

INTEL® IN-MEMORY ANALYTICS ACCELERATOR (INTEL® IAA)
ARCHITECTURE SPECIFICATION

Document ID: 60941
Revision: 03
August 2023

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 1

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation. No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel
products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which
includes the subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of merchantability, fitness for a
particular purpose, and non-infringement, as well as any warranty arising from course of performance, course of dealing, or usage in
trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not publicly available. These are
not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document, with the sole
exception that a) you may publish an unmodified copy and b) code included in this document is licensed subject to the Zero-Clause BSD
open source license (0BSD), https://opensource.org/licenses/0BSD. You may create software implementations based on this document
and in compliance with the foregoing that are intended to execute on the Intel product(s) referenced in this document. No rights are
granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and
brands may be claimed as the property of others.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 2

Revision History

Date Revision Description

April 2022 The initial release of the document.

December 2022 First revision and refinement of content.

April 2023
• Removed “Intel Confidential” from header.
• Changed Metadata: added Intel Corp as author, added keywords and summary.
• Removed duplicated section from Chapter 6.

August 2023 Added discussions of index table and decompression on bit-boundaries.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 3

Glossary
Acronym Term Description

AECS Analytics Engine Configuration and
State

A data structure used to pass configuration data that did not fit into the
descriptor to the accelerator, and to pass state information between
descriptor executions when a job consists of multiple descriptors.

DSA Intel® Data Streaming Accelerator Intel Accelerator designed to accelerate streaming operations such as
memory copy and others.

QPL Intel® Query Processing Library Intel library to interface between applications and the hardware.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 4

Table of Contents
1 Introduct ion . 9

1.1 Audience ... 9
1.2 References .. 9

2 Overview . 10
2.1 Data Analytics Features .. 10

3 Intel® Analyt ics Accelerator Architecture . 12
3.1 Operations Overview ... 12
3.2 Analytics Engine Configuration and State .. 12

3.2.1 AECS Format .. 13
3.3 Decompression ... 14

3.3.1 Verification ... 14
3.3.2 Index Generation ... 14
3.3.3 Decompression With non-Byte-aligned Boundaries .. 16

3.4 Compression ... 17
3.4.1 Statistics Mode Output .. 18
3.4.2 Compression Output Overflow .. 18
3.4.3 Compression Indexing .. 18
3.4.4 Compression with a Dictionary .. 18
3.4.5 Compression Header Generation .. 19
3.4.6 Compression Early Abort ... 20
3.4.7 Last Descriptor Bit .. 21

3.5 Encryption/Decryption ... 21
3.5.1 AES-CFB .. 22
3.5.2 GCM ... 23
3.5.3 XTS ... 24
3.5.4 Decryption with Indexing ... 24

3.6 Checksum Calculations ... 24
3.7 Drop Initial Bits vs. Drop Initial Bytes ... 25
3.8 Filter Functions ... 25

3.8.1 Parser ... 25
3.8.2 Output Modification .. 26
3.8.3 Aggregation .. 27

3.9 Chaining of Functions ... 27
3.10 Operation Types ... 27

3.10.1 Decompress ... 27
3.10.2 Compress ... 28
3.10.3 CRC64 .. 28
3.10.4 Scan ... 29
3.10.5 Extract .. 29
3.10.6 Select ... 29
3.10.7 Expand ... 29

4 Error Handl ing . 31
4.1 Descriptor Checks ... 31
4.2 Descriptor Reserved Field Checking ... 31
4.3 AECS Checks ... 35

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 5

4.4 Error Codes ... 36
4.4.1 Operation Status Codes ... 36
4.4.2 Error Code .. 37

5 Software Architecture . 39
5.1 Intel® Query Processing Library ... 39

6 Structure Formats . 40
6.1 Descriptor ... 40

6.1.1 Trusted Fields ... 40
6.1.2 Operation ... 41
6.1.3 Operation Flags .. 42
6.1.4 Completion Record Address .. 44
6.1.5 Source 1 Address ... 44
6.1.6 Destination Address ... 45
6.1.7 Source 1 Transfer Size .. 45
6.1.8 Completion Interrupt Handle ... 45
6.1.9 Source 2 Address ... 45
6.1.10 Maximum Destination Size .. 46
6.1.11 Source 2 Transfer Size ... 46

6.2 Completion Record ... 47
6.2.1 Status ... 47
6.2.2 Error Code .. 47
6.2.3 Fault Info .. 48
6.2.4 Bytes Completed .. 48
6.2.5 Fault Address ... 48
6.2.6 Invalid Flags .. 49
6.2.7 Output Size ... 49
6.2.8 Output Bits ... 49
6.2.9 XOR Checksum ... 49
6.2.10 CRC... 49
6.2.11 Aggregates ... 50
6.2.12 Crypto Hash ... 50

