. Go to "Library Mapping File" in MAX+PLUS II Help for more information.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Mentor Graphics Software Requirements

The following products are used to generate, process, synthesize, and verify a project with the MAX+PLUS ® II
software and Mentor Graphics software:

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS ® II/Mentor Graphics environment provides libraries for compiling, synthesizing, and simulating
designs.

Design Architect Libraries

You can enter a Design Architect schematic with logic functions from these Altera-provided symbol libraries:
ALTERA LPMLIB, ALTERA GENLIB, LSTTL BY TYPE, and LSTTL ALL PARTS. You can access these
libraries by choosing Altera Libraries (Libraries menu) in the Design Architect software. For information on using
library of parameterized modules (LPM) functions, see ALTERA LPMLIB Library below.

ALTERA GENLIB Library (Design Architect) & Altera (VHDL) Libraries

The ALTERA GENLIB symbol library (called the Altera library for VHDL) includes several MAX+PLUS II
primitives for controlling design synthesis and fitting. It also includes four macrofunctions (8count, 8mcomp, 8fadd,

Table 1. MAX+PLUS II-Specific Logic Functions

Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX ® 5000, MAX 7000 , and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (2)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help menu
for detailed information on these functions.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

and 81mux) that are optimized for different Altera device families, and the clklock phase-locked loop
megafunction, which is supported for some FLEX ® 10K devices.

The following table shows the MAX+PLUS II-specific logic functions.

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd instead.

2. If you want to use QuickHDL software, make sure you have updated your quickhdl.ini file, as described in
step 7 of Setting Up the MAX+PLUS II/Mentor Graphics/Exemplar Logic Working Environment.

3. For designs that are targeted for FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

ALTERA LPMLIB Library

The Alteraprovided ALTERA LPMLIB library, which is available for Design Architect schematics and VHDL
designs, includes standard functions from the library of parameterized modules (LPM) 2.1.0, except the truth table,
finite state machine, and pad functions. The LPM standard defines a set of parameterized modules (i.e.,
parameterized functions) and their corresponding representations in an EDIF netlist file. These logic functions
allow you to create and functionally simulate an LPM-based design without targeting a specific device family.
After the design is completed, you can target the design to any device family. The parameters you specify for each
LPM function determine which simulation models are generated.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices
MAX Devices
Classic Device Family

Local Work Area Directory Structure

Design Architect software automatically creates and maintains the project directory structure required for all stages
of design entry. Galileo Extreme, Leonardo, and ENWrite software create a max2 subdirectory, if it does not
already exist, under the project directory. These software applications also generate EDIF netlist files, and copy
them from the <project name> directory to this max2 subdirectory. All MAX+PLUS ® II Compiler output files are
created in the max2 subdirectory.

Simulation files created with Mentor Graphics applications and Logic Modeling files are located in the board-level
simulation subdirectory of the project directory. You can use these files during simulation with QuickSim II
software.

The only directory you need to create is the local work directory, which should contain all project directories.
Figure 1 shows the recommended file structure.

Figure 1. Recommended File Structure

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
MAX+PLUS II Project Directory Structure
Mentor Graphics Project Directory Structure

Mentor Graphics Project Directory Structure

Design Architect software generates the following files for each schematic:

<drawing name>/mgc_component.attr
<drawing name>/part.Eddm_part.attr

<drawing name>/part.part_1
<drawing name>/schematic.mgc_schematic.attr
<drawing name>/schematic/schem_id
<drawing name>/schematic/sheet1.mgc_sheet.attr
<drawing name>/schematic/sheet1.sgfx_1
<drawing name>/schematic/sheet1.ssht_1

The files generated for each schematic are stored in the schematic's <drawing name> directory and should not be
edited. Mentor Graphics software automatically manages file storage and retrieval operations through this
<drawing name> directory structure, which does not reflect hierarchical design relationships. Figure 1 shows a
sample file structure with project1 as the UNIX project directory, and design1, subdesign1, and subdesign2 as the
directories for the top-level design and subdesigns of the project.

Figure 1. Design Architect Project File Structure

When the ENWrite utility converts the schematic into an EDIF netlist file, it processes the design information and
all related file subdirectories, then creates the EDIF netlist file in the directory defined by the user. The EDIF netlist
file is named <project name>.edf, where <project name> is the name of the top-level design file. The <project
name>.edf file is automatically moved to the max2 directory under the project directory.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
MAX+PLUS II Project Directory Structure

MAX+PLUS II Project Directory Structure

Table 1. MAX+PLUS II Directory Organization

Directory Description

.lmf
Contains the Altera-provided Library Mapping Files, mnt8_bas.lmf and exemplar.lmf,
that map Mentor Graphics and Exemplar Logic logic functions to equivalent MAX+PLUS
II logic functions.

./mentor Contains the AMPLE userware for the MAX+PLUS II/Mentor Graphics interface.
Contains MAX+PLUS II primitives such as CARRY, CASCADE, EXP, GLOBAL, LCELL, SOFT,

In the MAX+PLUS ® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, VHDL, or Verilog HDL netlist file; an Altera Hardware Description
Language (AHDL) Text Design File (TDF); or any other MAX+PLUS II-supported design file. The EDIF netlist
file must be created by ENWrite, Galileo Extreme, or Leonardo software and imported into MAX+PLUS II as an
EDIF Input File (.edf). Figure 1 shows an example of a MAX+PLUS II project directory.

Figure 1. Sample MAX+PLUS II Project Directory

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Local Work Area Directory Structure
Mentor Graphics Project Directory Structure

MAX+PLUS II/Mentor Graphics/Exemplar Logic Interface File Organization

The following table shows the MAX+PLUS ® II/Mentor Graphics interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Related Topics:

For information on the other directories that are created during MAX+PLUS II installation, see
"MAX+PLUS II File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started
manual.

./simlib/mentor/alt_max2 OPNDRN, DFFE, and DFFE6K (D flipflop with Clock Enable) for use in Design Architect
schematics.

./simlib/mentor/max2sim Contains the MAX+PLUS II/Mentor Graphics simulation model library, max2sim, for use
with QuickSim II and QuickPath software.

./simlib/mentor/synlib Contains the MAX+PLUS II synthesis library for use with AutoLogic II software, which
supports synthesis for users running Mentor Graphics version B1.

./simlib/mentor/alt_mf Contains the MAX+PLUS II macrofunction and megafunction libraries.

./simlib/mentor/alt_vtl Contains the MAX+PLUS II VITAL library.

Altera/Mentor Graphics/Exemplar Logic Design Flow

The following figure shows the typical design flow for logic circuits created and processed with the MAX+PLUS ®
II and Mentor Graphics/Exemplar Logic software. Detailed diagrams for each stage of the design flow appear in
Design Entry Flow, Project Compilation Flow, Project Simulation/Timing Analysis Flow, and Device
Programming Flow.

Performing a Functional Simulation with QuickHDL Software

If you wish to functionally simulate a hierarchical design that uses multiple design entry methods, you should use
QuickHDL Pro rather than QuickHDL. Refer to Performing a Functional Simulation with QuickHDL Pro
Software for more information.

You can use Mentor Graphics QuickHDL software to functionally simulate VHDL or Verilog HDL design files
before compiling them with the MAX+PLUS ® II Compiler.

To functionally simulate a VHDL or Verilog HDL design, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL or Verilog HDL design file that follows the guidelines described in Creating VHDL &
Verilog HDL Designs for Use with MAX+PLUS II Software.

3. Start Design Architect by double-clicking Button 1 on the max_da icon in the Design Manager tools
window. You can also start Design Architect software by typing max2_da at the UNIX prompt.

4. Choose Lib (QuickHDL menu) and specify your work library name as the Work Library name. Choose OK.

5. Choose Map (QuickHDL menu) to map the instantiated function to the equivalent function in the Altera
logic function library. Choose Set to specify altera as the Logical Name and $MAX2_MFLIB as the Physical
Name. Choose OK.

6. Choose Compile (QuickHDL menu) and use the Navigator window to select the icon for your project.
Specify your work library name as the Work Library name and select the Simulation setting in the Set VHDL
Compilation Options or Set Verilog HDL Compilation Options window. Choose OK to compile.

7. Choose Simulate (QuickHDL menu) and specify your work library name as the Work Library name. Choose
OK to start the QuickHDL Startup window.

8. Select the icon for your project in the Entity Configuration window and choose OK to simulate the design.

9. Synthesize and optimize the design, as described in Synthesizing & Optimizing VHDL & Verilog HDL
Projects with Galileo Extreme Software or Synthesizing & Optimizing VHDL & Verilog HDL Projects with
Leonardo Software.

If your Verilog HDL design uses memory functions (RAM or ROM) that can be initialized with a hexadecimal file
(Intel-format) initialization, you must convert these files into Verilog HDL format using the Programming
Language Interface (PLI). To use the Altera-provided source code for PLI, perform the following steps:

1. Download the file http://www.edif.org/lpmweb/convert_hex2ver.c to your project directory.

2. Copy the following two files from the $MGC_HOME/shared/pkgs/quickhdl/include directory into the
/usr/maxplus2 directory:

$MGC_HOME/shared/pkgs/quickhdl/include/veriuser
$MGC_HOME/shared/pkgs/quickhdl/include/acc_user

Refer to the Mentor Graphics QuickHDL User's Reference Manual, version 8.5-4.6i, for information on
compiling the PLI application on different platforms and using the Verilog HDL PLI.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software

Performing a Timing Simulation with QuickHDL Software
Performing a Functional Simulation with QuickHDL Pro Software

Performing a Functional Simulation with QuickHDL Pro Software

You can use Mentor Graphics QuickHDL Pro software to functionally simulate mixed-level schematic and VHDL
designs before compiling them with the MAX+PLUS ® II Compiler.

Refer to Mentor Graphics Getting Started with QuickHDL Pro page 2-1 and 3-1 for compatible design
configurations.

To functionally simulate a QuickHDL at Top Level design, follow the steps in Getting Started with QuickHDL Pro,
Chapter 2.

To functionally simulate a QuickSim II at Top Level design, go through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a schematic design using QuickHDL models. Refer to Creating Design Architect Schematics for Use
with MAX+PLUS II Software.

3. Compile the QuickHDL model using the QuickHDL Compiler with the -qhpro_syminfo option. (This is
done automatically for LPM functions if you choose to compile the LPM models when saving the
schematic.)

4. Start Design Architect by double-clicking Button 1 on the max_da icon in the Design Manager tools
window.

5. Choose Open from the File menu, then choose Sheet from the Open menu to open the top level schematic.
6. Select the symbol for the VHDL model and choose Begin Edit Symbol from the Edit menu.
7. Press Button 3 to display the the Design Architect pop-up menu. Choose Add Menu from the Other Menus

menu, then choose Set VHDL Info. Choose Import from Entity to display the "Import Entity Info" dialog
box.

8. Specify the following options in the "Import Entity Info" dialog box:

1. QHDL InitFile: Specify your quickhdl.ini file.

2. Library Logical Name: Click on Choose Library button and fill the "Choose VHDL Library" form
with your work library.

3. Entity Name: Click on Choose Entity button and select the name of your entity.

4. Default Architecture: Click on Choose Arch button and select corresponding architecture for the
entity.

After filling in the above information, click on OK to close the form.

Check the symbol with defaults. If there are no errors, save the symbol with default registration by choosing Save
Symbol from the File menu, then choose Default Registration.

Choose End Edit Symbol from the Edit menu to close the Symbol Editor session. In the schematic window,
select the symbol you have just edited and choose Object from the Report menu, then choose All from the Selected
menu. In the report transcript, make sure the MODEL property is set to qhpro to ensure that the model will work
with QuickHDL Pro.

Select the folder for your project, press button 3, and choose Open max2_qvpro to start QuickHDL Pro. You
can also start QuickHDL Pro by typing max2_qvpro at the UNIX prompt. In the QVHDL Pro System dialog
box, make sure EDDM Design is selected for Invoke on and the correct path name is specified for the design.
Choose OK to start the QuickHDL Pro. A QHPro (QuickSim II) window and a QHPro (QuickHDL) window
appear on the screen.

Use the QuickSim II window to simulate the top level schematic and the QuickHDL window to simulate the

Figure 1. MAX+PLUS II/Mentor Graphics Project Simulation/Timing
Analysis Flow

Alteraprovided items are shown in
blue.

VHDL portion of the design.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Instantiating LPM Functions in Design Architect Schematics
Performing a Functional Simulation with QuickHDL Software

Project Simulation/Timing Analysis Flow

The following figure shows the project simulation and timing analysis flow for the MAX+PLUS® II /Mentor
Graphics interface.

Performing a Timing Simulation with QuickHDL Software

After you have entered a VHDL or Verilog HDL design file and compiled it with the MAX+PLUS ® II Compiler,
you can use Mentor Graphics QuickHDL software to simulate the MAX+PLUS IIgenerated VHDL Output File
(.vhd) or Verilog Output File (.vo) and the Standard Delay Format (SDF) Output File (.sdo).

To simulate your VHDL or Verilog HDL design, go through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor

Graphics/Exemplar Logic Working Environment.

2. Generate a VHDL or Verilog HDL output file and an SDF output file for your project, as described in
Compiling Projects with MAX+PLUS II Software.

3. Change to your project's directory.

4. Copy your quickhdl.ini file to the same directory as your VHDL or Verilog HDL file.

5. Type the following sets of commands at the UNIX prompt to create the work library and compile your
project's VHDL or Verilog HDL output file:

VHDL: Verilog HDL:
setenv MGC_WD 'pwd'
qhlib work
qvhcom <project name>.vho

setenv MGC_WD 'pwd'
qhlib work
qvlcom <project name>.vo

6.

Type qhsim -sdftyp <project name>.sdo at the UNIX prompt to perform timing back-annotation and
simulation and to display the QuickHDL simulation window.

If your Verilog HDL design uses memory functions (RAM or ROM) that can be initialized with a hexadecimal file
(Intel-format) initialization, you must convert these files into Verilog HDL format using the Programming
Language Interface (PLI). To use the Altera-provided source code for PLI, perform the following steps:

1. Download the file http://www.edif.org/lpmweb/convert_hex2ver.c to your project directory.

2. Copy the following two files from the $MGC_HOME/shared/pkgs/quickhdl/include directory into the
/usr/maxplus2 directory:

$MGC_HOME/shared/pkgs/quickhdl/include/veriuser
$MGC_HOME/shared/pkgs/quickhdl/include/acc_user

Refer to the Mentor Graphics QuickHDL User's Reference Manual, version 8.5-4.6i, for information on
compiling the PLI application on different platforms and using the Verilog HDL PLI.

Related Topics:

Go to Performing a Functional Simulation with QuickHDL Software in these MAX+PLUS II ACCESSSM

Key topics for related information.

Creating VHDL & Verilog HDL Designs for Use with MAX+PLUS II Software

You can create VHDL and Verilog HDL design files with the MAX+PLUS ® II Text Editor or another standard
text editor and save them in the appropriate directory for your project.

The MAX+PLUS II Text Editor offers the following advantages:

Templates are available with the VHDL Templates and Verilog Templates commands (Template menu).
These templates are also available in the ASCII vhdl.tmp and verilog.tmp files, respectively, which are
located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can turn on the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements of text in text

files in different colors to distinguish them from other forms of syntax.

To create a VHDL or Verilog HDL design file for use with the MAX+PLUS II software, go through the following
steps:

1. Enter a VHDL or Verilog HDL design in the MAX+PLUS II Text Editor or another standard text editor and
save it in your working directory.

2. Enter primitives, macrofunctions, and megafunctions in your VHDL or Verilog HDL design from the Altera
library.

The following topics describe special steps needed to instantiate LPM and clklock functions:

Instantiating LPM Functions in VHDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3.

(Optional) Use the QuickHDL software to functionally simulate the design file, as described in Performing a
Functional Simulation with QuickHDL Software and Performing a Functional Simulation with QuickHDL
Pro Software.

4. Once you have created a VHDL or Verilog HDL design, you can generate an EDIF netlist file that can be
imported into the MAX+PLUS II software with either of the following methods:

You can synthesize and optimize your design and create an EDIF netlist file, as described in
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Galileo Extreme Software or
Synthesizing & Optimizing VHDL & Verilog HDL Projects with Leonardo Software.

You can use the Altera VHDL Express utility, vhd_exprss, to automatically create an EDIF netlist file,
compile it with the MAX+PLUS II Compiler, generate an EDIF Output File (.edo), and prepare the
EDIF Output File for simulation with QuickHDL software, as described in Using the Altera Schematic
Express (vhd_exprss) Utility.

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample VHDL design files:

/usr/maxplus2/examples/mentor/example5/count4.vhd
/usr/maxplus2/examples/mentor/example6/count8.vhd
/usr/maxplus2/examples/mentor/example8/adder16.vhd

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the

extension .edf).

Related Topics:

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the
Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from
within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options

under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters

MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Timing Simulation with
QuickHDL Software

Performing a Timing Simulation with QuickHDL
Software

After you have entered a VHDL or Verilog HDL design file and compiled it with the MAX+PLUS ® II Compiler,
you can use Mentor Graphics QuickHDL software to simulate the MAX+PLUS IIgenerated VHDL Output File
(.vhd) or Verilog Output File (.vo) and the Standard Delay Format (SDF) Output File (.sdo).

To simulate your VHDL or Verilog HDL design, go through the following steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Generate a VHDL or Verilog HDL output file and an SDF output file for your project, as described in
Compiling Projects with MAX+PLUS II Software.

3. Change to your project's directory.

4. Copy your quickhdl.ini file to the same directory as your VHDL or Verilog HDL file.

5. Type the following sets of commands at the UNIX prompt to create the work library and compile your
project's VHDL or Verilog HDL output file:

VHDL: Verilog HDL:
setenv MGC_WD 'pwd'
qhlib work
qvhcom <project name>.vho

setenv MGC_WD 'pwd'
qhlib work
qvlcom <project name>.vo

6. Type qhsim -sdftyp <project name>.sdo at the UNIX prompt to perform timing back-annotation and
simulation and to display the QuickHDL simulation window.

If your Verilog HDL design uses memory functions (RAM or ROM) that can be initialized with a hexadecimal file
(Intel-format) initialization, you must convert these files into Verilog HDL format using the Programming
Language Interface (PLI). To use the Altera-provided source code for PLI, perform the following steps:

1. Download the file http://www.edif.org/lpmweb/convert_hex2ver.c to your project directory.

2. Copy the following two files from the $MGC_HOME/shared/pkgs/quickhdl/include directory into the
/usr/maxplus2 directory:

$MGC_HOME/shared/pkgs/quickhdl/include/veriuser
$MGC_HOME/shared/pkgs/quickhdl/include/acc_user

Refer to the Mentor Graphics QuickHDL User's Reference Manual, version 8.5-4.6i, for information on
compiling the PLI application on different platforms and using the Verilog HDL PLI.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
http://www.edif.org/lpmweb/convert_hex2ver.c
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

Related Links:

Go to Performing a Functional Simulation with QuickHDL Software in these MAX+PLUS II ACCESSSM

Key topics for related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-functnal.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Timing Simulation with
DVE & QuickSim II Software

Performing a Timing Simulation with DVE & QuickSim
II Software

After you have compiled a design with the MAX+PLUS® II Compiler, you can prepare the MAX+PLUS
IIgenerated EDIF Output File (.edo) with Mentor Graphics Design Viewpoint Editor (DVE) and simulate it with
the Mentor Graphics QuickSim II software.

To simulate an EDIF Output File with the QuickSim II software, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Generate an EDIF Output File for your project, as described in Compiling Projects with MAX+PLUS II
Software or Using the Altera Schematic Express (sch_exprss) Utility.

3. If you used the Altera Schematic Express (sch_exprss) utility to process your design, skip to step 5.
Otherwise, go to step 4.

4. In the Navigator window, select your project's icon, press Button 3, and choose Open max2_enr to read your
project's EDIF Output File with the ENRead utility. You can also start ENRead software by typing max2_enr

 at the UNIX prompt.

5. Select your project's folder, press Button 3, and choose Open max2_ave to open DVE, which will prepare
your project's simulation component for QuickSim II timing simulation. DVE automatically generates an
appropriately named viewpoint for your project. You can also start DVE by typing max2_ave at the UNIX
prompt.

6. Select your project's folder, press Button 3, and choose Open max2_qsim to simulate your project and its
DVE viewpoint with QuickSim II software. You can also start QuickSim II by typing max2_qsim at the
UNIX prompt.

7. In the Altera QuickSim dialog box, type the name of your project's viewpoint in the Viewpoint Name box.
Select Timing as the Timing Mode. Select the Max timing option. Choose Scale Factor for Delay Scale, and
be sure that 0.1 is specified for the Value. Choose OK.

If the delay scale value is not set to 0.1 (i.e., divided by ten), the QuickSim II software will not reflect
the correct timing simulation values.

Related Topics:

Performing a Timing Analysis with QuickPath Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Timing Analysis with
QuickPath Software

Performing a Timing Analysis with QuickPath Software
After you have compiled your project with the MAX+PLUS ® II Compiler and generated an EDIF Output File
(.edo), you can use Mentor Graphics QuickPath software to perform a timing analysis of your project.

To perform a timing analysis with QuickPath software, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Generate an EDIF Output File for your project using one of the following methods:

Compiling Projects with MAX+PLUS II Software
Using the Altera Schematic Express (sch_exprss) Utility
Using the Altera VHDL Express (vhd_exprss) Utility

3. Select your project's folder from the ALTERA directory, press Button 3, and choose Open max2_qpath to
start the QuickPath software. You can also start the QuickPath software by typing max2_qpath at the
UNIX prompt.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhd_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhd_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhd_exprs.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating RAM & ROM Functions
in Viewlogic Powerview Designs

Instantiating RAM & ROM Functions in Viewlogic
Powerview Designs

Refer to Viewlogic documentation for information on simulating projects that contain RAM functions. The
procedure for reading an EDIF Output File and preparing it for simulation with ViewSim requires additional
steps when the project contains RAM functions.

The MIF format is supported only for specifying initial memory content when compiling designs within the
MAX+PLUS II software. You cannot use a MIF to perform simulation with Viewlogic tools prior to
MAX+PLUS II compilation.

The MAX+PLUS®II /Viewlogic Powerview interface offers full support for the memory capabilities of the FLEX®

10K device family, including synchronous and asynchronous RAM and ROM, cycle-shared dual-port RAM, dual-
port RAM, single-Clock FIFO, and dual-Clock FIFO functions. You can use the Altera-provided genmem utility to
generate functional simulation models and timing models for these functions. Type genmem at the UNIX prompt
to display information on how to use this utility, as well as a list of the functions you can generate. RAM and ROM
can be instantiated in both ViewDraw schematics and VHDL designs.

When you instantiate a RAM or ROM function, follow these general guidelines:

For ROM functions, you must specify an initial memory content file in the Intel hexadecimal format (.hex) or
the Altera® Memory Initialization File (.mif) format. The filename must be the same as the instance name;
e.g., the instance name must be unique throughout the whole project, and must contain only valid name
characters. The initialization file must reside in the directory containing the project's design files.

For RAM functions, specifying a memory initialization file is optional.

For VHDL designs, specify the name of the initial memory content file in the Generic Map Clause of the
instance, with the specified type LPM_FILE. If you do not use an initial memory content file (e.g., for a RAM
function), you should not declare or use the Generic Clause.

Do not synthesize the genmem-generated VHDL file: it is intended for simulation only.

To instantiate RAM or ROM in a ViewDraw schematic, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX prompt:

genmem <memory type> <memory size> -vwlogic

For example: genmem asynrom 256x15 -vwlogic

2. Start the VHDL-to-symbol utility, vhdl2sym, by double-clicking Button 1 on the max2_vhdl2sym icon in
the Altera® Toolbox Design Tools Drawer.

3. Specify the following options in the vhdl2sym dialog box and choose OK to create a symbol. For example,
to create the symbol for a 256x15 asynchronous ROM, enter the following settings:

Option: Setting:
VHDL Source Filename asyn_rom_256x15.vhd

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Figure 1 shows a VHDL design that instantiates asyn_rom_256x15.vhd, a
256 x 15 ROM function.

Figure 1. VHDL Design File with ROM Instantiation (tstrom.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tstrom IS
 PORT (
 addr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 memenab : IN STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR (14 DOWNTO 0));
END tstrom;

ARCHITECTURE behavior OF tstrom IS

COMPONENT asyn_rom_256x15
 GENERIC (LPM_FILE : string);

PORT (Address : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 MemEnab : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(14 DOWNTO 0)
);
END COMPONENT;

BEGIN

 u1: asyn_rom_256x15
 GENERIC MAP (LPM_FILE => "u1.hex")
 PORT MAP (Address => addr, MemEnab => memenab, Q =>q);
END behavior;

Intel does not warrant that this solution will work for the customer's intended purpose and disclaims all liability for use of or reliance on the
solution.

Add LEVEL attribute On

4. Choose Comp (Add menu), type <design name> in the Enter Name box, and choose OK.

To instantiate a RAM or ROM function in VHDL, follow these steps:

1. Repeat step 1 above.

2. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name> function.

Support

Intel Community Forums provides a place to ask and answer questions about Intel products.

https://community.intel.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence RapidSIM &
MAX+PLUS II Software

Using Cadence RapidSIM & MAX+PLUS II Software

The information presented here assumes that you are using the C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment

The following topics describe how to use the Cadence RapidSIM software with MAX+PLUS® II software. Click
on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
MAX+PLUS II Directory Structure
MAX+PLUS II/Cadence Interface File Organization
Concept & RapidSIM Local Work Area Directory Structure

Simulation

Project Simulation Flow
Performing a Timing Simulation with RapidSIM Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Setting Up the MAX+PLUS II/Cadence Working Environment

To use MAX+PLUS® II software with Cadence software, you must first install the MAX+PLUS II software, then
establish an environment that facilitates entering and processing designs. The MAX+PLUS II/Cadence interface is
installed automatically when you install the MAX+PLUS II software on your computer. Go to MAX+PLUS II
Installation in the MAX+PLUS II Getting Started manual for more information on installation and details on the
directories that are created during MAX+PLUS II installation. Go to MAX+PLUS II/Cadence Interface File
Organization for information about the MAX+PLUS II/Cadence directories that are created during MAX+PLUS II
installation.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

variables for your shell.

To set up your working environment for the MAX+PLUS II/Cadence interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Cadence software versions described in the
MAX+PLUS II/Cadence Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2

setenv CDS_INST_DIR <Cadence system directory path>

3. Add the $ALT_HOME/cadence/bin and $CDS_INST_DIR/tools/bin directories to the PATH environment
variable in your .cshrc file. Make sure these paths are placed before the Cadence hierarchy path.

4. Add /usr/dt/lib and /usr/ucb/lib to the LD_LIBRARY_PATH environment variable in your .cshrc file.

5. Create a new cds.lib file in your working directory or edit an existing one so that it includes all of the
following lines that apply to the Cadence tools you have installed:

DEFINE alt_syn ${ALT_HOME}/simlib/concept/alt_syn

DEFINE lpm_syn ${ALT_HOME}/simlib/concept/lpm_syn

DEFINE alt_lpm ${ALT_HOME}/simlib/concept/alt_lpm

DEFINE alt_mf ${ALT_HOME}/simlib/concept/alt_mf

DEFINE alt_max2 ${ALT_HOME}/simlib/concept/alt_max2

DEFINE alt_max2 ${ALT_HOME}/simlib/composer/alt_max2/alt_max2

DEFINE alt_vtl $ALT_HOME/simlib/concept/alt_vtl/lib

DEFINE altera $ALT_HOME/simlib/concept/alt_mf/lib

SOFTINCLUDE $CDS_INST_DIR/tools/leapfrog/files/cds.lib

DEFINE <design name>.

6. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

Table 1. MAX+PLUS II Directory Organization

Directory Description

./lmf
Contains the Altera-provided Library Mapping File, cadence.lmf, that
maps Cadence logic functions to equivalent MAX+PLUS II logic

7. If you are using Concept on a Sun SPARCstation running SunOS, go to Setting Up the MAX+PLUS
II/Cadence Concept Work Environment for a Sun SPARCstation Running SunOS Software to install the
redifnet EDIF netlist reader utility.

8. If you are using Synergy software, edit the hdl.var file located in your working directory to include the
following line:

DEFINE work <design name>

9. Set up an appropriate directory structure for the tool(s) you are using. See the following topics for
information:

Composer Project File Directory Structure
Concept & RapidSIM Local Work Area Directory Structure

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II Directory Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL Text Design File (TDF);
or any other MAX+PLUS II-supported design file. The EDIF netlist file must be created by the altout or
concept2alt utility and imported into the MAX+PLUS II software as an EDIF Input File (.edf).

Project design files and output files are stored in the project directory, with the exception of standard library
functions provided by Altera or another EDA tool vendor. The MAX+PLUS II software stores the connectivity data
on the links between design files in a hierarchical project in a Hierarchy Interconnect File (.hif), but refers to the
entire project only by its project name. The MAX+PLUS II Compiler uses the HIF to build a single, fully flattened
project database that integrates all design files in a project hierarchy.

MAX+PLUS II/Cadence Interface File Organization

Table 1 shows the MAX+PLUS® II/Cadence interface subdirectories that are created in the MAX+PLUS II system
directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation. For information on the other
directories that are created during MAX+PLUS II installation, see "MAX+PLUS II File Organization" in
MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

functions.

./examples/cadence
Contains the sample files for Cadence software discussed in these
ACCESSSM Key Guidelines.

./cadence Contains the AMPLE userware for the MAX+PLUS II/Cadence interface.

./simlib/concept/alt_max2

Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for
FLEX® 6000 devices only) for use with Concept software.

./simlib/composer/alt_max2
Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for FLEX
6000 devices only) for use with Composer software.

./simlib/concept/alt_lpm Contains the MAX+PLUS II megafunctions, including library of
parameterized modules (LPM) functions, for use with Concept software.

./simlib/concept/max2sim Contains the MAX+PLUS II/Concept simulation model library, max2_sim,
for use with RapidSIM software.

./simlib/concept/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Concept software, and the vlog2alt utility.

./simlib/composer/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Composer software.

./simlib/concept/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Concept software.

./simlib/composer/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Composer software.

./simlib/concept/alt_mf Contains the MAX+PLUS II VHDL logic function library. (a_8count is for
the MAX® 7000 and MAX 9000 device families only.)

./simlib/concept/edifnet/templates Contains template files for Concept directives, i.e., global.cmd,
compiler.cmd, vloglink.cmd, verilog.cmd, and master.local.

./simlib/concept/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Concept software.

./simlib/composer/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Composer software.

./simlib/concept/alt_vtl

./simlib/composer/alt_vtl
Contains VITAL library source files for use with Concept or Composer
software.

./simlib/composer/alt_max2/verilog Contains simulation modules for all symbols in the alt_max2 Composer
library.

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

FLEX Devices
MAX Devices
Classic Device Family

Directory: Description:

./source Create Concept schematics and generate EDIF netlist files with the wedifnet utility in the source
directory.

./max2 Copy the EDIF Input File (.edf) from the source directory to this directory to compile the file with the
MAX+PLUS® II software.

./dest Copy the EDIF Output File (.edo) from the max2 directory to this directory to run the redifnet and
RapidSIM software.

Concept & RapidSIM Local Work Area Directory Structure

When the redifnet utility imports an EDIF netlist file for the RapidSIM software, it creates a SCALD directory for
your project. However, creating this directory may overwrite the directory that was created for the original Concept
schematic. To prevent overwriting this directory, you should create a file structure that helps you manage your
design files.

Altera recommends that you create the following three directories for your design files.

Copies of the appropriate directives files for Cadence tools must be present in both the source and dest directories.
Figure 1 shows Altera's recommended file structure.

Figure 1. Recommended File Structure

Figure 1. MAX+PLUS II/Cadence Project Simulation Flow

Altera-provided items are shown in blue.

Project Simulation Flow

Figure 1 shows the project simulation flow for the MAX+PLUS® II/Cadence interface.

Performing a Timing Simulation with RapidSIM Software

You can use the Cadence redifnet utility to read MAX+PLUS® II-generated EDIF Output Files and prepare them
for timing simulation with RapidSIM software. RapidSIM software can simulate both the functionality and the
timing of your design. It also checks setup time requirements, hold time requirements, and Clock duty cycle timing
requirements on registers.

To simulate projects with RapidSIM software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Generate an EDIF Output File (.edo), as described in Compiling Projects with MAX+PLUS II Software.

3. Copy the EDIF Output File <file name>.edo from the /<working directory>/max2 directory to the /<working
directory>/dest directory.

4. Convert the EDIF Output File into the SCALD project format by typing redifnet <design name> at the
UNIX prompt from the /<working directory>/dest directory.

5. Type lwb_rapidsim at the UNIX prompt to generate the global.cmd directive file.

6. Choose the RapidSIM button from the Logic Workbench window to start RapidSIM and simulate your
EDIF Output File.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly with
the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the Synopsys
Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within the
MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that

vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

Last updated on December 6, 1999 for the MAX+PLUS II software version 9.4.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Timing Simulation with
RapidSIM Software

Performing a Timing Simulation with RapidSIM
Software

You can use the Cadence redifnet utility to read MAX+PLUS® II-generated EDIF Output Files and prepare them
for timing simulation with RapidSIM software. RapidSIM software can simulate both the functionality and the
timing of your design. It also checks setup time requirements, hold time requirements, and Clock duty cycle timing
requirements on registers.

To simulate projects with RapidSIM software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Generate an EDIF Output File (.edo), as described in Compiling Projects with MAX+PLUS II Software.

3. Copy the EDIF Output File <file name>.edo from the /<working directory>/max2 directory to the /<working
directory>/dest directory.

4. Convert the EDIF Output File into the SCALD project format by typing redifnet <design name> at the
UNIX prompt from the /<working directory>/dest directory.

5. Type lwb_rapidsim at the UNIX prompt to generate the global.cmd directive file.

6. Choose the RapidSIM button from the Logic Workbench window to start RapidSIM and simulate your
EDIF Output File.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence RapidSIM &
MAX+PLUS II Software

Using Cadence RapidSIM & MAX+PLUS II Software

The following topics describe how to use the Cadence RapidSIM software with MAX+PLUS® II software. Choose
one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
MAX+PLUS II Directory Structure
MAX+PLUS II/Cadence Interface File Organization
Concept & RapidSIM Local Work Area Directory Structure

Simulation

Project Simulation Flow
Performing a Timing Simulation with RapidSIM Software

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-rapidall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2dir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conrapd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fig17.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-rapidsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.cadence.com/
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Entering Resource Assignments

Entering Resource Assignments
The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In the MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project.

In designs targeted for the Synopsys Design Compiler and FPGA Compiler software, you can assign a limited
subset of these resource assignments by setting attributes in the VHDL or Verilog HDL design files with the
set_attribute command. These attributes are incorporated into the EDIF netlist file(s). The MAX+PLUS II
software automatically converts assignment information from the EDIF Input File (.edf) into the ACF format. For
information on making MAX+PLUS II-compatible resource assignments with the set_attribute command, go to
the following topics:

Assigning Pins, Logic Cells, & Chips
Assigning Cliques
Assigning Logic Options

You can also modify the ACF for a design to contain timing requirements and other assignments, as described in
the following topics:

Modifying the Assignment & Configuration File with the setacf utility
Converting Synopsys Timing Constraints into MAX+PLUS II-Compatible Format with the syn2acf Utility
Converting Synopsys Hierarchical Timing Constraints into MAX+PLUS II-Compatible Format with the
gen_iacf and gen_hacf Utilities

Related Topics:

Refer to the following sources for related information:
Synopsys documentation for additional information on how to assign properties
"Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned
in Synopsys
"resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on (Help
menu), for information on entering assignments in the MAX+PLUS II software with Assign menu
commands or in an ACF

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/plcassn.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/clique.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/logopt.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/acf.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/acf.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/acf.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/timcons.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/timcons.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/timcons.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/genacf.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/genacf.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/genacf.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/genacf.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources/design-software/max_plus-ii/genacf.html
https://mysupport.altera.com/eservice/

for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/Mentor Graphics
Software Requirements

MAX+PLUS II/Mentor Graphics Software
Requirements

Mentor Graphics Exemplar Altera
version C.1:
System_1076 Compiler
QuickSim II
Design Architect
ENRead
ENWrite
GEN_LIB library

QuickHDL
QuickHDL Pro
QuickPath
LS_LIB library (optional)
DVE

LeonardoSpectrum
version 2000.1b

MAX+PLUS II
version 10.0

The MAX+PLUS II read.me file provides up-to-date information on which versions of Mentor Graphics
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

The following products are used to generate, process, synthesize, and verify a project with the MAX+PLUS ® II
software and Mentor Graphics software:

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Entering Resource Assignments

Entering Resource Assignments
The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Concept & Composer Schematics

In both Concept and Composer schematics, you can assign a limited subset of these resource assignments by
assigning properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II
software automatically converts assignment information from the EDIF Input File into the ACF format. For
information on making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Go to the Cadence Concept Schematic User Guide and Composer Reference User Guide for details on how to
assign properties. Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party
Design Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Concept and Composer.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept and Composer schematic files, which include resource assignments:

/usr/maxplus2/examples/cadence/example6/fa2 (Concept)
/usr/maxplus2/examples/cadence/example7/fa2 (Composer)

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. For information on using the setacf utility, go to Modifying the Assignment &
Configuration File with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in
an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu).

Feedback

Did this information help you?

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1

After you compile a project, you can back-annotate pin assignments, as described in BackAnnotating
MAX+PLUS II Pin Assignments to Design Architect Symbols.

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

The MAX+PLUS ® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Design Architect Schematics

In Design Architect schematics, you can assign a limited subset of these resource assignments by assigning
properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II software
automatically converts assignment information from the EDIF Input File into the ACF format. For information on
making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example4/fa2,
which includes resource assignments.

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. Go to Modifying the Assignment & Configuration File with the setacf Utility for more
information.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Design Architect software. For information on entering assignments in MAX+PLUS II software with Assign
menu commands or in an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using
Search for Help on (Help menu).

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-annotate.html?csf=1&web=1
https://mysupport.altera.com/eservice/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

VHDL & Verilog HDL Design Files

When you use Synplicity Synplify software, you can assign a limited subset of these resource assignments by
specifying attributes in the Synplify Design Constraints File (.sdc) or in the VHDL or Verilog HDL design files.
The Synplify software automatically incorporates these attributes into the EDIF netlist file(s) generated from the
HDL design files. MAX+PLUS II then automatically converts assignment information from the EDIF Input File
into the ACF format. The following topics describe how to make MAX+PLUS II-compatible resource assignments
before design processing with the Synplify software:

Assigning Pins
Assigning the Implement in EAB Logic Option
Modifying the Assignment & Configuration File with the setacf Utility

Related Topics:

Refer to the following sources for more information:

Go to the Synplify User's Guide for details on how to assign properties.

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned
when you use the Synplify software.

Go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu) for information on entering assignments in the MAX+PLUS II software with Assign
menu commands or in an ACF.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using the Altera Schematic Express
(sch_exprss) Utility

Using the Altera Schematic Express (sch_exprss) Utility
Once you have created a Design Architect schematic, you can use the Altera Schematic Express utility
(sch_exprss) to generate a Design Viewpoint Editor (DVE) viewpoint and an EDIF netlist file from the schematic;
process the EDIF Input File (.edf) with the MAX+PLUS ® II software to generate an EDIF Output File (.edo);
process the EDIF Output File with ENRead and DVE software; and generate an altera_asim viewpoint for
simulation. The sch_exprss utility creates all necessary subdirectories and copies all of the files to the correct
locations.

To use the sch_exprss utility, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a Design Architect schematic that follows the guidelines described in Creating Design Architect
Schematics for Use with MAX+PLUS II Software.

3. Select your project's folder, press Button 3, and choose Open sch_exprss from the Mentor Graphics
Navigator window to start the Altera Schematic Express tool.

4. Specify settings for the Input Schematic, Altera Device Family, MAX+PLUS II Synthesis Style, Process
Direction, and Verbose options in the sch_exprss dialog box and choose OK to generate the altera_asim file
for simulation with QuickSim II software.

5. If necessary, correct any errors in the Design Architect schematic design file and recompile the project. The
sch_exprss utility generates the altera_asim viewpoint in the appropriate directory.

6. Simulate your project, as described in Performing a Timing Simulation with DVE & QuickSim II Software.

Related Links:

Go to Performing a Timing Analysis with QuickPath Software in these MAX+PLUS II ACCESSSM Key
topics for related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quicksim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quikpath.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Creating Design Architect Schematics
for Use with MAX+PLUSÂ II Software

Creating Design Architect Schematics for Use with
MAX+PLUSÂ II Software

You can create Design Architect schematics and convert them into EDIF Input Files (.edf) that can be processed
with the MAX+PLUS Â® Â II Compiler.

To create a Design Architect schematic for use with MAX+PLUSÂ II software, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUSÂ
II/Mentor Graphics/Exemplar Logic Working Environment.

2. Start the MAX+PLUSÂ II/Mentor Graphics interface by typing max2_dmgr at a UNIX prompt.
3. Start the Design Architect software by double-clicking Button 1 on the max2_da icon in the Design Manager

tools window. You can also start Design Architect software by typing max2_daÂ at the UNIX prompt.
4. Use the graphical user interface to structure and organize your files to create an environment that facilitates

entering and processing designs. Go to the following topics for more information:
Local Work Area Directory Structure
MAX+PLUSÂ II Project Directory Structure
Mentor Graphics Project Directory Structure

5. Choose the OPEN SHEET button in the Design Architect session_palette, then specify a name for your
project in the Component Name box. Choose OK.

6. Enter logic functions from the following AlteraÂ® Âprovided libraries:
ALTERA LPMLIB includes library of parameterized modules (LPM) functions
ALTERA GENLIB includes primitives and macrofunctions
LSTTL includes 74-series macrofunctions

You can instantiate MegaCore™ functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPPSM). The OpenCore™ feature in the MAX+PLUSÂ II
software allows you to instantiate, compile, and simulate MegaCore functions before deciding whether
to purchase a license for full device programming and post-compilation simulation support.

The following topics describe special steps needed to instantiate LPM and clklock functions:

Instantiating LPM Functions in Design Architect Schematics
Instantiating the clklock Megafunction in Design Architect Schematics

7. (Optional) To create a hierarchical design that contains symbols representing other design files, such as
AHDL or VHDL design files, go to Creating Hierarchical Projects with Design Architect Software.

8. If you wish to make resource assignments in a Design Architect schematic, go to Entering Resource
Assignments. You can also enter resource assignments from within the MAX+PLUSÂ II software.

9. Choose Check Sheet for Altera (Check menu) to save and check your design. If your design contains LPM
functions , the Design Architect software will ask whether you want to compile the LPM model. Choose
YES if you want to compile the VHDL code for the LPM functions. The software will automatically select
the corresponding compiler: System 1076 for B.(x) releases and QuickHDL compilers for releases C.1 and
later.

10. (Optional) If your schematic design includes models for VHDL or VerilogÂ HDL designs, perform a
functional simulation with the QuickHDLÂ Pro software, as described in Performing a Functional Simulation
with QuickHDL Pro Software. If it does not, you can perform a functional simulation with the QuickSim
software, as described in Performing a Functional Simulation with DVE & QuickSimÂ II Software.

11. Once you have created a schematic, you can generate an EDIF netlist file that can be imported into the
MAX+PLUSÂ II software with either of the following methods:

You can create an EDIF netlist file, as described in Converting Design Architect Schematics into

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dir_strc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1#LPMLIB
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1#GENLIB
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lpm_func.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clklock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-holowbdy.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdlpro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dveqksim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-enwrite.html?csf=1&web=1

MAX+PLUSÂ II-Compatible EDIF Netlist Files with the ENWrite Utility.
You can use the Altera Schematic Express utility, sch_exprss, to automatically create an EDIF netlist
file, compile it with the MAX+PLUSÂ II Compiler, generate an EDIF Output File (.edo), and prepare
the EDIF Output File for simulation with ENRead and Design Viewpoint Editor (DVE), as described
in Using the Altera Schematic Express (sch_exprss) Utility.

Even if your design is a hierarchical design incorporating files created with multiple design entry methods,
both the ENWrite and Altera Schematic Express utilities generate EDIF files for all files in the design.

Installing the AlteraÂprovided MAX+PLUSÂ II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the following sample Design Architect schematic files:

/usr/maxplus2/examples/mentor/example1/fulladd
/usr/maxplus2/examples/mentor/example3/fulladd2
/usr/maxplus2/examples/mentor/example7/fifo

Related Links:

Go to Compiling Projects with MAX+PLUSÂ II Software in these MAX+PLUSÂ II ACCESSSM Key topics
for related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-enwrite.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sch_exprs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Resynthesizing a Design Using the
alt_vtl Library & a MAX+PLUS II SDF Output File

Resynthesizing a Design Using the alt_vtl Library & a
MAX+PLUS II SDF Output File

Altera provides the alt_vtl.db post-synthesis library for technology mapping or resynthesis. You can use this
library with the MAX+PLUS® II -generated Standard Delay Format (SDF) Output File (.sdo) to retarget and
resynthesize your design for another device family by performing the following steps:

To retarget and resynthsize a design, follow these steps:

1. Generate an EDIF Output File (.edo) and an SDF Output File (.sdo), as described in Compiling Projects with
MAX+PLUS II Software.

2. Modify your .synopsys_dc.setup file to include the following lines:

search_path = {./usr/maxplus2/synopsys/library/alt_post/syn/lib
<target library path>};
target_library = {<target library path>};
symbol_library = {<target library symbol file>};
link_library = {alt_vtl.db};

3. In the Design Compiler or FPGA Compiler software, type the following commands to read in the EDIF and
SDF output files:

read -f edif <design name>.edo
read_timing -load_delay net <design name>.sdo

4. Type the following commands to compile your design, report the timing information, and create an EDIF
netlist file (.edf) that can be processed with the MAX+PLUS II Compiler.

compile
report_timing
write -f edif -hierarchy -o <design name>.edf

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-postsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Setting Up the MAX+PLUS
II/Synplicity Working Environment

Setting Up the MAX+PLUS II/Synplicity Working
Environment

To use MAX+PLUS® II software with Synplicity software, you must first install the MAX+PLUS II software, then
establish an environment that facilitates entering and processing designs. The MAX+PLUS II/Synplicity interface
is installed automatically when you install the MAX+PLUS II software on your computer. Ensure that you have
correctly installed the MAX+PLUS II and Synplicity software versions described in the MAX+PLUS II/Synplicity
Software Requirements.

You do not need to set any initialization or project variables before using Synplicity software with MAX+PLUS II
software. Synplicity software features Direct Synthesis Technology that performs technology mapping directly to
Altera® device logic cells by inserting architecture-specific primitives to implement features such as logic cells,
parallel expanders, carry chains, and cascade chains.

Related Links:

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories created during MAX+PLUS II installation.
Go to MAX+PLUS II/Synplicity Interface File Organization in these MAX+PLUS II ACCESSSM Key topics
for information about the MAX+PLUS II/Synplicity directories that are created during MAX+PLUS II
installation.
Go to the following topics for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-files.html?csf=1&web=1
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs1.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs2.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs3.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs4.pdf
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment

Setting Up the MAX+PLUS II/Viewlogic Powerview
Working Environment

The information presented here assumes that you are using a C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

To use the MAX+PLUS ® II software with Mentor Graphics/Exemplar Logic software, you must install the
MAX+PLUS II software, then establish an environment that facilitates entering and processing designs. The
MAX+PLUS II/Mentor Graphics/Exemplar Logic interface is installed automatically when you install the
MAX+PLUS II software on your computer.

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to MAX+PLUS
II/Mentor Graphics/Exemplar Logic Interface File Organization for information about the MAX+PLUS II/Mentor
Graphics directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Mentor Graphics interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Mentor Graphics software versions
described in MAX+PLUS II/Mentor Graphics Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2
setenv MGC_WD <user-specified working directory>
setenv MGC_HOME <Mentor Graphics system directory>
setenv MAX2_MENTOR /usr/maxplus2/mentor/max2
setenv MGC_LOCATION_MAP <user-specified location_map file>
setenv EXEMPLAR <Galileo or Leonardo system directory>

Installing the Altera® provided MAX+PLUS II/Mentor Graphics interface on your computer
automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/.cshrc file.

3. Add the $MGC_HOME/bin, $MAX2_MENTOR/bin, $ALT_HOME/bin, $EXEMPLAR/bin/<os>, and
$ALT_HOME/bin directories to the PATH environment variable in your .cshrc file, where <os> is the
operating system, e.g., SUN4 for SunOS; SUN5 for Solaris.

4. If you plan to use the Altera Schematic Express (sch_exprss) utility or the Altera VHDL Express
(vhd_exprss) utility, add the following environment variable to your .cshrc file:

setenv MAX2_QSIM /usr/maxplus2/simlib/mentor/max2sim

5. Type source ~/.cshrc at a UNIX prompt to source the .cshrc file and validate the settings in steps 1
through 4.

6. Add the following lines to your MGC_location_map file:

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-file_org.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-file_org.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-require.html?csf=1&web=1

$MAX2_MENTOR
/usr/maxplus2/mentor/max2
$MGC_GENLIB
/<user-specified Mentor Graphics GEN_LIB directory>
$MGC_LSLIB
/<user-specified Mentor Graphics LS_LIB directory>
$MAX2_EXAMPLES
/<user-specified example directory>
$MAX2_LMCLIB
/<user-specified Logic Modeling directory>
$MAX2_GENLIB
/usr/maxplus2/simlib/mentor/alt_max2
$MAX2_QSIM
/usr/maxplus2/simlib/mentor/max2sim
$MAX2_FONT
/usr/maxplus2/mentor/max2/fonts
$MGC_SYS1076_STD
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ std
$MGC_SYS1076_ARITHMETIC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/arithmetic
$MGC_SYS1076_PORTABLE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/mgc_portable
$MGC_SYS1076_IEEE
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ieee
$MGC_SYS1076_SRC
/<user-specified MGC_HOME directory>/pkgs/sys_1076_std/ src
$MAX2_MFLIB
/usr/maxplus2/simlib/mentor/alt_mf

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your
computer automatically installs a template for these environment variables in the
/usr/maxplus2/mentor/max2/location_map/location_map file.

7. If you want to use QuickHDL software to simulate VHDL or Verilog HDL designs, add the following line in
the [library] section of your quickhdl.ini file: altera = $MAX2_MFLIB.

8. If you plan to use QuickHDL software to simulate VITAL-compliant VHDL files, add the following lines to
your MGC_location_map file:

$MAX2_VTLLIB
/usr/maxplus2/simlib/mentor/alt_vtl

9. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME
chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control

The information presented here assumes that you are using C shell and that your MAX+PLUS II system directory
is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment variables for
your shell.

the MAX+PLUS II software, such as Alteraprovided logic and symbol library paths and the current
project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini file to
the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

Related Links:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

To use the MAX+PLUS® II software with Synopsys software, you must first install the MAX+PLUS II software,
then establish an environment that facilitates entering and processing designs by modifying your Synopsys
configuration files. The MAX+PLUS II/Synopsys interface is installed automatically when you install the
MAX+PLUS II software on your workstation. Go to MAX+PLUS II Installation in the MAX+PLUS II Getting
Started manual for more information on installation and details on the directories that are created during
MAX+PLUS II installation. Go to MAX+PLUS II/Synopsys Interface File Organization for information about the
MAX+PLUS II/Synopsys directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Synopsys interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Synopsys software versions described in the
MAX+PLUS II/Synopsys Software Requirements.

2. Add technology, synthetic, and link library settings to your .synopsys_dc.setup configuration file, as

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs1.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs2.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs3.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs4.pdf
https://mysupport.altera.com/eservice/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sftreq2.html?csf=1&web=1

described in Setting Up Design Compiler & FPGA Compiler Configuration Files.

To use the DesignWare interface with FLEX® 6000, FLEX 8000, and FLEX 10K devices, follow the
steps in Setting Up the DesignWare Interface.

3. Add simulation library settings to your .synopsys_vss.setup file, and analyze the libraries, as described in
Setting Up VSS Configuration Files.

4. Add the /usr/maxplus2/bin directory to the PATH environment variable in your .cshrc file in order to run the
MAX+PLUS II software.

$ALT_HOME/synopsys/bin

Related Links:

Go to the following topics for additional information:
FLEX Devices
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

To use the MAX+PLUS® II software with Viewlogic's Powerview software, you must install the MAX+PLUS II
software, familiarize yourself with the Altera® Toolbox in the Powerview Cockpit, and then establish an
environment that facilitates entering and processing designs. The MAX+PLUS II /Viewlogic Powerview interface
is installed automatically when you install the MAX+PLUS II software on your workstation.

To set up your working environment for the MAX+PLUS II/Viewlogic Powerview interface, follow these steps:

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsnwrstp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-prrtsim.html?csf=1&web=1
https://www.intel.com/www/us/en/programmable/products/mature-devices/mat-index.html
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs1.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs2.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs3.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs4.pdf
https://mysupport.altera.com/eservice/

1. Ensure that you have correctly installed the MAX+PLUS II and Viewlogic software versions described in
MAX+PLUS II/Viewlogic Powerview Software Requirements.

2. Add the following environment variable to your .cshrc file to specify /usr/maxplus2 as the MAX+PLUS II
system directory:

setenv ALT_HOME /usr/maxplus2

3. Add the $ALT_HOME/viewlogic/standard, $ALT_HOME/bin, and $ALT_HOME/viewlogic/bin
directories to the PATH environment variable in your .cshrc file.

4. Add the $ALT_HOME/viewlogic/standard directory to the WDIR environment variable in your .cshrc file
using the following syntax:

setenv WDIR $ALT_HOME/viewlogic/standard:/<Powerview system directory>/standard

Make sure the $ALT_HOME/viewlogic/standard directory is the first directory in your WDIR path.

5. Source your .cshrc file by typing source .cshrc at the UNIX prompt.

6. Create the Viewlogic Powerview viewdraw.ini configuration file.

7. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

8. If you plan to instantiate Library of Parameterized Modules (LPM) functions in ViewDraw schematics, you
must create a new file with the name vdraw.vs. The vdraw.vs file must include the following line:

load ("vdpath")

You must also make sure that you specify the vdraw.vs file in your WDIR path.

9. Set up a directory structure that facilitates working with the MAX+PLUS II/Viewlogic Powerview interface.
Refer to MAX+PLUS II/Viewlogic Powerview Project File Structure.

Related Links:

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to
MAX+PLUS II/Viewlogic Powerview Interface File Organization for information about the MAX+PLUS
II/Viewlogic Powerview directories that are created during MAX+PLUS II installation.
Go to the following topics for additional information:

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-projstrc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs1.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs2.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs3.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs4.pdf
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/Synopsys Software
Requirements

MAX+PLUS II/Synopsys Software Requirements

Synopsys Altera
Version 1998.02:
Design Compiler
FPGA Compiler
Design Analyzer (optional)
VHDL Compiler

HDL Compiler for Verilog
VHDL System Simulator (VSS) (optional)
PrimeTime version 1998.02-PT2.1(optional)

MAX+PLUS II
Version 10.0

The MAX+PLUS II read.me file provides up-to-date information on which versions of Synopsys applications are
supported by the current version of MAX+PLUS II. It also provides information on installation and operating
requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS II software.
After installation, you can open the read.me file from the MAX+PLUS II Help menu.

The following applications are used to generate, process, synthesize, and verify a project with MAX+PLUS® II and
Synopsys software:

Compilation with the Synopsys Design Compiler and FPGA Compiler is available only on Sun SPARCstations
running Solaris 2.4 or higher.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Project Simulation/Timing Analysis
Flow

Project Simulation/Timing Analysis Flow

Figure 1. MAX+PLUS II/Mentor Graphics Project Simulation/Timing
Analysis Flow

Alteraprovided items are shown in
blue.

The following figure shows the project simulation and timing analysis flow for the MAX+PLUS® II /Mentor
Graphics interface.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Project Simulation Flow

Project Simulation Flow

Figure 1. MAX+PLUS II/Synopsys Project Simulation Flow

Altera-provided items are shown in blue.

Figure 1 shows the project simulation flow for the MAX+PLUS® II /Synopsys interface.

The MAX+PLUS II/Synopsys design environment fully supports design verification with the Synopsys VHDL
System Simulator (VSS). For pre-route simulation, you can simulate a design that has been compiled with one of
the Synopsys compilers. For post-route simulation, you can simulate the VHDL Output File (.vho) that
MAX+PLUS II® software generates during project compilation.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II

MAX+PLUS II Software Support
MAX+PLUS® II software is intended only to support legacy designs. MAX+PLUS II software
does not support MAX® II CPLDs, Cyclone®, Arria®, or Stratix® series FPGAs, or any newer
devices.

Quartus® II software is Altera’s primary development software and supports Altera’s newest
device families and most older device families. Download the free Quartus II Web Edition

software today.

For MAX+PLUS II legacy software support, refer to the resources below.

Download

MAX+PLUS II Software Updates
MAX+PLUS II BASELINE Software
MAX+PLUS II Advanced Synthesis Software

Installation and Licensing

MAX+PLUS II BASELINE Installation Instructions
Altera® Software Licensing (Request a license)
MAX+PLUS II Software Licensing

MAX+PLUS II General Information

Make the Move from MAX+PLUS II to Quartus II Software
MAX+PLUS II Development Software Literature (Complete listing)
MAX+PLUS II Getting Started version 8.1 (PDF)
MAX+PLUS II Advanced Synthesis (PDF)
MAX+PLUS II Support Solutions
ACCESS Key Guidelines for EDA tool support

Related Links

MAX+PLUS II Users - Make the Move
Quartus II Development Software Literature

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
http://fpgasoftware.intel.com/
http://fpgasoftware.intel.com/
https://www.intel.com/www/us/en/programmable/support/support-resources/download/legacy/maxplus2/upd-maxplus2_index.html
https://www.intel.com/www/us/en/programmable/support/support-resources/download/legacy/maxplus2/dnl-baseline.html
https://www.intel.com/www/us/en/programmable/support/support-resources/download/legacy/maxplus2/dnl-mp2_adv_syn.html
https://www.intel.com/www/us/en/programmable/support/support-resources/download/legacy/maxplus2/ins-baseline.html
https://www.intel.com/www/us/en/programmable/f/download/licensing/lic-max2baseline.html
https://www.intel.com/www/us/en/programmable/f/download/licensing/lic-max2baseline.html
https://www.intel.com/www/us/en/programmable/f/download/licensing/lic-max2baseline.html
https://www.intel.com/www/us/en/programmable/support/support-resources/download/licensing/setup/lic-maxplus2.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/literature/lit-mp2.html
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/manual/_81_gs.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/ug/ug_mp2as.pdf
https://www.intel.com/dam/altera-www/global/en_US/pdfs/literature/ug/ug_mp2as.pdf
https://www.intel.com/www/us/en/programmable/support/support-resources/knowledge-base.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-start.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/support.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/Viewlogic Powerview
Software Requirements

MAX+PLUS II/Viewlogic Powerview Software
Requirements

Cadence Altera
Version 97A:
Concept
Composer
ValidCOMPILER
concept2alt
vlog2alt
altout

VerilogLink
Synergy
HDL Direct (Concept 2.0 or later)
Non-Graphic Simulation Environment (SE)
RapidSIM, Verilog-XL, or Leapfrog
redifnet (SunOS only)

MAX+PLUS II
Version 10.0

The MAX+PLUS II read.me file provides up-to-date information on which versions of Cadence software
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

Viewlogic Altera

ViewDraw ViewGen MAX+PLUS II
version 9.3

VHDL Analyzer ViewPath (optional)
Vantage VHDL Analyzer ViewTrace
VHDL -> sym ViewData Path
edifneto MOTIVE version 5.1.6 Note (1)

edifneti MOTIVE for Powerview version 3.2.1 (optional) Note
(1)

EEDIF (optional) SDF2MTV (optional)
MMP (optional) Fusion/VCS
vsm

The following table shows the software applications that are used to generate, process, synthesize, and verify a
project with MAX+PLUS® II and Cadence software:

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

The following applications and utilities are used to generate, process, synthesize, and verify a project with
MAX+PLUS® II and Viewlogic Powerview software.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

Note:

(1)
MOTIVE for Powerview, a wrapper application for MOTIVE, provides a graphical user interface for the utilities
(i.e., EEDIF, SDF2MTV, and MMP) used during a static timing verification with MOTIVE. MOTIVE alone
does not accept EDIF files through the Setup Advisor.

The MAX+PLUS II read.me file provides up-to-date information on which versions of Viewlogic Powerview
applications the current version of the MAX+PLUS II software supports. It also provides information on
installation and operating requirements. You should read the read.me file on the CD-ROM before installing the
MAX+PLUS II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Setting Up the MAX+PLUS
II/Cadence Concept Work Environment for a Sun SPARCstation Running SunOS Software

Setting Up the MAX+PLUS II/Cadence Concept Work
Environment for a Sun SPARCstation Running SunOS
Software

If you are using Concept software on a Sun SPARCstation running SunOS software, you should also install the
redifnet EDIF netlist reader utility to convert Concept schematics into MAX+PLUS II-compatible EDIF netlist
files. To install the redifnet utility, follow these steps:

1. Copy the redifnet directory from the /usr/maxplus2/simlib/concept/edifnet directory to the Cadence system
directory.

2. Copy the redifnet and pinmap_start files from the /usr/maxplus2/simlib/concept/edifnet/bin directory to
the /<Cadence system directory path>/tools/bin.

3. Specify the -/usr/maxplus2/simlib/concept/edifnet/max2sim map file as a PIN_MAP_FILE in the
redifnet.cmd file.

4. (Optional) Modify existing templates for directive files such as compiler.cmd, vloglink.cmd, and
global.cmd. These templates are located in the /usr/maxplus2/simlib/concept/edifnet/templates directory.

5. (Optional) Modify the expansion.dat and max2sim.map files in the /usr/maxplus2/simlib/concept/edifnet
directory.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Synplicity Synplify &
MAX+PLUS II Software

Using Synplicity Synplify & MAX+PLUS II Software

The following topics describe how to use the Synplicity Synplify software with MAX+PLUS® II
software. Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Synplicity Working Environment

Software Requirements
MAX+PLUS II Directory Structure
MAX+PLUS II/Synplicity Interface File Organization
Synplicity-Provided Logic Libraries

Design Flow

Design Entry

Design Entry Flow

VHDL

Creating VHDL Designs for Use with MAX+PLUS II Software
Entering Resource Assignments

Assigning Pins
Assigning the Implement in EAB Logic Option
Modifying the Assignment & Configuration File with the setacf Utility

Verilog HDL

Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Entering Resource Assignments

Assigning Pins
Assigning the Implement in EAB Logic Option
Modifying the Assignment & Configuration File with the setacf Utility

Synthesis & Optimization

Synthesizing & Optimizing VHDL or Verilog HDL Files with Synplify Software
Analyzing VHDL or Verilog HDL Designs with the Synplify HDL Analyst

Compilation

Project Compilation Flow

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Table 1 shows the software applications that are used to generate, process,
synthesize, and verify a project with MAX+PLUS® II and Synplicity
software:

Table 1. Software Requirements

Compiling Projects with MAX+PLUS II Software
Synplicity Synplify-Specific Compiler Settings

Device Programming

Programming Altera Devices

Related Topics:

Go to the following topics for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Synplicity web site (http://www.synplicity.com)

Setting Up the MAX+PLUS II/Synplicity Working Environment

To use MAX+PLUS® II software with Synplicity software, you must first install the MAX+PLUS II software, then
establish an environment that facilitates entering and processing designs. The MAX+PLUS II/Synplicity interface
is installed automatically when you install the MAX+PLUS II software on your computer. Ensure that you have
correctly installed the MAX+PLUS II and Synplicity software versions described in the MAX+PLUS II/Synplicity
Software Requirements.

You do not need to set any initialization or project variables before using Synplicity software with MAX+PLUS II
software. Synplicity software features Direct Synthesis Technology that performs technology mapping directly to
Altera® device logic cells by inserting architecture-specific primitives to implement features such as logic cells,
parallel expanders, carry chains, and cascade chains.

Related Topics:

Refer to the following sources for more information:
Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information
on installation and details on the directories created during MAX+PLUS II installation.
Go to MAX+PLUS II/Synplicity Interface File Organization in these MAX+PLUS II ACCESSSM Key
topics for information about the MAX+PLUS II/Synplicity directories that are created during
MAX+PLUS II installation.

Go to the following topics for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Synplicity Software Requirements

Synplicity Altera
version 3.0C1:
Synplify
HDL Analyst

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Synplicity software
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

Table 1. MAX+PLUS II Directory Organization

Directory Description

./lmf Contains the Altera-provided Library Mapping File, synplcty.lmf, which maps Synplicity logic functions to
equivalent MAX+PLUS II logic functions.

MAX+PLUS II Directory Structure (Synplicity Environment)

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL Text Design File (TDF);
or any other MAX+PLUS II-supported design file. You can use a standard EDA tool to create an EDIF netlist file
and import it into MAX+PLUS II software as an EDIF Input File (.edf).

Project design files and output files are stored in the project directory, with the exception of standard library
functions provided by Altera or another EDA tool vendor. The MAX+PLUS II software stores the connectivity data
on the links between design files in a hierarchical project in a Hierarchy Interconnect File (.hif) in the project
directory, but refers to the entire project only by its project name. The MAX+PLUS II Compiler uses the HIF to
build a single, fully flattened project database that integrates all the design files in a project hierarchy.

MAX+PLUS II/Synplicity Interface File Organization

Table 1 shows the MAX+PLUS® II/Synplicity interface subdirectories that are created in the MAX+PLUS II
system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation. For information on
the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II File Organization" in
MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Synplicity-Provided Logic Libraries

Library: Description:

altera.vhd
A VHDL logic function library that includes the LCELL, SOFT, GLOBAL, CASCADE, and CARRY primitives for
controlling design synthesis and fitting. These primitives can be instantiated directly in your VHDL file.
These models allow you to perform functional VHDL simulation while maintaining an architecture-
independent VHDL description.

altera.v A Verilog HDL logic function library equivalent to the altera.vhd library file.

You can create your own libraries of custom logic functions for use with Synplicity software. You can use custom
logic functions to incorporate an EDIF Input File, Text Design File (.tdf), or any other MAX+PLUS® II-
supported design file into a project. The MAX+PLUS II software uses the synplcty.lmf Library Mapping File to
map standard Synplicity logic functions to equivalent MAX+PLUS II logic functions. To use custom logic
functions, you can create a custom LMF that maps your custom logic functions to the equivalent EDIF Input File,
Text Design File (.tdf), or other design file. Go to "Library Mapping File" in MAX+PLUS II Help for more
information.

Synplicity software provides the altera logic library that is used for synthesizing and compiling VHDL and Verilog
HDL designs. The altera library includes the following library files:

Synplicity Design Flow

Figure 1 shows the typical design flow for logic circuits created and processed with Synplicity and MAX+PLUS®

II software. Design Entry Flow, Project Compilation Flow, and Device Programming Flow show detailed diagrams
of each stage of the design flow.

Figure 1. MAX+PLUS II/Synplicity Design Entry Flow

Altera-provided items are shown in blue.

Figure 1. Design Flow between Synplicity & MAX+PLUS II Software

Synplicity Design Entry Flow

Figure 1 shows the design entry flow for the MAX+PLUS® II/Synplicity interface.

Creating VHDL Designs for Use with MAX+PLUS II Software

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and save
them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements of text in text
files in different colors to distinguish them from other forms of syntax.

To create a VHDL design and convert it to an EDIF netlist file for use with MAX+PLUS II software, follow these
steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Synplicity Working Environment.

2. Instantiate any MAX+PLUS II-supported logic function in your VHDL design. You can enter the following
functions:

Parameterized and non-parameterized megafunctions. MAX+PLUS II software also supports all
functions in the library of parameterized modules (LPM) 2.1.0, except the truth table, finite state
machine, and pad functions.

Macrofunctions, including 74-series functions.

Buffer primitives, including lcell, soft, global, carry, and cascade. The Synplicity altera.vhd
library provides synthesis support for these functions.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

Choose Primitives, Old-Style Macrofunctions, and Megafunctions/LPM from the MAX+PLUS II Help
menu for information on all MAX+PLUS II-supported functions.

3. If your design uses functions from the altera.vhd library, add the following Library and Use clauses to the
top of a file that instantiates the macrofunction(s):

library altera;
use altera.maxplus2.all;

4. For each MAX+PLUS II-supported logic function, include a black_box synthesis directive. See Figure 1.
You can omit this step for functions from the altera.vhd library.

5. For any parameterized function, declare all parameters used in the function, their types, and their values.
Attribute Declarations are used to declare the black_box attribute and the name and type of each parameter.
The black_box attribute has the boolean type; refer to MAX+PLUS II Help for information on whether a
parameter is of integer or string type. Attribute Specifications then assign values to each parameter. Figure
1 shows a VHDL design file that instantiates the lpm_ram_dq function.

Figure 1. VHDL Design File with LPM Function Instantiation

entity myram is
port (clock, we: in bit;
 data : in bit_vector (3 downto 0);
 address: in bit_vector (1 downto 0);
 q: out bit_vector (3 downto 0));
end myram;

architecture arch1 of myram is

 -- Declare the component

 component myram_4x4
 port (data: in bit_vector (3 downto 0);
 address: in bit_vector (1 downto 0);
 inclock, outclock, we: in bit;
 q: out bit_vector (3 downto 0));
 end component;

-- Declare the black_box and parameters and their types

attribute black_box: boolean;
attribute LPM_WIDTH: integer;
attribute LPM_WIDTHAD: integer;
attribute LPM_TYPE: string;

-- Assign values to each attribute

attribute black_box of myram_4x4: component is true;
attribute LPM_WIDTH of myram_4x4: component is 4;
attribute LPM_WIDTHAD of myram_4x4: component is 2;
-- Specify the name of the LPM function as the value of the
-- LPM_TYPE attribute
attribute LPM_TYPE of myram_4x4: component is "LPM_RAM_DQ"

begin
 -- Instantiate the LPM component
 u1: myram_4x4 port map(data, address, clock,
 clock, we, q);

end arch1;

6. (Optional) Enter resource assignments for your VHDL design, as described in Entering Resource
Assignments.

7. After you have completed your VHDL design, synthesize and optimize it with Synplify software, as
described in Synthesizing & Optimizing VHDL or Verilog HDL Files with Synplify Software.

Related Topics:

If your design uses resource assignment attributes that you wish to pass to the MAX+PLUS® II software, you
should save your file in EDIF netlist file format. See Entering Resource Assignments for more information.

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

VHDL & Verilog HDL Design Files

When you use Synplicity Synplify software, you can assign a limited subset of these resource assignments by
specifying attributes in the Synplify Design Constraints File (.sdc) or in the VHDL or Verilog HDL design files.
The Synplify software automatically incorporates these attributes into the EDIF netlist file(s) generated from the
HDL design files. MAX+PLUS II then automatically converts assignment information from the EDIF Input File
into the ACF format. The following topics describe how to make MAX+PLUS II-compatible resource assignments
before design processing with the Synplify software:

Assigning Pins
Assigning the Implement in EAB Logic Option
Modifying the Assignment & Configuration File with the setacf Utility

Related Topics:

Refer to the following sources for more information:

Go to the Synplify User's Guide for details on how to assign properties.

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned
when you use the Synplify software.

Go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu) for information on entering assignments in the MAX+PLUS II software with Assign
menu commands or in an ACF.

Assigning Pins

You can assign a single port to a specific pin to ensure that the signal is always associated with that pin, regardless
of future changes to the project. You can specify pins in VHDL or Verilog HDL designs, or in a Synplify Design
Constraints File (.sdc). If you add timing constraints or resource assignments in a separate Synplify Design
Constraints File (.sdc), you must add the Synplify Design Constraints File (.sdc) to the project by adding it to the
Source Files list in the Synplify window.

If your design uses resource assignment attributes that you wish to pass to the MAX+PLUS II software, you
should save your file in EDIF netlist file format. See Entering Resource Assignments for more information.

VHDL Syntax

Use the following syntax to assign a pin in VHDL:

attribute altera_chip_pin_lc : string;
attribute altera_chip_pin_lc of <port name> : signal is "@<pin number(s)>"

Example:

attribute altera_chip_pin_lc : string;
attribute altera_chip_pin_lc of result : signal is
 "@17, @166, @191, @152, @15, @148, @147, @149"

Verilog HDL Syntax

Use the following syntax to assign a pin in Verilog HDL:

<port name> /* synthesis altera_chip_pin_lc="@<pin number(s)>" */;

Example:

output [7:0] sum /* synthesis altera_chip_pin_lc="@17, @166, @191, @152, \
 @15, @148, @147, @149" */;

Synplify Design Constraints File Syntax

Use the following syntax to assign a pin in a Synplify Design Constraints file:

define_attribute <port name> altera_chip_pin_lc "@<pin number>"

Example:

define_attribute {DATA0[7:0]} altera_chip_pin_lc "@115,@116,@117,
@118,@119,@120,@121,@122"

Related Topics:

Refer to the following sources for related information:
Go to Entering Resource Assignments in these MAX+PLUS II ACCESSSM Key topics for information
on entering other types of assignments.
Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on
device pin-outs and assigning devices, respectively, in the MAX+PLUS II software.

Assigning the Implement in EAB Logic Option

You can assign the Implement in EAB logic option to individual logic functions in a FLEX® 10K design. This
option directs the MAX+PLUS® II Compiler's Logic Synthesizer module to implement the function in an
embedded array block (EAB) rather than in logic cell(s). You can specify the Implement in EAB Logic Option in
VHDL or Verilog HDL designs, or in a Synplify Design Constraints File (.sdc). If you add timing constraints or
resource assignments in a separate Synplify Design Constraints File (.sdc), you must add the Synplify Design
Constraints File (.sdc) to the project by adding it to the Source Files list in the Synplify window.

VHDL Syntax

Use the following syntax to assign the Implement in EAB logic option in VHDL:

attribute altera_implement_in_eab : boolean;
attribute altera_implement_in_eab of <port name>: label is true;

Example:

attribute altera_implement_in_eab of U1: label is true;
 begin
 U1: mymux port map (in1 => a, sel => s, dout => o);

Verilog HDL Syntax

Use the following syntax to assign the Implement in EAB logic option in Verilog HDL:

<module or architecture name> /* synthesis altera_implement_in_eab=1 */;

Example:

sqrtb sq (.z(sqa), .a(a)) /* synthesis altera_implement_in_eab=1 */;
defparam sq.asize = 8;

Synplify Design Constraints File Syntax

Use the following syntax to assign the Implement in EAB logic option in a Synplify Design Constraints File (.sdc):

define_attribute {<module or architecture name>} altera_implement_in_eab 1

Example:

define_attribute {inst1.sqrt8} altera_implement_in_eab 1

Related Topics:

Refer to the following sources for more information:
Go to Entering Resource Assignments in these MAX+PLUS II ACCESSSM Key topics for information
on entering other types of assignments.
Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on other logic options and
logic synthesis style assignments, including definitions and syntax of these assignments.

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Creating Verilog HDL Designs for Use with MAX+PLUS II Software

®

You can create Verilog HDL design files with the MAX+PLUS II Text Editor or another standard text editor and
save them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following
advantages:

Verilog HDL templates are available with the Verilog Templates command (Templates menu). These
templates are also available in the ASCII verilog.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your Verilog HDL design, you can use the Syntax
Coloring command (Options menu). The Syntax Coloring feature displays keywords and other elements of
text in text files in different colors to distinguish them from other forms of syntax.

To create a Verilog HDL design and convert it to an EDIF netlist file for use with MAX+PLUS II software, follow
these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Synplicity Working Environment.

2. Instantiate any MAX+PLUS II-supported logic function in your Verilog HDL design. You can enter the
following functions:

Parameterized and non-parameterized megafunctions. MAX+PLUS II software also supports all
functions in the library of parameterized modules (LPM) 2.1.0, except the truth table, finite state
machine, and pad functions.

Macrofunctions, including 74-series functions.

Buffer primitives, including lcell, soft, global, carry, and cascade. The Synplicity altera.v library
provides synthesis support for these functions.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

Choose Primitives, Old-Style Macrofunctions, and Megafunctions/LPM from the MAX+PLUS II Help
menu for information on all MAX+PLUS II-supported functions.

3. If your design uses functions from the altera.v library, add the library file name to the top of the Source Files
list in the Synplify window.

4. For each MAX+PLUS II-supported logic function, include a black_box synthesis directive. You can omit
this step for functions from the altera.v library.

5. For any parameterized function, you must declare all parameters used in the function, and their values. Figure
1 shows a Verilog HDL file that instantiates the lpm_ram_dq function. A comment in the Module Declaration
contains the synthesis black_box directive and parameter names and values. This comment must
immediately follow the port list and precede the closing semicolon (;). When you instantiate an LPM
function, the LPM function name must be specified as the value of the LPM_TYPE parameter. In addition, each
parameter must be listed on a separate line. See Figure 1.

Figure 1. Verilog HDL Design File with LPM Function Instantiation

// Define the black box
module myram_64x16 (data, address, inclock, outclock, we, q)
/* synthesis black_box

 LPM_WIDTH=16
 LPM_WIDTHAD=6
 LPM_TYPE="LPM_RAM_DQ" */ ;

input [15:0] data;
input [5:0] address;
input inclock, outclock;
input we;
output [15:0] q;

endmodule

// Instantiate the LPM parameterized module in the
// higher-level module myram
module myram(clock, we, data, address, q);
input clock, we;
input [15:0] data;
input [5:0] address;
output [15:0] q;

 myram_64x16 inst1 (data, address, clock, clock, we, q);

endmodule

6. (Optional) Enter resource assignments for your Verilog HDL design, as described in Entering Resource
Assignments.

7. After you have completed your Verilog HDL design, synthesize and optimize it with Synplify software, as
described in Synthesizing & Optimizing VHDL or Verilog HDL Files with Synplify Software.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

VHDL & Verilog HDL Design Files

When you use Synplicity Synplify software, you can assign a limited subset of these resource assignments by
specifying attributes in the Synplify Design Constraints File (.sdc) or in the VHDL or Verilog HDL design files.
The Synplify software automatically incorporates these attributes into the EDIF netlist file(s) generated from the
HDL design files. MAX+PLUS II then automatically converts assignment information from the EDIF Input File
into the ACF format. The following topics describe how to make MAX+PLUS II-compatible resource assignments
before design processing with the Synplify software:

Assigning Pins
Assigning the Implement in EAB Logic Option
Modifying the Assignment & Configuration File with the setacf Utility

Related Topics:

Refer to the following sources for more information:

If your design uses resource assignment attributes that you wish to pass to the MAX+PLUS® II software, you
should save your file in EDIF netlist file format. See Entering Resource Assignments for more information.

Go to the Synplify User's Guide for details on how to assign properties.

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned
when you use the Synplify software.

Go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu) for information on entering assignments in the MAX+PLUS II software with Assign
menu commands or in an ACF.

Assigning Pins

You can assign a single port to a specific pin to ensure that the signal is always associated with that pin, regardless
of future changes to the project. You can specify pins in VHDL or Verilog HDL designs, or in a Synplify Design
Constraints File (.sdc). If you add timing constraints or resource assignments in a separate Synplify Design
Constraints File (.sdc), you must add the Synplify Design Constraints File (.sdc) to the project by adding it to the
Source Files list in the Synplify window.

VHDL Syntax

Use the following syntax to assign a pin in VHDL:

attribute altera_chip_pin_lc : string;
attribute altera_chip_pin_lc of <port name> : signal is "@<pin number(s)>"

Example:

attribute altera_chip_pin_lc : string;
attribute altera_chip_pin_lc of result : signal is
 "@17, @166, @191, @152, @15, @148, @147, @149"

Verilog HDL Syntax

Use the following syntax to assign a pin in Verilog HDL:

<port name> /* synthesis altera_chip_pin_lc="@<pin number(s)>" */;

Example:

output [7:0] sum /* synthesis altera_chip_pin_lc="@17, @166, @191, @152, \
 @15, @148, @147, @149" */;

Synplify Design Constraints File Syntax

Use the following syntax to assign a pin in a Synplify Design Constraints file:

define_attribute <port name> altera_chip_pin_lc "@<pin number>"

Example:

define_attribute {DATA0[7:0]} altera_chip_pin_lc "@115,@116,@117,
@118,@119,@120,@121,@122"

If your design uses resource assignment attributes that you wish to pass to the MAX+PLUS II software, you
should save your file in EDIF netlist file format. See Entering Resource Assignments for more information.

Related Topics:

Refer to the following sources for related information:
Go to Entering Resource Assignments in these MAX+PLUS II ACCESSSM Key topics for information
on entering other types of assignments.
Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on
device pin-outs and assigning devices, respectively, in the MAX+PLUS II software.

Assigning the Implement in EAB Logic Option

You can assign the Implement in EAB logic option to individual logic functions in a FLEX® 10K design. This
option directs the MAX+PLUS® II Compiler's Logic Synthesizer module to implement the function in an
embedded array block (EAB) rather than in logic cell(s). You can specify the Implement in EAB Logic Option in
VHDL or Verilog HDL designs, or in a Synplify Design Constraints File (.sdc). If you add timing constraints or
resource assignments in a separate Synplify Design Constraints File (.sdc), you must add the Synplify Design
Constraints File (.sdc) to the project by adding it to the Source Files list in the Synplify window.

VHDL Syntax

Use the following syntax to assign the Implement in EAB logic option in VHDL:

attribute altera_implement_in_eab : boolean;
attribute altera_implement_in_eab of <port name>: label is true;

Example:

attribute altera_implement_in_eab of U1: label is true;
 begin
 U1: mymux port map (in1 => a, sel => s, dout => o);

Verilog HDL Syntax

Use the following syntax to assign the Implement in EAB logic option in Verilog HDL:

<module or architecture name> /* synthesis altera_implement_in_eab=1 */;

Example:

sqrtb sq (.z(sqa), .a(a)) /* synthesis altera_implement_in_eab=1 */;
defparam sq.asize = 8;

Synplify Design Constraints File Syntax

Use the following syntax to assign the Implement in EAB logic option in a Synplify Design Constraints File (.sdc):

define_attribute {<module or architecture name>} altera_implement_in_eab 1

Example:

define_attribute {inst1.sqrt8} altera_implement_in_eab 1

Related Topics:

Refer to the following sources for more information:
Go to Entering Resource Assignments in these MAX+PLUS II ACCESSSM Key topics for information
on entering other types of assignments.
Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on other logic options and
logic synthesis style assignments, including definitions and syntax of these assignments.

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Synthesizing & Optimizing VHDL or Verilog HDL Files with Synplify Software

You can create and process VHDL or Verilog HDL files and convert them to Altera® Hardware Description
Language (AHDL) Text Design Files (.tdf) or EDIF Input Files (.edf) that can be processed by the MAX+PLUS®

II Compiler. The MAX+PLUS II Compiler can process a VHDL or Verilog HDL file that has been synthesized by
Synplify software, saved as an AHDL TDF or an EDIF netlist file, and imported into the MAX+PLUS II software.
The information presented here describes only how to use VHDL or Verilog HDL files that have been processed by
Synplify software. For information on direct MAX+PLUS II support for VHDL or Verilog HDL Design Files, go
to MAX+PLUS II VHDL or Verilog HDL Help.

To process a VHDL or Verilog HDL file with Synplify software for use with MAX+PLUS II software, follow these
steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Synplicity Working Environment.

2. Create a VHDL file, <design name>.vhd, or a Verilog HDL file, <design name>.v, using the MAX+PLUS II
Text Editor or another standard text editor and save it in a working directory. Go to Creating VHDL Designs
for Use with MAX+PLUS II Software or Creating Verilog HDL Designs for Use with MAX+PLUS II
Software for more information on HDL design entry.

3. Start the Synplify software:

On a UNIX workstation, type synplify at a UNIX prompt from your working directory.

or:

On a PC, double-click the synplify.exe icon in your \synplicity\bin directory.

4. Create a new project:

1. Choose New (File menu) to display the New dialog box, then select Project from the list. Choose OK.

2. Choose the Add button from the Project window. The Add Source Files dialog box is displayed.

3. Select your design file(s) and choose the Open button to add the file(s) to your Source Files list in the
Synplify window.

If you wish to create a hierarchical project, make sure the top-level design file is at the bottom of the
Source Files list by selecting the file and dragging it to the bottom of the list.

5. Select the target Altera device:

1. Choose the Change button in the Target section. The Set Device Option dialog box is displayed.

2. Select an Altera MAX® (which includes Classic) or FLEX® device family from the Technology list.

3. Select a device from the Part list.

4. (Optional) Turn on the Map logic cells to LCELLs option to increase performance. However, turning
on this option may decrease area optimization.

For MAX or Classic designs, specify the following options:

1. Enter an appropriate value for the Percent of design to optimize for timing box.

2. Enter an appropriate value for the Maximum cell fan-in box.

3. (Optional) Turn on the Make Non-critical Cells Soft option to allow the MAX+PLUS II
software to reduce the number of logic cells used in implementing non-timing critical
portions of the design.

or:
For FLEX designs, select an appropriate value from the Speed Grade list.

5. Select EDIF or AHDL in the Result Format box to specify the output file format from the Synplify
software. Choose OK.

Saving your project in AHDL TDF format may improve compilation time. However, if your design
uses resource assignment attributes, you should save your file in EDIF netlist file format. See Entering
Resource Assignments for more information.

6. Enter the frequency value for the project in the Frequency (MHz) box in the Synplify window.

7. (Optional) Turn on the Symbolic FSM Compiler option in the Synplify window to direct the Synplify
software to automatically find and re-encode state machines in your design. Turning this option on may
reduce unnecessary states and transitional logic.

8. Run the Synplify software by choosing the Run button in the Synplify window. Synplify software
synthesizes and optimizes the design, and creates the EDIF netlist file <design name>.edf or the AHDL TDF
<design name>.tdf.

9. (Optional) Run the HDL Analyst to analyze and evaluate the performance of your design, as described in
Analyzing VHDL or Verilog HDL Designs with the Synplify HDL Analyst.

10. (Optional) Add appropriate timing constraints in a separate Synplify Design Constraints File (.sdc) or in the
VHDL or Verilog HDL source file. If you add timing constraints or resource assignments in a separate .sdc
file, you must add the .sdc file to the Source Files list in the Synplify window.

11. Correct any errors or warnings.

12. If you have corrected errors or warnings, or added timing constraints to your project, repeat step 8 to
implement the changes in your synthesized design.

13. Create the /<project directory>/max2 subdirectory.

14. Copy the <design name>.edf or <design name>.tdf generated in step 8 to the /<project directory>/max2
directory.

15. Process your design with the MAX+PLUS II Compiler, as described in Compiling Projects with
MAX+PLUS II Software.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices
MAX Devices
Classic Device Family

Analyzing VHDL or Verilog HDL Designs with the Synplify HDL Analyst

You can use the optional Synplify HDL Analyst to analyze and evaluate the performance of your design
graphically. The Synplify HDL Analyst instantly generates Register Transfer Level (RTL) schematics, as well as
technology-mapped, gate-level schematics. You can instantly identify and fix potential problems earlier in the
design cycle by cross-probing between the RTL schematics, gate-level schematics, and HDL source code. The
Synplify HDL Analyst also highlights critical paths within the design to show which signals require optimization
for performance. After you determine the critical speed paths, you can add timing constraints either to the VHDL or
Verilog HDL source file or to a separate Synplify Design Constraints File (.sdc) to improve design performance.

To use the Synplify HDL Analyst after synthesizing your design with Synplify software, go through the following
steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS®

II/Synplicity Working Environment.

2. Create a VHDL or Verilog HDL design and save it in your working directory, as described in Creating
VHDL Designs for Use with MAX+PLUS II Software or Creating Verilog HDL Designs for Use with
MAX+PLUS II Software.

3. Synthesize and optimize your VHDL or Verilog HDL design with Synplify software, as described in
Synthesizing & Optimizing VHDL or Verilog HDL Files with Synplify Software.

4. Choose an HDL Analyst view:

Choose RTL View (HDL_Analyst menu) to view the RTL schematic. When you select this view, the
HDL Analyst displays a graphical representation of the design and the mouse pointer becomes a plus (+)
symbol.

or:

Choose Technology View (HDL_Analyst menu) to view the gate-level schematic. When you select this
view, the HDL Analyst displays a graphical representation of the design and the mouse pointer becomes a
plus (+) symbol.

5. In either the RTL or Technology View, perform one or more of the following actions:

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly
with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the
Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within
the MAX+PLUS II Compiler window.

Double-click the plus (+) symbol pointer on a port name or symbol to cross-probe your VHDL or
Verilog HDL source design files.

Because Synplify combines the a + b and a - b operations, cross-probing will highlight the
Case Statement that defines both functions.

Choose Find (HDL_Analyst menu) to select specific signals quickly in your design.

Choose Show Critical Path (HDL_Analyst menu) to highlight the critical paths in the design.

Select Filter Schematic (HDL_Analyst menu) to show only the nodes you have selected.

6. If necessary, correct the design and repeat the steps described in Synthesizing & Optimizing VHDL or
Verilog HDL Files with Synplify Software.

7. Process your design with the MAX+PLUS II Compiler, as described in Compiling Projects with
MAX+PLUS II Software.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,

the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Synplicity Synplify-Specific Compiler Settings

If you are using the MAX+PLUS® II Compiler to compile a design that has been synthesized and optimized with
Synplify software, go through the following additional compilation steps:

1. Choose Global Project Logic Synthesis (Assign menu) to open the Global Project Logic Synthesis dialog
box.

2. Select the appropriate logic synthesis style under the Global Project Synthesis Style:

If you turned on the Map Logic to LCELLs option in the Synplify Set Device Options dialog box when
synthesizing a FLEX® device design with Synplify software, select WYSIWYG or Fast in the Global
Project Synthesis Style box.

or:

If you did not turn on the Map Logic to LCELLs option in the Synplify Set Device Options dialog box
when synthesizing your design with Synplify software, or if you are using a MAX® or Classic device,
select Normal in the Global Project Synthesis Style box.

3. For FLEX devices, choose Define Synthesis Style to display the Define Synthesis Style dialog box. Choose
Advanced Options to display the Advanced Options dialog box and turn off the NOT Gate Push-Back
option. Choose OK twice to close the dialog box.

4. Choose OK to close the Global Project Logic Synthesis dialog box.

5. Continue with the steps necessary to compile your project, as described in Compiling Projects with

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

MAX+PLUS II Software.

Related Topics:

Go to the following topics for additional information:
FLEX Devices
MAX Devices
Classic Device Family

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Introduction to the ACCESS Key
Guidelines

Introduction to the ACCESS Key Guidelines
Altera established the Altera® Commitment to Cooperative Engineering Solutions (ACCESSSM) program—an
alliance between Altera and EDA vendors—to provide either direct EDA support for Altera PLDs or seamless
integration with Altera's MAX+PLUS® II development software.

The MAX+PLUS II ACCESS Key Guidelines provide complete instructions on how to create, compile, and
simulate your design with a combination of tools from leading EDA vendors and the MAX+PLUS II software.

Click one of the following icons to go to the guidelines:

Related Links

ACCESS Program
MAX+PLUS II Development Software
Synopsys

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-welcome.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-tools.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-function.html?csf=1&web=1
https://www.intel.com/www/us/en/programmable/solutions/partners/eda-partners.html
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
http://www.synopsys.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Altera-Provided Logic & Symbol
Libraries

Altera-Provided Logic & Symbol Libraries

You can create your own libraries of custom symbols and logic functions in Concept and Composer. You can use
custom symbols to incorporate an EDIF Input File, Text Design File (TDF), or any other MAX+PLUS II-
supported design file into a project. MAX+PLUS II uses the cadence.lmf Library Mapping File to map standard
Concept or Composer symbols to equivalent MAX+PLUS II logic functions. To use custom symbols, you can
create a custom LMF that maps your custom symbols to the equivalent MAX+PLUS II-supported design file.
You must also specify the directory that contains the MAX+PLUS II-supported design file(s) as a user library
with the MAX+PLUS II User Libraries command (Options menu). Go to "Library Mapping File" and "Cadence
Library Mapping File (cadence.lmf)" in MAX+PLUS II Help for more information.

The MAX+PLUS® II/Cadence environment provides four logic and symbol libraries that are used for compiling,
synthesizing, and simulating designs.

The alt_max2 Library

You can enter a Concept or Composer Design Architect schematic with primitives and macrofunctions from the
Altera-provided symbol library alt_max2. The alt_max2 library includes 74-series macrofunctions and several
MAX+PLUS II primitives with corresponding Verilog HDL simulation models for controlling design synthesis and
fitting. It also includes four macrofunctions--a_8count, a_8mcomp, a_8fadd, and a_81mux--that are optimized for
different device families, and the clklock phase-locked loop megafunction, which is supported by some FLEX®

10K devices, with corresponding Verilog HDL and VHDL simulation models. See Table 1. Choose Old-Style
Macrofunctions and/or Primitives from the MAX+PLUS II Help menu for more information on functions in the
alt_max2 library.

The alt_lpm Library

The Altera-provided alt_lpm library, which is available for Concept and Verilog HDL designs, includes standard
functions from the library of parameterized modules (LPM) 2.1.0, except the truth table, finite state machine, and
pad functions. Other parameterized functions, including cycle-shared FIFO (csfifo) and cycle-shared dual-port
RAM (csdpram) are also included. The LPM standard defines a set of parameterized modules (i.e., parameterized
megafunctions) and their corresponding representations in an EDIF netlist file. These logic functions allow you to
create and functionally simulate an LPM-based design without targeting a specific device family. The parameters
you specify for each LPM function determine the simulation models that will be generated. After the design is
completed, you can target the design to any device family. In designs created with Concept, the Altera alt_lpm
library works only with HDL Direct and the hdlconfig utility. Choose Megafunctions/LPM from the MAX+PLUS
II Help menu for more information about LPM functions in the alt_lpm library.

The lpm_syn Library

The lpm_syn library contains the Altera-provided parameterized functions. The lpm_syn library is similar to the
alt_lpm library, except that it contains VHDL and Verilog HDL logic functions for use with Synergy, Concept, and
Composer software.

The alt_mf Library

Altera provides a VHDL logic function library, alt_mf, that currently includes four macrofunctions--a_8count,

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

a_8mcomp, a_8fadd, and a_81mux--for controlling design synthesis and fitting. These elements can be instantiated
directly in your VHDL file. To designate that these logic functions should pass untouched through the EDIF netlist
file to the MAX+PLUS II Compiler, you must select the Maintain attribute constraint for instances of these
functions before running the Synergy software. These models allow you to perform functional VHDL simulation
while maintaining an architecture-independent VHDL description.

Table 1 shows the MAX+PLUS II-specific logic functions.

Table 1. MAX+PLUS II-Specific Logic Functions
Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
Note (2)

8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note
(3)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Notes:

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. The a_8count logic function is for the MAX 7000 and MAX 9000 device families only.
3. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design

contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Synergy &
MAX+PLUS II Software

Using Cadence Synergy & MAX+PLUS II Software

The following topics describe how to use the Cadence Synergy software with MAX+PLUS® II software. Click on
one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
MAX+PLUS II/Cadence Interface File Organization
Altera-Provided Logic & Symbol Libraries

Design Entry

Design Entry Flow

Creating VHDL Projects

Creating VHDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Creating Verilog HDL Projects

Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Synthesis & Optimization

VHDL

Synthesizing & Optimizing VHDL Files with Synergy Software
Converting VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the vlog2alt or
altout Utility

Verilog HDL

Synthesizing & Optimizing Verilog HDL Files with Synergy Software
Converting Verilog HDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using the C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

vlog2alt Utility

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Setting Up the MAX+PLUS II/Cadence Working Environment

To use MAX+PLUS® II software with Cadence software, you must first install the MAX+PLUS II software, then
establish an environment that facilitates entering and processing designs. The MAX+PLUS II/Cadence interface is
installed automatically when you install the MAX+PLUS II software on your computer. Go to MAX+PLUS II
Installation in the MAX+PLUS II Getting Started manual for more information on installation and details on the
directories that are created during MAX+PLUS II installation. Go to MAX+PLUS II/Cadence Interface File
Organization for information about the MAX+PLUS II/Cadence directories that are created during MAX+PLUS II
installation.

To set up your working environment for the MAX+PLUS II/Cadence interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Cadence software versions described in the
MAX+PLUS II/Cadence Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2

setenv CDS_INST_DIR <Cadence system directory path>

3. Add the $ALT_HOME/cadence/bin and $CDS_INST_DIR/tools/bin directories to the PATH environment
variable in your .cshrc file. Make sure these paths are placed before the Cadence hierarchy path.

4. Add /usr/dt/lib and /usr/ucb/lib to the LD_LIBRARY_PATH environment variable in your .cshrc file.

5. Create a new cds.lib file in your working directory or edit an existing one so that it includes all of the
following lines that apply to the Cadence tools you have installed:

DEFINE alt_syn ${ALT_HOME}/simlib/concept/alt_syn

DEFINE lpm_syn ${ALT_HOME}/simlib/concept/lpm_syn

DEFINE alt_lpm ${ALT_HOME}/simlib/concept/alt_lpm

DEFINE alt_mf ${ALT_HOME}/simlib/concept/alt_mf

DEFINE alt_max2 ${ALT_HOME}/simlib/concept/alt_max2

DEFINE alt_max2 ${ALT_HOME}/simlib/composer/alt_max2/alt_max2

DEFINE alt_vtl $ALT_HOME/simlib/concept/alt_vtl/lib

DEFINE altera $ALT_HOME/simlib/concept/alt_mf/lib

SOFTINCLUDE $CDS_INST_DIR/tools/leapfrog/files/cds.lib

DEFINE <design name>.

6. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

7. If you are using Concept on a Sun SPARCstation running SunOS, go to Setting Up the MAX+PLUS
II/Cadence Concept Work Environment for a Sun SPARCstation Running SunOS Software to install the
redifnet EDIF netlist reader utility.

8. If you are using Synergy software, edit the hdl.var file located in your working directory to include the
following line:

DEFINE work <design name>

9. Set up an appropriate directory structure for the tool(s) you are using. See the following topics for
information:

Composer Project File Directory Structure
Concept & RapidSIM Local Work Area Directory Structure

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Cadence Altera
version 97A:
Concept
Composer
ValidCOMPILER
concept2alt
vlog2alt
altout

VerilogLink
Synergy
HDL Direct (Concept 2.0 or later)
Non-Graphic Simulation Environment (SE)
RapidSIM, Verilog-XL, or Leapfrog
redifnet (SunOS only)

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Cadence software
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

Table 1. MAX+PLUS II Directory Organization

Directory Description

./lmf
Contains the Altera-provided Library Mapping File, cadence.lmf, that
maps Cadence logic functions to equivalent MAX+PLUS II logic
functions.

./examples/cadence
Contains the sample files for Cadence software discussed in these
ACCESSSM Key Guidelines.

./cadence Contains the AMPLE userware for the MAX+PLUS II/Cadence interface.

./simlib/concept/alt_max2

Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for
FLEX® 6000 devices only) for use with Concept software.

./simlib/composer/alt_max2
Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for FLEX
6000 devices only) for use with Composer software.

./simlib/concept/alt_lpm Contains the MAX+PLUS II megafunctions, including library of
parameterized modules (LPM) functions, for use with Concept software.

./simlib/concept/max2sim Contains the MAX+PLUS II/Concept simulation model library, max2_sim,
for use with RapidSIM software.

./simlib/concept/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Concept software, and the vlog2alt utility.

MAX+PLUS II/Cadence Software Requirements

The following table shows the software applications that are used to generate, process, synthesize, and verify a
project with MAX+PLUS® II and Cadence software:

MAX+PLUS II/Cadence Interface File Organization

Table 1 shows the MAX+PLUS® II/Cadence interface subdirectories that are created in the MAX+PLUS II system
directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation. For information on the other
directories that are created during MAX+PLUS II installation, see "MAX+PLUS II File Organization" in
MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

./simlib/composer/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Composer software.

./simlib/concept/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Concept software.

./simlib/composer/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Composer software.

./simlib/concept/alt_mf Contains the MAX+PLUS II VHDL logic function library. (a_8count is for
the MAX® 7000 and MAX 9000 device families only.)

./simlib/concept/edifnet/templates Contains template files for Concept directives, i.e., global.cmd,
compiler.cmd, vloglink.cmd, verilog.cmd, and master.local.

./simlib/concept/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Concept software.

./simlib/composer/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Composer software.

./simlib/concept/alt_vtl

./simlib/composer/alt_vtl
Contains VITAL library source files for use with Concept or Composer
software.

./simlib/composer/alt_max2/verilog Contains simulation modules for all symbols in the alt_max2 Composer
library.

You can create your own libraries of custom symbols and logic functions in Concept and Composer. You can use
custom symbols to incorporate an EDIF Input File, Text Design File (TDF), or any other MAX+PLUS II-
supported design file into a project. MAX+PLUS II uses the cadence.lmf Library Mapping File to map standard
Concept or Composer symbols to equivalent MAX+PLUS II logic functions. To use custom symbols, you can
create a custom LMF that maps your custom symbols to the equivalent MAX+PLUS II-supported design file.
You must also specify the directory that contains the MAX+PLUS II-supported design file(s) as a user library
with the MAX+PLUS II User Libraries command (Options menu). Go to "Library Mapping File" and "Cadence
Library Mapping File (cadence.lmf)" in MAX+PLUS II Help for more information.

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

FLEX Devices
MAX Devices
Classic Device Family

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS® II/Cadence environment provides four logic and symbol libraries that are used for compiling,
synthesizing, and simulating designs.

The alt_max2 Library

You can enter a Concept or Composer Design Architect schematic with primitives and macrofunctions from the

Altera-provided symbol library alt_max2. The alt_max2 library includes 74-series macrofunctions and several
MAX+PLUS II primitives with corresponding Verilog HDL simulation models for controlling design synthesis and
fitting. It also includes four macrofunctions--a_8count, a_8mcomp, a_8fadd, and a_81mux--that are optimized for
different device families, and the clklock phase-locked loop megafunction, which is supported by some FLEX®

10K devices, with corresponding Verilog HDL and VHDL simulation models. See Table 1. Choose Old-Style
Macrofunctions and/or Primitives from the MAX+PLUS II Help menu for more information on functions in the
alt_max2 library.

The alt_lpm Library

The Altera-provided alt_lpm library, which is available for Concept and Verilog HDL designs, includes standard
functions from the library of parameterized modules (LPM) 2.1.0, except the truth table, finite state machine, and
pad functions. Other parameterized functions, including cycle-shared FIFO (csfifo) and cycle-shared dual-port
RAM (csdpram) are also included. The LPM standard defines a set of parameterized modules (i.e., parameterized
megafunctions) and their corresponding representations in an EDIF netlist file. These logic functions allow you to
create and functionally simulate an LPM-based design without targeting a specific device family. The parameters
you specify for each LPM function determine the simulation models that will be generated. After the design is
completed, you can target the design to any device family. In designs created with Concept, the Altera alt_lpm
library works only with HDL Direct and the hdlconfig utility. Choose Megafunctions/LPM from the MAX+PLUS
II Help menu for more information about LPM functions in the alt_lpm library.

The lpm_syn Library

The lpm_syn library contains the Altera-provided parameterized functions. The lpm_syn library is similar to the
alt_lpm library, except that it contains VHDL and Verilog HDL logic functions for use with Synergy, Concept, and
Composer software.

The alt_mf Library

Altera provides a VHDL logic function library, alt_mf, that currently includes four macrofunctions--a_8count,
a_8mcomp, a_8fadd, and a_81mux--for controlling design synthesis and fitting. These elements can be instantiated
directly in your VHDL file. To designate that these logic functions should pass untouched through the EDIF netlist
file to the MAX+PLUS II Compiler, you must select the Maintain attribute constraint for instances of these
functions before running the Synergy software. These models allow you to perform functional VHDL simulation
while maintaining an architecture-independent VHDL description.

Table 1 shows the MAX+PLUS II-specific logic functions.

Table 1. MAX+PLUS II-Specific Logic Functions
Macrofunctions Note (1) Primitives
Name Description Name Description Name Description

8fadd 8-bit full adder LCELL Logic cell buffer EXP MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer

8mcomp
8-bit magnitude
comparator GLOBAL Global input buffer SOFT Soft buffer

8count
Note (2)

8-bit up/down
counter CASCADE

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer OPNDRN Open-drain buffer

81mux
8-to-1
multiplexer

CARRY
FLEX 6000, FLEX 8000, and
FLEX 10K carry buffer

DFFE
DFFE6K
Note (3)

D-type flipflop with Clock Enable
clklock

Phase-locked
loop

Notes:

Figure 1. MAX+PLUS II/Cadence Design Entry Flow

Altera-provided items are shown in blue.

1. Logic function names that begin with a number must be preceded by "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. The a_8count logic function is for the MAX 7000 and MAX 9000 device families only.

3. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Topics:

Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

Cadence Design Entry Flow

Figure 1 shows the design entry flow for the MAX+PLUS® II/Cadence interface.

Creating VHDL Designs for Use with MAX+PLUS II Software

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and save
them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements in text files in
different colors to distinguish them from other forms of syntax.

To create a VHDL design that can be synthesized and optimized with Synergy software, follow these steps:

1. You can instantiate the following MAX+PLUS II-provided logic functions in your VHDL design:

The alt_mf library contains the Altera® VHDL logic function library, which includes the a_8count,
a_8mcomp, a_8fadd, and a_81mux macrofunctions. If you wish to instantiate alt_mf logic functions in
your VHDL design, you must first compile this library, as described in Compiling the alt_mf Library.

The clklock megafunction, which enables the phase-locked loop, or ClockLock , circuitry available
on selected Altera FLEX® 10K devices. Go to Instantiating the clklock Megafunction in VHDL or
Verilog HDL for information.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,

In MAX+PLUS II version 8.3 and lower, running genclklk on a PC always creates files named as clklock.vhd,

and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

2. If you wish to use Standard Delay Format (SDF) Output Files (.sdo) that contain timing information when
performing post-compilation timing simulation with Leapfrog software, you must first compile the VITAL
library source files, as described in Compiling the alt_vtl Library for for Use with Leapfrog Software.

3. (Optional) To enter resource assignments in your VHDL design, go to Entering Resource Assignments. You
can also enter resource assignments from within the MAX+PLUS II software.

4. After you have completed your VHDL design, synthesize and optimize it with Synergy software, as
described in Synthesizing & Optimizing VHDL Files with Synergy Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample VHDL files, the latter of which includes macrofunction instantiation.

/usr/maxplus2/examples/cadence/example9/count4.vhd
/usr/maxplus2/examples/cadence/example10/adder16.vhd

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating the clklock Megafunction in VHDL or Verilog HDL

MAX+PLUS® II interfaces to other EDA tools support the clklock phase-locked loop megafunction, which can be
used with some FLEX® 10K devices, with the gencklk utility, which is available in the MAX+PLUS II system
directory. Type gencklk -h at the DOS or UNIX prompt to display information on how to use this utility. The
gencklk utility generates VHDL or Verilog HDL functional simulation models and a VHDL Component
Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the DOS or UNIX prompt to generate the clklock_x_y function, where x is
the ClockBoost value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

2. Create a design file that instantiates the clklock_x_y.vhd or clklock_x_y.v file. The gencklk utility
automatically generates a VHDL Component Declaration template in the clklock_x_y.cmp file that you can
incorporate into a VHDL design file.

clklock.cmp, and clklock.v, regardless of the ClockBoost and input frequency values you specify.

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);
 END structure;

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Concept & Composer Schematics

In both Concept and Composer schematics, you can assign a limited subset of these resource assignments by
assigning properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II
software automatically converts assignment information from the EDIF Input File into the ACF format. For
information on making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Go to the Cadence Concept Schematic User Guide and Composer Reference User Guide for details on how to

assign properties. Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party
Design Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Concept and Composer.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept and Composer schematic files, which include resource assignments:

/usr/maxplus2/examples/cadence/example6/fa2 (Concept)
/usr/maxplus2/examples/cadence/example7/fa2 (Composer)

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. For information on using the setacf utility, go to Modifying the Assignment &
Configuration File with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in
an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu).

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Creating Verilog HDL Designs for Use with MAX+PLUS II Software

You can create Verilog HDL design files with the MAX+PLUS® II Text Editor or another standard text editor and
save them in the appropriate directory for you project. The MAX+PLUS II Text Editor offers the following
advantages:

Verilog HDL templates are available with the Verilog Templates command (Templates menu). These
templates are also available in the ASCII verilog.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your Verilog HDL design, you can use the Syntax
Coloring command (Options menu). The Syntax Coloring feature displays keywords and other elements of
text in text files in different colors to distinguish them from other forms of syntax.

To create a Verilog HDL design that can be synthesized and optimized with Synergy software, go through the
following steps:

1. You can instantiate the following MAX+PLUS II-provided logic functions in your Verilog HDL design:

The alt_max2 library, which contains the a_8count, a_8mcomp, a_8fadd, and a_81mux macrofunctions
that are optimized for different Altera device families.

The clklock megafunction which enables phase-locked loop, or ClockLock , circuitry available on
selected Altera FLEX® 10K devices. Go to Instantiating the clklock Megafunction in VHDL or
Verilog HDL for information.

The lpm_syn library, which contains the Cadence LPM megafunction library for use with Synergy
Software and Concept or Composer software.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

2. You can enter resource assignments in your Verilog HDL design, as described in Entering Resource
Assignments.

3. After you have completed your Verilog HDL design, synthesize and optimize it with Synergy software, as
described in Synthesizing & Optimizing Verilog HDL Files with Synergy Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Verilog HDL files, the latter of which includes LPM function instantiation.

/usr/maxplus2/examples/cadence/example11/count8.v
/usr/maxplus2/examples/cadence/example13/rom_test.v

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating the clklock Megafunction in VHDL or Verilog HDL

MAX+PLUS® II interfaces to other EDA tools support the clklock phase-locked loop megafunction, which can be
used with some FLEX® 10K devices, with the gencklk utility, which is available in the MAX+PLUS II system
directory. Type gencklk -h at the DOS or UNIX prompt to display information on how to use this utility. The
gencklk utility generates VHDL or Verilog HDL functional simulation models and a VHDL Component
Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the DOS or UNIX prompt to generate the clklock_x_y function, where x is
the ClockBoost value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

2. Create a design file that instantiates the clklock_x_y.vhd or clklock_x_y.v file. The gencklk utility
automatically generates a VHDL Component Declaration template in the clklock_x_y.cmp file that you can
incorporate into a VHDL design file.

In MAX+PLUS II version 8.3 and lower, running genclklk on a PC always creates files named as clklock.vhd,
clklock.cmp, and clklock.v, regardless of the ClockBoost and input frequency values you specify.

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

 cout=>co);
 END structure;

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor or with the setacf utility.

Concept & Composer Schematics

In both Concept and Composer schematics, you can assign a limited subset of these resource assignments by
assigning properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II
software automatically converts assignment information from the EDIF Input File into the ACF format. For
information on making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Go to the Cadence Concept Schematic User Guide and Composer Reference User Guide for details on how to
assign properties. Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party

Design Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned in
Concept and Composer.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Concept and Composer schematic files, which include resource assignments:

/usr/maxplus2/examples/cadence/example6/fa2 (Concept)
/usr/maxplus2/examples/cadence/example7/fa2 (Composer)

VHDL & Verilog HDL Design Files

For Verilog HDL- and VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to
enter resource assignments. For information on using the setacf utility, go to Modifying the Assignment &
Configuration File with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in
an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu).

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Synthesizing & Optimizing VHDL Files with Synergy Software

You can use Cadence Synergy software to synthesize and optimize your VHDL files and convert them to EDIF
input files that can be processed by the MAX+PLUS® II Compiler. The information presented here describes only
how to use VHDL files that have been processed by Synergy software. For information on direct MAX+PLUS II
support for VHDL Design Files, go to MAX+PLUS II VHDL Help.

To process a VHDL file with Synergy software for use with MAX+PLUS II software, go through the following
steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a VHDL file <design name>.vhd using the MAX+PLUS II Text Editor or another standard text editor
and save it in a working directory. Go to Creating VHDL Designs for Use with MAX+PLUS II Software for
more information on VHDL design entry.

3. Start Synergy by typing synergy -lang vhdl at a UNIX prompt from the working directory.

4. Analyze your source file <design name>.vhd:

1. Choose Analyze Files (File menu) to open the Select Design dialog box.

2. Click on the Analyze Files tab.

3. Select the design name from the Files list.

4. Choose Analyze to analyze the source file(s).

5. Choose the Select Design tab from the Select Design dialog box and specify the following options:

1. Select the design architecture from the hierarchical list. The design architecture should appear in the
Design box.

2. Specify <design name>.run1 as the Run Directory.

3. Type alt_syn as the Target Library name.

4. (Optional) If you want to use the Synergy library of parameterized modules (LPM) synthesis
capability, choose the Macro Libraries ellipse button and select lpm_syn in the Select From box.

5. (Optional) If you want to view a synthesized schematic in Concept or Composer, go through the
following steps:

1. Choose Schematic Generation (Utilities menu).

2. Select either Concept or Composer in the Generate From box.

3. Type alt_max2 in the Symbol Libraries box.

4. Choose Apply, then Close.

6. Choose the Select Design button from the Select Design window.

7. Indicate to the Synergy software that any clklock megafunction or any macrofunction instantiated in your
VHDL design is a "black box" that must pass untouched through the EDIF netlist file:

1. Choose Synthesis (Constraints menu), then choose Hierarchy Control.

2. Select the module or instance name from the hierarchical View list for Module/Instance.

3. Turn on Maintain Option in the Synthesis Constraints box.

4. Select Module/Instance and Tree Below in the Apply To box.

5. Choose Apply.

6. Repeat steps a through e for each instance of the function.

8. Choose Synthesize (Synthesis menu) from the Synergy window and specify the following options:

1. Click on the Synthesize tab.

2. Turn on the Generate Schematic option.

3. Select either Composer or Concept from the Type list box.

4. Choose Synthesize to start synthesizing your design.

9. Generate an EDIF netlist file that can be compiled with MAX+PLUS II software, as described in Converting
VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the vlog2alt or altout Utility.

10. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample VHDL files:

/usr/maxplus2/examples/cadence/example9/count4.vhd
/usr/maxplus2/examples/cadence/example10/adder16.vhd

Converting VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the
vlog2alt or altout Utility

You can convert a VHDL design into an EDIF netlist file with the extension .edf. This file can then be imported
into the MAX+PLUS® II software as an EDIF Input File (.edf).

To convert a VHDL design into an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Synthesize and optimize your VHDL design with Synergy, as described in Synthesizing & Optimizing
VHDL Files with Synergy Software.

3. Depending on whether or not you have installed the Concept alt_syn library, perform one of the following
steps to create <design name>.edf in the working directory:

If you have installed the Concept alt_syn library, type the following command at the UNIX prompt from
your working directory:

vlog2alt <design name> -rundir max2 -vfiles <design name>.run1/syn.v

or:

If you have not installed the Concept alt_syn library, follow these steps:

1. Edit the cds.lib file, which is located in your working directory, to include the following line:

DEFINE Opt <working directory>/<design name>.run1/Opt

2. Type the following command at the UNIX prompt from the working directory:

altout -lib Opt -rundir max2 <design name>

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample VHDL files:

/usr/maxplus2/examples/cadence/example9/count4.vhd
/usr/maxplus2/examples/cadence/example10/adder16.vhd

Synthesizing & Optimizing Verilog HDL Files with Synergy Software

You can create and process Verilog HDL files and convert them into EDIF input files that can be processed by the
MAX+PLUS® II Compiler. To process a Verilog HDL file with Synergy software for use with the MAX+PLUS II
software, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting up the MAX+PLUS II/Cadence
Working Environment.

2. Create a Verilog HDL file <design name>.v using the MAX+PLUS II Text Editor or another standard text
editor and save it in a working directory. Go to Creating Verilog HDL Designs for Use with MAX+PLUS II
Software for more information on Verilog HDL design entry.

3. Start Synergy by typing synergy -lang verilog at a UNIX prompt from your working directory.

4. Choose Select Design (File menu) from the Synergy window and specify the following options:

1. Select <design name>.v from the Verilog Files list.

2. Choose the Verilog Option tab from the Select Design dialog box.

3. Specify <design name>.run1 as the Run Directory.

4. Type /usr/maxplus2/simlib/concept/alt_max2/<design name>/verilog_lib/verilog.v
<working directory>/ in the Library Files (-v) box.

5. (Optional) If your design includes library of parameterized modules (LPM) functions, type
+define+SYNTH in the Other Compilations box.

6. Choose Select Design.

5. Choose the Design tab from the Select Design dialog box and set the target library:

1. Type alt_syn as the Target Library name.

2. (Optional) To use the Synergy LPM synthesis capability, type lpm_syn as the Library name in the
Macro Cell Library box.

3. Choose OK.

6. (Optional) To view the synthesized schematic in Concept or Composer, go through the following steps:

1. Select Schematic Generation (Utilities menu).

2. Select either Concept or Composer in the Generate From box.

3. Type alt_max2 in the Symbol Libraries box.

4. Choose Apply, then Close.

7. Choose Select Design from the Select Design window.

8. Choose Synthesize (Synthesis menu) from the Synergy window and specify the following options:

1. Click on the Synthesize tab.

2. Turn on the Generate Schematic option.

3. Select either Composer or Concept from the Type list box.

4. Choose Synthesize to start synthesizing your design.

9. Generate an EDIF netlist file that can be compiled by the MAX+PLUS II Compiler, as described in
Converting Verilog HDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files.

10. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Verilog HDL files:

/usr/maxplus2/examples/cadence/example11/count8.v
/usr/maxplus2/examples/cadence/example13/rom_test.v

Converting Verilog HDL Designs into MAX+PLUS II-
Compatible EDIF Netlist Files with the vlog2alt Utility

You can use the vlog2alt utility to convert your Verilog HDL design into an EDIF netlist file. This file can then be
imported into the MAX+PLUS® II software as an EDIF Input File with the extension .edf.

To convert a Verilog HDL design into an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Synthesize and optimize your Verilog HDL design with Synergy, as described in Synthesizing & Optimizing
Verilog HDL Files with Synergy Software.

3. To convert your Verilog HDL design into an EDIF netlist file, type the following command at the UNIX
prompt from your working directory:

vlog2alt <design name> -rundir max2 -vfiles <design name>.run1/syn.v

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Verilog HDL files:

/usr/maxplus2/examples/cadence/example11/count8.v
/usr/maxplus2/examples/cadence/example13/rom_test.v

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly with
the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the Synopsys
Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within the
MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project
Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the
LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist
Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command

(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed
on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer

Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Running Synopsys Compilers from the
MAX+PLUS II Software

Running Synopsys Compilers from the MAX+PLUS II
Software

With MAX+PLUS® II software, you can automatically process Verilog HDL and VHDL designs with the
Synopsys Design Compiler or FPGA Compiler by following these steps:

1. Create a project directory under your login directory.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /<MAX+PLUS II system directory>
setenv SYNOPSYS /<Synopsys system directory>

3. Add the $ALT_HOME/synopsys/bin and $SYNOPSYS/$ARCH/syn/bin directories to the PATH
environment variable in your .cshrc file. The $ARCH environment variable specifies the platform on which
the Synopsys Design Compiler is running. Valid platform names are sparc, sparcOS5, rs6000, and hp700.

4. Source your .cshrc file to update the environment variables.

If you use additional custom libraries, you must specify them in a .synopsys_dc.setup file, and verify
that it contains the correct library settings for mapping to the target family. See Setting Up the
Synopsys/MAX+PLUS II Working Environment for more information about the .synopsys_dc.setup
file.

5. Create your project in Verilog HDL or VHDL using the MAX+PLUS II Text Editor or another standard text
editor. You must save Verilog HDL files with the extension .v and VHDL files with the extension .vhd.

If you use the MAX+PLUS II Text Editor to create your design, you can insert templates for Verilog
HDL or VHDL constructs with the Verilog Template and VHDL Template commands (Templates
menu). The MAX+PLUS II Text Editor also provides syntax coloring for Verilog HDL and VHDL
files to improve file readability.

6. In the MAX+PLUS II software, specify the project to be compiled with Project Name (File menu). Make
sure the project name specified in MAX+PLUS II software matches both the name of the top-level design file
and the Entity Declaration name specified in the top-level design file.

7. Click Button 1 on the Compiler toolbar button or choose the Compiler command (MAX+PLUS II menu) to
open the Compiler.

8. In the MAX+PLUS II Compiler, turn on the Synopsys Compiler command (Interfaces menu).

9. Open the Synopsys Compiler Settings dialog box by choosing Synopsys Compiler Settings (Interfaces
menu). Specify the appropriate options:

1. Select either Design Compiler or FPGA Compiler in the Compiler box to specify which Synopsys
compiler you want to process the design.

2. If you wish to use the DesignWare interface and libraries, turn on the DesignWare (FLEX® devices
only) option (FLEX 6000, FLEX 8000, and FLEX 10K devices only).

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1

read -f db $proj.db >> $proj.log
 if (dc_shell_status == {}) {
 quit
 }

3. To preserve the design hierarchy during Synopsys compilation, turn on the Hierarchical Compilation
option. Turning off this option allows the Synopsys compiler to flatten the design.

4. To allow the Synopsys compiler to optimize across all hierarchical boundaries, turn on the Boundary
Optimization option.

5. Select the Low, Medium, or High option for Mapping Effort.

6. Choose OK to save all changes.

10. If you have turned on the DesignWare (FLEX devices only) option in the Synopsys Compiler Settings
dialog box, ensure that the global project synthesis style uses the correct settings. Refer Compiling Projects
with MAX+PLUS II Software for more information.

11. Specify the device(s) and output file(s) for the project. If you do not specify a device, the MAX+PLUS II
Compiler automatically selects one or more devices from the current device family. Refer to Creating VHDL
Design Files for Use with MAX+PLUS II Software for more information.

12. Choose the Start button to compile the project. The MAX+PLUS II software converts the EDIF Input File,
flattens the project, fits it into one or more Altera® devices, and generates the selected output files, including
programming files. The MAX+PLUS II Message Processor notifies you when one of the Synopsys compilers
is processing your design. When it has finished processing the design file(s), the Synopsys compiler
generates an EDIF netlist file for each design in the hierarchy, and the MAX+PLUS II software immediately
compiles the EDIF Input File(s).

Altera provides the mp2dc_ana and mp2dc_cmp shell scripts, which specify Synopsys Design Compiler or FPGA
Compiler settings automatically. These scripts read the settings you have specified in the Device (Assign menu)
and Synopsys Compiler Settings (Interfaces menu) dialog boxes for the project device(s), search path, link library,
target library, synthetic library options (if you have turned on the DesignWare option in the Synopsys Compiler
Settings dialog box), and other optimization options. You do not need to provide your own .synopsys_dc.setup file
unless you use libraries other than Altera libraries. See Setting Up Synopsys Configuration Files for more
information.

The MAX+PLUS II software runs both the mp2dc_ana and mp2dc_cmp shell scripts automatically when you
compile a VHDL or Verilog HDL design file with the Synopsys Compiler command (Interfaces menu) turned on.
The mp2dc_ana shell script analyzes your designs and generates a single hierarchical .db database file. The
analysis output information is recorded in the <project name>.log file. If the Design Compiler or FPGA Compiler
generates errors or warning messages during processing, the messages appear in the MAX+PLUS II Message
Processor window. You can select a message that includes a line number and click Button 1 on the Locate button
to locate the source of a message in the MAX+PLUS II Text Editor. If no errors occur during analysis, the
MAX+PLUS II software then starts the mp2dc_cmp shell script to read the .db file, compile the design, and
generate an EDIF netlist file for each design file in the hierarchy, which the MAX+PLUS II software then
processes as an EDIF Input File (.edf).

The the mp2dc_ana and mp2dc_cmp shell scripts are located in the /usr/maxplus2/synopsys/bin directory. You
can copy the mp2dc_cmp shell script to your project directory and specify custom settings for your design, such as
Clock frequency or timing constraints settings. Alternatively, you can create your own custom dc_shell script and
name the file my_mp2dc.scr. The mp2dc_cmp shell script will then use the commands in the my_mp2dc.scr file
and ignore the current settings or default settings for Synopsys compilation options. Figure 1 shows an excerpt of
the Altera-provided mp2dc_cmp shell script.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlproc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlproc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

current_design=$design
uniquify
set_max_area 0

designs= find(design, "*")
foreach (dsgn, designs) {
 current_design= dsgn
 edfout_file = ""
 edfout_file = dsgn
 edfout_file = edfout_file + ".edf"
 set_max_area 0

/* If you do not use my_mp2dc.scr to customize your compilation, the */
/* customizable settings in the following section are used. You can */
/* customize these settings only if the mp2dc_cmp file is located in */
/* your project directory. */

 if ("$use_my_cmd" == "true") {
 include my_mp2dc.scr
 } else {
 /* if no hierarchical compilation, then flatten the design */
 if ("$hierarchical_compile" == "OFF") {
 set_structure false
 set_flatten -effort low
 ungroup -all
 }

/* test compile options */
 if ("$boundary_opt" == "ON") {
 compile -boundary_optimization -map_effort $map_effort
 } else {
 compile -map_effort $map_effort
 }

/* If you use FPGA Compiler for FLEX devices, the LUT equation is output.*/
 /* If you use Design Compiler for FLEX devices, a TBL cell is output. */
 if (("$family" == "flex8000") || ("$family" == "flex10k")) {

if ("$synopsys_compiler" == "FPGA"){
 edifout_write_properties_list = {"lut_function"}
 } else {
 replace_fpga
 }
 }
 } /* End of customizable compilation settings section */

write -f edif current_design -o edfout_file

if (dc_shell_status == {}) {
 quit
 }
}

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synplicity-Provided Logic Libraries

Synplicity-Provided Logic Libraries

Library: Description:

altera.vhd
A VHDL logic function library that includes the LCELL, SOFT, GLOBAL, CASCADE, and CARRY primitives for
controlling design synthesis and fitting. These primitives can be instantiated directly in your VHDL file.
These models allow you to perform functional VHDL simulation while maintaining an architecture-
independent VHDL description.

altera.v A Verilog HDL logic function library equivalent to the altera.vhd library file.

You can create your own libraries of custom logic functions for use with Synplicity software. You can use custom
logic functions to incorporate an EDIF Input File, Text Design File (.tdf), or any other MAX+PLUS® II-
supported design file into a project. The MAX+PLUS II software uses the synplcty.lmf Library Mapping File to
map standard Synplicity logic functions to equivalent MAX+PLUS II logic functions. To use custom logic
functions, you can create a custom LMF that maps your custom logic functions to the equivalent EDIF Input File,
Text Design File (.tdf), or other design file. Go to "Library Mapping File" in MAX+PLUS II Help for more
information.

Synplicity software provides the altera logic library that is used for synthesizing and compiling VHDL and Verilog
HDL designs. The altera library includes the following library files:

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Synergy &
MAX+PLUS II Software

Using Cadence Synergy & MAX+PLUS II Software

The following topics describe how to use the Cadence Synergy software with MAX+PLUS® II software. Choose
one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
MAX+PLUS II/Cadence Interface File Organization
Altera-Provided Logic & Symbol Libraries

Design Entry

Design Entry Flow

Creating VHDL Projects

Creating VHDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Creating Verilog HDL Projects

Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Synthesis & Optimization

VHDL

Synthesizing & Optimizing VHDL Files with Synergy Software
Converting VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the vlog2alt or
altout Utility

Verilog HDL

Synthesizing & Optimizing Verilog HDL Files with Synergy Software
Converting Verilog HDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the
vlog2alt Utility

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-symlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fg15cad.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogedif.html?csf=1&web=1

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.cadence.com/
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Synplicity Synplify &
MAX+PLUS II Software

Using Synplicity Synplify & MAX+PLUS II Software

The following topics describe how to use the Synplicity Synplify software with MAX+PLUS® II software. Choose
one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Synplicity Working Environment

Software Requirements
MAX+PLUS II Directory Structure
MAX+PLUS II/Synplicity Interface File Organization
Synplicity-Provided Logic Libraries

Design Flow

Design Entry

Design Entry Flow

VHDL

Creating VHDL Designs for Use with MAX+PLUS II Software
Entering Resource Assignments

Assigning Pins
Assigning the Implement in EAB Logic Option
Modifying the Assignment & Configuration File with the setacf Utility

Verilog HDL

Creating Verilog HDL Designs for Use with MAX+PLUS II Software
Entering Resource Assignments

Assigning Pins
Assigning the Implement in EAB Logic Option
Modifying the Assignment & Configuration File with the setacf Utility

Synthesis & Optimization

Synthesizing & Optimizing VHDL or Verilog HDL Files with Synplify Software
Analyzing VHDL or Verilog HDL Designs with the Synplify HDL Analyst

Compilation

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-spctyall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-files.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sypfig1.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpvhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlanal.html?csf=1&web=1

Project Compilation Flow
Compiling Projects with MAX+PLUS II Software

Synplicity Synplify-Specific Compiler Settings

Device Programming

Programming Altera Devices

Related Links

MAX+PLUS II Development Software
Altera Programming Hardware
Synplicity web site (http://www.synplicity.com)

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compset.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.synplicity.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / MAX+PLUS II/Synplicity Software
Requirements

MAX+PLUS II/Synplicity Software Requirements
Table 1 shows the software applications that are used to generate, process,
synthesize, and verify a project with MAX+PLUS® II and Synplicity
software:

Table 1. Software Requirements
Synplicity Altera

version 6.1
Synplify
HDL Analyst

MAX+PLUS II
version 10.0

The MAX+PLUS II read.me file provides up-to-date information on which versions of Synplicity software
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synthesizing & Optimizing VHDL or
Verilog HDL Files with Synplify Software

Synthesizing & Optimizing VHDL or Verilog HDL Files
with Synplify Software

You can create and process VHDL or Verilog HDL files and convert them to Altera® Hardware Description
Language (AHDL) Text Design Files (.tdf) or EDIF Input Files (.edf) that can be processed by the MAX+PLUS®

II Compiler. The MAX+PLUS II Compiler can process a VHDL or Verilog HDL file that has been synthesized by
Synplify software, saved as an AHDL TDF or an EDIF netlist file, and imported into the MAX+PLUS II software.
The information presented here describes only how to use VHDL or Verilog HDL files that have been processed by
Synplify software. For information on direct MAX+PLUS II support for VHDL or Verilog HDL Design Files, go
to MAX+PLUS II VHDL or Verilog HDL Help.

To process a VHDL or Verilog HDL file with Synplify software for use with MAX+PLUS II software, follow these
steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Synplicity Working Environment.

2. Create a VHDL file, <design name>.vhd, or a Verilog HDL file, <design name>.v, using the MAX+PLUS II
Text Editor or another standard text editor and save it in a working directory. Go to Creating VHDL Designs
for Use with MAX+PLUS II Software or Creating Verilog HDL Designs for Use with MAX+PLUS II
Software for more information on HDL design entry.

3. Start the Synplify software:
On a UNIX workstation, type synplify at a UNIX prompt from your working directory.

or:

On a PC, double-click the synplify.exe icon in your Â¥synplicityÂ¥bin directory.
4. Create a new project:

1. Choose New (File menu) to display the New dialog box, then select Project from the list. Choose OK.
2. Choose the Add button from the Project window. The Add Source Files dialog box is displayed.
3. Select your design file(s) and choose the Open button to add the file(s) to your Source Files list in the

Synplify window.
If you wish to create a hierarchical project, make sure the top-level design file is at the bottom of the
Source Files list by selecting the file and dragging it to the bottom of the list.

5. Select the target Altera device:
1. Choose the Change button in the Target section. The Set Device Option dialog box is displayed.
2. Select an Altera MAX® (which includes Classic™) or FLEX® device family from the Technology list.
3. Select a device from the Part list.
4. (Optional) Turn on the Map logic cells to LCELLs option to increase performance. However, turning

on this option may decrease area optimization.
For MAX or Classic designs, specify the following options:

1. Enter an appropriate value for the Percent of design to optimize for timing box.
2. Enter an appropriate value for the Maximum cell fan-in box.
3. (Optional) Turn on the Make Non-critical Cells Soft option to allow the MAX+PLUS II

software to reduce the number of logic cells used in implementing non-timing critical
portions of the design.

or:
For FLEX designs, select an appropriate value from the Speed Grade list.

5. Select EDIF or AHDL in the Result Format box to specify the output file format from the Synplify

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setting.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1

software. Choose OK.
Saving your project in AHDL TDF format may improve compilation time. However, if your design
uses resource assignment attributes, you should save your file in EDIF netlist file format. See Entering
Resource Assignments for more information.

6. Enter the frequency value for the project in the Frequency (MHz) box in the Synplify window.
7. (Optional) Turn on the Symbolic FSM Compiler option in the Synplify window to direct the Synplify

software to automatically find and re-encode state machines in your design. Turning this option on may
reduce unnecessary states and transitional logic.

8. Run the Synplify software by choosing the Run button in the Synplify window. Synplify software
synthesizes and optimizes the design, and creates the EDIF netlist file <design name>.edf or the AHDL TDF
<design name>.tdf.

9. (Optional) Run the HDL Analyst to analyze and evaluate the performance of your design, as described in
Analyzing VHDL or Verilog HDL Designs with the Synplify HDL Analyst.

10. (Optional) Add appropriate timing constraints in a separate Synplify Design Constraints File (.sdc) or in the
VHDL or Verilog HDL source file. If you add timing constraints or resource assignments in a separate .sdc
file, you must add the .sdc file to the Source Files list in the Synplify window.

11. Correct any errors or warnings.
12. If you have corrected errors or warnings, or added timing constraints to your project, repeat step 8 to

implement the changes in your synthesized design.
13. Create the /<project directory>/max2 subdirectory.
14. Copy the <design name>.edf or <design name>.tdf generated in step 8 to the /<project directory>/max2

directory.
15. Process your design with the MAX+PLUS II Compiler, as described in Compiling Projects with

MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlanal.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synplicity Design Entry Flow

Synplicity Design Entry Flow

Figure 1. MAX+PLUS II/Synplicity Design Entry Flow

Altera-provided items are shown in blue.

Figure 1 shows the design entry flow for the MAX+PLUS® II/Synplicity interface.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / The MAX+PLUS II System Directory

The MAX+PLUS II System Directory

Intel does not warrant that this solution will work for the customer's intended purpose and disclaims all liability for use of or reliance on the
solution.

The information presented here assumes that you are using C shell and that your MAX+PLUS II system directory
is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment variables for your
shell.

Support

Intel Community Forums provides a place to ask and answer questions about Intel products.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://community.intel.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Design Compiler & FPGA Compiler
Technology Libraries

Design Compiler & FPGA Compiler Technology
Libraries

Table 1. Altera-Provided Primitives

Name
Note
(1),

Note (2)
Description Name Description

LCELL Logic cell buffer primitive EXP MAX® 5000, MAX 7000, and MAX 9000
Expander buffer primitive

GLOBAL Global input buffer primitive SOFT Soft buffer primitive

CASCADE FLEX® 6000, FLEX 8000, and FLEX 10K
cascade buffer primitive OPNDRN

FLEX 6000, FLEX 8000, and FLEX 10K Open-
drain buffer primitive

CARRY
FLEX 6000, FLEX 8000, and FLEX 10K cascade
buffer primitive

DFF
DFFE
DFFS
Note
(2)

D-type flipflop with Clock Enable primitive

LATCH Latch primitive

TFF
TFFE
TFFS
Note
(2)

T-type flipflop primitive

TRIBUF Tri-state buffer primitive
Notes:
(1) All buffer primitive names except OPNDRN must be prefixed with an "A" in FLEX 6000, FLEX 8000, and FLEX 10K
designs. The TRIBUF primitive is equivalent to the TRI primitive in the MAX+PLUS II software.
(2) The DFFE and TFFE primitives include a Clock Enable input; the DFFS and TFFS primitives are equivalent to DFF and
TFF primitives without Clear or Preset inputs. For designs that are targeted to FLEX 6000 devices, you should use the
DFFE or TFFE primitive only if the design contains either a Clear or Preset signal, but not both. If your design contains
both a Clear and a Preset signal, you must use the DFFE6K primitive.

The VHDL simulation model /usr/maxplus2/synopsys/library/alt_pre/<device family>/src/<device
family>_components.vhd file shows the exact cell and pin names for each device family. The Verilog HDL
simulation file /usr/maxplus2/synopsys/library/alt_pre/verilog/src/altera.v shows the functionality of these
cells.

The Altera® -provided Design Compiler and FPGA Compiler technology libraries contain primitives that the
Synopsys compilers use to map your designs to the target device architecture. These primitives contain timing and
area information that the Synopsys compilers use to meet area and performance requirements. Table 1 shows the
functions provided in these libraries. Choose Primitives from the MAX+PLUS II Help menu for detailed
information on these functions.

Altera recommends instantiating these functions directly in your designs only if the Synopsys compilers do not
appear to recognize the functions when synthesizing your design, or if you prefer to hand-optimize certain portions
of your design.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Table 2. Altera Technology Libraries

Altera Device Family Synopsys Design Compiler Synopsys FPGA Compiler

FLEX® 10K devices

flex10k.db
flex10k-2.db
flex10k-3.db
flex10k-4.db
flex10k-5.db

flex10k_fpga.db
flex10k-2_fpga.db
flex10k-3_fpga.db
flex10k-4_fpga.db
flex10k-5_fpga.db

FLEX 8000 devices

flex8000.db
flex8000-2.db
flex8000-3.db
flex8000-4.db
flex8000-5.db
flex8000-6.db

flex8000_fpga.db
flex8000-2_fpga.db
flex8000-3_fpga.db
flex8000-4_fpga.db
flex8000-5_fpga.db
flex8000-6_fpga.db

FLEX 6000 devices flex6000-2.db
flex6000-3.db

flex6000-2_fpga.db
flex6000-3_fpga.db

MAX® 9000 devices max9000.db max9000_fpga.db
MAX 7000, MAX 7000E,
MAX 7000S, & MAX 7000A devices max7000.db max7000_fpga.db

MAX 5000 & Classic® devices max5000.db max5000_fpga.db

Table 2 lists the technology library names.

Related Links:

Go to MAX+PLUS® II /Synopsys Interface File Organization in these MAX+PLUS II ACCESSSM Key
topics for related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Converting Synopsys Timing
Constraints into MAX+PLUS II-Compatible Format with the syn2acf Utility

Converting Synopsys Timing Constraints into
MAX+PLUS II-Compatible Format with the syn2acf
Utility

The syn2acf utility does not support set_arrival timing constraints for internal nodes.

Figure 1. Sample Command File (.cmd) for Setting Timing Constraints

create_clock -period 50 -waveform {0 25} CLK
set_clock_skew -delay 2 CLK
set_input_delay 10 IN2
set_input_delay 5 -clock CLK IN1
set_output_delay 20 OUT2
set_output_delay 5 -clock CLK OUT1
set_max_delay 25 -to OUT1
set_max_delay 35 -to OUT2
set_multicycle_path 2 -to n20_reg

Altera provides the syn2acf utility, which is an interface program that converts Synopsys timing constraints from
non-hierarchical designs into the MAX+PLUS® II Assignment & Configuration File (.acf) format. For information
on converting timing constraints from hierarchical designs, refer to Converting Synopsys Hierarchical Timing
Constraints into MAX+PLUS II-Compatible Format with the gen_iacf and gen_hacf Utilities.

The syn2acf utility requires the following input files:

Flattened EDIF netlist file
dc_shell script file
Standard Delay Format (SDF) constraints construct
SDF timing delay construct

To use the syn2acf utility, follow these steps:

1. Set the timing constraints by using one of the following methods:

Start the Synopsys Design Analyzer and specify timing constraints by choosing appropriate menu
commands.

or:

Create the <design name>.cmd file for use with a dc_shell script. See Figure 1.

1. Compile the design and run the syn2acf utility either from the command line or with a Design Compiler dc

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-genacf.html?csf=1&web=1

script:

Compile the design, then type the following command from the UNIX prompt to start the syn2acf utility:

/usr/maxplus2/synopsys/bin/syn2acf <design name>

or:

Run a dc script inside the dc_shell script that reads the VHDL design, compiles it, and runs the syn2acf
utility. Figure 2 shows a sample dc script.

The syn2acf utility uses the ALT_HOME environment variable, if it has been specified, to determine the
MAX+PLUS II system directory; otherwise, it uses the /usr/maxplus2 directory. To specify a
different MAX+PLUS II system directory with the ALT_HOME environment variable, you can either edit
the .cshrc file to specify the correct directory or type the following command at the UNIX prompt:

setenv ALT_HOME <MAX+PLUS II system directory>

Figure 2. Sample Script for Running the syn2acf Utility

/* dc_script example to interface with syn2acf */
dc_shell <<!
read -f vhdl <design name>.vhd

include <design name>.cmd /*set timing constraints*/

compile

current_design=<design name>
include /usr/maxplus2/synopsys/bin/syn2acf.cmd /*generate required files*/

sh /usr/maxplus2/synopsys/bin/syn2acf <design name> /*invoke syn2acf utility*/

quit
!

The syn2acf utility cannot support maximum Clock frequency (fMAX) correctly if more than one
Clock skew is specified in the dc_shell command script. This problem occurs because the Synopsys
write_script command drops the Clock skew information for the registers. The syn2acf utility will
use the last Clock skew number to calculate fMAX.

The sample dc script includes the Altera® -provided syn2acf.cmd file, shown in Figure 3, to generate the
required input files for the syn2acf utility.

Figure 3. Altera-Provided syn2acf.cmd File

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

ungroup -flatten -all write -f edif write_script > altsyn.dc write_constraints -format
sdf -cover_design write_timing -format sdf

All timing assignments generated by the syn2acf utility are written to the Timing Requirement Assignments
Section of the project's ACF, with the assignment source identifier {synopsys} at the end of each line. Figure
4 shows a sample ACF excerpt that contains Synopsys timing constraints generated by the syn2acf utility.

Figure 4. Sample ACF Excerpt with Synopsys Timing Constraints

TIMING_POINT
BEGIN
 "|OUT2" : TCO = 15.00ns {synopsys};
 "|IN1" : TPD = 10.00ns {synopsys};
 "|IN2" : TPD = 5.00ns {synopsys};
 "|OUT1" : TCO = 20.00ns {synopsys};
 "|IN1" : TSU = 20.00ns {synopsys};
 "|IN2" : TSU = 117.00ns {synopsys};
 "|CLK" : FREQUENCY = 50.00ns {synopsys};
 "|n10_reg" : FREQUENCY = 100.00ns {synopsys};
END;

Altera provides sample files for these utilities in the /usr/maxplus2/synopsys/bin directory.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all
liability for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / View by Tool

ACCESS Partner EDA Tools, Listed by Tool
Click on one of the following tool names for information on how to use it with the MAX+PLUS® II software:

Certify (Synplicity)
Composer (Cadence)
Concept (Cadence)
Design Architect (Mentor Graphics)
Design Compiler (Synopsys)
Design Viewpoint Editor (see QuickSim II)
FPGA Compiler (Synopsys)
FPGA Express (Synopsys)
Galileo Extreme (Exemplar Logic)
Leapfrog (Cadence)
Leonardo (Exemplar Logic)
PrimeTime (Synopsys)
QuickHDL and QuickHDL Pro (Mentor Graphics)
QuickPath (Mentor Graphics)
QuickSim II (Mentor Graphics)
RapidSIM (Cadence)
Synergy (Cadence)
Synplify (Synplicity)
Synplify Pro (Synplicity)
Verilog-XL (Cadence)
VHDL System Simulator [VSS] (Synopsys)

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
http://www.synplicity.com/products/certify/index.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-comover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-arch_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dcpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qsim_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dcpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpexpg.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gleo_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leapover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leon_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdl_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qpth_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qsim_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-rapover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpover.html?csf=1&web=1
http://www.synplicity.com/products/synplifypro/index.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-verover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsspage.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / DesignWare Up/Down Counter
Function Instantiation Example for VHDL

DesignWare Up/Down Counter Function Instantiation
Example for VHDL

Figure 1 shows a VHDL file excerpt with DW03_updn_ctr instantiation.

Figure 1. VHDL File Excerpt with Up/Down Counter Instantiation

LIBRARY ieee,DW03;
USE ieee.std_logic_1164.all;
USE DW03.DW03_components.all;

ENTITY updn_4 IS
 PORT (D : IN STD_LOGIC_VECTOR(4-1 DOWNTO 0);
 UP_DN, LD, CE, CLK, RST: IN STD_LOGIC;
 TERCNT : OUT STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(4-1 DOWNTO 0));
END updn_4;

ARCHITECTURE structure OF updn_4 IS

BEGIN
 u0: DW03_updn_ctr
 GENERIC MAP(width => 4)
 PORT MAP (data => d, clk => clk, reset => rst, up_dn => up_dn,
 load => ld, tercnt => tercnt, cen => ce, count => q);
END structure;

The Altera DesignWare Libraries for FLEX devices allow you to instantiate the DW03_updn_ctr function, which is
the same as the Synopsys DW03 up/down counter. This function allows you to use the same VHDL code regardless
of which FLEX® device is targeted.

Related Links:

Go to Setting Up the DesignWare Interface in these MAX+PLUS II ACCESSSM Key topics for related
information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-updswlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsnwrstp.html?csf=1&web=1
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Updating DesignWare Libraries

Updating DesignWare Libraries

Table 1. Commands for Compiling the Library

Device Family Synopsys Compiler Commands for Compiling the Library Note (1)

FLEX®6000

Design Compiler
cd /usr/maxplus2/synopsys/library/alt_syn/flex6000/
src/dw_flex6000<speed grade>
dw_flex6000.script

FPGA Compiler
cd /usr/maxplus2/synopsys/library/alt_syn/flex6000/
src/dw_flex6000<speed grade>_fpga
dw_flex6000.script

FLEX 8000

Design Compiler
cd/usr/maxplus2/synopsys/library/alt_syn/flex8000/
src/dw_flex8000[<speed grade>]
dw_flex8000.script

FPGA Compiler
cd/usr/maxplus2/synopsys/library/alt_syn/flex8000/
src/dw_flex8000[<speed grade>]_fpga
dw_flex8000.script

FLEX 10K

Design Compiler
cd/usr/maxplus2/synopsys/library/alt_syn/flex10k/
src/dw_flex10k[<speed grade>]
dw_flex10k.script

FPGA Compiler
cd/usr/maxplus2/synopsys/library/alt_syn/flex10k/
src/dw_flex10k[<speed grade>]_fpga
dw_flex10k.script

Although Altera provides DesignWare libraries that are pre-compiled for the current version of Synopsys tools, you
may wish to recompile the libraries.

Altera provides compilable source files and scripts that allow you to automate the compilation process. These
source files allow you to use DesignWare software with any version of the Design Compiler or FPGA Compiler
software.They also allow you to install components whose source is written in VHDL, even if you are licensed only
for the Verilog HDL Compiler software.

Source files for the Design Compiler software are automatically installed in the following directories:

/usr/maxplus2/synopsys/library/alt_syn/flex10k/src/dw_flex10k[<speed grade>]
/usr/maxplus2/synopsys/library/alt_syn/flex8000/src/dw_flex8000[<speed grade>]
/usr/maxplus2/synopsys/library/alt_syn/flex6000/src/dw_flex6000<speed grade>

Source files for the FPGA Compiler are automatically installed in the following directories:

/usr/maxplus2/synopsys/library/alt_syn/flex10k/src/dw_flex10k[<speed grade>]_fpga
/usr/maxplus2/synopsys/library/alt_syn/flex8000/src/dw_flex8000[<speed grade>]_fpga
/usr/maxplus2/synopsys/library/alt_syn/flex6000/src/dw_flex6000<speed grade>_fpga

1. For FLEX 6000 devices, you must specify either -2 or -3 for the <speed grade> variable. For FLEX 8000
and FLEX 10K devices, you must specify -2, -3, -4, -5, or -6; or -2, -3, -4, or -5; respectively, for the
<speed grade> variable.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

Related Links:

Go to the following topics for additional information:
Setting Up the DesignWare Interface
Setting Up the MAX+PLUS II/Synopsys Working Environment
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up VSS Configuration Files

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsnwrstp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vssconfig.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Altera Simulation Libraries

Altera Simulation Libraries

Table 1. VHDL Functional Simulation Libraries

Device Family Functional Simulation Libraries Device Family Functional Simulation Libraries

FLEX® 10K

flex10k_FTSM.vhd.E
flex10k_fpga_FTSM.vhd.E
flex10k_FTGS.vhd.E
flex10k_fpga_FTGS.vhd.E
flex10k_components.vhd
flex10k_fpga_components.vhd

MAX® 9000

max9000_FTSM.vhd.E
max9000_fpga_FTSM.vhd.E
max9000_FTGS.vhd.E
max9000_fpga_FTGS.vhd.E
max9000_components.vhd
max9000_fpga_components.vhd

FLEX 8000

flex8000_FTSM.vhd.E
flex8000_fpga_FTSM.vhd.E
flex8000_FTGS.vhd.E
flex8000_fpga_FTGS.vhd.E
flex8000_components.vhd
flex8000_fpga_components.vhd

MAX 7000

max7000_FTSM.vhd.E
max7000_fpga_FTSM.vhd.E
max7000_FTGS.vhd.E
max7000_fpga_FTGS.vhd.E
max7000_components.vhd
max7000_fpga_components.vhd

FLEX 6000

flex6000_FTSM.vhd.E
flex6000_fpga_FTSM.vhd.E
flex6000_FTGS.vhd.E
flex6000_fpga_FTGS.vhd.E
flex6000_components.vhd
flex6000_fpga_components.vhd

MAX 5000 &
Classic®

max5000_FTSM.vhd.E
max5000_fpga_FTSM.vhd.E
max5000_FTGS.vhd.E
max5000_fpga_FTGS.vhd.E
max5000_components.vhd
max5000_fpga_components.vhd

Altera provides simulation libraries for both pre-routing functional simulation and post-routing timing simulation.

Pre-Routing Functional Simulation Libraries (VITAL-Compliant)

The /usr/maxplus2/synopsys/library/alt_pre/vital/src directory contains Altera® -provided VHDL simulation
models in VITAL 95 format. This library contains functional descriptions of all primitives that appear in Altera-
specific technology libraries. These libraries allow you to perform a functional or pre-routing simulation that
verifies the netlist structure generated by the Synopsys Design Compiler or FPGA Compiler software. Altera
provides the flex.cmp and flex.vhd files in the /usr/maxplus2/synopsys/library/alt_pre/vital/src directory.

Similarly, the /usr/maxplus2/synopsys/library/alt_pre/verilog/src directory contains Altera-provided Verilog
HDL simulation models for all device families. The altera.v file can be used for simulation with the Cadence
Verilog-XL simulator.

Pre-Routing Functional Simulation Libraries with Estimated Timing Information

The /usr/maxplus2/synopsys/library/alt_pre/<device family>/src directory contains Altera® -provided VHDL
simulation libraries, which give both functional and area descriptions of all primitives that appear in all Altera
technology libraries. These simulation libraries allow you to verify the function of VHDL projects, with estimated
timing, after synthesizing them with the Synopsys Design Compiler or FPGA Compiler, but before submitting them
to MAX+PLUS® II software for compilation.

Altera provides an encrypted Full Timing Structural Model (FTSM) and a Full Timing Gate-Level Simulation
model (FTGS) for the VHDL simulation libraries listed in Table 1.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

Post-Routing Timing Simulation Libraries

The /usr/maxplus2/synopsys/library/alt_post/sim/src directory contains the Altera® -provided library files for
performing timing simulation of designs that have been compiled with the MAX+PLUS II software. The VITAL
95-compliant post-simulation source files included in this directory are alt_vtl.vhd and alt_vtl.cmp. See
Performing a Timing Simulation with VSS Software for more information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pstrsim.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Timing Simulation with
Verilog-XL Software

Performing a Timing Simulation with Verilog-XL
Software

Once the MAX+PLUS® II software has compiled a project and generated a Verilog Output File (.vo), you can
perform a timing simulation using Cadence Verilog-XL software.

To simulate Verilog output files with the Verilog-XL timing simulator, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Generate Verilog Output Files (.vo), as described in Compiling Projects with MAX+PLUS II Software. The
MAX+PLUS II Compiler generates the <design name>.vo and alt_max2.vo files for use with Verilog-XL
software.

3. Using any standard text editor, create a stimulus file that includes test vectors for your design.

4. Start the Verilog-XL simulator and simulate your Verilog output files by typing the following command at
the UNIX prompt:

verilog <stimulus filename(s)> <design name> alt_max2.vo

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Verilog-XL &
MAX+PLUS II Software

Using Cadence Verilog-XL & MAX+PLUS II Software

The following topics describe how to use the Cadence Verilog-XL software with MAX+PLUS® II software.
Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
MAX+PLUS II Directory Structure
MAX+PLUS II/Cadence Interface File Organization

Functional Simulation

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility & Verilog-XL
Software
Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-XL Software

Timing Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with Verilog-XL Software

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

Using Cadence Concept & MAX+PLUS II Software
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2dir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlconf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vloglink.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fig17.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-initial.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-verilogx.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.cadence.com/
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using the Altera VHDL Express
(vhd_exprss) Utility

Using the Altera VHDL Express (vhd_exprss) Utility
Once you have created a VHDL Design File (.vhd) for your project, you can use the Altera ® VHDL Express
(vhd_exprss) utility to synthesize and optimize the design and generate an EDIF netlist file with Galileo Extreme
software; process the EDIF netlist file with the MAX+PLUS II software to generate a VHDL Output File (.vho);
and prepare the VHDL Output File for simulation with QuickHDL software. The vhd_exprss utility creates all
necessary subdirectories and copies all files to the correct locations.

To use the vhd_exprss utility, follow these steps:

1. Be sure to set up the working environment correctly, as described in Setting Up the MAX+PLUS II/Mentor
Graphics/Exemplar Logic Working Environment.

2. Create a VHDL Design File that follows the guidelines described in Creating VHDL & Verilog HDL
Designs for Use with MAX+PLUS II Software.

3. Select the VHDL Design File for your project, press Button 3, and choose Open vhd_exprss from the
Navigator window to start the Altera VHDL Express tool.

4. Specify settings for the Input HDL File, Altera Device Family, Max2 Synthesis Style, Process Direction, and
Verbose options, and the Optimize and Effort runtime options, in the vhd_exprss dialog box, and choose
OK.

5. If necessary, correct any errors in the VHDL Design File and recompile the project. The vhd_exprss utility
generates a VHDL output file in the appropriate directory.

6. Simulate your project, as described in Performing a Timing Simulation with QuickHDL Software.

Related Topics:

Performing a Timing Analysis with QuickPath Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-quickhdl.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Instantiating LPM Functions in VHDL

Instantiating LPM Functions in VHDL
You can use Mentor Graphics Design Architect software to help you instantiate library of parameterized modules
(LPM) functions in your VHDL design files.

To incorporate an LPM function into a VHDL design file, perform the following steps:

1. Be sure to set up the Design Architect working environment correctly, as described in Setting Up the
MAX+PLUSÂ II/Mentor Graphics/Exemplar Logic Working Environment.

2. Open a dummy schematic in the Design Architect software:

1. Start the AlteraÂ® /Mentor Graphics interface by typing max2_dmgr at a UNIX prompt.

2. Start the Design Architect software by double-clicking Button 1 on the max2_da icon in the Design
Manager tools window.

3. Choose the OPEN_SHEET button in the Design Architect session_palette, then specify your project
name in the Component Name box. Choose OK.

3. Instantiate the desired LPM function in the dummy schematic:

1. Choose Altera Libraries (Library menu).

2. Choose ALTERA LPMLIB (Altera Libraries menu).

3. Choose from the available LPM functions on the ALTERA LPMLIB menu.

4. In the LPM_<lpm function> dialog box, specify a name for the LPM function in the Cell Name box
and appropriate values for the function's parameters. Make sure that any hexadecimal (Intel-format)
file that you use to specify the initial content of a memory function does not have the same name as the
design file name. Choose Megafunctions/LPM from the MAX+PLUSÂ® Â II Help menu for detailed
information about LPM functions.

5. Choose OK to generate the LPM function, the corresponding VHDL simulation model, and a VHDL
Component Declaration/Attribute Declaration/Attribute Specification (.cmp) template.

4. Close the Design Architect software without saving the dummy schematic.

5. Instantiate the function created in step 2 in your design file. Use the template file to help prevent syntax and
other errors.

6. Continue with the steps necessary to complete your design file, as described in Creating VHDL & Verilog
HDL Designs for Use with MAX+PLUS Â® Â II Software.

Installing the AlteraÂprovided MAX+PLUSÂ II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample hierarchical VHDL design file
/usr/maxplus2/examples/mentor/example8/adder16.vhd, which includes LPM function instantiation.

Feedback

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1#LPMLIB
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-hdlentry.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Converting VHDL Designs into
MAX+PLUS II-Compatible EDIF Netlist Files with the vlog2alt or altout Utility

Converting VHDL Designs into MAX+PLUS II-
Compatible EDIF Netlist Files with the vlog2alt or
altout Utility

You can convert a VHDL design into an EDIF netlist file with the extension .edf. This file can then be imported
into the MAX+PLUS® II software as an EDIF Input File (.edf).

To convert a VHDL design into an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Synthesize and optimize your VHDL design with Synergy, as described in Synthesizing & Optimizing
VHDL Files with Synergy Software.

3. Depending on whether or not you have installed the Concept alt_syn library, perform one of the following
steps to create <design name>.edf in the working directory:

If you have installed the Concept alt_syn library, type the following command at the UNIX prompt from
your working directory:

vlog2alt <design name> -rundir max2 -vfiles <design name>.run1/syn.v

or:

If you have not installed the Concept alt_syn library, follow these steps:

1. Edit the cds.lib file, which is located in your working directory, to include the following line:

DEFINE Opt <working directory>/<design name>.run1/Opt

2. Type the following command at the UNIX prompt from the working directory:

altout -lib Opt -rundir max2 <design name>

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample VHDL files:

/usr/maxplus2/examples/cadence/example9/count4.vhd
/usr/maxplus2/examples/cadence/example10/adder16.vhd

Feedback

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Primitive & Old-Style Macrofunction
Instantiation Example for VHDL

Primitive & Old-Style Macrofunction Instantiation
Example for VHDL

Go to the following topics for information and examples of how to instantiate functions that are not considered to
be hollow bodies, including functions in the alt_mf library, RAM and ROM, and the clklock megafunction:

Architecture Control Macrofunction Instantiation Example for VHDL
Instantiating RAM & ROM Functions in VHDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Figure 1. 4-Bit Adder Design with Registered Output (adder.vhd)

LIBRARY ieee;
 USE ieee.std_logic_1164.ALL;

ENTITY adder IS
 PORT (a, b : IN STD_LOGIC_VECTOR(4 DOWNTO 1);
 clk, rst : IN STD_LOGIC;

cout : OUT STD_LOGIC;
 regsum : OUT STD_LOGIC_VECTOR(4 DOWNTO 1));
 END adder;

ARCHITECTURE MAX7000 OF adder IS

SIGNAL sum : STD_LOGIC_VECTOR(4 DOWNTO 1);
SIGNAL ci, gclk, grst : STD_LOGIC;

You can instantiate the MAX+PLUS® II primitives listed in Design Compiler & FPGA Compiler Technology
Libraries in VHDL designs. These primitives can be used to control synthesis in the MAX+PLUS II software. You
can also instantiate MAX+PLUS II megafunctions and old-style macrofunctions.

Unlike other logic functions, MAX+PLUS II primitives do not need to be defined with Component Declarations
unless you wish to simulate the design with the VHDL System Simulator (VSS) software. Any references to these
primitives are resolved by the Synopsys compilers. All buffer primitives except the ATRIBUF and TRIBUF primitives
also have a "don't touch" attribute already assigned to them, which prevents the Synopsys compilers from
optimizing them. The Synopsys compilers also automatically treat mega- and macrofunctions that do not have
corresponding synthesis library models as "black boxes."

Figure 1 shows a 4-bit full adder with registered output that also instantiates an AGLOBAL or GLOBAL primitive. This
figure also illustrates the use of global Clock and global Reset pins in the MAX 7000 architecture. The design uses
an old-style 7483 macrofunction, which is represented as a hollow body named fa4.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insaltmf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-phoo.html?csf=1&web=1

-- Component Declaration for GLOBAL primitive
-- For FLEX devices, global, a_in, and a_out should be replaced with
-- aglobal, in1, and Y, respectively
COMPONENT global
 PORT (a_in : IN STD_LOGIC;
 a_out : OUT STD_LOGIC);
END COMPONENT;

-- Component Declaration for fa4 macrofunction
COMPONENT fa4
 PORT (c0,a1,b1,a2,b2,a3,b3,a4,b4 : IN STD_LOGIC;
 s1,s2,s3,s4,c4 : OUT STD_LOGIC);
END COMPONENT;

BEGIN
 ci <= '0';

-- FA4 Component Instantiation
 u0: fa4

PORT MAP (ci,a(1),b(1),a(2),b(2),a(3),b(3),a(4),b(4),
 sum(1),sum(2),sum(3),sum(4),cout);

-- GLOBAL Component Instantiation for Clock
-- For FLEX devices, global should be replaced with aglobal
 u1: global
 PORT MAP (clk, gclk);

-- GLOBAL Component Instantiation for Reset
-- For FLEX devices, global should be replaced with aglobal
 u2: global
 PORT MAP (rst, grst);

-- CLOCK process to create registered output
 clocked: PROCESS(gclk,grst)

BEGIN
 IF grst = '0' THEN
 regsum <= "0000"

ELSIF gclk'EVENT AND gclk = '1' THEN
 regsum <= sum;
 END IF;

END PROCESS clocked;

END MAX7000;

Before you can analyze the 4-bit adder design, you must first analyze the fa4 description in Figure 1 with the
Synopsys VHDL Compiler software. You can ignore the warning that is issued for any unknown function,
including the fa4 function in this example. If you wish, you can avoid receiving such warning messages by creating

Figure 2. Hollow-Body Description of a 4-Bit Full Adder (7483)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

-- fa4 maps to 7483. The interface names do not have to match.

ENTITY fa4 IS

PORT (c0,a1,b1,a2,b2,a3,b3,a4,b4 : IN STD_LOGIC;
 s1,s2,s3,s4,c4 : OUT STD_LOGIC);

END fa4;

ARCHITECTURE map7483 OF fa4 IS

BEGIN

-- This architecture body is left blank, and will map to the
-- 7483 macrofunction in MAX+PLUS II.

END;

a hollow-body description of the function.

A hollow-body VHDL description combines an Entity Declaration with an empty or null Architecture Body. An
empty Architecture Body contains the ARCHITECTURE IS clause, followed by the BEGIN and END keywords and a
semicolon (;). It does not include any information about the design's function or operation. Figure 2 shows the
hollow-body description for the fa4 function.

When you analyze the hollow-body design description with the Synopsys VHDL Compiler software, it produces a
hollow-body component that contains a single level of hierarchy with input and output pins, but does not contain
any underlying logic.

You can save the synthesized design as an EDIF netlist file (.edf) and compile it with the MAX+PLUS II software.
After the VHDL Compiler software has successfully processed the design, it generates the schematic shown in
Figure 3, which you can view with the Design Analyzer software.

Figure 3. Library Mapping File Excerpt for fa4

BEGIN
FUNCTION 7483 (c0, a1, b1, a2, b2, a3, b3, a4, b4,)
RETURNS (s1, s2, s3, s4, c4)

FUNCTION "fa4" ("c0", "a1", "b1", "a2", "b2", "a3",
 "b3","a4", "b4")
RETURNS ("s1", "s2", "s3", "s4", "c4")
END

Figure 3. Synthesized Design Generated by the Design Compiler

However, before you compile the EDIF netlist file with the MAX+PLUS II software, you must create the
adder.lmf file, shown in Figure 3, to map the fa4 function to the equivalent MAX+PLUS II function (7483). You
must then specify the LMF as LMF #2 in the expanded EDIF Netlist Reader Settings dialog box (Interfaces
menu) (LMF #1 is altsyn.lmf). For more information about creating LMFs, refer to "Library Mapping Files (.lmf)"
and "Library Mapping File Format" in MAX+PLUS II Help.

When you compile the design with the MAX+PLUS II software, you can disregard the warning "EDIF cell
<name> already has LMF mapping so CONTENTS construct has been ignored". To verify the global Clock
and global Reset usage, as well as the number of logic cells used, see the adder.rpt Report File generated by the
MAX+PLUS II Compiler.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Creating VHDL Designs for Use with
MAX+PLUS II Software

Creating VHDL Designs for Use with MAX+PLUS II
Software

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and save
them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements of text in text
files in different colors to distinguish them from other forms of syntax.

Once you have created a VHDL design, you can use the Design Compiler or FPGA Compiler to synthesize and
optimize it, and then generate an EDIF netlist file that can be processed with the MAX+PLUS II software.

To create a VHDL design that can be synthesized and optimized with the Design Compiler or FPGA Compiler,
follow these steps:

1. Instantiate logic functions with a Component Instantiation, and include a Component Declaration for each
function. Altera provides simulation models for the following types of logic functions:

Primitives in the Design Compiler & FPGA Compiler Technology Libraries. Go to Primitive & Old-
Style Macrofunction Instantiation Example for VHDL for an example.
Architecture Control Logic functions in the alt_mf library, which includes the a_8count, a_8mcomp,
a_8fadd, and a_81mux functions. See MAX+PLUS II Architecture Control Logic Function
Instantiation Example for VHDL for an example.
The DesignWare up/down counter function (DW03_updn_ctr). Go to DesignWare Up/Down Counter
Function Instantiation Example for VHDL for an example.
RAM and ROM functions generated with the genmem utility. Go to Instantiating RAM & ROM
Functions in VHDL for instructions.
The clklock megafunction, which is supported for selected FLEX 10K devices. This function is
generated with the gencklk utility. Go to Instantiating the clklock Megafunction in VHDL or Verilog
HDL for instructions.
MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

You can also instantiate any other Altera macrofunction or non-parameterized megafunction, i.e.,
functions not listed above, for which no simulation models or technology library support is available.
These functions are treated as "black boxes" during processing with the Design Compiler or FPGA
Compiler. See Primitive & Old-Style Macrofunction Instantiation Example for VHDL for an example.

For information on MAX+PLUS II primitives, megafunctions, and macrofunctions, choose
Primitives, Megafunctions/LPM, or Old-Style Macrofunctions from the MAX+PLUS II Help
menu. When searching for information on the alt_mf library functions, drop the initial "a_" from the
function name.

2. (Optional) If you instantiate a "black box" logic function for which no simulation/techology library support is

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-techlibs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insaltmf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insaltmf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-updncntr.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-updncntr.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-phoo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-phoo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlprim.html?csf=1&web=1

available, create a hollow-body design description in order to prevent the Design Compiler or FPGA
Compiler from issuing a warning message. See Primitive & Old-Style Macrofunction Instantiation Example
for VHDL for an example.

If you instantiate a "black box" logic function, you must create a Library Mapping File (.lmf) to map
the function to an equivalent MAX+PLUS II function before you compile the project with the
MAX+PLUS II software. See Primitive & Old-Style Macrofunction Instantiation Example for VHDL
for an example.

3. Once you have created a VHDL design, you can analyze it, synthesize it, (optional) perform a functional
simulation, and generate an EDIF netlist file that can be imported into the MAX+PLUS II software. Go to the
following topics for instructions:

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Synopsys Software
Performing a Pre-Routing or Function Simulation with VSS Software

Installing the Altera-provided MAX+PLUS II/Synopsys Logic interface on your computer automatically creates the
following VHDL sample files:

/usr/maxplus2/examples/mentor/examples/ministate.vhd
/usr/maxplus2/examples/mentor/examples/count8.vhd
/usr/maxplus2/examples/mentor/examples/tstrom.vhd

Related Links:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-prrtsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synthesizing & Optimizing VHDL
Files with Synergy Software

Synthesizing & Optimizing VHDL Files with Synergy
Software

You can use Cadence Synergy software to synthesize and optimize your VHDL files and convert them to EDIF
input files that can be processed by the MAX+PLUS® II Compiler. The information presented here describes only
how to use VHDL files that have been processed by Synergy software. For information on direct MAX+PLUS II
support for VHDL Design Files, go to MAX+PLUS II VHDL Help.

To process a VHDL file with Synergy software for use with MAX+PLUS II software, go through the following
steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a VHDL file <design name>.vhd using the MAX+PLUS II Text Editor or another standard text editor
and save it in a working directory. Go to Creating VHDL Designs for Use with MAX+PLUS II Software for
more information on VHDL design entry.

3. Start Synergy by typing synergy -lang vhdl at a UNIX prompt from the working directory.

4. Analyze your source file <design name>.vhd:

1. Choose Analyze Files (File menu) to open the Select Design dialog box.

2. Click on the Analyze Files tab.

3. Select the design name from the Files list.

4. Choose Analyze to analyze the source file(s).

5. Choose the Select Design tab from the Select Design dialog box and specify the following options:

1. Select the design architecture from the hierarchical list. The design architecture should appear in the
Design box.

2. Specify <design name>.run1 as the Run Directory.

3. Type alt_syn as the Target Library name.

4. (Optional) If you want to use the Synergy library of parameterized modules (LPM) synthesis
capability, choose the Macro Libraries ellipse button and select lpm_syn in the Select From box.

5. (Optional) If you want to view a synthesized schematic in Concept or Composer, go through the
following steps:

1. Choose Schematic Generation (Utilities menu).

2. Select either Concept or Composer in the Generate From box.

3. Type alt_max2 in the Symbol Libraries box.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatvh.html?csf=1&web=1

4. Choose Apply, then Close.

6. Choose the Select Design button from the Select Design window.

7. Indicate to the Synergy software that any clklock megafunction or any macrofunction instantiated in your
VHDL design is a "black box" that must pass untouched through the EDIF netlist file:

1. Choose Synthesis (Constraints menu), then choose Hierarchy Control.

2. Select the module or instance name from the hierarchical View list for Module/Instance.

3. Turn on Maintain Option in the Synthesis Constraints box.

4. Select Module/Instance and Tree Below in the Apply To box.

5. Choose Apply.

6. Repeat steps a through e for each instance of the function.

8. Choose Synthesize (Synthesis menu) from the Synergy window and specify the following options:

1. Click on the Synthesize tab.

2. Turn on the Generate Schematic option.

3. Select either Composer or Concept from the Type list box.

4. Choose Synthesize to start synthesizing your design.

9. Generate an EDIF netlist file that can be compiled with MAX+PLUS II software, as described in Converting
VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the vlog2alt or altout Utility.

10. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample VHDL files:

/usr/maxplus2/examples/cadence/example9/count4.vhd
/usr/maxplus2/examples/cadence/example10/adder16.vhd

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdledif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Cadence Verilog-XL &
MAX+PLUS II Software

Using Cadence Verilog-XL & MAX+PLUS II Software

The following topics describe how to use the Cadence Verilog-XL software with MAX+PLUS® II software. Click
on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Cadence Working Environment

Software Requirements
MAX+PLUS II Directory Structure
MAX+PLUS II/Cadence Interface File Organization

Functional Simulation

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility & Verilog-XL
Software
Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-XL Software

Timing Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with Verilog-XL Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

Using Cadence Concept & MAX+PLUS II Software
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Cadence web site (http://www.cadence.com)

Setting Up the MAX+PLUS II/Cadence Working Environment

To use MAX+PLUS® II software with Cadence software, you must first install the MAX+PLUS II software, then
establish an environment that facilitates entering and processing designs. The MAX+PLUS II/Cadence interface is
installed automatically when you install the MAX+PLUS II software on your computer. Go to MAX+PLUS II
Installation in the MAX+PLUS II Getting Started manual for more information on installation and details on the
directories that are created during MAX+PLUS II installation. Go to MAX+PLUS II/Cadence Interface File
Organization for information about the MAX+PLUS II/Cadence directories that are created during MAX+PLUS II

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using the C shell and that your MAX+PLUS II system
directory is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment
variables for your shell.

installation.

To set up your working environment for the MAX+PLUS II/Cadence interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Cadence software versions described in the
MAX+PLUS II/Cadence Software Requirements.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /usr/maxplus2

setenv CDS_INST_DIR <Cadence system directory path>

3. Add the $ALT_HOME/cadence/bin and $CDS_INST_DIR/tools/bin directories to the PATH environment
variable in your .cshrc file. Make sure these paths are placed before the Cadence hierarchy path.

4. Add /usr/dt/lib and /usr/ucb/lib to the LD_LIBRARY_PATH environment variable in your .cshrc file.
5. Create a new cds.lib file in your working directory or edit an existing one so that it includes all of the

following lines that apply to the Cadence tools you have installed:

DEFINE alt_syn ${ALT_HOME}/simlib/concept/alt_syn

DEFINE lpm_syn ${ALT_HOME}/simlib/concept/lpm_syn

DEFINE alt_lpm ${ALT_HOME}/simlib/concept/alt_lpm

DEFINE alt_mf ${ALT_HOME}/simlib/concept/alt_mf

DEFINE alt_max2 ${ALT_HOME}/simlib/concept/alt_max2

DEFINE alt_max2 ${ALT_HOME}/simlib/composer/alt_max2/alt_max2

DEFINE alt_vtl $ALT_HOME/simlib/concept/alt_vtl/lib

DEFINE altera $ALT_HOME/simlib/concept/alt_mf/lib

SOFTINCLUDE $CDS_INST_DIR/tools/leapfrog/files/cds.lib

DEFINE <design name>.

6. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating

Cadence Altera
version 97A:
Concept
Composer
ValidCOMPILER
concept2alt
vlog2alt
altout

VerilogLink
Synergy
HDL Direct (Concept 2.0 or later)
Non-Graphic Simulation Environment (SE)
RapidSIM, Verilog-XL, or Leapfrog
redifnet (SunOS only)

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Cadence software
applications are supported by the current version of MAX+PLUS II. It also provides information on installation
and operating requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS
II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

7. If you are using Concept on a Sun SPARCstation running SunOS, go to Setting Up the MAX+PLUS
II/Cadence Concept Work Environment for a Sun SPARCstation Running SunOS Software to install the
redifnet EDIF netlist reader utility.

8. If you are using Synergy software, edit the hdl.var file located in your working directory to include the
following line:

DEFINE work <design name>

9. Set up an appropriate directory structure for the tool(s) you are using. See the following topics for
information:

Composer Project File Directory Structure
Concept & RapidSIM Local Work Area Directory Structure

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Cadence Software Requirements

The following table shows the software applications that are used to generate, process, synthesize, and verify a
project with MAX+PLUS® II and Cadence software:

MAX+PLUS II Directory Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL Text Design File (TDF);
or any other MAX+PLUS II-supported design file. The EDIF netlist file must be created by the altout or
concept2alt utility and imported into the MAX+PLUS II software as an EDIF Input File (.edf).

Table 1. MAX+PLUS II Directory Organization

Directory Description

./lmf
Contains the Altera-provided Library Mapping File, cadence.lmf, that
maps Cadence logic functions to equivalent MAX+PLUS II logic
functions.

./examples/cadence
Contains the sample files for Cadence software discussed in these
ACCESSSM Key Guidelines.

./cadence Contains the AMPLE userware for the MAX+PLUS II/Cadence interface.

./simlib/concept/alt_max2

Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for
FLEX® 6000 devices only) for use with Concept software.

./simlib/composer/alt_max2
Contains the MAX+PLUS II primitives, including CARRY, CASCADE, EXP,
GLOBAL, LCELL, SOFT, OPNDRN, DFFE (D flipflop with Clock Enable), and
DFFE6K (D flipflop with Clock Enable and both Clear and Preset for FLEX
6000 devices only) for use with Composer software.

./simlib/concept/alt_lpm Contains the MAX+PLUS II megafunctions, including library of
parameterized modules (LPM) functions, for use with Concept software.

./simlib/concept/max2sim Contains the MAX+PLUS II/Concept simulation model library, max2_sim,
for use with RapidSIM software.

./simlib/concept/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Concept software, and the vlog2alt utility.

./simlib/composer/alt_syn Contains the MAX+PLUS II synthesis library, alt_syn, for use with
Synergy and Composer software.

./simlib/concept/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Concept software.

./simlib/composer/lpm_syn Contains the Cadence LPM library, lpm_syn, for use with Synergy and
Composer software.

./simlib/concept/alt_mf Contains the MAX+PLUS II VHDL logic function library. (a_8count is for
the MAX® 7000 and MAX 9000 device families only.)

./simlib/concept/edifnet/templates Contains template files for Concept directives, i.e., global.cmd,
compiler.cmd, vloglink.cmd, verilog.cmd, and master.local.

./simlib/concept/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives
contained in alt_max2 library for use with Concept software.

./simlib/composer/alt_max2/verilogUdps Contains Verilog HDL modules that are the equivalent of the primitives

Project design files and output files are stored in the project directory, with the exception of standard library
functions provided by Altera or another EDA tool vendor. The MAX+PLUS II software stores the connectivity data
on the links between design files in a hierarchical project in a Hierarchy Interconnect File (.hif), but refers to the
entire project only by its project name. The MAX+PLUS II Compiler uses the HIF to build a single, fully flattened
project database that integrates all design files in a project hierarchy.

MAX+PLUS II/Cadence Interface File Organization

Table 1 shows the MAX+PLUS® II/Cadence interface subdirectories that are created in the MAX+PLUS II system
directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation. For information on the other
directories that are created during MAX+PLUS II installation, see "MAX+PLUS II File Organization" in
MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

contained in alt_max2 library for use with Composer software.
./simlib/concept/alt_vtl
./simlib/composer/alt_vtl

Contains VITAL library source files for use with Concept or Composer
software.

./simlib/composer/alt_max2/verilog Contains simulation modules for all symbols in the alt_max2 Composer
library.

Related Topics:

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

FLEX Devices
MAX Devices
Classic Device Family

Performing a Functional Simulation of a Concept Schematic with the hdlconfig Utility &
Verilog-XL Software

You can perform a functional simulation of a Concept schematic with the hdlconfig utility and Verilog-XL
software before compiling your project with the MAX+PLUS® II software.

To functionally simulate a Concept schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

3. Use the hdlconfig utility to create a Verilog HDL text file that contains the entire design. Type the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

hdlconfig -a -c -r <design name> -o <design name>.v logic verilog_lib

4. If your design contains RAM or ROM functions (e.g., lpm_ram_dq, lpm_ram_io, lpm_rom, scfifo, dcfifo,
altdpram, and csdpram), run the vconfig utility to link the object convert_hex2ver.o to build a new Verilog-
XL file that supports these functions by following these steps:

1. Create a copy of the Verilog executable file by typing the following command at the UNIX prompt:

cp -p $CDS_INST_DIR/tools/verilog/bin/verilog $CDS_INST_DIR/tools /verilog/bin/
verilog.bak.

2. Type vconfig at the UNIX prompt from the /usr/maxplus2/cadence/bin directory to start the
script.

3. Accept cr_vlog as the name of the output script.
4. Accept 1 as the stand-alone target.
5. Type new_verilog as the name for the Verilog-XL target.
6. Respond Yes when you are prompted to compile for the Verilog-XL environment.
7. Respond No when you are prompted to include the Dynamic LAI, STATIC LOGIC AUTOMATION,

LMSI HARDWARE MODELER, Verilog Mixed-Signal, and CDC interfaces in this executable.
8. Respond Yes when you are prompted to include the Standard Delay File Annotator (SDF).

9. Specify /usr/maxplus2/verilog/veriuser.c when you are asked the name of the user template file. For
more information about the contents of the veriuser.c file, you can refer to the veriuser.doc file, which
is available in the Cadence Openbook product documentation. To locate this document, start
Openbook, and choose Alphabetical List of Products from the main menu. Scroll through the pages
until you locate the PLI 1.0 User Guide & Reference in the PLI section, and then continue to scroll
through the document until you locate the veriuser.doc file under "Section A" and "PLI Code
Examples."

10. When you are asked the name of files to be linked with the Verilog-XL simulator, specify the
hexadecimal (Intel-format) conversion file /usr/maxplus2/cadence/share/verilog/convert_hex2ver.o,
followed by a single period (.).

11. Run the output script cr_vlog to build the new Verilog-XL executable in the
/usr/maxplus2/cadence/bin directory. Make sure that the $CDS_INST_DIR/tools/bin path appears at
the beginning of the PATH statement in the .cshrc file.

12. If your C language library installation is different from the default location /usr/lang/SC3.0.1, type the
following command at the UNIX prompt:

setenv C_DIR <C language library installation directory>

13. If successful, replace the old Verilog executable file with the new one by typing the following
command at the UNIX prompt:

cp -p new_verilog $CDS_INST_DIR/tools/verilog/bin/verilog

5. Generate the stimulus file for the design and start the Verilog-XL simulator by typing the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

verilog -y /usr/maxplus2/simlib/concept/alt_max2/verilogUdps +libext+.v+.V <stimulus file
name> <design name>.v

6. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the
concept2alt utility, as described in Converting Concept Schematics into MAX+PLUS II-Compatible EDIF
Netlist Files with the concept2alt Utility.

7. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Performing a Functional Simulation of a Concept Schematic with VerilogLink & Verilog-
XL Software

You can perform a functional simulation of a Concept schematic with VerilogLink and Verilog-XL software before
compiling your project with the MAX+PLUS® II software.

To functionally simulate a Concept schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

3. Generate the global.cmd, vloglink.cmd, verilog.cmd, and expansion.dat directive files.
4. Type vloglink <design name> from the /<working directory>/source directory to create a vloglink.v file

from the Concept schematic.
5. Generate the stimulus file for the design and start the Verilog-XL simulator by typing the following

command at the UNIX prompt from the /<working directory>/<design name>/source directory:

verilog -y /usr/maxplus2/simlib/concept/alt_max2/verilogUdps +libext+.v+.V <stimulus file
name> vloglink.v

Figure 1. MAX+PLUS II/Cadence Project Simulation Flow

Altera-provided items are shown in blue.

6. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the
concept2alt utility, as described in Converting Concept Schematics into MAX+PLUS II-Compatible EDIF
Netlist Files with the concept2alt Utility .

7. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Project Simulation Flow

Figure 1 shows the project simulation flow for the MAX+PLUS® II/Cadence interface.

Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation

Altera provides the add_dc script, which is availiable in the MAX+PLUS II system directory, to allow you to
process MAX+PLUS II-generated Verilog Output Files (.vo) and VHDL Output Files (.vho) to prepare these files
for simulation with another EDA tool. The add_dc script runs the add_dclr utility, which inserts a device_clear
signal that is used for power-up initialization of all registers or flipflops in the design.

The script adds in a top-level signal named device_clear and connects it to the CLRN pin in all flipflops that should
initialize to 0, and to the PRN pin of all flipflops that should initialize to 1. If the CLRN or PRN pin of a flipflop is
already being used (i.e., is already connected to a signal), the script modifies the Verilog Output File or VHDL
Output File so that the AND of the original signal and the device_clear pin feed the CLRN or PRN pin.

To use the add_dc script to process Verilog Output Files and VHDL Output Files before simulation with another
EDA tool, follow these steps:

1. The add_dc script gives a message if the directory contains both a VHDL Output File and a Verilog Output
File with the same name (<design name>.vo and <design>.vho). You should delete or rename whichever
of those files should not have the device_clear signal added. The add_dc script can modify only one
design file at a time.

2. When the add_dc script processes the Verilog Output File or VHDL Output File, it creates a backup copy
of the original file, with the extension .ori.

3. The add_dc script works only for Verilog Output Files and VHDL Output Files that are generated by
MAX+PLUS II.

1. Make sure that your design file is located in the current directory, or change to the directory in which the
design file is located.

2. Type the following command at the command prompt:

¥<path name of add_dc.bat file>¥add_dc <design name> <path name of add_dclr.exe file>

For example, if the both the add_dc.bat and the add_dclr.exe files are located in the d:¥maxplus2¥exew
directory, and the d:¥maxplus2¥exew directory is specified in the search path, you can type the following
command at a command prompt to add a device_clear signal to a design named myfifo in the file myfifo.vo:

add_dc myfifo d:¥maxplus2¥exew

After you have used the add_dc script and are ready to simulate the resulting Verilog Output File or VHDL Output
File with another EDA tool, you should assert the active low device_clear pin for a period of time that is long
enough for the design to initialize. You can then de-assert the pin, and apply simulation vectors to the design.

Performing a Timing Simulation with Verilog-XL Software

Once the MAX+PLUS® II software has compiled a project and generated a Verilog Output File (.vo), you can
perform a timing simulation using Cadence Verilog-XL software.

To simulate Verilog output files with the Verilog-XL timing simulator, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Generate Verilog Output Files (.vo), as described in Compiling Projects with MAX+PLUS II Software. The
MAX+PLUS II Compiler generates the <design name>.vo and alt_max2.vo files for use with Verilog-XL
software.

3. Using any standard text editor, create a stimulus file that includes test vectors for your design.
4. Start the Verilog-XL simulator and simulate your Verilog output files by typing the following command at

the UNIX prompt:

verilog <stimulus filename(s)> <design name> alt_max2.vo

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to use
MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File (with the
extension .edf).

Related Topics:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files directly with
the MAX+PLUS II Compiler.
Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running the Synopsys
Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design from within the
MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF Input
Files with the extension .edf. Specific instructions for some tools are described in these MAX+PLUS II
ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic
functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom symbol to
the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-supported design
file. These custom functions are represented in design files as hollow-body symbols or "black box" HDL
descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.
3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the Project

Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you can choose the
Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a project,
the settings you need to specify are easier to specify from within the MAX+PLUS II software. After
you have run the graphical user interface for the MAX+PLUS II software at least once, you can more
easily use the command-line setacf utility to modify options in the Assignment & Configuration File
(.acf) for the project. Type setacf -h and maxplus2 -h for descriptions of setacf and
MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-down list
box. If you wish to implement the design logic in a specific device, select it in the Devices box. Otherwise,
select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the current device family.
If your design entry or synthesis and optimization tool required you to specify a target family and/or device,
specify the same information in this dialog box. For information on partitioning logic among multiple
devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through the
following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader Settings
(Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that vendor.
This name should be the name of the vendor whose tool(s) you used to create the EDIF netlist files. If
your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select Synopsys,
choose the Customize button, enter <project name>.lmf in the LMF #1 box, choose OK, and
skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files that
require custom LMF mappings, choose the Customize button to expand the dialog box to show all
settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the corresponding
text box, or select a name from the Files box. The selection in the Vendor box will change to Custom
and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog box to
show all settings. Any previously defined custom settings will be displayed. Under Signal Names, type
one or more names with up to 20 total name characters in the VCC or GND box if your EDIF Input
File(s) use one or more names other than VCC or GND for the global high or low signals. Multiple signal
names must be separated by either a comma (,) or a space. Under Library Mapping Files, turn on the

LMF #1 checkbox and type a filename in the text box following it, or select a name from the Files box.
If necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for detailed
information on the settings available in the EDIF Netlist Reader Settings dialog box.

5. Choose OK.
6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level logic

functions, you may need to ensure that all files are present in your project directory, i.e., the same directory
as the top-level design file. Otherwise, you must specify the directories containing these files as user libraries
with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:
Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into MAX+PLUS II-
Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or timing
analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size of the
output file(s). Turning on this command can reduce the size of output netlists by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a non-
optimized timing SNF provides the same functional and timing information as an optimized
timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:
1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF Netlist

Writer Settings command (Interfaces menu).
2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that

vendor and choose OK. If your vendor name does not appear, select Custom instead and specify
the settings that are appropriate for your simulation or timing analysis tool. Go to MAX+PLUS
II Help for detailed information on the options available in the EDIF Netlist Writer Settings
dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the Customize
button to expand the dialog box to show all settings. Select one of the SDF Output File options
under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the user-
defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames that are
based on the project name. For a multi-device project, the Compiler also generates a top-level EDIF
Output File that is uniquely identified by "_t" appended to the project name. In addition, the Compiler
automatically generates a VHDL Memory Model Output File, <project name>.vmo, when it generates
an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu). Select
VHDL Output File (.vho) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF ver. 2.1 files contain timing delay information that allows you to perform back-
annotation simulation in VHDL with VITAL-compliant simulation libraries. The VHDL Output Files
generated by the Compiler have the extension .vho, but are otherwise named in the same way as the
EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer command
(Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces menu). Select
Verilog Output File (.vo) or one of the SDF Output File options under Write Delay Constructs To, and
choose OK. SDF Output Files contain timing delay information that allows you to perform back-
annotation simulation in Verilog HDL. The Verilog Output Files generated by the Compiler have the
extension .vo, but are otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or choose
the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL, Verilog
HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing analysis or timing
simulation with another EDA tool. Specific instructions for some tools are described in these MAX+PLUS II
ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product documentation for your
EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of the
following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types of
programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information on
back-annotating pin assignments in Mentor Graphics Design Architect schematics.
Go to Programming Altera Devices for information on the different programming hardware options for
Altera device families.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program
an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S

MAX 9000
&

MAX
9000A
Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable
MasterBlaster™
Download Cable

on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available
from other manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX
workstations.

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer
Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and
software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

Last updated on December 6, 1999 for the MAX+PLUS II software version 9.4.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Functional Simulation of
a Composer Schematic with Verilog-XL Software

Performing a Functional Simulation of a Composer
Schematic with Verilog-XL Software

You can perform a functional simulation of a Cadence Composer schematic with the Verilog-XL simulator before
compiling your project with the MAX+PLUS® II software.

To functionally simulate a Composer schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the
MAX+PLUS II/Cadence Working Environment.

2. Create a Composer schematic and save it in your working directory, as described in Creating Composer
Schematics for Use with MAX+PLUS II Software.

3. In Composer, select Simulation from the Tools drop-down list.

4. Select Verilog-XL to start the Verilog-XL Integration Control window.

5. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the altout
utility, as described in Converting Composer Schematics into MAX+PLUS II-Compatible EDIF Netlist Files
with the altout Utility.

6. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Converting Verilog HDL Designs into
MAX+PLUS II-Compatible EDIF Netlist Files with the vlog2alt Utility

Converting Verilog HDL Designs into MAX+PLUS II-
Compatible EDIF Netlist Files with the vlog2alt Utility

You can use the vlog2alt utility to convert your Verilog HDL design into an EDIF netlist file. This file can then be
imported into the MAX+PLUS® II software as an EDIF Input File with the extension .edf.

To convert a Verilog HDL design into an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Synthesize and optimize your Verilog HDL design with Synergy, as described in Synthesizing & Optimizing
Verilog HDL Files with Synergy Software.

3. To convert your Verilog HDL design into an EDIF netlist file, type the following command at the UNIX
prompt from your working directory:

vlog2alt <design name> -rundir max2 -vfiles <design name>.run1/syn.v

4. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Verilog HDL files:

/usr/maxplus2/examples/cadence/example11/count8.v
/usr/maxplus2/examples/cadence/example13/rom_test.v

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Performing a Functional Simulation of
a Concept Schematic with VerilogLink & Verilog-XL Software

Performing a Functional Simulation of a Concept
Schematic with VerilogLink & Verilog-XL Software

You can perform a functional simulation of a Concept schematic with VerilogLink and Verilog-XL software before
compiling your project with the MAX+PLUS® II software.

To functionally simulate a Concept schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Cadence Working Environment.

2. Create a Concept schematic and save it in your working directory, as described in Creating Concept
Schematics for Use with MAX+PLUS II Software.

3. Generate the global.cmd, vloglink.cmd, verilog.cmd, and expansion.dat directive files.

4. Type vloglink <design name> from the /<working directory>/source directory to create a vloglink.v file
from the Concept schematic.

5. Generate the stimulus file for the design and start the Verilog-XL simulator by typing the following
command at the UNIX prompt from the /<working directory>/<design name>/source directory:

verilog -y /usr/maxplus2/simlib/concept/alt_max2/verilogUdps +libext+.v+.V <stimulus file
name> vloglink.v

6. When you are ready to compile the project, generate an EDIF netlist file <design name>.edf with the
concept2alt utility, as described in Converting Concept Schematics into MAX+PLUS II-Compatible EDIF
Netlist Files with the concept2alt Utility .

7. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creating.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synthesizing & Optimizing Verilog
HDL Files with Synergy Software

Synthesizing & Optimizing Verilog HDL Files with
Synergy Software

You can create and process Verilog HDL files and convert them into EDIF input files that can be processed by the
MAX+PLUS® II Compiler. To process a Verilog HDL file with Synergy software for use with the MAX+PLUS II
software, go through the following steps:

1. Be sure to set up your working environment correctly, as described in Setting up the MAX+PLUS II/Cadence
Working Environment.

2. Create a Verilog HDL file <design name>.v using the MAX+PLUS II Text Editor or another standard text
editor and save it in a working directory. Go to Creating Verilog HDL Designs for Use with MAX+PLUS II
Software for more information on Verilog HDL design entry.

3. Start Synergy by typing synergy -lang verilog at a UNIX prompt from your working directory.

4. Choose Select Design (File menu) from the Synergy window and specify the following options:

1. Select <design name>.v from the Verilog Files list.

2. Choose the Verilog Option tab from the Select Design dialog box.

3. Specify <design name>.run1 as the Run Directory.

4. Type /usr/maxplus2/simlib/concept/alt_max2/<design name>/verilog_lib/verilog.v
<working directory>/ in the Library Files (-v) box.

5. (Optional) If your design includes library of parameterized modules (LPM) functions, type
+define+SYNTH in the Other Compilations box.

6. Choose Select Design.

5. Choose the Design tab from the Select Design dialog box and set the target library:

1. Type alt_syn as the Target Library name.

2. (Optional) To use the Synergy LPM synthesis capability, type lpm_syn as the Library name in the
Macro Cell Library box.

3. Choose OK.

6. (Optional) To view the synthesized schematic in Concept or Composer, go through the following steps:

1. Select Schematic Generation (Utilities menu).

2. Select either Concept or Composer in the Generate From box.

3. Type alt_max2 in the Symbol Libraries box.

4. Choose Apply, then Close.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-creatv.html?csf=1&web=1

7. Choose Select Design from the Select Design window.

8. Choose Synthesize (Synthesis menu) from the Synergy window and specify the following options:

1. Click on the Synthesize tab.

2. Turn on the Generate Schematic option.

3. Select either Composer or Concept from the Type list box.

4. Choose Synthesize to start synthesizing your design.

9. Generate an EDIF netlist file that can be compiled by the MAX+PLUS II Compiler, as described in
Converting Verilog HDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files.

10. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Cadence interface on your computer automatically creates the
following sample Verilog HDL files:

/usr/maxplus2/examples/cadence/example11/count8.v
/usr/maxplus2/examples/cadence/example13/rom_test.v

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vlogedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Creating Verilog HDL Designs for
Use with MAX+PLUS II Software

Creating Verilog HDL Designs for Use with
MAX+PLUS II Software

You can create Verilog HDL design files with the MAX+PLUS® II Text Editor or another standard text editor and
save them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following
advantages:

Verilog HDL templates are available with the Verilog HDL Templates command (Templates menu). These
templates are also available in the ASCII verilog.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your Verilog HDL design, you can use the Syntax
Coloring command (Options menu). The Syntax Coloring feature displays keywords and other elements of
text in text files in different colors to distinguish them from other forms of syntax.

Once you have created a Verilog HDL design, you can use the Design Compiler or FPGA Compiler to synthesize
and optimize it, and then generate an EDIF netlist file that can be processed with the MAX+PLUS II software.

To create a Verilog HDL design that can be synthesized and optimized with the Design Compiler or FPGA
Compiler, follow these steps:

1. Instantiate logic functions with a Module Instantiation, and include a Module Declaration for each function.
Altera provides simulation models for the following types of logic functions:

Primitives in the Design Compiler & FPGA Compiler Technology Libraries. Go to Primitive & Old-
Style Macrofunction Instantiation Example for Verilog HDL for an example.
Architecture Control Logic functions in the alt_mf library, which includes the a_8count, a_8mcomp,
a_8fadd, and a_81mux functions. See MAX+PLUS II Architecture Control Logic Function
Instantiation Example for Verilog HDL for an example.
RAM and ROM functions generated with the genmem utility. Go to Instantiating RAM & ROM
Functions in VHDL for instructions.
The clklock megafunction, which is supported for selected FLEX 10K devices. This function is
generated with the gencklk utility. Go to Instantiating the clklock Megafunction in VHDL or Verilog
HDL for instructions.
MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

You can also instantiate any other Altera macrofunction or non-parameterized megafunction, i.e.,
functions not listed above, for which no simulation models or technology library support is available.
These functions are treated as "black boxes" during processing with the Design Compiler or FPGA
Compiler. See Primitive & Old-Style Macrofunction Instantiation Example for Verilog HDL for an
example.

For information on MAX+PLUS II primitives, megafunctions, and macrofunctions, choose
Primitives, Megafunctions/LPM, or Old-Style Macrofunctions from the MAX+PLUS II Help
menu. When searching for information on the alt_mf library functions, drop the initial "a_" from the
function name.

2. (Optional) If you instantiate a "black box" logic function for which no simulation/techology library support is

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-techlibs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insvprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insvprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insaltmv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insaltmv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inrromv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inrromv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-phoo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-phoo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insvprim.html?csf=1&web=1

available, create a hollow-body design description in order to prevent the Design Compiler or FPGA
Compiler from issuing a warning message. See Primitive & Old-Style Macrofunction Instantiation Example
for Verilog HDL for an example.

If you instantiate a "black box" logic function, you must create a Library Mapping File (.lmf) to map
the function to an equivalent MAX+PLUS II function before you compile the project with the
MAX+PLUS II software. See Primitive & Old-Style Macrofunction Instantiation Example for VHDL
for an example.

3. Once you have created a VHDL design, you can analyze it, synthesize it, (optional) perform a functional
simulation, and generate an EDIF netlist file that can be imported into the MAX+PLUS II software. Go to the
following topics for instructions:

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Synopsys Software
Performing a Pre-Routing or Function Simulation with VSS Software

Installing the Altera-provided MAX+PLUS II/Synopsys Logic interface on your computer automatically creates the
following VHDL sample files:

/usr/maxplus2/examples/mentor/examples/ministate.v
/usr/maxplus2/examples/mentor/examples/count8.v
/usr/maxplus2/examples/mentor/examples/tstrom.v

Related Links:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insvprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insvprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-insvprim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsynt.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-prrtsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Synopsys VSS & MAX+PLUS
II Software

Using Synopsys VSS & MAX+PLUS II Software

The following topics describe how to use the Synopsys VHDL System Simulator (VSS) and MAX+PLUS® II
software. Choose one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Synopsys Working Environment

Software Requirements
Setting Up VSS Configuration Files
Simulation Libraries
MAX+PLUS II/Synopsys Interface File Organization
MAX+PLUS II Project File Structure

Functional Simulation

Design Entry Flow
Performing a Pre-Routing or Functional Simulation with VSS Software

Timing Simulation

Project Simulation Flow
Performing a Timing Simulation with VSS Software

Related Topics:

Go to the following topics in these MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
Resynthesizing a Design Using the alt.vtl Library & a MAX+PLUS II SDF Output File
Using Synopsys Design Compiler or FPGA Compiler & MAX+PLUS II Software
Using Synopsys FPGA Express & MAX+PLUS II Software
Using Synopsys PrimeTime & MAX+PLUS II Software

Go to the following topics for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Synopsys web site (http://www.synopsys.com)

Setting Up the MAX+PLUS II/Synopsys Working Environment

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

The information presented here assumes that you are using C shell and that your MAX+PLUS II system directory
is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment variables for
your shell.

Synopsys Altera

To use the MAX+PLUS® II software with Synopsys software, you must first install the MAX+PLUS II software,
then establish an environment that facilitates entering and processing designs by modifying your Synopsys
configuration files. The MAX+PLUS II/Synopsys interface is installed automatically when you install the
MAX+PLUS II software on your workstation. Go to MAX+PLUS II Installation in the MAX+PLUS II Getting
Started manual for more information on installation and details on the directories that are created during
MAX+PLUS II installation. Go to MAX+PLUS II/Synopsys Interface File Organization for information about the
MAX+PLUS II/Synopsys directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Synopsys interface, follow these steps:

1.

2. Ensure that you have correctly installed the MAX+PLUS II and Synopsys software versions described in the
MAX+PLUS II/Synopsys Software Requirements.

3. Add technology, synthetic, and link library settings to your .synopsys_dc.setup configuration file, as
described in Setting Up Design Compiler & FPGA Compiler Configuration Files.

To use the DesignWare interface with FLEX® 6000, FLEX 8000, and FLEX 10K devices, follow the
steps in Setting Up the DesignWare Interface.

4. Add simulation library settings to your .synopsys_vss.setup file, and analyze the libraries, as described in
Setting Up VSS Configuration Files.

5. Add the /usr/maxplus2/bin directory to the PATH environment variable in your .cshrc file in order to run the
MAX+PLUS II software.

(Optional) Change the path in the first line of the perl script files, which are located in the
$ALT_HOME/synopsys/bin directory to specify the correct path of your local perl executable file.

Related Topics:

Go to the following topics for additional information:
FLEX Devices
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Synopsys Software Requirements

The following applications are used to generate, process, synthesize, and verify a project with MAX+PLUS® II and
Synopsys software:

version 1998.02:
Design Compiler
FPGA Compiler
Design Analyzer (optional)
VHDL Compiler

HDL Compiler for Verilog
VHDL System Simulator (VSS) (optional)
PrimeTime version 1998.02-PT2.1(optional)

MAX+PLUS II
version 9.3

The MAX+PLUS II read.me file provides up-to-date information on which versions of Synopsys applications are
supported by the current version of MAX+PLUS II. It also provides information on installation and operating
requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS II software.
After installation, you can open the read.me file from the MAX+PLUS II Help menu.

Compilation with the Synopsys Design Compiler and FPGA Compiler is available only on Sun SPARCstations
running Solaris 2.4 or higher.

Setting Up VSS Configuration Files

The .synopsys_vss.setup file contains the mapping information that directs the VHDL System Simulator (VSS)
Software to use Altera® -supplied Altera Simulation Libraries during simulation. To configure your environment
for the MAX+PLUS® II /Synopsys interface, follow these steps:

1.

2. Add the lines shown in Figure 1 to your .synopsys_vss.setup file. Altera provides a sample setup file,
.synopsys_vss.setup, in the /usr/maxplus2/synopsys/config directory. See Figure 1.

Figure 1. Sample .synopsys_vss.setup File

WORK > DEFAULT
DEFAULT : .

altera : /usr/maxplus2/synopsys/library/alt_mf/lib

flex_vtl : /usr/maxplus2/synopsys/library/alt_pre/vital/
 lib/flex_vtl
alt_vtl : /usr/maxplus2/synopsys/library/alt_post/sim/
 lib/alt_vtl
flex10k_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_ftsm
flex10k_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_ftgs
max9000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_ftsm
max9000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_ftgs
flex8000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_ftsm
flex8000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_ftgs
max7000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_ftsm
max7000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_ftgs
flex6000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_ftsm
flex6000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_ftgs
max5000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_ftsm
max5000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max5000/

 lib/max5000_ftgs
flex10k_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_fpga_ftsm
flex10k_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_fpga_ftgs
max9000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_fpga_ftsm
max9000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_fpga_ftgs
flex8000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_fpga_ftsm
flex8000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_fpga_ftgs
max7000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_fpga_ftsm
max7000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_fpga_ftgs
flex6000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_fpga_ftsm
flex6000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_fpga_ftgs
max5000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_fpga_ftsm
max5000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_fpga_ftgs

The variables in the .synopsys_vss setup file perform the following functions:

The WORK variable specifies your working directory, i.e., the directory where you start the Synopsys
tools. If not explicitly specified elsewhere, the results of any analysis or compilation are written to this
directory. The first line of the file shown in Figure 1 maps WORK to the design library variable called
DEFAULT.

The DEFAULT variable is used to create library aliases, which allows you to map the WORK variable to
various paths. In Figure 1, the DEFAULT variable specifies the current directory.

The altera library is listed to allow you to simulate the architecture control logic functions in the
alt_mf library.

The remaining lines in the file specify the path and name of the directories that contain the device
simulation libraries for Altera device families.

3. Analyze the target device simulation library to ensure that the correct timing and functional information is
provided to VSS. Analyzing the simulation library produces VSS simulation models of the primitives that
appear in all Altera-provided technology libraries.

You can analyze device simulation libraries by using the Altera-provided shell script analyze_vss:

1.

2. Add the /usr/maxplus2/synopsys/bin directory, which contains the analyze_vss scripts, to the PATH
environment variable in your .cshrc file.

3. Make sure that you have write privileges for the /usr/maxplus2/synopsys/library/alt_pre/<device
family> directory because the analyzed model is placed in the
/usr/maxplus2/synopsys/library/alt_pre/<device family>/lib directory and the analysis log file is
placed in the ./synopsys/library/alt_pre/<device family>/src directory.

4. Run the analyze_vss shell script by typing analyze_vss at the dc_shell prompt. When you run the
analyze_vss shell script, you are prompted to select the appropriate device family simulation model(s)
for analysis. Figure 2 shows the analyze_vss shell script.

Figure 2. The analyze_vss Shell Script

Type the full pathname of the directory where the MAX+PLUS® II software is installed (default:
/usr/maxplus2):

<MAX+PLUS II system directory>

Analyze VSS Simulation Models:
1. flex10k_FTGS
2. flex10k_FTSM
3. flex10k_fpga_FTGS
4. flex10k_fpga_FTSM
5. max9000_FTGS
6. max9000_FTSM
7. max9000_fpga_FTGS
8. max9000_fpga_FTSM
9. flex8000_FTGS
10. flex8000_FTSM
11. flex8000_fpga_FTGS
12. flex8000_fpga_FTSM
13. max7000_FTGS
14. max7000_FTSM
15. max7000_fpga_FTGS
16. max7000_fpga_FTSM
17. flex6000_FTGS
18. flex6000_FTSM
19. flex6000_fpga_FTGS
20. flex6000_fpga_FTSM
21. max5000_FTGS
22. max5000_FTSM
23. max5000_fpga_FTGS
24. max5000_fpga_FTSM
25. alt_vtl
26. flex_vtl
27. Quit

Enter one or more numbers: <device library numbers>

5. Check the log file to make sure that no errors occurred during the analysis of the simulation models.

4. Use VSS to simulate your pre-routed VHDL design.

Related Topics:

Refer to the VHDL System Simulator Core Programs Manual for more information about VSS.

Altera Simulation Libraries

Altera provides simulation libraries for both pre-routing functional simulation and post-routing timing simulation.

Pre-Routing Functional Simulation Libraries (VITAL-Compliant)

The /usr/maxplus2/synopsys/library/alt_pre/vital/src directory contains Altera® -provided VHDL simulation
models in VITAL 95 format. This library contains functional descriptions of all primitives that appear in Altera-
specific technology libraries. These libraries allow you to perform a functional or pre-routing simulation that
verifies the netlist structure generated by the Synopsys Design Compiler or FPGA Compiler software. Altera
provides the flex.cmp and flex.vhd files in the /usr/maxplus2/synopsys/library/alt_pre/vital/src directory.

Similarly, the /usr/maxplus2/synopsys/library/alt_pre/verilog/src directory contains Altera-provided Verilog
HDL simulation models for all device families. The altera.v file can be used for simulation with the Cadence
Verilog-XL simulator.

Table 1. VHDL Functional Simulation Libraries

Device Family Functional Simulation Libraries Device Family Functional Simulation Libraries

FLEX® 10K

flex10k_FTSM.vhd.E
flex10k_fpga_FTSM.vhd.E
flex10k_FTGS.vhd.E
flex10k_fpga_FTGS.vhd.E
flex10k_components.vhd
flex10k_fpga_components.vhd

MAX® 9000

max9000_FTSM.vhd.E
max9000_fpga_FTSM.vhd.E
max9000_FTGS.vhd.E
max9000_fpga_FTGS.vhd.E
max9000_components.vhd
max9000_fpga_components.vhd

FLEX 8000

flex8000_FTSM.vhd.E
flex8000_fpga_FTSM.vhd.E
flex8000_FTGS.vhd.E
flex8000_fpga_FTGS.vhd.E
flex8000_components.vhd
flex8000_fpga_components.vhd

MAX 7000

max7000_FTSM.vhd.E
max7000_fpga_FTSM.vhd.E
max7000_FTGS.vhd.E
max7000_fpga_FTGS.vhd.E
max7000_components.vhd
max7000_fpga_components.vhd

FLEX 6000

flex6000_FTSM.vhd.E
flex6000_fpga_FTSM.vhd.E
flex6000_FTGS.vhd.E
flex6000_fpga_FTGS.vhd.E
flex6000_components.vhd
flex6000_fpga_components.vhd

MAX 5000 &
Classic®

max5000_FTSM.vhd.E
max5000_fpga_FTSM.vhd.E
max5000_FTGS.vhd.E
max5000_fpga_FTGS.vhd.E
max5000_components.vhd
max5000_fpga_components.vhd

Pre-Routing Functional Simulation Libraries with Estimated Timing Information

The /usr/maxplus2/synopsys/library/alt_pre/<device family>/src directory contains Altera® -provided VHDL
simulation libraries, which give both functional and area descriptions of all primitives that appear in all Altera
technology libraries. These simulation libraries allow you to verify the function of VHDL projects, with estimated
timing, after synthesizing them with the Synopsys Design Compiler or FPGA Compiler, but before submitting them
to MAX+PLUS® II software for compilation.

Altera provides an encrypted Full Timing Structural Model (FTSM) and a Full Timing Gate-Level Simulation
model (FTGS) for the VHDL simulation libraries listed in Table 1.

Post-Routing Timing Simulation Libraries

The /usr/maxplus2/synopsys/library/alt_post/sim/src directory contains the Altera® -provided library files for
performing timing simulation of designs that have been compiled with the MAX+PLUS II software. The VITAL
95-compliant post-simulation source files included in this directory are alt_vtl.vhd and alt_vtl.cmp. See
Performing a Timing Simulation with VSS Software for more information.

Related Topics:

Go to the following topics for additional information:
FLEX Devices
MAX Devices
Classic Device Family

MAX+PLUS II/Synopsys Interface File Organization

Table 1 shows the MAX+PLUS® II /Synopsys interface subdirectories that
are created in the MAX+PLUS II system directory (by default, the
/usr/maxplus2 directory) during the MAX+PLUS II software installation.
For information on the other directories that are created during the
MAX+PLUS II software installation, see "MAX+PLUS II File
Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting
Started manual.

You must add the /usr/maxplus2/bin directory to the PATH environment variable in your .cshrc file in order to
run the MAX+PLUS II software.

Table 1. MAX+PLUS II Directory Organization

Directory Description

./synopsys/bin
Contains script programs to convert Synopsys timing constraints into
MAX+PLUS II Assignment & Configuration File (.acf) format, and to analyze
VHDL System Simulator simulation models.

./synopsys/config Contains sample .synopsys_dc.setup and .synopsys_vss.setup files.

./synopsys/examples Contains sample files, including those discussed in these ACCESS Key
Guidelines.

./synopsys/library/alt_pre/<device
family>/src

Contains VHDL simulation libraries for functional simulation of VHDL
projects.

./synopsys/library/alt_pre/verilog/src Contains the Verilog HDL functional simulation library for Verilog HDL
projects.

./synopsys/library/alt_pre/vital/src
Contains the VITAL 95 simulation library. You use this library when you
perform functional simulation of the design before compiling it with the
MAX+PLUS II software.

./synopsys/library/alt_syn//<device
family>/lib

Contains interface files for the MAX+PLUS II/Synopsys interface. Technology
libraries in this directory allow the Design Compiler and FPGA Compiler to
map designs to Altera® device architectures.

./synopsys/library/alt_mf/src
Contains behavioral VHDL models of some Altera macrofunctions, along with
their component declarations. The a_81mux, a_8count, a_8fadd, and a_8mcomp
macrofunctions are currently supported. Libraries in this directory allow you to
instantiate, synthesize, and simulate these macrofunctions.

./synopsys/library/alt_post/syn/lib Contains the post-synthesis library for technology mapping.

./synopsys/library/alt_post/sim/src
Contains the VHDL source files for the VITAL 95-compliant library. You use
this library when you perform simulation of the design after compiling it with
the MAX+PLUS II software.

Related Topics:

Go to the following topics for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Altera-provided items are shown in blue.

Performing a Pre-Routing or Functional Simulation with VSS Software

After you have synthesized and optimized a VHDL or Verilog HDL design with the Design Compiler or FPGA
Compiler software, you can perform a pre-routing or functional simulation with the Synopsys VHDL System Simulator
(VSS) software.

MAX+PLUS II Project File Structure

In MAX+PLUS® II, a project name is the name of a top-level design file, without the filename extension. This
design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL™ TDF; or any other MAX+PLUS II-
supported design file. The EDIF netlist file must be created by Synopsys and imported into MAX+PLUS II as an
EDIF Input File.

MAX+PLUS II stores the connectivity data on the links between design files in a hierarchical project in a
Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Synopsys Design Entry Flow

Figure 1 below shows the design entry flow for the MAX+PLUS® II /Synopsys interface.

Figure 1. MAX+PLUS II/Synopsys Design Entry Flow

To perform a pre-routing/functional simulation, follow these steps:

1.

2. Be sure to set up the working environment correctly, as described in the following topics:

Setting Up the MAX+PLUS II/Synopsys Working Environment
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up the DesignWare Interface
Setting Up VSS Configuration Files

3. Create a VHDL or Verilog HDL design file that follows the guidelines described in one of the following topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Creating Verilog HDL Designs for Use with MAX+PLUS II Software

4. Synthesize and optimize your design with the Design Compiler or FPGA Compiler, as described in Synthesizing
& Optimizing VHDL & Verilog HDL Files with Design Compiler or FPGA Compiler Software.

5. Save your design as a VHDL Design File (.vhd).

VSS requires each architecture/entity pair in a VHDL Design File to have a configuration. The
Configuration Declaration is necessary for simulation, but not for synthesis.

6. Use VSS and one of the Altera pre-routing functional simulation libraries to simulate the design.

7. When you are ready to compile your project with MAX+PLUS II software, save the design as an EDIF netlist
file (.edf), then process it as described in Compiling Projects with MAX+PLUS II Software.

Related Topics:

Refer to the following sources for related information:
VHDL System Simulator Core Programs Manual for more information about VSS
Performing a Timing Simulation with VSS Software

Project Simulation Flow

Figure 1 shows the project simulation flow for the MAX+PLUS® II /Synopsys interface.

Figure 1. MAX+PLUS II/Synopsys Project Simulation Flow

Altera-provided items are shown in blue.

The MAX+PLUS II/Synopsys design environment fully supports design verification with the Synopsys VHDL System
Simulator (VSS). For pre-route simulation, you can simulate a design that has been compiled with one of the Synopsys
compilers. For post-route simulation, you can simulate the VHDL Output File (.vho) that MAX+PLUS II® software
generates during project compilation.

Performing a Timing Simulation with VSS Software

Once the MAX+PLUS® II software has compiled a project and generated a VHDL Output File (.vho) and an optional
Standard Delay Format (SDF) Output File (.sdo), you can perform timing simulation with the Synopsys VHDL
Simulator Software (VSS).

To simulate a VHDL Output File with VSS, follow these steps:

Be sure to set up the working environment correctly, as described in the following topics:

Setting Up the MAX+PLUS II/Synopsys Working Environment
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up the DesignWare Interface
Setting Up VSS Configuration Files

1. Generate a VHDL Output File (.vho) and an optional SDF Output File (.sdo), as described in Compiling Projects
with MAX+PLUS II Software.

2. (Optional) Analyze the VITAL 95-compliant alt_vtl library , then back-annotate timing information through the
SDF Output File:

a.

b. Use the analyze_vss script to analyze the alt_vtl Post-Routing Timing Simulation library, as described in
Setting Up VSS Configuration Files.

c. Enter the following command to back-annotate timing information through the SDF Output File:

vhdlsim -sdf_top /<design name>/<design name> -sdf

<design name>.sdo

3. Simulate the VHDL Output File with the VSS software.

Related Topics:

Go to the VSS User's Guide for more details on post-routing simulation.

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can program an
Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for MAX+PLUS II
software.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software installed on a
486- or Pentium-based PC or a UNIX workstation, or with programming hardware and software available from other
manufacturers. Table 1 shows the available Altera programming hardware options on PCs and UNIX workstations.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX 7000S
MAX 9000

&
MAX 9000A

Devices

FLEX® 6000,
FLEX 6000A,
FLEX 8000,
FLEX 10K,

FLEX 10KA,
FLEX 10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic
Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific

adapters
BitBlaster™
Download Cable
ByteBlasterMV™
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File Transfer Protocol
(FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one of the
serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply hardware and software
for programming Altera devices.

Last updated on December 6, 1999 for the MAX+PLUS II software version 9.4.

Related Links

MAX+PLUS II Development Software
Altera Programming Hardware

https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Setting Up VSS Configuration Files

Setting Up VSS Configuration Files
The .synopsys_vss.setup file contains the mapping information that directs the VHDL System Simulator (VSS)
Software to use Altera® -supplied Altera Simulation Libraries during simulation. To configure your environment
for the MAX+PLUS® II /Synopsys interface, follow these steps:

1. Add the lines shown in Figure 1 to your .synopsys_vss.setup file. Altera provides a sample setup file,
.synopsys_vss.setup, in the /usr/maxplus2/synopsys/config directory. See Figure 1.

Figure 1. Sample .synopsys_vss.setup File

WORK > DEFAULT
DEFAULT : .

altera : /usr/maxplus2/synopsys/library/alt_mf/lib

flex_vtl : /usr/maxplus2/synopsys/library/alt_pre/vital/
 lib/flex_vtl
alt_vtl : /usr/maxplus2/synopsys/library/alt_post/sim/
 lib/alt_vtl
flex10k_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_ftsm
flex10k_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_ftgs
max9000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_ftsm
max9000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_ftgs
flex8000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_ftsm
flex8000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_ftgs
max7000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_ftsm
max7000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_ftgs
flex6000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_ftsm
flex6000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_ftgs
max5000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_ftsm
max5000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_ftgs
flex10k_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_fpga_ftsm
flex10k_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_fpga_ftgs
max9000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_fpga_ftsm
max9000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_fpga_ftgs
flex8000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_fpga_ftsm
flex8000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_fpga_ftgs
max7000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_fpga_ftsm
max7000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_fpga_ftgs
flex6000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_fpga_ftsm
flex6000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_fpga_ftgs

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vdsimlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

max5000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_fpga_ftsm
max5000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_fpga_ftgs

The variables in the .synopsys_vss setup file perform the following functions:

The WORK variable specifies your working directory, i.e., the directory where you start the Synopsys
tools. If not explicitly specified elsewhere, the results of any analysis or compilation are written to this
directory. The first line of the file shown in Figure 1 maps WORK to the design library variable called
DEFAULT.

The DEFAULT variable is used to create library aliases, which allows you to map the WORK variable to
various paths. In Figure 1, the DEFAULT variable specifies the current directory.

The altera library is listed to allow you to simulate the architecture control logic functions in the
alt_mf library.

The remaining lines in the file specify the path and name of the directories that contain the device
simulation libraries for Altera device families.

2. Analyze the target device simulation library to ensure that the correct timing and functional information is
provided to VSS. Analyzing the simulation library produces VSS simulation models of the primitives that
appear in all Altera-provided technology libraries.

You can analyze device simulation libraries by using the Altera-provided shell script analyze_vss:

1. Add the /usr/maxplus2/synopsys/bin directory, which contains the analyze_vss scripts, to the PATH
environment variable in your .cshrc file.

2. Make sure that you have write privileges for the /usr/maxplus2/synopsys/library/alt_pre/<device
family> directory because the analyzed model is placed in the
/usr/maxplus2/synopsys/library/alt_pre/<device family>/lib directory and the analysis log file is
placed in the ./synopsys/library/alt_pre/<device family>/src directory.

3. Run the analyze_vss shell script by typing analyze_vss at the dc_shell prompt. When you run the
analyze_vss shell script, you are prompted to select the appropriate device family simulation model(s)
for analysis. Figure 2 shows the analyze_vss shell script.

Figure 2. The analyze_vss Shell Script

Type the full pathname of the directory where the MAX+PLUS® II software is installed (default:
/usr/maxplus2):

<MAX+PLUS II system directory>

Analyze VSS Simulation Models:
1. flex10k_FTGS
2. flex10k_FTSM
3. flex10k_fpga_FTGS
4. flex10k_fpga_FTSM
5. max9000_FTGS
6. max9000_FTSM
7. max9000_fpga_FTGS
8. max9000_fpga_FTSM
9. flex8000_FTGS
10. flex8000_FTSM
11. flex8000_fpga_FTGS
12. flex8000_fpga_FTSM
13. max7000_FTGS
14. max7000 FTSM

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inm2acvd.html?csf=1&web=1

15. max7000_fpga_FTGS
16. max7000_fpga_FTSM
17. flex6000_FTGS
18. flex6000_FTSM
19. flex6000_fpga_FTGS
20. flex6000_fpga_FTSM
21. max5000_FTGS
22. max5000_FTSM
23. max5000_fpga_FTGS
24. max5000_fpga_FTSM
25. alt_vtl
26. flex_vtl
27. Quit

Enter one or more numbers: <device library numbers>

4. Check the log file to make sure that no errors occurred during the analysis of the simulation models.

3. Use VSS to simulate your pre-routed VHDL design.

Related Topics:

Refer to the VHDL System Simulator Core Programs Manual for more information about VSS.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Using Synopsys VSS & MAX+PLUS
II Software

Using Synopsys VSS & MAX+PLUS II Software

The following topics describe how to use the Synopsys VHDL System Simulator (VSS) and MAX+PLUS® II
software. Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Synopsys Working Environment

Software Requirements
Setting Up VSS Configuration Files
Simulation Libraries
MAX+PLUS II/Synopsys Interface File Organization
MAX+PLUS II Project File Structure

Functional Simulation

Design Entry Flow
Performing a Pre-Routing or Functional Simulation with VSS Software

Timing Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with VSS Software

Related Links:

Go to the following topics in these MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Programming Altera Devices
Resynthesizing a Design Using the alt.vtl Library & a MAX+PLUS II SDF Output File
Using Synopsys Design Compiler or FPGA Compiler & MAX+PLUS II Software
Using Synopsys FPGA Express & MAX+PLUS II Software
Using Synopsys PrimeTime & MAX+PLUS II Software

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Synopsys web site (http://www.synopsys.com)

Feedback

Did this information help you?

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vssall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sftreq2.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vssconfig.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vdsimlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fileorgn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-m2pfilst.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-denflo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-prrtsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-simguide.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-initial.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pstrsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dcpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpexpg.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptpage.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/www/us/en/programmable/support/support-resources/support-centers/devices/programming.html
http://www.synopsys.com/

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synthesizing & Optimizing VHDL &
Verilog HDL Projects with Synopsys Software

Synthesizing & Optimizing VHDL & Verilog HDL
Projects with Synopsys Software

You can also run Synopsys tools from within the MAX+PLUS II software to automatically generate and import
an EDIF file. Refer to Running Synopsys Compilers from MAX+PLUS II Software for more information. In
addition, if your MAX+PLUS II development system includes VHDL or Verilog HDL synthesis support, the
MAX+PLUS II Compiler can directly synthesize VHDL or Verilog HDL logic. For more information, go to
MAX+PLUS II VHDL or Verilog HDL Help.

The MAX+PLUS® II Compiler can process a VHDL or Verilog HDL file that has been synthesized by the
Synopsys Design Compiler or FPGA Compiler software, saved as an EDIF 2 0 0 or 3 0 0 netlist file, and imported
into the MAX+PLUS II software. The procedure below explains how to run Synopsys tools separately from
MAX+PLUS II Software.

The following steps explain how to synthesize and optimize a VHDL or Verilog HDL design for use with
MAX+PLUS II software:

1. Be sure to set up your design environment correctly. This step includes specifying the target device family
for the design. See the following topics:

Setting Up the Synopsys/MAX+PLUS II Working Environment
Setting Up the Design Compiler and FPGA Compiler Configuration Files
Setting Up the DesignWare Interface
Setting Up the VSS Configuration Files

2. Create a VHDL file, <design name>.vhd, or a Verilog HDL design, <design name>.v, using the
MAX+PLUS II Text Editor or another standard text editor and save it in a project directory under your login
directory. See the following topics for instructions:

Creating VHDL Designs for Use with MAX+PLUS II Software.
Creating Verilog HDL Designs for Use with MAX+PLUS II Software.

3. Start the Design Compiler or FPGA Compiler software by typing either dc_shell or fpga_shell at the
command line, respectively. To work within the graphical user interface, type design_analyzer for either
tool.

4. Analyze and then compile the design with the Design Compiler, FPGA Compiler, or Design Analyzer
software. The VHDL Compiler or HDL Compiler for Verilog software automatically translates the design
into Synopsys database (.db) format. Specific steps are necessary for some types of projects before you
process the design:

1. If your FLEX 10K design includes RAM or ROM functions, follow these steps:

1. (VHDL designs only) Because the VHDL Compiler software does not support the data type
string for the Generic Clause, you must also enter the following command at the dc_shell
prompt before you read the design:

hdlin_translate_off_skip_text=true

2. The timing model (.lib) generated by the genmem utility contains pin-to-pin delay information
that can be used by the Synopsys Design Compiler and FPGA Compiler software. You must add

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-syncom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsnwrstp.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vssconfig.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vhdlproc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vproc.html?csf=1&web=1

this timing model to the existing library so that the compiler can access the timing information.
Type the following commands at the dc_shell prompt:

read -f db flex10k[<speed grade>].db
update_lib flex10k[<speed grade>] <RAM/ROM function name>.lib

3. (Optional) Enter the following command to update your flex10k[<speed grade>].db file with
the RAM/ROM timing information:

write_lib flex10k[<speed grade>] -o flex10k.db

See Instantiating RAM & ROM Functions in VHDL or Instantiating RAM & ROM functions in
Verilog HDL for additional information.

2. If you wish to allow the FPGA Compiler to perform N-input look-up table (LUT) optimization for a
FLEX 6000, FLEX 8000, or FLEX 10K design, enter the following command at the dc_shell prompt
before compiling the design:

edifout_write_properties_list = "lut function"

Go to Using FPGA Compiler N-Input LUT Optimization for FLEX 6000, FLEX 8000, or FLEX 10K
Devices for more information.

3. If you wish to enter resource assignments, go to Entering Resource Assignments.

4. If you wish to direct the Design Compiler or FPGA Compiler to use sum-of-products logic in
processing a MAX 7000 or MAX 9000 design, type the following commands at the dc_shell prompt
before compiling the design:

set_structure false
set_flatten -effort low

See MAX 7000 & MAX 9000 Synthesis Example for more information.

For additional information on how the Design Compiler and FPGA Compiler synthesize and optimize
a design, see the following topics:

Synopsys Design Compiler Reference Manual or Design Analyzer Reference Manual
DesignWare FLEX 8000 Synthesis Example

5. (Optional) View the optimized project with the Design Analyzer. The Design Analyzer uses the altera.sdb
library to display optimized projects generated by the Design Compiler or FPGA Compiler.

6. (Optional) To view Synopsys-generated timing information and generate a file detailing primitive usage, type
the following commands:

report_timing
report_reference > <filename>

7. (Optional) To functionally verify the project prior to processing with the MAX+PLUS II software, save the
design as a VHDL netlist file, and simulate it as described in Performing a Pre-Routing or Functional
Simulation with VSS Software.

8. Save the optimized project as an EDIF netlist file with the extension .edf.

9. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with the MAX+PLUS II Software.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inrromv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-inrromv.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lut.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lut.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lut.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-lut.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-reassn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-max79syn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dswsynex.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-config.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-prrtsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-prrtsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1

Installing the Altera-provided MAX+PLUS II/Synopsys interface on your computer automatically creates the
following sample VHDL and Verilog HDL files:

/usr/maxplus2/synopsys/examples/ministate.vhd
/usr/maxplus2/synopsys/examples/ministate.v

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Resynthesizing a Design Using the alt_vtl Library and a MAX+PLUS II SDF Output File
Programming Altera Devices

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sdf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Viewlogic Powerview viewdraw.ini
Configuration File

Viewlogic Powerview viewdraw.ini Configuration File

Figure 1. Excerpt from viewdraw.ini

DIR [pw] .

DIR [r] /usr/maxplus2/vwlogic/library/alt_max2 (alt_max2)

DIR [r] /usr/maxplus2/vwlogic/library/max2sim (max2_sim)

DIR [r] /usr/maxplus2/vwlogic/library/synlib (altera)

DIR [r] /usr/maxplus2/vwlogic/library/alt_mf (alt_mf)

DIR [r] /usr/maxplus2/vwlogic/library/alt_vtl (alt_vtl)

DIR [rm] /<Powerview system directory>/lib/builtin (builtin)
DIR [rm] /<Powerview system directory>/simmods/vl/dip/74ls (vl74ls)
DIR [rm] /<Powerview system directory>/symsets/vl/dip/74ls (vl74ls)
DIR [r] /<Powerview system directory>/lib/vdpath (vdpath)

When you add the libraries to the /usr/maxplus2/vwlogic/standard/viewdraw.ini file, they are automatically set
when you create a new project. Powerview tools search these libraries sequentially, so it is important to add them
in the order in which they are listed in Figure 1.

Table 1. Powerview Application Libraries

Library Library Alias Source Topics
alt_max2 alt_max2 Altera Graphical elements for ViewDraw
max2sim max2_sim Altera Models for project simulation
synlib altera Altera VHDL synthesis library for the MAX+PLUS Â®Â II software
alt_mf alt_mf Altera VHDL models of MAX+PLUSÂ II logic functions
alt_vtl alt_vtl Altera VITAL-compliant primitives
builtin builtin Altera Basic primitives such as INPUT pins, OUTPUT pins, AND gates, OR gates, etc.
74ls vl74ls Viewlogic 74-series macrofunctions
vdpath vdpath Viewlogic Standard library of parameterized modules (LPM) functions

The Altera-provided libraries must be listed before the Viewlogic-provided libraries in the viewdraw.ini file to
ensure that the correct versions of the megafunctions, macrofunctions, and primitives are used.

Each Powerview project is configured with the viewdraw.ini file that resides in the project directory. The DIR
statements at the end of viewdraw.ini are paths to library directories that are used by the various Powerview
applications. Figure 1 shows a sample of the DIR statements that are required to use the libraries.

Table 1 shows the libraries that must be specified in the DIR statements in the viewdraw.ini file.

Related Topics:

Go to Altera-Provided Logic & Symbol Libraries for more information on Altera-supplied libraries. Refer to
the Powerview documentation for more information on setting up the viewdraw.ini file.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1#altmax2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1#altmf
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / View by Vendor

ACCESS Partner EDA Tools, Listed by Vendor

ACCESSSM Partner
Guidelines for Using a Complete Multi-Tool

Design Flow
Guidelines for Using an

Individual Tool

Using Cadence Tools with
MAX+PLUS® II Software

Concept
Composer
Leapfrog
RapidSIM
Synergy
Verilog-XL

Using Mentor Graphics & Exemplar Logic Tools
with MAX+PLUS II Software

Galileo Extreme
Leonardo

Using Mentor Graphics & Exemplar Logic Tools
with MAX+PLUS II Software

Design Architect
QuickHDL & QuickHDL
Pro
QuickPath
QuickSim II (includes
Design Viewpoint Editor)

(not applicable)

Design Compiler
FPGA Compiler
FPGA Express
PrimeTime
VHDL System Simulator
(VSS)

(not applicable)
Certify
Synplify
Synplify Pro

Click on one of the following topics for information:

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
http://www.cadence.com/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-frmwork.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-frmwork.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-frmwork.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-frmwork.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-frmwork.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-conover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-comover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leapover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-rapover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synover.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-verover.html?csf=1&web=1
http://www.exemplar.com/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gleo_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-leon_toc.html?csf=1&web=1
http://www.mentor.com/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mg_intro.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-arch_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdl_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qhdl_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qpth_toc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-qsim_toc.html?csf=1&web=1
http://www.synopsys.com/
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dcpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dcpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-fpexpg.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ptpage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsspage.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vsspage.html?csf=1&web=1
http://www.synplicity.com/
http://www.synplicity.com/products/certify/index.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-synpover.html?csf=1&web=1
http://www.synplicity.com/products/synplifypro/index.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / EDA MAX+PLUS II

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Common

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Common

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Legal Notice: Copyright,
Trademark, Patent & Warranty Information

Legal Notice: Copyright, Trademark, Patent &
Warranty Information

Please read this page before accessing the documentation on this CD-ROM.

This CD-ROM contains documentation and other information related to products and services of Altera
Corporation ("Altera"). This documentation is provided as a courtesy to Altera's customers and potential customers.
By accessing, copying, or using any information contained on this CD-ROM, you agree to be bound by the terms
and conditions described in this Legal Notice.

Copyright Notice

The documentation, software, and other materials contained on this CD-ROM are owned and copyrighted by
Altera. Copyright © 1998 Altera Corporation, 101 Innovation Dr., San Jose, California 95134, USA, all rights
reserved.

License to Copy Information

You are licensed to copy documentation and other materials from this CD-ROM provided you agree to the
following terms and conditions.

You may use the materials for informational, non-commercial purposes only.
You may not alter or modify the materials in any way.
You may not use any graphics separate from any accompanying text.
You may distribute copies of the documentation on this CD-ROM only to customers and potential customers
of Altera products. However, you may not charge them for such use. Any other distribution to third parties is
prohibited unless you obtain the prior written consent of Altera.
You may not use the materials in any way that may be adverse to Altera's interests.

All copies of materials that you copy from this CD-ROM must include a copy of this Legal Notice.

Failure to comply with these terms and conditions will terminate the license.

Other Intellectual Property Rights

Altera, MAX, MAX+PLUS, FLEX, and other names of Altera products, product features, and services are
trademarks and/or service marks of Altera Corporation in the United States and other countries. Other product and
company names mentioned on this CD-ROM may be the trademarks of their respective owners.

Nothing contained in this Legal Notice shall be construed as conferring by implication, estoppel, or any other legal
theory, a license or right to any patent, trademark, copyright, or other intellectual property right, except those
expressly provided herein. The products, processes, software, and other technology described on this CD-ROM
may be the subject of other intellectual property rights owned by Altera or by third parties, and no licenses are
granted herein.

Disclaimers

NO WARRANTIES: THE DOCUMENTATION PROVIDED ON THIS CD-ROM IS "AS IS" WITHOUT ANY

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

EXPRESS OR IMPLIED WARRANTY OF ANY KIND INCLUDING WARRANTIES OF
MERCHANTABILITY, NONINFRINGEMENT OF INTELLECTUAL PROPERTY, OR FITNESS FOR ANY
PARTICULAR PURPOSE. IN NO EVENT SHALL ALTERA OR ITS SUPPLIERS BE LIABLE FOR ANY
DAMAGES WHATSOEVER (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OF OR
INABILITY TO USE THE DOCUMENTATION PROVIDED ON THIS CD-ROM, EVEN IF ALTERA HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. BECAUSE SOME JURISDICTIONS
PROHIBIT THE EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL
DAMAGES, SOME OF THE ABOVE LIMITATIONS MAY NOT APPLY TO YOU. Altera further does not
warrant the accuracy or completeness of the information, text, graphics, or other items contained within this CD-
ROM. Altera may make changes to these materials, or to the products described therein, at any time without notice.

U.S. GOVERNMENT RESTRICTED RIGHTS: The materials and documentation are provided with
"RESTRICTED RIGHTS". Use, duplication, or disclosure by the Government is subject to restrictions as set forth
in FAR52.227-14 and DFAR252.227-7013 et seq. or its successor. Use of the documentation and materials by the
Government constitutes acknowledgment of Altera's proprietary rights in them.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ACCESS Key Guidelines Feedback

ACCESS Key Guidelines Feedback
Thank you. Your feedback has been forwarded

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Mentor

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Archtect

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Feedback

Feedback
Instantiating LPM Functions in Design Architect Schematics

Design Architect software allows you to instantiate functions included in the library of parameterized modules
(LPM) from the ALTERA LPMLIB library.

Go through the following steps to instantiate LPM functions in a Design Architect schematic:

1. While you are entering your Design Architect schematic, choose Altera Libraries (Library menu).

2. Choose ALTERA LPMLIB (Altera Libraries menu).

3. Choose from the available LPM functions on the ALTERA GENLIB menu.

4. In the LPM_<function name> dialog box, specify appropriate values for the variables displayed for the LPM
function you chose in step 3. Make sure that any hexadecimal (Intel-format) file that you use to specify the
initial content of a memory function does not have the same name as the design file name. Choose
Megafunctions/LPM from the MAX+PLUS II Help menu for detailed information on LPM functions.

5. Choose OK to generate a symbol for the LPM function you chose in step 3 and a corresponding VHDL
simulation model.

6. Continue with the steps necessary to complete your Design Architect schematic, as described in Creating
Design Architect Schematics for Use with MAX+PLUS II Software.

7. When you save the schematic, the Design Architect software will ask whether you want to compile the LPM
model. Choose YES if you want to compile the VHDL code for the LPM functions. The software will
automatically select the corresponding compiler: System 1076 for B.(x) releases and QuickHDL compilers
for releases C.1 and later.

Installing the Altera® provided MAX+PLUS II/Mentor Graphics/Exemplar Logic interface on your computer
automatically creates the sample Design Architect schematic file /usr/maxplus2/examples/mentor/example7/fifo,
which includes LPM instantiation.

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-library.html?csf=1&web=1#LPMLIB
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-schmatic.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Intro

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Instantiating the clklock
Megafunction in VHDL & Verilog HDL Designs

Instantiating the clklock Megafunction in VHDL &
Verilog HDL Designs

Altera provides the gencklk utility to allow you to instantiate clklock (phaselocked loop) functions in Mentor
Graphics/Exemplar Logic software. The gencklk utility appends the parameter values to the clklock function
name, so you don't need to declare attributes explicitly. The naming rule for the clklock function is
clklock_ <ClockBoost>_<inputfrequency>. The gencklk utility has the following syntax:

gencklk <ClockBoost> <inputfrequency> [vhdl] [verilog]

For the <ClockBoost> variable, you should specify a ClockBoost value of 1 or 2 (default value is 1). For the
<inputfrequency> variable, you should specify a decimal value in MHz (default value is 50). To generate a VHDL
file (which is the default if no option is present), specify vhdl; to generate a Verilog HDL file, specify verilog.

For example, to create the VHDL file clklock_2_50.vhd and the corresponding Component Declaration file
clklock_2_50.cmp, type the following command at the UNIX prompt:

gencklk 2 50 -vhdl

Installing the Alteraprovided MAX+PLUS II/Mentor Graphics interface on your computer automatically creates
the sample VHDL design file /usr/maxplus2/examples/mentor/example6/count8.vhd, which includes clklock
megafunction instantiation.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Synopsys

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Compilers

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Altera/Synopsys Project
Compilation Flow

Altera/Synopsys Project Compilation Flow

Figure 1. MAX+PLUS II/Synopsys Project Compilation Flow

Altera-provided items are shown in blue.

The following figure shows the MAX+PLUS® II /Synopsys project compilation flow.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Intro

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Design Flow for All Synopsys
Tools

Design Flow for All Synopsys Tools
Figure 1 shows the design flow between Synopsys and MAX+PLUS ® II software. Design Entry Flow, Project
Compilation Flow, Project Simulation Flow, and Device Programming Flow show detailed diagrams of each stage
of the design flow. For information on how to use the Synopsys Design Compiler or FPGA Compiler from within
the MAX+PLUS II software, see Running Synopsys Compilers from the MAX+PLUS II Software.

Figure 1. Design Flow between Synopsys & MAX+PLUS II Software

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-denflo.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-synopsys-compilers-synfig11.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-synopsys-compilers-synfig11.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-simguide.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-syncom.html?csf=1&web=1
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Setting Up the MAX+PLUS
II/Synopsys Working Environment

Setting Up the MAX+PLUS II/Synopsys Working
Environment

The information presented here assumes that you are using C shell and that your MAX+PLUS II system directory
is /usr/maxplus2. If not, you must use the appropriate syntax and procedures to set environment variables for
your shell.

To use the MAX+PLUS® II software with Synopsys software, you must first install the MAX+PLUS II software,
then establish an environment that facilitates entering and processing designs by modifying your Synopsys
configuration files. The MAX+PLUS II/Synopsys interface is installed automatically when you install the
MAX+PLUS II software on your workstation. Go to MAX+PLUS II Installation in the MAX+PLUS II Getting
Started manual for more information on installation and details on the directories that are created during
MAX+PLUS II installation. Go to MAX+PLUS II/Synopsys Interface File Organization for information about the
MAX+PLUS II/Synopsys directories that are created during MAX+PLUS II installation.

To set up your working environment for the MAX+PLUS II/Synopsys interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Synopsys software versions described in the
MAX+PLUS II/Synopsys Software Requirements.

2. Add technology, synthetic, and link library settings to your .synopsys_dc.setup configuration file, as
described in Setting Up Design Compiler & FPGA Compiler Configuration Files.

To use the DesignWare interface with FLEX® 6000, FLEX 8000, and FLEX 10K devices, follow the
steps in Setting Up the DesignWare Interface.

3. Add simulation library settings to your .synopsys_vss.setup file, and analyze the libraries, as described in
Setting Up VSS Configuration Files.

4. Add the /usr/maxplus2/bin directory to the PATH environment variable in your .cshrc file in order to run the
MAX+PLUS II software.

(Optional) Change the path in the first line of the perl script files, which are located in the
$ALT_HOME/synopsys/bin directory to specify the correct path of your local perl executable file.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Synopsys Software Requirements

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Synopsys Altera
version 1998.02:
Design Compiler
FPGA Compiler
Design Analyzer (optional)
VHDL Compiler

HDL Compiler for Verilog
VHDL System Simulator (VSS) (optional)
PrimeTime version 1998.02-PT2.1(optional)

MAX+PLUS II
version 9.4

The MAX+PLUS II read.me file provides up-to-date information on which versions of Synopsys applications are
supported by the current version of MAX+PLUS II. It also provides information on installation and operating
requirements. You should read the read.me file on the CD-ROM before installing the MAX+PLUS II software.
After installation, you can open the read.me file from the MAX+PLUS II Help menu.

The following applications are used to generate, process, synthesize, and verify a project with MAX+PLUS® II and
Synopsys software:

Compilation with the Synopsys Design Compiler and FPGA Compiler is available only on Sun SPARCstations
running Solaris 2.4 or higher.

Setting Up Design Compiler & FPGA Compiler Configuration Files

The .synopsys_dc.setup configuration file allows you to set both Design Compiler and FPGA Compiler variables.
The compilers read .synopsys_dc.setup files from three directories, in the following order:

1. The Synopsys root directory
2. Your home directory
3. The directory where you start the Design Compiler or FPGA Compiler software

The most recently read configuration file has highest priority. For example, a configuration file in the directory
where you start the Design Compiler or FPGA Compiler software has priority over the other configuration files,
and a configuration file in the home directory has priority over a configuration file in the root directory.

To set up your configuration files, follow these steps:

1. Add the lines shown in Figure 1 to your .synopsys_dc.setup configuration file. Altera provides a sample
.synopsys_dc.setup file in the ./synopsys/config directory. Figure 1 shows an excerpt from that sample file.

Figure 1. Excerpt from Sample .synopsys_dc.setup File
search_path = {./usr/maxplus2/synopsys/library/alt_syn/<device family>/lib};
target_library = {<technology library>};

symbol_library = {altera.sdb};

link_library = {<technology library>};

edifout_netlist_only = "true"

edifout_power_and_ground_representation = "net"

edifout_power_net_name = "VDD"

edifout_ground_net_name = "GND"

edifout_no_array = "false"

edifin_power_net_name = "VDD"

edifin_ground_net_name = "GND"

compile_fix_multiple_port_nets = "true"

bus_naming_style = "%s<%d>"

bus_dimension_separator_style = "><"

bus_inference_style = "%s<%d>"

2. Specify one of the Design Compiler & FPGA Compiler Technology Libraries for the target_library and
link_library parameters in the .synopsys_dc.setup file.

3. If you will instantiate architecture control logic functions from the alt_mf library, add the following line to
your .synopsys_dc.setup file:

define_design_lib altera -path /usr/maxplus2/synopsys/library/alt_mf/lib

If you wish to use the VHDL System Simulator (VSS) software to simulate a VHDL design containing
alt_mf library functions, you must compile this library with the analyze_vss script. See Setting Up
VSS Configuration Files for more information.

4. If you will use the DesignWare interface for FLEX® 6000, FLEX 8000, or FLEX 10K designs, enter
additional lines in your .synopsys_dc.setup file, as described in Setting Up the DesignWare Interface.

5. Specify one of the following families for the <device family> variable in the search_path parameter:
max5000, max7000, max9000, flex6000, flex8000, or flex10k.

6. If you wish to resynthesize a design for a different device family, modify the .synopsys_dc.setup file by
following the steps described in Resynthesizing a Design Using the alt_vtl Library & a MAX+PLUS II SDF
Output File.

Related Topics:

Go to MAX+PLUS® II /Synopsys Interface File Organization in these MAX+PLUS II ACCESSSM Key
topics for related information.
Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

Setting Up the DesignWare Interface

The DesignWare interface synthesizes FLEX® 6000 , FLEX 8000 and FLEX 10K designs by operator inference. It
replaces the HDL operators +, -, >, <, >=, and <= with FLEX-optimized design implementations.

Altera provides DesignWare Synthetic Libraries that are pre-compiled for the current version of Synopsys tools.
These library files are located in the /usr/maxplus2/synopsys/library/alt_syn/<device family>/lib directory.

To use the DesignWare interface with FLEX 6000, FLEX 8000 and FLEX 10K devices, follow these steps:

1. Add synthetic_library and define_design_lib parameters to your .synopsys_dc.setup configuration file
and modify the link_library parameter as shown in Table 1 or Table 2.

Table 1. DesignWare Parameters to Add to the .synopsys_dc.setup File for the Design Compiler Software
Device
Family Parameters to Add to the .synopsys_dc.setup File

synthetic_library = {flex6000<speed grade>.sldb};

FLEX
6000

link_library = {flex6000<speed grade>.sldb flex6000<speed grade>.db};
define_design_lib DW_FLEX6000<speed grade> -path
/usr/maxplus2/synopsys/library/alt_syn/flex6000/lib/
dw_flex6000<speed grade>

FLEX
8000

synthetic_library = {flex8000[<speed grade>].sldb};
link_library = {flex8000[<speed grade>].sldb flex8000[<speed grade>].db};
define_design_lib DW_FLEX8000[<speed grade>] -path
/usr/maxplus2/synopsys/library/alt_syn/flex8000
/lib/dw_flex8000[<speed grade>]

FLEX 10K

synthetic_library = {flex10k[<speed grade >].sldb};
link_library = {flex10k[<speed grade>].sldb flex10k[<speed grade>].db};
define_design_lib DW_FLEX10k[<speed grade>] -path
/usr/maxplus2/synopsys/library/alt_syn/flex10k/lib
/dw_flex10k[<speed grade>]

Table 2. DesignWare Parameters to Add to the .synopsys_dc.setup File for the FPGA Compiler Software
Device
Family Parameters to Add to the .synopsys_dc.setup File

FLEX
6000

synthetic_library = {flex6000
<speed grade>_fpga.sldb};
link_library = {flex6000<speed grade>_fpga.sldb flex6000<speed grade>_fpga.db};
define_design_lib DW_FLEX6000<speed grade>_FPGA -path
/usr/maxplus2/synopsys/library/alt_syn/flex6000
/lib/dw_flex6000<speed grade>_fpga

FLEX
8000

synthetic_library = {flex8000[<speed grade>]_fpga.sldb};
link_library = {flex8000[<speed grade>]_fpga.sldb flex8000[<speed
grade>]_fpga.db};
define_design_lib DW_FLEX8000[<speed grade>]_FPGA -path
/usr/maxplus2/synopsys/library/alt_syn/flex8000/lib /dw_flex8000[<speed
grade>]_fpga

FLEX
10K

synthetic_library = {flex10k[<speed grade>]_fpga.sldb};
link_library = {flex10k[<speed grade>]_fpga.sldb flex10k[<speed grade>]_fpga.db};

define_design_lib DW_FLEX10k[<speed grade>]_FPGA -path
/usr/maxplus2/synopsys/library/alt_syn/flex10k/lib /dw_flex10k[<speed grade>]_fpga

2. Specify the libraries listed in Table 3 as your synthetic library and as the first of your link libraries.

For FLEX 6000 devices, you must specify either -2 or -3 for the <speed grade> variable. For FLEX 8000
and FLEX 10K devices, you can specify -2, -3, -4, -5, or -6; or -2, -3, -4, or -5; respectively, for the
<speed grade> variable. If you do not specify a speed grade for FLEX 8000 or FLEX 10K devices, the
MAX+PLUS® II software selects the fastest device in the specified family as the target device.

Table 3. FLEX 6000, FLEX 8000 & FLEX 10K DesignWare Synthetic Libraries
Altera® Device Family Synopsys Design Compiler Synopsys FPGA Compiler
FLEX 6000
Synthetic Library

flex6000-2.sldb
flex6000-3.sldb

flex6000-2_fpga.sldb
flex6000-3_fpga.sldb

FLEX 8000
Synthetic Library

flex8000.sldb
flex8000-2.sldb
flex8000-3.sldb
flex8000-4.sldb

flex8000_fpga.sldb
flex8000-2_fpga.sldb
flex8000-3_fpga.sldb
flex8000-4_fpga.sldb

Table 1. Commands for Compiling the Library

Device Family Synopsys Compiler Commands for Compiling the Library Note (1)

FLEX®6000

Design Compiler
cd /usr/maxplus2/synopsys/library/alt_syn/flex6000/
src/dw_flex6000<speed grade>
dw_flex6000.script

flex8000-5.sldb
flex8000-6.sldb

flex8000-5_fpga.sldb
flex8000-6_fpga.sldb

FLEX 10K
Synthetic Library

flex10k.sldb
flex10k-2.sldb
flex10k-3.sldb
flex10k-4.sldb
flex10k-5.sldb

flex10k_fpga.sldb
flex10k-2_fpga.sldb
flex10k-3_fpga.sldb
flex10k-4_fpga.sldb
flex10k-5_fpga.sldb

3. If necessary, compile the DesignWare libraries, as described in Updating DesignWare Libraries. Altera
provides pre-compiled DesignWare libraries, as described above. However, Altera also provides compatible
source files and scripts that allow you to automate the compilation process. These source files allow you to
use DesignWare with any version of the Design Compiler. They also allow you to install components whose
source is written in VHDL, even if you are licensed only for the HDL Compiler for Verilog.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Setting Up Design Compiler & FPGA Compiler Configuration Files
DesignWare FLEX 8000 Synthesis Example
Design Compiler & FPGA Compiler Technology Libraries

FLEX 6000 Device Family
FLEX 8000 Device Family
FLEX 10K Device Family

Updating DesignWare Libraries

Although Altera provides DesignWare libraries that are pre-compiled for the current version of Synopsys tools, you
may wish to recompile the libraries.

Altera provides compilable source files and scripts that allow you to automate the compilation process. These
source files allow you to use DesignWare software with any version of the Design Compiler or FPGA Compiler
software.They also allow you to install components whose source is written in VHDL, even if you are licensed only
for the Verilog HDL Compiler software.

Source files for the Design Compiler software are automatically installed in the following directories:

/usr/maxplus2/synopsys/library/alt_syn/flex10k/src/dw_flex10k[<speed grade>]
/usr/maxplus2/synopsys/library/alt_syn/flex8000/src/dw_flex8000[<speed grade>]
/usr/maxplus2/synopsys/library/alt_syn/flex6000/src/dw_flex6000<speed grade>

Source files for the FPGA Compiler are automatically installed in the following directories:

/usr/maxplus2/synopsys/library/alt_syn/flex10k/src/dw_flex10k[<speed grade>]_fpga
/usr/maxplus2/synopsys/library/alt_syn/flex8000/src/dw_flex8000[<speed grade>]_fpga
/usr/maxplus2/synopsys/library/alt_syn/flex6000/src/dw_flex6000<speed grade>_fpga

FPGA Compiler
cd /usr/maxplus2/synopsys/library/alt_syn/flex6000/
src/dw_flex6000<speed grade>_fpga
dw_flex6000.script

FLEX 8000

Design Compiler
cd /usr/maxplus2/synopsys/library/alt_syn/flex8000/
src/dw_flex8000[<speed grade>]
dw_flex8000.script

FPGA Compiler
cd /usr/maxplus2/synopsys/library/alt_syn/flex8000/
src/dw_flex8000[<speed grade>]_fpga
dw_flex8000.script

FLEX 10K

Design Compiler
cd /usr/maxplus2/synopsys/library/alt_syn/flex10k/
src/dw_flex10k[<speed grade>]
dw_flex10k.script

FPGA Compiler
cd /usr/maxplus2/synopsys/library/alt_syn/flex10k/
src/dw_flex10k[<speed grade>]_fpga
dw_flex10k.script

1. For FLEX 6000 devices, you must specify either -2 or -3 for the <speed grade> variable. For FLEX 8000
and FLEX 10K devices, you must specify -2, -3, -4, -5, or -6; or -1, -2, -3, -4, or -5; respectively, for the
<speed grade> variable.

Related Topics:

Go to the following topics for additional information:
Setting Up the DesignWare Interface
Setting Up the MAX+PLUS II/Synopsys Working Environment
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up VSS Configuration Files

Go to the following topics, which are available on the web, for additional information:
FLEX 6000 Device Family
FLEX 8000 Device Family
FLEX 10K Device Family

Setting Up VSS Configuration Files

The .synopsys_vss.setup file contains the mapping information that directs the VHDL System Simulator (VSS)
Software to use Altera® -supplied Altera Simulation Libraries during simulation. To configure your environment
for the MAX+PLUS® II /Synopsys interface, follow these steps:

1. Add the lines shown in Figure 1 to your .synopsys_vss.setup file. Altera provides a sample setup file,
.synopsys_vss.setup, in the /usr/maxplus2/synopsys/config directory. See Figure 1.

Figure 1. Sample .synopsys_vss.setup File

WORK > DEFAULT
DEFAULT : .

altera : /usr/maxplus2/synopsys/library/alt_mf/lib

flex_vtl : /usr/maxplus2/synopsys/library/alt_pre/vital/
 lib/flex_vtl

alt_vtl : /usr/maxplus2/synopsys/library/alt_post/sim/
 lib/alt_vtl
flex10k_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_ftsm
flex10k_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_ftgs
max9000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_ftsm
max9000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_ftgs
flex8000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_ftsm
flex8000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_ftgs
max7000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_ftsm
max7000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_ftgs
flex6000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_ftsm
flex6000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_ftgs
max5000_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_ftsm
max5000_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_ftgs
flex10k_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_fpga_ftsm
flex10k_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex10k/
 lib/flex10k_fpga_ftgs
max9000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_fpga_ftsm
max9000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max9000/
 lib/max9000_fpga_ftgs
flex8000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_fpga_ftsm
flex8000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex8000/
 lib/flex8000_fpga_ftgs
max7000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_fpga_ftsm
max7000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max7000/
 lib/max7000_fpga_ftgs
flex6000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_fpga_ftsm
flex6000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/flex6000/
 lib/flex6000_fpga_ftgs
max5000_fpga_ftsm : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_fpga_ftsm
max5000_fpga_ftgs : /usr/maxplus2/synopsys/library/alt_pre/max5000/
 lib/max5000_fpga_ftgs

The variables in the .synopsys_vss setup file perform the following functions:

The WORK variable specifies your working directory, i.e., the directory where you start the Synopsys
tools. If not explicitly specified elsewhere, the results of any analysis or compilation are written to this
directory. The first line of the file shown in Figure 1 maps WORK to the design library variable called
DEFAULT.

The DEFAULT variable is used to create library aliases, which allows you to map the WORK variable to
various paths. In Figure 1, the DEFAULT variable specifies the current directory.

The altera library is listed to allow you to simulate the architecture control logic functions in the
alt_mf library.

The remaining lines in the file specify the path and name of the directories that contain the device
simulation libraries for Altera device families.