6.3 Descriptor Types ... 51
6.3.1 Intel® DSA Operations .. 51
6.3.2 Decompress Descriptor (0x42) ... 51
6.3.3 Analytics Descriptor (0x50, 0x52, 0x53, 0x56) ... 53
6.3.4 Decrypt/Encrypt Descriptor (0x40, 0x41) .. 56
6.3.5 Compress Descriptor (0x43) ... 57
6.3.6 CRC64 Descriptor (0x44) .. 60

6.4 Analytics Engine Configuration and State .. 62
6.4.1 AECS Format for Encrypt, Decrypt, Decompress, and Filter .. 62
6.4.2 AECS Format for Compress .. 67

7 Summary of Dif ferences f rom Intel® DSA . 69
7.1 General Differences .. 69
7.2 Configuration and Control Register Differences .. 70

7.2.1 General Capabilities Register (GENCAP) .. 70
7.2.2 Intel IAA Capabilities Register (IAACAP) ... 70

7.3 PCI Express (PCIe) Configuration Register Differences ... 72

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 6

7.3.1 Device ID (DID) ... 72
7.3.2 Outstanding Page Request Capacity (PRSREQCAP) ... 72

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 7

List of Tables
Table 1-1 References ... 9
Table 3-1 Supported Data Operations .. 12
Table 3-2 AECS Sizes for Various Operations .. 13
Table 3-3 Nominal AECS Write Sizes ... 13
Table 3-4 Histogram Table Output in Statistics Mode .. 18
Table 3-5 Dictionary Styles and Sizes .. 19
Table 3-6 Checksum Location ... 24
Table 3-7 Examples of CRC64 Parameters .. 29
Table 4-1 Operations Flags Applicability ... 32
Table 4-2 Analytics Flags Applicability .. 33
Table 4-3 Operation-Specific Allowed Fields .. 34
Table 4-4 Data Size Checks ... 34
Table 4-5 Non-Compress AECS Checks ... 35
Table 4-6 Compress AECS Checks ... 36
Table 4-7 Operation Status Codes .. 36
Table 4-8 Error Codes ... 37
Table 6-1 Descriptor Trusted Fields .. 40
Table 6-2 Operation Types .. 41
Table 6-3 Operations Flags ... 42
Table 6-4 Source 2 Sizes for Different Values of Load Dictionary ... 46
Table 6-5 Completion Record Status Field .. 47
Table 6-6 Completion Record Fault Info ... 48
Table 6-7 Completion Record Aggregates fields ... 50
Table 6-8 Decompression Flags .. 51
Table 6-9 Decompression Flags .. 53
Table 6-10 Filter Flags ... 54
Table 6-11 Cipher Flags ... 56
Table 6-12 Compression Flags .. 57
Table 6-13 Compression 2 Flags ... 59
Table 6-14 CRC Flags ... 60
Table 6-15 AECS Format for Decompress and Filter ... 62
Table 6-16 AECS Fields for Decompress and Filter ... 63
Table 6-17 Decompress/Analytics Internal State .. 64
Table 6-18 ALU Field Definitions ... 65
Table 6-19 ALU Field Descriptions .. 66
Table 6-20 Default Field Values .. 67
Table 6-21 AECS Format for Compress ... 67
Table 6-22 AECS Fields for Compress .. 68
Table 7-1 General Capabilities Register (GENCAP) Description .. 70
Table 7-2 Intel® IAA Capabilities Register (IAACAP) Description .. 70

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 8

List of Figures
Figure 2-1 Intel® Analytics Accelerator ... 10
Figure 3-1: Index Arrangement for Single Block Usage ... 15
Figure 3-2: Index Arrangement for Multiple Block Usage ... 15
Figure 3-3 GCM Calculations ... 23
Figure 6-1 Generic Intel® IAA Descriptor Format .. 40
Figure 6-2 Intel® IAA Completion Record Format ... 47
Figure 6-3 Decompress Descriptor ... 51
Figure 6-4 Analytics Descriptor ... 53
Figure 6-5 Decrypt/Encrypt Descriptor ... 56
Figure 6-6 Compress Descriptor ... 57
Figure 6-7 CRC-64 Descriptor .. 60
Figure 6-8 CRC-64 Completion Record. ... 60

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 9

1 INTRODUCTION

The Intel® In-Memory Analytics Accelerator (Intel® IAA) is a hardware accelerator that provides very high throughput
compression and decompression combined with primitive analytic functions.

The Intel® Data Streaming Accelerator (Intel® DSA) is a data mover and transformation accelerator. Intel IAA and Intel DSA
share the same hardware/software and programming interface. This document describes the Intel IAA-specific functionality
and the minor differences in interface from the base Intel DSA specification. One should refer to the Intel Data Streaming
Accelerator Architecture specification for details on the common elements.

1.1 Audience

The intended audience for this specification includes hardware engineers and SoC architects to build the hardware
implementation, device driver software developers to program the device, virtualization software providers to efficiently
enable sharing and virtualization of the device, and application or library developers utilizing accelerator operations.

It is assumed that the reader is already familiar with the Intel Data Streaming Accelerator (Intel DSA) architecture.

1.2 References

Table 1-1 References

Intel® Data Streaming Accelerator Architecture Specification

Intel® 64 and IA-32 Architectures Software Developer's Manuals

Intel® Architecture Instruction Set Extensions Programming Reference

Intel® Query Processing Library

PCI Express* Base Specification 4.0

Intel® Virtualization Technology for Directed I/O Specification

Intel® Scalable I/O Virtualization Technical Specification

Intel® I/O Acceleration Technology

ITU-T Series V: Data Communication Over the Telephone Network-- Error Control V.42

RFC 1951, Deflate Compressed Data Format Specification

RFC 3720, Internet Small Computer Systems Interface

https://www.intel.com/content/www/us/en/develop/articles/intel-data-streaming-accelerator-%20architecture-specification.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-set-%20extensions-programming-reference.html
https://github.com/intel/qpl
http://www.pcisig.com/specifications/pciexpress
https://software.intel.com/content/www/us/en/develop/download/intel-virtualization-technology-for-%20directed-io-architecture-specification.html
https://software.intel.com/content/www/us/en/develop/download/intel-scalable-io-virtualization-
https://www.intel.com/content/www/us/en/wireless-network/accel-technology.html
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-V.42-200203-I!!PDF-E&type=items
http://www.ietf.org/rfc/rfc1951.txt
http://www.ietf.org/rfc/rfc3720.txt

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 10

2 OVERVIEW
The Intel® In-Memory Analytics Accelerator (Intel® IAA) is a hardware accelerator that provides very high throughput
compression and decompression combined with analytics primitive functions. The analytic functions are commonly used for
filtering data during analytic query processing. It primarily targets applications such as big-data and in-memory analytics
databases, as well as application-transparent usages such as memory page compression. Other operations, such as data
integrity functions (e.g., CRC64), are also supported. The device supports formats such as Huffman encoding and Deflate.
For the Deflate format, it supports indexing the compressed stream for efficient random access.

2.1 Data Analytics Features

The accelerator logically contains three main functional blocks: Compression, Encryption, and Analytics. The Analytics pipe
contains three sub-blocks: Decrypt, Decompress, and Filter. These functions are tied together so each analytics operation
can perform any combination of decrypt/decompress/filter (e.g., decrypt-filter), as illustrated in Figure 2-1. Alternatively,
one can compress or encrypt the input. Compression and Encryption cannot be linked with any other operations.

Not all of the functional blocks and features are available on all versions of the accelerator. The availability of these blocks
and features are conveyed through the capability registers, in particular OPCAP, GENCAP (Section 7.2.1), and IAACAP
(Section 7.2.2). Software should consult these registers before using a capability described by one of these registers.

The accelerator allows storing columnar databases in compressed form, decreasing memory footprint. In addition to
increased effective memory capacity, this also reduces memory bandwidth by performing the filter function used for
database queries “on the fly,” thereby avoiding the use of memory bandwidth for uncompressed raw data transfer.

Decrypt DEFLATE
Decompress

SQL Filter
Functions

DEFLATE
Compress

Encrypt

Source 1 Output

Source 2

Figure 2-1 Intel® Analytics Accelerator

The device supports decompression compatible with the Deflate compression standard described in RFC 1951. The
uncompressed data may be written directly to memory or passed to the input of the filter function. Decompression is
supported for Deflate streams where the size of the history buffer is no more than 4096 bytes.

It also supports Deflate compression, along with the calculation of arbitrary CRCs.

Intel IAA encryption/decryption supports the following algorithms: GCM-AES128 (GCM with 128-bit keys), GCM-AES256,
CFB-AES128, CFB-AES256, XTS-AES128, and XTS-AES256.

The SQL filter function block takes one or two input streams, a primary input, and in some cases, a secondary input. The
primary input may be read from memory or received from the decompression or decryption block. If used, the secondary
input is always read from memory. The data streams logically contain an array of unsigned values; however, they may be

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 11

formatted in any of several ways, e.g., as a packed array. If the bit-width of the values is 1, the stream will be referenced as
a “bit-vector”; otherwise, it will be referenced as an “array.”

The output of the filter function may be either an array or a bit vector, depending on the function.

In addition to generating output data, the device computes a 32-bit CRC and an XOR checksum of the data stream. See
Section 3.6 for details. It also computes several “aggregates” of the output data. The CRC, XOR checksum, and aggregates
are written to the completion record.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 12

3 INTEL® ANALYTICS ACCELERATOR ARCHITECTURE

3.1 Operations Overview

The accelerator supports data operations listed below, further detailed in the following sections.

Table 3-1 Supported Data Operations

Type Operation Description

Decompress Decompress Decompresses input data.

Compress Compress Compresses input data.

Decrypt Decrypt Decrypts input data.

Encrypt Encrypt Encrypts input data.

Filter

Scan Computes a bit-mask of which entries satisfy a condition.

Extract Returns entries as specified by a range of entry indices.

Select Returns entries as specified by a bit-mask.

Expand Inserts zeros as specified by a bit-mask.

CRC CRC64 Computes an arbitrary CRC up to 64-bits in size.