2. Analyze the target device simulation library to ensure that the correct timing and functional information is
provided to VSS. Analyzing the simulation library produces VSS simulation models of the primitives that
appear in all Altera-provided technology libraries.

You can analyze device simulation libraries by using the Altera-provided shell script analyze_vss:

1. Add the /usr/maxplus2/synopsys/bin directory, which contains the analyze_vss scripts, to the PATH
environment variable in your .cshrc file.

2. Make sure that you have write privileges for the /usr/maxplus2/synopsys/library/alt_pre/<device
family> directory because the analyzed model is placed in the
/usr/maxplus2/synopsys/library/alt_pre/<device family>/lib directory and the analysis log file is
placed in the ./synopsys/library/alt_pre/<device family>/src directory.

3. Run the analyze_vss shell script by typing analyze_vss at the dc_shell prompt. When you run the
analyze_vss shell script, you are prompted to select the appropriate device family simulation model(s)
for analysis. Figure 2 shows the analyze_vss shell script.

Figure 2. The analyze_vss Shell Script

Type the full pathname of the directory where the MAX+PLUS® II software is installed (default:
/usr/maxplus2):

<MAX+PLUS II system directory>

Analyze VSS Simulation Models:
1. flex10k_FTGS
2. flex10k_FTSM
3. flex10k_fpga_FTGS
4. flex10k_fpga_FTSM
5. max9000_FTGS
6. max9000_FTSM
7. max9000_fpga_FTGS
8. max9000_fpga_FTSM
9. flex8000_FTGS
10. flex8000_FTSM
11. flex8000_fpga_FTGS
12. flex8000_fpga_FTSM
13. max7000_FTGS
14. max7000_FTSM
15. max7000_fpga_FTGS
16. max7000_fpga_FTSM
17. flex6000_FTGS
18. flex6000_FTSM
19. flex6000_fpga_FTGS
20. flex6000_fpga_FTSM
21. max5000_FTGS
22. max5000_FTSM
23. max5000_fpga_FTGS
24. max5000_fpga_FTSM
25. alt_vtl
26. flex_vtl
27. Quit

Enter one or more numbers: <device library numbers>

4. Check the log file to make sure that no errors occurred during the analysis of the simulation models.

3. Use VSS to simulate your pre-routed VHDL design.

Related Topics:

Refer to the VHDL System Simulator Core Programs Manual for more information about VSS.

Design Compiler & FPGA Compiler Technology Libraries

Table 1. Altera-Provided Primitives

Name
Note
(1),

Note (2)
Description Name Description

LCELL Logic cell buffer primitive EXP MAX® 5000, MAX 7000, and MAX 9000
Expander buffer primitive

GLOBAL Global input buffer primitive SOFT Soft buffer primitive

CASCADE FLEX® 6000, FLEX 8000, and FLEX 10K
cascade buffer primitive OPNDRN

FLEX 6000, FLEX 8000, and FLEX 10K Open-
drain buffer primitive

CARRY
FLEX 6000, FLEX 8000, and FLEX 10K cascade
buffer primitive

DFF
DFFE
DFFS
Note
(2)

D-type flipflop with Clock Enable primitive

LATCH Latch primitive

TFF
TFFE
TFFS
Note
(2)

T-type flipflop primitive

TRIBUF Tri-state buffer primitive
Notes:
(1) All buffer primitive names except OPNDRN must be prefixed with an "A" in FLEX 6000, FLEX 8000, and FLEX 10K
designs. The TRIBUF primitive is equivalent to the TRI primitive in the MAX+PLUS II software.
(2) The DFFE and TFFE primitives include a Clock Enable input; the DFFS and TFFS primitives are equivalent to DFF and
TFF primitives without Clear or Preset inputs. For designs that are targeted to FLEX 6000 devices, you should use the
DFFE or TFFE primitive only if the design contains either a Clear or Preset signal, but not both. If your design contains
both a Clear and a Preset signal, you must use the DFFE6K primitive.

The VHDL simulation model /usr/maxplus2/synopsys/library/alt_pre/<device family>/src/<device
family>_components.vhd file shows the exact cell and pin names for each device family. The Verilog HDL
simulation file /usr/maxplus2/synopsys/library/alt_pre/verilog/src/altera.v shows the functionality of these
cells.

Table 2. Altera Technology Libraries

Altera Device Family Synopsys Design Compiler Synopsys FPGA Compiler
flex10k.db
flex10k-2.db

flex10k_fpga.db
flex10k-2_fpga.db

The Altera® -provided Design Compiler and FPGA Compiler technology libraries contain primitives that the
Synopsys compilers use to map your designs to the target device architecture. These primitives contain timing and
area information that the Synopsys compilers use to meet area and performance requirements. Table 1 shows the
functions provided in these libraries. Choose Primitives from the MAX+PLUS II Help menu for detailed
information on these functions.

Altera recommends instantiating these functions directly in your designs only if the Synopsys compilers do not
appear to recognize the functions when synthesizing your design, or if you prefer to hand-optimize certain portions
of your design.

Table 2 lists the technology library names.

FLEX® 10K devices flex10k-3.db
flex10k-4.db
flex10k-5.db

flex10k-3_fpga.db
flex10k-4_fpga.db
flex10k-5_fpga.db

FLEX 8000 devices

flex8000.db
flex8000-2.db
flex8000-3.db
flex8000-4.db
flex8000-5.db
flex8000-6.db

flex8000_fpga.db
flex8000-2_fpga.db
flex8000-3_fpga.db
flex8000-4_fpga.db
flex8000-5_fpga.db
flex8000-6_fpga.db

FLEX 6000 devices flex6000-2.db
flex6000-3.db

flex6000-2_fpga.db
flex6000-3_fpga.db

MAX® 9000 devices max9000.db max9000_fpga.db
MAX 7000, MAX 7000E,
MAX 7000S, & MAX 7000A devices max7000.db max7000_fpga.db

MAX 5000 & Classic® devices max5000.db max5000_fpga.db

Table 1. Altera-Provided Architecture Control Logic Functions

Name Description
a_8fadd 8-bit full adder
a_8mcomp 8-bit magnitude comparator
a_8count 8-bit up/down counter
a_81mux 8-to-1 multiplexer

For detailed information on these functions, choose Search for Help on from the MAX+PLUS® II Help menu
and type the function name, without the "a_" prefix.

File: Description:
mf.vhd Contains behavioral VHDL descriptions of the logic functions.

Related Topics:

Go to MAX+PLUS® II /Synopsys Interface File Organization in these MAX+PLUS II ACCESSSM Key
topics for related information.
Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

Altera VHDL & Verilog HDL alt_mf Logic Function Library

The alt_mf library contains behavioral VHDL and Verilog HDL models of the Altera® logic functions shown in
Table 1. VHDL or Verilog HDL files that instantiate these functions can be simulated with the VHDL System
Simulator (VSS) software or the Cadence Verilog-XL simulator, respectively, both before and after being compiled
with the Synopsys Design Compiler or FPGA Compiler software.

The behavioral descriptions of these four functions are contained in the
/usr/maxplus2/synopsys/library/alt_mf/src directory, which contains the following files:

mf_components.vhd Contains VHDL Component Declarations for the logic functions.
mf.v Contains behavioral Verilog HDL descriptions of the logic functions.

Table 1. FLEX 6000, FLEX 8000 & FLEX 10K DesignWare Synthetic
Libraries

Altera Device Family Synopsys Design Compiler Synopsys FPGA Compiler
FLEX 6000
Synthetic Library

flex6000-2.sldb
flex6000-3.sldb

flex6000-2_fpga.sldb
flex6000-3_fpga.sldb

FLEX 8000
Synthetic Library

flex8000.sldb
flex8000-2.sldb
flex8000-3.sldb
flex8000-4.sldb
flex8000-5.sldb
flex8000-6.sldb

flex8000_fpga.sldb
flex8000-2_fpga.sldb
flex8000-3_fpga.sldb
flex8000-4_fpga.sldb
flex8000-5_fpga.sldb
flex8000-6_fpga.sldb

FLEX 10K
Synthetic Library

flex10k.sldb
flex10k-2.sldb
flex10k-3.sldb
flex10k-4.sldb
flex10k-5.sldb

flex10k_fpga.sldb
flex10k-2_fpga.sldb
flex10k-3_fpga.sldb
flex10k-4_fpga.sldb
flex10k-5_fpga.sldb

If you wish to simulate a VHDL design containing these logic functions, you can use the Altera-provided shell
script analyze_vss to create a design library called altera. This library allows you to reference the functions
through the VHDL Library and Use Clauses, which direct the Design Compiler or FPGA Compiler software to
incorporate the library files when it compiles your top-level design file. The analyze_vss shell script creates the
altera design library by analyzing the VHDL System Simulator (VSS) simulation models in the
/usr/maxplus2/synopsys/library/alt_mf/lib directory. See Setting Up VSS Configuration Files for more
information on using the analyze_vss shell script.

Complete VHDL and Verilog HDL behavioral descriptions of these logic functions are included in the mf.vhd and
mf.v files so that you can optionally retarget your design to other technology libraries.

Altera DesignWare FLEX 6000, FLEX 8000 & FLEX 10K Synthetic Libraries

The Altera® DesignWare interface for the FLEX® 6000, FLEX 8000, and FLEX 10K device families provides
accurate area and timing prediction for designs that have been synthesized by the Synopsys design tools and
targeted for FLEX devices. Altera's DesignWare interface also ensures that the area and timing information closely
matches the final FLEX device implementation generated by the MAX+PLUS® II Compiler. The DesignWare
interface synthesizes FLEX 6000 , FLEX 8000 and FLEX 10K designs by operator inference. This interface
supports bus widths of up to 32 bits, except adder functions, which support bus widths of up to 64 bits.

The Altera DesignWare interface for FLEX devices offers three major advantages to Synopsys designers:

Automatic access to FLEX carry and cascade chain functions
Optimal routing of FLEX designs
Improved area and performance prediction capability in Synopsys tools

Table 1 lists the Altera DesignWare synthetic libraries for FLEX 6000, FLEX 8000, and FLEX 10K devices.

Table 2 lists functions included in the DesignWare FLEX 6000, FLEX 8000, and FLEX 10K synthetic libraries.
Refer to DesignWare FLEX 8000 Synthesis Example for an example showing how DesignWare synthesis affects
design processing.

Table 2. FLEX 6000, FLEX 8000, and FLEX 10K Synthetic Library
Functions

Name Function
flex_add Sum of A, B, and Carry-In
flex_carry Carry of A, B, and Carry-In
flex_sub Difference of A, B, and Borrow-In
flex_borrow Borrow of A, B, and Borrow-In
flex_gt, flex_sgt Greater than (flex_gt is unsigned; flex_sgt is signed)
flex_carry_gt Greater than Carry
flex_lt, flex_slt Less than (flex_lt is unsigned; flex_slt is signed)
flex_carry_lt Less than Carry
flex_gteq, flex_sgteq Greater than or equal to (flex_gteq is unsigned; flex_sgteq is signed)
flex_carry_gteq Greater than or equal to Carry
flex_inc Incrementer (Count = Count + 1)
flex_carry_inc Incrementer Carry (Count = Count + 1)
flex_dec Decrementer (Count = Count - 1)
flex_carry_dec Decrementer Carry (Count = Count - 1)
flex_lteq, flex_slteq Less than or equal to (flex_lteq is unsigned; flex_slteq is signed)
flex_carry_lteq Less than or equal to Carry
flex_count Counter
aflex_carry_count Counter Carry
flex_add_sub Adder/Subtractor
flex_inc_dec Incrementer/Decrementer
flex_umult, flex_smult Multiplier (flex_umult is unsigned; flex_smult is signed)

Related Topics:

Go to the following sources for related information:
Setting Up the DesignWare Interface in these MAX+PLUS II ACCESSSM Key topics
Synopsys DesignWare Databook
VHDL Compiler Reference Manual

Go to the following topics, which are available on the web, for additional information:
FLEX 6000 Device Family
FLEX 8000 Device Family
FLEX 10K Device Family

Altera Simulation Libraries

Altera provides simulation libraries for both pre-routing functional simulation and post-routing timing simulation.

Pre-Routing Functional Simulation Libraries (VITAL-Compliant)

The /usr/maxplus2/synopsys/library/alt_pre/vital/src directory contains Altera® -provided VHDL simulation
models in VITAL 95 format. This library contains functional descriptions of all primitives that appear in Altera-
specific technology libraries. These libraries allow you to perform a functional or pre-routing simulation that

Table 1. VHDL Functional Simulation Libraries

Device Family Functional Simulation Libraries Device Family Functional Simulation Libraries

FLEX® 10K

flex10k_FTSM.vhd.E
flex10k_fpga_FTSM.vhd.E
flex10k_FTGS.vhd.E
flex10k_fpga_FTGS.vhd.E
flex10k_components.vhd
flex10k_fpga_components.vhd

MAX® 9000

max9000_FTSM.vhd.E
max9000_fpga_FTSM.vhd.E
max9000_FTGS.vhd.E
max9000_fpga_FTGS.vhd.E
max9000_components.vhd
max9000_fpga_components.vhd

FLEX 8000

flex8000_FTSM.vhd.E
flex8000_fpga_FTSM.vhd.E
flex8000_FTGS.vhd.E
flex8000_fpga_FTGS.vhd.E
flex8000_components.vhd
flex8000_fpga_components.vhd

MAX 7000

max7000_FTSM.vhd.E
max7000_fpga_FTSM.vhd.E
max7000_FTGS.vhd.E
max7000_fpga_FTGS.vhd.E
max7000_components.vhd
max7000_fpga_components.vhd

FLEX 6000

flex6000_FTSM.vhd.E
flex6000_fpga_FTSM.vhd.E
flex6000_FTGS.vhd.E
flex6000_fpga_FTGS.vhd.E
flex6000_components.vhd
flex6000_fpga_components.vhd

MAX 5000 &
Classic®

max5000_FTSM.vhd.E
max5000_fpga_FTSM.vhd.E
max5000_FTGS.vhd.E
max5000_fpga_FTGS.vhd.E
max5000_components.vhd
max5000_fpga_components.vhd

verifies the netlist structure generated by the Synopsys Design Compiler or FPGA Compiler software. Altera
provides the flex.cmp and flex.vhd files in the /usr/maxplus2/synopsys/library/alt_pre/vital/src directory.

Similarly, the /usr/maxplus2/synopsys/library/alt_pre/verilog/src directory contains Altera-provided Verilog
HDL simulation models for all device families. The altera.v file can be used for simulation with the Cadence
Verilog-XL simulator.

Pre-Routing Functional Simulation Libraries with Estimated Timing Information

The /usr/maxplus2/synopsys/library/alt_pre/<device family>/src directory contains Altera® -provided VHDL
simulation libraries, which give both functional and area descriptions of all primitives that appear in all Altera
technology libraries. These simulation libraries allow you to verify the function of VHDL projects, with estimated
timing, after synthesizing them with the Synopsys Design Compiler or FPGA Compiler, but before submitting them
to MAX+PLUS® II software for compilation.

Altera provides an encrypted Full Timing Structural Model (FTSM) and a Full Timing Gate-Level Simulation
model (FTGS) for the VHDL simulation libraries listed in Table 1.

Post-Routing Timing Simulation Libraries

The /usr/maxplus2/synopsys/library/alt_post/sim/src directory contains the Altera® -provided library files for
performing timing simulation of designs that have been compiled with the MAX+PLUS II software. The VITAL
95-compliant post-simulation source files included in this directory are alt_vtl.vhd and alt_vtl.cmp. See
Performing a Timing Simulation with VSS Software for more information.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
FLEX Devices

Table 1 shows the MAX+PLUS® II /Synopsys interface subdirectories that
are created in the MAX+PLUS II system directory (by default, the
/usr/maxplus2 directory) during the MAX+PLUS II software installation.
For information on the other directories that are created during the
MAX+PLUS II software installation, see "MAX+PLUS II File
Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting
Started manual.

You must add the /usr/maxplus2/bin directory to the PATH environment variable in your .cshrc file in order to
run the MAX+PLUS II software.

Table 1. MAX+PLUS II Directory Organization

Directory Description

./synopsys/bin
Contains script programs to convert Synopsys timing constraints into
MAX+PLUS II Assignment & Configuration File (.acf) format, and to analyze
VHDL System Simulator simulation models.

./synopsys/config Contains sample .synopsys_dc.setup and .synopsys_vss.setup files.

./synopsys/examples Contains sample files, including those discussed in these ACCESS Key
Guidelines.

./synopsys/library/alt_pre/<device
family>/src

Contains VHDL simulation libraries for functional simulation of VHDL
projects.

./synopsys/library/alt_pre/verilog/src Contains the Verilog HDL functional simulation library for Verilog HDL
projects.

./synopsys/library/alt_pre/vital/src
Contains the VITAL 95 simulation library. You use this library when you
perform functional simulation of the design before compiling it with the
MAX+PLUS II software.

./synopsys/library/alt_syn//<device
family>/lib

Contains interface files for the MAX+PLUS II/Synopsys interface. Technology
libraries in this directory allow the Design Compiler and FPGA Compiler to
map designs to Altera® device architectures.

./synopsys/library/alt_mf/src
Contains behavioral VHDL models of some Altera macrofunctions, along with
their component declarations. The a_81mux, a_8count, a_8fadd, and a_8mcomp
macrofunctions are currently supported. Libraries in this directory allow you to

MAX Devices
Classic Device Family

Altera Post-Synthesis Libraries

The /usr/maxplus2/synopsys/library/alt_post/syn/lib directory contains the post-synthesis library for technology
mapping and timing back-annotation. The Altera® -provided alt_vtl.db file in this library contains over three dozen
MAX+PLUS® II -generated logic functions.

MAX+PLUS II/Synopsys Interface File Organization

instantiate, synthesize, and simulate these macrofunctions.
./synopsys/library/alt_post/syn/lib Contains the post-synthesis library for technology mapping.

./synopsys/library/alt_post/sim/src
Contains the VHDL source files for the VITAL 95-compliant library. You use
this library when you perform simulation of the design after compiling it with
the MAX+PLUS II software.

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II Project File Structure

In MAX+PLUS® II, a project name is the name of a top-level design file, without the filename extension. This
design file can be an EDIF, Verilog HDL, or VHDL netlist file; an AHDL TDF; or any other MAX+PLUS II-
supported design file. The EDIF netlist file must be created by Synopsys and imported into MAX+PLUS II as an
EDIF Input File.

MAX+PLUS II stores the connectivity data on the links between design files in a hierarchical project in a
Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Design Flow for All Synopsys Tools

Figure 1 shows the design flow between Synopsys and MAX+PLUS ® II software. Design Entry Flow, Project
Compilation Flow, Project Simulation Flow, and Device Programming Flow show detailed diagrams of each stage
of the design flow. For information on how to use the Synopsys Design Compiler or FPGA Compiler from within
the MAX+PLUS II software, see Running Synopsys Compilers from the MAX+PLUS II Software.

Altera-provided items are shown in blue.

Figure 1. Design Flow between Synopsys & MAX+PLUS II Software

Synopsys Design Entry Flow

Figure 1 below shows the design entry flow for the MAX+PLUS® II /Synopsys interface.

Figure 1. MAX+PLUS II/Synopsys Design Entry Flow

Creating VHDL Designs for Use with MAX+PLUS II Software

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and save
them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements of text in text
files in different colors to distinguish them from other forms of syntax.

Once you have created a VHDL design, you can use the Design Compiler or FPGA Compiler to synthesize and
optimize it, and then generate an EDIF netlist file that can be processed with the MAX+PLUS II software.

To create a VHDL design that can be synthesized and optimized with the Design Compiler or FPGA Compiler,
follow these steps:

1. Instantiate logic functions with a Component Instantiation, and include a Component Declaration for each
function. Altera provides simulation models for the following types of logic functions:

Primitives in the Design Compiler & FPGA Compiler Technology Libraries. Go to Primitive & Old-
Style Macrofunction Instantiation Example for VHDL for an example.
Architecture Control Logic functions in the alt_mf library, which includes the a_8count, a_8mcomp,
a_8fadd, and a_81mux functions. See MAX+PLUS II Architecture Control Logic Function
Instantiation Example for VHDL for an example.
The DesignWare up/down counter function (DW03_updn_ctr). Go to DesignWare Up/Down Counter
Function Instantiation Example for VHDL for an example.
RAM and ROM functions generated with the genmem utility. Go to Instantiating RAM & ROM
Functions in VHDL for instructions.
The clklock megafunction, which is supported for selected FLEX 10K devices. This function is
generated with the gencklk utility. Go to Instantiating the clklock Megafunction in VHDL or Verilog

Go to the following topics for information and examples of how to instantiate functions that are not considered to
be hollow bodies, including functions in the alt_mf library, RAM and ROM, and the clklock megafunction:

HDL for instructions.
MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

You can also instantiate any other Altera macrofunction or non-parameterized megafunction, i.e.,
functions not listed above, for which no simulation models or technology library support is available.
These functions are treated as "black boxes" during processing with the Design Compiler or FPGA
Compiler. See Primitive & Old-Style Macrofunction Instantiation Example for VHDL for an example.

For information on MAX+PLUS II primitives, megafunctions, and macrofunctions, choose
Primitives, Megafunctions/LPM, or Old-Style Macrofunctions from the MAX+PLUS II Help
menu. When searching for information on the alt_mf library functions, drop the initial "a_" from the
function name.

2. (Optional) If you instantiate a "black box" logic function for which no simulation/techology library support is
available, create a hollow-body design description in order to prevent the Design Compiler or FPGA
Compiler from issuing a warning message. See Primitive & Old-Style Macrofunction Instantiation Example
for VHDL for an example.

If you instantiate a "black box" logic function, you must create a Library Mapping File (.lmf) to map
the function to an equivalent MAX+PLUS II function before you compile the project with the
MAX+PLUS II software. See Primitive & Old-Style Macrofunction Instantiation Example for VHDL
for an example.

3. Once you have created a VHDL design, you can analyze it, synthesize it, (optional) perform a functional
simulation, and generate an EDIF netlist file that can be imported into the MAX+PLUS II software. Go to the
following topics for instructions:

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Synopsys Software
Performing a Pre-Routing or Function Simulation with VSS Software

Installing the Altera-provided MAX+PLUS II/Synopsys Logic interface on your computer automatically creates the
following VHDL sample files:

/usr/maxplus2/examples/mentor/examples/ministate.vhd
/usr/maxplus2/examples/mentor/examples/count8.vhd
/usr/maxplus2/examples/mentor/examples/tstrom.vhd

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Primitive & Old-Style Macrofunction Instantiation Example for VHDL

You can instantiate the MAX+PLUS® II primitives listed in Design Compiler & FPGA Compiler Technology
Libraries in VHDL designs. These primitives can be used to control synthesis in the MAX+PLUS II software. You
can also instantiate MAX+PLUS II megafunctions and old-style macrofunctions.

Architecture Control Macrofunction Instantiation Example for VHDL
Instantiating RAM & ROM Functions in VHDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Figure 1. 4-Bit Adder Design with Registered Output (adder.vhd)

LIBRARY ieee;
 USE ieee.std_logic_1164.ALL;

ENTITY adder IS
 PORT (a, b : IN STD_LOGIC_VECTOR(4 DOWNTO 1);
 clk, rst : IN STD_LOGIC;

cout : OUT STD_LOGIC;
 regsum : OUT STD_LOGIC_VECTOR(4 DOWNTO 1));
 END adder;

ARCHITECTURE MAX7000 OF adder IS

SIGNAL sum : STD_LOGIC_VECTOR(4 DOWNTO 1);
SIGNAL ci, gclk, grst : STD_LOGIC;

-- Component Declaration for GLOBAL primitive
-- For FLEX devices, global, a_in, and a_out should be replaced with
-- aglobal, in1, and Y, respectively
COMPONENT global
 PORT (a_in : IN STD_LOGIC;
 a_out : OUT STD_LOGIC);
END COMPONENT;

-- Component Declaration for fa4 macrofunction
COMPONENT fa4
 PORT (c0,a1,b1,a2,b2,a3,b3,a4,b4 : IN STD_LOGIC;
 s1,s2,s3,s4,c4 : OUT STD_LOGIC);
END COMPONENT;

BEGIN
 ci <= '0';

Unlike other logic functions, MAX+PLUS II primitives do not need to be defined with Component Declarations
unless you wish to simulate the design with the VHDL System Simulator (VSS) software. Any references to these
primitives are resolved by the Synopsys compilers. All buffer primitives except the ATRIBUF and TRIBUF primitives
also have a "don't touch" attribute already assigned to them, which prevents the Synopsys compilers from
optimizing them. The Synopsys compilers also automatically treat mega- and macrofunctions that do not have
corresponding synthesis library models as "black boxes."

Figure 1 shows a 4-bit full adder with registered output that also instantiates an AGLOBAL or GLOBAL primitive. This
figure also illustrates the use of global Clock and global Reset pins in the MAX 7000 architecture. The design uses
an old-style 7483 macrofunction, which is represented as a hollow body named fa4.

-- FA4 Component Instantiation
 u0: fa4

PORT MAP (ci,a(1),b(1),a(2),b(2),a(3),b(3),a(4),b(4),
 sum(1),sum(2),sum(3),sum(4),cout);

-- GLOBAL Component Instantiation for Clock
-- For FLEX devices, global should be replaced with aglobal
 u1: global
 PORT MAP (clk, gclk);

-- GLOBAL Component Instantiation for Reset
-- For FLEX devices, global should be replaced with aglobal
 u2: global
 PORT MAP (rst, grst);

-- CLOCK process to create registered output
 clocked: PROCESS(gclk,grst)

BEGIN
 IF grst = '0' THEN
 regsum <= "0000"

ELSIF gclk'EVENT AND gclk = '1' THEN
 regsum <= sum;
 END IF;

END PROCESS clocked;

END MAX7000;

Figure 2. Hollow-Body Description of a 4-Bit Full Adder (7483)

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

-- fa4 maps to 7483. The interface names do not have to match.

ENTITY fa4 IS

Before you can analyze the 4-bit adder design, you must first analyze the fa4 description in Figure 1 with the
Synopsys VHDL Compiler software. You can ignore the warning that is issued for any unknown function,
including the fa4 function in this example. If you wish, you can avoid receiving such warning messages by creating
a hollow-body description of the function.

A hollow-body VHDL description combines an Entity Declaration with an empty or null Architecture Body. An
empty Architecture Body contains the ARCHITECTURE IS clause, followed by the BEGIN and END keywords and a
semicolon (;). It does not include any information about the design's function or operation. Figure 2 shows the
hollow-body description for the fa4 function.

PORT (c0,a1,b1,a2,b2,a3,b3,a4,b4 : IN STD_LOGIC;
 s1,s2,s3,s4,c4 : OUT STD_LOGIC);

END fa4;

ARCHITECTURE map7483 OF fa4 IS

BEGIN

-- This architecture body is left blank, and will map to the
-- 7483 macrofunction in MAX+PLUS II.

END;

When you analyze the hollow-body design description with the Synopsys VHDL Compiler software, it produces a
hollow-body component that contains a single level of hierarchy with input and output pins, but does not contain
any underlying logic.

You can save the synthesized design as an EDIF netlist file (.edf) and compile it with the MAX+PLUS II software.
After the VHDL Compiler software has successfully processed the design, it generates the schematic shown in
Figure 3, which you can view with the Design Analyzer software.

Figure 3. Synthesized Design Generated by the Design Compiler

Figure 3. Library Mapping File Excerpt for fa4

BEGIN
FUNCTION 7483 (c0, a1, b1, a2, b2, a3, b3, a4, b4,)
RETURNS (s1, s2, s3, s4, c4)

FUNCTION "fa4" ("c0", "a1", "b1", "a2", "b2", "a3",
 "b3","a4", "b4")
RETURNS ("s1", "s2", "s3", "s4", "c4")
END

Figure 1. Sample VHDL File with Logic Function Instantiation

LIBRARY ieee;
USE ieee.std_logic_1164.ALL;

LIBRARY altera;
USE altera.maxplus2.ALL;

ENTITY counter IS
PORT (clock,ena,load,dnup,set,clear : IN STD_LOGIC;
 i : IN STD_LOGIC_VECTOR (7 DOWNTO 0);

However, before you compile the EDIF netlist file with the MAX+PLUS II software, you must create the
adder.lmf file, shown in Figure 3, to map the fa4 function to the equivalent MAX+PLUS II function (7483). You
must then specify the LMF as LMF #2 in the expanded EDIF Netlist Reader Settings dialog box (Interfaces
menu) (LMF #1 is altsyn.lmf). For more information about creating LMFs, refer to "Library Mapping Files (.lmf)"
and "Library Mapping File Format" in MAX+PLUS II Help.

When you compile the design with the MAX+PLUS II software, you can disregard the warning "EDIF cell
<name> already has LMF mapping so CONTENTS construct has been ignored". To verify the global Clock
and global Reset usage, as well as the number of logic cells used, see the adder.rpt Report File generated by the
MAX+PLUS II Compiler.

MAX+PLUS II Architecture Control Logic Function Instantiation Example for VHDL

You can instantiate Altera® -provided logic functions from the alt_mf library, which includes the a_8fadd,
a_8mcomp, a_8count, and a_81mux functions, in VHDL designs. Altera provides behavioral descriptions of these
functions that support pre-synthesis/pre-route simulation of your top-level design with the VHDL System Simulator
(VSS).

When you instantiate one of these functions, you can either include a Component Declaration for the function, or
use the Altera-provided shell script analyze_vss to create a design library called altera so that you can reference
the functions through the VHDL Library and Use Clauses. The Library and Use Clauses direct the Design Compiler
or FPGA Compiler to incorporate the library files when it compiles your top-level design file. The analyze_vss
shell script creates the altera design library when it analyzes the VSS simulation models in the
/usr/maxplus2/synopsys/library/alt_mf/lib directory. See Setting up VSS Configuration Files for more
information on using the analyze_vss shell script.

Figure 1 shows an example of an 8-bit counter that is instantiated using the a_8count function.

 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0);

cout : OUT STD_LOGIC);
END counter;

ARCHITECTURE structure OF counter IS

BEGIN
 u1 : a_8count

PORT MAP (a=>i(0), b=>i(1), c=>i(2), d=>i(3), e=>i(4),
 f=>i(5), g=>i(6), h=>i(7), ldn=>load, gn=>ena,
 dnup=>dnup, setn=>set, clrn=>clear, clk=>clock,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3), qe=>q(4),
 qf=>q(5), qg=>q(6), qh=>q(7), cout=>cout);

END structure;

CONFIGURATION conf OF counter IS
 FOR structure
 END FOR;
END conf;

Figure 1 shows a VHDL file excerpt with DW03_updn_ctr instantiation.

Figure 1. VHDL File Excerpt with Up/Down Counter Instantiation

LIBRARY ieee,DW03;
USE ieee.std_logic_1164.all;
USE DW03.DW03_components.all;

ENTITY updn_4 IS
 PORT (D : IN STD_LOGIC_VECTOR(4-1 DOWNTO 0);
 UP_DN, LD, CE, CLK, RST: IN STD_LOGIC;
 TERCNT : OUT STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(4-1 DOWNTO 0));
END updn_4;

ARCHITECTURE structure OF updn_4 IS

DesignWare Up/Down Counter Function Instantiation Example for VHDL

The Altera DesignWare Libraries for FLEX devices allow you to instantiate the DW03_updn_ctr function, which is
the same as the Synopsys DW03 up/down counter. This function allows you to use the same VHDL code regardless
of which FLEX® device is targeted.

BEGIN
 u0: DW03_updn_ctr
 GENERIC MAP(width => 4)
 PORT MAP (data => d, clk => clk, reset => rst, up_dn => up_dn,
 load => ld, tercnt => tercnt, cen => ce, count => q);
END structure;

Related Topics:

Go to Setting Up the DesignWare Interface in these MAX+PLUS II ACCESSSM Key topics for related
information.
Go to the following topics, which are available on the web, for additional information:

FLEX 6000 Device Family
FLEX 8000 Device Family
FLEX 10K Device Family

Instantiating RAM & ROM Functions in VHDL

The MAX+PLUS® II /Synopsys interface offers full support for the memory capabilities of the FLEX® 10K device
family, including synchronous and asynchronous RAM and ROM, cycle-shared dual port RAM, dual-port RAM,
single-Clock FIFO, and dual-clock FIFO functions. You can use the Altera® -provided genmem utility to generate
functional simulation models and timing models for these functions. Type genmem at the UNIX prompt to display
information on how to use this utility, as well as a list of the functions you can generate.

To instantiate a RAM or ROM function in VHDL, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX prompt:

genmem <memory type> <memory size> -vhdl

For example: genmem asynrom 256x15 -vhdl

2. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name> function.

Figure 1 shows a VHDL design that instantiates asyn_rom_256x15.vhd, a 256 x 15 ROM function.

Figure 1. VHDL Design File with ROM Instantiation (tstrom.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tstrom IS
 PORT (
 addr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 memenab : IN STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR (14 DOWNTO 0));
END tstrom;

ARCHITECTURE behavior OF tstrom IS

COMPONENT asyn_rom_256x15
-- pragma translate_off
 GENERIC (LPM_FILE : string);

-- pragma translate_on
 PORT (Address : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 MemEnab : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(14 DOWNTO 0)
);
END COMPONENT;

BEGIN

 u1: asyn_rom_256x15
-- pragma translate_off
 GENERIC MAP (LPM_FILE => "u1.hex")
-- pragma translate_on
 PORT MAP (Address => addr, MemEnab => memenab, Q =>q);
END behavior;

3. (Optional for RAM functions) Specify an initial memory content file:

For ROM functions, you must specify the filename of an initial memory content file in the Intel
hexadecimal format (.hex) or the Altera® Memory Initialization File (.mif) format in the Generic Map
Clause, with the LPM_FILE parameter. See Figure 1. The filename must be the same as the instance
name; e.g., the u1 instance name must be unique throughout the whole project, and must contain only
valid VHDL name characters. The initialization file must reside in the directory containing the project's
design files.

For RAM functions, specifying a memory initialization file is optional. If you want to use it, you must
specify it in the Generic Map Clause as described above. If you do not use an initialization file, you
should not declare or use the Generic Clause.

1. The MIF format is supported only for specifying initial memory content when compiling designs
within MAX+PLUS II software. You cannot use a MIF to perform simulation with Synopsys
tools prior to MAX+PLUS II compilation.

2. If you use an Intel hexadecimal format file and wish to simulate the design with the VHDL
System Simulator (VSS) after MAX+PLUS II compilation, you should use the Synopsys
intelhex utility to translate the Intel hexadecimal fomat file into a VSS-compatible Synopsys
memory file. Refer to the Synopsys VHDL System Simulator Software Tool manual for details
about using the intelhex utility.

4. In the VHDL design file, add the compiler directive -- pragma translate_off before the Generic
Clause and Generic Map Clause, and add -- pragma translate_on after the Generic Clause and Generic
Map Clause. These directives tell the VHDL Compiler software when to stop and start synthesizing. For
example, in Figure 1, the --pragma translate_off directive instructs the VHDL Compiler software to skip
syntax checking until the --pragma translate_on directive is read.

5. Because the VHDL Compiler software does not support the data type string for the Generic Clause, you
must also enter the following command before you read the design:

hdlin_translate_off_skip_text=true

6. The timing model (.lib) generated by the genmem utility contains pin-to-pin delay information that can be
used by the Synopsys Design Compiler and FPGA Compiler software. You must add this timing model to the
existing library so that the compiler can access the timing information. Type the following commands at the
dc_shell prompt:

read -f db flex10k[<speed grade>].db

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

update_lib flex10k[<speed grade>] <RAM/ROM function name>.lib

7. (Optional) Enter the following command to update your flex10k[<speed grade>].db file with the
RAM/ROM timing information:

write_lib flex10k[<speed grade>] -o flex10k.db

8. When you generate the EDIF netlist file from the design, include the bus structure from the RAM or ROM
function(s). Go to Setting Up Synopsys Configuration Files for more information.

9. Continue with the steps necessary to complete your VHDL design, as described in Creating VHDL Designs
for Use with MAX+PLUS II Software.

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating the clklock Megafunction in VHDL or Verilog HDL

MAX+PLUS® II interfaces with other EDA tools support the clklock phase-locked loop megafunction, which can
be used with some FLEX® 10K devices, with the gencklk utility. Type gencklk -h at the UNIX prompt to
display information on how to use this utility. The gencklk utility generates VHDL or Verilog HDL functional
simulation models and a VHDL Component Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the UNIX prompt to generate the clklock_x_y file, where x is the
ClockBoost value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

2. Create a design file that instantiates the clklock_x_y function. The gencklk utility automatically generates a
VHDL Component Declaration template in the clklock_x_y.cmp file that you can incorporate into a VHDL
design file.

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);
 END structure;

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;

input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Creating Verilog HDL Designs for Use with MAX+PLUS II Software

You can create Verilog HDL design files with the MAX+PLUS® II Text Editor or another standard text editor and
save them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following
advantages:

Verilog HDL templates are available with the Verilog HDL Templates command (Templates menu). These
templates are also available in the ASCII verilog.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your Verilog HDL design, you can use the Syntax
Coloring command (Options menu). The Syntax Coloring feature displays keywords and other elements of
text in text files in different colors to distinguish them from other forms of syntax.

Once you have created a Verilog HDL design, you can use the Design Compiler or FPGA Compiler to synthesize
and optimize it, and then generate an EDIF netlist file that can be processed with the MAX+PLUS II software.

To create a Verilog HDL design that can be synthesized and optimized with the Design Compiler or FPGA
Compiler, follow these steps:

1. Instantiate logic functions with a Module Instantiation, and include a Module Declaration for each function.
Altera provides simulation models for the following types of logic functions:

Primitives in the Design Compiler & FPGA Compiler Technology Libraries. Go to Primitive & Old-
Style Macrofunction Instantiation Example for Verilog HDL for an example.
Architecture Control Logic functions in the alt_mf library, which includes the a_8count, a_8mcomp,
a_8fadd, and a_81mux functions. See MAX+PLUS II Architecture Control Logic Function
Instantiation Example for Verilog HDL for an example.
RAM and ROM functions generated with the genmem utility. Go to Instantiating RAM & ROM
Functions in VHDL for instructions.
The clklock megafunction, which is supported for selected FLEX 10K devices. This function is
generated with the gencklk utility. Go to Instantiating the clklock Megafunction in VHDL or Verilog
HDL for instructions.
MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,

Go to the following topics for information and examples of how to instantiate functions that are not considered to
be hollow bodies, including functions in the alt_mf library, RAM and ROM, and the clklock megafunction:

Architecture Control Macrofunction Instantiation Example for Verilog HDL

and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

You can also instantiate any other Altera macrofunction or non-parameterized megafunction, i.e.,
functions not listed above, for which no simulation models or technology library support is available.
These functions are treated as "black boxes" during processing with the Design Compiler or FPGA
Compiler. See Primitive & Old-Style Macrofunction Instantiation Example for Verilog HDL for an
example.

For information on MAX+PLUS II primitives, megafunctions, and macrofunctions, choose
Primitives, Megafunctions/LPM, or Old-Style Macrofunctions from the MAX+PLUS II Help
menu. When searching for information on the alt_mf library functions, drop the initial "a_" from the
function name.

2. (Optional) If you instantiate a "black box" logic function for which no simulation/techology library support is
available, create a hollow-body design description in order to prevent the Design Compiler or FPGA
Compiler from issuing a warning message. See Primitive & Old-Style Macrofunction Instantiation Example
for Verilog HDL for an example.

If you instantiate a "black box" logic function, you must create a Library Mapping File (.lmf) to map
the function to an equivalent MAX+PLUS II function before you compile the project with the
MAX+PLUS II software. See Primitive & Old-Style Macrofunction Instantiation Example for VHDL
for an example.

3. Once you have created a VHDL design, you can analyze it, synthesize it, (optional) perform a functional
simulation, and generate an EDIF netlist file that can be imported into the MAX+PLUS II software. Go to the
following topics for instructions:

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Synopsys Software
Performing a Pre-Routing or Function Simulation with VSS Software

Installing the Altera-provided MAX+PLUS II/Synopsys Logic interface on your computer automatically creates the
following VHDL sample files:

/usr/maxplus2/examples/mentor/examples/ministate.v
/usr/maxplus2/examples/mentor/examples/count8.v
/usr/maxplus2/examples/mentor/examples/tstrom.v

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM Key topics for
related information.

Primitive & Old-Style Macrofunction Instantiation Example for Verilog HDL

You can instantiate the MAX+PLUS® II primitives listed in Design Compiler & FPGA Compiler Technology
Libraries in Verilog HDL designs. These primitives can be used to control synthesis in the MAX+PLUS II
software. You can also instantiate MAX+PLUS II megafunctions and old-style macrofunctions.

Instantiating RAM & ROM Functions in Verilog HDL
Instantiating the clklock Megafunction in VHDL or Verilog HDL

Figure 1 shows a 4-bit full adder with registered output that also
instantiates an AGLOBAL or GLOBAL primitive. This figure also
illustrates the use of global Clock and global Reset pins in the MAX 7000
architecture. The design uses an old-style 7483 macrofunction, which is
represented as a hollow body named fa4.

Figure 1. 4-Bit Adder Design with Registered Output (adder.v)

module adder (a, b, clk, rst, cout, regsum);

output cout;
output[4:1] regsum;
input[4:1] a, b;
input clk, rst;
wire[4:1] sum;
reg[4:1] regsum_int;
wire grst, gclk;
wire ci;
assign ci = 0;

// module instantiation
fa4 u0 (.c0(ci), .a1(a[1]), .b1(b[1]), .a2(a[2]),
 .b2(b[2]), .a3(a[3]), .b3(b[3]), .a4(a[4]),
 .b4(b[4]), .s1(sum[1]), .s2(sum[2]),
 .s3(sum[3]), .s4(sum[4]), .c4(cout));
// For FLEX devices, GLOBAL, A_IN, and A_OUT should be replaced
// with AGLOBAL, IN1, and Y, respectively
GLOBAL u1 (.A_IN(clk), .A_OUT(gclk));
GLOBAL u2 (.A_IN(rst), .A_OUT(grst));

always @(posedge gclk or negedge grst)
 if (!grst)
 regsum_int = 4'b0;
 else regsum_int = sum;
assign regsum = regsum_int;
endmodule

// module declaration for fa4 module
module fa4 (c0, a1, b1, a2, b2, a3, b3, a4, b4, s1, s2, s3, s4, c4);

output s1, s2, s3, s4, c4;
 input c0, a1, b1, a2, b2, a3, b3, a4, b4;
 endmodule

Unlike other logic functions, MAX+PLUS II primitives do not need to be defined with hollow-body functions
unless you wish to simulate the design with the VHDL System Simulator (VSS) software. Any references to these
primitives are resolved by the Synopsys compilers. All buffer primitives except the ATRIBUF and TRIBUF primitives
also have a "don't touch" attribute already assigned to them, which prevents the Synopsys compilers from
optimizing them. The Synopsys compilers also automatically treat mega- and macrofunctions that do not have
corresponding synthesis library models as "black boxes."

// module declaration for GLOBAL primitive
// For FLEX devices, GLOBAL, A_IN, and A_OUT should be replaced
// with AGLOBAL, IN1, and Y, respectively
module GLOBAL (A_OUT, A_IN);

input A_IN;
 output A_OUT;
 endmodule

Figure 2. Hollow-Body Description of a 4-Bit Full Adder (7483)

module fa4 (c0, a1, b1, a2, b2, a3, b3, a4, b4, s1, s2, s3, s4, c4);
 output s1, s2, s3, s4, c4;
 input c0, a1, b1, a2, b2, a3, b3, a4, b4;
 endmodule

You can analyze the 4-bit adder design with the Synopsys HDL Compiler for Verilog software. The hollow-body
description of the fa4 function is required. It contains port declarations and does not include any information about
the design's function or operation. However, the hollow-body description can be in the design file, as shown in
Figure 1, or in a separate file, as shown in Figure 2.

If the hollow-body description is in a separate file, you must analyze it before analyzing the higher-level function
with the HDL Compiler for Verilog to produce a hollow-body component. This component contains a single level
of hierarchy with input and output pins, but does not contain any underlying logic.

You can save the synthesized design as an EDIF netlist file (.edf) and compile it with the MAX+PLUS II software.
After the HDL Compiler for Verilog software has successfully processed the design, it generates the schematic
shown in Figure 3, which you can view with the Design Analyzer software.

Figure 3. Library Mapping File Excerpt for fa4

BEGIN
FUNCTION 7483 (c0, a1, b1, a2, b2, a3, b3, a4, b4,)
RETURNS (s1, s2, s3, s4, c4)

FUNCTION "fa4" ("c0", "a1", "b1", "a2", "b2", "a3",
 "b3","a4", "b4")
RETURNS ("s1", "s2", "s3", "s4", "c4")
END

Figure 3. Synthesized Design Generated by the Design Compiler

However, before you compile the EDIF netlist file with the MAX+PLUS II software, you must create the
adder.lmf file, shown in Figure 3, to map the fa4 function to the equivalent MAX+PLUS II function (7483). You
must then specify the LMF as LMF #2 in the expanded EDIF Netlist Reader Settings dialog box (Interfaces
menu) (LMF #1 is altsyn.lmf). For more information about creating LMFs, refer to "Library Mapping Files (.lmf)"
and "Library Mapping File Format" in MAX+PLUS II Help.

When you compile the design with the MAX+PLUS II software, you can disregard the warning "EDIF cell
<name> already has LMF mapping so CONTENTS construct has been ignored". To verify the global Clock
and global Reset usage, as well as the number of logic cells used, see the adder.rpt Report File generated by the
MAX+PLUS II Compiler.

MAX+PLUS II Architecture Control Logic Function Instantiation Example for Verilog
HDL

You can instantiate Altera® -provided logic functions from the alt_mf library, which includes the a_8fadd,
a_8mcomp, a_8count, and a_81mux functions, in Verilog HDL designs. Altera provides behavioral Verilog HDL
descriptions of these functions.

Figure 1 shows an example of an 8-bit counter that is instantiated using the a_8count function. Because Verilog
HDL is case-sensitive, be sure to use uppercase letters for all of the macrofunction's module names and port names.

Figure 1. Sample Verilog HDL File with Logic Function Instantiation (counter.v)

module counter (clock, ena, load, dnup, set, clear, i, q, cout);
output cout;
output[7:0] q;
input[7:0] i;
input clock, ena, load, dnup, set, clear;
A_8COUNT u1 (.A(i[0]), .B(i[1]), .C(i[2]), .D(i[3]),
 .E(i[4]), .F(i[5]), .G(i[6]), .H(i[7]),
 .LDN(load), .GN(ena), .DNUP(dnup), .SETN(set),
 .CLRN(clear), .CLK(clock), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]),
 .QG(q[6]), .QH(q[7]), .COUT(cout));
endmodule

The sample file shown in Figure 1 can be synthesized with the Design Compiler or FPGA Compiler. You can also
simulate it with the Cadence Verilog-XL Simulator by typing the following command at the dc_shell prompt:

verilog counter.v /usr/maxplus2/synopsys/library/alt_mf/src/mf.v

Instantiating RAM & ROM Functions in Verilog HDL

The MAX+PLUS® II /Synopsys interface offers full support for the memory capabilities of the FLEX® 10K device
family, including synchronous and asynchronous RAM and ROM, cycle-shared dual port RAM, dual-port RAM,
single-Clock FIFO, and dual-clock FIFO functions. You can use the Altera® -provided genmem utility to generate
functional simulation models and timing models for these functions. Type genmem at the UNIX prompt to display
information on how to use this utility, as well as a list of the functions you can generate.

To instantiate a RAM or ROM function in Verilog HDL, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX prompt:

genmem <memory type> <memory size> -verilog

For example: genmem asynrom 256x15 -verilog

2. Create a Verilog HDL design that instantiates the <memory name> function.

Figure 1 shows a Verilog HDL design that instantiates asyn_rom_256x15.v, a 256 x 15 ROM function.

Figure 1. Verilog HDL File with ROM Instantiation (tstrom.v)

module tstrom (addr, enab, q);
parameter LPM_FILE = "u1.hex"
input [7:0] addr;
input enab;
output [14:0] q;

asyn_rom_256x15
// synopsys translate_off
 #(LPM_FILE)

// synopsys translate_on
 u1 (.Address(addr), .Q(q), .MemEnab(enab));

endmodule

3. (Optional for RAM functions) Specify an initial memory content file:

For ROM functions, you must specify the filename of an initial memory content file in the Intel
hexadecimal format (.hex) or the Altera® Memory Initialization File (.mif) format in the Parameter
Statement, with the LPM_FILE parameter. See Figure 1. The filename must be the same as the instance
name; e.g., the u1 instance name must be unique throughout the whole project. The initialization file
must reside in the directory containing the project's design files.

For RAM functions, specifying a memory initialization file is optional. If you want to use it, you must
specify it in a Parameter Statement, as described above.

1. The MIF format is supported only for specifying initial memory content when compiling designs
within MAX+PLUS II software. You cannot use a MIF to perform simulation with Synopsys
tools prior to MAX+PLUS II compilation.

2. If you use an Intel hexadecimal format file and wish to simulate the design with the VHDL
System Simulator (VSS) after MAX+PLUS II compilation, you should use the Synopsys
intelhex utility to translate the Intel hexadecimal fomat file into a VSS-compatible Synopsys
memory file. Refer to the Synopsys VHDL System Simulator Software Tool manual for details
about using the intelhex utility.

4. In the Verilog HDL design, add // synopsys translate_off before the Parameter Statement, and add
// synopsys translate_on after the Parameter Statement. These directives tell the HDL Compiler for
Verilog when to stop and start synthesizing. See Figure 1.

5. The timing model (.lib) generated by the genmem utility contains pin-to-pin delay information that can be
used by the Synopsys Design Compiler and FPGA Compiler software. You must add this timing model to the
existing library so that the compiler can access the timing information. Type the following commands at the
dc_shell prompt:

read -f db flex10k[<speed grade>].db
update_lib flex10k[<speed grade>] <RAM/ROM function name>.lib

6. (Optional) Include the following command to update your flex10k[<speed grade>].db file with the
RAM/ROM timing information:

write_lib flex10k[<speed grade>] -o flex10k.db

7. When you generate the EDIF netlist file from the design, include the bus structure from the RAM or ROM
function(s). Go to Setting Up Synopsys Configuration Files for more information.

8. Continue with the steps necessary to complete your Verilog HDL design, as described in Creating Verilog
HDL Designs for Use with MAX+PLUS II Software.

Related Topics:

You can also run Synopsys tools from within the MAX+PLUS II software to automatically generate and import
an EDIF file. Refer to Running Synopsys Compilers from MAX+PLUS II Software for more information. In
addition, if your MAX+PLUS II development system includes VHDL or Verilog HDL synthesis support, the
MAX+PLUS II Compiler can directly synthesize VHDL or Verilog HDL logic. For more information, go to
MAX+PLUS II VHDL or Verilog HDL Help.

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Synthesizing & Optimizing VHDL & Verilog HDL Projects with Synopsys Software

The MAX+PLUS® II Compiler can process a VHDL or Verilog HDL file that has been synthesized by the
Synopsys Design Compiler or FPGA Compiler software, saved as an EDIF 2 0 0 or 3 0 0 netlist file, and imported
into the MAX+PLUS II software. The procedure below explains how to run Synopsys tools separately from
MAX+PLUS II Software.

The following steps explain how to synthesize and optimize a VHDL or Verilog HDL design for use with
MAX+PLUS II software:

1. Be sure to set up your design environment correctly. This step includes specifying the target device family
for the design. See the following topics:

Setting Up the Synopsys/MAX+PLUS II Working Environment
Setting Up the Design Compiler and FPGA Compiler Configuration Files
Setting Up the DesignWare Interface
Setting Up the VSS Configuration Files

2. Create a VHDL file, <design name>.vhd, or a Verilog HDL design, <design name>.v, using the
MAX+PLUS II Text Editor or another standard text editor and save it in a project directory under your login
directory. See the following topics for instructions:

Creating VHDL Designs for Use with MAX+PLUS II Software.
Creating Verilog HDL Designs for Use with MAX+PLUS II Software.

3. Start the Design Compiler or FPGA Compiler software by typing either dc_shell or fpga_shell at the
command line, respectively. To work within the graphical user interface, type design_analyzer for either
tool.

4. Analyze and then compile the design with the Design Compiler, FPGA Compiler, or Design Analyzer
software. The VHDL Compiler or HDL Compiler for Verilog software automatically translates the design
into Synopsys database (.db) format. Specific steps are necessary for some types of projects before you
process the design:

1. If your FLEX 10K design includes RAM or ROM functions, follow these steps:

1. (VHDL designs only) Because the VHDL Compiler software does not support the data type
string for the Generic Clause, you must also enter the following command at the dc_shell
prompt before you read the design:

hdlin_translate_off_skip_text=true

2. The timing model (.lib) generated by the genmem utility contains pin-to-pin delay information
that can be used by the Synopsys Design Compiler and FPGA Compiler software. You must add
this timing model to the existing library so that the compiler can access the timing information.
Type the following commands at the dc_shell prompt:

read -f db flex10k[<speed grade>].db
update_lib flex10k[<speed grade>] <RAM/ROM function name>.lib

3. (Optional) Enter the following command to update your flex10k[<speed grade>].db file with
the RAM/ROM timing information:

write_lib flex10k[<speed grade>] -o flex10k.db

See Instantiating RAM & ROM Functions in VHDL or Instantiating RAM & ROM functions in
Verilog HDL for additional information.

2. If you wish to allow the FPGA Compiler to perform N-input look-up table (LUT) optimization for a
FLEX 6000, FLEX 8000, or FLEX 10K design, enter the following command at the dc_shell prompt
before compiling the design:

edifout_write_properties_list = "lut function"

Go to Using FPGA Compiler N-Input LUT Optimization for FLEX 6000, FLEX 8000, or FLEX 10K
Devices for more information.

3. If you wish to enter resource assignments, go to Entering Resource Assignments.

4. If you wish to direct the Design Compiler or FPGA Compiler to use sum-of-products logic in
processing a MAX 7000 or MAX 9000 design, type the following commands at the dc_shell prompt
before compiling the design:

set_structure false
set_flatten -effort low

See MAX 7000 & MAX 9000 Synthesis Example for more information.

For additional information on how the Design Compiler and FPGA Compiler synthesize and optimize
a design, see the following topics:

Synopsys Design Compiler Reference Manual or Design Analyzer Reference Manual
DesignWare FLEX 8000 Synthesis Example

5. (Optional) View the optimized project with the Design Analyzer. The Design Analyzer uses the altera.sdb
library to display optimized projects generated by the Design Compiler or FPGA Compiler.

6. (Optional) To view Synopsys-generated timing information and generate a file detailing primitive usage, type
the following commands:

report_timing
report_reference > <filename>

7. (Optional) To functionally verify the project prior to processing with the MAX+PLUS II software, save the
design as a VHDL netlist file, and simulate it as described in Performing a Pre-Routing or Functional
Simulation with VSS Software.

8. Save the optimized project as an EDIF netlist file with the extension .edf.

9. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with the MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Synopsys interface on your computer automatically creates the
following sample VHDL and Verilog HDL files:

/usr/maxplus2/synopsys/examples/ministate.vhd
/usr/maxplus2/synopsys/examples/ministate.v

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Resynthesizing a Design Using the alt_vtl Library and a MAX+PLUS II SDF Output File
Programming Altera Devices

MAX 7000 & MAX 9000 Synthesis Example

The MAX® 7000 (including MAX 7000E, MAX 7000S, and MAX 7000A) and MAX 9000 device families have a
sum-of-products architecture. To obtain optimum timing and area results, you can direct the Synopsys Design
Compiler or FPGA Compiler software to synthesize your logic into a sum-of-products form. To assist the Synopsys
compilers in meeting the timing and area constraints of your designs, the Altera® technology libraries provide
models that approximate the timing of the MAX 7000 and MAX 9000 logic cells.

Figure 1 shows two timing models: the standard Altera MAX 7000 timing model and a Synopsys timing model that
approximates the MAX 7000 model. The Synopsys model is built on the following three conditions and
assumptions:

1. The combinatorial delay in logic cells has been equally divided between product terms and OR gates. Because
the product-term delay equals the OR-gate delay, the Synopsys compilers treat them equally, producing a
sum-of-products structure. On top of this structure, inverters are used where necessary.

2. A shared expander product term is always used to create combinatorial logic.

3. The Synopsys Design Compiler and FPGA Compiler software do not distinguish between array and global
Clocks. Therefore, to estimate setup and hold timing most accurately, you must instantiate GLOBAL buffers
to indicate a global clock in either your VHDL or Verilog HDL design.

Figure 1. Standard MAX 7000 Timing Model vs. Synopsys Approximation of Timing Model

If you wish to direct the Synopsys Design Compiler or FPGA Compiler software to produce sum-of-products logic
that approximates the MAX 7000 or MAX 9000 timing model, you can type the following dc_shell prompt
commands at the command line before compiling the design:

set_structure false

set_flatten -effort low

When set_structure is set to false, structuring is turned off, and the Synopsys Design Compiler and FPGA
Compiler software cannot factor and share logic between functions. If you do not enter these commands, the
Synopsys compilers may add logic, which can create additional area and timing delays.

Figure 2 shows a combinatorial design that is predictable when structuring is turned off, but is unpredictable when
structuring is turned on.

To obtain accurate timing information about your design, you must use the MAX+PLUS II Timing Analyzer to
analyze your design. For accurate area information, consult the Report File (.rpt) generated by the MAX+PLUS
II software.

Figure 2. Nonstructured vs. Structured Combinatorial Design

When you use low as the argument to the set_flatten -effort command, the Synopsys compilers use the
shortest compilation time to create the sum-of-products implementation of your design. If you use the medium or
high argument, the Synopsys compilers create optimally flattened designs, but usually require greater compilation
time and offer little improvement in timing and area results.

You can type report_timing after compilation to view Synopsys-generated timing information.

If you wish to calculate the area of your design, you can obtain an approximate logic cell count in several ways.
Altera recommends that you add the number of registers and combinatorial outputs in a design. Depending on your
design, this number may be slightly lower than the final number reported by the MAX+PLUS II software.

To create a file detailing primitive usage in the design, type report_reference> <filename> after Synopsys
compilation.

Related Topics:

Refer to the following sources for related information:
Synopsys Design Compiler Reference Manual or Synopsys Command Reference Manual

Figure 1 shows a sample VHDL design, design_one.vhd, which illustrates
component inference with the DesignWare interface for FLEX® 8000
devices.

Figure 1. VHDL Design File (design_one.vhd)
This design illustrates the sum of A + B.
LIBRARY ieee;
USE ieee.std_logic_1164.ALL;
USE ieee.std_logic_unsigned.ALL;

ENTITY design_one IS
 PORT (a,b : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 f : OUT STD_LOGIC_VECTOR (7 DOWNTO 0));
END design_one;

ARCHITECTURE add_design OF design_one IS

BEGIN
 f <= a + b;
END add_design;

FPGA Compiler User Guide
Synthesizing & Optimizing VHDL & Verilog HDL Pojects with Synopsys Software

Go to MAX Devices, which is available on the web, for additional information:

DesignWare FLEX 8000 Synthesis Example

When the VHDL Compiler or the HDL Compiler for Verilog software analyzes and elaborates the design, it
replaces the "+" operator with its synthetic operator equivalent.

Figure 2 shows the design as it appears in the Design Analyzer software after it has been analyzed and elaborated
by the VHDL Compiler software.

Figure 2. design_one.vhd after Analysis & Elaboration

When you synthesize a design, the Design Compiler or FPGA Compiler software uses the synthetic library to
match the synthetic operator to the FLEX-optimized logical implementation in the technology library. The
Synopsys Design Compiler or FPGA Compiler software then instantiates and interconnects the correct number of
flex_add and flex_carry functions to produce the 8-bit adder shown in Figure 1. When you save a compiled
design as a VHDL, Verilog HDL or EDIF file, the file preserves the number of flex_add and flex_carry
functions, as well as their interconnections. Consequently, area and performance predictions that you make in the

Table 2. FLEX 6000, FLEX 8000, and FLEX 10K Synthetic Library
Functions

Name Function
flex_add Sum of A, B, and Carry-In
flex_carry Carry of A, B, and Carry-In
flex_sub Difference of A, B, and Borrow-In
flex_borrow Borrow of A, B, and Borrow-In
flex_gt, flex_sgt Greater than (flex_gt is unsigned; flex_sgt is signed)
flex_carry_gt Greater than Carry
flex_lt, flex_slt Less than (flex_lt is unsigned; flex_slt is signed)
flex_carry_lt Less than Carry
flex_gteq, flex_sgteq Greater than or equal to (flex_gteq is unsigned; flex_sgteq is signed)
flex_carry_gteq Greater than or equal to Carry
flex_inc Incrementer (Count = Count + 1)
flex_carry_inc Incrementer Carry (Count = Count + 1)
flex_dec Decrementer (Count = Count - 1)
flex_carry_dec Decrementer Carry (Count = Count - 1)
flex_lteq, flex_slteq Less than or equal to (flex_lteq is unsigned; flex_slteq is signed)
flex_carry_lteq Less than or equal to Carry
flex_count Counter
aflex_carry_count Counter Carry
flex_add_sub Adder/Subtractor
flex_inc_dec Incrementer/Decrementer
flex_umult, flex_smult Multiplier (flex_umult is unsigned; flex_smult is signed)

Synopsys design environment closely match the final MAX+PLUS® II result.

Table 2 lists functions included in the DesignWare FLEX 6000, FLEX 8000, and FLEX 10K synthetic libraries.

Figure 3 shows design_one.vhd after it has been synthesized with the Design Compiler.

Figure 3. design_one.vhd Synthesized & Resolved for FLEX 6000, FLEX 8000 & FLEX 10K
Architecture

After you save the design as an EDIF Input File (.edf) and process it with the MAX+PLUS II Compiler, the
Compiler replaces instances of flex_add and flex_carry with FLEX-optimized versions, as shown in Figure 4.
The MAX+PLUS II Compiler maps these functions into a single logic element (LE). The result is a high-speed 8-
bit adder that fits into 8 LEs.

Figure 4. One Slice of the design_one 8-bit Adder Design with Optimized FLEX 8000 Functions

Related Topics:

Refer to the following sources for related information on DesignWare and the Synopsys VHDL Compiler:
Synopsys DesignWare Databook
VHDL Compiler Reference Manual

Go to FLEX Devices, which is available on the web, for additional information:

Figure 1 shows a sample command sequence that FPGA Compiler might
require for N-input LUT optimization. To use N-input LUT optimization,
include the edifout_write_properties_list = "lut_function" command.

Figure 1. Sample Command Sequence for N-Input LUT Optimization
read -f vhdl <design name>.vhd
current_design = <design name>
set_max_area 0
uniquify
ungroup -all -flatten
compile -ungroup_all
report_area > <design name>.rpa
report_fpga > <design name>.rpf
report_cell > <design name>.rpc
edifout_write_properties_list = "lut_function"
write -f edif -hierarchy -o <design name>.edf

Using FPGA Compiler N-Input LUT Optimization for FLEX 6000, FLEX 8000 & FLEX
10K Devices

The Synopsys FPGA Compiler software supports an N-input look-up table (LUT) function that improves the
quality of the results and the predictability of delay and resource estimates. All Altera® FPGA Compiler libraries
for FLEX® 6000, FLEX 8000, and FLEX 10K devices support the N-input LUT function.

Use the area report to determine the circuit area.

If you wish to maintain area report estimates as closely as possible during MAX+PLUS® II processing, Altera
recommends that you select the WYSIWYG setting for the Global Project Synthesis Style in the Global Project
Logic Synthesis dialog box (Assign menu). However, selecting the Normal or Fast style may yield a better result.

Related Topics:

For more information on how to use the FPGA Compiler software optimize your design for FLEX 8000
devices, refer to Chapter 5: Optimization for the Altera FLEX 8000 Architecture in the Synopsys FPGA
Compiler User Guide.
Go to FLEX Devices, which is available on the web, for additional information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In the MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project.

In designs targeted for the Synopsys Design Compiler and FPGA Compiler software, you can assign a limited
subset of these resource assignments by setting attributes in the VHDL or Verilog HDL design files with the
set_attribute command. These attributes are incorporated into the EDIF netlist file(s). The MAX+PLUS II

Table 1. Commands for Chip, Pin, & Logic Cell Assignments

software automatically converts assignment information from the EDIF Input File (.edf) into the ACF format. For
information on making MAX+PLUS II-compatible resource assignments with the set_attribute command, go to
the following topics:

Assigning Pins, Logic Cells, & Chips
Assigning Cliques
Assigning Logic Options

You can also modify the ACF for a design to contain timing requirements and other assignments, as described in
the following topics:

Modifying the Assignment & Configuration File with the setacf utility
Converting Synopsys Timing Constraints into MAX+PLUS II-Compatible Format with the syn2acf Utility
Converting Synopsys Hierarchical Timing Constraints into MAX+PLUS II-Compatible Format with the
gen_iacf and gen_hacf Utilities

Related Topics:

Refer to the following sources for related information:
Synopsys documentation for additional information on how to assign properties
"Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for more information on assignments or properties that can be assigned
in Synopsys
"resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on (Help
menu), for information on entering assignments in the MAX+PLUS II software with Assign menu
commands or in an ACF

Assigning Pins, Logic Cells & Chips

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in
MAX+PLUS® II software.

To make pin, logic cell, and chip assignments, use the set_attribute command at a dc_shell prompt. Before
using the set_attribute command, add the following line to your .synopsys_dc.setup file:

edifout_write_properties_list= {LOGIC_OPTION, CLIQUE, CHIP_PIN_LC}

Table 1 shows the syntax to use for chip, pin, and logic cell assignments:

Assignment
Type Command to Type Note (1)

Chip set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type string
"<chip name>"

Pin set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type string
"<chip name>@<pin number>"

Logic cell
number

set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type string
"<chip name>@LC<logic cell number>"

I/O cell number set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type string
"<chip name>@IOC<I/O cell number>"

Embedded cell
number

set_attribute find (<design object>, (<instance name>)) "CHIP_PIN_LC" -type string
"<chip name>@EC<embedded cell number>"

To assign a clique, type the following command at a dc_shell prompt:

Note:

1. In this table, <design object> represents ports, references, cells, nets, or pins.

Examples:

set_attribute find (cell, (U1)) "CHIP_PIN_LC" -type string "chip1"

set_attribute find (cell, (U1)) "CHIP_PIN_LC" -type string "chip1@K2"

set_attribute find (cell, (U1)) "CHIP_PIN_LC" -type string "chip1@LC44"

Related Topics:

Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on device
pin-outs and assigning devices, respectively, in the MAX+PLUS II software.

Assigning Cliques

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project
does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000,
MAX® 9000, and FLEX 10K devices, the Compiler also attempts to place the logic in LABs in the same row.
Cliques therefore allow you to partition a project so that only a minimum number of signals travel between LABs,
and to ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

To make pin, logic cell, and chip assignments, use the set_attribute command at a dc_shell prompt. Before
using the set_attribute command, add the following line to your .synopsys_dc.setup file:

edifout_write_properties_list= {LOGIC_OPTION, CLIQUE, CHIP_PIN_LC}

set_attribute find(<design object>,(<instance name>))"CLIQUE" -type string "<clique name>"
For example:
set_attribute find (cell, (U1)) "CLIQUE" -type string "fast1"

To assign a logic option or a logic synthesis style, type the following command at a dc_shell prompt:
set_attribute find(<design object>, (<instance name>)) "LOGIC_OPTION"
-type string "<logic option>=<value>"
For example:
set_attribute find (cell, (U1)) "LOGIC_OPTION" -type string
"STYLE=FAST"
To specify multiple logic options, use commas as separators.
For example:
set_attribute find (cell, (U1))"LOGIC_OPTION" -type string "STYLE=FAST,
CARRY_CHAIN=MANUAL"

Related Topics:

Go to the following topics in MAX+PLUS II Help for related information:

Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Assigning Logic Options

Logic options and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device family-specific default logic synthesis style for each
project.

To make pin, logic cell, and chip assignments, use the set_attribute command at a dc_shell prompt. Before
using the set_attribute command, add the following line to your .synopsys_dc.setup file:

edifout_write_properties_list = {LOGIC_OPTION, CLIQUE, CHIP_PIN_LC}

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis
style assignments, including definitions and syntax of these assignments.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Converting Synopsys Timing Constraints into MAX+PLUS II-Compatible Format with the

The syn2acf utility does not support set_arrival timing constraints for internal nodes.

Figure 1. Sample Command File (.cmd) for Setting Timing Constraints

create_clock -period 50 -waveform {0 25} CLK
set_clock_skew -delay 2 CLK
set_input_delay 10 IN2
set_input_delay 5 -clock CLK IN1
set_output_delay 20 OUT2
set_output_delay 5 -clock CLK OUT1
set_max_delay 25 -to OUT1
set_max_delay 35 -to OUT2
set_multicycle_path 2 -to n20_reg

syn2acf Utility

Altera provides the syn2acf utility, which is an interface program that converts Synopsys timing constraints from
non-hierarchical designs into the MAX+PLUS® II Assignment & Configuration File (.acf) format. For information
on converting timing constraints from hierarchical designs, refer to Converting Synopsys Hierarchical Timing
Constraints into MAX+PLUS II-Compatible Format with the gen_iacf and gen_hacf Utilities.

The syn2acf utility requires the following input files:

Flattened EDIF netlist file
dc_shell script file
Standard Delay Format (SDF) constraints construct
SDF timing delay construct

To use the syn2acf utility, follow these steps:

1. Set the timing constraints by using one of the following methods:

Start the Synopsys Design Analyzer and specify timing constraints by choosing appropriate menu
commands.

or:

Create the <design name>.cmd file for use with a dc_shell script. See Figure 1.

1. Compile the design and run the syn2acf utility either from the command line or with a Design Compiler dc
script:

Compile the design, then type the following command from the UNIX prompt to start the syn2acf utility:

/usr/maxplus2/synopsys/bin/syn2acf <design name>

or:

Run a dc script inside the dc_shell script that reads the VHDL design, compiles it, and runs the syn2acf
utility. Figure 2 shows a sample dc script.

The syn2acf utility uses the ALT_HOME environment variable, if it has been specified, to determine the
MAX+PLUS II system directory; otherwise, it uses the /usr/maxplus2 directory. To specify a
different MAX+PLUS II system directory with the ALT_HOME environment variable, you can either edit
the .cshrc file to specify the correct directory or type the following command at the UNIX prompt:

setenv ALT_HOME <MAX+PLUS II system directory>

Figure 2. Sample Script for Running the syn2acf Utility

/* dc_script example to interface with syn2acf */

dc_shell <<!

read -f vhdl <design name>.vhd

include <design name>.cmd /*set timing constraints*/

compile

current_design=<design name>
include /usr/maxplus2/synopsys/bin/syn2acf.cmd /*generate required files*/

sh /usr/maxplus2/synopsys/bin/syn2acf <design name> /*invoke syn2acf utility*/

quit

!

The syn2acf utility cannot support maximum Clock frequency (fMAX) correctly if more than one
Clock skew is specified in the dc_shell command script. This problem occurs because the Synopsys
write_script command drops the Clock skew information for the registers. The syn2acf utility will
use the last Clock skew number to calculate fMAX.

The sample dc script includes the Altera® -provided syn2acf.cmd file, shown in Figure 3, to generate the
required input files for the syn2acf utility.

Figure 3. Altera-Provided syn2acf.cmd File

ungroup -flatten -all
write -f edif
write_script > altsyn.dc
write_constraints -format sdf -cover_design
write_timing -format sdf

All timing assignments generated by the syn2acf utility are written to the Timing Requirement Assignments
Section of the project's ACF, with the assignment source identifier {synopsys} at the end of each line. Figure
4 shows a sample ACF excerpt that contains Synopsys timing constraints generated by the syn2acf utility.

Figure 4. Sample ACF Excerpt with Synopsys Timing Constraints

TIMING_POINT
BEGIN
 "|OUT2" : TCO = 15.00ns {synopsys};
 "|IN1" : TPD = 10.00ns {synopsys};
 "|IN2" : TPD = 5.00ns {synopsys};
 "|OUT1" : TCO = 20.00ns {synopsys};
 "|IN1" : TSU = 20.00ns {synopsys};
 "|IN2" : TSU = 117.00ns {synopsys};
 "|CLK" : FREQUENCY = 50.00ns {synopsys};
 "|n10_reg" : FREQUENCY = 100.00ns {synopsys};
END;

Altera provides sample files for these utilities in the /usr/maxplus2/synopsys/bin directory.

Performing a Pre-Routing or Functional Simulation with VSS Software

After you have synthesized and optimized a VHDL or Verilog HDL design with the Design Compiler or
FPGA Compiler software, you can perform a pre-routing or functional simulation with the Synopsys VHDL
System Simulator (VSS) software.

To perform a pre-routing/functional simulation, follow these steps:

1. Be sure to set up the working environment correctly, as described in the following topics:

Setting Up the MAX+PLUS II/Synopsys Working Environment
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up the DesignWare Interface
Setting Up VSS Configuration Files

2. Create a VHDL or Verilog HDL design file that follows the guidelines described in one of the
following topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Creating Verilog HDL Designs for Use with MAX+PLUS II Software

3. Synthesize and optimize your design with the Design Compiler or FPGA Compiler, as described in
Synthesizing & Optimizing VHDL & Verilog HDL Files with Design Compiler or FPGA Compiler
Software.

4. Save your design as a VHDL Design File (.vhd).

VSS requires each architecture/entity pair in a VHDL Design File to have a configuration. The
Configuration Declaration is necessary for simulation, but not for synthesis.

5. Use VSS and one of the Altera pre-routing functional simulation libraries to simulate the design.

6. When you are ready to compile your project with MAX+PLUS II software, save the design as an EDIF
netlist file (.edf), then process it as described in Compiling Projects with MAX+PLUS II Software.

Related Topics:

Refer to the following sources for related information:
VHDL System Simulator Core Programs Manual for more information about VSS
Performing a Timing Simulation with VSS Software

Altera/Synopsys Project Compilation Flow

The following figure shows the MAX+PLUS® II /Synopsys project compilation flow.

Figure 1. MAX+PLUS II/Synopsys Project Compilation Flow

Altera-provided items are shown in blue.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to
use MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File
(with the extension .edf).

Related Topics:

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running
the Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design
from within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF
Input Files with the extension .edf. Specific instructions for some tools are described in these
MAX+PLUS II ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product
documentation for your design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom
symbol to the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-
supported design file. These custom functions are represented in design files as hollow-body symbols
or "black box" HDL descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the
Project Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you
can choose the Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a
project, the settings you need to specify are easier to specify from within the MAX+PLUS II
software. After you have run the graphical user interface for the MAX+PLUS II software at least
once, you can more easily use the command-line setacf utility to modify options in the
Assignment & Configuration File (.acf) for the project. Type setacf -h and maxplus2 -h
for descriptions of setacf and MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-
down list box. If you wish to implement the design logic in a specific device, select it in the Devices
box. Otherwise, select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the
current device family. If your design entry or synthesis and optimization tool required you to specify a
target family and/or device, specify the same information in this dialog box. For information on
partitioning logic among multiple devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through
the following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader
Settings (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor. This name should be the name of the vendor whose tool(s) you used to create the EDIF
netlist files. If your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select
Synopsys, choose the Customize button, enter <project name>.lmf in the LMF #1 box,
choose OK, and skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files
that require custom LMF mappings, choose the Customize button to expand the dialog box to
show all settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the
corresponding text box, or select a name from the Files box. The selection in the Vendor box
will change to Custom and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog
box to show all settings. Any previously defined custom settings will be displayed. Under Signal
Names, type one or more names with up to 20 total name characters in the VCC or GND box if
your EDIF Input File(s) use one or more names other than VCC or GND for the global high or low
signals. Multiple signal names must be separated by either a comma (,) or a space. Under
Library Mapping Files, turn on the LMF #1 checkbox and type a filename in the text box
following it, or select a name from the Files box. If necessary, specify another LMF name in the
LMF #2 box. Go to MAX+PLUS II Help for detailed information on the settings available in the
EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, you may need to ensure that all files are present in your project directory, i.e., the same
directory as the top-level design file. Otherwise, you must specify the directories containing these files
as user libraries with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into
MAX+PLUS II-Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or
timing analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size
of the output file(s). Turning on this command can reduce the size of output netlists by up to
30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a
non-optimized timing SNF provides the same functional and timing information as an
optimized timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF
Netlist Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for
that vendor and choose OK. If your vendor name does not appear, select Custom instead
and specify the settings that are appropriate for your simulation or timing analysis tool. Go
to MAX+PLUS II Help for detailed information on the options available in the EDIF
Netlist Writer Settings dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the
Customize button to expand the dialog box to show all settings. Select one of the SDF
Output File options under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the
user-defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames
that are based on the project name. For a multi-device project, the Compiler also generates a top-
level EDIF Output File that is uniquely identified by "_t" appended to the project name. In
addition, the Compiler automatically generates a VHDL Memory Model Output File, <project
name>.vmo, when it generates an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu).
Select VHDL Output File (.vho) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF ver. 2.1 files contain timing delay information that allows
you to perform back-annotation simulation in VHDL with VITAL-compliant simulation
libraries. The VHDL Output Files generated by the Compiler have the extension .vho, but are
otherwise named in the same way as the EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer

command (Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces
menu). Select Verilog Output File (.vo) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF Output Files contain timing delay information that allows
you to perform back-annotation simulation in Verilog HDL. The Verilog Output Files generated
by the Compiler have the extension .vo, but are otherwise named in the same way as the EDIF
Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or
choose the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL,
Verilog HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing
analysis or timing simulation with another EDA tool. Specific instructions for some tools are described
in these MAX+PLUS II ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the
product documentation for your EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of
the following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types
of programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for
information on back-annotating pin assignments in Mentor Graphics Design Architect
schematics.
Go to Programming Altera Devices for information on the different programming hardware
options for Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Synopsys DesignWare-Specific Compiler Settings

If you are compiling a design that was created with the Synopsys DesignWare software, follow these
additional steps:

1. Choose Global Project Logic Synthesis (Assign menu).
2. Select the desired style in the Global Project Synthesis Style box.
3. Choose the Define Synthesis Style button to check and/or edit the selected style.
4. In the Define Synthesis Style dialog box, select Manual in the Carry Chain box and also in the

Cascade Chain box.
5. Choose the Advanced Options button in the Define Synthesis Style dialog box.
6. Turn on the SOFT Buffer Insertion logic option in the Advanced Options dialog box if it is not on

already. This option should be turned on in all Synopsys designs.
7. Choose OK three times to close all dialog boxes.

Running Synopsys Compilers from the MAX+PLUS II Software

With MAX+PLUS® II software, you can automatically process Verilog HDL and VHDL designs with the
Synopsys Design Compiler or FPGA Compiler by following these steps:

1. Create a project directory under your login directory.

2. Add the following environment variables to your .cshrc file:

setenv ALT_HOME /<MAX+PLUS II system directory>
setenv SYNOPSYS /<Synopsys system directory>

3. Add the $ALT_HOME/synopsys/bin and $SYNOPSYS/$ARCH/syn/bin directories to the PATH
environment variable in your .cshrc file. The $ARCH environment variable specifies the platform on
which the Synopsys Design Compiler is running. Valid platform names are sparc, sparcOS5, rs6000,
and hp700.

4. Source your .cshrc file to update the environment variables.

If you use additional custom libraries, you must specify them in a .synopsys_dc.setup file, and
verify that it contains the correct library settings for mapping to the target family. See Setting Up
the Synopsys/MAX+PLUS II Working Environment for more information about the
.synopsys_dc.setup file.

5. Create your project in Verilog HDL or VHDL using the MAX+PLUS II Text Editor or another
standard text editor. You must save Verilog HDL files with the extension .v and VHDL files with the
extension .vhd.

If you use the MAX+PLUS II Text Editor to create your design, you can insert templates for
Verilog HDL or VHDL constructs with the Verilog Template and VHDL Template commands
(Templates menu). The MAX+PLUS II Text Editor also provides syntax coloring for Verilog
HDL and VHDL files to improve file readability.

6. In the MAX+PLUS II software, specify the project to be compiled with Project Name (File menu).
Make sure the project name specified in MAX+PLUS II software matches both the name of the top-
level design file and the Entity Declaration name specified in the top-level design file.

7. Click Button 1 on the Compiler toolbar button or choose the Compiler command (MAX+PLUS II
menu) to open the Compiler.

8. In the MAX+PLUS II Compiler, turn on the Synopsys Compiler command (Interfaces menu).

9. Open the Synopsys Compiler Settings dialog box by choosing Synopsys Compiler Settings
(Interfaces menu). Specify the appropriate options:

1. Select either Design Compiler or FPGA Compiler in the Compiler box to specify which
Synopsys compiler you want to process the design.

2. If you wish to use the DesignWare interface and libraries, turn on the DesignWare (FLEX®

devices only) option (FLEX 6000, FLEX 8000, and FLEX 10K devices only).

3. To preserve the design hierarchy during Synopsys compilation, turn on the Hierarchical

Compilation option. Turning off this option allows the Synopsys compiler to flatten the design.

4. To allow the Synopsys compiler to optimize across all hierarchical boundaries, turn on the
Boundary Optimization option.

5. Select the Low, Medium, or High option for Mapping Effort.

6. Choose OK to save all changes.

10. If you have turned on the DesignWare (FLEX devices only) option in the Synopsys Compiler Settings
dialog box, ensure that the global project synthesis style uses the correct settings. Refer Compiling
Projects with MAX+PLUS II Software for more information.

11. Specify the device(s) and output file(s) for the project. If you do not specify a device, the MAX+PLUS
II Compiler automatically selects one or more devices from the current device family. Refer to
Creating VHDL Design Files for Use with MAX+PLUS II Software for more information.

12. Choose the Start button to compile the project. The MAX+PLUS II software converts the EDIF Input
File, flattens the project, fits it into one or more Altera® devices, and generates the selected output
files, including programming files. The MAX+PLUS II Message Processor notifies you when one of
the Synopsys compilers is processing your design. When it has finished processing the design file(s),
the Synopsys compiler generates an EDIF netlist file for each design in the hierarchy, and the
MAX+PLUS II software immediately compiles the EDIF Input File(s).

Altera provides the mp2dc_ana and mp2dc_cmp shell scripts, which specify Synopsys Design Compiler or
FPGA Compiler settings automatically. These scripts read the settings you have specified in the Device
(Assign menu) and Synopsys Compiler Settings (Interfaces menu) dialog boxes for the project device(s),
search path, link library, target library, synthetic library options (if you have turned on the DesignWare
option in the Synopsys Compiler Settings dialog box), and other optimization options. You do not need to
provide your own .synopsys_dc.setup file unless you use libraries other than Altera libraries. See Setting Up
Synopsys Configuration Files for more information.

The MAX+PLUS II software runs both the mp2dc_ana and mp2dc_cmp shell scripts automatically when
you compile a VHDL or Verilog HDL design file with the Synopsys Compiler command (Interfaces menu)
turned on. The mp2dc_ana shell script analyzes your designs and generates a single hierarchical .db
database file. The analysis output information is recorded in the <project name>.log file. If the Design
Compiler or FPGA Compiler generates errors or warning messages during processing, the messages appear
in the MAX+PLUS II Message Processor window. You can select a message that includes a line number and
click Button 1 on the Locate button to locate the source of a message in the MAX+PLUS II Text Editor. If
no errors occur during analysis, the MAX+PLUS II software then starts the mp2dc_cmp shell script to read
the .db file, compile the design, and generate an EDIF netlist file for each design file in the hierarchy, which
the MAX+PLUS II software then processes as an EDIF Input File (.edf).

The the mp2dc_ana and mp2dc_cmp shell scripts are located in the /usr/maxplus2/synopsys/bin directory.
You can copy the mp2dc_cmp shell script to your project directory and specify custom settings for your
design, such as Clock frequency or timing constraints settings. Alternatively, you can create your own
custom dc_shell script and name the file my_mp2dc.scr. The mp2dc_cmp shell script will then use the
commands in the my_mp2dc.scr file and ignore the current settings or default settings for Synopsys
compilation options. Figure 1 shows an excerpt of the Altera-provided mp2dc_cmp shell script.

Figure 1. Excerpt from Altera-Provided mp2dc_cmp Shell Script

read -f db $proj.db >> $proj.log
 if (dc_shell_status == {}) {
 quit
 }

current_design=$design
uniquify
set_max_area 0

designs= find(design, "*")
foreach (dsgn, designs) {
 current_design= dsgn
 edfout_file = ""
 edfout_file = dsgn
 edfout_file = edfout_file + ".edf"
 set_max_area 0

/* If you do not use my_mp2dc.scr to customize your compilation, the */
/* customizable settings in the following section are used. You can */
/* customize these settings only if the mp2dc_cmp file is located in */
/* your project directory. */

 if ("$use_my_cmd" == "true") {
 include my_mp2dc.scr
 } else {
 /* if no hierarchical compilation, then flatten the design */
 if ("$hierarchical_compile" == "OFF") {
 set_structure false
 set_flatten -effort low
 ungroup -all
 }

/* test compile options */
 if ("$boundary_opt" == "ON") {
 compile -boundary_optimization -map_effort $map_effort
 } else {
 compile -map_effort $map_effort
 }

/* If you use FPGA Compiler for FLEX devices, the LUT equation is output.*/
 /* If you use Design Compiler for FLEX devices, a TBL cell is output. */
 if (("$family" == "flex8000") || ("$family" == "flex10k")) {

if ("$synopsys_compiler" == "FPGA"){
 edifout_write_properties_list = {"lut_function"}
 } else {
 replace_fpga
 }
 }
 } /* End of customizable compilation settings section */

write -f edif current_design -o edfout_file

if (dc_shell_status == {}) {
 quit
 }
}

Resynthesizing a Design Using the alt_vtl Library & a MAX+PLUS II SDF Output
File

Altera provides the alt_vtl.db post-synthesis library for technology mapping or resynthesis. You can use this
library with the MAX+PLUS® II -generated Standard Delay Format (SDF) Output File (.sdo) to retarget and
resynthesize your design for another device family by performing the following steps:

To retarget and resynthsize a design, follow these steps:

1. Generate an EDIF Output File (.edo) and an SDF Output File (.sdo), as described in Compiling
Projects with MAX+PLUS II Software.

2. Modify your .synopsys_dc.setup file to include the following lines:

search_path = {./usr/maxplus2/synopsys/library/alt_post/syn/lib
<target library path>};
target_library = {<target library path>};
symbol_library = {<target library symbol file>};
link_library = {alt_vtl.db};

3. In the Design Compiler or FPGA Compiler software, type the following commands to read in the EDIF
and SDF output files:

read -f edif <design name>.edo
read_timing -load_delay net <design name>.sdo

4. Type the following commands to compile your design, report the timing information, and create an
EDIF netlist file (.edf) that can be processed with the MAX+PLUS II Compiler.

compile
report_timing
write -f edif -hierarchy -o <design name>.edf

Project Simulation Flow

Figure 1 shows the project simulation flow for the MAX+PLUS® II /Synopsys interface.

Figure 1. MAX+PLUS II/Synopsys Project Simulation Flow

Altera-provided items are shown in blue.

The MAX+PLUS II/Synopsys design environment fully supports design verification with the Synopsys
VHDL System Simulator (VSS). For pre-route simulation, you can simulate a design that has been compiled
with one of the Synopsys compilers. For post-route simulation, you can simulate the VHDL Output File
(.vho) that MAX+PLUS II® software generates during project compilation.

Performing a Timing Simulation with VSS Software

Once the MAX+PLUS® II software has compiled a project and generated a VHDL Output File (.vho) and an
optional Standard Delay Format (SDF) Output File (.sdo), you can perform timing simulation with the
Synopsys VHDL Simulator Software (VSS).

To simulate a VHDL Output File with VSS, follow these steps:

Be sure to set up the working environment correctly, as described in the following topics:

Setting Up the MAX+PLUS II/Synopsys Working Environment
Setting Up Design Compiler & FPGA Compiler Configuration Files
Setting Up the DesignWare Interface
Setting Up VSS Configuration Files

1. Generate a VHDL Output File (.vho) and an optional SDF Output File (.sdo), as described in
Compiling Projects with MAX+PLUS II Software.

2. (Optional) Analyze the VITAL 95-compliant alt_vtl library , then back-annotate timing information
through the SDF Output File:

1. Use the analyze_vss script to analyze the alt_vtl Post-Routing Timing Simulation library, as
described in Setting Up VSS Configuration Files.

2. Enter the following command to back-annotate timing information through the SDF Output File:

vhdlsim -sdf_top /<design name>/<design name> -sdf
<design name>.sdo

3. Simulate the VHDL Output File with the VSS software.

Related Topics:

Go to the VSS User's Guide for more details on post-routing simulation.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / Viewlogic

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Fus Vcs

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic Fusion/VCS
& MAX+PLUS II Software

Using Viewlogic Fusion/VCS & MAX+PLUS II
Software

The following topics describe how to use the Viewlogic Fusion/VCS software with MAX+PLUS® II software.
Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with Fusion/VCS for Powerview Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Compiling Projects with MAX+PLUS II Software
Programming Altera® Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

To use the MAX+PLUS® II software with Viewlogic's Powerview software, you must install the MAX+PLUS II
software, familiarize yourself with the Altera® Toolbox in the Powerview Cockpit, and then establish an
environment that facilitates entering and processing designs. The MAX+PLUS II /Viewlogic Powerview interface
is installed automatically when you install the MAX+PLUS II software on your workstation.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

To set up your working environment for the MAX+PLUS II/Viewlogic Powerview interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Viewlogic software versions described in
MAX+PLUS II/Viewlogic Powerview Software Requirements.

2. Add the following environment variable to your .cshrc file to specify /usr/maxplus2 as the MAX+PLUS II
system directory:

setenv ALT_HOME /usr/maxplus2

3. Add the $ALT_HOME/viewlogic/standard, $ALT_HOME/bin, and $ALT_HOME/viewlogic/bin
directories to the PATH environment variable in your .cshrc file.

4. Add the $ALT_HOME/viewlogic/standard directory to the WDIR environment variable in your .cshrc file
using the following syntax:

setenv WDIR $ALT_HOME/viewlogic/standard:/<Powerview system directory>/standard

Make sure the $ALT_HOME/viewlogic/standard directory is the first directory in your WDIR path.

5. Source your .cshrc file by typing source .cshrc at the UNIX prompt.

6. Create the Viewlogic Powerview viewdraw.ini configuration file.

7. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

8. If you plan to instantiate Library of Parameterized Modules (LPM) functions in ViewDraw schematics, you
must create a new file with the name vdraw.vs. The vdraw.vs file must include the following line:

load ("vdpath")

You must also make sure that you specify the vdraw.vs file in your WDIR path.

9. Set up a directory structure that facilitates working with the MAX+PLUS II/Viewlogic Powerview interface.
Refer to MAX+PLUS II/Viewlogic Powerview Project File Structure.

Related Topics:

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to
MAX+PLUS II/Viewlogic Powerview Interface File Organization for information about the MAX+PLUS
II/Viewlogic Powerview directories that are created during MAX+PLUS II installation.

Viewlogic Altera

ViewDraw ViewGen MAX+PLUS II
version 9.4

VHDL Analyzer ViewPath (optional)
Vantage VHDL Analyzer ViewTrace
VHDL -> sym ViewData Path
edifneto MOTIVE version 5.1.6 Note (1)

edifneti MOTIVE for Powerview version 3.2.1 (optional) Note
(1)

EEDIF (optional) SDF2MTV (optional)
MMP (optional) Fusion/VCS
vsm
Note:

(1)
MOTIVE for Powerview, a wrapper application for MOTIVE, provides a graphical user interface for the utilities
(i.e., EEDIF, SDF2MTV, and MMP) used during a static timing verification with MOTIVE. MOTIVE alone
does not accept EDIF files through the Setup Advisor.

The MAX+PLUS II read.me file provides up-to-date information on which versions of Viewlogic Powerview
applications the current version of the MAX+PLUS II software supports. It also provides information on
installation and operating requirements. You should read the read.me file on the CD-ROM before installing the
MAX+PLUS II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

For information on the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II
File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Directory Description

./lmf Contains the Altera-provided Library Mapping File, vwlogic.lmf, that maps Viewlogic
logic functions to equivalent MAX+PLUS II logic functions.

./viewlogic Contains the alt_edif.cfg EDIF configuration file that is used with the edifneti utility.
Also contains the library and sample subdirectories.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Viewlogic Powerview Software Requirements

The following applications and utilities are used to generate, process, synthesize, and verify a project with
MAX+PLUS® II and Viewlogic Powerview software.

MAX+PLUS II/Viewlogic Powerview Interface File Organization

Table 1 shows the MAX+PLUS® II/Viewlogic Powerview interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Table 1. MAX+PLUS II Directory Organization

./viewlogic/examples Contains the sample Viewlogic designs.

./viewlogic/library/max2sim Contains the MAX+PLUS II simulation model library (max2_sim) for use in ViewSim
software.

./viewlogic/library/alt_max2

Contains MAX+PLUS II primitives (EXP, GLOBAL, LCELL, SOFT, CARRY, CASCADE, DFFE,
DFFE6K, and OPNDRN), macrofunctions (a_8fadd, a_8mcomp, a_8count, a_81mux), and
megafunctions (clklock) for use in ViewDraw schematics. These logic functions
support specific architectural features of Altera® devices. The alt_max2 library also
contains modified versions of the ViewDraw primitives that use tri-state buffers, because
these primitives require special handling in the MAX+PLUS II /Viewlogic Powerview
interface.

./viewlogic/library/synlib
Contains the Altera-provided synthesis library altera, which includes MAX+PLUS II
primitives, the altera.sml file, a sym directory, and a wir directory for use with
ViewSynthesis software.

./viewlogic/library/alt_mf
Contains the VHDL models for the MAX+PLUS II primitives (EXP, GLOBAL, LCELL,
SOFT, CARRY, CASCADE, DFFE, and OPNDRN), macrofunctions (clklock) for use with
ViewSynthesis software, the Vantage VHDL Analyzer software, and the VHDL source
files. These logic functions are used to maintain portability to other architectures.

./viewlogic/library/alt_time Contains MOTIVE timing models for MAX+PLUS II logic functions (motive.lib),
including the clklock megafunction, and MAX+PLUS II driver models (motive.drv).

./viewlogic/library/alt_vtl Contains the VHDL source files for the VITAL 3.0-compliant library. This library is
available for ViewSim software.

./viewlogic/bin Contains all MAX+PLUS II, Viewlogic, and interface-related scripts.

./viewlogic/standard Contains all standard .ini files and standard tools.

DIR [pw] .

DIR [r] /usr/maxplus2/vwlogic/library/alt_max2 (alt_max2)

DIR [r] /usr/maxplus2/vwlogic/library/max2sim (max2_sim)

DIR [r] /usr/maxplus2/vwlogic/library/synlib (altera)

DIR [r] /usr/maxplus2/vwlogic/library/alt_mf (alt_mf)

DIR [r] /usr/maxplus2/vwlogic/library/alt_vtl (alt_vtl)

DIR [rm] /<Powerview system directory>/lib/builtin (builtin)
DIR [rm] /<Powerview system directory>/simmods/vl/dip/74ls (vl74ls)

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Viewlogic Powerview viewdraw.ini Configuration File

Each Powerview project is configured with the viewdraw.ini file that resides in the project directory. The DIR
statements at the end of viewdraw.ini are paths to library directories that are used by the various Powerview
applications. Figure 1 shows a sample of the DIR statements that are required to use the libraries.

Figure 1. Excerpt from viewdraw.ini

DIR [rm] /<Powerview system directory>/symsets/vl/dip/74ls (vl74ls)
DIR [r] /<Powerview system directory>/lib/vdpath (vdpath)

When you add the libraries to the /usr/maxplus2/vwlogic/standard/viewdraw.ini file, they are automatically set
when you create a new project. Powerview tools search these libraries sequentially, so it is important to add them
in the order in which they are listed in Figure 1.

Library Library Alias Source Topics
alt_max2 alt_max2 Altera Graphical elements for ViewDraw
max2sim max2_sim Altera Models for project simulation
synlib altera Altera VHDL synthesis library for the MAX+PLUS ® II software
alt_mf alt_mf Altera VHDL models of MAX+PLUS II logic functions
alt_vtl alt_vtl Altera VITAL-compliant primitives
builtin builtin Altera Basic primitives such as INPUT pins, OUTPUT pins, AND gates, OR gates, etc.
74ls vl74ls Viewlogic 74-series macrofunctions
vdpath vdpath Viewlogic Standard library of parameterized modules (LPM) functions

The Altera-provided libraries must be listed before the Viewlogic-provided libraries in the viewdraw.ini file to
ensure that the correct versions of the megafunctions, macrofunctions, and primitives are used.

Table 1 shows the libraries that must be specified in the DIR statements in the viewdraw.ini file.

Table 1. Powerview Application Libraries

Related Topics:

Go to Altera-Provided Logic & Symbol Libraries for more information on Altera-supplied libraries. Refer to
the Powerview documentation for more information on setting up the viewdraw.ini file.

MAX+PLUS II/Viewlogic Powerview Project File Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an Altera® Hardware Description
Language (AHDL) TDF; or any other MAX+PLUS II- supported design file. The EDIF netlist file must be created
by Powerview and imported into the MAX+PLUS II software as an EDIF Input File (.edf). Figure 1 shows an
example of MAX+PLUS II project directory structure that includes Powerview-generated files.

Figure 1. Sample MAX+PLUS II Project Organization

ViewDraw files are identified by their directories and not by their extensions, so it is easy to overwrite files
unintentionally. To avoid overwriting files, Altera recommends that you create a new project directory, <project
name>/max2/sim, where you can generate all the files needed for simulation.

Directory Topics

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Unlike Powerview, the MAX+PLUS II software does not automatically create a project directory when you create a
project. A single directory can contain several MAX+PLUS II design files, and you can specify any one of the
designs in the directory as a project in the MAX+PLUS II software.

Viewlogic Powerview Local Work Area Structure

When you create a project with the Powerview Cockpit's Create command (Project menu), the project directory is
created. You should generate design files and functional simulation files under this directory. A max2 subdirectory
is automatically created under your current project directory when you generate an EDIF file from your schematic
or VHDL file. The <project name>.edf file is stored in the max2 subdirectory. All MAX+PLUS® II Compiler
output files are created in the /<project name>/max2 subdirectory.

ViewDraw Project File Structure

Each ViewDraw project directory contains three subdirectories: wir, sch, and sym. See Table 1.

Table 1. ViewDraw Subdirectories

./wir Wirelist files that contain connectivity information for a particular logic block

./sch Schematics that contain logic

./sym Symbol files that are the ViewDraw graphical representation of the logic blocks

Directory Topics
./synth All synthesis-related files and directories
./synth/<entity> Four types of files: <entity>.pdf, <entity>.opt, <entity>.sta, and <entity>.gnl
./wir Wirelist for synthesized VHDL modules

For each VHDL entity in the design, there is a corresponding ./synth/<entity> directory.

You can create your own libraries of custom symbols and logic functions for use in ViewDraw schematics and
VHDL design files. You can use custom symbols (and functions) to incorporate an EDIF Input File, TDF, or any
other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses the vwlogic.lmf
Library Mapping File to map ViewDraw symbols to equivalent MAX+PLUS II megafunctions, macrofunctions,
or primitives. To use custom symbols and functions, you can create a custom LMF that maps your custom
functions to equivalent EDIF Input Files, TDFs, or other MAX+PLUS II-supported design files. Go to "Library
Mapping File" and "Viewlogic Library Mapping File" in MAX+PLUS II Help for more information.

Each file type uses the filename extension .1. Different file types are distinguished only by their directory:
/lib/wir/<project name>.1 is a wirelist file; /lib/sch/<project name>.1 is the corresponding schematic file; and
/lib/sym/<project name>.1 is the corresponding symbol.

VHDL Project File Structure

Each VHDL project directory contains three subdirectories. See Table 2.

Table 2. VHDL Subdirectories

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS® II/Viewlogic Powerview environment provides libraries for compiling, synthesizing, and
simulating designs.

Logic symbols used in ViewDraw software are available from the MAX+PLUS II alt_max2 library, the ViewDraw
builtin and 74ls libraries, and the ViewDatapath vdpath library. VHDL models of MAX+PLUS II logic functions
are available from the Altera-provided alt_mf library.

The alt_max2 Library

The alt_max2 library provides MAX+PLUS II-specific logic functions that can be used to take advantage of
special architectural features in each Altera® device family. See Table 1. Symbols and functional simulation
models are available for all of these elements.

The alt_mf Library

The Altera-provided alt_mf library, which supports the Viewlogic Vantage VHDL Analyzer software, contains
VHDL simulation models for all logic functions listed in the following table. The library is configured so that these
functions pass untouched through the EDIF netlist file to the MAX+PLUS II Compiler, providing you with optimal
control over design processing. Altera also provides models for all of the logic functions that you can synthesize
and simulate. These models allow you to perform functional VHDL simulation while maintaining an architecture-
independent VHDL description.

Table 1. Architecture Control Logic Functions

Name Note
(1), Note (2) Description Name Description Name Description

8fadd
8-bit full adder
macrofunction LCELL Logic cell buffer primitive EXP

MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer
primitive

8mcomp
8-bit magnitude
comparator
macrofunction

GLOBAL Global input buffer primitive SOFT Soft buffer primitive

8count
8-bit up/down
counter
macrofunction

CASCADE
FLEX® 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

OPNDRN Open-drain buffer primitive

81mux
8-to-1 multiplexer
macrofunction CARRY

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

DFFE
Note
(2)

D-type flipflop with Clock
Enable primitive

clklock
Phase-locked loop
megafunction

Altera-provided items are shown in blue.

Notes:

1. Logic function names that begin with a number must be prefixed with "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Topics:

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help
menu for detailed information on these functions.
Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

MAX+PLUS II/Viewlogic Powerview Simulation Flow

Figure 1 shows the project simulation flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Project Simulation Flow

Performing a Timing Simulation with Fusion/VCS for Powerview Software

After you have compiled a project with the MAX+PLUS® II software to generate a VHDL Output File (.vho) and a
Standard Delay Format (SDF) Output File (.sdo), you can perform a timing simulation with Fusion/VCS software.

To simulate a project with Fusion/VCS software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Generate a VHDL Output File (.vdo) and an SDF ver 2.1 or 1.0 Output File (.sdo) for your project, as
described in Compiling Projects with MAX+PLUS II Software.

3. Create a new sim directory under your max2 directory to contain your Fusion/VCS simulation-related files.

4. To use the SDF Output File with the Fusion/VCS software, create a PLI table file (.tab) in the <project
name>/max2/sim directory that contains the following line:

$sdf_annotate call=sdf_annotate_call acc=tchk, mp:<project name>

5. Open the Fusion/VCS dialog box by choosing the max2_VCS button from the Altera® Design Tools Drawer
in the Powerview Cockpit.

1. Type <project name>/max2/<project name>.vo in the Verilog Design and Object Files box.

2. Type <project name>.tab in the PLI Table File box.

3. Type <project name>/max2/alt_max2.vo in the Verilog Library File 1 box.

4. (Optional) To use a command file or to set stimuli during simulation, select the Debug option in the

VCS box and type the name of the command file in the Simulation Command-file box.

When using a command file or setting stimuli, include the signal scope as part of the signal
name. For example, to manipulate clk, a top-level signal in the fadd project, name the signal as
fadd.clk.

5. Choose OK.

Related Topics:

Go to Performing a Timing Simulation with ViewSim Software in these MAX+PLUS II ACCESSSM Key
topics for related information:

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to
use MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File
(with the extension .edf).

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running
the Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design
from within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF
Input Files with the extension .edf. Specific instructions for some tools are described in these
MAX+PLUS II ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product
documentation for your design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom
symbol to the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-
supported design file. These custom functions are represented in design files as hollow-body symbols
or "black box" HDL descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the
Project Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you
can choose the Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a
project, the settings you need to specify are easier to specify from within the MAX+PLUS II
software. After you have run the graphical user interface for the MAX+PLUS II software at least
once, you can more easily use the command-line setacf utility to modify options in the
Assignment & Configuration File (.acf) for the project. Type setacf -h and maxplus2 -h

for descriptions of setacf and MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-
down list box. If you wish to implement the design logic in a specific device, select it in the Devices
box. Otherwise, select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the
current device family. If your design entry or synthesis and optimization tool required you to specify a
target family and/or device, specify the same information in this dialog box. For information on
partitioning logic among multiple devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through
the following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader
Settings (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor. This name should be the name of the vendor whose tool(s) you used to create the EDIF
netlist files. If your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select
Synopsys, choose the Customize button, enter <project name>.lmf in the LMF #1 box,
choose OK, and skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files
that require custom LMF mappings, choose the Customize button to expand the dialog box to
show all settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the
corresponding text box, or select a name from the Files box. The selection in the Vendor box
will change to Custom and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog
box to show all settings. Any previously defined custom settings will be displayed. Under Signal
Names, type one or more names with up to 20 total name characters in the VCC or GND box if
your EDIF Input File(s) use one or more names other than VCC or GND for the global high or low
signals. Multiple signal names must be separated by either a comma (,) or a space. Under
Library Mapping Files, turn on the LMF #1 checkbox and type a filename in the text box
following it, or select a name from the Files box. If necessary, specify another LMF name in the
LMF #2 box. Go to MAX+PLUS II Help for detailed information on the settings available in the
EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, you may need to ensure that all files are present in your project directory, i.e., the same
directory as the top-level design file. Otherwise, you must specify the directories containing these files
as user libraries with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into
MAX+PLUS II-Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or
timing analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size
of the output file(s). Turning on this command can reduce the size of output netlists by up to
30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a
non-optimized timing SNF provides the same functional and timing information as an
optimized timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF
Netlist Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for
that vendor and choose OK. If your vendor name does not appear, select Custom instead
and specify the settings that are appropriate for your simulation or timing analysis tool. Go
to MAX+PLUS II Help for detailed information on the options available in the EDIF
Netlist Writer Settings dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the
Customize button to expand the dialog box to show all settings. Select one of the SDF
Output File options under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the
user-defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames
that are based on the project name. For a multi-device project, the Compiler also generates a top-
level EDIF Output File that is uniquely identified by "_t" appended to the project name. In
addition, the Compiler automatically generates a VHDL Memory Model Output File, <project
name>.vmo, when it generates an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu).
Select VHDL Output File (.vho) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF ver. 2.1 files contain timing delay information that allows
you to perform back-annotation simulation in VHDL with VITAL-compliant simulation
libraries. The VHDL Output Files generated by the Compiler have the extension .vho, but are
otherwise named in the same way as the EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer
command (Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces
menu). Select Verilog Output File (.vo) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF Output Files contain timing delay information that allows
you to perform back-annotation simulation in Verilog HDL. The Verilog Output Files generated
by the Compiler have the extension .vo, but are otherwise named in the same way as the EDIF
Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or
choose the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL,
Verilog HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing
analysis or timing simulation with another EDA tool. Specific instructions for some tools are described
in these MAX+PLUS II ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the
product documentation for your EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of
the following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types
of programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for
information on back-annotating pin assignments in Mentor Graphics Design Architect
schematics.
Go to Programming Altera Devices for information on the different programming hardware
options for Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can
program an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for
MAX+PLUS II software.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software
installed on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and
software available from other manufacturers. Table 1 shows the available Altera programming hardware
options on PCs and UNIX workstations.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S
MAX
9000

&
MAX

9000A
Devices

FLEX®
6000,
FLEX

6000A,
FLEX 8000,
FLEX 10K,

FLEX
10KA,
FLEX
10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster
Download Cable
ByteBlasterMV
Download Cable
MasterBlaster
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File
Transfer Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one
of the serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply
hardware and software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming
files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic Fusion/VCS
& MAX+PLUS II Software

Using Viewlogic Fusion/VCS & MAX+PLUS® II
Software

The following topics describe how to use the Viewlogic Fusion/VCS software with MAX+PLUS® II software.
Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with Fusion/VCS for Powerview Software

Related Links

Compiling Projects with MAX+PLUS II Software
Programming Altera® Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-fus_vcs-fus_vcsall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-projstrc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-fig13.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-initial.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-fus_vcs-vcs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.viewlogic.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Performing a Timing
Simulation with Fusion/VCS for Powerview Software

Performing a Timing Simulation with Fusion/VCS for
Powerview Software

After you have compiled a project with the MAX+PLUS® II software to generate a VHDL Output File (.vho) and a
Standard Delay Format (SDF) Output File (.sdo), you can perform a timing simulation with Fusion/VCS software.

To simulate a project with Fusion/VCS software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Generate a VHDL Output File (.vdo) and an SDF ver 2.1 or 1.0 Output File (.sdo) for your project, as
described in Compiling Projects with MAX+PLUS II Software.

3. Create a new sim directory under your max2 directory to contain your Fusion/VCS simulation-related files.

4. To use the SDF Output File with the Fusion/VCS software, create a PLI table file (.tab) in the <project
name>/max2/sim directory that contains the following line:

$sdf_annotate call=sdf_annotate_call acc=tchk, mp:<project name>

5. Open the Fusion/VCS dialog box by choosing the max2_VCS button from the Altera® Design Tools Drawer
in the Powerview Cockpit.

1. Type <project name>/max2/<project name>.vo in the Verilog Design and Object Files box.

2. Type <project name>.tab in the PLI Table File box.

3. Type <project name>/max2/alt_max2.vo in the Verilog Library File 1 box.

4. (Optional) To use a command file or to set stimuli during simulation, select the Debug option in the
VCS box and type the name of the command file in the Simulation Command-file box.

When using a command file or setting stimuli, include the signal scope as part of the signal
name. For example, to manipulate clk, a top-level signal in the fadd project, name the signal as
fadd.clk.

5. Choose OK.

Related Links:

Go to Performing a Timing Simulation with ViewSim Software in these MAX+PLUS II ACCESSSM Key
topics for related information:

Feedback

Did this information help you?

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all
liability for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Intro

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / MAX+PLUS II/Viewlogic
Powerview Compilation Flow

MAX+PLUS II/Viewlogic Powerview Compilation Flow

Altera-provided items are shown in blue.

Figure 1 shows the project compilation flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Project Compilation Flow

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Design Flow for All Viewlogic
Powerview Tools

Design Flow for All Viewlogic Powerview Tools
Figure 1 shows the typical design flow for logic circuits created and processed with Viewlogic Powerview and
MAX+PLUS® II software. Design Entry Flow, Project Compilation Flow, Project Simulation Flow, Timing
Verification Flow, and Device Programming Flow show detailed diagrams for each stage of the design flow.

Figure 1. Viewlogic Powerview & MAX+PLUS II Design Flow

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-fig09.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-compflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-fig13.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-imflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-imflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / MAX+PLUS II/Viewlogic
Powerview Design Entry Flow

MAX+PLUS II/Viewlogic Powerview Design Entry Flow

Altera-provided items are shown in blue.

Figure 1 shows the design entry flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Design Entry Flow

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / MAX+PLUS II/Viewlogic
Powerview Simulation Flow

MAX+PLUS II/Viewlogic Powerview Simulation Flow

Altera-provided items are shown in blue.

Figure 1 shows the project simulation flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Project Simulation Flow

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic Powerview
Tools with MAX+PLUS II Software

Using Viewlogic Powerview Tools with MAX+PLUS II
Software

The following topics describe how to use Viewlogic Powerview tools as part of a complete design flow that
includes the MAX+PLUS® II software. If you use only one Viewlogic Powerview tool, click List by Tool and
select the tool name to view the list of topics only for that tool. Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
Viewlogic Powerview Graphical User Interface & the Altera Toolbox
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

Design Flow for All Viewlogic Powerview Tools

Design Entry

Design Entry Flow
ViewDraw

Creating ViewDraw Schematics for Use with MAX+PLUS II Software
Instantiating LPM Functions in ViewDraw Schematics
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

Creating Hierarchical Projects in ViewDraw Schematics
Entering Resource Assignments

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation with ViewSim Software
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist
Files with the edifneto Utility

VHDL
Creating VHDL Designs for Use with MAX+PLUS II Software

Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Analyzing VHDL Files with the Vantage VHDL Analyzer Software

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-tools.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-introall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gui.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-projstrc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-dsgnflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-fig09.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-lpmclk.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-hollow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-vhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1

Performing a Functional Simulation with ViewSim Software
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist
Files with the edifneto Utility

Synthesis & Optimization

Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software

Compilation

Project Compilation Flow
Compiling Projects with MAX+PLUS II Software
Using the Max2 Express Drawer's SCH <-> max2 Utility
Using the Max2 Express Drawer's VHDL <-> max2 Utility

Simulation

Project Simulation Flow
ViewSim

Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Performing a Functional Simulation with ViewSim Software
Performing a Timing Simulation with ViewSim Software

Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation
with ViewSim Software

Fusion/VCS
Performing a Timing Simulation with Fusion/VCS for Powerview Software

Timing Verification

Timing Verification Flow
Performing Timing Verification of EDIF Output Files (.edo) with MOTIVE & MOTIVE for Powerview
Software
Performing Timing Verification of Verilog Output Files (.vo) with MOTIVE Software

Device Programming

Programming Altera® Devices

Related Links

Powerview Command-Line Syntax
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-viewsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-compflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-schmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-schmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-schmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-vhdlmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-vhdlmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-vhdlmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-fig13.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-initial.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-simedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-simedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-fus_vcs-vcs.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-imflow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motive.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motive.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motvlog.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-cmdsyntx.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.viewlogic.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic Powerview
Tools with MAX+PLUS II Software

Using Viewlogic Powerview Tools with MAX+PLUS II
Software

The following topics describe how to use Viewlogic Powerview tools as part of a complete design flow that
includes the MAX+PLUS® II software. If you use only one Viewlogic Powerview tool, click List by Tool and
select the tool name to view the list of topics only for that tool. Click on one of the following topics for
information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
Viewlogic Powerview Graphical User Interface & the Altera Toolbox
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

Design Flow for All Viewlogic Powerview Tools

Design Entry

Design Entry Flow

ViewDraw

Creating ViewDraw Schematics for Use with MAX+PLUS II Software
Instantiating LPM Functions in ViewDraw Schematics
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

Creating Hierarchical Projects in ViewDraw Schematics
Entering Resource Assignments

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation with ViewSim Software
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist
Files with the edifneto Utility

VHDL

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Creating VHDL Designs for Use with MAX+PLUS II Software
Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Performing a Functional Simulation with ViewSim Software
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist
Files with the edifneto Utility

Synthesis & Optimization

Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software

Compilation

Project Compilation Flow
Compiling Projects with MAX+PLUS II Software
Using the Max2 Express Drawer's SCH <-> max2 Utility
Using the Max2 Express Drawer's VHDL <-> max2 Utility

Simulation

Project Simulation Flow

ViewSim

Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Performing a Functional Simulation with ViewSim Software
Performing a Timing Simulation with ViewSim Software

Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation
with ViewSim Software

Fusion/VCS

Performing a Timing Simulation with Fusion/VCS for Powerview Software

Timing Verification

Timing Verification Flow
Performing Timing Verification of EDIF Output Files (.edo) with MOTIVE & MOTIVE for Powerview
Software
Performing Timing Verification of Verilog Output Files (.vo) with MOTIVE Software

Device Programming

Programming Altera® Devices

Related Topics:

Go to Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics for related
information.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

To use the MAX+PLUS® II software with Viewlogic's Powerview software, you must install the MAX+PLUS II
software, familiarize yourself with the Altera® Toolbox in the Powerview Cockpit, and then establish an
environment that facilitates entering and processing designs. The MAX+PLUS II /Viewlogic Powerview interface
is installed automatically when you install the MAX+PLUS II software on your workstation.

To set up your working environment for the MAX+PLUS II/Viewlogic Powerview interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Viewlogic software versions described in
MAX+PLUS II/Viewlogic Powerview Software Requirements.

2. Add the following environment variable to your .cshrc file to specify /usr/maxplus2 as the MAX+PLUS II
system directory:

setenv ALT_HOME /usr/maxplus2

3. Add the $ALT_HOME/viewlogic/standard, $ALT_HOME/bin, and $ALT_HOME/viewlogic/bin
directories to the PATH environment variable in your .cshrc file.

4. Add the $ALT_HOME/viewlogic/standard directory to the WDIR environment variable in your .cshrc file
using the following syntax:

setenv WDIR $ALT_HOME/viewlogic/standard:/<Powerview system directory>/standard

Make sure the $ALT_HOME/viewlogic/standard directory is the first directory in your WDIR path.

5. Source your .cshrc file by typing source .cshrc at the UNIX prompt.

6. Create the Viewlogic Powerview viewdraw.ini configuration file.

7. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

8. If you plan to instantiate Library of Parameterized Modules (LPM) functions in ViewDraw schematics, you
must create a new file with the name vdraw.vs. The vdraw.vs file must include the following line:

Viewlogic Altera

ViewDraw ViewGen MAX+PLUS II
version 9.4

VHDL Analyzer ViewPath (optional)
Vantage VHDL Analyzer ViewTrace
VHDL -> sym ViewData Path
edifneto MOTIVE version 5.1.6 Note (1)

edifneti MOTIVE for Powerview version 3.2.1 (optional) Note
(1)

EEDIF (optional) SDF2MTV (optional)
MMP (optional) Fusion/VCS
vsm
Note:

(1)
MOTIVE for Powerview, a wrapper application for MOTIVE, provides a graphical user interface for the utilities
(i.e., EEDIF, SDF2MTV, and MMP) used during a static timing verification with MOTIVE. MOTIVE alone
does not accept EDIF files through the Setup Advisor.

The MAX+PLUS II read.me file provides up-to-date information on which versions of Viewlogic Powerview
applications the current version of the MAX+PLUS II software supports. It also provides information on
installation and operating requirements. You should read the read.me file on the CD-ROM before installing the
MAX+PLUS II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

load ("vdpath")

You must also make sure that you specify the vdraw.vs file in your WDIR path.

9. Set up a directory structure that facilitates working with the MAX+PLUS II/Viewlogic Powerview interface.
Refer to MAX+PLUS II/Viewlogic Powerview Project File Structure.

Related Topics:

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to
MAX+PLUS II/Viewlogic Powerview Interface File Organization for information about the MAX+PLUS
II/Viewlogic Powerview directories that are created during MAX+PLUS II installation.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Viewlogic Powerview Software Requirements

The following applications and utilities are used to generate, process, synthesize, and verify a project with
MAX+PLUS® II and Viewlogic Powerview software.

MAX+PLUS II/Viewlogic Powerview Interface File Organization

Table 1 shows the MAX+PLUS® II/Viewlogic Powerview interface subdirectories that are created in the

For information on the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II
File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Directory Description

./lmf Contains the Altera-provided Library Mapping File, vwlogic.lmf, that maps Viewlogic
logic functions to equivalent MAX+PLUS II logic functions.

./viewlogic Contains the alt_edif.cfg EDIF configuration file that is used with the edifneti utility.
Also contains the library and sample subdirectories.

./viewlogic/examples Contains the sample Viewlogic designs.

./viewlogic/library/max2sim Contains the MAX+PLUS II simulation model library (max2_sim) for use in ViewSim
software.

./viewlogic/library/alt_max2

Contains MAX+PLUS II primitives (EXP, GLOBAL, LCELL, SOFT, CARRY, CASCADE, DFFE,
DFFE6K, and OPNDRN), macrofunctions (a_8fadd, a_8mcomp, a_8count, a_81mux), and
megafunctions (clklock) for use in ViewDraw schematics. These logic functions
support specific architectural features of Altera® devices. The alt_max2 library also
contains modified versions of the ViewDraw primitives that use tri-state buffers, because
these primitives require special handling in the MAX+PLUS II /Viewlogic Powerview
interface.

./viewlogic/library/synlib
Contains the Altera-provided synthesis library altera, which includes MAX+PLUS II
primitives, the altera.sml file, a sym directory, and a wir directory for use with
ViewSynthesis software.

./viewlogic/library/alt_mf
Contains the VHDL models for the MAX+PLUS II primitives (EXP, GLOBAL, LCELL,
SOFT, CARRY, CASCADE, DFFE, and OPNDRN), macrofunctions (clklock) for use with
ViewSynthesis software, the Vantage VHDL Analyzer software, and the VHDL source
files. These logic functions are used to maintain portability to other architectures.

./viewlogic/library/alt_time Contains MOTIVE timing models for MAX+PLUS II logic functions (motive.lib),
including the clklock megafunction, and MAX+PLUS II driver models (motive.drv).

./viewlogic/library/alt_vtl Contains the VHDL source files for the VITAL 3.0-compliant library. This library is
available for ViewSim software.

./viewlogic/bin Contains all MAX+PLUS II, Viewlogic, and interface-related scripts.

./viewlogic/standard Contains all standard .ini files and standard tools.

MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Table 1. MAX+PLUS II Directory Organization

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Viewlogic Powerview viewdraw.ini Configuration File

Each Powerview project is configured with the viewdraw.ini file that resides in the project directory. The DIR
statements at the end of viewdraw.ini are paths to library directories that are used by the various Powerview
applications. Figure 1 shows a sample of the DIR statements that are required to use the libraries.

DIR [pw] .

DIR [r] /usr/maxplus2/vwlogic/library/alt_max2 (alt_max2)

DIR [r] /usr/maxplus2/vwlogic/library/max2sim (max2_sim)

DIR [r] /usr/maxplus2/vwlogic/library/synlib (altera)

DIR [r] /usr/maxplus2/vwlogic/library/alt_mf (alt_mf)

DIR [r] /usr/maxplus2/vwlogic/library/alt_vtl (alt_vtl)

DIR [rm] /<Powerview system directory>/lib/builtin (builtin)
DIR [rm] /<Powerview system directory>/simmods/vl/dip/74ls (vl74ls)
DIR [rm] /<Powerview system directory>/symsets/vl/dip/74ls (vl74ls)
DIR [r] /<Powerview system directory>/lib/vdpath (vdpath)

When you add the libraries to the /usr/maxplus2/vwlogic/standard/viewdraw.ini file, they are automatically set
when you create a new project. Powerview tools search these libraries sequentially, so it is important to add them
in the order in which they are listed in Figure 1.

Library Library Alias Source Topics
alt_max2 alt_max2 Altera Graphical elements for ViewDraw
max2sim max2_sim Altera Models for project simulation
synlib altera Altera VHDL synthesis library for the MAX+PLUS ® II software
alt_mf alt_mf Altera VHDL models of MAX+PLUS II logic functions
alt_vtl alt_vtl Altera VITAL-compliant primitives
builtin builtin Altera Basic primitives such as INPUT pins, OUTPUT pins, AND gates, OR gates, etc.
74ls vl74ls Viewlogic 74-series macrofunctions
vdpath vdpath Viewlogic Standard library of parameterized modules (LPM) functions

The Altera-provided libraries must be listed before the Viewlogic-provided libraries in the viewdraw.ini file to
ensure that the correct versions of the megafunctions, macrofunctions, and primitives are used.

Figure 1. Excerpt from viewdraw.ini

Table 1 shows the libraries that must be specified in the DIR statements in the viewdraw.ini file.

Table 1. Powerview Application Libraries

Related Topics:

Go to Altera-Provided Logic & Symbol Libraries for more information on Altera-supplied libraries. Refer to
the Powerview documentation for more information on setting up the viewdraw.ini file.

Viewlogic Powerview Graphical User Interface & the Altera Toolbox

You use the Powerview graphical interface manager, the Cockpit, and the Altera® Toolbox to start all Powerview
and Altera tools. Within the Altera Toolbox, you can specify the Max2 Express Drawer or the Design Tools Drawer
to work with the Altera/Viewlogic Powerview interface.

The Max2 Express Drawer provides a quick and seamless way to transfer designs created in Powerview to the
MAX+PLUS® II software for compilation, then return the compiled designs to Powerview for simulation and
timing verification. Table 1 describes the Max2 Express Drawer tools.

Tool Description
max2_VDraw Launches the Powerview ViewDraw schematic entry tool.

VHDL<->max2 Launches all tools necessary to synthesize a VHDL design, compile for an Altera device, and
generate a .vsm file for simulation with the Powerview ViewSim simulator.

SCH<->max2
Launches all tools necessary to compile a schematic design entered with Powerview ViewDraw
software for an Altera device and to generate a .vsm file for simulation with Powerview ViewSim
and .edo, .sdo, and .vmo files for timing analysis with MOTIVE for Powerview.

max2_VSim Launches the Powerview ViewSim simulator.
max2_VTrace Launches the Powerview ViewTrace simulation waveform editor.
max2_MOTIVE Launches the MOTIVE for Powerview ViewDraw static timing verification tool.

Tool Description
max2_VDraw Launches the Powerview ViewDraw schematic entry tool.
max2_analyzer Launches the Powerview VHDL Analyzer software.
max2_syn Launches the Powerview VHDL synthesis tool.
max2_chk Launches the Powerview schematic verification tool.
max2_vsmnet Launches the Powerview vsm utility that converts a wirelist file into a .vsm file.
max2_VSim Launches the Powerview ViewSim simulator.
max2_VTrace Launches the Powerview ViewTrace simulator.
max2_edifo Launches the Powerview EDIF netlist writer, edifneto.
max2_VGen Launches the Powerview ViewGen utility that generates a schematic from a wirelist file.
max2 Launches the MAX+PLUS II Compiler.
max2_edifi Launches the Powerview EDIF Netlist Reader, edifneti.
max2_vhdl2sym Launches the Powerview vhdl2sym utility that generates a symbol from a VHDL file.
max2_VantgMgr Launches the Powerview Vantage VHDL Library Manager tool.
max2_VantgAnlz Launches the Vantage VHDL Analyzer software.
max2_VCS Launches the Fusion/VCS Simulator.
max2_MOTIVE Launches the MOTIVE for Powerview static timing verification tool.

Table 1. Max2 Express Drawer Tools

The Design Tools Drawer provides tools that enable you to create a design with the Powerview tools, compile the
design in the MAX+PLUS II software, and simulate and verify the design with Powerview software. Table 2
describes the Design Tools Drawer tools.

Table 2. Design Tools Drawer Tools

MAX+PLUS II/Viewlogic Powerview Project File Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an Altera® Hardware Description
Language (AHDL) TDF; or any other MAX+PLUS II- supported design file. The EDIF netlist file must be created
by Powerview and imported into the MAX+PLUS II software as an EDIF Input File (.edf). Figure 1 shows an
example of MAX+PLUS II project directory structure that includes Powerview-generated files.

Figure 1. Sample MAX+PLUS II Project Organization

ViewDraw files are identified by their directories and not by their extensions, so it is easy to overwrite files
unintentionally. To avoid overwriting files, Altera recommends that you create a new project directory, <project
name>/max2/sim, where you can generate all the files needed for simulation.

Directory Topics

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Unlike Powerview, the MAX+PLUS II software does not automatically create a project directory when you create a
project. A single directory can contain several MAX+PLUS II design files, and you can specify any one of the
designs in the directory as a project in the MAX+PLUS II software.

Viewlogic Powerview Local Work Area Structure

When you create a project with the Powerview Cockpit's Create command (Project menu), the project directory is
created. You should generate design files and functional simulation files under this directory. A max2 subdirectory
is automatically created under your current project directory when you generate an EDIF file from your schematic
or VHDL file. The <project name>.edf file is stored in the max2 subdirectory. All MAX+PLUS® II Compiler
output files are created in the /<project name>/max2 subdirectory.

ViewDraw Project File Structure

Each ViewDraw project directory contains three subdirectories: wir, sch, and sym. See Table 1.

Table 1. ViewDraw Subdirectories

./wir Wirelist files that contain connectivity information for a particular logic block

./sch Schematics that contain logic

./sym Symbol files that are the ViewDraw graphical representation of the logic blocks

Directory Topics
./synth All synthesis-related files and directories
./synth/<entity> Four types of files: <entity>.pdf, <entity>.opt, <entity>.sta, and <entity>.gnl
./wir Wirelist for synthesized VHDL modules

For each VHDL entity in the design, there is a corresponding ./synth/<entity> directory.

You can create your own libraries of custom symbols and logic functions for use in ViewDraw schematics and
VHDL design files. You can use custom symbols (and functions) to incorporate an EDIF Input File, TDF, or any
other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses the vwlogic.lmf
Library Mapping File to map ViewDraw symbols to equivalent MAX+PLUS II megafunctions, macrofunctions,
or primitives. To use custom symbols and functions, you can create a custom LMF that maps your custom
functions to equivalent EDIF Input Files, TDFs, or other MAX+PLUS II-supported design files. Go to "Library
Mapping File" and "Viewlogic Library Mapping File" in MAX+PLUS II Help for more information.

Each file type uses the filename extension .1. Different file types are distinguished only by their directory:
/lib/wir/<project name>.1 is a wirelist file; /lib/sch/<project name>.1 is the corresponding schematic file; and
/lib/sym/<project name>.1 is the corresponding symbol.

VHDL Project File Structure

Each VHDL project directory contains three subdirectories. See Table 2.

Table 2. VHDL Subdirectories

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS® II/Viewlogic Powerview environment provides libraries for compiling, synthesizing, and
simulating designs.

Logic symbols used in ViewDraw software are available from the MAX+PLUS II alt_max2 library, the ViewDraw
builtin and 74ls libraries, and the ViewDatapath vdpath library. VHDL models of MAX+PLUS II logic functions
are available from the Altera-provided alt_mf library.

The alt_max2 Library

The alt_max2 library provides MAX+PLUS II-specific logic functions that can be used to take advantage of
special architectural features in each Altera® device family. See Table 1. Symbols and functional simulation
models are available for all of these elements.

The alt_mf Library

The Altera-provided alt_mf library, which supports the Viewlogic Vantage VHDL Analyzer software, contains
VHDL simulation models for all logic functions listed in the following table. The library is configured so that these
functions pass untouched through the EDIF netlist file to the MAX+PLUS II Compiler, providing you with optimal
control over design processing. Altera also provides models for all of the logic functions that you can synthesize
and simulate. These models allow you to perform functional VHDL simulation while maintaining an architecture-
independent VHDL description.

Table 1. Architecture Control Logic Functions

Name Note
(1), Note (2) Description Name Description Name Description

8fadd
8-bit full adder
macrofunction LCELL Logic cell buffer primitive EXP

MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer
primitive

8mcomp
8-bit magnitude
comparator
macrofunction

GLOBAL Global input buffer primitive SOFT Soft buffer primitive

8count
8-bit up/down
counter
macrofunction

CASCADE
FLEX® 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

OPNDRN Open-drain buffer primitive

81mux
8-to-1 multiplexer
macrofunction CARRY

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

DFFE
Note
(2)

D-type flipflop with Clock
Enable primitive

clklock
Phase-locked loop
megafunction

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

Notes:

1. Logic function names that begin with a number must be prefixed with "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Topics:

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help
menu for detailed information on these functions.
Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

The vdpath & mega_lpm Libraries

The library of parameterized modules (LPM) 2.1.0 standard defines a set of parameterized functions and their
corresponding representations in an EDIF netlist file. These logic functions allow you to create and functionally
simulate an LPM-based design without targeting a specific device family. After the design is completed, you can
target the design to any device family.

When the MAX+PLUS® II software processes projects that include Viewlogic-provided vdpath LPM functions, it
uses functions from the Altera-provided mega_lpm library. This library includes all standard LPM functions except
the truth table, finite state machine, and pad functions. Altera does not directly support the lpm_ram_dq,
lpm_ram_io, and lpm_rom functions. Refer to Instantiating RAM & ROM Functions in Viewlogic Powerview
Designs for instructions on instantiating RAM and ROM functions.

Altera-provided items are shown in blue.

Design Flow for All Viewlogic Powerview Tools

Figure 1 shows the typical design flow for logic circuits created and processed with Viewlogic Powerview and
MAX+PLUS® II software. Design Entry Flow, Project Compilation Flow, Project Simulation Flow, Timing
Verification Flow, and Device Programming Flow show detailed diagrams for each stage of the design flow.

Figure 1. Viewlogic Powerview & MAX+PLUS II Design Flow

MAX+PLUS II/Viewlogic Powerview Design Entry Flow

Figure 1 shows the design entry flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Design Entry Flow

Creating ViewDraw Schematics for Use with MAX+PLUS II Software

You can create ViewDraw schematics and convert them into EDIF Input Files (.edf) that can be processed with the
MAX+PLUS® II software.

To create a ViewDraw schematic for use with the MAX+PLUS II software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Start Powerview by typing powerview at a UNIX prompt.

3. In the Cockpit window, select Altera in the Current ToolBox drop-down list box, and select the drawer you
want to use, i.e., Design Tools or Max2 Express, in the Current Drawer drop-down list box.

4. Choose Create (Project menu) from your working directory to create your project directory. Choose OK.

5. Choose SearchOrder (Project menu) to add the appropriate library directories and aliases to your
viewdraw.ini file in the appropriate search order. Refer to Viewlogic Powerview viewdraw.ini
Configuration File for more information on Powerview application libraries.

6. Start ViewDraw by double-clicking Button 1 on the max2_VDraw icon in the drawer that you selected in
step 3, type the name of the schematic, and choose OK. You can also start the ViewDraw software by typing
viewdraw at the UNIX prompt.

7. Choose Comp (Add menu) to add components to the schematic. You can use functions from the alt_max2,
builtin, and 74ls libraries. For information on Altera-provided libraries, go to Altera-Provided Logic &
Symbol Libraries.

Instructions for instantiating specific functions are provided in the following MAX+PLUS II ACCESSSM

Key topics:

Instantiating LPM Functions in ViewDraw Schematics
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPPSM). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

8. If you instantiate a clklock megafunction, choose the Dialog command (Attr menu), then choose the All
command (Dialog menu) to specify the values of the INPUT_FREQUENCY and CLOCKBOOST parameters. For
detailed information on the clklock megafunction, choose Megafunctions/LPM from the MAX+PLUS II
Help menu.

9. If you wish to create a hierarchical design that contains symbols representing other design files, such as
Altera® Hardware Description Language (AHDL) Text Design Files (.tdf), go to Creating Hierarchical
Projects in ViewDraw Schematics.

10. Choose Net (Add menu) to add nets to the schematic.

11. Choose Bus (Add menu) to add buses to the schematic.

Altera does not directly support the lpm_ram_dq, lpm_ram_io, and lpm_rom functions. Go to Instantiating RAM
& ROM Functions in Viewlogic Powerview Designs for information on instantiating these functions.

12. Choose Label (Add menu) to attach labels to nets and buses. When you are naming and labeling buses, make
sure you use the format <bus name>[<most significant bit>:<least significant bit>], and that you label both
the net and the pin.

13. (Optional) To enter resource assignments in your schematic, select a symbol or a net that feeds an output and
use the Attr command (Add menu) to add the assignments. For more information, go to Entering Resource
Assignments. You can also enter resource assignments from the MAX+PLUS II software.

14. Choose Write (File menu) to check and save both the schematic with the name .sch/<design name>.1 and
the wirelist with the name ./wir/<design name>.1.

15. (Optional) Perform a functional simulation, as described in Performing a Functional Simulation with
ViewSim Software.

16. Once you have created a schematic, you can generate an EDIF netlist file that can be imported into the
MAX+PLUS II software with either of the following methods:

You can create an EDIF netlist file, as described in Converting ViewDraw Schematics or VHDL
Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the edifneto Utility You must use
this method if your ViewDraw schematic instantiates Library of Parameterized Modules (LPM)
functions.
You can use the SCH <-> max2 utility in the Max2 Express drawer to automatically create an EDIF
netlist file, compile it with the MAX+PLUS II Compiler, generate an EDIF Output File (.edo), and
generate a .vsm file for simulation, as described in Using the Max2 Express Drawer's SCH <-> max2
Utility.

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates the
following sample ViewDraw schematic files:

/usr/maxplus2/examples/viewlogic/example1/fadd
/usr/maxplus2/examples/viewlogic/example3/fadd2
/usr/maxplus2/examples/viewlogic/example4/fadd2mpp
/usr/maxplus2/examples/viewlogic/example7/fifo

Related Topics:

Go to Powerview Command-Line Syntax in these MAX+PLUS II ACCESS Key topics for related
information.

Instantiating LPM Functions in ViewDraw Schematics

You can instantiate library of parameterized modules (LPM) functions from the vdpath library in ViewDraw
schematics.

To instantiate an LPM function, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment. Make sure that you have created a vdraw.vs file, as
described in step 8 of that topic.

2. Choose Cell (Add menu).

Refer to Viewlogic documentation for information on simulating projects that contain RAM functions. The
procedure for reading an EDIF Output File and preparing it for simulation with ViewSim requires additional
steps when the project contains RAM functions.

The MIF format is supported only for specifying initial memory content when compiling designs within the
MAX+PLUS II software. You cannot use a MIF to perform simulation with Viewlogic tools prior to
MAX+PLUS II compilation.

3. Choose an <LPM function name> to open the <LPM function name> dialog box. Specify a symbol name for
Symbol Prefix and specify appropriate parameters. Choose OK.

The ViewDraw software generates the specified symbol name symbol according to your specifications. It
also generates a corresponding VHDL simulation model, but it is compiled only after you save the schematic.
If you want to change the settings for the symbol, select the instance and choose Cell (Change menu) to re-
open the appropriate dialog box.

4. Continue with the steps necessary to complete your schematic, as described in Creating ViewDraw
Schematics for Use with MAX+PLUS II Software.

Related Topics:

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for detailed information on LPM
functions.

Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

The MAX+PLUS®II /Viewlogic Powerview interface offers full support for the memory capabilities of the FLEX®

10K device family, including synchronous and asynchronous RAM and ROM, cycle-shared dual-port RAM, dual-
port RAM, single-Clock FIFO, and dual-Clock FIFO functions. You can use the Altera-provided genmem utility to
generate functional simulation models and timing models for these functions. Type genmem at the UNIX prompt
to display information on how to use this utility, as well as a list of the functions you can generate. RAM and ROM
can be instantiated in both ViewDraw schematics and VHDL designs.

When you instantiate a RAM or ROM function, follow these general guidelines:

For ROM functions, you must specify an initial memory content file in the Intel hexadecimal format (.hex) or
the Altera® Memory Initialization File (.mif) format. The filename must be the same as the instance name;
e.g., the instance name must be unique throughout the whole project, and must contain only valid name
characters. The initialization file must reside in the directory containing the project's design files.

For RAM functions, specifying a memory initialization file is optional.

For VHDL designs, specify the name of the initial memory content file in the Generic Map Clause of the
instance, with the specified type LPM_FILE. If you do not use an initial memory content file (e.g., for a RAM
function), you should not declare or use the Generic Clause.

Do not synthesize the genmem-generated VHDL file: it is intended for simulation only.

To instantiate RAM or ROM in a ViewDraw schematic, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX prompt:

genmem <memory type> <memory size> -vwlogic

Figure 1 shows a VHDL design that instantiates asyn_rom_256x15.vhd, a
256 x 15 ROM function.

Figure 1. VHDL Design File with ROM Instantiation (tstrom.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tstrom IS
 PORT (
 addr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 memenab : IN STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR (14 DOWNTO 0));
END tstrom;

ARCHITECTURE behavior OF tstrom IS

COMPONENT asyn_rom_256x15
 GENERIC (LPM_FILE : string);

PORT (Address : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 MemEnab : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(14 DOWNTO 0)
);
END COMPONENT;

BEGIN

 u1: asyn_rom_256x15
 GENERIC MAP (LPM_FILE => "u1.hex")
 PORT MAP (Address => addr, MemEnab => memenab, Q =>q);
END behavior;

For example: genmem asynrom 256x15 -vwlogic

2. Start the VHDL-to-symbol utility, vhdl2sym, by double-clicking Button 1 on the max2_vhdl2sym icon in
the Altera® Toolbox Design Tools Drawer.

3. Specify the following options in the vhdl2sym dialog box and choose OK to create a symbol. For example,
to create the symbol for a 256x15 asynchronous ROM, enter the following settings:

Option: Setting:
VHDL Source Filename asyn_rom_256x15.vhd
Add LEVEL attribute On

4. Choose Comp (Add menu), type <design name> in the Enter Name box, and choose OK.

To instantiate a RAM or ROM function in VHDL, follow these steps:

1. Repeat step 1 above.

2. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name> function.

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Creating Hierarchical Projects in ViewDraw Schematics

You can incorporate any MAX+PLUS® II-supported design file, such as an Altera® Hardware Description
Language (AHDL) Text Design File (.tdf), into a project hierarchy that consists of both schematic and text files. To
incorporate a non-ViewDraw design file into a higher-level schematic design, you must create a hollow-body
symbol for it in the ViewDraw software. During compilation, the MAX+PLUS II software recognizes the symbol
as an identifier for the design file, and inserts the correct logic and connections. You can incorporate any number of
design files into a project hierarchy.

To create a hierarchical project in your ViewDraw schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic and save it in your working directory, as described in Creating ViewDraw
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Create a design file that uses all uppercase letters for the function name and all lowercase letters for the file
extension, e.g., DECODE.tdf. This naming convention is required to prevent conflicts when the file is
incorporated into a hierarchical design. When the edifneto utility generates an EDIF netlist file from the
ViewDraw schematic, it copies the name of the hollow-body symbol in uppercase letters, regardless of the
case that appears in the schematic.

4. Double-click Button 1 on the max2_VDraw icon in the Altera Toolbox Design Tools Drawer to start
ViewDraw.

5. In the File Open dialog box, type <design name>, i.e., the name of the hollow-body symbol you want to
create. Turn on the Symbol option and choose OK. The Symbol Editor is displayed.

6. Choose Block Size Z-WxH (Change menu) and select a symbol size.

7. Choose Graphics-Box (Add menu) to draw the symbol body.

8. Choose Pin (Add menu) to enter pinstubs.

9. Select a pin and choose Label (Add menu) to label the pin names.

10. (Optional) Choose Graphics-Text (Add menu) to label the symbol.

11. Choose Block Type Module (Change menu). You must choose Block Type Module to specify that no
Viewlogic schematic is available to represent the functionality of the symbol.

12. Choose Write (File menu) to save the symbol.

13. In the top-level ViewDraw schematic, choose Comp (Add menu), select the name of the symbol, and choose

OK.

14. The MAX+PLUS II software uses Library Mapping Files (.lmf) to map standard ViewDraw symbols to
equivalent MAX+PLUS II megafunctions, macrofunctions, or primitives. To use custom symbols, you can
create a custom LMF that maps your custom symbols to the equivalent EDIF Input File, TDF, or other design
file.

You will also need to specify a Library Mapping File (.lmf) in the EDIF Netlist Reader Settings dialog
box before compiling with the MAX+PLUS II Software. Go to Compiling Projects with MAX+PLUS
II Software for more information.

15. Continue with the steps necessary to complete your ViewDraw schematic, as described in Creating
ViewDraw Schematics for Use with MAX+PLUS II Software.

Related Topics:

Go to Creating AHDL Designs for Use with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM

Key topics for related information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In the MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor.

ViewDraw Schematics

In ViewDraw schematics, you can assign a limited subset of these resource assignments by assigning properties to
symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II software automatically
converts assignment information from the EDIF Input File (.edf) into the ACF format. For information on making
MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates the
following sample ViewDraw schematic file, which includes resource assignments:

/usr/maxplus2/examples/viewlogic/example4/fadd2mpp

Related Topics:

Go to Viewlogic documentation for information on how to assign properties. Go to "Resource Assignments
in EDIF Input Files" and "Assigning Resources in a Third-Party Design Editor" in MAX+PLUS II Help for
more information on assignments or properties that can be assigned in ViewDraw.

VHDL Design Files

For VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to enter resource
assignments. For information on using the setacf utility, go to Modifying the Assignment & Configuration File
with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in
an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu).

Assigning Pins, Logic Cells & Chips

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in some EDA
tools or in the MAX+PLUS® II software.

Use the following syntax for chip, pin, and logic cell assignments:

To assign a logic function to a chip:

CHIP_PIN_LC=<chip name>

For example: CHIP_PIN_LC=chip1

To assign a pin number within a chip:

CHIP_PIN_LC=<chip name>@<pin number>

For example: CHIP_PIN_LC=chip1@K2

To assign a logic cell, I/O cell, or embedded cell number:

CHIP_PIN_LC=<chip name>@LC<logic cell number>

CHIP_PIN_LC=<chip name>@IOC<I/O cell number>

CHIP_PIN_LC=<chip name>@EC<embedded cell number>

For example: CHIP_PIN_LC=chip1@LC44

Related Topics:

Refer to the following sources for additional information:
Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on

To assign a clique, use the following syntax:

CLIQUE=<clique name>

For example: CLIQUE=fast1

device pin-outs and assigning devices, respectively, in the MAX+PLUS II software.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.

Assigning Cliques

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project
does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000, FLEX
10K, and MAX® 9000 devices the Compiler also attempts to place the logic in LABs in the same row. Cliques
therefore allow you to partition a project so that only a minimum number of signals travel between LABs, and to
ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

Related Topics:

Go to the following topics in MAX+PLUS II Help for related information:
Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Assigning Logic Options

Logic option and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device-family-specific default logic synthesis style for
each project.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis
style assignments, including definitions and syntax of these assignments.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Performing a Functional Simulation with ViewSim Software

You can use Viewlogic ViewSim software to perform a functional simulation of a ViewDraw schematic or a
VHDL Design File (.vhd) before compiling your project with the MAX+PLUS II Compiler. Follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic that follows the guidelines in Creating ViewDraw Schematics for Use with
MAX+PLUS II Software. Then go to step 3.

or:

Create a VHDL Design File <design name>.vhd and analyze it, as described in the following MAX+PLUS II
ACCESSSM Key topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Then go to step 7.

3. With the schematic open in the ViewDraw editor, add CLR and PRE inputs to any flipflops in your design, or
tie the CLR and PRE ports of the flipflops to VCC. (Use the PWR primitive from the builtin library.)

4. Choose Write To (File menu) and save the schematic as <design name>_funct.

5. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Altera® Toolbox Design
Tools Drawer.

6. Specify the following options in the vsm dialog box and choose OK to generate the <design
name>_funct.vsm file:

Option: Setting:
Design Name <design name>_funct
Level (blank)

7. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively, you can enter
commands at the prompt in the ViewSim window. Refer to your Viewlogic documentation for more
information on creating ViewSim command files.

8. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the Design Tools
Drawer.

9. If you wish to simulate a ViewDraw schematic, specify the following options in the ViewSim dialog box,
then go to step 11.

Option: Setting:
Design Name <design name>_funct
Command File <design name>_funct.cmd
VHDL Source Window OFF
VHDL Debugging OFF

10. If you wish to simulate a VHDL design, specify the following options in the ViewSim dialog box:

Option: Setting:
Design Name <design name>

Command File <design name>.cmd
Graphical Interface ON
VHDL Source Window OFF or ON
VHDL Debugging OFF or ON

11. Choose OK to simulate the design. ViewSim software simulates the design and starts the ViewTrace
waveform editor to allow you to observe the simulation results.

12. Use the edifneto utility to generate an EDIF Netlist File (.edf) that can be imported into the MAX+PLUS II
software, as described in Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-
Compatible EDIF Netlist Files with the edifneto Utility.

Related Topics:

Go to ViewSim documentation for complete details on simulating a project and using ViewTrace to observe
waveform output results.

Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible
EDIF Netlist Files with the edifneto Utility

You can use the edifneto utility to generate an EDIF netlist file from a ViewDraw schematic or VHDL
Design File (.vhd). This file can be imported into the MAX+PLUS® II software as an EDIF Input File with
the extension .edf. To generate an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic and save it in your working directory, as described in Creating
ViewDraw Schematics for Use with MAX+PLUS II Software.

or:

Create a VHDL Design File, analyze it, and synthesize and optimize it, as described in the following
topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software

3. Start the edifneto utility by double-clicking Button 1 on the max2_edifo icon in the Design Tools
Drawer or the Max2 Express Drawer in the Altera Toolbox. You can also start the edifneto utility by
typing edifneto at the UNIX prompt.

4. If you are converting a ViewDraw schematic, specify the <design name> for the Wire File Name
option in the edifneto dialog box. If you are not using the Altera® toolbox, do not specify Altera for
the Level option in the edifneto dialog box.

5. If you are converting a VHDL Design File, or if your ViewDraw schematic instantiates Library of
Parameterized Modules (LPM) functions, specify Altera and VHDL as the Level in the edifneto dialog
box.

6. Choose OK to generate the EDIF netlist file. The edifneto utility creates the max2 subdirectory under
your working directory. The max2 subdirectory contains the EDIF netlist file for your design.

When the edifneto utility generates an EDIF netlist file from a design that instantiates LPM
functions, the EDIF netlist file may contain parameters with incorrect parameter names. To
correct this problem, go to the /usr/maxplus2/viewlogic/bin directory and type chlpmpty
<design name>.edf at the UNIX prompt to run the Altera-provided chlpmpty script, which
converts all of the parameters to their correct names.

7. Process the <design name>.edf with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Using the Max2 Express Drawer's SCH <-> max2 Utility
Using the Max2 Express Drawer's VHDL <-> max2 Utility

Creating VHDL Designs for Use with MAX+PLUS II Software

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and
save them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following
advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These
templates are also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2
directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax
Coloring command (Options menu). The Syntax Coloring feature displays keywords and other
elements in text files in different colors to distinguish them from other forms of syntax.

To create a VHDL design that can be synthesized and optimized with ViewSynthesis software, follow these
steps:

1. You can instantiate the following Altera-provided logic functions in your VHDL design:

The alt_mf library contains the Altera® VHDL logic function library, which includes
MAX+PLUS II-specific primitives and the a_8count, a_8mcomp, a_8fadd, and a_81mux
macrofunctions. If you wish to instantiate alt_mf logic functions in your VHDL design, you
must first analyze all functions in the alt_mf/src directory. See Analyzing VHDL Files with the
Vantage VHDL Analyzer Software for details.

The clklock megafunction, which enables the phase-locked loop, or ClockLock , circuitry
available on selected Altera FLEX® 10K devices. Go to Instantiating the clklock Megafunction
in VHDL or Verilog HDL for information.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners
Program (AMPP). The OpenCore feature in the MAX+PLUS II software allows you to
instantiate, compile, and simulate MegaCore functions before deciding whether to purchase a
license for full device programming and post-compilation simulation support.

2. (Optional) To enter resource assignments in your VHDL design, go to Entering Resource Assignments.
You can also enter resource assignments from within the MAX+PLUS II software.

Once you have created a VHDL design, you can analyze it, synthesize it, and generate an EDIF netlist file
that can be imported into the MAX+PLUS II software with either of the following methods:

You can analyze, functionally simulate, and synthesize the VHDL design, then generate an EDIF
netlist file by following the steps in these topics:

Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF
Netlist Files with the edifneto Utility

You can use the VHDL <-> max2 utility in the Max2 Express Drawer to automatically analyze and
synthesize the VHDL design, compile it with the MAX+PLUS II Compiler, generate an EDIF Output
File (.edo), and create a .vsm file for simulation. See Using the Max2 Express Drawer's VHDL <->
max2 Utility in these MAX+PLUS II ACCESSSM Key topics for details.

Installing the Altera-provided MAX+PLUS II/Viewlogic Powerview interface on your computer
automatically creates the following sample VHDL files:

/usr/maxplus2/examples/viewlogic/example5/count4.vhd
/usr/maxplus2/examples/viewlogic/example5/count8.vhd

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating the clklock Megafunction in VHDL or Verilog HDL

MAX+PLUS® II interfaces to other EDA tools support the clklock phase-locked loop megafunction, which
can be used with some FLEX® 10K devices, with the gencklk utility, which is available in the MAX+PLUS
II system directory. Type gencklk -h at the DOS or UNIX prompt to display information on how to use
this utility. The gencklk utility generates VHDL or Verilog HDL functional simulation models and a VHDL
Component Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL
file to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name;
therefore, the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the DOS or UNIX prompt to generate the clklock_x_y function,
where x is the ClockBoost value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the
clklock megafunction.

2. Create a design file that instantiates the clklock_x_y.vhd or clklock_x_y.v file. The gencklk utility
automatically generates a VHDL Component Declaration template in the clklock_x_y.cmp file that
you can incorporate into a VHDL design file.

In MAX+PLUS II version 8.3 and lower, running genclklk on a PC always creates files named as
clklock.vhd, clklock.cmp, and clklock.v, regardless of the ClockBoost and input frequency values
you specify.

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz
instantiated in VHDL and Verilog HDL design files, respectively.

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),

 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);
 END structure;

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

The MAX+PLUS®II /Viewlogic Powerview interface offers full support for the memory capabilities of the
FLEX® 10K device family, including synchronous and asynchronous RAM and ROM, cycle-shared dual-
port RAM, dual-port RAM, single-Clock FIFO, and dual-Clock FIFO functions. You can use the Altera-
provided genmem utility to generate functional simulation models and timing models for these functions.
Type genmem at the UNIX prompt to display information on how to use this utility, as well as a list of the
functions you can generate. RAM and ROM can be instantiated in both ViewDraw schematics and VHDL
designs.

Refer to Viewlogic documentation for information on simulating projects that contain RAM
functions. The procedure for reading an EDIF Output File and preparing it for simulation with
ViewSim requires additional steps when the project contains RAM functions.

When you instantiate a RAM or ROM function, follow these general guidelines:

For ROM functions, you must specify an initial memory content file in the Intel hexadecimal format
(.hex) or the Altera® Memory Initialization File (.mif) format. The filename must be the same as the
instance name; e.g., the instance name must be unique throughout the whole project, and must contain
only valid name characters. The initialization file must reside in the directory containing the project's
design files.

For RAM functions, specifying a memory initialization file is optional.

For VHDL designs, specify the name of the initial memory content file in the Generic Map Clause of
the instance, with the specified type LPM_FILE. If you do not use an initial memory content file (e.g.,
for a RAM function), you should not declare or use the Generic Clause.

Do not synthesize the genmem-generated VHDL file: it is intended for simulation only.

The MIF format is supported only for specifying initial memory content when compiling designs
within the MAX+PLUS II software. You cannot use a MIF to perform simulation with Viewlogic tools
prior to MAX+PLUS II compilation.

To instantiate RAM or ROM in a ViewDraw schematic, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX
prompt:

genmem <memory type> <memory size> -vwlogic

For example: genmem asynrom 256x15 -vwlogic

2. Start the VHDL-to-symbol utility, vhdl2sym, by double-clicking Button 1 on the max2_vhdl2sym
icon in the Altera® Toolbox Design Tools Drawer.

3. Specify the following options in the vhdl2sym dialog box and choose OK to create a symbol. For
example, to create the symbol for a 256x15 asynchronous ROM, enter the following settings:

Option: Setting:
VHDL Source Filename asyn_rom_256x15.vhd
Add LEVEL attribute On

4. Choose Comp (Add menu), type <design name> in the Enter Name box, and choose OK.

To instantiate a RAM or ROM function in VHDL, follow these steps:

1. Repeat step 1 above.

2. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name> function.

Figure 1 shows a VHDL design that instantiates asyn_rom_256x15.vhd, a 256 x 15 ROM function.

Figure 1. VHDL Design File with ROM Instantiation (tstrom.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tstrom IS
 PORT (
 addr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 memenab : IN STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR (14 DOWNTO 0));
END tstrom;

ARCHITECTURE behavior OF tstrom IS

COMPONENT asyn_rom_256x15
 GENERIC (LPM_FILE : string);

PORT (Address : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 MemEnab : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(14 DOWNTO 0)
);
END COMPONENT;

BEGIN

 u1: asyn_rom_256x15
 GENERIC MAP (LPM_FILE => "u1.hex")
 PORT MAP (Address => addr, MemEnab => memenab, Q =>q);
END behavior;

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your
projects. Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell,
embedded cell, row, column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local
routing, logic option, timing requirement, or connected pin group. In the MAX+PLUS II software, you can
enter all types of resource and device assignments with Assign menu commands. You can also enter pin,
logic cell, I/O cell, embedded cell, LAB, EAB, row, and column assignments in the MAX+PLUS II
Floorplan Editor. The Assign menu commands and the Floorplan Editor all save assignment information in
the ASCII Assignment & Configuration File (.acf) for the project. In addition, you can edit ACFs manually
in any standard text editor.

ViewDraw Schematics

In ViewDraw schematics, you can assign a limited subset of these resource assignments by assigning
properties to symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II
software automatically converts assignment information from the EDIF Input File (.edf) into the ACF format.
For information on making MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates
the following sample ViewDraw schematic file, which includes resource assignments:

/usr/maxplus2/examples/viewlogic/example4/fadd2mpp

Related Topics:

Go to Viewlogic documentation for information on how to assign properties. Go to "Resource

Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design Editor" in
MAX+PLUS II Help for more information on assignments or properties that can be assigned in
ViewDraw.

VHDL Design Files

For VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to enter resource
assignments. For information on using the setacf utility, go to Modifying the Assignment & Configuration
File with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands
or in an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search
for Help on (Help menu).

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from
the command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt
to get help on this utility.

Analyzing VHDL Files with the SpeedWave VHDL Analyzer Software

You can use the SpeedWave VHDL Analyzer software to analyze VHDL Design Files (.vhd) prior to
functional (or gate-level) simulation with ViewSim software, or to synthesis and optimization with
ViewSynthesis software. You can also use the SpeedWave VHDL Analyzer to analyze a MAX+PLUS® II -
generated VHDL Output File (.vho) prior to post-compilation timing simulation with ViewSim software. The
max2_VantgMgr and max2_VantgAnlz tools are located in the Altera® Toolbox Design Tools Drawer.

To analyze a VHDL file with the SpeedWave VHDL Analyzer, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. If you wish to analyze a VHDL Design File (.vhd), create a VHDL file <design name>.vhd using the
MAX+PLUS II Text Editor or another standard text editor and save it in a working directory. Go to
Creating VHDL Designs for Use with MAX+PLUS II Software for more information.

3. If you wish to analyze a MAX+PLUS II-generated VHDL Output File (.vho), be sure to select VHDL
1987 for the VHDL Version option and VHDL Output File (.vho) for the Write Delay Constructs To
option in the VHDL Netlist Writer Settings dialog box (Interfaces menu) when you set up the
MAX+PLUS II Compiler to generate a VHDL Output File. See Compiling Projects with MAX+PLUS
II Software for more information on generating VHDL Output Files.

4. If your VHDL file contains functions from the alt_mf library, follow these steps:

1. Start the Vantage Manager by double-clicking Button 1 on the max2_VantgMgr icon in the
Design Tools Drawer.

2. Use the Vantage VHDL Library Manager to create an alt_mf.lib library file with the symbolic
name ALT_MF.

3. Make alt_mf the working library with the Set Working command (Edit menu).

4. Start the VHDL Analyzer by double-clicking Button 1 on the max2_VantgAnlz icon in the
Design Tools Drawer.

5. Analyze each VHDL file in the alt_mf/src directory into the alt_mf.lib working library. Source
files are located in the /usr/maxplus2/vwlogic/library/alt_mf/src directory that is created by
installing the Altera/Viewlogic interface.

5. If it is not already running, start the Vantage VHDL Library Manager, as described in step 4b, to create
a Vantage library.

6. Choose the List system libs button.

7. Add the ieee.lib and synopsys.lib system libraries to your project:

1. Select the ieee.lib and synopsys.lib libraries from the Available Libraries window and choose
Add lib. Choose the ieee library from the libs_syn directory, which is located at /<Powerview
system directory>/ standard/van_vss/pgm/libs_syn. The ieee library contains Synopsys
package files.

2. If your project uses functions from the alt_mf library, also select the alt_mf.lib file from the
Available Libraries window and choose Add lib.

3. Choose Create Library (File menu, type the project directory name in the Symbolic Name field,
and choose OK.

8. Specify the project directory as the working directory by choosing Set Working (Edit menu).

9. Choose Save INI File (File menu).

10. Choose Dismiss Window (Powerview Red-Box menu).

11. Specify the appropriate path and file name in the Analyzer VHDL Source File dialog box and choose
OK to analyze the VHDL file.

12. Once you have analyzed the file, perform one or more of the following tasks, as appropriate:

Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Performing a Timing Simulation with ViewSim Software

Related Topics:

Refer to the following sources for related information:
The Viewlogic ViewSim/VHDL User's Guide and ViewSim/VHDL Tutorial for information on
using the Vantage VHDL Analyzer software or Vantage VHDL Library Manager
Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics

Performing a Functional Simulation with ViewSim Software

You can use Viewlogic ViewSim software to perform a functional simulation of a ViewDraw schematic or a
VHDL Design File (.vhd) before compiling your project with the MAX+PLUS II Compiler. Follow these
steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic that follows the guidelines in Creating ViewDraw Schematics for Use
with MAX+PLUS II Software. Then go to step 3.

or:

Create a VHDL Design File <design name>.vhd and analyze it, as described in the following
MAX+PLUS II ACCESSSM Key topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Then go to step 7.

3. With the schematic open in the ViewDraw editor, add CLR and PRE inputs to any flipflops in your
design, or tie the CLR and PRE ports of the flipflops to VCC. (Use the PWR primitive from the builtin
library.)

4. Choose Write To (File menu) and save the schematic as <design name>_funct.

5. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Altera® Toolbox
Design Tools Drawer.

6. Specify the following options in the vsm dialog box and choose OK to generate the <design
name>_funct.vsm file:

Option: Setting:
Design Name <design name>_funct
Level (blank)

7. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively, you
can enter commands at the prompt in the ViewSim window. Refer to your Viewlogic documentation
for more information on creating ViewSim command files.

8. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the Design
Tools Drawer.

9. If you wish to simulate a ViewDraw schematic, specify the following options in the ViewSim dialog
box, then go to step 11.

Option: Setting:
Design Name <design name>_funct
Command File <design name>_funct.cmd
VHDL Source Window OFF
VHDL Debugging OFF

10. If you wish to simulate a VHDL design, specify the following options in the ViewSim dialog box:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
Graphical Interface ON

VHDL Source Window OFF or ON
VHDL Debugging OFF or ON

11. Choose OK to simulate the design. ViewSim software simulates the design and starts the ViewTrace
waveform editor to allow you to observe the simulation results.

12. Use the edifneto utility to generate an EDIF Netlist File (.edf) that can be imported into the
MAX+PLUS II software, as described in Converting ViewDraw Schematics or VHDL Designs into
MAX+PLUS II-Compatible EDIF Netlist Files with the edifneto Utility.

Related Topics:

Go to ViewSim documentation for complete details on simulating a project and using ViewTrace to
observe waveform output results.

Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible
EDIF Netlist Files with the edifneto Utility

You can use the edifneto utility to generate an EDIF netlist file from a ViewDraw schematic or VHDL
Design File (.vhd). This file can be imported into the MAX+PLUS® II software as an EDIF Input File with
the extension .edf. To generate an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic and save it in your working directory, as described in Creating
ViewDraw Schematics for Use with MAX+PLUS II Software.

or:

Create a VHDL Design File, analyze it, and synthesize and optimize it, as described in the following
topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software

3. Start the edifneto utility by double-clicking Button 1 on the max2_edifo icon in the Design Tools
Drawer or the Max2 Express Drawer in the Altera Toolbox. You can also start the edifneto utility by
typing edifneto at the UNIX prompt.

4. If you are converting a ViewDraw schematic, specify the <design name> for the Wire File Name
option in the edifneto dialog box. If you are not using the Altera® toolbox, do not specify Altera for
the Level option in the edifneto dialog box.

5. If you are converting a VHDL Design File, or if your ViewDraw schematic instantiates Library of
Parameterized Modules (LPM) functions, specify Altera and VHDL as the Level in the edifneto dialog
box.

6. Choose OK to generate the EDIF netlist file. The edifneto utility creates the max2 subdirectory under
your working directory. The max2 subdirectory contains the EDIF netlist file for your design.

When the edifneto utility generates an EDIF netlist file from a design that instantiates LPM
functions, the EDIF netlist file may contain parameters with incorrect parameter names. To

correct this problem, go to the /usr/maxplus2/viewlogic/bin directory and type chlpmpty
<design name>.edf at the UNIX prompt to run the Altera-provided chlpmpty script, which
converts all of the parameters to their correct names.

7. Process the <design name>.edf with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Using the Max2 Express Drawer's SCH <-> max2 Utility
Using the Max2 Express Drawer's VHDL <-> max2 Utility

Synthesizing & Optimizing VHDL Designs with ViewSynthesis
Software

You can create and process VHDL files and convert them into Altera® Hardware Description Language
(AHDL) Text Design Files (.tdf) or EDIF Input Files (.edf) that can be processed by the MAX+PLUS® II
Compiler. The MAX+PLUS II Compiler can process a VHDL file that has been synthesized by
ViewSynthesis software, saved as an AHDL TDF or an EDIF netlist file, and imported into the MAX+PLUS
II software. The information presented here describes only how to use VHDL files that have been processed
by ViewSynthesis software. For information on direct MAX+PLUS II support for VHDL Design Files, go to
MAX+PLUS II VHDL Help.

To synthesize and optimize a VHDL design, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Create a VHDL file <design name>.vhd using the MAX+PLUS II Text Editor or another standard text
editor and save it in a working directory. Go to Creating VHDL Designs for Use with MAX+PLUS II
Software for more information.

3. Start Powerview by typing powerview at a UNIX prompt.

4. In the Cockpit window, select Altera in the Current ToolBox drop-down list box, and select the drawer
you want to use, i.e., Design Tools or Max2 Express, in the Current Drawer drop-down list box.

5. Choose Create (Project menu) from your working directory to create your project directory. Choose
OK.

6. Choose SearchOrder (Project menu) to add the appropriate library directories and aliases to your
viewdraw.ini file. Refer to Viewlogic Powerview viewdraw.ini Configuration File for more
information on Powerview application libraries.

When you add libraries to the /usr/maxplus2/vwlogic/standard/viewdraw.ini file, they are
automatically set when you create a new project. Powerview tools search these libraries
sequentially, so it is important to add them in the order in which they are listed.

7. Analyze the VHDL design, as described in Analyzing VHDL Files with the Vantage VHDL Analyzer
Software.

8. (Optional) Perform a functional simulation, as described in Performing a Timing Simulation with
ViewSim Software.

9. In Powerview 5.3.2 and previous versions, start ViewSynthesis software by double-clicking Button 1
on the max2_syn icon in the Altera Toolbox Design Tools Drawer.

In Powerview 6.0, ViewSynthesis software is available only for the SunOS, and only as a
command-line version. If you are using Powerview 6.0, read /<Powerview system
directory>/README/vsyn.doc to learn how to synthesize a design with ViewSynthesis
software. You can create the synth.ini file, a one-line text file that contains the text technology
altera. Then type the following commands at the UNIX prompt to analyze and synthesize your
VHDL design:

vsyn -vhdl <design name>

vsyn -synth "*"

10. Choose Target Technology (Setup menu) and select altera:altera in the Specify Target Technology
dialog box. Choose OK.

11. Choose Compile VHDL (Setup menu) and select <design name>.vhd in the VHDL Files list box.
Choose OK.

If more than one VHDL Design File (.vhd) exists for the project, you must compile the lower-
level design files before compiling the top-level file.

12. Press Button 3 on the <design name> icon in the ViewSynthesis window, choose Synthesize from the
pop-up menu, then choose OK.

13. (Optional) To generate a synthesis report file for the design, press Button 3 on the <design name> icon
and choose View Report from the pop-up menu.

14. (Optional) To create a schematic representation of the gate-level netlist file, press Button 3 on the
<design name> icon and choose View Schematic from the pop-up menu.

15. Generate an EDIF netlist file that can be compiled with the MAX+PLUS II Compiler, as described in
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist
Files with the edifneto Utility.

16. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling
Projects with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates
the following sample ViewDraw schematic files:

/usr/maxplus2/examples/viewlogic/example5/count4.vhd
/usr/maxplus2/examples/viewlogic/example5/count8.vhd

Related Topics:

Go to Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics for related
information.

MAX+PLUS II/Viewlogic Powerview Compilation Flow

Figure 1 shows the project compilation flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Project Compilation Flow

Altera-provided items are shown in blue.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes
how to use MAX+PLUS II software to compile projects in which the top-level design file is an EDIF
Input File (with the extension .edf).

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL,
design files directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on
running the Synopsys Design Compiler or FPGA Compiler software on a VHDL or
Verilog HDL design from within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following
steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into
EDIF Input Files with the extension .edf. Specific instructions for some tools are described in
these MAX+PLUS II ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or
the product documentation for your design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom
lower-level logic functions, create a mapping for each function in a Library Mapping File (.lmf)
to map the custom symbol to the corresponding EDIF Input File, AHDL Text Design File (.tdf),
or other MAX+PLUS II-supported design file. These custom functions are represented in design
files as hollow-body symbols or "black box" HDL descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with
the Project Name command (File menu). If you open an HDL file in the MAX+PLUS II Text
Editor, you can choose the Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile
a project, the settings you need to specify are easier to specify from within the
MAX+PLUS II software. After you have run the graphical user interface for the
MAX+PLUS II software at least once, you can more easily use the command-line setacf
utility to modify options in the Assignment & Configuration File (.acf) for the project.
Type setacf -h and maxplus2 -h for descriptions of setacf and MAX+PLUS II
command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family
drop-down list box. If you wish to implement the design logic in a specific device, select it in the
Devices box. Otherwise, select AUTO to allow the MAX+PLUS II Compiler to choose the best
device(s) in the current device family. If your design entry or synthesis and optimization tool
required you to specify a target family and/or device, specify the same information in this dialog
box. For information on partitioning logic among multiple devices, go to MAX+PLUS II Help.
Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go
through the following steps to specify the options necessary to compile the design file(s) in your
project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader
Settings (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for
that vendor. This name should be the name of the vendor whose tool(s) you used to create
the EDIF netlist files. If your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select
Synopsys, choose the Customize button, enter <project name>.lmf in the LMF #1
box, choose OK, and skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains
design files that require custom LMF mappings, choose the Customize button to expand
the dialog box to show all settings. Turn on the LMF #2 checkbox and type your custom
LMF's filename in the corresponding text box, or select a name from the Files box. The
selection in the Vendor box will change to Custom and all settings will be retained until
you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the
dialog box to show all settings. Any previously defined custom settings will be displayed.
Under Signal Names, type one or more names with up to 20 total name characters in the
VCC or GND box if your EDIF Input File(s) use one or more names other than VCC or GND
for the global high or low signals. Multiple signal names must be separated by either a
comma (,) or a space. Under Library Mapping Files, turn on the LMF #1 checkbox and
type a filename in the text box following it, or select a name from the Files box. If
necessary, specify another LMF name in the LMF #2 box. Go to MAX+PLUS II Help for
detailed information on the settings available in the EDIF Netlist Reader Settings dialog
box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom
lower-level logic functions, you may need to ensure that all files are present in your project
directory, i.e., the same directory as the top-level design file. Otherwise, you must specify the
directories containing these files as user libraries with the User Libraries command (Options
menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into
MAX+PLUS II-Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation
simulation or timing analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the
size of the output file(s). Turning on this command can reduce the size of output netlists
by up to 30%.