Memory Translation Fetch Prefetches address translations.

The analytics pipeline consists of three stages:
1. Decrypt
2. Decompress
3. Filter, CRC64

In general, any non-empty subset of these operations can be performed in this order. All other operations must be done
individually.

The paradigm for configuring the decrypt/decompress/filter pipeline is that the opcode specifies the last operation to be
performed, and earlier operations are enabled via flag bits. For example, if any filter operation is to be performed, the
opcode specifies the filter operation and flag bits indicate whether decrypt and/or decompress is to be done. If
decompression but no filter operation is to be performed, the decompress opcode is used. Only if decrypt is to be
performed with no decompress and no filter operation is the decrypt opcode used.

3.2 Analytics Engine Configuration and State

The analytics engine configuration and state (AECS) structure contains configuration information used to control the
behavior of the various functions. Details of this structure are in Section 6.4. In addition to configuration information, the
AECS may contain internal state of the analytics engine. The state information can be used to initialize the engine to a
known state and to propagate state information from one operation to another. For each operation, the AECS may be read
or written or both, depending on flags in the descriptor, as described in Section 6.1.3

When Source 2 Address and Source 2 Size are being used to read and/or write the AECS, then the actual memory being
referenced will be twice the specified size. The read will occur from one half of the area, and the write will occur to the
other half. In this way, the input data will not get overwritten by the output data, so that in the event of an error, the
request can be retried by software. The AECS R/W Toggle Selector bit in the Operations Flags field of the descriptor
indicates which half supplies the read data, and which half receives the write data.

In particular, if the AECS address (i.e., Source 2 Address) is “A,” and the AECS size (i.e., Source 2 Transfer Size) is “S,” then in
one case the AECS is read from (A) and written to (A+S), and in the other case it is read from (A+S) and written to (A). Note
that the total amount of memory accessed would be in general (2S).

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 13

Note that in some cases the AECS may be read but not written or written but not read. In either of these cases, the address
used for the read or the write is the same as if there was both a read and a write happening. For example, if the AECS was
being read but not written, and the AECS R/W Toggle Selector was 1, then the AECS would be read from (A+S) and nothing
would be written to (A).

The Source 2 buffer cannot overlap the Source 1 buffer or the Destination buffer. If Source 2 contains AECS data, then the
size of the Source 2 buffer for the purposes of the overlap check is twice the Source 2 Transfer Size. This is true regardless
of whether it is being read, written, or both. For example, if Source 2 is being read as AECS and not written, so that it is only
referencing the first half, then it is still required that the Source 1 and Destination buffers do not overlap either half of the
doubled AECS buffer, even though the second half is not being used.

Depending on the operation, some portions of the nominal AECS may not be relevant and do not need to be read/written.
Normally, the AECS is read from the beginning so that the Source 2 Size determines how much of the data at the end of the
AECS is omitted.

Additionally, if decompression is enabled and Source 2 is being read as AECS (not written), the Load Partial flag bit in the
Decompression Flags can be set (see Section 6.3.2.1). This causes the AECS data that is read to be interpreted as if they
were preceded by 448 bytes of 0x00. In other words, the fields in the AECS that fall within the first 448 bytes take their
default value of 0, and the fields starting at an offset of 448 are initialized with the data read from Source 2. This can be
used for certain decompress operations where the earlier portion of the AECS contains no useful data, and where one is
trying to minimize the amount of data read from Source 2 so as to minimize the decompress latency. An example would be
when decompressing small pages with “canned” Deflate headers. The headers would be pre-parsed so that the actual
compression operation would only want to load the Huffman Tables.

In general, the Source 2 data (for AECS) would contain the AECS data starting at either 0 or 448 and continuing to next
multiple of 32 after the last bit of required data. This means that the size of Source 2 will depend on the operation. Some
typical sizes (assuming the data starts at an offset of 0) are given in Table 3-2.

Table 3-2 AECS Sizes for Various Operations

Operation AECS Size

Filter 32

Encrypt/Decrypt 192

Decompress for Indexing 1088 (for AECS Format 1)
1248 (for AECS Format 2)

Decompress 5376

Compress (With Huffman Table) 1568

The amount of AECS data written back to the Source 2 buffer (if writing is enabled) is generally the smaller of the nominal
size and the specified size. In other words, it will never write more than the nominal size and it will never write more than
the specified size. The nominal sizes are given in Table 3-3.

Table 3-3 Nominal AECS Write Sizes

Condition Nominal Size

Decompress 5376

Compress with Write AECS Huffman Tables Flag set 1568

Compress without Write AECS Huffman Tables Flag set 64

3.2.1 AECS Format

There are two different formats for the decompress/analytics AECS. This reflects a change in the microarchitecture of the
decompression engine after the first generation. There are some format fields in the AECS that indicate which format the
data is in. If an AECS in the wrong format is read by the accelerator, the processing terminates with an error.

The appropriate AECS Format is indicated by IAACAP bit 0 (see Section 7.2.2).

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 14

This only applies to the AECS for decompress/analytics/crypto. It does not apply to the AECS for compression.