This command does not create optimized timing SNFs on UNIX workstations.
However, a non-optimized timing SNF provides the same functional and timing
information as an optimized timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the
EDIF Netlist Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default
settings for that vendor and choose OK. If your vendor name does not appear, select
Custom instead and specify the settings that are appropriate for your simulation or
timing analysis tool. Go to MAX+PLUS II Help for detailed information on the
options available in the EDIF Netlist Writer Settings dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose

the Customize button to expand the dialog box to show all settings. Select one of
the SDF Output File options under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as
the user-defined chip name(s) for the project; if no chip names exist, the Compiler assigns
filenames that are based on the project name. For a multi-device project, the Compiler also
generates a top-level EDIF Output File that is uniquely identified by "_t" appended to the
project name. In addition, the Compiler automatically generates a VHDL Memory Model
Output File, <project name>.vmo, when it generates an EDIF Output File that contains
memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer
command (Interfaces menu). Then choose VHDL Netlist Writer Settings command
(Interfaces menu). Select VHDL Output File (.vho) or one of the SDF Output File options
under Write Delay Constructs To, and choose OK. SDF ver. 2.1 files contain timing delay
information that allows you to perform back-annotation simulation in VHDL with VITAL-
compliant simulation libraries. The VHDL Output Files generated by the Compiler have
the extension .vho, but are otherwise named in the same way as the EDIF Output Files
described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist
Writer command (Interfaces menu). Then choose Verilog Netlist Writer Settings
command (Interfaces menu). Select Verilog Output File (.vo) or one of the SDF Output
File options under Write Delay Constructs To, and choose OK. SDF Output Files contain
timing delay information that allows you to perform back-annotation simulation in Verilog
HDL. The Verilog Output Files generated by the Compiler have the extension .vo, but are
otherwise named in the same way as the EDIF Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File
menu) or choose the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL,
Verilog HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform
timing analysis or timing simulation with another EDA tool. Specific instructions for some tools
are described in these MAX+PLUS II ACCESS Key Guidelines. Otherwise, refer to
MAX+PLUS II Help or the product documentation for your EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or
more of the following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available
Compiler settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other
types of programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for

information on back-annotating pin assignments in Mentor Graphics Design Architect
schematics.
Go to Programming Altera Devices for information on the different programming
hardware options for Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Using the Max2 Express Drawer's SCH <-> max2 Utility

Once you have created a ViewDraw schematic, you can use the SCH <-> max2 utility in the Max2
Express drawer to generate an EDIF netlist file from the schematic; process the EDIF Input File (.edf)
with the MAX+PLUS ® II software to generate an EDIF Output File (.edo); and generate a .vsm file
for simulation. The SCH <-> max2 utility creates all necessary subdirectories and copies all of the
files to the correct locations.

To use the SCH <-> max2 utility, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the
MAX+PLUS II /Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic that follows the guidelines described in Creating ViewDraw
Schematics for Use with MAX+PLUS II Software.

3. Start the SCH <-> max2 utility by double-clicking Button 1 on the SCH <-> max2 icon in the
Max2 Express Drawer.

4. Specify the Input Schematic, Family, Max2 Synthesis Style, and Choose project direction options
in the SCH <-> max2 dialog box and choose OK to generate the <design name>.vsm file for
simulation in ViewSim. The SCH <-> max2 utility generates the <design name>.vsm file in the
sim subdirectory of the max2 directory.

5. If necessary, correct any errors in the ViewDraw schematic and recompile the project.

6. Simulate your project, as described in Performing a Timing Simulation with ViewSim Software.

Related Topics:

Go to Performing Timing Verification for EDIF Output Files (.edo) with MOTIVE & MOTIVE
for Powerview Software or Performing Timing Verification of Verilog Output Files (.vo) with
MOTIVE Software in these MAX+PLUS II ACCESSSM Key topics for related information.

Using the Max2 Express Drawer's VHDL <-> max2 Utility

Once you have created a VHDL Design File (.vhd) for your project, you can use the VHDL <-> max2
utility in the Max2 Express drawer to synthesize and optimize the design; generate an EDIF netlist file;
and process the EDIF netlist file with the MAX+PLUS II Compiler to generate an EDIF Output File
(.edo) for simulation. The VHDL <-> max2 utility creates all necessary subdirectories and copies all
files to the correct locations.

To use the VHDL <-> max2 utility, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the

MAX+PLUS II /Viewlogic Powerview Working Environment.

2. Create a VHDL Design File that follows the guidelines described in Creating VHDL Designs for
Use with MAX+PLUS II Software.

3. Start the VHDL <-> max2 utility by double-clicking Button 1 on the VHDL <-> max2 icon in
the Max2 Express Drawer.

4. Specify the Input VHDL file, Viewlogic Optimize Style, Viewlogic Timing Constraint File, Altera
Device Family, Max2 Synthesis Style, and the Process Direction options in the VHDL <-> max2
dialog box and choose OK. The VHDL <-> max2 utility generates the <design name>.vsm file
for simulation with ViewSim in the sim subdirectory of the max2 directory.

5. If necessary, correct any errors in the VHDL Design File and recompile the project.

6. Simulate your project, as described in Performing a Timing Simulation with ViewSim Software.

Related Topics:

Go to Performing Timing Verification for EDIF Output Files (.edo) with MOTIVE & MOTIVE
for Powerview Software or Performing Timing Verification of Verilog Output Files (.vo) with
MOTIVE Software in these MAX+PLUS II ACCESSSM Key topics for related information.

MAX+PLUS II/Viewlogic Powerview Simulation Flow

Figure 1 shows the project simulation flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Project Simulation Flow

Altera-provided items are shown in blue.

Analyzing VHDL Files with the SpeedWave VHDL Analyzer Software

You can use the SpeedWave VHDL Analyzer software to analyze VHDL Design Files (.vhd) prior to
functional (or gate-level) simulation with ViewSim software, or to synthesis and optimization with
ViewSynthesis software. You can also use the SpeedWave VHDL Analyzer to analyze a
MAX+PLUS® II -generated VHDL Output File (.vho) prior to post-compilation timing simulation
with ViewSim software. The max2_VantgMgr and max2_VantgAnlz tools are located in the Altera®

Toolbox Design Tools Drawer.

To analyze a VHDL file with the SpeedWave VHDL Analyzer, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the
MAX+PLUS II /Viewlogic Powerview Working Environment.

2. If you wish to analyze a VHDL Design File (.vhd), create a VHDL file <design name>.vhd
using the MAX+PLUS II Text Editor or another standard text editor and save it in a working
directory. Go to Creating VHDL Designs for Use with MAX+PLUS II Software for more
information.

3. If you wish to analyze a MAX+PLUS II-generated VHDL Output File (.vho), be sure to select
VHDL 1987 for the VHDL Version option and VHDL Output File (.vho) for the Write Delay
Constructs To option in the VHDL Netlist Writer Settings dialog box (Interfaces menu) when
you set up the MAX+PLUS II Compiler to generate a VHDL Output File. See Compiling
Projects with MAX+PLUS II Software for more information on generating VHDL Output Files.

4. If your VHDL file contains functions from the alt_mf library, follow these steps:

1. Start the Vantage Manager by double-clicking Button 1 on the max2_VantgMgr icon in
the Design Tools Drawer.

2. Use the Vantage VHDL Library Manager to create an alt_mf.lib library file with the
symbolic name ALT_MF.

3. Make alt_mf the working library with the Set Working command (Edit menu).

4. Start the VHDL Analyzer by double-clicking Button 1 on the max2_VantgAnlz icon in
the Design Tools Drawer.

5. Analyze each VHDL file in the alt_mf/src directory into the alt_mf.lib working library.
Source files are located in the /usr/maxplus2/vwlogic/library/alt_mf/src directory that is
created by installing the Altera/Viewlogic interface.

5. If it is not already running, start the Vantage VHDL Library Manager, as described in step 4b, to
create a Vantage library.

6. Choose the List system libs button.

7. Add the ieee.lib and synopsys.lib system libraries to your project:

1. Select the ieee.lib and synopsys.lib libraries from the Available Libraries window and
choose Add lib. Choose the ieee library from the libs_syn directory, which is located at
/<Powerview system directory>/ standard/van_vss/pgm/libs_syn. The ieee library
contains Synopsys package files.

2. If your project uses functions from the alt_mf library, also select the alt_mf.lib file from
the Available Libraries window and choose Add lib.

3. Choose Create Library (File menu, type the project directory name in the Symbolic Name
field, and choose OK.

8. Specify the project directory as the working directory by choosing Set Working (Edit menu).

9. Choose Save INI File (File menu).

10. Choose Dismiss Window (Powerview Red-Box menu).

11. Specify the appropriate path and file name in the Analyzer VHDL Source File dialog box and
choose OK to analyze the VHDL file.

12. Once you have analyzed the file, perform one or more of the following tasks, as appropriate:

Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Performing a Timing Simulation with ViewSim Software

Related Topics:

Refer to the following sources for related information:
The Viewlogic ViewSim/VHDL User's Guide and ViewSim/VHDL Tutorial for
information on using the Vantage VHDL Analyzer software or Vantage VHDL Library
Manager
Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics

Performing a Functional Simulation with ViewSim Software

You can use Viewlogic ViewSim software to perform a functional simulation of a ViewDraw
schematic or a VHDL Design File (.vhd) before compiling your project with the MAX+PLUS II
Compiler. Follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the
MAX+PLUS II /Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic that follows the guidelines in Creating ViewDraw Schematics for
Use with MAX+PLUS II Software. Then go to step 3.

or:

Create a VHDL Design File <design name>.vhd and analyze it, as described in the following
MAX+PLUS II ACCESSSM Key topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Then go to step 7.

3. With the schematic open in the ViewDraw editor, add CLR and PRE inputs to any flipflops in your
design, or tie the CLR and PRE ports of the flipflops to VCC. (Use the PWR primitive from the
builtin library.)

4. Choose Write To (File menu) and save the schematic as <design name>_funct.

5. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Altera®

Toolbox Design Tools Drawer.

6. Specify the following options in the vsm dialog box and choose OK to generate the <design
name>_funct.vsm file:

Option: Setting:
Design Name <design name>_funct
Level (blank)

7. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively,
you can enter commands at the prompt in the ViewSim window. Refer to your Viewlogic
documentation for more information on creating ViewSim command files.

8. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the
Design Tools Drawer.

9. If you wish to simulate a ViewDraw schematic, specify the following options in the ViewSim
dialog box, then go to step 11.

Option: Setting:
Design Name <design name>_funct
Command File <design name>_funct.cmd
VHDL Source Window OFF
VHDL Debugging OFF

10. If you wish to simulate a VHDL design, specify the following options in the ViewSim dialog
box:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
Graphical Interface ON
VHDL Source Window OFF or ON
VHDL Debugging OFF or ON

11. Choose OK to simulate the design. ViewSim software simulates the design and starts the
ViewTrace waveform editor to allow you to observe the simulation results.

12. Use the edifneto utility to generate an EDIF Netlist File (.edf) that can be imported into the
MAX+PLUS II software, as described in Converting ViewDraw Schematics or VHDL Designs
into MAX+PLUS II-Compatible EDIF Netlist Files with the edifneto Utility.

Related Topics:

Go to ViewSim documentation for complete details on simulating a project and using ViewTrace
to observe waveform output results.

Initializing Registers in VHDL & Verilog Output Files for Power-Up before
Simulation

Altera provides the add_dc script, which is availiable in the MAX+PLUS II system directory, to allow
you to process MAX+PLUS II-generated Verilog Output Files (.vo) and VHDL Output Files (.vho) to
prepare these files for simulation with another EDA tool. The add_dc script runs the add_dclr utility,
which inserts a device_clear signal that is used for power-up initialization of all registers or flipflops
in the design.

The script adds in a top-level signal named device_clear and connects it to the CLRN pin in all
flipflops that should initialize to 0, and to the PRN pin of all flipflops that should initialize to 1. If the
CLRN or PRN pin of a flipflop is already being used (i.e., is already connected to a signal), the script
modifies the Verilog Output File or VHDL Output File so that the AND of the original signal and the
device_clear pin feed the CLRN or PRN pin.

To use the add_dc script to process Verilog Output Files and VHDL Output Files before simulation
with another EDA tool, follow these steps:

1. Make sure that your design file is located in the current directory, or change to the directory in
which the design file is located.

2. Type the following command at the command prompt:

Â¥<path name of add_dc.bat file>Â¥add_dc <design name> <path name of add_dclr.exe file>

For example, if the both the add_dc.bat and the add_dclr.exe files are located in the
d:Â¥maxplus2Â¥exew directory, and the d:Â¥maxplus2Â¥exew directory is specified in the search
path, you can type the following command at a command prompt to add a device_clear signal to a
design named myfifo in the file myfifo.vo:

add_dc myfifo d:Â¥maxplus2Â¥exew

1. The add_dc script gives a message if the directory contains both a VHDL Output File and

a Verilog Output File with the same name (<design name>.vo and <design>.vho). You
should delete or rename whichever of those files should not have the device_clear signal
added. The add_dc script can modify only one design file at a time.

2. When the add_dc script processes the Verilog Output File or VHDL Output File, it
creates a backup copy of the original file, with the extension .ori.

3. The add_dc script works only for Verilog Output Files and VHDL Output Files that are
generated by MAX+PLUS II.

After you have used the add_dc script and are ready to simulate the resulting Verilog Output File or
VHDL Output File with another EDA tool, you should assert the active low device_clear pin for a
period of time that is long enough for the design to initialize. You can then de-assert the pin, and apply
simulation vectors to the design.

Performing a Timing Simulation with ViewSim Software

After you have entered a design and compiled it with the MAX+PLUS® II Compiler, you can simulate
a MAX+PLUS II-generated EDIF Output File (.edo) or VHDL Output File (.vho) with ViewSim
software. ViewSim software can simulate both the functionality and the timing of your design. It also
checks setup time, hold time, and Clock duty cycle timing requirements on registers.

To simulate a design with ViewSim software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the
MAX+PLUS II /Viewlogic Powerview Working Environment.

2. Compile the design with the MAX+PLUS II software and generate an EDIF Output File (.edo)
or VHDL Output File (.vho), as described in Compiling Projects with MAX+PLUS II Software.

3. In the Viewlogic Cockpit window, choose Create (Project menu) to open the Create Project
dialog box. Type the name of your working directory and choose OK. You must create this new
directory to avoid overwriting your original files when you generate new files for simulation.

4. Choose SearchOrder (Project menu) and add the appropriate directories and aliases to your
viewdraw.ini file if you have not already done so. Go to Viewlogic Powerview viewdraw.ini
Configuration File for more information.

Refer to Viewlogic documentation for information on simulating projects that contain
RAM functions. The procedure for reading an EDIF Output File and preparing it for
simulation with ViewSim requires additional steps when the project contains RAM
functions.

5. If you used the SCH <-> max2 or VHDL <-> max2 utility in the Max2 Express drawer to
process your project, skip to step 8.

6. If you wish to simulate a VHDL Output File, follow the steps in Analyzing VHDL Files with the
Vantage VHDL Analyzer then skip to step 7d.

7. If you are using the Altera® Toolbox Design Tools Drawer, follow these steps:

1. To generate a Powerview wirelist from the EDIF Output File, double-click Button 1 on the
max2_edifi icon in the Design Tools Drawer. The Netlist In dialog box is displayed.

2. In the Netlist In dialog box, specify ../<design name> for the EDIF Netlist File option,
then choose OK to process the EDIF netlist file.

3. If your project is implemented in multiple devices, repeat steps a and b for each EDIF
Output File generated by the MAX+PLUS II Compiler, and ensure that the Altera-
provided alt_edif.cfg file is specified for the Attribute Swap Configuration File option. In
a multi-device project, the MAX+PLUS II Compiler generates a separate file for each
device, plus a top-level file that is identified by "_t" appended to the project name. You
must also follow the steps in Using ViewDraw & ViewGen Software to Prepare for Multi-
Device Board-Level Simulation with ViewSim Software.

4. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Design
Tools Drawer.

5. Specify your design name for the Design Name option in the vsm dialog box and choose
OK to generate the <design name>.vsm file.

8. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively,
you can enter commands at the prompt in the ViewSim window. Refer to your Viewlogic
documentation for more information on creating ViewSim command files.

The Altera simulation model library, max2_sim, allows you to use the alt_grst signal to
asynchronously clear all flipflops (DFFE primitives).

9. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the
Design Tools Drawer or the Max2 Express Drawer.

10. Specify the following options in the ViewSim dialog box and choose OK to simulate the design:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
VHDL Source Window OFF
VHDL Debugging OFF

ViewSim software simulates the design and starts the ViewTrace waveform editor to allow you
to observe the simulation results.

Related Topics:

Refer to the following sources for related information:
ViewSim documentation for complete details on simulating a project and using ViewTrace
to observe waveform output results
Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level
Simulation with ViewSim Software

Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level
Simulation with ViewSim Software

In order to perform board-level simulation with ViewSim software, you must generate symbols that
represent each MAX+PLUS® II -generated EDIF Output File (.edo) and incorporate them into a top-
level ViewDraw schematic. You can use ViewGen to generate hollow-body symbols to represent each
EDIF Output File, and connect them to other system components in the top-level schematic. You must

also edit the wirelist files (.wir) created by the edifneti utility.

To prepare for multi-device board-level simulation with ViewSim software, follow these steps:

1. Perform steps 1 through 6c in Performing a Timing Simulation with ViewSim Software.

2. Start ViewGen by double-clicking Button 1 on the max2_VGen icon in the Design Tools
Drawer.

3. Specify the filename of one of the EDIF Output Files <filename>.edf in the Name box in the
ViewGen dialog box and choose OK to generate a corresponding <filename> symbol.

4. Repeat step 3 to generate other symbols as needed. You do not need to generate a symbol for the
<filename>_t.edf file.

5. Eliminate the two extra pins for VDD and GND connections from the top-level wirelist file
./wir/<design name>_t.1:

1. Open the ./wir/<design name>_t.1 wirelist file with a standard text editor and delete the
following lines:

P IN GND
I GND IN GND
P IN VDD
I VDD IN VDD

2. Add the following two lines to the file to ensure global ground and power connections for
simulation:

G VDD
G GND

3. Save the top-level wirelist file with your changes.

6. Continue with the steps necessary to perform timing simulation, as described in Performing a
Timing Simulation with ViewSim Software.

Performing a Timing Simulation with Fusion/VCS for Powerview Software

After you have compiled a project with the MAX+PLUS® II software to generate a VHDL Output File
(.vho) and a Standard Delay Format (SDF) Output File (.sdo), you can perform a timing simulation
with Fusion/VCS software.

To simulate a project with Fusion/VCS software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the
MAX+PLUS II /Viewlogic Powerview Working Environment.

2. Generate a VHDL Output File (.vdo) and an SDF ver 2.1 or 1.0 Output File (.sdo) for your
project, as described in Compiling Projects with MAX+PLUS II Software.

3. Create a new sim directory under your max2 directory to contain your Fusion/VCS simulation-
related files.

4. To use the SDF Output File with the Fusion/VCS software, create a PLI table file (.tab) in the
<project name>/max2/sim directory that contains the following line:

$sdf_annotate call=sdf_annotate_call acc=tchk, mp:<project name>

5. Open the Fusion/VCS dialog box by choosing the max2_VCS button from the Altera® Design
Tools Drawer in the Powerview Cockpit.

1. Type <project name>/max2/<project name>.vo in the Verilog Design and Object Files
box.

2. Type <project name>.tab in the PLI Table File box.

3. Type <project name>/max2/alt_max2.vo in the Verilog Library File 1 box.

4. (Optional) To use a command file or to set stimuli during simulation, select the Debug
option in the VCS box and type the name of the command file in the Simulation
Command-file box.

When using a command file or setting stimuli, include the signal scope as part of
the signal name. For example, to manipulate clk, a top-level signal in the fadd
project, name the signal as fadd.clk.

5. Choose OK.

Related Topics:

Go to Performing a Timing Simulation with ViewSim Software in these MAX+PLUS II
ACCESSSM Key topics for related information:

MAX+PLUS II/Viewlogic Powerview Timing Verification Flow

Figure 1 shows the timing verification flow for the MAX+PLUS® II/Viewlogic Powerview
interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Project Timing Verification Flow

Performing Timing Verification of EDIF Output Files (.edo) with MOTIVE
& MOTIVE for Powerview Software

After you have compiled a project and generated an EDIF Output File (.edo) with the
MAX+PLUS® II software, you can use Viewlogic MOTIVE or MOTIVE for Powerview
software to perform timing verification. The max2_MOTIVE tool is located in both the Altera®

Toolbox Design Tools Drawer and the Altera Toolbox Max2 Express Drawer. The MOTIVE
timing model library, motive.lib, provides models of basic primitives and the clklock
megafunction for timing verification.

To perform timing verification for EDIF Output Files with MOTIVE or MOTIVE for
Powerview software, follow these steps:

1. Set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Generate an EDIF Output File (.edo) by compiling your design with the MAX+PLUS II
software, as described in Compiling Projects with MAX+PLUS II Software.

3. Start the MOTIVE for Powerview software by double-clicking Button 1 on the
max2_MOTIVE icon in the Altera Toolbox Design Tools Drawer. The MOTIVE for

Powerview Control Panel opens.

4. Choose Setup Environment (File menu) to open the Environment Parameters dialog
box, and specify the following options:

1. Specify the directory for the Project Directory option.

2. Specify /usr/maxplus2/vwlogic/library/alt_time/motive.lib for the Model Library
Search Path option.

3. Select EDIF for the Netlist Input Format option.

4. Choose Accept. The MOTIVE for Powerview software automatically creates a tim
subdirectory, which contains MOTIVE design cases and related files, in the current
working directory.

5. Choose Save Parameters (File menu) to save your customized project setup.

6. To specify the project name, choose the New Design button to open the Adding a New
Design dialog box. Type the design name in the New Design box. Choose Accept, then
Dismiss.

7. To specify the case name, choose the New Case button to open the Adding a New Case
dialog box. Type the case name in the New Case box. Select Default as the New Case
Type. Choose Accept, then Dismiss.

8. Choose Browse Cases (File menu) to open the Case Display dialog box. In the Case
Display dialog box, double-click Button 1 on the field that contains the case for the
project. Double-clicking on the field opens a file manager listing all the project files
located under that case. Choose Dismiss in the Case Display dialog box.

1. Choose the Get File button from the file manager to display the Get File box at the
bottom of the window. This box allows you to specify which file(s) you would like
to add to the list of files for the current case.

2. Type /<working directory>/<project name>.edo in the Get File box and choose
Copy. The new file appears in the list of design files.

3. Type /<working directory>/<project name>.sdo in the Get File box and choose
Copy.

4. Type /<working directory>/<project name>.ref in the Get File box and choose
Copy.

5. If your project contains memory functions, such as ram, rom, dpram, scfifo,
dcfifo, altdpram, or clklock, type <project name>.vmo in the Get File box and
choose Copy to add the MAX+PLUS II-generated VHDL Memory Model Output
File (.vmo) to the list of files for the case. The MAX+PLUS II Compiler
automatically generates this file for a project that contains memory functions.

Every MOTIVE analysis requires a MOTIVE Clock Reference File (.ref). If
the project is simple, you can create the file in the Setup Advisor. Otherwise,
you must create the file in a text editor using MOTIVE syntax. For more
information on the purpose, function, and syntax of MOTIVE Clock
Reference Files, see the MOTIVE System Reference.

6. Choose Dismiss.

9. Choose the Netlister button in the MOTIVE for Powerview Control Panel to open the
EDIF Netlist Parameters dialog box. To create a FutureNet Format Netlist File (.pin)
with the EEDIF Netlister for your design, follow these steps:

1. Choose the Select Design button to open the Select Design dialog box.

2. Double-click Button 1 on the project name to open the Select Case dialog box.

3. Double-click Button 1 on the case name in the Select Case dialog box to open the
Select File dialog box.

4. Double-click Button 1 on the EDIF Output File, <project name>.edo, in the Select
File dialog box.

5. Select Keep for all Case Sensitivity options in the EDIF Netlist Parameters dialog
box.

6. Choose Accept, then Dismiss to close the EDIF Netlist Parameters dialog box.

10. Choose the SDF2MTV button in the Control Panel to open the SDF2MTV (MOTIVE
SDF Reader) Parameters dialog box and specify the following options:

1. Choose the Select button next to the SDF Filename box to open the Select File
dialog box.

2. Double-click Button 1 on the project's Standard Delay Format (SDF) Output File,
<project name>.sdo, in the Select File dialog box. The SDF2MTV utility creates a
MOTIVE Model Pre-Processor (MMP) Control File (.ctl) that allows you to
annotate the parameterized library, and an Interconnect Delay Data File (.idd).

3. Choose Accept, then Dismiss to close the Select File dialog box.

11. If your project contains ram, rom, dpram, scfifo, dcfifo, altdpram, or clklock
megafunctions, use the genmtv utility to back-annotate the MMP Control File and to
allow the MMP Control File to recognize the function. The input to the genmtv utility is
the VHDL Memory Model Output File (.vmo) described above. From the /<working
directory>/<project name>/<case name> directory, type the following command at the
UNIX prompt:

genmtv <project name>

12. If your project contains RAM or ROM functions and you turned on the Flatten Bus option
in the MAX+PLUS II Compiler's EDIF Netlist Writer Settings dialog box when you
compiled your project, you must edit the mem.lib file, i.e., the MOTIVE Model Pre-
Processor timing library file created with the genmtv utility. You must remove bracket [
] characters from all occurrences of the address bus, e.g., change A[0] to A0, in both the
INPUTS and MIXED sections of every RAM and ROM cell definition in mem.lib.

13. Choose the MMP button from the Control Panel to open the MOTIVE Model Pre-
processor (MMP) Parameters dialog box and specify the following options:

1. Choose the Select button next to the MMP Ctl File box to open the Select File
dialog box.

2. Double-click Button 1 on the project's MMP Control File, <project name>.ctl, in the
Select File dialog box.

3. In the MOTIVE Model Pre-processor (MMP) Parameters dialog box, choose the
Setup Model Libraries button to display boxes on the right side of the dialog box
that allow you to list additional source model libraries. In one of these boxes, type
the following path and filename:

/usr/maxplus2/vwlogic/library/alt_time/motive.drv

4. If your project contains RAM or ROM functions, repeat step 13c but specify the
pathname of the mem.lib file created in step 12. For example:

/usr/maxplus2/<working directory>/..../<case name>/mem.lib

5. In the MOTIVE Model Pre-processor (MMP) Parameters dialog box, choose
Accept, then Dismiss. The MMP utility creates a design-specific Timing Model
Library File (.mod).

14. Choose the Analyze button from the Control Panel to expand the Control Panel.

15. Double-click Button 1 on the project name in the Select Design box in the Control Panel to
open the Select Case box.

16. Select the specific case of the project in the Select Case box and double-click Button 1 on
the case name to open MOTIVE software and its Setup Advisor. The Setup Advisor helps
guide you through the following steps to set up and configure a case analysis:

1. In the Setup Advisor window, choose the Continue button to open the Project
Name Selection dialog box, which displays the project name.

2. Choose the Begin analysis button to open the Checking for existing project dialog
box.

3. Choose Continue to open the Design Specific Flow(s) dialog box and set up the
project through the Setup Advisor. The Design Name option lists the project
filename.

4. Choose Continue to open the Flow and Translation Selection dialog box.

5. Select the Manual Translation Flow option to specify input files and the steps to
perform in the timing verification flow for MOTIVE software. Choose Continue to
open the Manual Flow Selection dialog box and specify the following options:

Option: Setting:
Netlist/Pinlist FutureNet (.pin)
Parametric OVI Verilog (.sdf)

In the Other box, select Use available MOTIVE files to use the input files you
created in previous steps. Choose Continue to open the FutureNet Pinlist
Preparation dialog box.

6. Type the project name in the Root Block box. Choose Continue to open the OVI
Standard Parametric Back-annotation dialog box.

7. Type <project name>.sdo in the OVI (SDF) back-annotation file box. Choose
Continue to open the MOTIVE Model Compilation dialog box.

8. Replace the entry in the Control file(s) box with <project name>.ctl. Type the

following two filenames, which must be separated by a space, in the Libraries(s)
box:

/usr/maxplus2/vwlogic/library/alt_time/motive.lib
/usr/maxplus2/vwlogic/library/alt_time/motive.drv

9. If your project contains RAM or ROM functions, add the mem.lib file to the
directories specified in step 16h.

10. Choose Continue to open the Quick Definition of Existing MOTIVE Files dialog
box. The <project name>.ref filename appears in the Clock Reference File (.ref)
box.

11. Replace the entry in the Design's (pre-compiled) Model File (.mod) box with
<project name>.mod. Choose Continue to open the Congratulations dialog box.

12. Choose Continue to open the Cleaning up dialog box after completing the Setup
Advisor interview. Select Save under Project name to save your setup, and choose
Continue to close the Setup Advisor window.

17. In the MOTIVE window, choose Verify (Analyze menu) and then choose Execute to start
verification. To view the output files, choose Output Files (View menu).

Performing Timing Verification of Verilog Output Files (.vo) with MOTIVE
Software

After you have compiled a project and generated a Verilog Output File (.vo) with the
MAX+PLUS II Software, you can use Viewlogic MOTIVE to perform timing verification. The
MOTIVE timing model library, motive.lib, provides basic primitives and the clklock
megafunction for timing verification.

To perform timing verification for Verilog Output Files with MOTIVE software, follow these
steps:

1. Set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Generate a Verilog Output File by compiling your design with the MAX+PLUS II
software, as described in Compiling Projects with MAX+PLUS II Software.

3. Start the MOTIVE software by typing motive at the UNIX prompt. The MOTIVE
Session Log and Setup Advisor windows are displayed. Choose OK.

4. Choose Project on the vertical menubar in the Setup Advisor, then choose the Name
(Select project name) tab and specify the name of the project for Project name. The
directory in which you started MOTIVE will be selected automatically for Current
directory. Choose Accept. MOTIVE then searches for the <project name>.stm file. If this
is a new file, a message will appear in the Session Log window that mentions that
MOTIVE found a license and the message could not open the <project name>.stm
file -- assuming a new design.

5. Choose Flow from the vertical menubar, then choose the Type (Select flow type) tab.
Select the Using Verilog and SDF option and choose Accept.

6. Choose Options from the vertical menubar, then choose the Options (Miscellaneous
usage options) tab. If desired, specify a different value for the MOTIVE analysis cycle time

option. Choose Accept.

7. Choose Verilog on the vertical menubar and specify the following Verilog HDL input
options:

1. Choose the Translate (Translate Verilog netlist file) tab. Specify the name of the
MAX+PLUS II-generated Verilog Output File (.vo) for the Verilog netlist option.
Choose the Common Options button to display the Common Options dialog box.
Select the Special Options option and turn on the Skip Behavioral Constructs option.
Type either pinlist or a period (.) for the Generated pin files option. Choose OK
to close the Common Options dialog box and return to the Translate tab.

2. Specify the location of the MAX+PLUS II-generated alt_max2.vo file for the
Vendor module definition option. Choose the Translate button. The Process
Execution Log & Tips dialog box displays the current status of the translation to
.pin files. Choose OK after successful translation.

3. Choose the Import (Confirm Adding hierarchical blocks) tab. Choose the Import
Blocks button. The MOTIVE Interaction Log & Tips dialog displays the current
import status. Choose OK after a successful completion.

4. Select the Hierarchy (Configure hierarchy options) tab. Type the name of the
rootblock for the Rootblock of design option, or choose the Find Rootblock button
to display the rootblock name. Choose Accept.

8. Choose the Check (Review and/or build the netlist database) tab. Choose the Incremental
Build button. The MOTIVE Interaction Log & Tips dialog displays the current build
status. Choose OK after a successful completion.

9. Select SDF on the vertical menubar, then select the Translate (SDF model preparation)
tab. Type <project name>.sdo for the SDF file option, making sure that you specify the
.sdo extension. Type <project name>.ctl for the MPP control file name, and <project
name>.idd for the IDD file name.

10. Choose the Process SDF File button.

11. If your project contains the clklock megafunction, use the genmtv utility to back-
annotate the MPP Control File and to allow the MPP Control File to recognize the
clklock function. The input to the genmtv utility is the Verilog netlist file (.vo). From the
/<working directory>/<project name>/<case name> directory, type the following
command at the UNIX prompt:

genmtv -v <project name>

12. If your project contains RAM or ROM functions and you turned on the Flatten Bus option
the MAX+PLUS II Compiler's Verilog Netlist Writer Settings dialog box when you
compiled your project, you must edit the mem.lib file, i.e., the MOTIVE Model Pre-
Processor timing library file generated with the genmtv utility. You must remove the
bracket [] characters from all occurrences of the address bus, e.g., change A[0] to A0, in
both the INPUTS and MIXED sections of every RAM and ROM cell definition in mem.lib.

13. Select the MPP (MOTIVE model compilation) tab. Type <project name>.ctl for the
Control file option. Type /usr/maxplus2/viewlogic/library/alt_time/motive.lib
/usr/maxplus2/viewlogic/library/alt_time/motive.drv for the Libraries option. If
the project contains memory functions, you should also specify the location of the
mem.lib file for the Libraries option. Type <project name>.mod for the Generated model
file option and <project name>.rcf for the Revised control file option. Choose the RUN

MMP button. The MOTIVE Execution Log & Tips dialog displays and shows the
current status. Choose OK after a successful completion.

14. Select Save from the File menu in the Setup Advisor to write all the selections made so far
to the <project name>.stm file.

15. Select Clock on the vertical menubar, then choose the File (Check reference file and
timebase options) tab. The correct name of the Clock Reference File (.ref) should be
displayed for the Clock reference file option. Choose Accept.

Every MOTIVE analysis requires a MOTIVE Clock Reference File. If the project is
simple, you can create the file in the Setup Advisor. Otherwise, you must create the
file with a text editor using MOTIVE syntax. For more information on the purpose,
function, and syntax of MOTIVE Clock Reference Files, see the MOTIVE System
Reference.

16. Choose the Edit (Simple clock reference generation) tab. Specify the names for the Clock
reference and Clock net name options. Choose Generate.

17. Choose the Check (Choose incremental definitions) tab, then choose the Load Clock
button.

18. Choose Finish from the vertical menubar, then choose the Build button. The MOTIVE
Interaction Log & Tips dialog displays the current status. Choose OK after a successful
completion.

19. Select Save from the File menu in the Setup Advisor.

20. In the MOTIVE Session Log window, choose Verify (Analyze menu) and then choose the
Execute button to start verification. To view the output files, choose Output Files (View
menu).

Alternatively, you can run MOTIVE analysis on the command line by following these steps:

1. Type the following commands at the UNIX prompt:

vtran <project name>.vo -b -h -u alt_max2.vo (generates .pin files)

sdf2mtv <project name>.sdfo (generates .ctl files)

2. If your project contains ram, rom, dpram, or clklock functions, you should also type the
following commands at the UNIX prompt:

genmtv -v <project name>

mmp <project name>.ctl -l
/usr/maxplus2/viewlogic/library/alt_time/motive.lib -l
/usr/maxplus2/viewlogic/library/alt_time/motive/drv -l mem.lib

3. Type the following command at the UNIX prompt:

amtv <project name>

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II

software, you can program an Altera® device and test it in the target circuit. Figure 1 shows the
device programming flow for MAX+PLUS II software.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer
software installed on a 486- or Pentium-based PC or a UNIX workstation, or with programming
hardware and software available from other manufacturers. Table 1 shows the available Altera
programming hardware options on PCs and UNIX workstations.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S
MAX
9000

&
MAX

9000A
Devices

FLEX®
6000,
FLEX

6000A,
FLEX
8000,
FLEX
10K,
FLEX
10KA,
FLEX
10KB,

&
FLEX
10KE

Devices

In-System
Programming/
Configuration

Logic
Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster
Download Cable
ByteBlasterMV

Download Cable
MasterBlaster
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with
File Transfer Protocol (FTP) or other similar transfer programs, be sure to select binary transfer
mode.

Programming hardware from other manufacturers varies, but typically consists of a device
connected to one of the serial ports on the workstation. Various vendors, such as Data I/O and
BP Microsystems, supply hardware and software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating
programming files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

Powerview Command-Line Syntax

Table 1 shows the command-line syntax for using Powerview functions.

Table 1. Powerview Command-Line Syntax

Action Command
Start VHDL Analyzer software vhdl -v <project name>
Start ViewSynthesis software vhdldes

Load Altera® technology library vhdldes> technology altera

Compile a VHDL design vhdldes> vhdl <project name>
Synthesize a design vhdldes> synthesize

Generate wirelist file vhdldes> wir

Create a schematic representation vhdldes> viewgen

Generate a synthesis report file vhdldes> report

Start the graphical user interface for
ViewSynthesis vhdldes> vdesgui

Start the VHDL-to-symbol utility vhdl2sym <project name>
Start vsm vsm <project name>
Start ViewSim simulator viewsim <project name> -<project name>.cmd

Start edifneto edifneto -f <project name>-l (std or altera)
<project name>.edf

Start Vantage VHDL Analyzer software analyze -src <design file>
Start MOTIVE for Powerview software mfp

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Entering Resource
Assignments

Entering Resource Assignments
The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In the MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor.

ViewDraw Schematics

In ViewDraw schematics, you can assign a limited subset of these resource assignments by assigning properties to
symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II software automatically
converts assignment information from the EDIF Input File (.edf) into the ACF format. For information on making
MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates the
following sample ViewDraw schematic file, which includes resource assignments:

/usr/maxplus2/examples/viewlogic/example4/fadd2mpp

Related Topics:

Go to Viewlogic documentation for information on how to assign properties. Go to "Resource Assignments
in EDIF Input Files" and "Assigning Resources in a Third-Party Design Editor" in MAX+PLUS II Help for
more information on assignments or properties that can be assigned in ViewDraw.

VHDL Design Files

For VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to enter resource
assignments. For information on using the setacf utility, go to Modifying the Assignment & Configuration File
with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in
an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu).

Feedback

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using ViewDraw & ViewGen
Software to Prepare for Multi-Device Board-Level Simulation with ViewSim Software

Using ViewDraw & ViewGen Software to Prepare for
Multi-Device Board-Level Simulation with ViewSim
Software

In order to perform board-level simulation with ViewSim software, you must generate symbols that represent each
MAX+PLUS® II -generated EDIF Output File (.edo) and incorporate them into a top-level ViewDraw schematic.
You can use ViewGen to generate hollow-body symbols to represent each EDIF Output File, and connect them to
other system components in the top-level schematic. You must also edit the wirelist files (.wir) created by the
edifneti utility.

To prepare for multi-device board-level simulation with ViewSim software, follow these steps:

1. Perform steps 1 through 6c in Performing a Timing Simulation with ViewSim Software.

2. Start ViewGen by double-clicking Button 1 on the max2_VGen icon in the Design Tools Drawer.

3. Specify the filename of one of the EDIF Output Files <filename>.edf in the Name box in the ViewGen
dialog box and choose OK to generate a corresponding <filename> symbol.

4. Repeat step 3 to generate other symbols as needed. You do not need to generate a symbol for the
<filename>_t.edf file.

5. Eliminate the two extra pins for VDD and GND connections from the top-level wirelist file ./wir/<design
name>_t.1:

1. Open the ./wir/<design name>_t.1 wirelist file with a standard text editor and delete the following
lines:

P IN GND
I GND IN GND
P IN VDD
I VDD IN VDD

2. Add the following two lines to the file to ensure global ground and power connections for simulation:

G VDD
G GND

3. Save the top-level wirelist file with your changes.

6. Continue with the steps necessary to perform timing simulation, as described in Performing a Timing
Simulation with ViewSim Software.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1
https://mysupport.altera.com/eservice/

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Creating VHDL Designs for
Use with MAX+PLUSÂ II Software

Creating VHDL Designs for Use with MAX+PLUSÂ II
Software

You can create VHDL design files with the MAX+PLUSÂ® Â II Text Editor or another standard text editor and
save them in the appropriate directory for your project. The MAX+PLUSÂ II Text Editor offers the following
advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.
If you use the MAX+PLUSÂ II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements in text files in
different colors to distinguish them from other forms of syntax.

To create a VHDL design that can be synthesized and optimized with ViewSynthesis software, follow these steps:

1. You can instantiate the following Altera-provided logic functions in your VHDL design:
The alt_mf library contains the AlteraÂ® VHDL logic function library, which includes MAX+PLUSÂ
II-specific primitives and the a_8count, a_8mcomp, a_8fadd, and a_81mux macrofunctions. If you wish
to instantiate alt_mf logic functions in your VHDL design, you must first analyze all functions in the
alt_mf/src directory. See Analyzing VHDL Files with the Vantage VHDL Analyzer Software for
details.
The clklock megafunction, which enables the phase-locked loop, or ClockLock™ , circuitry available
on selected Altera FLEXÂ® Â 10K devices. Go to Instantiating the clklock Megafunction in VHDL or
VerilogÂ HDL for information.
MegaCore™ functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP™). The OpenCore™ feature in the MAX+PLUSÂ II software allows you to instantiate,
compile, and simulate MegaCore functions before deciding whether to purchase a license for full
device programming and post-compilation simulation support.

2. (Optional) To enter resource assignments in your VHDL design, go to Entering Resource Assignments. You
can also enter resource assignments from within the MAX+PLUSÂ II software.

Once you have created a VHDL design, you can analyze it, synthesize it, and generate an EDIF netlist file that can
be imported into the MAX+PLUSÂ II software with either of the following methods:

You can analyze, functionally simulate, and synthesize the VHDL design, then generate an EDIF netlist file
by following the steps in these topics:

Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUSÂ II-Compatible EDIF Netlist
Files with the edifneto Utility

You can use the VHDL <-> max2 utility in the Max2 Express Drawer to automatically analyze and
synthesize the VHDL design, compile it with the MAX+PLUSÂ II Compiler, generate an EDIF Output File
(.edo), and create a .vsm file for simulation. See Using the Max2 Express Drawer's VHDL <-> max2 Utility
in these MAX+PLUSÂ II ACCESSSM Key topics for details.

Installing the Altera-provided MAX+PLUSÂ II/Viewlogic Powerview interface on your computer automatically
creates the following sample VHDL files:

/usr/maxplus2/examples/viewlogic/example5/count4.vhd

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1#altmf
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-viewsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-vhdlmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-vhdlmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-vhdlmax.html?csf=1&web=1

/usr/maxplus2/examples/viewlogic/example5/count8.vhd

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Vantage

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Analyzing VHDL Files with
the Vantage VHDL Analyzer Software

Analyzing VHDL Files with the Vantage VHDL
Analyzer Software

You can use the Vantage VHDL Analyzer software to analyze VHDL Design Files (.vhd) prior to functional (or
gate-level) simulation with ViewSim software, or to synthesis and optimization with ViewSynthesis software. You
can also use the Vantage VHDL Analyzer to analyze a MAX+PLUS® II -generated VHDL Output File (.vho) prior
to post-compilation timing simulation with ViewSim software. The max2_VantgMgr and max2_VantgAnlz tools
are located in the Altera® Toolbox Design Tools Drawer.

To analyze a VHDL file with the Vantage VHDL Analyzer, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. If you wish to analyze a VHDL Design File (.vhd), create a VHDL file <design name>.vhd using the
MAX+PLUS II Text Editor or another standard text editor and save it in a working directory. Go to Creating
VHDL Designs for Use with MAX+PLUS II Software for more information.

3. If you wish to analyze a MAX+PLUS II-generated VHDL Output File (.vho), be sure to select VHDL 1987
for the VHDL Version option and VHDL Output File (.vho) for the Write Delay Constructs To option in the
VHDL Netlist Writer Settings dialog box (Interfaces menu) when you set up the MAX+PLUS II Compiler
to generate a VHDL Output File. See Compiling Projects with MAX+PLUS II Software for more
information on generating VHDL Output Files.

4. If your VHDL file contains functions from the alt_mf library, follow these steps:

1. Start the Vantage Manager by double-clicking Button 1 on the max2_VantgMgr icon in the Design
Tools Drawer.

2. Use the Vantage VHDL Library Manager to create an alt_mf.lib library file with the symbolic name
ALT_MF.

3. Make alt_mf the working library with the Set Working command (Edit menu).

4. Start the VHDL Analyzer by double-clicking Button 1 on the max2_VantgAnlz icon in the Design
Tools Drawer.

5. Analyze each VHDL file in the alt_mf/src directory into the alt_mf.lib working library. Source files
are located in the /usr/maxplus2/vwlogic/library/alt_mf/src directory that is created by installing the
Altera/Viewlogic interface.

5. If it is not already running, start the Vantage VHDL Library Manager, as described in step 4b, to create a
Vantage library.

6. Choose the List system libs button.

7. Add the ieee.lib and synopsys.lib system libraries to your project:

1. Select the ieee.lib and synopsys.lib libraries from the Available Libraries window and choose Add lib.
Choose the ieee library from the libs_syn directory, which is located at /<Powerview system
directory>/ standard/van_vss/pgm/libs_syn. The ieee library contains Synopsys package files.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-vhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-vhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1

2. If your project uses functions from the alt_mf library, also select the alt_mf.lib file from the Available
Libraries window and choose Add lib.

3. Choose Create Library (File menu, type the project directory name in the Symbolic Name field, and
choose OK.

8. Specify the project directory as the working directory by choosing Set Working (Edit menu).

9. Choose Save INI File (File menu).

10. Choose Dismiss Window (Powerview Red-Box menu).

11. Specify the appropriate path and file name in the Analyzer VHDL Source File dialog box and choose OK to
analyze the VHDL file.

12. Once you have analyzed the file, perform one or more of the following tasks, as appropriate:

Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Performing a Timing Simulation with ViewSim Software

Related Links:

Refer to the following sources for related information:
The Viewlogic ViewSim/VHDL User's Guide and ViewSim/VHDL Tutorial for information on using
the Vantage VHDL Analyzer software or Vantage VHDL Library Manager
Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-viewsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-cmdsyntx.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic ViewSim &
MAX+PLUS II Software

Using Viewlogic ViewSim & MAX+PLUS® II Software

The following topics describe how to use the Viewlogic ViewSim software with MAX+PLUS® II software.
Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

Functional Simulation

Performing a Functional Simulation with ViewSim Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Timing Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with ViewSim Software

Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation with
ViewSim Software

Related Links

Viewlogic Powerview Graphical User Interface & the Altera Toolbox
Powerview Command-Line Syntax
Compiling Projects with MAX+PLUS II Software
Programming Altera® Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-vantageall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-projstrc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-fig13.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-initial.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-simedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-simedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gui.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-cmdsyntx.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.viewlogic.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic SpeedWave
VHDL Analyzer & MAX+PLUS II Software

Using Viewlogic SpeedWave VHDL Analyzer &
MAX+PLUS II Software

The following topics describe how to use the Viewlogic SpeedWave VHDL Analyzer software with MAX+PLUS®

II software. Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

VHDL Design Entry

Design Entry Flow
Creating VHDL Designs for Use with MAX+PLUS II Software

Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

VHDL Analysis

Analyzing VHDL Files with the SpeedWave VHDL Analyzer Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Powerview Command-Line Syntax
Performing a Functional Simulation with ViewSim Software
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with ViewSim Software
Compiling Projects with MAX+PLUS II Software
Programming Altera® Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Viewlogic web site (http://www.viewlogic.com)

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

To use the MAX+PLUS® II software with Viewlogic's Powerview software, you must install the MAX+PLUS II
software, familiarize yourself with the Altera® Toolbox in the Powerview Cockpit, and then establish an
environment that facilitates entering and processing designs. The MAX+PLUS II /Viewlogic Powerview interface
is installed automatically when you install the MAX+PLUS II software on your workstation.

To set up your working environment for the MAX+PLUS II/Viewlogic Powerview interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Viewlogic software versions described in
MAX+PLUS II/Viewlogic Powerview Software Requirements.

2. Add the following environment variable to your .cshrc file to specify /usr/maxplus2 as the MAX+PLUS II
system directory:

setenv ALT_HOME /usr/maxplus2

3. Add the $ALT_HOME/viewlogic/standard, $ALT_HOME/bin, and $ALT_HOME/viewlogic/bin
directories to the PATH environment variable in your .cshrc file.

4. Add the $ALT_HOME/viewlogic/standard directory to the WDIR environment variable in your .cshrc file
using the following syntax:

setenv WDIR $ALT_HOME/viewlogic/standard:/<Powerview system directory>/standard

Make sure the $ALT_HOME/viewlogic/standard directory is the first directory in your WDIR path.

5. Source your .cshrc file by typing source .cshrc at the UNIX prompt.

6. Create the Viewlogic Powerview viewdraw.ini configuration file.

7. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

8. If you plan to instantiate Library of Parameterized Modules (LPM) functions in ViewDraw schematics, you
must create a new file with the name vdraw.vs. The vdraw.vs file must include the following line:

load ("vdpath")

Viewlogic Altera

ViewDraw ViewGen MAX+PLUS II
version 9.4

VHDL Analyzer ViewPath (optional)
Vantage VHDL Analyzer ViewTrace
VHDL -> sym ViewData Path
edifneto MOTIVE version 5.1.6 Note (1)

edifneti MOTIVE for Powerview version 3.2.1 (optional) Note
(1)

EEDIF (optional) SDF2MTV (optional)
MMP (optional) Fusion/VCS
vsm
Note:

(1)
MOTIVE for Powerview, a wrapper application for MOTIVE, provides a graphical user interface for the utilities
(i.e., EEDIF, SDF2MTV, and MMP) used during a static timing verification with MOTIVE. MOTIVE alone
does not accept EDIF files through the Setup Advisor.

The MAX+PLUS II read.me file provides up-to-date information on which versions of Viewlogic Powerview
applications the current version of the MAX+PLUS II software supports. It also provides information on
installation and operating requirements. You should read the read.me file on the CD-ROM before installing the
MAX+PLUS II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

You must also make sure that you specify the vdraw.vs file in your WDIR path.

9. Set up a directory structure that facilitates working with the MAX+PLUS II/Viewlogic Powerview interface.
Refer to MAX+PLUS II/Viewlogic Powerview Project File Structure.

Related Topics:

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to
MAX+PLUS II/Viewlogic Powerview Interface File Organization for information about the MAX+PLUS
II/Viewlogic Powerview directories that are created during MAX+PLUS II installation.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Viewlogic Powerview Software Requirements

The following applications and utilities are used to generate, process, synthesize, and verify a project with
MAX+PLUS® II and Viewlogic Powerview software.

MAX+PLUS II/Viewlogic Powerview Interface File Organization

Table 1 shows the MAX+PLUS® II/Viewlogic Powerview interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

For information on the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II
File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Directory Description

./lmf Contains the Altera-provided Library Mapping File, vwlogic.lmf, that maps Viewlogic
logic functions to equivalent MAX+PLUS II logic functions.

./viewlogic Contains the alt_edif.cfg EDIF configuration file that is used with the edifneti utility.
Also contains the library and sample subdirectories.

./viewlogic/examples Contains the sample Viewlogic designs.

./viewlogic/library/max2sim Contains the MAX+PLUS II simulation model library (max2_sim) for use in ViewSim
software.

./viewlogic/library/alt_max2

Contains MAX+PLUS II primitives (EXP, GLOBAL, LCELL, SOFT, CARRY, CASCADE, DFFE,
DFFE6K, and OPNDRN), macrofunctions (a_8fadd, a_8mcomp, a_8count, a_81mux), and
megafunctions (clklock) for use in ViewDraw schematics. These logic functions
support specific architectural features of Altera® devices. The alt_max2 library also
contains modified versions of the ViewDraw primitives that use tri-state buffers, because
these primitives require special handling in the MAX+PLUS II /Viewlogic Powerview
interface.

./viewlogic/library/synlib
Contains the Altera-provided synthesis library altera, which includes MAX+PLUS II
primitives, the altera.sml file, a sym directory, and a wir directory for use with
ViewSynthesis software.

./viewlogic/library/alt_mf
Contains the VHDL models for the MAX+PLUS II primitives (EXP, GLOBAL, LCELL,
SOFT, CARRY, CASCADE, DFFE, and OPNDRN), macrofunctions (clklock) for use with
ViewSynthesis software, the Vantage VHDL Analyzer software, and the VHDL source
files. These logic functions are used to maintain portability to other architectures.

./viewlogic/library/alt_time Contains MOTIVE timing models for MAX+PLUS II logic functions (motive.lib),
including the clklock megafunction, and MAX+PLUS II driver models (motive.drv).

./viewlogic/library/alt_vtl Contains the VHDL source files for the VITAL 3.0-compliant library. This library is
available for ViewSim software.

./viewlogic/bin Contains all MAX+PLUS II, Viewlogic, and interface-related scripts.

./viewlogic/standard Contains all standard .ini files and standard tools.

Table 1. MAX+PLUS II Directory Organization

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Viewlogic Powerview viewdraw.ini Configuration File

Each Powerview project is configured with the viewdraw.ini file that resides in the project directory. The DIR
statements at the end of viewdraw.ini are paths to library directories that are used by the various Powerview
applications. Figure 1 shows a sample of the DIR statements that are required to use the libraries.

Figure 1. Excerpt from viewdraw.ini

DIR [pw] .

DIR [r] /usr/maxplus2/vwlogic/library/alt_max2 (alt_max2)

DIR [r] /usr/maxplus2/vwlogic/library/max2sim (max2_sim)

DIR [r] /usr/maxplus2/vwlogic/library/synlib (altera)

DIR [r] /usr/maxplus2/vwlogic/library/alt_mf (alt_mf)

DIR [r] /usr/maxplus2/vwlogic/library/alt_vtl (alt_vtl)

DIR [rm] /<Powerview system directory>/lib/builtin (builtin)
DIR [rm] /<Powerview system directory>/simmods/vl/dip/74ls (vl74ls)
DIR [rm] /<Powerview system directory>/symsets/vl/dip/74ls (vl74ls)
DIR [r] /<Powerview system directory>/lib/vdpath (vdpath)

When you add the libraries to the /usr/maxplus2/vwlogic/standard/viewdraw.ini file, they are automatically set
when you create a new project. Powerview tools search these libraries sequentially, so it is important to add them
in the order in which they are listed in Figure 1.

Library Library Alias Source Topics
alt_max2 alt_max2 Altera Graphical elements for ViewDraw
max2sim max2_sim Altera Models for project simulation
synlib altera Altera VHDL synthesis library for the MAX+PLUS ® II software
alt_mf alt_mf Altera VHDL models of MAX+PLUS II logic functions
alt_vtl alt_vtl Altera VITAL-compliant primitives
builtin builtin Altera Basic primitives such as INPUT pins, OUTPUT pins, AND gates, OR gates, etc.
74ls vl74ls Viewlogic 74-series macrofunctions
vdpath vdpath Viewlogic Standard library of parameterized modules (LPM) functions

The Altera-provided libraries must be listed before the Viewlogic-provided libraries in the viewdraw.ini file to
ensure that the correct versions of the megafunctions, macrofunctions, and primitives are used.

Table 1 shows the libraries that must be specified in the DIR statements in the viewdraw.ini file.

Table 1. Powerview Application Libraries

Related Topics:

Go to Altera-Provided Logic & Symbol Libraries for more information on Altera-supplied libraries. Refer to
the Powerview documentation for more information on setting up the viewdraw.ini file.

MAX+PLUS II/Viewlogic Powerview Project File Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an Altera® Hardware Description
Language (AHDL) TDF; or any other MAX+PLUS II- supported design file. The EDIF netlist file must be created
by Powerview and imported into the MAX+PLUS II software as an EDIF Input File (.edf). Figure 1 shows an
example of MAX+PLUS II project directory structure that includes Powerview-generated files.

Figure 1. Sample MAX+PLUS II Project Organization

ViewDraw files are identified by their directories and not by their extensions, so it is easy to overwrite files
unintentionally. To avoid overwriting files, Altera recommends that you create a new project directory, <project
name>/max2/sim, where you can generate all the files needed for simulation.

Directory Topics

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Unlike Powerview, the MAX+PLUS II software does not automatically create a project directory when you create a
project. A single directory can contain several MAX+PLUS II design files, and you can specify any one of the
designs in the directory as a project in the MAX+PLUS II software.

Viewlogic Powerview Local Work Area Structure

When you create a project with the Powerview Cockpit's Create command (Project menu), the project directory is
created. You should generate design files and functional simulation files under this directory. A max2 subdirectory
is automatically created under your current project directory when you generate an EDIF file from your schematic
or VHDL file. The <project name>.edf file is stored in the max2 subdirectory. All MAX+PLUS® II Compiler
output files are created in the /<project name>/max2 subdirectory.

ViewDraw Project File Structure

Each ViewDraw project directory contains three subdirectories: wir, sch, and sym. See Table 1.

Table 1. ViewDraw Subdirectories

./wir Wirelist files that contain connectivity information for a particular logic block

./sch Schematics that contain logic

./sym Symbol files that are the ViewDraw graphical representation of the logic blocks

Directory Topics
./synth All synthesis-related files and directories
./synth/<entity> Four types of files: <entity>.pdf, <entity>.opt, <entity>.sta, and <entity>.gnl
./wir Wirelist for synthesized VHDL modules

For each VHDL entity in the design, there is a corresponding ./synth/<entity> directory.

You can create your own libraries of custom symbols and logic functions for use in ViewDraw schematics and
VHDL design files. You can use custom symbols (and functions) to incorporate an EDIF Input File, TDF, or any
other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses the vwlogic.lmf
Library Mapping File to map ViewDraw symbols to equivalent MAX+PLUS II megafunctions, macrofunctions,
or primitives. To use custom symbols and functions, you can create a custom LMF that maps your custom
functions to equivalent EDIF Input Files, TDFs, or other MAX+PLUS II-supported design files. Go to "Library
Mapping File" and "Viewlogic Library Mapping File" in MAX+PLUS II Help for more information.

Each file type uses the filename extension .1. Different file types are distinguished only by their directory:
/lib/wir/<project name>.1 is a wirelist file; /lib/sch/<project name>.1 is the corresponding schematic file; and
/lib/sym/<project name>.1 is the corresponding symbol.

VHDL Project File Structure

Each VHDL project directory contains three subdirectories. See Table 2.

Table 2. VHDL Subdirectories

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS® II/Viewlogic Powerview environment provides libraries for compiling, synthesizing, and
simulating designs.

Logic symbols used in ViewDraw software are available from the MAX+PLUS II alt_max2 library, the ViewDraw
builtin and 74ls libraries, and the ViewDatapath vdpath library. VHDL models of MAX+PLUS II logic functions
are available from the Altera-provided alt_mf library.

The alt_max2 Library

The alt_max2 library provides MAX+PLUS II-specific logic functions that can be used to take advantage of
special architectural features in each Altera® device family. See Table 1. Symbols and functional simulation
models are available for all of these elements.

The alt_mf Library

The Altera-provided alt_mf library, which supports the Viewlogic Vantage VHDL Analyzer software, contains
VHDL simulation models for all logic functions listed in the following table. The library is configured so that these
functions pass untouched through the EDIF netlist file to the MAX+PLUS II Compiler, providing you with optimal
control over design processing. Altera also provides models for all of the logic functions that you can synthesize
and simulate. These models allow you to perform functional VHDL simulation while maintaining an architecture-
independent VHDL description.

Table 1. Architecture Control Logic Functions

Name Note
(1), Note (2) Description Name Description Name Description

8fadd
8-bit full adder
macrofunction LCELL Logic cell buffer primitive EXP

MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer
primitive

8mcomp
8-bit magnitude
comparator
macrofunction

GLOBAL Global input buffer primitive SOFT Soft buffer primitive

8count
8-bit up/down
counter
macrofunction

CASCADE
FLEX® 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

OPNDRN Open-drain buffer primitive

81mux
8-to-1 multiplexer
macrofunction CARRY

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

DFFE
Note
(2)

D-type flipflop with Clock
Enable primitive

clklock
Phase-locked loop
megafunction

Notes:

1. Logic function names that begin with a number must be prefixed with "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Topics:

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help
menu for detailed information on these functions.

Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

The vdpath & mega_lpm Libraries

The library of parameterized modules (LPM) 2.1.0 standard defines a set of parameterized functions and their
corresponding representations in an EDIF netlist file. These logic functions allow you to create and functionally
simulate an LPM-based design without targeting a specific device family. After the design is completed, you can
target the design to any device family.

When the MAX+PLUS® II software processes projects that include Viewlogic-provided vdpath LPM functions, it
uses functions from the Altera-provided mega_lpm library. This library includes all standard LPM functions except
the truth table, finite state machine, and pad functions. Altera does not directly support the lpm_ram_dq,
lpm_ram_io, and lpm_rom functions. Refer to Instantiating RAM & ROM Functions in Viewlogic Powerview
Designs for instructions on instantiating RAM and ROM functions.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

Altera-provided items are shown in blue.

MAX+PLUS II/Viewlogic Powerview Design Entry Flow

Figure 1 shows the design entry flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Design Entry Flow

Creating VHDL Designs for Use with MAX+PLUS II Software

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and save
them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements in text files in
different colors to distinguish them from other forms of syntax.

To create a VHDL design that can be synthesized and optimized with ViewSynthesis software, follow these steps:

1. You can instantiate the following Altera-provided logic functions in your VHDL design:

The alt_mf library contains the Altera® VHDL logic function library, which includes MAX+PLUS II-
specific primitives and the a_8count, a_8mcomp, a_8fadd, and a_81mux macrofunctions. If you wish to
instantiate alt_mf logic functions in your VHDL design, you must first analyze all functions in the
alt_mf/src directory. See Analyzing VHDL Files with the Vantage VHDL Analyzer Software for
details.

The clklock megafunction, which enables the phase-locked loop, or ClockLock , circuitry available
on selected Altera FLEX® 10K devices. Go to Instantiating the clklock Megafunction in VHDL or
Verilog HDL for information.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

2. (Optional) To enter resource assignments in your VHDL design, go to Entering Resource Assignments. You
can also enter resource assignments from within the MAX+PLUS II software.

Once you have created a VHDL design, you can analyze it, synthesize it, and generate an EDIF netlist file that can
be imported into the MAX+PLUS II software with either of the following methods:

You can analyze, functionally simulate, and synthesize the VHDL design, then generate an EDIF netlist file

In MAX+PLUS II version 8.3 and lower, running genclklk on a PC always creates files named as clklock.vhd,

by following the steps in these topics:

Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist
Files with the edifneto Utility

You can use the VHDL <-> max2 utility in the Max2 Express Drawer to automatically analyze and
synthesize the VHDL design, compile it with the MAX+PLUS II Compiler, generate an EDIF Output File
(.edo), and create a .vsm file for simulation. See Using the Max2 Express Drawer's VHDL <-> max2 Utility
in these MAX+PLUS II ACCESSSM Key topics for details.

Installing the Altera-provided MAX+PLUS II/Viewlogic Powerview interface on your computer automatically
creates the following sample VHDL files:

/usr/maxplus2/examples/viewlogic/example5/count4.vhd
/usr/maxplus2/examples/viewlogic/example5/count8.vhd

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating the clklock Megafunction in VHDL or Verilog HDL

MAX+PLUS® II interfaces to other EDA tools support the clklock phase-locked loop megafunction, which can be
used with some FLEX® 10K devices, with the gencklk utility, which is available in the MAX+PLUS II system
directory. Type gencklk -h at the DOS or UNIX prompt to display information on how to use this utility. The
gencklk utility generates VHDL or Verilog HDL functional simulation models and a VHDL Component
Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the DOS or UNIX prompt to generate the clklock_x_y function, where x is
the ClockBoost value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

2. Create a design file that instantiates the clklock_x_y.vhd or clklock_x_y.v file. The gencklk utility
automatically generates a VHDL Component Declaration template in the clklock_x_y.cmp file that you can
incorporate into a VHDL design file.

clklock.cmp, and clklock.v, regardless of the ClockBoost and input frequency values you specify.

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

 END structure;

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Refer to Viewlogic documentation for information on simulating projects that contain RAM functions. The
procedure for reading an EDIF Output File and preparing it for simulation with ViewSim requires additional
steps when the project contains RAM functions.

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

The MAX+PLUS®II /Viewlogic Powerview interface offers full support for the memory capabilities of the FLEX®

10K device family, including synchronous and asynchronous RAM and ROM, cycle-shared dual-port RAM, dual-
port RAM, single-Clock FIFO, and dual-Clock FIFO functions. You can use the Altera-provided genmem utility to
generate functional simulation models and timing models for these functions. Type genmem at the UNIX prompt
to display information on how to use this utility, as well as a list of the functions you can generate. RAM and ROM
can be instantiated in both ViewDraw schematics and VHDL designs.

When you instantiate a RAM or ROM function, follow these general guidelines:

For ROM functions, you must specify an initial memory content file in the Intel hexadecimal format (.hex) or
the Altera® Memory Initialization File (.mif) format. The filename must be the same as the instance name;
e.g., the instance name must be unique throughout the whole project, and must contain only valid name
characters. The initialization file must reside in the directory containing the project's design files.

For RAM functions, specifying a memory initialization file is optional.

For VHDL designs, specify the name of the initial memory content file in the Generic Map Clause of the

The MIF format is supported only for specifying initial memory content when compiling designs within the
MAX+PLUS II software. You cannot use a MIF to perform simulation with Viewlogic tools prior to
MAX+PLUS II compilation.

Figure 1 shows a VHDL design that instantiates asyn_rom_256x15.vhd, a
256 x 15 ROM function.

Figure 1. VHDL Design File with ROM Instantiation (tstrom.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tstrom IS
 PORT (
 addr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 memenab : IN STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR (14 DOWNTO 0));
END tstrom;

ARCHITECTURE behavior OF tstrom IS

COMPONENT asyn_rom_256x15
 GENERIC (LPM_FILE : string);

instance, with the specified type LPM_FILE. If you do not use an initial memory content file (e.g., for a RAM
function), you should not declare or use the Generic Clause.

Do not synthesize the genmem-generated VHDL file: it is intended for simulation only.

To instantiate RAM or ROM in a ViewDraw schematic, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX prompt:

genmem <memory type> <memory size> -vwlogic

For example: genmem asynrom 256x15 -vwlogic

2. Start the VHDL-to-symbol utility, vhdl2sym, by double-clicking Button 1 on the max2_vhdl2sym icon in
the Altera® Toolbox Design Tools Drawer.

3. Specify the following options in the vhdl2sym dialog box and choose OK to create a symbol. For example,
to create the symbol for a 256x15 asynchronous ROM, enter the following settings:

Option: Setting:
VHDL Source Filename asyn_rom_256x15.vhd
Add LEVEL attribute On

4. Choose Comp (Add menu), type <design name> in the Enter Name box, and choose OK.

To instantiate a RAM or ROM function in VHDL, follow these steps:

1. Repeat step 1 above.

2. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name> function.

PORT (Address : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 MemEnab : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(14 DOWNTO 0)
);
END COMPONENT;

BEGIN

 u1: asyn_rom_256x15
 GENERIC MAP (LPM_FILE => "u1.hex")
 PORT MAP (Address => addr, MemEnab => memenab, Q =>q);
END behavior;

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In the MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor.

ViewDraw Schematics

In ViewDraw schematics, you can assign a limited subset of these resource assignments by assigning properties to
symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II software automatically
converts assignment information from the EDIF Input File (.edf) into the ACF format. For information on making
MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates the
following sample ViewDraw schematic file, which includes resource assignments:

/usr/maxplus2/examples/viewlogic/example4/fadd2mpp

Related Topics:

Go to Viewlogic documentation for information on how to assign properties. Go to "Resource Assignments
in EDIF Input Files" and "Assigning Resources in a Third-Party Design Editor" in MAX+PLUS II Help for
more information on assignments or properties that can be assigned in ViewDraw.

VHDL Design Files

For VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to enter resource
assignments. For information on using the setacf utility, go to Modifying the Assignment & Configuration File
with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in
an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu).

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Analyzing VHDL Files with the SpeedWave VHDL Analyzer Software

You can use the SpeedWave VHDL Analyzer software to analyze VHDL Design Files (.vhd) prior to functional (or
gate-level) simulation with ViewSim software, or to synthesis and optimization with ViewSynthesis software. You
can also use the SpeedWave VHDL Analyzer to analyze a MAX+PLUS® II -generated VHDL Output File (.vho)
prior to post-compilation timing simulation with ViewSim software. The max2_VantgMgr and max2_VantgAnlz
tools are located in the Altera® Toolbox Design Tools Drawer.

To analyze a VHDL file with the SpeedWave VHDL Analyzer, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. If you wish to analyze a VHDL Design File (.vhd), create a VHDL file <design name>.vhd using the
MAX+PLUS II Text Editor or another standard text editor and save it in a working directory. Go to Creating
VHDL Designs for Use with MAX+PLUS II Software for more information.

3. If you wish to analyze a MAX+PLUS II-generated VHDL Output File (.vho), be sure to select VHDL 1987
for the VHDL Version option and VHDL Output File (.vho) for the Write Delay Constructs To option in the
VHDL Netlist Writer Settings dialog box (Interfaces menu) when you set up the MAX+PLUS II Compiler
to generate a VHDL Output File. See Compiling Projects with MAX+PLUS II Software for more
information on generating VHDL Output Files.

4. If your VHDL file contains functions from the alt_mf library, follow these steps:

1. Start the Vantage Manager by double-clicking Button 1 on the max2_VantgMgr icon in the Design
Tools Drawer.

2. Use the Vantage VHDL Library Manager to create an alt_mf.lib library file with the symbolic name
ALT_MF.

3. Make alt_mf the working library with the Set Working command (Edit menu).

4. Start the VHDL Analyzer by double-clicking Button 1 on the max2_VantgAnlz icon in the Design
Tools Drawer.

Action Command
Start VHDL Analyzer software vhdl -v <project name>
Start ViewSynthesis software vhdldes

Load Altera® technology library vhdldes> technology altera

5. Analyze each VHDL file in the alt_mf/src directory into the alt_mf.lib working library. Source files
are located in the /usr/maxplus2/vwlogic/library/alt_mf/src directory that is created by installing the
Altera/Viewlogic interface.

5. If it is not already running, start the Vantage VHDL Library Manager, as described in step 4b, to create a
Vantage library.

6. Choose the List system libs button.

7. Add the ieee.lib and synopsys.lib system libraries to your project:

1. Select the ieee.lib and synopsys.lib libraries from the Available Libraries window and choose Add lib.
Choose the ieee library from the libs_syn directory, which is located at /<Powerview system
directory>/ standard/van_vss/pgm/libs_syn. The ieee library contains Synopsys package files.

2. If your project uses functions from the alt_mf library, also select the alt_mf.lib file from the Available
Libraries window and choose Add lib.

3. Choose Create Library (File menu, type the project directory name in the Symbolic Name field, and
choose OK.

8. Specify the project directory as the working directory by choosing Set Working (Edit menu).

9. Choose Save INI File (File menu).

10. Choose Dismiss Window (Powerview Red-Box menu).

11. Specify the appropriate path and file name in the Analyzer VHDL Source File dialog box and choose OK to
analyze the VHDL file.

12. Once you have analyzed the file, perform one or more of the following tasks, as appropriate:

Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Performing a Timing Simulation with ViewSim Software

Related Topics:

Refer to the following sources for related information:
The Viewlogic ViewSim/VHDL User's Guide and ViewSim/VHDL Tutorial for information on using
the Vantage VHDL Analyzer software or Vantage VHDL Library Manager
Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics

Powerview Command-Line Syntax

Table 1 shows the command-line syntax for using Powerview functions.

Table 1. Powerview Command-Line Syntax

Compile a VHDL design vhdldes> vhdl <project name>
Synthesize a design vhdldes> synthesize

Generate wirelist file vhdldes> wir

Create a schematic representation vhdldes> viewgen

Generate a synthesis report file vhdldes> report

Start the graphical user interface for
ViewSynthesis vhdldes> vdesgui

Start the VHDL-to-symbol utility vhdl2sym <project name>
Start vsm vsm <project name>
Start ViewSim simulator viewsim <project name> -<project name>.cmd

Start edifneto edifneto -f <project name>-l (std or altera) <project
name>.edf

Start Vantage VHDL Analyzer software analyze -src <design file>
Start MOTIVE for Powerview software mfp

Performing a Functional Simulation with ViewSim Software

You can use Viewlogic ViewSim software to perform a functional simulation of a ViewDraw schematic or a
VHDL Design File (.vhd) before compiling your project with the MAX+PLUS II Compiler. Follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic that follows the guidelines in Creating ViewDraw Schematics for Use with
MAX+PLUS II Software. Then go to step 3.

or:

Create a VHDL Design File <design name>.vhd and analyze it, as described in the following MAX+PLUS II
ACCESSSM Key topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Then go to step 7.

3. With the schematic open in the ViewDraw editor, add CLR and PRE inputs to any flipflops in your design, or
tie the CLR and PRE ports of the flipflops to VCC. (Use the PWR primitive from the builtin library.)

4. Choose Write To (File menu) and save the schematic as <design name>_funct.

5. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Altera® Toolbox Design
Tools Drawer.

6. Specify the following options in the vsm dialog box and choose OK to generate the <design
name>_funct.vsm file:

Option: Setting:
Design Name <design name>_funct
Level (blank)

7. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively, you can enter

commands at the prompt in the ViewSim window. Refer to your Viewlogic documentation for more
information on creating ViewSim command files.

8. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the Design Tools
Drawer.

9. If you wish to simulate a ViewDraw schematic, specify the following options in the ViewSim dialog box,
then go to step 11.

Option: Setting:
Design Name <design name>_funct
Command File <design name>_funct.cmd
VHDL Source Window OFF
VHDL Debugging OFF

10. If you wish to simulate a VHDL design, specify the following options in the ViewSim dialog box:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
Graphical Interface ON
VHDL Source Window OFF or ON
VHDL Debugging OFF or ON

11. Choose OK to simulate the design. ViewSim software simulates the design and starts the ViewTrace
waveform editor to allow you to observe the simulation results.

12. Use the edifneto utility to generate an EDIF Netlist File (.edf) that can be imported into the MAX+PLUS II
software, as described in Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-
Compatible EDIF Netlist Files with the edifneto Utility.

Related Topics:

Go to ViewSim documentation for complete details on simulating a project and using ViewTrace to observe
waveform output results.

Performing a Timing Simulation with ViewSim Software

After you have entered a design and compiled it with the MAX+PLUS® II Compiler, you can simulate a
MAX+PLUS II-generated EDIF Output File (.edo) or VHDL Output File (.vho) with ViewSim software.
ViewSim software can simulate both the functionality and the timing of your design. It also checks setup
time, hold time, and Clock duty cycle timing requirements on registers.

To simulate a design with ViewSim software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Compile the design with the MAX+PLUS II software and generate an EDIF Output File (.edo) or
VHDL Output File (.vho), as described in Compiling Projects with MAX+PLUS II Software.

3. In the Viewlogic Cockpit window, choose Create (Project menu) to open the Create Project dialog

box. Type the name of your working directory and choose OK. You must create this new directory to
avoid overwriting your original files when you generate new files for simulation.

4. Choose SearchOrder (Project menu) and add the appropriate directories and aliases to your
viewdraw.ini file if you have not already done so. Go to Viewlogic Powerview viewdraw.ini
Configuration File for more information.

Refer to Viewlogic documentation for information on simulating projects that contain RAM
functions. The procedure for reading an EDIF Output File and preparing it for simulation with
ViewSim requires additional steps when the project contains RAM functions.

5. If you used the SCH <-> max2 or VHDL <-> max2 utility in the Max2 Express drawer to process
your project, skip to step 8.

6. If you wish to simulate a VHDL Output File, follow the steps in Analyzing VHDL Files with the
Vantage VHDL Analyzer then skip to step 7d.

7. If you are using the Altera® Toolbox Design Tools Drawer, follow these steps:

1. To generate a Powerview wirelist from the EDIF Output File, double-click Button 1 on the
max2_edifi icon in the Design Tools Drawer. The Netlist In dialog box is displayed.

2. In the Netlist In dialog box, specify ../<design name> for the EDIF Netlist File option, then
choose OK to process the EDIF netlist file.

3. If your project is implemented in multiple devices, repeat steps a and b for each EDIF Output
File generated by the MAX+PLUS II Compiler, and ensure that the Altera-provided alt_edif.cfg
file is specified for the Attribute Swap Configuration File option. In a multi-device project, the
MAX+PLUS II Compiler generates a separate file for each device, plus a top-level file that is
identified by "_t" appended to the project name. You must also follow the steps in Using
ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation with
ViewSim Software.

4. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Design Tools
Drawer.

5. Specify your design name for the Design Name option in the vsm dialog box and choose OK to
generate the <design name>.vsm file.

8. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively, you
can enter commands at the prompt in the ViewSim window. Refer to your Viewlogic documentation
for more information on creating ViewSim command files.

The Altera simulation model library, max2_sim, allows you to use the alt_grst signal to
asynchronously clear all flipflops (DFFE primitives).

9. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the Design
Tools Drawer or the Max2 Express Drawer.

10. Specify the following options in the ViewSim dialog box and choose OK to simulate the design:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
VHDL Source Window OFF

VHDL Debugging OFF

ViewSim software simulates the design and starts the ViewTrace waveform editor to allow you to
observe the simulation results.

Related Topics:

Refer to the following sources for related information:
ViewSim documentation for complete details on simulating a project and using ViewTrace to
observe waveform output results
Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation
with ViewSim Software

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to
use MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File
(with the extension .edf).

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running
the Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design
from within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF
Input Files with the extension .edf. Specific instructions for some tools are described in these
MAX+PLUS II ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product
documentation for your design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom
symbol to the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-
supported design file. These custom functions are represented in design files as hollow-body symbols
or "black box" HDL descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the
Project Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you
can choose the Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a
project, the settings you need to specify are easier to specify from within the MAX+PLUS II
software. After you have run the graphical user interface for the MAX+PLUS II software at least
once, you can more easily use the command-line setacf utility to modify options in the
Assignment & Configuration File (.acf) for the project. Type setacf -h and maxplus2 -h

for descriptions of setacf and MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-
down list box. If you wish to implement the design logic in a specific device, select it in the Devices
box. Otherwise, select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the
current device family. If your design entry or synthesis and optimization tool required you to specify a
target family and/or device, specify the same information in this dialog box. For information on
partitioning logic among multiple devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through
the following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader
Settings (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor. This name should be the name of the vendor whose tool(s) you used to create the EDIF
netlist files. If your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select
Synopsys, choose the Customize button, enter <project name>.lmf in the LMF #1 box,
choose OK, and skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files
that require custom LMF mappings, choose the Customize button to expand the dialog box to
show all settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the
corresponding text box, or select a name from the Files box. The selection in the Vendor box
will change to Custom and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog
box to show all settings. Any previously defined custom settings will be displayed. Under Signal
Names, type one or more names with up to 20 total name characters in the VCC or GND box if
your EDIF Input File(s) use one or more names other than VCC or GND for the global high or low
signals. Multiple signal names must be separated by either a comma (,) or a space. Under
Library Mapping Files, turn on the LMF #1 checkbox and type a filename in the text box
following it, or select a name from the Files box. If necessary, specify another LMF name in the
LMF #2 box. Go to MAX+PLUS II Help for detailed information on the settings available in the
EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, you may need to ensure that all files are present in your project directory, i.e., the same
directory as the top-level design file. Otherwise, you must specify the directories containing these files
as user libraries with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into
MAX+PLUS II-Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or
timing analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size
of the output file(s). Turning on this command can reduce the size of output netlists by up to
30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a
non-optimized timing SNF provides the same functional and timing information as an
optimized timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF
Netlist Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for
that vendor and choose OK. If your vendor name does not appear, select Custom instead
and specify the settings that are appropriate for your simulation or timing analysis tool. Go
to MAX+PLUS II Help for detailed information on the options available in the EDIF
Netlist Writer Settings dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the
Customize button to expand the dialog box to show all settings. Select one of the SDF
Output File options under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the
user-defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames
that are based on the project name. For a multi-device project, the Compiler also generates a top-
level EDIF Output File that is uniquely identified by "_t" appended to the project name. In
addition, the Compiler automatically generates a VHDL Memory Model Output File, <project
name>.vmo, when it generates an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu).
Select VHDL Output File (.vho) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF ver. 2.1 files contain timing delay information that allows
you to perform back-annotation simulation in VHDL with VITAL-compliant simulation
libraries. The VHDL Output Files generated by the Compiler have the extension .vho, but are
otherwise named in the same way as the EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer
command (Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces
menu). Select Verilog Output File (.vo) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF Output Files contain timing delay information that allows
you to perform back-annotation simulation in Verilog HDL. The Verilog Output Files generated
by the Compiler have the extension .vo, but are otherwise named in the same way as the EDIF
Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or
choose the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL,
Verilog HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing
analysis or timing simulation with another EDA tool. Specific instructions for some tools are described
in these MAX+PLUS II ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the
product documentation for your EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of
the following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types
of programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for
information on back-annotating pin assignments in Mentor Graphics Design Architect
schematics.
Go to Programming Altera Devices for information on the different programming hardware
options for Altera device families.

Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware

Initializing Registers in VHDL & Verilog Output Files for Power-Up before
Simulation

Altera provides the add_dc script, which is availiable in the MAX+PLUS II system directory, to allow you to
process MAX+PLUS II-generated Verilog Output Files (.vo) and VHDL Output Files (.vho) to prepare these
files for simulation with another EDA tool. The add_dc script runs the add_dclr utility, which inserts a
device_clear signal that is used for power-up initialization of all registers or flipflops in the design.

The script adds in a top-level signal named device_clear and connects it to the CLRN pin in all flipflops that
should initialize to 0, and to the PRN pin of all flipflops that should initialize to 1. If the CLRN or PRN pin of a
flipflop is already being used (i.e., is already connected to a signal), the script modifies the Verilog Output
File or VHDL Output File so that the AND of the original signal and the device_clear pin feed the CLRN or
PRN pin.

To use the add_dc script to process Verilog Output Files and VHDL Output Files before simulation with
another EDA tool, follow these steps:

1. Make sure that your design file is located in the current directory, or change to the directory in which
the design file is located.

2. Type the following command at the command prompt:

Â¥<path name of add_dc.bat file>Â¥add_dc <design name> <path name of add_dclr.exe file>

For example, if the both the add_dc.bat and the add_dclr.exe files are located in the d:Â¥maxplus2Â¥exew
directory, and the d:Â¥maxplus2Â¥exew directory is specified in the search path, you can type the
following command at a command prompt to add a device_clear signal to a design named myfifo in the
file myfifo.vo:

add_dc myfifo d:Â¥maxplus2Â¥exew

1. The add_dc script gives a message if the directory contains both a VHDL Output File and a
Verilog Output File with the same name (<design name>.vo and <design>.vho). You should
delete or rename whichever of those files should not have the device_clear signal added. The
add_dc script can modify only one design file at a time.

2. When the add_dc script processes the Verilog Output File or VHDL Output File, it creates a
backup copy of the original file, with the extension .ori.

3. The add_dc script works only for Verilog Output Files and VHDL Output Files that are
generated by MAX+PLUS II.

After you have used the add_dc script and are ready to simulate the resulting Verilog Output File or VHDL
Output File with another EDA tool, you should assert the active low device_clear pin for a period of time
that is long enough for the design to initialize. You can then de-assert the pin, and apply simulation vectors to
the design.

Using Viewlogic SpeedWave VHDL Analyzer & MAX+PLUS
II Software

The following topics describe how to use the Viewlogic SpeedWave VHDL Analyzer software with
MAX+PLUS® II software. Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to
topic.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

VHDL Design Entry

Design Entry Flow
Creating VHDL Designs for Use with MAX+PLUS II Software

Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

VHDL Analysis

Analyzing VHDL Files with the SpeedWave VHDL Analyzer Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Powerview Command-Line Syntax
Performing a Functional Simulation with ViewSim Software
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with ViewSim Software
Compiling Projects with MAX+PLUS II Software
Programming Altera® Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can
program an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for
MAX+PLUS II software.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software
installed on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and
software available from other manufacturers. Table 1 shows the available Altera programming hardware
options on PCs and UNIX workstations.

Table 1. Altera Programming Hardware

Programming
Hardware PCs

UNIX
Work-

MAX®
3000A

Classic®
&

MAX

MAX
7000

&

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX

FLEX®
6000,
FLEX

6000A,
FLEX 8000,
FLEX 10K,

FLEX
In-System

Programming/

Option stations Devices 5000
Devices

MAX
7000E

Devices

7000S
MAX
9000

&
MAX

9000A
Devices

10KA,
FLEX
10KB,

&
FLEX 10KE

Devices

Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster
Download Cable
ByteBlasterMV
Download Cable
MasterBlaster
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File
Transfer Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one
of the serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply
hardware and software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming
files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Viewdraw

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Creating AHDL Designs for
Use with MAX+PLUS II Software

Creating AHDL Designs for Use with MAX+PLUS II
Software

AHDL TDFs must be in ASCII file format. If you enter a file with a word processor, you must save it in text-only
format. For complete information on AHDL, refer to MAX+PLUS II Help.

AHDL templates are available with the MAX+PLUS II Text Editor's AHDL Template command (Templates
menu) or in the ASCII ahdl.tap file, which is located in the /usr/maxplus2 directory. Go to "Inserting an AHDL
Template" in MAX+PLUS II Help for information on using templates in the Text Editor.

The Altera® Hardware Description Language (AHDL) is a high-level language that supports design entry with
Boolean equations, conditional logic, truth tables, arithmetic operators, and parameterized functions, including
Library of Parameterized Modules (LPM) functions. AHDL provides a compact and efficient syntax for state
machines, decoders, and comparators. The MAX+PLUS® II software can read and compile AHDL Text Design
Files (.tdf) directly.