At byte offset 0x1DD there is a 3-bit AECS Format Number. The low order bit in the “Output Bits Valid” field (i.e. at offset
0xB0) is the AECS Format Valid bit. If the Format Valid bit is 0, then the Format Number is reserved.

In Format-1, both of these values must be 0, and in Format-2, both of these values must be 1. See Section 6.4.1.
• If an accelerator expecting a Format-1 AECS reads a Format-2 AECS, it will see an invalid value for the Output Bits

Valid field and return an AECS error.
• If an accelerator expecting a Format-2 AECS reads a Format-1 AECS, it will see the incorrect Format Number and

return an AECS Format error.
The intent is to provide a mechanism whereby the software library (or application, if not using the library) could check for
these errors and, if necessary, convert the AECS to the proper format and resubmit the descriptor. Alternatively, the
software could check these bits before submitting the descriptor.

3.3 Decompression

Intel IAA supports decompression compatible with the Deflate compression standard described in RFC 1951. The
decompression block reads a compressed stream and an optional AECS and generates the corresponding uncompressed
data. The uncompressed data may be written directly to memory or passed to the input of the filter function.

Decompression can be performed on a single buffer, where the entire stream is contained in a single buffer, or on multiple
buffers, where the stream spans more than one buffer. In the latter case, a separate descriptor is submitted for each buffer.
This is called a job. That is, a job is a series of descriptors that operate on one logical stream. The descriptors in a job are
tied together by the use of a common AECS. The AECS written by each descriptor in the job is read by the next descriptor.
The AECS structure contains data used to connect the individual descriptors used to process one logical job. It is typically
read on all but the initial descriptor of a job, and it is written on all but the final descriptor.

For operations that write the output of decompression to memory, the output buffer size specified in the descriptor should
be large enough to hold the output of the operation. If the output does not fit into the specified output buffer, the
decompression operation terminates and reports the amount of the input that was consumed. An additional descriptor
must be submitted to process the remaining input data into a new output buffer.

Decompression is supported for Deflate streams where the size of the history buffer is no more than 4 KB. (The default size
for Deflate is 32 KB.) Using an input stream with a larger history size results in an error.

3.3.1 Verification

The decompression operation can be used by software to verify that the output generated by compression is correct, i.e.,
that it can be decompressed back to the original input. This could be done as a normal decompression job, with the output
going into a buffer that is then compared against the original input.

A more efficient approach is to suppress the output of the decompressor. In this case, the hardware would write no output
data, but it would still calculate the CRC of the decompressed data. This can then be compared against the CRC computed
from the input to the compressor.

This avoids the need to have a temporary buffer in which to write the decompressed data, the overhead of the compare
operation, and the bandwidth required to write and read that data.

3.3.2 Index Generation

The generation of indices for the compressed data (cf. Section 3.4.3) is done by the decompressor while it is operating for
verification. In this case, the normal decompressed output has to be suppressed. Then when indexing is enabled, the index
data is written to the output buffer. Note that the compression must have been done with indexing enabled.

The flush flag cannot be used when indexing is being used, except for a last descriptor (i.e., when write_AECS is “never”).

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 15

3.3.2.1 Structure of the Index Table
Each index entry is 8-bytes (64-bits) long. The upper 32-bits is the CRC value of the uncompressed data up to the point
corresponding to that index. The lower 32-bits is the bit-offset in the compressed data stream.

It is important to understand what the different indices point to, so that the proper ones can be used for access. In general,
the indices for each block point to the boundaries between Deflate Block headers, miniblocks, and the EOB token. In other
words, there will be an index entry at the start and at the end of each of these structures within the Deflate stream. The
exception is that the hardware will not write an entry corresponding to the start of the first Deflate Block header. It is
recommended that software write an initial entry of 0 into the index buffer, set the Destination Address to point to the
second index entry, and set the Max Destination Size to the actual size of the index array minus 8.

Note that the AECS field Bit Offset for Indexing is used to pass the bit offset between linked descriptors. If it is desired that
the bit offsets in the index table start from a non-zero value, then this field can be written for the first descriptor to set the
starting value. In this case, the initial index value written by software would contain this value rather than zero.

To make it easier to map between miniblock number and index entries, it is recommended that the block structure of the
Deflate stream be regular. There are two common forms of this. The simplest is where the output consists of a single
Deflate block. The index layout for this is illustrated in Figure 3-1.

Blk 0
HDR

MBlk
0

MBlk
1

MBlk
2

MBlk
3

MBlk
4

MBlk
5

MBlk
6

MBlk
7

MBlk
8

MBlk
9

MBlk
10 EOB

Block 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13

Indices
Figure 3-1: Index Arrangement for Single Block Usage

In this example, the first index (created by software) points to the start of the Deflate Block header. Indices 1 through 11
point to the start of the 11 miniblocks. Index 12 points to the start of the EOB token, and Index 13 points to the end of the
EOB token, which is also the end of the stream.

The other common structure is where there are multiple blocks, and all of the blocks with the possible exception of the last
block are the same size. This is illustrated in Figure 3-2.

Blk 0
HDR

MBlk
0

MBlk
1

MBlk
2

MBlk
3 EOB Blk 1

HDR
MBlk

4
MBlk

5
MBlk

6
MBlk

7 EOB Blk 2
HDR

MBlk
8

MBlk
9

MBlk
10 EOB

Block 0 Block 1 Block 2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Indices
Figure 3-2: Index Arrangement for Multiple Block Usage

In this case, all of the Deflate Blocks except for the last one must have a size that is a multiple of the miniblock size. It is
convenient but not required that the size be a power of 2 (e.g., a miniblock sizeof 1kB and a Deflate Block size of 32kB).

Knowing how big the miniblocks are, and how many miniblocks are in each Deflate Block, one can map from an offset in the

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 16

uncompressed stream to a particular miniblock, and from there one can compute the index entries that point to the start
and end of that Deflate Block’s header, and to the start and end of that miniblock.

3.3.3 Decompression With non-Byte-aligned Boundaries

In some applications, a user may want to decompress part of a compressed stream, where the starting and/or ending
locations do not align with a byte boundary.

In one formulation, the user has a pointer (actually an offset) to the start of the data to be processed (as a bit offset) and a
pointer to the end (actually an offset to first bit not to be processed). If these are called START and END, then the total bit
length of the data to be processed would be (END – START). For example, these pointers might have come from the index
table (cf. Section 3.3.2.1).

Conceptually, one wants to convert these two pointers to a pointer to the starting byte, the number of bytes to process,
and the number of bits to ignore in the first and last byte. This can be done, for example, with the following logic:

Start_address = data_buffer_address + START/8;
Size = ((END + 7)/8) – (START/8);
Ignore_start_bits = START & 7;
Ignore_end_bits = 7 & (0 – END);

Note that the Size is not ((END + 7 – START)/8).

3.3.3.1 Ending on a non-Byte-aligned Boundary
Ending on a non-byte-aligned position is relatively easy. There is a Decompression Flags field “Ignore End Bits” (see
Section 6.3.2.1). A non-zero value in this field instructs IAA to stop processing on the last byte the specified number of bits
from the end of the byte. For example, a value of 0 (the default) indicates that the whole byte should be processed,
whereas a value of 3 would indicate that the first 5 bits should be processed, and the last 3 should be ignored.

The only complication is when the Decompression Bit Order flag is set. In this case, the input consists of an integral number
of 16-bit words, or an even number of bytes. In this case, one may need to drop up to 15 bits. This can’t always be done
with the Ignore End Bits field, because that field is only 3 bits wide. To handle this case, there is 1-bit Ignore End Bits
Extension field, which is logically bit-3 of the number of bits to be ignored. That is, in this case the Ignore End Bits Extension
field gets bit-3 and Ignore End Bits gets bits 2:0 of the desired value.

This is slightly different for the CRC Flags. In this case, the “Ignore End Bits Extension” is really just bit-3 of the Ignore End
Bits field. In other words, for the CRC opcode, the Ignore End Bits field is 4 bits wide, while in the other operations that have
Decompress Flags, there is a 1-bit Ignore End Bits Extension field and a 3-bit Ignore End Bits field.

Note that if IAACAP bit-0 is 0, then the Ignore End Bits Extension field is not supported, and CRC, the Ignore End Bits field is
only 3 bits wide. In this case, if the Decompress Bit Order flag is set, and the user wants to drop more than 7 bits, this
cannot be done.

3.3.3.2 Starting on a non-Byte-aligned Boundary: Method 1
The basic idea here is to store the partial byte (word or DWORD) that starts the data in the AECS input accumulator.

The IAA hardware contains an “input accumulator” which buffers data between coming in from memory and going out to
the decoders. Roughly speaking, it takes data in a QWORD at a time, and outputs data at a bit granularity. It is represented
in the AECS (cf. Section 6.4.1) as “Input Accumulator Data” and “Size QW n”. Logically, the data area is considered to be an
array of 32 QWORDs, with the number of bits present in each QWORD represented by a separate size field. For example, if
the input accumulator was initialized to contain 9 bytes of data, then the data would be written into the first 9 bytes of the
Input Accumulator Data field (8 bytes into the first QWORD and 1 byte into the second QWORD), and then Size QW 0 would
be set to 64 (64-bits = 8 bytes), and Size QW 1 would be set to 8.

In a typical case, when one is starting on a non-byte-aligned boundary, the input accumulator is empty. Then one can
simply write the partial byte (or larger granularity) into the beginning of the input accumulator data (i.e. into the first
QWORD of the input accumulator data) and set the Size QW 0 field to the number of bits so written.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 17

Note that the valid data should start at bit-0 of the input accumulator. So, for example, if the data started on bit-3 (i.e., one
wanted to drop the first 3 bits), one would set the input accumulator data to (data byte >> 3) and the Size QW 0 field to 5.
One would then point the Source 1 Address to the first full byte (i.e., the byte after the partial byte), and adjust the Source
1 Transfer Size accordingly.