You can also use AHDL TDFs to combine EDIF netlist files generated from ViewDraw schematics with other
design files to create complex, hierarchical circuits.

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates the
following sample AHDL design files:

/usr/maxplus2/examples/viewlogic/example2/decode.tdf
/usr/maxplus2/examples/viewlogic/example3/fadd2

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Creating ViewDraw
Schematics for Use with MAX+PLUS II Software

Creating ViewDraw Schematics for Use with
MAX+PLUS II Software

You can create ViewDraw schematics and convert them into EDIF Input Files (.edf) that can be processed with the
MAX+PLUS® II software.

To create a ViewDraw schematic for use with the MAX+PLUS II software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Start Powerview by typing powerview at a UNIX prompt.

3. In the Cockpit window, select Altera in the Current ToolBox drop-down list box, and select the drawer you
want to use, i.e., Design Tools or Max2 Express, in the Current Drawer drop-down list box.

4. Choose Create (Project menu) from your working directory to create your project directory. Choose OK.

5. Choose SearchOrder (Project menu) to add the appropriate library directories and aliases to your
viewdraw.ini file in the appropriate search order. Refer to Viewlogic Powerview viewdraw.ini
Configuration File for more information on Powerview application libraries.

6. Start ViewDraw by double-clicking Button 1 on the max2_VDraw icon in the drawer that you selected in
step 3, type the name of the schematic, and choose OK. You can also start the ViewDraw software by typing
viewdraw at the UNIX prompt.

7. Choose Comp (Add menu) to add components to the schematic. You can use functions from the alt_max2,
builtin, and 74ls libraries. For information on Altera-provided libraries, go to Altera-Provided Logic &
Symbol Libraries.

Instructions for instantiating specific functions are provided in the following MAX+PLUS II ACCESSSM

Key topics:

Instantiating LPM Functions in ViewDraw Schematics
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPPSM). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

8. If you instantiate a clklock megafunction, choose the Dialog command (Attr menu), then choose the All
command (Dialog menu) to specify the values of the INPUT_FREQUENCY and CLOCKBOOST parameters. For
detailed information on the clklock megafunction, choose Megafunctions/LPM from the MAX+PLUS II
Help menu.

9. If you wish to create a hierarchical design that contains symbols representing other design files, such as
Altera® Hardware Description Language (AHDL) Text Design Files (.tdf), go to Creating Hierarchical
Projects in ViewDraw Schematics.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1#altmax2
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-lpmclk.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-hollow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-hollow.html?csf=1&web=1

10. Choose Net (Add menu) to add nets to the schematic.

11. Choose Bus (Add menu) to add buses to the schematic.

12. Choose Label (Add menu) to attach labels to nets and buses. When you are naming and labeling buses, make
sure you use the format <bus name>[<most significant bit>:<least significant bit>], and that you label both
the net and the pin.

13. (Optional) To enter resource assignments in your schematic, select a symbol or a net that feeds an output and
use the Attr command (Add menu) to add the assignments. For more information, go to Entering Resource
Assignments. You can also enter resource assignments from the MAX+PLUS II software.

14. Choose Write (File menu) to check and save both the schematic with the name .sch/<design name>.1 and
the wirelist with the name ./wir/<design name>.1.

15. (Optional) Perform a functional simulation, as described in Performing a Functional Simulation with
ViewSim Software.

16. Once you have created a schematic, you can generate an EDIF netlist file that can be imported into the
MAX+PLUS II software with either of the following methods:

You can create an EDIF netlist file, as described in Converting ViewDraw Schematics or VHDL
Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the edifneto Utility You must use
this method if your ViewDraw schematic instantiates Library of Parameterized Modules (LPM)
functions.
You can use the SCH <-> max2 utility in the Max2 Express drawer to automatically create an EDIF
netlist file, compile it with the MAX+PLUS II Compiler, generate an EDIF Output File (.edo), and
generate a .vsm file for simulation, as described in Using the Max2 Express Drawer's SCH <-> max2
Utility.

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates the
following sample ViewDraw schematic files:

/usr/maxplus2/examples/viewlogic/example1/fadd
/usr/maxplus2/examples/viewlogic/example3/fadd2
/usr/maxplus2/examples/viewlogic/example4/fadd2mpp
/usr/maxplus2/examples/viewlogic/example7/fifo

Related Links:

Go to Powerview Command-Line Syntax in these MAX+PLUS II ACCESS Key topics for related
information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-schmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-schmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-schmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-cmdsyntx.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic ViewDraw &
MAX+PLUS II Software

Using Viewlogic ViewDraw & MAX+PLUS II Software

The following topics describe how to use the Viewlogic ViewDraw software with MAX+PLUS® II software. Click
on one of the following topics for information:

CLICK HERE to open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

Schematic Design Entry

Design Entry Flow
Creating ViewDraw Schematics for Use with MAX+PLUS II Software

Instantiating LPM Functions in ViewDraw Schematics
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

Creating Hierarchical Projects in ViewDraw Schematics
Entering Resource Assignments

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation with ViewSim Software
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files
with the edifneto Utility

Related Links

Viewlogic Powerview Graphical User Interface & the Altera Toolbox
Programming AlteraÂ® Devices

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-viewdrawall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-projstrc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-fig09.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-lpmclk.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-hollow.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-pin.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clique.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-logicop.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gui.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Converting ViewDraw
Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the edifneto Utility

Converting ViewDraw Schematics or VHDL Designs
into MAX+PLUS II-Compatible EDIF Netlist Files with
the edifneto Utility

You can use the edifneto utility to generate an EDIF netlist file from a ViewDraw schematic or VHDL Design File
(.vhd). This file can be imported into the MAX+PLUS® II software as an EDIF Input File with the extension .edf.
To generate an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic and save it in your working directory, as described in Creating ViewDraw
Schematics for Use with MAX+PLUS II Software.

or:

Create a VHDL Design File, analyze it, and synthesize and optimize it, as described in the following topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software

3. Start the edifneto utility by double-clicking Button 1 on the max2_edifo icon in the Design Tools Drawer or
the Max2 Express Drawer in the Altera Toolbox. You can also start the edifneto utility by typing edifneto

 at the UNIX prompt.

4. If you are converting a ViewDraw schematic, specify the <design name> for the Wire File Name option in
the edifneto dialog box. If you are not using the Altera® toolbox, do not specify Altera for the Level option
in the edifneto dialog box.

5. If you are converting a VHDL Design File, or if your ViewDraw schematic instantiates Library of
Parameterized Modules (LPM) functions, specify Altera and VHDL as the Level in the edifneto dialog box.

6. Choose OK to generate the EDIF netlist file. The edifneto utility creates the max2 subdirectory under your
working directory. The max2 subdirectory contains the EDIF netlist file for your design.

When the edifneto utility generates an EDIF netlist file from a design that instantiates LPM functions,
the EDIF netlist file may contain parameters with incorrect parameter names. To correct this problem,
go to the /usr/maxplus2/viewlogic/bin directory and type chlpmpty <design name>.edf at the
UNIX prompt to run the Altera-provided chlpmpty script, which converts all of the parameters to their
correct names.

7. Process the <design name>.edf with the MAX+PLUS II Compiler, as described in Compiling Projects with
MAX+PLUS II Software.

Related Links:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-vhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-viewsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1

Using the Max2 Express Drawer's SCH <-> max2 Utility
Using the Max2 Express Drawer's VHDL <-> max2 Utility

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-schmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-schmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-schmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-vhdlmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-vhdlmax.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-vhdlmax.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Creating Hierarchical Projects
in ViewDraw Schematics

Creating Hierarchical Projects in ViewDraw Schematics
You can incorporate any MAX+PLUS® II-supported design file, such as an Altera® Hardware Description
Language (AHDL) Text Design File (.tdf), into a project hierarchy that consists of both schematic and text files. To
incorporate a non-ViewDraw design file into a higher-level schematic design, you must create a hollow-body
symbol for it in the ViewDraw software. During compilation, the MAX+PLUS II software recognizes the symbol
as an identifier for the design file, and inserts the correct logic and connections. You can incorporate any number of
design files into a project hierarchy.

To create a hierarchical project in your ViewDraw schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic and save it in your working directory, as described in Creating ViewDraw
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Create a design file that uses all uppercase letters for the function name and all lowercase letters for the file
extension, e.g., DECODE.tdf. This naming convention is required to prevent conflicts when the file is
incorporated into a hierarchical design. When the edifneto utility generates an EDIF netlist file from the
ViewDraw schematic, it copies the name of the hollow-body symbol in uppercase letters, regardless of the
case that appears in the schematic.

4. Double-click Button 1 on the max2_VDraw icon in the Altera Toolbox Design Tools Drawer to start
ViewDraw.

5. In the File Open dialog box, type <design name>, i.e., the name of the hollow-body symbol you want to
create. Turn on the Symbol option and choose OK. The Symbol Editor is displayed.

6. Choose Block Size Z-WxH (Change menu) and select a symbol size.

7. Choose Graphics-Box (Add menu) to draw the symbol body.

8. Choose Pin (Add menu) to enter pinstubs.

9. Select a pin and choose Label (Add menu) to label the pin names.

10. (Optional) Choose Graphics-Text (Add menu) to label the symbol.

11. Choose Block Type Module (Change menu). You must choose Block Type Module to specify that no
Viewlogic schematic is available to represent the functionality of the symbol.

12. Choose Write (File menu) to save the symbol.

13. In the top-level ViewDraw schematic, choose Comp (Add menu), select the name of the symbol, and choose
OK.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1

14. The MAX+PLUS II software uses Library Mapping Files (.lmf) to map standard ViewDraw symbols to
equivalent MAX+PLUS II megafunctions, macrofunctions, or primitives. To use custom symbols, you can
create a custom LMF that maps your custom symbols to the equivalent EDIF Input File, TDF, or other design
file.

You will also need to specify a Library Mapping File (.lmf) in the EDIF Netlist Reader Settings dialog
box before compiling with the MAX+PLUS II Software. Go to Compiling Projects with MAX+PLUS
II Software for more information.

15. Continue with the steps necessary to complete your ViewDraw schematic, as described in Creating
ViewDraw Schematics for Use with MAX+PLUS II Software.

Related Links:

Go to Creating AHDL Designs for Use with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM

Key topics for related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-ahdl.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Instantiating LPM Functions in
ViewDraw Schematics

Instantiating LPM Functions in ViewDraw Schematics

Altera does not directly support the lpm_ram_dq, lpm_ram_io, and lpm_rom functions. Go to Instantiating RAM
& ROM Functions in Viewlogic Powerview Designs for information on instantiating these functions.

You can instantiate library of parameterized modules (LPM) functions from the vdpath library in ViewDraw
schematics.

To instantiate an LPM function, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment. Make sure that you have created a vdraw.vs file, as
described in step 8 of that topic.

2. Choose Cell (Add menu).

3. Choose an <LPM function name> to open the <LPM function name> dialog box. Specify a symbol name for
Symbol Prefix and specify appropriate parameters. Choose OK.

The ViewDraw software generates the specified symbol name symbol according to your specifications. It
also generates a corresponding VHDL simulation model, but it is compiled only after you save the schematic.
If you want to change the settings for the symbol, select the instance and choose Cell (Change menu) to re-
open the appropriate dialog box.

4. Continue with the steps necessary to complete your schematic, as described in Creating ViewDraw
Schematics for Use with MAX+PLUS II Software.

Related Topics:

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for detailed information on LPM
functions.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using the Max2 Express
Drawer's SCH <-> max2 Utility

Using the Max2 Express Drawer's SCH <-> max2 Utility
Once you have created a ViewDraw schematic, you can use the SCH <-> max2 utility in the Max2 Express drawer
to generate an EDIF netlist file from the schematic; process the EDIF Input File (.edf) with the MAX+PLUS ® II
software to generate an EDIF Output File (.edo); and generate a .vsm file for simulation. The SCH <-> max2
utility creates all necessary subdirectories and copies all of the files to the correct locations.

To use the SCH <-> max2 utility, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic that follows the guidelines described in Creating ViewDraw Schematics for
Use with MAX+PLUS II Software.

3. Start the SCH <-> max2 utility by double-clicking Button 1 on the SCH <-> max2 icon in the Max2 Express
Drawer.

4. Specify the Input Schematic, Family, Max2 Synthesis Style, and Choose project direction options in the SCH
<-> max2 dialog box and choose OK to generate the <design name>.vsm file for simulation in ViewSim.
The SCH <-> max2 utility generates the <design name>.vsm file in the sim subdirectory of the max2
directory.

5. If necessary, correct any errors in the ViewDraw schematic and recompile the project.
6. Simulate your project, as described in Performing a Timing Simulation with ViewSim Software.

Related Links:

Go to Performing Timing Verification for EDIF Output Files (.edo) with MOTIVE & MOTIVE for
Powerview Software or Performing Timing Verification of Verilog Output Files (.vo) with MOTIVE
Software in these MAX+PLUS II ACCESS℠ Key topics for related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motive.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motive.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motvlog.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motvlog.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic ViewDraw &
MAX+PLUS II Software

Using Viewlogic ViewDraw & MAX+PLUS II Software

The following topics describe how to use the Viewlogic ViewDraw software with MAX+PLUS® II software. Click
on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

Schematic Design Entry

Design Entry Flow
Creating ViewDraw Schematics for Use with MAX+PLUS II Software

Instantiating LPM Functions in ViewDraw Schematics
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

Creating Hierarchical Projects in ViewDraw Schematics
Entering Resource Assignments

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation with ViewSim Software
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files
with the edifneto Utility

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:

Viewlogic Powerview Graphical User Interface & the Altera Toolbox
Compiling Projects with MAX+PLUS II Software
Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation with
ViewSim Software
Programming Altera® Devices

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

To use the MAX+PLUS® II software with Viewlogic's Powerview software, you must install the MAX+PLUS II
software, familiarize yourself with the Altera® Toolbox in the Powerview Cockpit, and then establish an
environment that facilitates entering and processing designs. The MAX+PLUS II /Viewlogic Powerview interface
is installed automatically when you install the MAX+PLUS II software on your workstation.

To set up your working environment for the MAX+PLUS II/Viewlogic Powerview interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Viewlogic software versions described in
MAX+PLUS II/Viewlogic Powerview Software Requirements.

2. Add the following environment variable to your .cshrc file to specify /usr/maxplus2 as the MAX+PLUS II
system directory:

setenv ALT_HOME /usr/maxplus2

3. Add the $ALT_HOME/viewlogic/standard, $ALT_HOME/bin, and $ALT_HOME/viewlogic/bin
directories to the PATH environment variable in your .cshrc file.

4. Add the $ALT_HOME/viewlogic/standard directory to the WDIR environment variable in your .cshrc file
using the following syntax:

setenv WDIR $ALT_HOME/viewlogic/standard:/<Powerview system directory>/standard

Make sure the $ALT_HOME/viewlogic/standard directory is the first directory in your WDIR path.

5. Source your .cshrc file by typing source .cshrc at the UNIX prompt.

6. Create the Viewlogic Powerview viewdraw.ini configuration file.

7. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

8. If you plan to instantiate Library of Parameterized Modules (LPM) functions in ViewDraw schematics, you
must create a new file with the name vdraw.vs. The vdraw.vs file must include the following line:

load ("vdpath")

You must also make sure that you specify the vdraw.vs file in your WDIR path.

9. Set up a directory structure that facilitates working with the MAX+PLUS II/Viewlogic Powerview interface.
Refer to MAX+PLUS II/Viewlogic Powerview Project File Structure.

Viewlogic Altera

ViewDraw ViewGen MAX+PLUS II
version 9.4

VHDL Analyzer ViewPath (optional)
Vantage VHDL Analyzer ViewTrace
VHDL -> sym ViewData Path
edifneto MOTIVE version 5.1.6 Note (1)

edifneti MOTIVE for Powerview version 3.2.1 (optional) Note
(1)

EEDIF (optional) SDF2MTV (optional)
MMP (optional) Fusion/VCS
vsm
Note:

(1)
MOTIVE for Powerview, a wrapper application for MOTIVE, provides a graphical user interface for the utilities
(i.e., EEDIF, SDF2MTV, and MMP) used during a static timing verification with MOTIVE. MOTIVE alone
does not accept EDIF files through the Setup Advisor.

The MAX+PLUS II read.me file provides up-to-date information on which versions of Viewlogic Powerview
applications the current version of the MAX+PLUS II software supports. It also provides information on
installation and operating requirements. You should read the read.me file on the CD-ROM before installing the
MAX+PLUS II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

For information on the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II
File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Related Topics:

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to
MAX+PLUS II/Viewlogic Powerview Interface File Organization for information about the MAX+PLUS
II/Viewlogic Powerview directories that are created during MAX+PLUS II installation.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Viewlogic Powerview Software Requirements

The following applications and utilities are used to generate, process, synthesize, and verify a project with
MAX+PLUS® II and Viewlogic Powerview software.

MAX+PLUS II/Viewlogic Powerview Interface File Organization

Table 1 shows the MAX+PLUS® II/Viewlogic Powerview interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Table 1. MAX+PLUS II Directory Organization

Directory Description

./lmf Contains the Altera-provided Library Mapping File, vwlogic.lmf, that maps Viewlogic
logic functions to equivalent MAX+PLUS II logic functions.

./viewlogic Contains the alt_edif.cfg EDIF configuration file that is used with the edifneti utility.
Also contains the library and sample subdirectories.

./viewlogic/examples Contains the sample Viewlogic designs.

./viewlogic/library/max2sim Contains the MAX+PLUS II simulation model library (max2_sim) for use in ViewSim
software.

./viewlogic/library/alt_max2

Contains MAX+PLUS II primitives (EXP, GLOBAL, LCELL, SOFT, CARRY, CASCADE, DFFE,
DFFE6K, and OPNDRN), macrofunctions (a_8fadd, a_8mcomp, a_8count, a_81mux), and
megafunctions (clklock) for use in ViewDraw schematics. These logic functions
support specific architectural features of Altera® devices. The alt_max2 library also
contains modified versions of the ViewDraw primitives that use tri-state buffers, because
these primitives require special handling in the MAX+PLUS II /Viewlogic Powerview
interface.

./viewlogic/library/synlib
Contains the Altera-provided synthesis library altera, which includes MAX+PLUS II
primitives, the altera.sml file, a sym directory, and a wir directory for use with
ViewSynthesis software.

./viewlogic/library/alt_mf
Contains the VHDL models for the MAX+PLUS II primitives (EXP, GLOBAL, LCELL,
SOFT, CARRY, CASCADE, DFFE, and OPNDRN), macrofunctions (clklock) for use with
ViewSynthesis software, the Vantage VHDL Analyzer software, and the VHDL source
files. These logic functions are used to maintain portability to other architectures.

./viewlogic/library/alt_time Contains MOTIVE timing models for MAX+PLUS II logic functions (motive.lib),
including the clklock megafunction, and MAX+PLUS II driver models (motive.drv).

./viewlogic/library/alt_vtl Contains the VHDL source files for the VITAL 3.0-compliant library. This library is
available for ViewSim software.

./viewlogic/bin Contains all MAX+PLUS II, Viewlogic, and interface-related scripts.

./viewlogic/standard Contains all standard .ini files and standard tools.

DIR [pw] .

DIR [r] /usr/maxplus2/vwlogic/library/alt_max2 (alt_max2)

DIR [r] /usr/maxplus2/vwlogic/library/max2sim (max2 sim)

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Viewlogic Powerview viewdraw.ini Configuration File

Each Powerview project is configured with the viewdraw.ini file that resides in the project directory. The DIR
statements at the end of viewdraw.ini are paths to library directories that are used by the various Powerview
applications. Figure 1 shows a sample of the DIR statements that are required to use the libraries.

Figure 1. Excerpt from viewdraw.ini

DIR [r] /usr/maxplus2/vwlogic/library/synlib (altera)

DIR [r] /usr/maxplus2/vwlogic/library/alt_mf (alt_mf)

DIR [r] /usr/maxplus2/vwlogic/library/alt_vtl (alt_vtl)

DIR [rm] /<Powerview system directory>/lib/builtin (builtin)
DIR [rm] /<Powerview system directory>/simmods/vl/dip/74ls (vl74ls)
DIR [rm] /<Powerview system directory>/symsets/vl/dip/74ls (vl74ls)
DIR [r] /<Powerview system directory>/lib/vdpath (vdpath)

When you add the libraries to the /usr/maxplus2/vwlogic/standard/viewdraw.ini file, they are automatically set
when you create a new project. Powerview tools search these libraries sequentially, so it is important to add them
in the order in which they are listed in Figure 1.

Library Library Alias Source Topics
alt_max2 alt_max2 Altera Graphical elements for ViewDraw
max2sim max2_sim Altera Models for project simulation
synlib altera Altera VHDL synthesis library for the MAX+PLUS ® II software
alt_mf alt_mf Altera VHDL models of MAX+PLUS II logic functions
alt_vtl alt_vtl Altera VITAL-compliant primitives
builtin builtin Altera Basic primitives such as INPUT pins, OUTPUT pins, AND gates, OR gates, etc.
74ls vl74ls Viewlogic 74-series macrofunctions
vdpath vdpath Viewlogic Standard library of parameterized modules (LPM) functions

The Altera-provided libraries must be listed before the Viewlogic-provided libraries in the viewdraw.ini file to
ensure that the correct versions of the megafunctions, macrofunctions, and primitives are used.

Table 1 shows the libraries that must be specified in the DIR statements in the viewdraw.ini file.

Table 1. Powerview Application Libraries

Related Topics:

Go to Altera-Provided Logic & Symbol Libraries for more information on Altera-supplied libraries. Refer to
the Powerview documentation for more information on setting up the viewdraw.ini file.

MAX+PLUS II/Viewlogic Powerview Project File Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an Altera® Hardware Description
Language (AHDL) TDF; or any other MAX+PLUS II- supported design file. The EDIF netlist file must be created
by Powerview and imported into the MAX+PLUS II software as an EDIF Input File (.edf). Figure 1 shows an
example of MAX+PLUS II project directory structure that includes Powerview-generated files.

Figure 1. Sample MAX+PLUS II Project Organization

ViewDraw files are identified by their directories and not by their extensions, so it is easy to overwrite files
unintentionally. To avoid overwriting files, Altera recommends that you create a new project directory, <project
name>/max2/sim, where you can generate all the files needed for simulation.

Directory Topics

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Unlike Powerview, the MAX+PLUS II software does not automatically create a project directory when you create a
project. A single directory can contain several MAX+PLUS II design files, and you can specify any one of the
designs in the directory as a project in the MAX+PLUS II software.

Viewlogic Powerview Local Work Area Structure

When you create a project with the Powerview Cockpit's Create command (Project menu), the project directory is
created. You should generate design files and functional simulation files under this directory. A max2 subdirectory
is automatically created under your current project directory when you generate an EDIF file from your schematic
or VHDL file. The <project name>.edf file is stored in the max2 subdirectory. All MAX+PLUS® II Compiler
output files are created in the /<project name>/max2 subdirectory.

ViewDraw Project File Structure

Each ViewDraw project directory contains three subdirectories: wir, sch, and sym. See Table 1.

Table 1. ViewDraw Subdirectories

./wir Wirelist files that contain connectivity information for a particular logic block

./sch Schematics that contain logic

./sym Symbol files that are the ViewDraw graphical representation of the logic blocks

Directory Topics
./synth All synthesis-related files and directories
./synth/<entity> Four types of files: <entity>.pdf, <entity>.opt, <entity>.sta, and <entity>.gnl
./wir Wirelist for synthesized VHDL modules

For each VHDL entity in the design, there is a corresponding ./synth/<entity> directory.

You can create your own libraries of custom symbols and logic functions for use in ViewDraw schematics and
VHDL design files. You can use custom symbols (and functions) to incorporate an EDIF Input File, TDF, or any
other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses the vwlogic.lmf
Library Mapping File to map ViewDraw symbols to equivalent MAX+PLUS II megafunctions, macrofunctions,
or primitives. To use custom symbols and functions, you can create a custom LMF that maps your custom
functions to equivalent EDIF Input Files, TDFs, or other MAX+PLUS II-supported design files. Go to "Library
Mapping File" and "Viewlogic Library Mapping File" in MAX+PLUS II Help for more information.

Each file type uses the filename extension .1. Different file types are distinguished only by their directory:
/lib/wir/<project name>.1 is a wirelist file; /lib/sch/<project name>.1 is the corresponding schematic file; and
/lib/sym/<project name>.1 is the corresponding symbol.

VHDL Project File Structure

Each VHDL project directory contains three subdirectories. See Table 2.

Table 2. VHDL Subdirectories

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS® II/Viewlogic Powerview environment provides libraries for compiling, synthesizing, and
simulating designs.

Logic symbols used in ViewDraw software are available from the MAX+PLUS II alt_max2 library, the ViewDraw
builtin and 74ls libraries, and the ViewDatapath vdpath library. VHDL models of MAX+PLUS II logic functions
are available from the Altera-provided alt_mf library.

The alt_max2 Library

The alt_max2 library provides MAX+PLUS II-specific logic functions that can be used to take advantage of
special architectural features in each Altera® device family. See Table 1. Symbols and functional simulation
models are available for all of these elements.

The alt_mf Library

The Altera-provided alt_mf library, which supports the Viewlogic Vantage VHDL Analyzer software, contains
VHDL simulation models for all logic functions listed in the following table. The library is configured so that these
functions pass untouched through the EDIF netlist file to the MAX+PLUS II Compiler, providing you with optimal
control over design processing. Altera also provides models for all of the logic functions that you can synthesize
and simulate. These models allow you to perform functional VHDL simulation while maintaining an architecture-
independent VHDL description.

Table 1. Architecture Control Logic Functions

Name Note
(1), Note (2) Description Name Description Name Description

8fadd
8-bit full adder
macrofunction LCELL Logic cell buffer primitive EXP

MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer
primitive

8mcomp
8-bit magnitude
comparator
macrofunction

GLOBAL Global input buffer primitive SOFT Soft buffer primitive

8count
8-bit up/down
counter
macrofunction

CASCADE
FLEX® 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

OPNDRN Open-drain buffer primitive

81mux
8-to-1 multiplexer
macrofunction CARRY

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

DFFE
Note
(2)

D-type flipflop with Clock
Enable primitive

clklock
Phase-locked loop
megafunction

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

Notes:

1. Logic function names that begin with a number must be prefixed with "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Topics:

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help
menu for detailed information on these functions.
Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

The vdpath & mega_lpm Libraries

The library of parameterized modules (LPM) 2.1.0 standard defines a set of parameterized functions and their
corresponding representations in an EDIF netlist file. These logic functions allow you to create and functionally
simulate an LPM-based design without targeting a specific device family. After the design is completed, you can
target the design to any device family.

When the MAX+PLUS® II software processes projects that include Viewlogic-provided vdpath LPM functions, it
uses functions from the Altera-provided mega_lpm library. This library includes all standard LPM functions except
the truth table, finite state machine, and pad functions. Altera does not directly support the lpm_ram_dq,
lpm_ram_io, and lpm_rom functions. Refer to Instantiating RAM & ROM Functions in Viewlogic Powerview
Designs for instructions on instantiating RAM and ROM functions.

Altera-provided items are shown in blue.

MAX+PLUS II/Viewlogic Powerview Design Entry Flow

Figure 1 shows the design entry flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Design Entry Flow

Creating ViewDraw Schematics for Use with MAX+PLUS II Software

You can create ViewDraw schematics and convert them into EDIF Input Files (.edf) that can be processed with the
MAX+PLUS® II software.

To create a ViewDraw schematic for use with the MAX+PLUS II software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Start Powerview by typing powerview at a UNIX prompt.

3. In the Cockpit window, select Altera in the Current ToolBox drop-down list box, and select the drawer you
want to use, i.e., Design Tools or Max2 Express, in the Current Drawer drop-down list box.

4. Choose Create (Project menu) from your working directory to create your project directory. Choose OK.

5. Choose SearchOrder (Project menu) to add the appropriate library directories and aliases to your
viewdraw.ini file in the appropriate search order. Refer to Viewlogic Powerview viewdraw.ini
Configuration File for more information on Powerview application libraries.

6. Start ViewDraw by double-clicking Button 1 on the max2_VDraw icon in the drawer that you selected in
step 3, type the name of the schematic, and choose OK. You can also start the ViewDraw software by typing
viewdraw at the UNIX prompt.

7. Choose Comp (Add menu) to add components to the schematic. You can use functions from the alt_max2,
builtin, and 74ls libraries. For information on Altera-provided libraries, go to Altera-Provided Logic &
Symbol Libraries.

Instructions for instantiating specific functions are provided in the following MAX+PLUS II ACCESSSM

Key topics:

Instantiating LPM Functions in ViewDraw Schematics
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPPSM). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

8. If you instantiate a clklock megafunction, choose the Dialog command (Attr menu), then choose the All
command (Dialog menu) to specify the values of the INPUT_FREQUENCY and CLOCKBOOST parameters. For
detailed information on the clklock megafunction, choose Megafunctions/LPM from the MAX+PLUS II
Help menu.

9. If you wish to create a hierarchical design that contains symbols representing other design files, such as
Altera® Hardware Description Language (AHDL) Text Design Files (.tdf), go to Creating Hierarchical
Projects in ViewDraw Schematics.

10. Choose Net (Add menu) to add nets to the schematic.

11. Choose Bus (Add menu) to add buses to the schematic.

12. Choose Label (Add menu) to attach labels to nets and buses. When you are naming and labeling buses, make
sure you use the format <bus name>[<most significant bit>:<least significant bit>], and that you label both
the net and the pin.

13. (Optional) To enter resource assignments in your schematic, select a symbol or a net that feeds an output and
use the Attr command (Add menu) to add the assignments. For more information, go to Entering Resource
Assignments. You can also enter resource assignments from the MAX+PLUS II software.

14. Choose Write (File menu) to check and save both the schematic with the name .sch/<design name>.1 and
the wirelist with the name ./wir/<design name>.1.

15. (Optional) Perform a functional simulation, as described in Performing a Functional Simulation with
ViewSim Software.

16. Once you have created a schematic, you can generate an EDIF netlist file that can be imported into the
MAX+PLUS II software with either of the following methods:

You can create an EDIF netlist file, as described in Converting ViewDraw Schematics or VHDL
Designs into MAX+PLUS II-Compatible EDIF Netlist Files with the edifneto Utility You must use
this method if your ViewDraw schematic instantiates Library of Parameterized Modules (LPM)
functions.
You can use the SCH <-> max2 utility in the Max2 Express drawer to automatically create an EDIF
netlist file, compile it with the MAX+PLUS II Compiler, generate an EDIF Output File (.edo), and
generate a .vsm file for simulation, as described in Using the Max2 Express Drawer's SCH <-> max2
Utility.

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates the
following sample ViewDraw schematic files:

/usr/maxplus2/examples/viewlogic/example1/fadd
/usr/maxplus2/examples/viewlogic/example3/fadd2
/usr/maxplus2/examples/viewlogic/example4/fadd2mpp
/usr/maxplus2/examples/viewlogic/example7/fifo

Related Topics:

Go to Powerview Command-Line Syntax in these MAX+PLUS II ACCESS Key topics for related
information.

Instantiating LPM Functions in ViewDraw Schematics

You can instantiate library of parameterized modules (LPM) functions from the vdpath library in ViewDraw

Altera does not directly support the lpm_ram_dq, lpm_ram_io, and lpm_rom functions. Go to Instantiating RAM
& ROM Functions in Viewlogic Powerview Designs for information on instantiating these functions.

Refer to Viewlogic documentation for information on simulating projects that contain RAM functions. The
procedure for reading an EDIF Output File and preparing it for simulation with ViewSim requires additional
steps when the project contains RAM functions.

schematics.

To instantiate an LPM function, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment. Make sure that you have created a vdraw.vs file, as
described in step 8 of that topic.

2. Choose Cell (Add menu).

3. Choose an <LPM function name> to open the <LPM function name> dialog box. Specify a symbol name for
Symbol Prefix and specify appropriate parameters. Choose OK.

The ViewDraw software generates the specified symbol name symbol according to your specifications. It
also generates a corresponding VHDL simulation model, but it is compiled only after you save the schematic.
If you want to change the settings for the symbol, select the instance and choose Cell (Change menu) to re-
open the appropriate dialog box.

4. Continue with the steps necessary to complete your schematic, as described in Creating ViewDraw
Schematics for Use with MAX+PLUS II Software.

Related Topics:

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for detailed information on LPM
functions.

Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

The MAX+PLUS®II /Viewlogic Powerview interface offers full support for the memory capabilities of the FLEX®

10K device family, including synchronous and asynchronous RAM and ROM, cycle-shared dual-port RAM, dual-
port RAM, single-Clock FIFO, and dual-Clock FIFO functions. You can use the Altera-provided genmem utility to
generate functional simulation models and timing models for these functions. Type genmem at the UNIX prompt
to display information on how to use this utility, as well as a list of the functions you can generate. RAM and ROM
can be instantiated in both ViewDraw schematics and VHDL designs.

When you instantiate a RAM or ROM function, follow these general guidelines:

For ROM functions, you must specify an initial memory content file in the Intel hexadecimal format (.hex) or
the Altera® Memory Initialization File (.mif) format. The filename must be the same as the instance name;
e.g., the instance name must be unique throughout the whole project, and must contain only valid name
characters. The initialization file must reside in the directory containing the project's design files.

For RAM functions, specifying a memory initialization file is optional.

For VHDL designs, specify the name of the initial memory content file in the Generic Map Clause of the
instance, with the specified type LPM_FILE. If you do not use an initial memory content file (e.g., for a RAM

The MIF format is supported only for specifying initial memory content when compiling designs within the
MAX+PLUS II software. You cannot use a MIF to perform simulation with Viewlogic tools prior to
MAX+PLUS II compilation.

Figure 1 shows a VHDL design that instantiates asyn_rom_256x15.vhd, a
256 x 15 ROM function.

Figure 1. VHDL Design File with ROM Instantiation (tstrom.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tstrom IS
 PORT (
 addr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 memenab : IN STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR (14 DOWNTO 0));
END tstrom;

ARCHITECTURE behavior OF tstrom IS

COMPONENT asyn_rom_256x15
 GENERIC (LPM_FILE : string);

function), you should not declare or use the Generic Clause.

Do not synthesize the genmem-generated VHDL file: it is intended for simulation only.

To instantiate RAM or ROM in a ViewDraw schematic, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX prompt:

genmem <memory type> <memory size> -vwlogic

For example: genmem asynrom 256x15 -vwlogic

2. Start the VHDL-to-symbol utility, vhdl2sym, by double-clicking Button 1 on the max2_vhdl2sym icon in
the Altera® Toolbox Design Tools Drawer.

3. Specify the following options in the vhdl2sym dialog box and choose OK to create a symbol. For example,
to create the symbol for a 256x15 asynchronous ROM, enter the following settings:

Option: Setting:
VHDL Source Filename asyn_rom_256x15.vhd
Add LEVEL attribute On

4. Choose Comp (Add menu), type <design name> in the Enter Name box, and choose OK.

To instantiate a RAM or ROM function in VHDL, follow these steps:

1. Repeat step 1 above.

2. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name> function.

PORT (Address : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 MemEnab : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(14 DOWNTO 0)
);
END COMPONENT;

BEGIN

 u1: asyn_rom_256x15
 GENERIC MAP (LPM_FILE => "u1.hex")
 PORT MAP (Address => addr, MemEnab => memenab, Q =>q);
END behavior;

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Creating Hierarchical Projects in ViewDraw Schematics

You can incorporate any MAX+PLUS® II-supported design file, such as an Altera® Hardware Description
Language (AHDL) Text Design File (.tdf), into a project hierarchy that consists of both schematic and text files. To
incorporate a non-ViewDraw design file into a higher-level schematic design, you must create a hollow-body
symbol for it in the ViewDraw software. During compilation, the MAX+PLUS II software recognizes the symbol
as an identifier for the design file, and inserts the correct logic and connections. You can incorporate any number of
design files into a project hierarchy.

To create a hierarchical project in your ViewDraw schematic, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic and save it in your working directory, as described in Creating ViewDraw
Schematics for Use with MAX+PLUS II Software.

You can instantiate MegaCore functions offered by Altera or by members of the Altera
Megafunction Partners Program (AMPP). The OpenCore feature in the MAX+PLUS II software
allows you to instantiate, compile, and simulate MegaCore functions before deciding whether to
purchase a license for full device programming and post-compilation simulation support.

3. Create a design file that uses all uppercase letters for the function name and all lowercase letters for the file
extension, e.g., DECODE.tdf. This naming convention is required to prevent conflicts when the file is
incorporated into a hierarchical design. When the edifneto utility generates an EDIF netlist file from the
ViewDraw schematic, it copies the name of the hollow-body symbol in uppercase letters, regardless of the
case that appears in the schematic.

4. Double-click Button 1 on the max2_VDraw icon in the Altera Toolbox Design Tools Drawer to start
ViewDraw.

5. In the File Open dialog box, type <design name>, i.e., the name of the hollow-body symbol you want to
create. Turn on the Symbol option and choose OK. The Symbol Editor is displayed.

6. Choose Block Size Z-WxH (Change menu) and select a symbol size.

7. Choose Graphics-Box (Add menu) to draw the symbol body.

8. Choose Pin (Add menu) to enter pinstubs.

9. Select a pin and choose Label (Add menu) to label the pin names.

10. (Optional) Choose Graphics-Text (Add menu) to label the symbol.

11. Choose Block Type Module (Change menu). You must choose Block Type Module to specify that no
Viewlogic schematic is available to represent the functionality of the symbol.

12. Choose Write (File menu) to save the symbol.

13. In the top-level ViewDraw schematic, choose Comp (Add menu), select the name of the symbol, and choose
OK.

14. The MAX+PLUS II software uses Library Mapping Files (.lmf) to map standard ViewDraw symbols to
equivalent MAX+PLUS II megafunctions, macrofunctions, or primitives. To use custom symbols, you can
create a custom LMF that maps your custom symbols to the equivalent EDIF Input File, TDF, or other design
file.

You will also need to specify a Library Mapping File (.lmf) in the EDIF Netlist Reader Settings dialog
box before compiling with the MAX+PLUS II Software. Go to Compiling Projects with MAX+PLUS
II Software for more information.

15. Continue with the steps necessary to complete your ViewDraw schematic, as described in Creating
ViewDraw Schematics for Use with MAX+PLUS II Software.

Related Topics:

Go to Creating AHDL Designs for Use with MAX+PLUS II Software in these MAX+PLUS II ACCESSSM

Key topics for related information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In the MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor.

ViewDraw Schematics

In ViewDraw schematics, you can assign a limited subset of these resource assignments by assigning properties to
symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II software automatically
converts assignment information from the EDIF Input File (.edf) into the ACF format. For information on making
MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options

Modifying the Assignment & Configuration File with the setacf Utility

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates the
following sample ViewDraw schematic file, which includes resource assignments:

/usr/maxplus2/examples/viewlogic/example4/fadd2mpp

Related Topics:

Go to Viewlogic documentation for information on how to assign properties. Go to "Resource Assignments
in EDIF Input Files" and "Assigning Resources in a Third-Party Design Editor" in MAX+PLUS II Help for
more information on assignments or properties that can be assigned in ViewDraw.

VHDL Design Files

For VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to enter resource
assignments. For information on using the setacf utility, go to Modifying the Assignment & Configuration File
with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in
an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu).

Assigning Pins, Logic Cells & Chips

You can assign a single logic function to a specific pin or logic cell (including I/O cells and embedded cells) within
a chip, and assign one or more functions to a specific chip. A chip is a group of logic functions defined as a single,
named unit, which can be assigned to a specific device.

You can assign a signal to a particular pin to ensure that the signal is always associated with that pin, regardless of
future changes to the project. If you wish to set and maintain the performance of your project, assigning logic to a
specific logic cell within a chip can minimize timing delays. In a project that is partitioned among multiple devices,
you can assign logic functions that must be kept together in the same device to a chip. Chip assignments allow you
to split a project so that only a minimum number of signals travel between devices, and to ensure that no
unnecessary device-to-device delays exist on critical timing paths. You can assign a chip to a device in some EDA
tools or in the MAX+PLUS® II software.

Use the following syntax for chip, pin, and logic cell assignments:

To assign a logic function to a chip:

CHIP_PIN_LC=<chip name>

For example: CHIP_PIN_LC=chip1

To assign a pin number within a chip:

CHIP_PIN_LC=<chip name>@<pin number>

For example: CHIP_PIN_LC=chip1@K2

To assign a logic cell, I/O cell, or embedded cell number:

To assign a clique, use the following syntax:

CLIQUE=<clique name>

For example: CLIQUE=fast1

CHIP_PIN_LC=<chip name>@LC<logic cell number>

CHIP_PIN_LC=<chip name>@IOC<I/O cell number>

CHIP_PIN_LC=<chip name>@EC<embedded cell number>

For example: CHIP_PIN_LC=chip1@LC44

Related Topics:

Refer to the following sources for additional information:
Go to "Devices & Adapters" and "Assigning a Device" in MAX+PLUS II Help for information on
device pin-outs and assigning devices, respectively, in the MAX+PLUS II software.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for information
on back-annotating pin assignments in Mentor Graphics Design Architect schematics.

Assigning Cliques

You can define a group of logic functions as a single, named unit, called a clique. The MAX+PLUS® II Compiler
attempts to place all logic in the clique in the same logic array block (LAB) to ensure optimum speed. If the project
does not use multi-LAB devices, or if it is not possible to fit all clique members into a single LAB, the clique
assignment ensures that all members of a clique are placed in the same device. In FLEX® 6000, FLEX 8000, FLEX
10K, and MAX® 9000 devices the Compiler also attempts to place the logic in LABs in the same row. Cliques
therefore allow you to partition a project so that only a minimum number of signals travel between LABs, and to
ensure that no unnecessary LAB-to-LAB or device-to-device delays exist on critical timing paths.

Related Topics:

Go to the following topics in MAX+PLUS II Help for related information:
Assigning a Clique
Guidelines for Achieving Maximum Speed Performance

Assigning Logic Options

Logic option and logic synthesis style assignments allow you to guide logic synthesis with logic optimization
features that are specific to Altera® devices. You can assign logic options and styles to individual logic functions in
your design. The MAX+PLUS® II Compiler also uses a device-family-specific default logic synthesis style for
each project.

Related Topics:

Go to "Resource Assignments in EDIF Input Files" and "Assigning Resources in a Third-Party Design
Editor" in MAX+PLUS II Help for complete and up-to-date information on logic option and logic synthesis

style assignments, including definitions and syntax of these assignments.

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Performing a Functional Simulation with ViewSim Software

You can use Viewlogic ViewSim software to perform a functional simulation of a ViewDraw schematic or a
VHDL Design File (.vhd) before compiling your project with the MAX+PLUS II Compiler. Follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic that follows the guidelines in Creating ViewDraw Schematics for Use with
MAX+PLUS II Software. Then go to step 3.

or:

Create a VHDL Design File <design name>.vhd and analyze it, as described in the following MAX+PLUS II
ACCESSSM Key topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Then go to step 7.

3. With the schematic open in the ViewDraw editor, add CLR and PRE inputs to any flipflops in your design, or
tie the CLR and PRE ports of the flipflops to VCC. (Use the PWR primitive from the builtin library.)

4. Choose Write To (File menu) and save the schematic as <design name>_funct.

5. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Altera® Toolbox Design
Tools Drawer.

6. Specify the following options in the vsm dialog box and choose OK to generate the <design
name>_funct.vsm file:

Option: Setting:
Design Name <design name>_funct
Level (blank)

7. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively, you can enter
commands at the prompt in the ViewSim window. Refer to your Viewlogic documentation for more
information on creating ViewSim command files.

8. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the Design Tools
Drawer.

9. If you wish to simulate a ViewDraw schematic, specify the following options in the ViewSim dialog box,
then go to step 11.

Option: Setting:
Design Name <design name>_funct
Command File <design name>_funct.cmd
VHDL Source Window OFF
VHDL Debugging OFF

10. If you wish to simulate a VHDL design, specify the following options in the ViewSim dialog box:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
Graphical Interface ON
VHDL Source Window OFF or ON
VHDL Debugging OFF or ON

11. Choose OK to simulate the design. ViewSim software simulates the design and starts the ViewTrace
waveform editor to allow you to observe the simulation results.

12. Use the edifneto utility to generate an EDIF Netlist File (.edf) that can be imported into the MAX+PLUS II
software, as described in Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-
Compatible EDIF Netlist Files with the edifneto Utility.

Related Topics:

Go to ViewSim documentation for complete details on simulating a project and using ViewTrace to observe
waveform output results.

Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible
EDIF Netlist Files with the edifneto Utility

You can use the edifneto utility to generate an EDIF netlist file from a ViewDraw schematic or VHDL
Design File (.vhd). This file can be imported into the MAX+PLUS® II software as an EDIF Input File with
the extension .edf. To generate an EDIF netlist file, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic and save it in your working directory, as described in Creating
ViewDraw Schematics for Use with MAX+PLUS II Software.

or:

Create a VHDL Design File, analyze it, and synthesize and optimize it, as described in the following
topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software

3. Start the edifneto utility by double-clicking Button 1 on the max2_edifo icon in the Design Tools
Drawer or the Max2 Express Drawer in the Altera Toolbox. You can also start the edifneto utility by

typing edifneto at the UNIX prompt.

4. If you are converting a ViewDraw schematic, specify the <design name> for the Wire File Name
option in the edifneto dialog box. If you are not using the Altera® toolbox, do not specify Altera for
the Level option in the edifneto dialog box.

5. If you are converting a VHDL Design File, or if your ViewDraw schematic instantiates Library of
Parameterized Modules (LPM) functions, specify Altera and VHDL as the Level in the edifneto dialog
box.

6. Choose OK to generate the EDIF netlist file. The edifneto utility creates the max2 subdirectory under
your working directory. The max2 subdirectory contains the EDIF netlist file for your design.

When the edifneto utility generates an EDIF netlist file from a design that instantiates LPM
functions, the EDIF netlist file may contain parameters with incorrect parameter names. To
correct this problem, go to the /usr/maxplus2/viewlogic/bin directory and type chlpmpty
<design name>.edf at the UNIX prompt to run the Altera-provided chlpmpty script, which
converts all of the parameters to their correct names.

7. Process the <design name>.edf with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Using the Max2 Express Drawer's SCH <-> max2 Utility
Using the Max2 Express Drawer's VHDL <-> max2 Utility

Viewlogic Powerview Graphical User Interface & the Altera Toolbox

You use the Powerview graphical interface manager, the Cockpit, and the Altera® Toolbox to start all
Powerview and Altera tools. Within the Altera Toolbox, you can specify the Max2 Express Drawer or the
Design Tools Drawer to work with the Altera/Viewlogic Powerview interface.

The Max2 Express Drawer provides a quick and seamless way to transfer designs created in Powerview to
the MAX+PLUS® II software for compilation, then return the compiled designs to Powerview for simulation
and timing verification. Table 1 describes the Max2 Express Drawer tools.

Table 1. Max2 Express Drawer Tools

Tool Description
max2_VDraw Launches the Powerview ViewDraw schematic entry tool.

VHDL<->max2 Launches all tools necessary to synthesize a VHDL design, compile for an Altera device,
and generate a .vsm file for simulation with the Powerview ViewSim simulator.

SCH<->max2
Launches all tools necessary to compile a schematic design entered with Powerview
ViewDraw software for an Altera device and to generate a .vsm file for simulation with
Powerview ViewSim and .edo, .sdo, and .vmo files for timing analysis with MOTIVE for
Powerview.

max2_VSim Launches the Powerview ViewSim simulator.
max2_VTrace Launches the Powerview ViewTrace simulation waveform editor.
max2_MOTIVE Launches the MOTIVE for Powerview ViewDraw static timing verification tool.

The Design Tools Drawer provides tools that enable you to create a design with the Powerview tools,
compile the design in the MAX+PLUS II software, and simulate and verify the design with Powerview
software. Table 2 describes the Design Tools Drawer tools.

Table 2. Design Tools Drawer Tools

Tool Description
max2_VDraw Launches the Powerview ViewDraw schematic entry tool.
max2_analyzer Launches the Powerview VHDL Analyzer software.
max2_syn Launches the Powerview VHDL synthesis tool.
max2_chk Launches the Powerview schematic verification tool.
max2_vsmnet Launches the Powerview vsm utility that converts a wirelist file into a .vsm file.
max2_VSim Launches the Powerview ViewSim simulator.
max2_VTrace Launches the Powerview ViewTrace simulator.
max2_edifo Launches the Powerview EDIF netlist writer, edifneto.
max2_VGen Launches the Powerview ViewGen utility that generates a schematic from a wirelist file.
max2 Launches the MAX+PLUS II Compiler.
max2_edifi Launches the Powerview EDIF Netlist Reader, edifneti.
max2_vhdl2sym Launches the Powerview vhdl2sym utility that generates a symbol from a VHDL file.
max2_VantgMgr Launches the Powerview Vantage VHDL Library Manager tool.
max2_VantgAnlz Launches the Vantage VHDL Analyzer software.
max2_VCS Launches the Fusion/VCS Simulator.
max2_MOTIVE Launches the MOTIVE for Powerview static timing verification tool.

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to
use MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File
(with the extension .edf).

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running
the Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design
from within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF
Input Files with the extension .edf. Specific instructions for some tools are described in these
MAX+PLUS II ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product
documentation for your design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom
symbol to the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-

supported design file. These custom functions are represented in design files as hollow-body symbols
or "black box" HDL descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the
Project Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you
can choose the Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a
project, the settings you need to specify are easier to specify from within the MAX+PLUS II
software. After you have run the graphical user interface for the MAX+PLUS II software at least
once, you can more easily use the command-line setacf utility to modify options in the
Assignment & Configuration File (.acf) for the project. Type setacf -h and maxplus2 -h
for descriptions of setacf and MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-
down list box. If you wish to implement the design logic in a specific device, select it in the Devices
box. Otherwise, select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the
current device family. If your design entry or synthesis and optimization tool required you to specify a
target family and/or device, specify the same information in this dialog box. For information on
partitioning logic among multiple devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through
the following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader
Settings (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor. This name should be the name of the vendor whose tool(s) you used to create the EDIF
netlist files. If your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select
Synopsys, choose the Customize button, enter <project name>.lmf in the LMF #1 box,
choose OK, and skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files
that require custom LMF mappings, choose the Customize button to expand the dialog box to
show all settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the
corresponding text box, or select a name from the Files box. The selection in the Vendor box
will change to Custom and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog
box to show all settings. Any previously defined custom settings will be displayed. Under Signal
Names, type one or more names with up to 20 total name characters in the VCC or GND box if
your EDIF Input File(s) use one or more names other than VCC or GND for the global high or low
signals. Multiple signal names must be separated by either a comma (,) or a space. Under
Library Mapping Files, turn on the LMF #1 checkbox and type a filename in the text box
following it, or select a name from the Files box. If necessary, specify another LMF name in the
LMF #2 box. Go to MAX+PLUS II Help for detailed information on the settings available in the
EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level

logic functions, you may need to ensure that all files are present in your project directory, i.e., the same
directory as the top-level design file. Otherwise, you must specify the directories containing these files
as user libraries with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into
MAX+PLUS II-Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or
timing analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size
of the output file(s). Turning on this command can reduce the size of output netlists by up to
30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a
non-optimized timing SNF provides the same functional and timing information as an
optimized timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF
Netlist Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for
that vendor and choose OK. If your vendor name does not appear, select Custom instead
and specify the settings that are appropriate for your simulation or timing analysis tool. Go
to MAX+PLUS II Help for detailed information on the options available in the EDIF
Netlist Writer Settings dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the
Customize button to expand the dialog box to show all settings. Select one of the SDF
Output File options under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the
user-defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames
that are based on the project name. For a multi-device project, the Compiler also generates a top-
level EDIF Output File that is uniquely identified by "_t" appended to the project name. In
addition, the Compiler automatically generates a VHDL Memory Model Output File, <project
name>.vmo, when it generates an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu).
Select VHDL Output File (.vho) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF ver. 2.1 files contain timing delay information that allows
you to perform back-annotation simulation in VHDL with VITAL-compliant simulation
libraries. The VHDL Output Files generated by the Compiler have the extension .vho, but are
otherwise named in the same way as the EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer
command (Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces
menu). Select Verilog Output File (.vo) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF Output Files contain timing delay information that allows

you to perform back-annotation simulation in Verilog HDL. The Verilog Output Files generated
by the Compiler have the extension .vo, but are otherwise named in the same way as the EDIF
Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or
choose the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL,
Verilog HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing
analysis or timing simulation with another EDA tool. Specific instructions for some tools are described
in these MAX+PLUS II ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the
product documentation for your EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of
the following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types
of programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for
information on back-annotating pin assignments in Mentor Graphics Design Architect
schematics.
Go to Programming Altera Devices for information on the different programming hardware
options for Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level
Simulation with ViewSim Software

In order to perform board-level simulation with ViewSim software, you must generate symbols that represent
each MAX+PLUS® II -generated EDIF Output File (.edo) and incorporate them into a top-level ViewDraw
schematic. You can use ViewGen to generate hollow-body symbols to represent each EDIF Output File, and
connect them to other system components in the top-level schematic. You must also edit the wirelist files
(.wir) created by the edifneti utility.

To prepare for multi-device board-level simulation with ViewSim software, follow these steps:

1. Perform steps 1 through 6c in Performing a Timing Simulation with ViewSim Software.

2. Start ViewGen by double-clicking Button 1 on the max2_VGen icon in the Design Tools Drawer.

3. Specify the filename of one of the EDIF Output Files <filename>.edf in the Name box in the ViewGen
dialog box and choose OK to generate a corresponding <filename> symbol.

4. Repeat step 3 to generate other symbols as needed. You do not need to generate a symbol for the
<filename>_t.edf file.

5. Eliminate the two extra pins for VDD and GND connections from the top-level wirelist file ./wir/<design
name>_t.1:

1. Open the ./wir/<design name>_t.1 wirelist file with a standard text editor and delete the
following lines:

P IN GND
I GND IN GND
P IN VDD
I VDD IN VDD

2. Add the following two lines to the file to ensure global ground and power connections for
simulation:

G VDD
G GND

3. Save the top-level wirelist file with your changes.

6. Continue with the steps necessary to perform timing simulation, as described in Performing a Timing
Simulation with ViewSim Software.

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can
program an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for
MAX+PLUS II software.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software
installed on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and
software available from other manufacturers. Table 1 shows the available Altera programming hardware
options on PCs and UNIX workstations.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S
MAX
9000

&
MAX

9000A
Devices

FLEX®
6000,
FLEX

6000A,
FLEX 8000,
FLEX 10K,

FLEX
10KA,
FLEX
10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster
Download Cable
ByteBlasterMV
Download Cable
MasterBlaster
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File
Transfer Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one
of the serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply
hardware and software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming
files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Viewsim

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Performing a Functional
Simulation with ViewSim Software

Performing a Functional Simulation with ViewSim
Software

You can use Viewlogic ViewSim software to perform a functional simulation of a ViewDraw schematic or a
VHDL Design File (.vhd) before compiling your project with the MAX+PLUS II Compiler. Follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic that follows the guidelines in Creating ViewDraw Schematics for Use with
MAX+PLUS II Software. Then go to step 3.

or:

Create a VHDL Design File <design name>.vhd and analyze it, as described in the following MAX+PLUS II
ACCESSSM Key topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Then go to step 7.

3. With the schematic open in the ViewDraw editor, add CLR and PRE inputs to any flipflops in your design, or
tie the CLR and PRE ports of the flipflops to VCC. (Use the PWR primitive from the builtin library.)

4. Choose Write To (File menu) and save the schematic as <design name>_funct.

5. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Altera® Toolbox Design
Tools Drawer.

6. Specify the following options in the vsm dialog box and choose OK to generate the <design
name>_funct.vsm file:

Option: Setting:
Design Name <design name>_funct
Level (blank)

7. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively, you can enter
commands at the prompt in the ViewSim window. Refer to your Viewlogic documentation for more
information on creating ViewSim command files.

8. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the Design Tools
Drawer.

9. If you wish to simulate a ViewDraw schematic, specify the following options in the ViewSim dialog box,
then go to step 11.

Option: Setting:
Design Name <design name>_funct

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-designn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-vhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1

Command File <design name>_funct.cmd
VHDL Source Window OFF
VHDL Debugging OFF

10. If you wish to simulate a VHDL design, specify the following options in the ViewSim dialog box:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
Graphical Interface ON
VHDL Source Window OFF or ON
VHDL Debugging OFF or ON

11. Choose OK to simulate the design. ViewSim software simulates the design and starts the ViewTrace
waveform editor to allow you to observe the simulation results.

12. Use the edifneto utility to generate an EDIF Netlist File (.edf) that can be imported into the MAX+PLUS II
software, as described in Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-
Compatible EDIF Netlist Files with the edifneto Utility.

Related Links:

Go to ViewSim documentation for complete details on simulating a project and using ViewTrace to observe
waveform output results.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all
liability for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Performing a Timing
Simulation with ViewSim Software

Performing a Timing Simulation with ViewSim
Software

After you have entered a design and compiled it with the MAX+PLUS® II Compiler, you can simulate a
MAX+PLUS II-generated EDIF Output File (.edo) or VHDL Output File (.vho) with ViewSim software. ViewSim
software can simulate both the functionality and the timing of your design. It also checks setup time, hold time, and
Clock duty cycle timing requirements on registers.

To simulate a design with ViewSim software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Compile the design with the MAX+PLUS II software and generate an EDIF Output File (.edo) or VHDL
Output File (.vho), as described in Compiling Projects with MAX+PLUS II Software.

3. In the Viewlogic Cockpit window, choose Create (Project menu) to open the Create Project dialog box.
Type the name of your working directory and choose OK. You must create this new directory to avoid
overwriting your original files when you generate new files for simulation.

4. Choose SearchOrder (Project menu) and add the appropriate directories and aliases to your viewdraw.ini
file if you have not already done so. Go to Viewlogic Powerview viewdraw.ini Configuration File for more
information.

Refer to Viewlogic documentation for information on simulating projects that contain RAM functions.
The procedure for reading an EDIF Output File and preparing it for simulation with ViewSim requires
additional steps when the project contains RAM functions.

5. If you used the SCH <-> max2 or VHDL <-> max2 utility in the Max2 Express drawer to process your
project, skip to step 8.

6. If you wish to simulate a VHDL Output File, follow the steps in Analyzing VHDL Files with the Vantage
VHDL Analyzer then skip to step 7d.

7. If you are using the Altera® Toolbox Design Tools Drawer, follow these steps:

1. To generate a Powerview wirelist from the EDIF Output File, double-click Button 1 on the max2_edifi
icon in the Design Tools Drawer. The Netlist In dialog box is displayed.

2. In the Netlist In dialog box, specify ../<design name> for the EDIF Netlist File option, then choose
OK to process the EDIF netlist file.

3. If your project is implemented in multiple devices, repeat steps a and b for each EDIF Output File
generated by the MAX+PLUS II Compiler, and ensure that the Altera-provided alt_edif.cfg file is
specified for the Attribute Swap Configuration File option. In a multi-device project, the MAX+PLUS
II Compiler generates a separate file for each device, plus a top-level file that is identified by "_t"
appended to the project name. You must also follow the steps in Using ViewDraw & ViewGen
Software to Prepare for Multi-Device Board-Level Simulation with ViewSim Software.

4. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Design Tools

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-simedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-simedif.html?csf=1&web=1

Drawer.

5. Specify your design name for the Design Name option in the vsm dialog box and choose OK to
generate the <design name>.vsm file.

8. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively, you can enter
commands at the prompt in the ViewSim window. Refer to your Viewlogic documentation for more
information on creating ViewSim command files.

The Altera simulation model library, max2_sim, allows you to use the alt_grst signal to
asynchronously clear all flipflops (DFFE primitives).

9. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the Design Tools
Drawer or the Max2 Express Drawer.

10. Specify the following options in the ViewSim dialog box and choose OK to simulate the design:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
VHDL Source Window OFF
VHDL Debugging OFF

ViewSim software simulates the design and starts the ViewTrace waveform editor to allow you to observe
the simulation results.

Related Links:

Refer to the following sources for related information:
ViewSim documentation for complete details on simulating a project and using ViewTrace to observe
waveform output results
Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation with
ViewSim Software

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-simedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-simedif.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic ViewSim &
MAX+PLUS II Software

Using Viewlogic ViewSim & MAX+PLUS II Software

The following topics describe how to use the Viewlogic ViewSim software with MAX+PLUS® II software.
Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

Functional Simulation

Performing a Functional Simulation with ViewSim Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Timing Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with ViewSim Software

Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation with
ViewSim Software

Related Links

Viewlogic Powerview Graphical User Interface & the Altera Toolbox
Powerview Command-Line Syntax
Compiling Projects with MAX+PLUS II Software
Programming AlteraÂ® Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-viewsimall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-projstrc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-fig13.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-initial.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-simedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-simedif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-gui.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-cmdsyntx.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/altera-www/global/en_us/index/products/design-software/fpga-design/quartus-prime/max-plus-ii-users
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.viewlogic.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic ViewSim &
MAX+PLUS II Software

Using Viewlogic ViewSim & MAX+PLUS II Software

The following topics describe how to use the Viewlogic ViewSim software with MAX+PLUS® II software. Click
on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

Functional Simulation

Performing a Functional Simulation with ViewSim Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Timing Simulation

Project Simulation Flow
Initializing Registers in VHDL & Verilog Output Files for Power-Up before Simulation
Performing a Timing Simulation with ViewSim Software

Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation with
ViewSim Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Viewlogic Powerview Graphical User Interface & the Altera Toolbox
Powerview Command-Line Syntax
Compiling Projects with MAX+PLUS II Software
Programming Altera® Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

To use the MAX+PLUS® II software with Viewlogic's Powerview software, you must install the MAX+PLUS II
software, familiarize yourself with the Altera® Toolbox in the Powerview Cockpit, and then establish an
environment that facilitates entering and processing designs. The MAX+PLUS II /Viewlogic Powerview interface
is installed automatically when you install the MAX+PLUS II software on your workstation.

To set up your working environment for the MAX+PLUS II/Viewlogic Powerview interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Viewlogic software versions described in
MAX+PLUS II/Viewlogic Powerview Software Requirements.

2. Add the following environment variable to your .cshrc file to specify /usr/maxplus2 as the MAX+PLUS II
system directory:

setenv ALT_HOME /usr/maxplus2

3. Add the $ALT_HOME/viewlogic/standard, $ALT_HOME/bin, and $ALT_HOME/viewlogic/bin
directories to the PATH environment variable in your .cshrc file.

4. Add the $ALT_HOME/viewlogic/standard directory to the WDIR environment variable in your .cshrc file
using the following syntax:

setenv WDIR $ALT_HOME/viewlogic/standard:/<Powerview system directory>/standard

Make sure the $ALT_HOME/viewlogic/standard directory is the first directory in your WDIR path.

5. Source your .cshrc file by typing source .cshrc at the UNIX prompt.

6. Create the Viewlogic Powerview viewdraw.ini configuration file.

7. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

8. If you plan to instantiate Library of Parameterized Modules (LPM) functions in ViewDraw schematics, you
must create a new file with the name vdraw.vs. The vdraw.vs file must include the following line:

load ("vdpath")

You must also make sure that you specify the vdraw.vs file in your WDIR path.

9. Set up a directory structure that facilitates working with the MAX+PLUS II/Viewlogic Powerview interface.

Viewlogic Altera

ViewDraw ViewGen MAX+PLUS II
version 9.4

VHDL Analyzer ViewPath (optional)
Vantage VHDL Analyzer ViewTrace
VHDL -> sym ViewData Path
edifneto MOTIVE version 5.1.6 Note (1)

edifneti MOTIVE for Powerview version 3.2.1 (optional) Note
(1)

EEDIF (optional) SDF2MTV (optional)
MMP (optional) Fusion/VCS
vsm
Note:

(1)
MOTIVE for Powerview, a wrapper application for MOTIVE, provides a graphical user interface for the utilities
(i.e., EEDIF, SDF2MTV, and MMP) used during a static timing verification with MOTIVE. MOTIVE alone
does not accept EDIF files through the Setup Advisor.

The MAX+PLUS II read.me file provides up-to-date information on which versions of Viewlogic Powerview
applications the current version of the MAX+PLUS II software supports. It also provides information on
installation and operating requirements. You should read the read.me file on the CD-ROM before installing the
MAX+PLUS II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

For information on the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II
File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Refer to MAX+PLUS II/Viewlogic Powerview Project File Structure.

Related Topics:

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to
MAX+PLUS II/Viewlogic Powerview Interface File Organization for information about the MAX+PLUS
II/Viewlogic Powerview directories that are created during MAX+PLUS II installation.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Viewlogic Powerview Software Requirements

The following applications and utilities are used to generate, process, synthesize, and verify a project with
MAX+PLUS® II and Viewlogic Powerview software.

MAX+PLUS II/Viewlogic Powerview Interface File Organization

Table 1 shows the MAX+PLUS® II/Viewlogic Powerview interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

Directory Description

./lmf Contains the Altera-provided Library Mapping File, vwlogic.lmf, that maps Viewlogic
logic functions to equivalent MAX+PLUS II logic functions.

./viewlogic Contains the alt_edif.cfg EDIF configuration file that is used with the edifneti utility.
Also contains the library and sample subdirectories.

./viewlogic/examples Contains the sample Viewlogic designs.

./viewlogic/library/max2sim Contains the MAX+PLUS II simulation model library (max2_sim) for use in ViewSim
software.

./viewlogic/library/alt_max2

Contains MAX+PLUS II primitives (EXP, GLOBAL, LCELL, SOFT, CARRY, CASCADE, DFFE,
DFFE6K, and OPNDRN), macrofunctions (a_8fadd, a_8mcomp, a_8count, a_81mux), and
megafunctions (clklock) for use in ViewDraw schematics. These logic functions
support specific architectural features of Altera® devices. The alt_max2 library also
contains modified versions of the ViewDraw primitives that use tri-state buffers, because
these primitives require special handling in the MAX+PLUS II /Viewlogic Powerview
interface.

./viewlogic/library/synlib
Contains the Altera-provided synthesis library altera, which includes MAX+PLUS II
primitives, the altera.sml file, a sym directory, and a wir directory for use with
ViewSynthesis software.

./viewlogic/library/alt_mf
Contains the VHDL models for the MAX+PLUS II primitives (EXP, GLOBAL, LCELL,
SOFT, CARRY, CASCADE, DFFE, and OPNDRN), macrofunctions (clklock) for use with
ViewSynthesis software, the Vantage VHDL Analyzer software, and the VHDL source
files. These logic functions are used to maintain portability to other architectures.

./viewlogic/library/alt_time Contains MOTIVE timing models for MAX+PLUS II logic functions (motive.lib),
including the clklock megafunction, and MAX+PLUS II driver models (motive.drv).

./viewlogic/library/alt_vtl Contains the VHDL source files for the VITAL 3.0-compliant library. This library is
available for ViewSim software.

./viewlogic/bin Contains all MAX+PLUS II, Viewlogic, and interface-related scripts.

./viewlogic/standard Contains all standard .ini files and standard tools.

DIR [pw] .

Table 1. MAX+PLUS II Directory Organization

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Viewlogic Powerview viewdraw.ini Configuration File

Each Powerview project is configured with the viewdraw.ini file that resides in the project directory. The DIR
statements at the end of viewdraw.ini are paths to library directories that are used by the various Powerview
applications. Figure 1 shows a sample of the DIR statements that are required to use the libraries.

Figure 1. Excerpt from viewdraw.ini

DIR [r] /usr/maxplus2/vwlogic/library/alt_max2 (alt_max2)

DIR [r] /usr/maxplus2/vwlogic/library/max2sim (max2_sim)

DIR [r] /usr/maxplus2/vwlogic/library/synlib (altera)

DIR [r] /usr/maxplus2/vwlogic/library/alt_mf (alt_mf)

DIR [r] /usr/maxplus2/vwlogic/library/alt_vtl (alt_vtl)

DIR [rm] /<Powerview system directory>/lib/builtin (builtin)
DIR [rm] /<Powerview system directory>/simmods/vl/dip/74ls (vl74ls)
DIR [rm] /<Powerview system directory>/symsets/vl/dip/74ls (vl74ls)
DIR [r] /<Powerview system directory>/lib/vdpath (vdpath)

When you add the libraries to the /usr/maxplus2/vwlogic/standard/viewdraw.ini file, they are automatically set
when you create a new project. Powerview tools search these libraries sequentially, so it is important to add them
in the order in which they are listed in Figure 1.

Library Library Alias Source Topics
alt_max2 alt_max2 Altera Graphical elements for ViewDraw
max2sim max2_sim Altera Models for project simulation
synlib altera Altera VHDL synthesis library for the MAX+PLUS ® II software
alt_mf alt_mf Altera VHDL models of MAX+PLUS II logic functions
alt_vtl alt_vtl Altera VITAL-compliant primitives
builtin builtin Altera Basic primitives such as INPUT pins, OUTPUT pins, AND gates, OR gates, etc.
74ls vl74ls Viewlogic 74-series macrofunctions
vdpath vdpath Viewlogic Standard library of parameterized modules (LPM) functions

The Altera-provided libraries must be listed before the Viewlogic-provided libraries in the viewdraw.ini file to
ensure that the correct versions of the megafunctions, macrofunctions, and primitives are used.

Table 1 shows the libraries that must be specified in the DIR statements in the viewdraw.ini file.

Table 1. Powerview Application Libraries

Related Topics:

Go to Altera-Provided Logic & Symbol Libraries for more information on Altera-supplied libraries. Refer to
the Powerview documentation for more information on setting up the viewdraw.ini file.

MAX+PLUS II/Viewlogic Powerview Project File Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an Altera® Hardware Description
Language (AHDL) TDF; or any other MAX+PLUS II- supported design file. The EDIF netlist file must be created
by Powerview and imported into the MAX+PLUS II software as an EDIF Input File (.edf). Figure 1 shows an
example of MAX+PLUS II project directory structure that includes Powerview-generated files.

Figure 1. Sample MAX+PLUS II Project Organization

ViewDraw files are identified by their directories and not by their extensions, so it is easy to overwrite files
unintentionally. To avoid overwriting files, Altera recommends that you create a new project directory, <project
name>/max2/sim, where you can generate all the files needed for simulation.

Directory Topics

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Unlike Powerview, the MAX+PLUS II software does not automatically create a project directory when you create a
project. A single directory can contain several MAX+PLUS II design files, and you can specify any one of the
designs in the directory as a project in the MAX+PLUS II software.

Viewlogic Powerview Local Work Area Structure

When you create a project with the Powerview Cockpit's Create command (Project menu), the project directory is
created. You should generate design files and functional simulation files under this directory. A max2 subdirectory
is automatically created under your current project directory when you generate an EDIF file from your schematic
or VHDL file. The <project name>.edf file is stored in the max2 subdirectory. All MAX+PLUS® II Compiler
output files are created in the /<project name>/max2 subdirectory.

ViewDraw Project File Structure

Each ViewDraw project directory contains three subdirectories: wir, sch, and sym. See Table 1.

Table 1. ViewDraw Subdirectories

./wir Wirelist files that contain connectivity information for a particular logic block

./sch Schematics that contain logic

./sym Symbol files that are the ViewDraw graphical representation of the logic blocks

Directory Topics
./synth All synthesis-related files and directories
./synth/<entity> Four types of files: <entity>.pdf, <entity>.opt, <entity>.sta, and <entity>.gnl
./wir Wirelist for synthesized VHDL modules

For each VHDL entity in the design, there is a corresponding ./synth/<entity> directory.

You can create your own libraries of custom symbols and logic functions for use in ViewDraw schematics and
VHDL design files. You can use custom symbols (and functions) to incorporate an EDIF Input File, TDF, or any
other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses the vwlogic.lmf
Library Mapping File to map ViewDraw symbols to equivalent MAX+PLUS II megafunctions, macrofunctions,
or primitives. To use custom symbols and functions, you can create a custom LMF that maps your custom
functions to equivalent EDIF Input Files, TDFs, or other MAX+PLUS II-supported design files. Go to "Library
Mapping File" and "Viewlogic Library Mapping File" in MAX+PLUS II Help for more information.

Each file type uses the filename extension .1. Different file types are distinguished only by their directory:
/lib/wir/<project name>.1 is a wirelist file; /lib/sch/<project name>.1 is the corresponding schematic file; and
/lib/sym/<project name>.1 is the corresponding symbol.

VHDL Project File Structure

Each VHDL project directory contains three subdirectories. See Table 2.

Table 2. VHDL Subdirectories

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS® II/Viewlogic Powerview environment provides libraries for compiling, synthesizing, and
simulating designs.

Logic symbols used in ViewDraw software are available from the MAX+PLUS II alt_max2 library, the ViewDraw
builtin and 74ls libraries, and the ViewDatapath vdpath library. VHDL models of MAX+PLUS II logic functions
are available from the Altera-provided alt_mf library.

The alt_max2 Library

The alt_max2 library provides MAX+PLUS II-specific logic functions that can be used to take advantage of
special architectural features in each Altera® device family. See Table 1. Symbols and functional simulation
models are available for all of these elements.

The alt_mf Library

The Altera-provided alt_mf library, which supports the Viewlogic Vantage VHDL Analyzer software, contains
VHDL simulation models for all logic functions listed in the following table. The library is configured so that these
functions pass untouched through the EDIF netlist file to the MAX+PLUS II Compiler, providing you with optimal
control over design processing. Altera also provides models for all of the logic functions that you can synthesize
and simulate. These models allow you to perform functional VHDL simulation while maintaining an architecture-
independent VHDL description.

Table 1. Architecture Control Logic Functions

Name Note
(1), Note (2) Description Name Description Name Description

8fadd
8-bit full adder
macrofunction LCELL Logic cell buffer primitive EXP

MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer
primitive

8mcomp
8-bit magnitude
comparator
macrofunction

GLOBAL Global input buffer primitive SOFT Soft buffer primitive

8count
8-bit up/down
counter
macrofunction

CASCADE
FLEX® 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

OPNDRN Open-drain buffer primitive

81mux
8-to-1 multiplexer
macrofunction CARRY

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

DFFE
Note
(2)

D-type flipflop with Clock
Enable primitive

clklock
Phase-locked loop
megafunction

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

Notes:

1. Logic function names that begin with a number must be prefixed with "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Topics:

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help
menu for detailed information on these functions.
Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

The vdpath & mega_lpm Libraries

The library of parameterized modules (LPM) 2.1.0 standard defines a set of parameterized functions and their
corresponding representations in an EDIF netlist file. These logic functions allow you to create and functionally
simulate an LPM-based design without targeting a specific device family. After the design is completed, you can
target the design to any device family.

When the MAX+PLUS® II software processes projects that include Viewlogic-provided vdpath LPM functions, it
uses functions from the Altera-provided mega_lpm library. This library includes all standard LPM functions except
the truth table, finite state machine, and pad functions. Altera does not directly support the lpm_ram_dq,
lpm_ram_io, and lpm_rom functions. Refer to Instantiating RAM & ROM Functions in Viewlogic Powerview
Designs for instructions on instantiating RAM and ROM functions.

Performing a Functional Simulation with ViewSim Software

You can use Viewlogic ViewSim software to perform a functional simulation of a ViewDraw schematic or a
VHDL Design File (.vhd) before compiling your project with the MAX+PLUS II Compiler. Follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic that follows the guidelines in Creating ViewDraw Schematics for Use with
MAX+PLUS II Software. Then go to step 3.

or:

Create a VHDL Design File <design name>.vhd and analyze it, as described in the following MAX+PLUS II
ACCESSSM Key topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Then go to step 7.

3. With the schematic open in the ViewDraw editor, add CLR and PRE inputs to any flipflops in your design, or
tie the CLR and PRE ports of the flipflops to VCC. (Use the PWR primitive from the builtin library.)

4. Choose Write To (File menu) and save the schematic as <design name>_funct.

5. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Altera® Toolbox Design
Tools Drawer.

6. Specify the following options in the vsm dialog box and choose OK to generate the <design
name>_funct.vsm file:

Option: Setting:
Design Name <design name>_funct
Level (blank)

7. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively, you can enter
commands at the prompt in the ViewSim window. Refer to your Viewlogic documentation for more
information on creating ViewSim command files.

8. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the Design Tools
Drawer.

9. If you wish to simulate a ViewDraw schematic, specify the following options in the ViewSim dialog box,
then go to step 11.

Option: Setting:
Design Name <design name>_funct
Command File <design name>_funct.cmd
VHDL Source Window OFF
VHDL Debugging OFF

10. If you wish to simulate a VHDL design, specify the following options in the ViewSim dialog box:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
Graphical Interface ON
VHDL Source Window OFF or ON
VHDL Debugging OFF or ON

11. Choose OK to simulate the design. ViewSim software simulates the design and starts the ViewTrace
waveform editor to allow you to observe the simulation results.

12. Use the edifneto utility to generate an EDIF Netlist File (.edf) that can be imported into the MAX+PLUS II
software, as described in Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-
Compatible EDIF Netlist Files with the edifneto Utility.

Related Topics:

Go to ViewSim documentation for complete details on simulating a project and using ViewTrace to observe
waveform output results.

Analyzing VHDL Files with the SpeedWave VHDL Analyzer Software

You can use the SpeedWave VHDL Analyzer software to analyze VHDL Design Files (.vhd) prior to
functional (or gate-level) simulation with ViewSim software, or to synthesis and optimization with
ViewSynthesis software. You can also use the SpeedWave VHDL Analyzer to analyze a MAX+PLUS® II -
generated VHDL Output File (.vho) prior to post-compilation timing simulation with ViewSim software. The
max2_VantgMgr and max2_VantgAnlz tools are located in the Altera® Toolbox Design Tools Drawer.

To analyze a VHDL file with the SpeedWave VHDL Analyzer, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. If you wish to analyze a VHDL Design File (.vhd), create a VHDL file <design name>.vhd using the
MAX+PLUS II Text Editor or another standard text editor and save it in a working directory. Go to
Creating VHDL Designs for Use with MAX+PLUS II Software for more information.

3. If you wish to analyze a MAX+PLUS II-generated VHDL Output File (.vho), be sure to select VHDL
1987 for the VHDL Version option and VHDL Output File (.vho) for the Write Delay Constructs To
option in the VHDL Netlist Writer Settings dialog box (Interfaces menu) when you set up the
MAX+PLUS II Compiler to generate a VHDL Output File. See Compiling Projects with MAX+PLUS
II Software for more information on generating VHDL Output Files.

4. If your VHDL file contains functions from the alt_mf library, follow these steps:

1. Start the Vantage Manager by double-clicking Button 1 on the max2_VantgMgr icon in the
Design Tools Drawer.

2. Use the Vantage VHDL Library Manager to create an alt_mf.lib library file with the symbolic
name ALT_MF.

3. Make alt_mf the working library with the Set Working command (Edit menu).

4. Start the VHDL Analyzer by double-clicking Button 1 on the max2_VantgAnlz icon in the

Design Tools Drawer.

5. Analyze each VHDL file in the alt_mf/src directory into the alt_mf.lib working library. Source
files are located in the /usr/maxplus2/vwlogic/library/alt_mf/src directory that is created by
installing the Altera/Viewlogic interface.

5. If it is not already running, start the Vantage VHDL Library Manager, as described in step 4b, to create
a Vantage library.

6. Choose the List system libs button.

7. Add the ieee.lib and synopsys.lib system libraries to your project:

1. Select the ieee.lib and synopsys.lib libraries from the Available Libraries window and choose
Add lib. Choose the ieee library from the libs_syn directory, which is located at /<Powerview
system directory>/ standard/van_vss/pgm/libs_syn. The ieee library contains Synopsys
package files.

2. If your project uses functions from the alt_mf library, also select the alt_mf.lib file from the
Available Libraries window and choose Add lib.

3. Choose Create Library (File menu, type the project directory name in the Symbolic Name field,
and choose OK.

8. Specify the project directory as the working directory by choosing Set Working (Edit menu).

9. Choose Save INI File (File menu).

10. Choose Dismiss Window (Powerview Red-Box menu).

11. Specify the appropriate path and file name in the Analyzer VHDL Source File dialog box and choose
OK to analyze the VHDL file.

12. Once you have analyzed the file, perform one or more of the following tasks, as appropriate:

Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Performing a Timing Simulation with ViewSim Software

Related Topics:

Refer to the following sources for related information:
The Viewlogic ViewSim/VHDL User's Guide and ViewSim/VHDL Tutorial for information on
using the Vantage VHDL Analyzer software or Vantage VHDL Library Manager
Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics

MAX+PLUS II/Viewlogic Powerview Simulation Flow

Figure 1 shows the project simulation flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Project Simulation Flow

Altera-provided items are shown in blue.

Performing a Timing Simulation with ViewSim Software

After you have entered a design and compiled it with the MAX+PLUS® II Compiler, you can simulate a
MAX+PLUS II-generated EDIF Output File (.edo) or VHDL Output File (.vho) with ViewSim software.
ViewSim software can simulate both the functionality and the timing of your design. It also checks setup
time, hold time, and Clock duty cycle timing requirements on registers.

To simulate a design with ViewSim software, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Compile the design with the MAX+PLUS II software and generate an EDIF Output File (.edo) or
VHDL Output File (.vho), as described in Compiling Projects with MAX+PLUS II Software.

3. In the Viewlogic Cockpit window, choose Create (Project menu) to open the Create Project dialog
box. Type the name of your working directory and choose OK. You must create this new directory to
avoid overwriting your original files when you generate new files for simulation.

4. Choose SearchOrder (Project menu) and add the appropriate directories and aliases to your
viewdraw.ini file if you have not already done so. Go to Viewlogic Powerview viewdraw.ini
Configuration File for more information.

Refer to Viewlogic documentation for information on simulating projects that contain RAM
functions. The procedure for reading an EDIF Output File and preparing it for simulation with
ViewSim requires additional steps when the project contains RAM functions.

5. If you used the SCH <-> max2 or VHDL <-> max2 utility in the Max2 Express drawer to process

your project, skip to step 8.

6. If you wish to simulate a VHDL Output File, follow the steps in Analyzing VHDL Files with the
Vantage VHDL Analyzer then skip to step 7d.

7. If you are using the Altera® Toolbox Design Tools Drawer, follow these steps:

1. To generate a Powerview wirelist from the EDIF Output File, double-click Button 1 on the
max2_edifi icon in the Design Tools Drawer. The Netlist In dialog box is displayed.

2. In the Netlist In dialog box, specify ../<design name> for the EDIF Netlist File option, then
choose OK to process the EDIF netlist file.

3. If your project is implemented in multiple devices, repeat steps a and b for each EDIF Output
File generated by the MAX+PLUS II Compiler, and ensure that the Altera-provided alt_edif.cfg
file is specified for the Attribute Swap Configuration File option. In a multi-device project, the
MAX+PLUS II Compiler generates a separate file for each device, plus a top-level file that is
identified by "_t" appended to the project name. You must also follow the steps in Using
ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation with
ViewSim Software.

4. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Design Tools
Drawer.

5. Specify your design name for the Design Name option in the vsm dialog box and choose OK to
generate the <design name>.vsm file.

8. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively, you
can enter commands at the prompt in the ViewSim window. Refer to your Viewlogic documentation
for more information on creating ViewSim command files.

The Altera simulation model library, max2_sim, allows you to use the alt_grst signal to
asynchronously clear all flipflops (DFFE primitives).

9. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the Design
Tools Drawer or the Max2 Express Drawer.

10. Specify the following options in the ViewSim dialog box and choose OK to simulate the design:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
VHDL Source Window OFF
VHDL Debugging OFF

ViewSim software simulates the design and starts the ViewTrace waveform editor to allow you to
observe the simulation results.

Related Topics:

Refer to the following sources for related information:
ViewSim documentation for complete details on simulating a project and using ViewTrace to
observe waveform output results
Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level Simulation
with ViewSim Software

Initializing Registers in VHDL & Verilog Output Files for Power-Up before
Simulation

Altera provides the add_dc script, which is availiable in the MAX+PLUS II system directory, to allow you to
process MAX+PLUS II-generated Verilog Output Files (.vo) and VHDL Output Files (.vho) to prepare these
files for simulation with another EDA tool. The add_dc script runs the add_dclr utility, which inserts a
device_clear signal that is used for power-up initialization of all registers or flipflops in the design.

The script adds in a top-level signal named device_clear and connects it to the CLRN pin in all flipflops that
should initialize to 0, and to the PRN pin of all flipflops that should initialize to 1. If the CLRN or PRN pin of a
flipflop is already being used (i.e., is already connected to a signal), the script modifies the Verilog Output
File or VHDL Output File so that the AND of the original signal and the device_clear pin feed the CLRN or
PRN pin.

To use the add_dc script to process Verilog Output Files and VHDL Output Files before simulation with
another EDA tool, follow these steps:

1. Make sure that your design file is located in the current directory, or change to the directory in which
the design file is located.

2. Type the following command at the command prompt:

Â¥<path name of add_dc.bat file>Â¥add_dc <design name> <path name of add_dclr.exe file>

For example, if the both the add_dc.bat and the add_dclr.exe files are located in the d:Â¥maxplus2Â¥exew
directory, and the d:Â¥maxplus2Â¥exew directory is specified in the search path, you can type the
following command at a command prompt to add a device_clear signal to a design named myfifo in the
file myfifo.vo:

add_dc myfifo d:Â¥maxplus2Â¥exew

1. The add_dc script gives a message if the directory contains both a VHDL Output File and a
Verilog Output File with the same name (<design name>.vo and <design>.vho). You should
delete or rename whichever of those files should not have the device_clear signal added. The
add_dc script can modify only one design file at a time.