This example assumes that Decompress Bit Order is not set. If this flag was set, one would need to write the partial word
into the input accumulator rather than the partial byte. Also note that in this case, the bits within each 16-bit word are
reversed (e.g., bits 0 and 15 are swapped, bits 1 and 14 swapped, etc.) by the hardware on the way into the input
accumulator. So, in this case, if one wanted to drop the first 3 bits of the first word, one would read the partial word, bit-
reverse the data, right shift it by 3 bits, write it into the start of the input accumulator data, set the size to 13, and set the
Source 1 address to point to the following (full) word.

3.3.3.3 Starting on a non-Byte-aligned Boundary: Method 2
If IAACAP bit 1 (cf. Section 7.2.2) bit is set, then IAA supports an AECS field “Drop Initial Bits” (cf. Sections 6.4.1 and 3.7). In
this case, one can just point the Source 1 Address to the partial byte/word and set this field to the desired number of bits to
be dropped.

If this IAA device supports decryption, and one wants to do a decrypt-decompress starting on a boundary that is unaligned
with a cryptographic block boundary, then one would need to point the Source 1 Address to the start of the cryptographic
block and set the Drop Initial Bits field to the number of bits between the start of the cryptographic block and the start of
the desired Deflate data. For that reason, the Drop Initial Bits field can be up to 127, which is one bit less than 16 bytes.

For the case of decrypt-decompress, one could use Method 1, but this would require the software to decrypt the initial
cryptographic block and then extracting the decrypted data.

3.4 Compression

Intel IAA supports compression compatible with the Deflate compression standard described in RFC 1951. The compression
unit can operate in three modes: Huffman-mode, Statistics-mode, or Huffman-Generation mode.

In Huffman-mode, it will read a stream of input bytes, generate a stream of literals and matches, encode them using
Huffman tables read from the AECS, and write those Huffman codes into the output buffer.

In Statistics-mode, rather than writing the Huffman Tokens to the output buffer, it will instead compute a histogram of how
many times each Huffman code appears. At the end of processing, the histogram table is written to the output buffer.

Huffman Generation Mode is described in Section 3.4.5.

To generate a dynamic Deflate block, the software should do one pass in Statistics-mode, use the statistics to generate a set
of Huffman Tables optimized for those statistics, and then do a second pass (with the same input data) in Huffman-mode.
Alternatively, if Huffman Generation is supported, software can use this hardware capability.

The hardware will optionally add an EOB (End of Block) token to the output or add an EOB and a zero-length Stored Block to
the output. The block header, however, should be added to the output accumulator in the AECS by software before
submitting the descriptor.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 18

3.4.1 Statistics Mode Output

The format of the histogram table output in Statistics-mode is as a table of 318 32-bit words:

Table 3-4 Histogram Table Output in Statistics Mode

Byte Offset Description

0 LitLen[0] count

… …

1140 LitLen[285] count

1144 Reserved

1148 Reserved

1152 Distance[0] count

… …

1268 Distance[29] count

These give the number of times each of 286 Literal/Length Tokens appeared, and the number of times the 30 Distance
Tokens appeared. Note that while each count occupies a 32-bit field, the actual counts are 19-bits wide. If 219 or more of a
given token appears, the count saturates at (219-1).

3.4.2 Compression Output Overflow

For compression, “output overflow” is a non-recoverable error, and the AECS is not written.

The output buffer should be sized slightly larger than the input buffer, such that the input buffer could be encoded as a
Deflate stored-block, written to the output buffer, and fit. In that case, if the compression operation actually results in data
expansion such that the compressed data would not fit into the output buffer, the software (library or application) should
ignore any partial results that the compressor generated and add the current input to the output stream as a stored block.
This would result in a better compression ratio than keeping the “compressed” data.

3.4.3 Compression Indexing

The IAA compression logic supports “Indexing.” When this is enabled, it also defines a “miniblock size.” The meaning of this
is that no match will cross a miniblock boundary, and no match will reference data in a different miniblock. This will allow a
decompressor to start decompression at a miniblock boundary at the cost of a slightly reduced compression ratio.

Note that the compressed data stream generated is a valid Deflate stream. It can be decompressed in the same manner as
any other Deflate stream. In addition, any arbitrary miniblock can also be decompressed without decompressing the rest of
the stream.

In order for indexing to work properly, the application must know the block structure of the output. This means that either
the compressed output must fit within the provided output buffer (i.e., no “output overflow”) or the input buffer must be
smaller than 64kB so that it will fit into a single stored block.

If Compression Indexing is enabled, the input buffer must be a multiple of the miniblock size, except for the last descriptor
of a sequence. This is accomplished in some generations with a “Last Descriptor” bit in the Compress AECS (see
Section 3.4.7).

The structure of the index table is described in Section 3.3.2.