2. When the add_dc script processes the Verilog Output File or VHDL Output File, it creates a
backup copy of the original file, with the extension .ori.

3. The add_dc script works only for Verilog Output Files and VHDL Output Files that are
generated by MAX+PLUS II.

After you have used the add_dc script and are ready to simulate the resulting Verilog Output File or VHDL
Output File with another EDA tool, you should assert the active low device_clear pin for a period of time
that is long enough for the design to initialize. You can then de-assert the pin, and apply simulation vectors to
the design.

Analyzing VHDL Files with the SpeedWave VHDL Analyzer Software

You can use the SpeedWave VHDL Analyzer software to analyze VHDL Design Files (.vhd) prior to
functional (or gate-level) simulation with ViewSim software, or to synthesis and optimization with

ViewSynthesis software. You can also use the SpeedWave VHDL Analyzer to analyze a MAX+PLUS® II -
generated VHDL Output File (.vho) prior to post-compilation timing simulation with ViewSim software. The
max2_VantgMgr and max2_VantgAnlz tools are located in the Altera® Toolbox Design Tools Drawer.

To analyze a VHDL file with the SpeedWave VHDL Analyzer, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. If you wish to analyze a VHDL Design File (.vhd), create a VHDL file <design name>.vhd using the
MAX+PLUS II Text Editor or another standard text editor and save it in a working directory. Go to
Creating VHDL Designs for Use with MAX+PLUS II Software for more information.

3. If you wish to analyze a MAX+PLUS II-generated VHDL Output File (.vho), be sure to select VHDL
1987 for the VHDL Version option and VHDL Output File (.vho) for the Write Delay Constructs To
option in the VHDL Netlist Writer Settings dialog box (Interfaces menu) when you set up the
MAX+PLUS II Compiler to generate a VHDL Output File. See Compiling Projects with MAX+PLUS
II Software for more information on generating VHDL Output Files.

4. If your VHDL file contains functions from the alt_mf library, follow these steps:

1. Start the Vantage Manager by double-clicking Button 1 on the max2_VantgMgr icon in the
Design Tools Drawer.

2. Use the Vantage VHDL Library Manager to create an alt_mf.lib library file with the symbolic
name ALT_MF.

3. Make alt_mf the working library with the Set Working command (Edit menu).

4. Start the VHDL Analyzer by double-clicking Button 1 on the max2_VantgAnlz icon in the
Design Tools Drawer.

5. Analyze each VHDL file in the alt_mf/src directory into the alt_mf.lib working library. Source
files are located in the /usr/maxplus2/vwlogic/library/alt_mf/src directory that is created by
installing the Altera/Viewlogic interface.

5. If it is not already running, start the Vantage VHDL Library Manager, as described in step 4b, to create
a Vantage library.

6. Choose the List system libs button.

7. Add the ieee.lib and synopsys.lib system libraries to your project:

1. Select the ieee.lib and synopsys.lib libraries from the Available Libraries window and choose
Add lib. Choose the ieee library from the libs_syn directory, which is located at /<Powerview
system directory>/ standard/van_vss/pgm/libs_syn. The ieee library contains Synopsys
package files.

2. If your project uses functions from the alt_mf library, also select the alt_mf.lib file from the
Available Libraries window and choose Add lib.

3. Choose Create Library (File menu, type the project directory name in the Symbolic Name field,
and choose OK.

8. Specify the project directory as the working directory by choosing Set Working (Edit menu).

9. Choose Save INI File (File menu).

10. Choose Dismiss Window (Powerview Red-Box menu).

11. Specify the appropriate path and file name in the Analyzer VHDL Source File dialog box and choose
OK to analyze the VHDL file.

12. Once you have analyzed the file, perform one or more of the following tasks, as appropriate:

Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Performing a Timing Simulation with ViewSim Software

Related Topics:

Refer to the following sources for related information:
The Viewlogic ViewSim/VHDL User's Guide and ViewSim/VHDL Tutorial for information on
using the Vantage VHDL Analyzer software or Vantage VHDL Library Manager
Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics

Using ViewDraw & ViewGen Software to Prepare for Multi-Device Board-Level
Simulation with ViewSim Software

In order to perform board-level simulation with ViewSim software, you must generate symbols that represent
each MAX+PLUS® II -generated EDIF Output File (.edo) and incorporate them into a top-level ViewDraw
schematic. You can use ViewGen to generate hollow-body symbols to represent each EDIF Output File, and
connect them to other system components in the top-level schematic. You must also edit the wirelist files
(.wir) created by the edifneti utility.

To prepare for multi-device board-level simulation with ViewSim software, follow these steps:

1. Perform steps 1 through 6c in Performing a Timing Simulation with ViewSim Software.

2. Start ViewGen by double-clicking Button 1 on the max2_VGen icon in the Design Tools Drawer.

3. Specify the filename of one of the EDIF Output Files <filename>.edf in the Name box in the ViewGen
dialog box and choose OK to generate a corresponding <filename> symbol.

4. Repeat step 3 to generate other symbols as needed. You do not need to generate a symbol for the
<filename>_t.edf file.

5. Eliminate the two extra pins for VDD and GND connections from the top-level wirelist file ./wir/<design
name>_t.1:

1. Open the ./wir/<design name>_t.1 wirelist file with a standard text editor and delete the
following lines:

P IN GND
I GND IN GND
P IN VDD
I VDD IN VDD

2. Add the following two lines to the file to ensure global ground and power connections for
simulation:

G VDD
G GND

3. Save the top-level wirelist file with your changes.

6. Continue with the steps necessary to perform timing simulation, as described in Performing a Timing
Simulation with ViewSim Software.

Viewlogic Powerview Graphical User Interface & the Altera Toolbox

You use the Powerview graphical interface manager, the Cockpit, and the Altera® Toolbox to start all
Powerview and Altera tools. Within the Altera Toolbox, you can specify the Max2 Express Drawer or the
Design Tools Drawer to work with the Altera/Viewlogic Powerview interface.

The Max2 Express Drawer provides a quick and seamless way to transfer designs created in Powerview to
the MAX+PLUS® II software for compilation, then return the compiled designs to Powerview for simulation
and timing verification. Table 1 describes the Max2 Express Drawer tools.

Table 1. Max2 Express Drawer Tools

Tool Description
max2_VDraw Launches the Powerview ViewDraw schematic entry tool.

VHDL<->max2 Launches all tools necessary to synthesize a VHDL design, compile for an Altera device,
and generate a .vsm file for simulation with the Powerview ViewSim simulator.

SCH<->max2
Launches all tools necessary to compile a schematic design entered with Powerview
ViewDraw software for an Altera device and to generate a .vsm file for simulation with
Powerview ViewSim and .edo, .sdo, and .vmo files for timing analysis with MOTIVE for
Powerview.

max2_VSim Launches the Powerview ViewSim simulator.
max2_VTrace Launches the Powerview ViewTrace simulation waveform editor.
max2_MOTIVE Launches the MOTIVE for Powerview ViewDraw static timing verification tool.

The Design Tools Drawer provides tools that enable you to create a design with the Powerview tools,
compile the design in the MAX+PLUS II software, and simulate and verify the design with Powerview
software. Table 2 describes the Design Tools Drawer tools.

Table 2. Design Tools Drawer Tools

Tool Description
max2_VDraw Launches the Powerview ViewDraw schematic entry tool.
max2_analyzer Launches the Powerview VHDL Analyzer software.
max2_syn Launches the Powerview VHDL synthesis tool.
max2_chk Launches the Powerview schematic verification tool.
max2_vsmnet Launches the Powerview vsm utility that converts a wirelist file into a .vsm file.
max2_VSim Launches the Powerview ViewSim simulator.
max2_VTrace Launches the Powerview ViewTrace simulator.
max2_edifo Launches the Powerview EDIF netlist writer, edifneto.
max2_VGen Launches the Powerview ViewGen utility that generates a schematic from a wirelist file.
max2 Launches the MAX+PLUS II Compiler.
max2_edifi Launches the Powerview EDIF Netlist Reader, edifneti.
max2_vhdl2sym Launches the Powerview vhdl2sym utility that generates a symbol from a VHDL file.

max2_VantgMgr Launches the Powerview Vantage VHDL Library Manager tool.
max2_VantgAnlz Launches the Vantage VHDL Analyzer software.
max2_VCS Launches the Fusion/VCS Simulator.
max2_MOTIVE Launches the MOTIVE for Powerview static timing verification tool.

Powerview Command-Line Syntax

Table 1 shows the command-line syntax for using Powerview functions.

Table 1. Powerview Command-Line Syntax

Action Command
Start VHDL Analyzer software vhdl -v <project name>
Start ViewSynthesis software vhdldes

Load Altera® technology library vhdldes> technology altera

Compile a VHDL design vhdldes> vhdl <project name>
Synthesize a design vhdldes> synthesize

Generate wirelist file vhdldes> wir

Create a schematic representation vhdldes> viewgen

Generate a synthesis report file vhdldes> report

Start the graphical user interface for
ViewSynthesis vhdldes> vdesgui

Start the VHDL-to-symbol utility vhdl2sym <project name>
Start vsm vsm <project name>
Start ViewSim simulator viewsim <project name> -<project name>.cmd

Start edifneto edifneto -f <project name>-l (std or altera) <project
name>.edf

Start Vantage VHDL Analyzer software analyze -src <design file>
Start MOTIVE for Powerview software mfp

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to
use MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File
(with the extension .edf).

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running
the Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design
from within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF
Input Files with the extension .edf. Specific instructions for some tools are described in these
MAX+PLUS II ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product
documentation for your design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom
symbol to the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-
supported design file. These custom functions are represented in design files as hollow-body symbols
or "black box" HDL descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the
Project Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you
can choose the Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a
project, the settings you need to specify are easier to specify from within the MAX+PLUS II
software. After you have run the graphical user interface for the MAX+PLUS II software at least
once, you can more easily use the command-line setacf utility to modify options in the
Assignment & Configuration File (.acf) for the project. Type setacf -h and maxplus2 -h
for descriptions of setacf and MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-
down list box. If you wish to implement the design logic in a specific device, select it in the Devices
box. Otherwise, select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the
current device family. If your design entry or synthesis and optimization tool required you to specify a
target family and/or device, specify the same information in this dialog box. For information on
partitioning logic among multiple devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through
the following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader
Settings (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor. This name should be the name of the vendor whose tool(s) you used to create the EDIF
netlist files. If your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select
Synopsys, choose the Customize button, enter <project name>.lmf in the LMF #1 box,
choose OK, and skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files
that require custom LMF mappings, choose the Customize button to expand the dialog box to
show all settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the
corresponding text box, or select a name from the Files box. The selection in the Vendor box
will change to Custom and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog
box to show all settings. Any previously defined custom settings will be displayed. Under Signal
Names, type one or more names with up to 20 total name characters in the VCC or GND box if
your EDIF Input File(s) use one or more names other than VCC or GND for the global high or low
signals. Multiple signal names must be separated by either a comma (,) or a space. Under

Library Mapping Files, turn on the LMF #1 checkbox and type a filename in the text box
following it, or select a name from the Files box. If necessary, specify another LMF name in the
LMF #2 box. Go to MAX+PLUS II Help for detailed information on the settings available in the
EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, you may need to ensure that all files are present in your project directory, i.e., the same
directory as the top-level design file. Otherwise, you must specify the directories containing these files
as user libraries with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings
Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into
MAX+PLUS II-Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or
timing analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size
of the output file(s). Turning on this command can reduce the size of output netlists by up to
30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a
non-optimized timing SNF provides the same functional and timing information as an
optimized timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF
Netlist Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for
that vendor and choose OK. If your vendor name does not appear, select Custom instead
and specify the settings that are appropriate for your simulation or timing analysis tool. Go
to MAX+PLUS II Help for detailed information on the options available in the EDIF
Netlist Writer Settings dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the
Customize button to expand the dialog box to show all settings. Select one of the SDF
Output File options under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the
user-defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames
that are based on the project name. For a multi-device project, the Compiler also generates a top-
level EDIF Output File that is uniquely identified by "_t" appended to the project name. In
addition, the Compiler automatically generates a VHDL Memory Model Output File, <project
name>.vmo, when it generates an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu).
Select VHDL Output File (.vho) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF ver. 2.1 files contain timing delay information that allows

you to perform back-annotation simulation in VHDL with VITAL-compliant simulation
libraries. The VHDL Output Files generated by the Compiler have the extension .vho, but are
otherwise named in the same way as the EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer
command (Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces
menu). Select Verilog Output File (.vo) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF Output Files contain timing delay information that allows
you to perform back-annotation simulation in Verilog HDL. The Verilog Output Files generated
by the Compiler have the extension .vo, but are otherwise named in the same way as the EDIF
Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or
choose the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL,
Verilog HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing
analysis or timing simulation with another EDA tool. Specific instructions for some tools are described
in these MAX+PLUS II ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the
product documentation for your EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of
the following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types
of programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for
information on back-annotating pin assignments in Mentor Graphics Design Architect
schematics.
Go to Programming Altera Devices for information on the different programming hardware
options for Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can
program an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for
MAX+PLUS II software.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software
installed on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and
software available from other manufacturers. Table 1 shows the available Altera programming hardware
options on PCs and UNIX workstations.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S
MAX
9000

&
MAX

9000A
Devices

FLEX®
6000,
FLEX

6000A,
FLEX 8000,
FLEX 10K,

FLEX
10KA,
FLEX
10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster
Download Cable
ByteBlasterMV
Download Cable
MasterBlaster
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File
Transfer Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one
of the serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply
hardware and software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming
files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / Vwsyn

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic
ViewSynthesis & MAX+PLUS II Software

Using Viewlogic ViewSynthesis & MAX+PLUS® II
Software

The following topics describe how to use the Viewlogic ViewSynthesis software with MAX+PLUS® II software.
Choose one of the following topics for information:

Open a printable version of all topics listed on this page.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

VHDL Design Entry

Design Entry Flow
Creating VHDL Designs for Use with MAX+PLUS II Software

Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation with ViewSim Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Synthesis & Optimization

Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software

Related Links

Powerview Command-Line Syntax
Compiling Projects with MAX+PLUS II Software
Programming Altera® Devices
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-vwsynall.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-softreq.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mp2file.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-projstrc.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-dsgnlib.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-mpluslpm.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-fig09.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-vhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-clock.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-ramrom.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-resource.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-acf.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-funcsim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vwsyn-viewsyn.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-cmdsyntx.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-program.html?csf=1&web=1
https://www.intel.com/content/www/us/en/programmable/products/design-software/fpga-design/quartus-prime/max-plus-ii-users.html
https://www.intel.com/altera-www/global/en_us/index/support/support-resources/support-centers/devices/programming
http://www.viewlogic.com/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using the Max2 Express
Drawer's VHDL <-> max2 Utility

Using the Max2 Express Drawer's VHDL <-> max2
Utility

Once you have created a VHDL Design File (.vhd) for your project, you can use the VHDL <-> max2 utility in the
Max2 Express drawer to synthesize and optimize the design; generate an EDIF netlist file; and process the EDIF
netlist file with the MAX+PLUS II Compiler to generate an EDIF Output File (.edo) for simulation. The VHDL <-
> max2 utility creates all necessary subdirectories and copies all files to the correct locations.

To use the VHDL <-> max2 utility, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Create a VHDL Design File that follows the guidelines described in Creating VHDL Designs for Use with
MAX+PLUS II Software.

3. Start the VHDL <-> max2 utility by double-clicking Button 1 on the VHDL <-> max2 icon in the Max2
Express Drawer.

4. Specify the Input VHDL file, Viewlogic Optimize Style, Viewlogic Timing Constraint File, Altera Device
Family, Max2 Synthesis Style, and the Process Direction options in the VHDL <-> max2 dialog box and
choose OK. The VHDL <-> max2 utility generates the <design name>.vsm file for simulation with
ViewSim in the sim subdirectory of the max2 directory.

5. If necessary, correct any errors in the VHDL Design File and recompile the project.

6. Simulate your project, as described in Performing a Timing Simulation with ViewSim Software.

Related Links:

Go to Performing Timing Verification for EDIF Output Files (.edo) with MOTIVE & MOTIVE for
Powerview Software or Performing Timing Verification of Verilog Output Files (.vo) with MOTIVE
Software in these MAX+PLUS II ACCESSSM Key topics for related information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-vhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-vhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motive.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motive.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motvlog.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-motvlog.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Synthesizing & Optimizing
VHDL Designs with ViewSynthesis Software

Synthesizing & Optimizing VHDL Designs with
ViewSynthesis Software

You can create and process VHDL files and convert them into Altera® Hardware Description Language (AHDL)
Text Design Files (.tdf) or EDIF Input Files (.edf) that can be processed by the MAX+PLUS® II Compiler. The
MAX+PLUS II Compiler can process a VHDL file that has been synthesized by ViewSynthesis software, saved as
an AHDL TDF or an EDIF netlist file, and imported into the MAX+PLUS II software. The information presented
here describes only how to use VHDL files that have been processed by ViewSynthesis software. For information
on direct MAX+PLUS II support for VHDL Design Files, go to MAX+PLUS II VHDL Help.

To synthesize and optimize a VHDL design, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Create a VHDL file <design name>.vhd using the MAX+PLUS II Text Editor or another standard text editor
and save it in a working directory. Go to Creating VHDL Designs for Use with MAX+PLUS II Software for
more information.

3. Start Powerview by typing powerview at a UNIX prompt.

4. In the Cockpit window, select Altera in the Current ToolBox drop-down list box, and select the drawer you
want to use, i.e., Design Tools or Max2 Express, in the Current Drawer drop-down list box.

5. Choose Create (Project menu) from your working directory to create your project directory. Choose OK.

6. Choose SearchOrder (Project menu) to add the appropriate library directories and aliases to your
viewdraw.ini file. Refer to Viewlogic Powerview viewdraw.ini Configuration File for more information on
Powerview application libraries.

When you add libraries to the /usr/maxplus2/vwlogic/standard/viewdraw.ini file, they are
automatically set when you create a new project. Powerview tools search these libraries sequentially,
so it is important to add them in the order in which they are listed.

7. Analyze the VHDL design, as described in Analyzing VHDL Files with the Vantage VHDL Analyzer
Software.

8. (Optional) Perform a functional simulation, as described in Performing a Timing Simulation with ViewSim
Software.

9. In Powerview 5.3.2 and previous versions, start ViewSynthesis software by double-clicking Button 1 on the
max2_syn icon in the Altera Toolbox Design Tools Drawer.

In Powerview 6.0, ViewSynthesis software is available only for the SunOS, and only as a command-
line version. If you are using Powerview 6.0, read /<Powerview system

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-setup.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-intro-vhdl.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-vwdrwini.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-vantage-sim_van.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewsim-sim.html?csf=1&web=1

directory>/README/vsyn.doc to learn how to synthesize a design with ViewSynthesis software.
You can create the synth.ini file, a one-line text file that contains the text technology altera. Then
type the following commands at the UNIX prompt to analyze and synthesize your VHDL design:

vsyn -vhdl <design name>

vsyn -synth "*"

10. Choose Target Technology (Setup menu) and select altera:altera in the Specify Target Technology dialog
box. Choose OK.

11. Choose Compile VHDL (Setup menu) and select <design name>.vhd in the VHDL Files list box. Choose
OK.

If more than one VHDL Design File (.vhd) exists for the project, you must compile the lower-level
design files before compiling the top-level file.

12. Press Button 3 on the <design name> icon in the ViewSynthesis window, choose Synthesize from the pop-
up menu, then choose OK.

13. (Optional) To generate a synthesis report file for the design, press Button 3 on the <design name> icon and
choose View Report from the pop-up menu.

14. (Optional) To create a schematic representation of the gate-level netlist file, press Button 3 on the <design
name> icon and choose View Schematic from the pop-up menu.

15. Generate an EDIF netlist file that can be compiled with the MAX+PLUS II Compiler, as described in
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist Files
with the edifneto Utility.

16. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling Projects
with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates the
following sample ViewDraw schematic files:

/usr/maxplus2/examples/viewlogic/example5/count4.vhd
/usr/maxplus2/examples/viewlogic/example5/count8.vhd

Related Links:

Go to Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics for related
information.

Feedback

Did this information help you?

If no, please log onto mySupport to file a technical request or enhancement.

Altera does not warrant that this solution will work for the customer's intended purpose and disclaims all liability
for use of or reliance on the solution.

https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/software-eda_maxplus2-viewlogic-viewdraw-edif.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-compile.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-sysdir.html?csf=1&web=1
https://intel.sharepoint.com/:u:/r/sites/psg-ceg-techcomms/tool/Shared%20Documents/max-plus-ii/design-software-max_plus-ii-cmdsyntx.html?csf=1&web=1
https://mysupport.altera.com/eservice/

 ́ ̉ ̉ ́ ̉

Intel® FPGAs and Programmable Devices / Intel FPGA Support Resources / ... / ... / ... / Using Viewlogic
ViewSynthesis & MAX+PLUS II Software

Using Viewlogic ViewSynthesis & MAX+PLUS II
Software

The following topics describe how to use the Viewlogic ViewSynthesis software with MAX+PLUS® II software.
Click on one of the following topics for information:

This file is suitable for printing only. It does not contain hypertext links that allow you to jump from topic to topic.

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

Software Requirements
MAX+PLUS II/Viewlogic Powerview Interface File Organization
Viewlogic Powerview viewdraw.ini Configuration File
MAX+PLUS II/Viewlogic Powerview Project File Structure
Altera-Provided Logic & Symbol Libraries
The vdpath & mega_lpm Libraries

VHDL Design Entry

Design Entry Flow
Creating VHDL Designs for Use with MAX+PLUS II Software

Instantiating the clklock Megafunction in VHDL or Verilog HDL
Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

Entering Resource Assignments
Modifying the Assignment & Configuration File with the setacf Utility

Performing a Functional Simulation with ViewSim Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Synthesis & Optimization

Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software

Related Topics:

Go to the following MAX+PLUS II ACCESSSM Key topics for related information:
Powerview Command-Line Syntax
Compiling Projects with MAX+PLUS II Software
Programming Altera® Devices

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware
Viewlogic web site (http://www.viewlogic.com)

https://www.intel.com/content/altera-www/global/en_us/index.html
https://www.intel.com/content/www/us/en/programmable/support/support-resources.html

Setting Up the MAX+PLUS II/Viewlogic Powerview Working Environment

To use the MAX+PLUS® II software with Viewlogic's Powerview software, you must install the MAX+PLUS II
software, familiarize yourself with the Altera® Toolbox in the Powerview Cockpit, and then establish an
environment that facilitates entering and processing designs. The MAX+PLUS II /Viewlogic Powerview interface
is installed automatically when you install the MAX+PLUS II software on your workstation.

To set up your working environment for the MAX+PLUS II/Viewlogic Powerview interface, follow these steps:

1. Ensure that you have correctly installed the MAX+PLUS II and Viewlogic software versions described in
MAX+PLUS II/Viewlogic Powerview Software Requirements.

2. Add the following environment variable to your .cshrc file to specify /usr/maxplus2 as the MAX+PLUS II
system directory:

setenv ALT_HOME /usr/maxplus2

3. Add the $ALT_HOME/viewlogic/standard, $ALT_HOME/bin, and $ALT_HOME/viewlogic/bin
directories to the PATH environment variable in your .cshrc file.

4. Add the $ALT_HOME/viewlogic/standard directory to the WDIR environment variable in your .cshrc file
using the following syntax:

setenv WDIR $ALT_HOME/viewlogic/standard:/<Powerview system directory>/standard

Make sure the $ALT_HOME/viewlogic/standard directory is the first directory in your WDIR path.

5. Source your .cshrc file by typing source .cshrc at the UNIX prompt.

6. Create the Viewlogic Powerview viewdraw.ini configuration file.

7. Copy the /usr/maxplus2/maxplus2.ini file to your $HOME directory:

cp /usr/maxplus2/maxplus2.ini $HOME

chmod u+w $HOME/maxplus2.ini

The maxplus2.ini file contains both Altera- and user-specified initialization parameters that control
the MAX+PLUS II software, such as MAX+PLUS II symbol and logic function library paths and the
current project name. The MAX+PLUS II installation procedure creates and copies the maxplus2.ini
file to the /usr/maxplus2 directory.

Normally, you do not have to edit your local copy of maxplus2.ini, because the MAX+PLUS II
software updates the file automatically whenever you change any parameters or settings. However, if
you move the max2lib and max2inc library subdirectories, you must update the file. Go to "Creating
& Using a Local Copy of the maxplus2.ini File" in MAX+PLUS II Help for more information.

8. If you plan to instantiate Library of Parameterized Modules (LPM) functions in ViewDraw schematics, you
must create a new file with the name vdraw.vs. The vdraw.vs file must include the following line:

load ("vdpath")

You must also make sure that you specify the vdraw.vs file in your WDIR path.

Viewlogic Altera

ViewDraw ViewGen MAX+PLUS II
version 9.4

VHDL Analyzer ViewPath (optional)
Vantage VHDL Analyzer ViewTrace
VHDL -> sym ViewData Path
edifneto MOTIVE version 5.1.6 Note (1)

edifneti MOTIVE for Powerview version 3.2.1 (optional) Note
(1)

EEDIF (optional) SDF2MTV (optional)
MMP (optional) Fusion/VCS
vsm
Note:

(1)
MOTIVE for Powerview, a wrapper application for MOTIVE, provides a graphical user interface for the utilities
(i.e., EEDIF, SDF2MTV, and MMP) used during a static timing verification with MOTIVE. MOTIVE alone
does not accept EDIF files through the Setup Advisor.

The MAX+PLUS II read.me file provides up-to-date information on which versions of Viewlogic Powerview
applications the current version of the MAX+PLUS II software supports. It also provides information on
installation and operating requirements. You should read the read.me file on the CD-ROM before installing the
MAX+PLUS II software. After installation, you can open the read.me file from the MAX+PLUS II Help menu.

For information on the other directories that are created during MAX+PLUS II installation, see "MAX+PLUS II

9. Set up a directory structure that facilitates working with the MAX+PLUS II/Viewlogic Powerview interface.
Refer to MAX+PLUS II/Viewlogic Powerview Project File Structure.

Related Topics:

Go to MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual for more information on
installation and details on the directories that are created during MAX+PLUS II installation. Go to
MAX+PLUS II/Viewlogic Powerview Interface File Organization for information about the MAX+PLUS
II/Viewlogic Powerview directories that are created during MAX+PLUS II installation.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

MAX+PLUS II/Viewlogic Powerview Software Requirements

The following applications and utilities are used to generate, process, synthesize, and verify a project with
MAX+PLUS® II and Viewlogic Powerview software.

MAX+PLUS II/Viewlogic Powerview Interface File Organization

Table 1 shows the MAX+PLUS® II/Viewlogic Powerview interface subdirectories that are created in the
MAX+PLUS II system directory (by default, the /usr/maxplus2 directory) during MAX+PLUS II installation.

File Organization" in MAX+PLUS II Installation in the MAX+PLUS II Getting Started manual.

Directory Description

./lmf Contains the Altera-provided Library Mapping File, vwlogic.lmf, that maps Viewlogic
logic functions to equivalent MAX+PLUS II logic functions.

./viewlogic Contains the alt_edif.cfg EDIF configuration file that is used with the edifneti utility.
Also contains the library and sample subdirectories.

./viewlogic/examples Contains the sample Viewlogic designs.

./viewlogic/library/max2sim Contains the MAX+PLUS II simulation model library (max2_sim) for use in ViewSim
software.

./viewlogic/library/alt_max2

Contains MAX+PLUS II primitives (EXP, GLOBAL, LCELL, SOFT, CARRY, CASCADE, DFFE,
DFFE6K, and OPNDRN), macrofunctions (a_8fadd, a_8mcomp, a_8count, a_81mux), and
megafunctions (clklock) for use in ViewDraw schematics. These logic functions
support specific architectural features of Altera® devices. The alt_max2 library also
contains modified versions of the ViewDraw primitives that use tri-state buffers, because
these primitives require special handling in the MAX+PLUS II /Viewlogic Powerview
interface.

./viewlogic/library/synlib
Contains the Altera-provided synthesis library altera, which includes MAX+PLUS II
primitives, the altera.sml file, a sym directory, and a wir directory for use with
ViewSynthesis software.

./viewlogic/library/alt_mf
Contains the VHDL models for the MAX+PLUS II primitives (EXP, GLOBAL, LCELL,
SOFT, CARRY, CASCADE, DFFE, and OPNDRN), macrofunctions (clklock) for use with
ViewSynthesis software, the Vantage VHDL Analyzer software, and the VHDL source
files. These logic functions are used to maintain portability to other architectures.

./viewlogic/library/alt_time Contains MOTIVE timing models for MAX+PLUS II logic functions (motive.lib),
including the clklock megafunction, and MAX+PLUS II driver models (motive.drv).

./viewlogic/library/alt_vtl Contains the VHDL source files for the VITAL 3.0-compliant library. This library is
available for ViewSim software.

./viewlogic/bin Contains all MAX+PLUS II, Viewlogic, and interface-related scripts.

./viewlogic/standard Contains all standard .ini files and standard tools.

Table 1. MAX+PLUS II Directory Organization

Related Topics:

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Getting Started version 8.1 (5.4 MB)
This manual is also available in 4 parts:

Preface & Section 1: MAX+PLUS II Installation
Section 2: MAX+PLUS II - A Perspective
Section 3: MAX+PLUS II Tutorial
Appendices, Glossary & Index

Viewlogic Powerview viewdraw.ini Configuration File

Each Powerview project is configured with the viewdraw.ini file that resides in the project directory. The DIR
statements at the end of viewdraw.ini are paths to library directories that are used by the various Powerview
applications. Figure 1 shows a sample of the DIR statements that are required to use the libraries.

Figure 1. Excerpt from viewdraw.ini

DIR [pw] .

DIR [r] /usr/maxplus2/vwlogic/library/alt_max2 (alt_max2)

DIR [r] /usr/maxplus2/vwlogic/library/max2sim (max2_sim)

DIR [r] /usr/maxplus2/vwlogic/library/synlib (altera)

DIR [r] /usr/maxplus2/vwlogic/library/alt_mf (alt_mf)

DIR [r] /usr/maxplus2/vwlogic/library/alt_vtl (alt_vtl)

DIR [rm] /<Powerview system directory>/lib/builtin (builtin)
DIR [rm] /<Powerview system directory>/simmods/vl/dip/74ls (vl74ls)
DIR [rm] /<Powerview system directory>/symsets/vl/dip/74ls (vl74ls)
DIR [r] /<Powerview system directory>/lib/vdpath (vdpath)

When you add the libraries to the /usr/maxplus2/vwlogic/standard/viewdraw.ini file, they are automatically set
when you create a new project. Powerview tools search these libraries sequentially, so it is important to add them
in the order in which they are listed in Figure 1.

Library Library Alias Source Topics
alt_max2 alt_max2 Altera Graphical elements for ViewDraw
max2sim max2_sim Altera Models for project simulation
synlib altera Altera VHDL synthesis library for the MAX+PLUS ® II software
alt_mf alt_mf Altera VHDL models of MAX+PLUS II logic functions
alt_vtl alt_vtl Altera VITAL-compliant primitives
builtin builtin Altera Basic primitives such as INPUT pins, OUTPUT pins, AND gates, OR gates, etc.
74ls vl74ls Viewlogic 74-series macrofunctions
vdpath vdpath Viewlogic Standard library of parameterized modules (LPM) functions

The Altera-provided libraries must be listed before the Viewlogic-provided libraries in the viewdraw.ini file to
ensure that the correct versions of the megafunctions, macrofunctions, and primitives are used.

Table 1 shows the libraries that must be specified in the DIR statements in the viewdraw.ini file.

Table 1. Powerview Application Libraries

Related Topics:

Go to Altera-Provided Logic & Symbol Libraries for more information on Altera-supplied libraries. Refer to
the Powerview documentation for more information on setting up the viewdraw.ini file.

MAX+PLUS II/Viewlogic Powerview Project File Structure

In the MAX+PLUS® II software, a project name is the name of a top-level design file, without the filename
extension. This design file can be an EDIF, Verilog HDL, or VHDL netlist file; an Altera® Hardware Description
Language (AHDL) TDF; or any other MAX+PLUS II- supported design file. The EDIF netlist file must be created
by Powerview and imported into the MAX+PLUS II software as an EDIF Input File (.edf). Figure 1 shows an
example of MAX+PLUS II project directory structure that includes Powerview-generated files.

Figure 1. Sample MAX+PLUS II Project Organization

ViewDraw files are identified by their directories and not by their extensions, so it is easy to overwrite files
unintentionally. To avoid overwriting files, Altera recommends that you create a new project directory, <project
name>/max2/sim, where you can generate all the files needed for simulation.

Directory Topics

The MAX+PLUS II software stores the connectivity data on the links between design files in a hierarchical project
in a Hierarchy Interconnect File (.hif), but refers to the entire project only by its project name. The MAX+PLUS II
Compiler uses the HIF to build a single, fully flattened project database that integrates all the design files in a
project hierarchy.

Unlike Powerview, the MAX+PLUS II software does not automatically create a project directory when you create a
project. A single directory can contain several MAX+PLUS II design files, and you can specify any one of the
designs in the directory as a project in the MAX+PLUS II software.

Viewlogic Powerview Local Work Area Structure

When you create a project with the Powerview Cockpit's Create command (Project menu), the project directory is
created. You should generate design files and functional simulation files under this directory. A max2 subdirectory
is automatically created under your current project directory when you generate an EDIF file from your schematic
or VHDL file. The <project name>.edf file is stored in the max2 subdirectory. All MAX+PLUS® II Compiler
output files are created in the /<project name>/max2 subdirectory.

ViewDraw Project File Structure

Each ViewDraw project directory contains three subdirectories: wir, sch, and sym. See Table 1.

Table 1. ViewDraw Subdirectories

./wir Wirelist files that contain connectivity information for a particular logic block

./sch Schematics that contain logic

./sym Symbol files that are the ViewDraw graphical representation of the logic blocks

Directory Topics
./synth All synthesis-related files and directories
./synth/<entity> Four types of files: <entity>.pdf, <entity>.opt, <entity>.sta, and <entity>.gnl
./wir Wirelist for synthesized VHDL modules

For each VHDL entity in the design, there is a corresponding ./synth/<entity> directory.

You can create your own libraries of custom symbols and logic functions for use in ViewDraw schematics and
VHDL design files. You can use custom symbols (and functions) to incorporate an EDIF Input File, TDF, or any
other MAX+PLUS II-supported design file into a project. The MAX+PLUS II software uses the vwlogic.lmf
Library Mapping File to map ViewDraw symbols to equivalent MAX+PLUS II megafunctions, macrofunctions,
or primitives. To use custom symbols and functions, you can create a custom LMF that maps your custom
functions to equivalent EDIF Input Files, TDFs, or other MAX+PLUS II-supported design files. Go to "Library
Mapping File" and "Viewlogic Library Mapping File" in MAX+PLUS II Help for more information.

Each file type uses the filename extension .1. Different file types are distinguished only by their directory:
/lib/wir/<project name>.1 is a wirelist file; /lib/sch/<project name>.1 is the corresponding schematic file; and
/lib/sym/<project name>.1 is the corresponding symbol.

VHDL Project File Structure

Each VHDL project directory contains three subdirectories. See Table 2.

Table 2. VHDL Subdirectories

Altera-Provided Logic & Symbol Libraries

The MAX+PLUS® II/Viewlogic Powerview environment provides libraries for compiling, synthesizing, and
simulating designs.

Logic symbols used in ViewDraw software are available from the MAX+PLUS II alt_max2 library, the ViewDraw
builtin and 74ls libraries, and the ViewDatapath vdpath library. VHDL models of MAX+PLUS II logic functions
are available from the Altera-provided alt_mf library.

The alt_max2 Library

The alt_max2 library provides MAX+PLUS II-specific logic functions that can be used to take advantage of
special architectural features in each Altera® device family. See Table 1. Symbols and functional simulation
models are available for all of these elements.

The alt_mf Library

The Altera-provided alt_mf library, which supports the Viewlogic Vantage VHDL Analyzer software, contains
VHDL simulation models for all logic functions listed in the following table. The library is configured so that these
functions pass untouched through the EDIF netlist file to the MAX+PLUS II Compiler, providing you with optimal
control over design processing. Altera also provides models for all of the logic functions that you can synthesize
and simulate. These models allow you to perform functional VHDL simulation while maintaining an architecture-
independent VHDL description.

Table 1. Architecture Control Logic Functions

Name Note
(1), Note (2) Description Name Description Name Description

8fadd
8-bit full adder
macrofunction LCELL Logic cell buffer primitive EXP

MAX® 5000, MAX 7000, and
MAX 9000 Expander buffer
primitive

8mcomp
8-bit magnitude
comparator
macrofunction

GLOBAL Global input buffer primitive SOFT Soft buffer primitive

8count
8-bit up/down
counter
macrofunction

CASCADE
FLEX® 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

OPNDRN Open-drain buffer primitive

81mux
8-to-1 multiplexer
macrofunction CARRY

FLEX 6000, FLEX 8000, and
FLEX 10K cascade buffer
primitive

DFFE
Note
(2)

D-type flipflop with Clock
Enable primitive

clklock
Phase-locked loop
megafunction

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information about LPM functions.

Notes:

1. Logic function names that begin with a number must be prefixed with "a_" in VHDL designs. For example,
8fadd must be specified as a_8fadd.

2. For designs that are targeted to FLEX 6000 devices, you should use the DFFE primitive only if the design
contains either a Clear or Preset signal, but not both. If your design contains both a Clear and a Preset signal,
you must use the DFFE6K primitive.

Related Topics:

Choose Old-Style Macrofunctions, Primitives, or Megafunctions/LPM from the MAX+PLUS II Help
menu for detailed information on these functions.
Go to the following topics, which are available on the web, for additional information:

FLEX Devices
MAX Devices
Classic Device Family

The vdpath & mega_lpm Libraries

The library of parameterized modules (LPM) 2.1.0 standard defines a set of parameterized functions and their
corresponding representations in an EDIF netlist file. These logic functions allow you to create and functionally
simulate an LPM-based design without targeting a specific device family. After the design is completed, you can
target the design to any device family.

When the MAX+PLUS® II software processes projects that include Viewlogic-provided vdpath LPM functions, it
uses functions from the Altera-provided mega_lpm library. This library includes all standard LPM functions except
the truth table, finite state machine, and pad functions. Altera does not directly support the lpm_ram_dq,
lpm_ram_io, and lpm_rom functions. Refer to Instantiating RAM & ROM Functions in Viewlogic Powerview
Designs for instructions on instantiating RAM and ROM functions.

Altera-provided items are shown in blue.

MAX+PLUS II/Viewlogic Powerview Design Entry Flow

Figure 1 shows the design entry flow for the MAX+PLUS® II/Viewlogic Powerview interface.

Figure 1. MAX+PLUS II/Viewlogic Powerview Design Entry Flow

Creating VHDL Designs for Use with MAX+PLUS II Software

You can create VHDL design files with the MAX+PLUS® II Text Editor or another standard text editor and save
them in the appropriate directory for your project. The MAX+PLUS II Text Editor offers the following advantages:

VHDL templates are available with the VHDL Templates command (Templates menu). These templates are
also available in the ASCII vhdl.tmp file, which is located in the /usr/maxplus2 directory.

If you use the MAX+PLUS II Text Editor to create your VHDL design, you can use the Syntax Coloring
command (Options menu). The Syntax Coloring feature displays keywords and other elements in text files in
different colors to distinguish them from other forms of syntax.

To create a VHDL design that can be synthesized and optimized with ViewSynthesis software, follow these steps:

1. You can instantiate the following Altera-provided logic functions in your VHDL design:

The alt_mf library contains the Altera® VHDL logic function library, which includes MAX+PLUS II-
specific primitives and the a_8count, a_8mcomp, a_8fadd, and a_81mux macrofunctions. If you wish to
instantiate alt_mf logic functions in your VHDL design, you must first analyze all functions in the
alt_mf/src directory. See Analyzing VHDL Files with the Vantage VHDL Analyzer Software for
details.

The clklock megafunction, which enables the phase-locked loop, or ClockLock , circuitry available
on selected Altera FLEX® 10K devices. Go to Instantiating the clklock Megafunction in VHDL or
Verilog HDL for information.

MegaCore functions offered by Altera or by members of the Altera Megafunction Partners Program
(AMPP). The OpenCore feature in the MAX+PLUS II software allows you to instantiate, compile,
and simulate MegaCore functions before deciding whether to purchase a license for full device
programming and post-compilation simulation support.

2. (Optional) To enter resource assignments in your VHDL design, go to Entering Resource Assignments. You
can also enter resource assignments from within the MAX+PLUS II software.

Once you have created a VHDL design, you can analyze it, synthesize it, and generate an EDIF netlist file that can
be imported into the MAX+PLUS II software with either of the following methods:

You can analyze, functionally simulate, and synthesize the VHDL design, then generate an EDIF netlist file
by following the steps in these topics:

In MAX+PLUS II version 8.3 and lower, running genclklk on a PC always creates files named as clklock.vhd,
clklock.cmp, and clklock.v, regardless of the ClockBoost and input frequency values you specify.

Analyzing VHDL Files with the Vantage VHDL Analyzer Software
Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist
Files with the edifneto Utility

You can use the VHDL <-> max2 utility in the Max2 Express Drawer to automatically analyze and
synthesize the VHDL design, compile it with the MAX+PLUS II Compiler, generate an EDIF Output File
(.edo), and create a .vsm file for simulation. See Using the Max2 Express Drawer's VHDL <-> max2 Utility
in these MAX+PLUS II ACCESSSM Key topics for details.

Installing the Altera-provided MAX+PLUS II/Viewlogic Powerview interface on your computer automatically
creates the following sample VHDL files:

/usr/maxplus2/examples/viewlogic/example5/count4.vhd
/usr/maxplus2/examples/viewlogic/example5/count8.vhd

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating the clklock Megafunction in VHDL or Verilog HDL

MAX+PLUS® II interfaces to other EDA tools support the clklock phase-locked loop megafunction, which can be
used with some FLEX® 10K devices, with the gencklk utility, which is available in the MAX+PLUS II system
directory. Type gencklk -h at the DOS or UNIX prompt to display information on how to use this utility. The
gencklk utility generates VHDL or Verilog HDL functional simulation models and a VHDL Component
Declaration template file (.cmp).

The gencklk utility allows parameters for the clklock function to be passed from the VHDL or Verilog HDL file
to EDIF netlist format. The gencklk utility embeds the parameter values in the clklock function name; therefore,
the values do not need to be declared explicitly.

To instantiate the clklock megafunction in VHDL or Verilog HDL, go through the following steps:

1. Type the following command at the DOS or UNIX prompt to generate the clklock_x_y function, where x is
the ClockBoost value and y is the input frequency in MHz:

Type gencklk <ClockBoost> <input frequency> -vhdl for VHDL designs.

or:

Type gencklk <ClockBoost> <input frequency> -verilog for Verilog HDL designs.

Choose Megafunctions/LPM from the MAX+PLUS II Help menu for more information on the clklock
megafunction.

2. Create a design file that instantiates the clklock_x_y.vhd or clklock_x_y.v file. The gencklk utility
automatically generates a VHDL Component Declaration template in the clklock_x_y.cmp file that you can
incorporate into a VHDL design file.

Figure 1. VHDL Design File with clklock Instantiation (count8.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera;
USE altera.maxplus2.all; -- Include Altera Component Declarations

ENTITY count8 IS
 PORT (a : IN STD_LOGIC_VECTOR(7 DOWNTO 0);
 ldn : IN STD_LOGIC;
 gn : IN STD_LOGIC;

dnup : IN STD_LOGIC;
 setn : IN STD_LOGIC;
 clrn : IN STD_LOGIC;
 clk : IN STD_LOGIC;

co : OUT STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR(7 DOWNTO 0));
END count8;

ARCHITECTURE structure OF count8 IS
 signal clk2x : STD_LOGIC;

COMPONENT clklock_2_40
 PORT (
 INCLK : IN STD_LOGIC;
 OUTCLK : OUT STD_LOGIC
);
END COMPONENT;

BEGIN
 u1: clklock_2_40
 PORT MAP (inclk=>clk, outclk=>clk2x);

u2: a_8count
 PORT MAP (a=>a(0), b=>a(1), c=>a(2), d=>a(3),
 e=>a(4), f=>a(5), g=>a(6), h=>a(7),
 clk=>clk2x,
 ldn=>ldn,
 gn=>gn,

dnup=>dnup,
 setn=>setn,
 clrn=>clrn,

qa=>q(0), qb=>q(1), qc=>q(2), qd=>q(3),
 qe=>q(4), qf=>q(5), qg=>q(6), qh=>q(7),
 cout=>co);
 END structure;

Figures 1 and 2 show a clklock function with <ClockBoost> = 2 and <input frequency> = 40 MHz instantiated in
VHDL and Verilog HDL design files, respectively.

Figure 2. Verilog HDL Design File with clklock Instantiation (count8.v)

`timescale 1ns / 10ps
module count8 (a, ldn, gn, dnup, setn, clrn, clk, co, q);
output co;
output[7:0] q;

input[7:0] a;
input ldn, gn,dnup, setn, clrn, clk;
wire clk2x;

clklock_2_40 u1 (.inclk(clk), .outclk(clk2x));
A_8COUNT u2 (.A(a[0]), .B(a[1]), .C(a[2]), .D(a[3]), .E(a[4]), .F(a[5]),

.G(a[6]), .H(a[7]), .LDN(ldn), .GN(gn), .DNUP(dnup),
 .SETN(setn), .CLRN(clrn), .CLK(clk2x), .QA(q[0]), .QB(q[1]),
 .QC(q[2]), .QD(q[3]), .QE(q[4]), .QF(q[5]), .QG(q[6]),
 .QH(q[7]), .COUT(co));

endmodule

Refer to Viewlogic documentation for information on simulating projects that contain RAM functions. The
procedure for reading an EDIF Output File and preparing it for simulation with ViewSim requires additional
steps when the project contains RAM functions.

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Instantiating RAM & ROM Functions in Viewlogic Powerview Designs

The MAX+PLUS®II /Viewlogic Powerview interface offers full support for the memory capabilities of the FLEX®

10K device family, including synchronous and asynchronous RAM and ROM, cycle-shared dual-port RAM, dual-
port RAM, single-Clock FIFO, and dual-Clock FIFO functions. You can use the Altera-provided genmem utility to
generate functional simulation models and timing models for these functions. Type genmem at the UNIX prompt
to display information on how to use this utility, as well as a list of the functions you can generate. RAM and ROM
can be instantiated in both ViewDraw schematics and VHDL designs.

When you instantiate a RAM or ROM function, follow these general guidelines:

For ROM functions, you must specify an initial memory content file in the Intel hexadecimal format (.hex) or
the Altera® Memory Initialization File (.mif) format. The filename must be the same as the instance name;
e.g., the instance name must be unique throughout the whole project, and must contain only valid name
characters. The initialization file must reside in the directory containing the project's design files.

For RAM functions, specifying a memory initialization file is optional.

For VHDL designs, specify the name of the initial memory content file in the Generic Map Clause of the
instance, with the specified type LPM_FILE. If you do not use an initial memory content file (e.g., for a RAM
function), you should not declare or use the Generic Clause.

The MIF format is supported only for specifying initial memory content when compiling designs within the
MAX+PLUS II software. You cannot use a MIF to perform simulation with Viewlogic tools prior to
MAX+PLUS II compilation.

Figure 1 shows a VHDL design that instantiates asyn_rom_256x15.vhd, a
256 x 15 ROM function.

Figure 1. VHDL Design File with ROM Instantiation (tstrom.vhd)

LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY tstrom IS
 PORT (
 addr : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 memenab : IN STD_LOGIC;
 q : OUT STD_LOGIC_VECTOR (14 DOWNTO 0));
END tstrom;

ARCHITECTURE behavior OF tstrom IS

COMPONENT asyn_rom_256x15
 GENERIC (LPM_FILE : string);

PORT (Address : IN STD LOGIC VECTOR(7 DOWNTO 0);

Do not synthesize the genmem-generated VHDL file: it is intended for simulation only.

To instantiate RAM or ROM in a ViewDraw schematic, follow these steps:

1. Use the genmem utility to generate a memory model by typing the following command at the UNIX prompt:

genmem <memory type> <memory size> -vwlogic

For example: genmem asynrom 256x15 -vwlogic

2. Start the VHDL-to-symbol utility, vhdl2sym, by double-clicking Button 1 on the max2_vhdl2sym icon in
the Altera® Toolbox Design Tools Drawer.

3. Specify the following options in the vhdl2sym dialog box and choose OK to create a symbol. For example,
to create the symbol for a 256x15 asynchronous ROM, enter the following settings:

Option: Setting:
VHDL Source Filename asyn_rom_256x15.vhd
Add LEVEL attribute On

4. Choose Comp (Add menu), type <design name> in the Enter Name box, and choose OK.

To instantiate a RAM or ROM function in VHDL, follow these steps:

1. Repeat step 1 above.

2. Create a VHDL design that incorporates the text from the genmem-generated Component Declaration,
<memory name>.cmp, and instantiate the <memory name> function.

 MemEnab : IN STD_LOGIC;
 Q : OUT STD_LOGIC_VECTOR(14 DOWNTO 0)
);
END COMPONENT;

BEGIN

 u1: asyn_rom_256x15
 GENERIC MAP (LPM_FILE => "u1.hex")
 PORT MAP (Address => addr, MemEnab => memenab, Q =>q);
END behavior;

Related Topics:

Go to FLEX 10K Device Family, which is available on the web, for additional information.

Entering Resource Assignments

The MAX+PLUS® II software allows you to enter a variety of resource and device assignments for your projects.
Resource assignments are used to assign logic functions to a particular pin, logic cell, I/O cell, embedded cell, row,
column, Logic Array Block (LAB), Embedded Array Block (EAB), chip, clique, local routing, logic option, timing
requirement, or connected pin group. In the MAX+PLUS II software, you can enter all types of resource and device
assignments with Assign menu commands. You can also enter pin, logic cell, I/O cell, embedded cell, LAB, EAB,
row, and column assignments in the MAX+PLUS II Floorplan Editor. The Assign menu commands and the
Floorplan Editor all save assignment information in the ASCII Assignment & Configuration File (.acf) for the
project. In addition, you can edit ACFs manually in any standard text editor.

ViewDraw Schematics

In ViewDraw schematics, you can assign a limited subset of these resource assignments by assigning properties to
symbols. These properties are incorporated into the EDIF netlist file(s). The MAX+PLUS II software automatically
converts assignment information from the EDIF Input File (.edf) into the ACF format. For information on making
MAX+PLUS II-compatible resource assignments, go to the following topics:

Assigning Pins, Logic Cells & Chips
Assigning Cliques
Assigning Logic Options
Modifying the Assignment & Configuration File with the setacf Utility

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates the
following sample ViewDraw schematic file, which includes resource assignments:

/usr/maxplus2/examples/viewlogic/example4/fadd2mpp

Related Topics:

Go to Viewlogic documentation for information on how to assign properties. Go to "Resource Assignments
in EDIF Input Files" and "Assigning Resources in a Third-Party Design Editor" in MAX+PLUS II Help for
more information on assignments or properties that can be assigned in ViewDraw.

VHDL Design Files

For VHDL-based designs, you must use the MAX+PLUS II software or the setacf utility to enter resource

assignments. For information on using the setacf utility, go to Modifying the Assignment & Configuration File
with the setacf Utility.

Related Topics:

For information on entering assignments in the MAX+PLUS II software with Assign menu commands or in
an ACF, go to "resource assignments" or "ACF, format" in MAX+PLUS II Help using Search for Help on
(Help menu).

Modifying the Assignment & Configuration File with the setacf Utility

Altera provides the setacf utility to help you modify a project's Assignment & Configuration File (.acf) from the
command line, without opening the file with a text editor. Type setacf -h at a UNIX or DOS prompt to get
help on this utility.

Performing a Functional Simulation with ViewSim Software

You can use Viewlogic ViewSim software to perform a functional simulation of a ViewDraw schematic or a
VHDL Design File (.vhd) before compiling your project with the MAX+PLUS II Compiler. Follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. Create a ViewDraw schematic that follows the guidelines in Creating ViewDraw Schematics for Use with
MAX+PLUS II Software. Then go to step 3.

or:

Create a VHDL Design File <design name>.vhd and analyze it, as described in the following MAX+PLUS II
ACCESSSM Key topics:

Creating VHDL Designs for Use with MAX+PLUS II Software
Analyzing VHDL Files with the Vantage VHDL Analyzer Software

Then go to step 7.

3. With the schematic open in the ViewDraw editor, add CLR and PRE inputs to any flipflops in your design, or
tie the CLR and PRE ports of the flipflops to VCC. (Use the PWR primitive from the builtin library.)

4. Choose Write To (File menu) and save the schematic as <design name>_funct.

5. Start the vsm utility by double-clicking Button 1 on the max2_vsmnet icon in the Altera® Toolbox Design
Tools Drawer.

6. Specify the following options in the vsm dialog box and choose OK to generate the <design
name>_funct.vsm file:

Option: Setting:
Design Name <design name>_funct
Level (blank)

7. Create a simulation command file (.cmd) for simulation with ViewSim software. Alternatively, you can enter

commands at the prompt in the ViewSim window. Refer to your Viewlogic documentation for more
information on creating ViewSim command files.

8. Start the ViewSim simulation tool by double-clicking Button 1 on the max2_VSim icon in the Design Tools
Drawer.

9. If you wish to simulate a ViewDraw schematic, specify the following options in the ViewSim dialog box,
then go to step 11.

Option: Setting:
Design Name <design name>_funct
Command File <design name>_funct.cmd
VHDL Source Window OFF
VHDL Debugging OFF

10. If you wish to simulate a VHDL design, specify the following options in the ViewSim dialog box:

Option: Setting:
Design Name <design name>
Command File <design name>.cmd
Graphical Interface ON
VHDL Source Window OFF or ON
VHDL Debugging OFF or ON

11. Choose OK to simulate the design. ViewSim software simulates the design and starts the ViewTrace
waveform editor to allow you to observe the simulation results.

12. Use the edifneto utility to generate an EDIF Netlist File (.edf) that can be imported into the MAX+PLUS II
software, as described in Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-
Compatible EDIF Netlist Files with the edifneto Utility.

Related Topics:

Go to ViewSim documentation for complete details on simulating a project and using ViewTrace to observe
waveform output results.

Analyzing VHDL Files with the SpeedWave VHDL Analyzer Software

You can use the SpeedWave VHDL Analyzer software to analyze VHDL Design Files (.vhd) prior to
functional (or gate-level) simulation with ViewSim software, or to synthesis and optimization with
ViewSynthesis software. You can also use the SpeedWave VHDL Analyzer to analyze a MAX+PLUS® II -
generated VHDL Output File (.vho) prior to post-compilation timing simulation with ViewSim software. The
max2_VantgMgr and max2_VantgAnlz tools are located in the Altera® Toolbox Design Tools Drawer.

To analyze a VHDL file with the SpeedWave VHDL Analyzer, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS II
/Viewlogic Powerview Working Environment.

2. If you wish to analyze a VHDL Design File (.vhd), create a VHDL file <design name>.vhd using the
MAX+PLUS II Text Editor or another standard text editor and save it in a working directory. Go to
Creating VHDL Designs for Use with MAX+PLUS II Software for more information.

3. If you wish to analyze a MAX+PLUS II-generated VHDL Output File (.vho), be sure to select VHDL
1987 for the VHDL Version option and VHDL Output File (.vho) for the Write Delay Constructs To
option in the VHDL Netlist Writer Settings dialog box (Interfaces menu) when you set up the
MAX+PLUS II Compiler to generate a VHDL Output File. See Compiling Projects with MAX+PLUS
II Software for more information on generating VHDL Output Files.

4. If your VHDL file contains functions from the alt_mf library, follow these steps:

1. Start the Vantage Manager by double-clicking Button 1 on the max2_VantgMgr icon in the
Design Tools Drawer.

2. Use the Vantage VHDL Library Manager to create an alt_mf.lib library file with the symbolic
name ALT_MF.

3. Make alt_mf the working library with the Set Working command (Edit menu).

4. Start the VHDL Analyzer by double-clicking Button 1 on the max2_VantgAnlz icon in the
Design Tools Drawer.

5. Analyze each VHDL file in the alt_mf/src directory into the alt_mf.lib working library. Source
files are located in the /usr/maxplus2/vwlogic/library/alt_mf/src directory that is created by
installing the Altera/Viewlogic interface.

5. If it is not already running, start the Vantage VHDL Library Manager, as described in step 4b, to create
a Vantage library.

6. Choose the List system libs button.

7. Add the ieee.lib and synopsys.lib system libraries to your project:

1. Select the ieee.lib and synopsys.lib libraries from the Available Libraries window and choose
Add lib. Choose the ieee library from the libs_syn directory, which is located at /<Powerview
system directory>/ standard/van_vss/pgm/libs_syn. The ieee library contains Synopsys
package files.

2. If your project uses functions from the alt_mf library, also select the alt_mf.lib file from the
Available Libraries window and choose Add lib.

3. Choose Create Library (File menu, type the project directory name in the Symbolic Name field,
and choose OK.

8. Specify the project directory as the working directory by choosing Set Working (Edit menu).

9. Choose Save INI File (File menu).

10. Choose Dismiss Window (Powerview Red-Box menu).

11. Specify the appropriate path and file name in the Analyzer VHDL Source File dialog box and choose
OK to analyze the VHDL file.

12. Once you have analyzed the file, perform one or more of the following tasks, as appropriate:

Performing a Functional Simulation with ViewSim Software
Synthesizing & Optimizing VHDL Designs with ViewSynthesis Software
Performing a Timing Simulation with ViewSim Software

Related Topics:

Refer to the following sources for related information:
The Viewlogic ViewSim/VHDL User's Guide and ViewSim/VHDL Tutorial for information on
using the Vantage VHDL Analyzer software or Vantage VHDL Library Manager
Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics

Synthesizing & Optimizing VHDL Designs with ViewSynthesis
Software

You can create and process VHDL files and convert them into Altera® Hardware Description Language
(AHDL) Text Design Files (.tdf) or EDIF Input Files (.edf) that can be processed by the MAX+PLUS® II
Compiler. The MAX+PLUS II Compiler can process a VHDL file that has been synthesized by
ViewSynthesis software, saved as an AHDL TDF or an EDIF netlist file, and imported into the MAX+PLUS
II software. The information presented here describes only how to use VHDL files that have been processed
by ViewSynthesis software. For information on direct MAX+PLUS II support for VHDL Design Files, go to
MAX+PLUS II VHDL Help.

To synthesize and optimize a VHDL design, follow these steps:

1. Be sure to set up your working environment correctly, as described in Setting Up the MAX+PLUS
II/Viewlogic Powerview Working Environment.

2. Create a VHDL file <design name>.vhd using the MAX+PLUS II Text Editor or another standard text
editor and save it in a working directory. Go to Creating VHDL Designs for Use with MAX+PLUS II
Software for more information.

3. Start Powerview by typing powerview at a UNIX prompt.

4. In the Cockpit window, select Altera in the Current ToolBox drop-down list box, and select the drawer
you want to use, i.e., Design Tools or Max2 Express, in the Current Drawer drop-down list box.

5. Choose Create (Project menu) from your working directory to create your project directory. Choose
OK.

6. Choose SearchOrder (Project menu) to add the appropriate library directories and aliases to your
viewdraw.ini file. Refer to Viewlogic Powerview viewdraw.ini Configuration File for more
information on Powerview application libraries.

When you add libraries to the /usr/maxplus2/vwlogic/standard/viewdraw.ini file, they are
automatically set when you create a new project. Powerview tools search these libraries
sequentially, so it is important to add them in the order in which they are listed.

7. Analyze the VHDL design, as described in Analyzing VHDL Files with the Vantage VHDL Analyzer
Software.

8. (Optional) Perform a functional simulation, as described in Performing a Timing Simulation with
ViewSim Software.

9. In Powerview 5.3.2 and previous versions, start ViewSynthesis software by double-clicking Button 1
on the max2_syn icon in the Altera Toolbox Design Tools Drawer.

In Powerview 6.0, ViewSynthesis software is available only for the SunOS, and only as a
command-line version. If you are using Powerview 6.0, read /<Powerview system

directory>/README/vsyn.doc to learn how to synthesize a design with ViewSynthesis
software. You can create the synth.ini file, a one-line text file that contains the text technology
altera. Then type the following commands at the UNIX prompt to analyze and synthesize your
VHDL design:

vsyn -vhdl <design name>

vsyn -synth "*"

10. Choose Target Technology (Setup menu) and select altera:altera in the Specify Target Technology
dialog box. Choose OK.

11. Choose Compile VHDL (Setup menu) and select <design name>.vhd in the VHDL Files list box.
Choose OK.

If more than one VHDL Design File (.vhd) exists for the project, you must compile the lower-
level design files before compiling the top-level file.

12. Press Button 3 on the <design name> icon in the ViewSynthesis window, choose Synthesize from the
pop-up menu, then choose OK.

13. (Optional) To generate a synthesis report file for the design, press Button 3 on the <design name> icon
and choose View Report from the pop-up menu.

14. (Optional) To create a schematic representation of the gate-level netlist file, press Button 3 on the
<design name> icon and choose View Schematic from the pop-up menu.

15. Generate an EDIF netlist file that can be compiled with the MAX+PLUS II Compiler, as described in
Converting ViewDraw Schematics or VHDL Designs into MAX+PLUS II-Compatible EDIF Netlist
Files with the edifneto Utility.

16. Process the <design name>.edf file with the MAX+PLUS II Compiler, as described in Compiling
Projects with MAX+PLUS II Software.

Installing the Altera-provided MAX+PLUS II/Viewlogic interface on your computer automatically creates
the following sample ViewDraw schematic files:

/usr/maxplus2/examples/viewlogic/example5/count4.vhd
/usr/maxplus2/examples/viewlogic/example5/count8.vhd

Related Topics:

Go to Powerview Command-Line Syntax in these MAX+PLUS II ACCESSSM Key topics for related
information.

Powerview Command-Line Syntax

Table 1 shows the command-line syntax for using Powerview functions.

Table 1. Powerview Command-Line Syntax

Action Command

Start VHDL Analyzer software vhdl -v <project name>
Start ViewSynthesis software vhdldes

Load Altera® technology library vhdldes> technology altera

Compile a VHDL design vhdldes> vhdl <project name>
Synthesize a design vhdldes> synthesize

Generate wirelist file vhdldes> wir

Create a schematic representation vhdldes> viewgen

Generate a synthesis report file vhdldes> report

Start the graphical user interface for
ViewSynthesis vhdldes> vdesgui

Start the VHDL-to-symbol utility vhdl2sym <project name>
Start vsm vsm <project name>
Start ViewSim simulator viewsim <project name> -<project name>.cmd

Start edifneto edifneto -f <project name>-l (std or altera) <project
name>.edf

Start Vantage VHDL Analyzer software analyze -src <design file>
Start MOTIVE for Powerview software mfp

Compiling Projects with MAX+PLUS II Software

The MAX+PLUS® II Compiler can process design files in a variety of formats. This topic describes how to
use MAX+PLUS II software to compile projects in which the top-level design file is an EDIF Input File
(with the extension .edf).

Refer to the following sources for additional information:

Go to MAX+PLUS II Help for information on compiling VHDL and Verilog HDL, design files
directly with the MAX+PLUS II Compiler.

Go to Running Synopsys Compilers from MAX+PLUS II Software for information on running
the Synopsys Design Compiler or FPGA Compiler software on a VHDL or Verilog HDL design
from within the MAX+PLUS II Compiler window.

To compile a design (also called a "project") with MAX+PLUS II software, go through the following steps:

1. Create design files that are compatible with the MAX+PLUS II software and convert them into EDIF
Input Files with the extension .edf. Specific instructions for some tools are described in these
MAX+PLUS II ACCESSSM Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the product
documentation for your design entry or synthesis and optimization tool.

2. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, create a mapping for each function in a Library Mapping File (.lmf) to map the custom
symbol to the corresponding EDIF Input File, AHDL Text Design File (.tdf), or other MAX+PLUS II-
supported design file. These custom functions are represented in design files as hollow-body symbols
or "black box" HDL descriptions.

Go to "Library Mapping Files (.lmf)" in MAX+PLUS II Help for more information.

3. Open MAX+PLUS II and specify the name of your top-level design file as the project name with the

Project Name command (File menu). If you open an HDL file in the MAX+PLUS II Text Editor, you
can choose the Project Set Project to Current File command (File menu) instead.

You can also compile a project from a command line. However, the first time you compile a
project, the settings you need to specify are easier to specify from within the MAX+PLUS II
software. After you have run the graphical user interface for the MAX+PLUS II software at least
once, you can more easily use the command-line setacf utility to modify options in the
Assignment & Configuration File (.acf) for the project. Type setacf -h and maxplus2 -h
for descriptions of setacf and MAX+PLUS II command-line syntax.

4. Choose Device (Assign menu) and select the target Altera device family in the Device Family drop-
down list box. If you wish to implement the design logic in a specific device, select it in the Devices
box. Otherwise, select AUTO to allow the MAX+PLUS II Compiler to choose the best device(s) in the
current device family. If your design entry or synthesis and optimization tool required you to specify a
target family and/or device, specify the same information in this dialog box. For information on
partitioning logic among multiple devices, go to MAX+PLUS II Help. Choose OK.

5. Open the Compiler window by choosing the Compiler command (MAX+PLUS II menu). Go through
the following steps to specify the options necessary to compile the design file(s) in your project:

1. Ensure that all EDIF netlist files have the extension .edf and choose EDIF Netlist Reader
Settings (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for that
vendor. This name should be the name of the vendor whose tool(s) you used to create the EDIF
netlist files. If your vendor name does not appear, select Custom instead.

If you are compiling a design created with Synopsys FPGA Express software, select
Synopsys, choose the Customize button, enter <project name>.lmf in the LMF #1 box,
choose OK, and skip to step 6.

3. If you selected an existing vendor name in the Vendor box and your project contains design files
that require custom LMF mappings, choose the Customize button to expand the dialog box to
show all settings. Turn on the LMF #2 checkbox and type your custom LMF's filename in the
corresponding text box, or select a name from the Files box. The selection in the Vendor box
will change to Custom and all settings will be retained until you change them again.

4. If you selected Custom in the Vendor box, choose the Customize button to expand the dialog
box to show all settings. Any previously defined custom settings will be displayed. Under Signal
Names, type one or more names with up to 20 total name characters in the VCC or GND box if
your EDIF Input File(s) use one or more names other than VCC or GND for the global high or low
signals. Multiple signal names must be separated by either a comma (,) or a space. Under
Library Mapping Files, turn on the LMF #1 checkbox and type a filename in the text box
following it, or select a name from the Files box. If necessary, specify another LMF name in the
LMF #2 box. Go to MAX+PLUS II Help for detailed information on the settings available in the
EDIF Netlist Reader Settings dialog box.

5. Choose OK.

6. If your design files contain symbols (or HDL instantiations) representing your own custom lower-level
logic functions, you may need to ensure that all files are present in your project directory, i.e., the same
directory as the top-level design file. Otherwise, you must specify the directories containing these files
as user libraries with the User Libraries command (Options menu).

7. Follow all guidelines that apply to your design entry or synthesis and optimization tool:

Exemplar Logic Galileo Extreme-Specific Compiler Settings

Synopsys DesignWare-Specific Compiler Settings
Converting Synopsys FPGA Compiler & Design Compiler Timing Constraints into
MAX+PLUS II-Compatible Format with the syn2acf Utility
Synplicity Synplify-Specific Compiler Settings

8. If you wish to generate EDIF, VHDL, or Verilog HDL output files for post-compilation simulation or
timing analysis with another EDA tool, go through the following steps:

1. (Optional) Turn on the Optimize Timing SNF command (Processing menu) to reduce the size
of the output file(s). Turning on this command can reduce the size of output netlists by up to
30%.

This command does not create optimized timing SNFs on UNIX workstations. However, a
non-optimized timing SNF provides the same functional and timing information as an
optimized timing SNF.

2. If you wish to generate EDIF Output Files (.edo), go through these steps:

1. Turn on the EDIF Netlist Writer command (Interfaces menu). Then choose the EDIF
Netlist Writer Settings command (Interfaces menu).

2. Select a vendor name in the Vendor drop-down list box to activate the default settings for
that vendor and choose OK. If your vendor name does not appear, select Custom instead
and specify the settings that are appropriate for your simulation or timing analysis tool. Go
to MAX+PLUS II Help for detailed information on the options available in the EDIF
Netlist Writer Settings dialog box.

3. To generate an optional Standard Delay Format (SDF) Output File (.sdo), choose the
Customize button to expand the dialog box to show all settings. Select one of the SDF
Output File options under Write Delay Constructs To, and choose OK.

The filenames of the EDIF Output File(s) and optional SDF Output File(s) are the same as the
user-defined chip name(s) for the project; if no chip names exist, the Compiler assigns filenames
that are based on the project name. For a multi-device project, the Compiler also generates a top-
level EDIF Output File that is uniquely identified by "_t" appended to the project name. In
addition, the Compiler automatically generates a VHDL Memory Model Output File, <project
name>.vmo, when it generates an EDIF Output File that contains memory (RAM or ROM).

3. If you wish to generate VHDL Output Files (.vho), turn on the VHDL Netlist Writer command
(Interfaces menu). Then choose VHDL Netlist Writer Settings command (Interfaces menu).
Select VHDL Output File (.vho) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF ver. 2.1 files contain timing delay information that allows
you to perform back-annotation simulation in VHDL with VITAL-compliant simulation
libraries. The VHDL Output Files generated by the Compiler have the extension .vho, but are
otherwise named in the same way as the EDIF Output Files described above.

4. If you wish to generate Verilog HDL Output Files (.vo), turn on the Verilog Netlist Writer
command (Interfaces menu). Then choose Verilog Netlist Writer Settings command (Interfaces
menu). Select Verilog Output File (.vo) or one of the SDF Output File options under Write Delay
Constructs To, and choose OK. SDF Output Files contain timing delay information that allows
you to perform back-annotation simulation in Verilog HDL. The Verilog Output Files generated
by the Compiler have the extension .vo, but are otherwise named in the same way as the EDIF
Output Files described above.

9. To run the MAX+PLUS II Compiler, choose the Project Save & Compile command (File menu) or
choose the Start button in the Compiler window.

See step 3 for information on running MAX+PLUS II software from the command line.

10. Once you have compiled the project with the MAX+PLUS II Compiler, you can use the VHDL,
Verilog HDL, or EDIF output file(s), and the optional SDF Output File(s) (.sdo) to perform timing
analysis or timing simulation with another EDA tool. Specific instructions for some tools are described
in these MAX+PLUS II ACCESS Key Guidelines. Otherwise, refer to MAX+PLUS II Help or the
product documentation for your EDA tool.

The MAX+PLUS II Compiler also generates a Report File (.rpt), a Pin-Out File (.pin), and one or more of
the following files for device programming or configuration:

JEDEC Files (.jed)
Programmer Object Files (.pof)
SRAM Object Files (.sof)
Hexadecimal (Intel-format) Files (.hex)
Tabular Text Files (.ttf)

Related Topics:

Refer to the following sources for additional information:
Go to Compiler Procedures in MAX+PLUS II Help for information on other available Compiler
settings.
Go to Programmer Procedures in MAX+PLUS II Help for instructions on creating other types
of programming files and on programming or configuring Altera devices.
Go to Back-Annotating MAX+PLUS II Pin Assignments to Design Architect Symbols for
information on back-annotating pin assignments in Mentor Graphics Design Architect
schematics.
Go to Programming Altera Devices for information on the different programming hardware
options for Altera device families.

Go to the following topics, which are available on the web, for additional information:
MAX+PLUS II Development Software
Altera Programming Hardware

Programming Altera Devices

Once you have successfully compiled and simulated a project with the MAX+PLUS® II software, you can
program an Altera® device and test it in the target circuit. Figure 1 shows the device programming flow for
MAX+PLUS II software.

Figure 1. MAX+PLUS II Device Programming Flow

Altera-provided items are shown in blue.

You can program devices with Altera programming hardware and MAX+PLUS II Programmer software
installed on a 486- or Pentium-based PC or a UNIX workstation, or with programming hardware and
software available from other manufacturers. Table 1 shows the available Altera programming hardware
options on PCs and UNIX workstations.

Table 1. Altera Programming Hardware

Programming
Hardware

Option
PCs

UNIX
Work-
stations

MAX®
3000A
Devices

Classic®
&

MAX
5000

Devices

MAX
7000

&
MAX

7000E
Devices

MAX
7000A,
MAX

7000AE,
MAX

7000B,
MAX
7000S
MAX
9000

&
MAX

9000A
Devices

FLEX®
6000,
FLEX

6000A,
FLEX 8000,
FLEX 10K,

FLEX
10KA,
FLEX
10KB,

&
FLEX 10KE

Devices

In-System
Programming/
Configuration

Logic Programmer
card, PL-MPU
Master
Programming
Unit, and
device-specific
adapters
BitBlaster
Download Cable
ByteBlasterMV
Download Cable
MasterBlaster
Download Cable

If you wish to transfer programming files from a UNIX workstation to a PC over a network with File
Transfer Protocol (FTP) or other similar transfer programs, be sure to select binary transfer mode.

Programming hardware from other manufacturers varies, but typically consists of a device connected to one
of the serial ports on the workstation. Various vendors, such as Data I/O and BP Microsystems, supply
hardware and software for programming Altera devices.

Related Topics:

Go to Compiling Projects with MAX+PLUS II Software for information on creating programming
files.
Go to the following topics, which are available on the web, for additional information:

MAX+PLUS II Development Software
Altera Programming Hardware
FLEX Devices
MAX Devices
Classic Device Family

	design-software-max_plus-ii-acf
	design-software-max_plus-ii-alt_mf
	design-software-max_plus-ii-alt_vtl
	design-software-max_plus-ii-annotate
	design-software-max_plus-ii-arch_toc
	design-software-max_plus-ii-archall
	design-software-max_plus-ii-cadenall
	design-software-max_plus-ii-clique
	design-software-max_plus-ii-clklock
	design-software-max_plus-ii-clock
	design-software-max_plus-ii-cmdsyntx
	design-software-max_plus-ii-comover
	design-software-max_plus-ii-compall
	design-software-max_plus-ii-compdir
	design-software-max_plus-ii-compflow
	design-software-max_plus-ii-compile
	design-software-max_plus-ii-compset
	design-software-max_plus-ii-concpall
	design-software-max_plus-ii-condir
	design-software-max_plus-ii-config
	design-software-max_plus-ii-conover
	design-software-max_plus-ii-conrapd
	design-software-max_plus-ii-conventions
	design-software-max_plus-ii-creating
	design-software-max_plus-ii-creatv
	design-software-max_plus-ii-creatvh
	design-software-max_plus-ii-dcfcall
	design-software-max_plus-ii-dcpage
	design-software-max_plus-ii-denflo
	design-software-max_plus-ii-dir_strc
	design-software-max_plus-ii-dsgnflow
	design-software-max_plus-ii-dsgnlib
	design-software-max_plus-ii-dsn_ntry
	design-software-max_plus-ii-dsnwrstp
	design-software-max_plus-ii-dswrcomp
	design-software-max_plus-ii-dswsynex
	design-software-max_plus-ii-dveqksim
	design-software-max_plus-ii-edif
	design-software-max_plus-ii-enwrite
	design-software-max_plus-ii-fg15cad
	design-software-max_plus-ii-fig17
	design-software-max_plus-ii-file_org
	design-software-max_plus-ii-fileorgn
	design-software-max_plus-ii-files
	design-software-max_plus-ii-flxsynt
	design-software-max_plus-ii-fpexpg
	design-software-max_plus-ii-fpxacf
	design-software-max_plus-ii-fpxall
	design-software-max_plus-ii-fpxdent
	design-software-max_plus-ii-fpxdevas
	design-software-max_plus-ii-fpxdsflo
	design-software-max_plus-ii-fpxlpm
	design-software-max_plus-ii-fpxlpmv
	design-software-max_plus-ii-fpxopt
	design-software-max_plus-ii-fpxpin
	design-software-max_plus-ii-fpxpjflo
	design-software-max_plus-ii-fpxramv
	design-software-max_plus-ii-fpxramvd
	design-software-max_plus-ii-fpxreasn
	design-software-max_plus-ii-fpxsoftr
	design-software-max_plus-ii-fpxsycon
	design-software-max_plus-ii-fpxsynt
	design-software-max_plus-ii-fpxtime
	design-software-max_plus-ii-frmwork
	design-software-max_plus-ii-frogall
	design-software-max_plus-ii-function
	design-software-max_plus-ii-functnal
	design-software-max_plus-ii-galilall
	design-software-max_plus-ii-galileo
	design-software-max_plus-ii-genacf
	design-software-max_plus-ii-gleo_toc
	design-software-max_plus-ii-gleocomp
	design-software-max_plus-ii-gui
	design-software-max_plus-ii-hdlanal
	design-software-max_plus-ii-hdlconf
	design-software-max_plus-ii-hdlentry
	design-software-max_plus-ii-hierarch
	design-software-max_plus-ii-holowbdy
	design-software-max_plus-ii-imflow
	design-software-max_plus-ii-initial
	design-software-max_plus-ii-inm2acvd
	design-software-max_plus-ii-inramrom
	design-software-max_plus-ii-inrromv
	design-software-max_plus-ii-insaltmf
	design-software-max_plus-ii-insaltmv
	design-software-max_plus-ii-insvprim
	design-software-max_plus-ii-intro
	design-software-max_plus-ii-leapfrog
	design-software-max_plus-ii-leapover
	design-software-max_plus-ii-leon_toc
	design-software-max_plus-ii-leonall
	design-software-max_plus-ii-leonardo
	design-software-max_plus-ii-library
	design-software-max_plus-ii-logicop
	design-software-max_plus-ii-logopt
	design-software-max_plus-ii-lpm
	design-software-max_plus-ii-lpm_func
	design-software-max_plus-ii-lut
	design-software-max_plus-ii-m2pfilst
	design-software-max_plus-ii-max79syn
	design-software-max_plus-ii-mentrall
	design-software-max_plus-ii-mg_file
	design-software-max_plus-ii-mg_intro
	design-software-max_plus-ii-mot_over
	design-software-max_plus-ii-motive
	design-software-max_plus-ii-motiveall
	design-software-max_plus-ii-motvlog
	design-software-max_plus-ii-mp2
	design-software-max_plus-ii-mp2_file
	design-software-max_plus-ii-mp2dir
	design-software-max_plus-ii-mp2file
	design-software-max_plus-ii-mpluslpm
	design-software-max_plus-ii-phoo
	design-software-max_plus-ii-pin
	design-software-max_plus-ii-plcassn
	design-software-max_plus-ii-postsyn
	design-software-max_plus-ii-program
	design-software-max_plus-ii-projstrc
	design-software-max_plus-ii-prrtsim
	design-software-max_plus-ii-pstrsim
	design-software-max_plus-ii-ptall
	design-software-max_plus-ii-ptgenpt
	design-software-max_plus-ii-ptpage
	design-software-max_plus-ii-ptsetup
	design-software-max_plus-ii-qhdl_toc
	design-software-max_plus-ii-qhdlall
	design-software-max_plus-ii-qhdlpro
	design-software-max_plus-ii-qpathall
	design-software-max_plus-ii-qpth_toc
	design-software-max_plus-ii-qsim_toc
	design-software-max_plus-ii-qsimall
	design-software-max_plus-ii-quickhdl
	design-software-max_plus-ii-quicksim
	design-software-max_plus-ii-quikpath
	design-software-max_plus-ii-ramrom
	design-software-max_plus-ii-rapidall
	design-software-max_plus-ii-rapidsim
	design-software-max_plus-ii-rapover
	design-software-max_plus-ii-reassn
	design-software-max_plus-ii-require
	design-software-max_plus-ii-resource
	design-software-max_plus-ii-sch_exprs
	design-software-max_plus-ii-schmatic
	design-software-max_plus-ii-sdf
	design-software-max_plus-ii-setting
	design-software-max_plus-ii-setup
	design-software-max_plus-ii-sftreq2
	design-software-max_plus-ii-simflow
	design-software-max_plus-ii-simguide
	design-software-max_plus-ii-sof-maxplus2
	design-software-max_plus-ii-softreq
	design-software-max_plus-ii-sparc
	design-software-max_plus-ii-spctyall
	design-software-max_plus-ii-start
	design-software-max_plus-ii-symlib
	design-software-max_plus-ii-synall
	design-software-max_plus-ii-syncom
	design-software-max_plus-ii-synlib
	design-software-max_plus-ii-synover
	design-software-max_plus-ii-synpover
	design-software-max_plus-ii-synpreq
	design-software-max_plus-ii-synpvhdl
	design-software-max_plus-ii-sypfig1
	design-software-max_plus-ii-sysdir
	design-software-max_plus-ii-techlibs
	design-software-max_plus-ii-timcons
	design-software-max_plus-ii-tools
	design-software-max_plus-ii-updncntr
	design-software-max_plus-ii-updswlib
	design-software-max_plus-ii-vdsimlib
	design-software-max_plus-ii-verilogx
	design-software-max_plus-ii-verover
	design-software-max_plus-ii-vhd_exprs
	design-software-max_plus-ii-vhdl_lpm
	design-software-max_plus-ii-vhdledif
	design-software-max_plus-ii-vhdlprim
	design-software-max_plus-ii-vhdlproc
	design-software-max_plus-ii-vhdlsyn
	design-software-max_plus-ii-vlogall
	design-software-max_plus-ii-vlogcom
	design-software-max_plus-ii-vlogedif
	design-software-max_plus-ii-vloglink
	design-software-max_plus-ii-vlogsyn
	design-software-max_plus-ii-vproc
	design-software-max_plus-ii-vssall
	design-software-max_plus-ii-vssconfig
	design-software-max_plus-ii-vsspage
	design-software-max_plus-ii-vsynt
	design-software-max_plus-ii-vwdrwini
	design-software-max_plus-ii-welcome
	software-eda_maxplus2
	software-eda_maxplus2-common
	software-eda_maxplus2-common-common
	software-eda_maxplus2-common-common-copyrite
	software-eda_maxplus2-maxkey_success
	software-eda_maxplus2-mentor
	software-eda_maxplus2-mentor-archtect
	software-eda_maxplus2-mentor-archtect-schmati
	software-eda_maxplus2-mentor-intro
	software-eda_maxplus2-mentor-intro-v_clklck
	software-eda_maxplus2-synopsys
	software-eda_maxplus2-synopsys-compilers
	software-eda_maxplus2-synopsys-compilers-synfig11
	software-eda_maxplus2-synopsys-intro
	software-eda_maxplus2-synopsys-intro-desnflw
	software-eda_maxplus2-synopsys-intro-synopall
	software-eda_maxplus2-viewlogic
	software-eda_maxplus2-viewlogic-fus_vcs
	software-eda_maxplus2-viewlogic-fus_vcs-fus_vcsall
	software-eda_maxplus2-viewlogic-fus_vcs-simvcs
	software-eda_maxplus2-viewlogic-fus_vcs-vcs
	software-eda_maxplus2-viewlogic-intro
	software-eda_maxplus2-viewlogic-intro-compflow
	software-eda_maxplus2-viewlogic-intro-dsgnflow
	software-eda_maxplus2-viewlogic-intro-fig09
	software-eda_maxplus2-viewlogic-intro-fig13
	software-eda_maxplus2-viewlogic-intro-framwork
	software-eda_maxplus2-viewlogic-intro-introall
	software-eda_maxplus2-viewlogic-intro-resource
	software-eda_maxplus2-viewlogic-intro-simedif
	software-eda_maxplus2-viewlogic-intro-vhdl
	software-eda_maxplus2-viewlogic-vantage
	software-eda_maxplus2-viewlogic-vantage-sim_van
	software-eda_maxplus2-viewlogic-vantage-vantage
	software-eda_maxplus2-viewlogic-vantage-vantageall
	software-eda_maxplus2-viewlogic-viewdraw
	software-eda_maxplus2-viewlogic-viewdraw-ahdl
	software-eda_maxplus2-viewlogic-viewdraw-designn
	software-eda_maxplus2-viewlogic-viewdraw-dsgnntry
	software-eda_maxplus2-viewlogic-viewdraw-edif
	software-eda_maxplus2-viewlogic-viewdraw-hollow
	software-eda_maxplus2-viewlogic-viewdraw-lpmclk
	software-eda_maxplus2-viewlogic-viewdraw-schmax
	software-eda_maxplus2-viewlogic-viewdraw-viewdrawall
	software-eda_maxplus2-viewlogic-viewsim
	software-eda_maxplus2-viewlogic-viewsim-funcsim
	software-eda_maxplus2-viewlogic-viewsim-sim
	software-eda_maxplus2-viewlogic-viewsim-simul
	software-eda_maxplus2-viewlogic-viewsim-viewsimall
	software-eda_maxplus2-viewlogic-vwsyn
	software-eda_maxplus2-viewlogic-vwsyn-synth
	software-eda_maxplus2-viewlogic-vwsyn-vhdlmax
	software-eda_maxplus2-viewlogic-vwsyn-viewsyn
	software-eda_maxplus2-viewlogic-vwsyn-vwsynall