3.4.4 Compression with a Dictionary

Intel IAA supports Deflate compression with a dictionary. The same dictionary must be used for both compression and
decompression. Dictionary compression is most useful when compressing small buffers.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 19

The dictionary itself is just a block of text conceptually prepended to the input stream. The combined dictionary and input
stream is compressed, and the compressed tokens associated with the dictionary are dropped. Another way to look at this
is that, with dictionary compression, a given bit of data to be compressed can be matched against a location before the
start of the buffer.

To compress with a dictionary, the Load Dictionary compression flag must be set, and the dictionary data is placed at the
end of normal compression AECS (see Section 6.4.2). I.e., the dictionary data starts in the AECS at byte offset 1568. The
dictionary data can be constructed in three different formats with three different sizes. The trade-off is that a larger size for
the dictionary data will generally result in a better compression ratio, but it will also cause a longer latency for the compress
operation. Some applications may find that the improvement in compression ratio is not worth the increase in compress
latency and so opt for a smaller amount of dictionary data.

The dictionary data consists of two variable-length regions. The first is the portion of the dictionary text that is actually
being used. The second is a representation of the corresponding hash tables as they would have been created by the
hardware. The hash table region can be built with either 2 or 4 pointers per entry. The selection of how big the actual
dictionary and hash table entries is called the dictionary “style” and is specified with descriptor flag bits.

The dictionary styles and the corresponding sizes are given in Table 3-5.

Table 3-5 Dictionary Styles and Sizes

Dictionary Style Size of Dictionary Size of Hash Table Total Size

2K Dictionary, 2 Ptrs/Entry 2kB 4kB 6kB
4K Dictionary, 2 Ptrs/Entry 4kB 4kB 8kB
4K Dictionary, 4 Ptrs/Entry 4kB 8kB 12kB

If the raw dictionary is larger than the size of the dictionary as specified by the style, the final bytes of the raw dictionary
should be used. If the raw dictionary is smaller, it should be prepended with zero bytes.

3.4.5 Compression Header Generation

Intel IAA has the ability to generate Huffman Tables based on the generated statistics or based on statistics directly input,
and to optionally generate a Deflate header corresponding to those tables.

Header Generation can operate in either of two modes: 1-Pass or 2-Pass.

In the 2-Pass mode, dynamic compression with Header Generation is similar to compression without Header Generation.
The same input is submitted twice. In the first pass, no compressed output is generated. Instead, the statistics/tables of the
output are produced. The second pass actually does the compression.

The difference is that without header generation, the first pass returns the statistics to the software, which must compute
the Huffman tables itself. With 2-Pass Header Generation, the first pass returns the Huffman Tables (and optionally the
Deflate header), so that the software does not need to perform the Huffman calculations. This both reduces the latency of
doing both passes and reduces the CPU load.

The second pass is the same in both cases—it doesn’t matter whether the tables and header were created by software or
the hardware.

In 1-Pass mode, the compression is done with only one descriptor. In this mode, the hardware will internally do one pass
through the data, compute the Huffman Tables, then automatically do a second pass through the data, generating the final
compressed output. This is obviously better for the application, but the limitation is that this can only be used if the amount
of data to be compressed is no larger than 4kB.

There are three variations of each mode:
• Don’t generate a Deflate Header.
• Generate a Deflate Header that is not marked as bFinal.
• Generate a Deflate Header that is marked as bFinal.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 20

In some cases, such as if the input is being compressed in Huffman-only mode with no EOB, it may not be possible to
produce a valid Deflate header. Processing such tables should be done without Deflate header generation. If a Deflate
header is requested and cannot be created, the descriptor terminates with an error.

Normally, there are no Huffman Codes assigned to tokens with statistics counts of 0. In some cases, the application may
want to ensure that all of the tokens are present in the generated tables. This could be used, for example, for “semi-
dynamic” compression, where the first portion of a large file is compressed dynamically, and then the same Huffman tables
are used for the rest of the file. In this case, all tokens must be represented by Huffman codes, because they might appear
later in the file even if they did not in the earlier section.

If the Make Complete Tables bit in the Compress 2 Flags is set, then some of the statistics counters that have 0 values are
changed to 1. This means that none of these counters will have a 0 count, and so all tokens will have codes created for
them. The counters so changed are the Literal/Length counters up to the last counter that has a non-zero count, or up to
counter 272, whichever is greater; and the distance counters up to the last counter that has a non-zero count, or up to
counter 23, whichever is greater.

3.4.5.1 2-Pass Header Generation
In 2-Pass Header Generation mode, nothing is written to the destination, and both the destination address and size should
be set to 0. Source 2 should be written as AECS. The results are found in the written AECS.

The generated codes are found in the Huffman Tables section of the AECS, as described in Section 6.4.2. The Deflate header
is found in the Output Accumulator section. If the Deflate header is not requested, the Output Accumulator section is left
unchanged.

Note that because of this, the AECS that is written by the first pass is in the correct format to be read in for the second pass.

In this mode, the Write AECS Huffman Tables flag should be set in the descriptor Compress 2 Flags so that the table portion
of the AECS will be written (cf. Section 3.2).

3.4.5.2 1-Pass Header Generation
In 1-Pass mode, there is no restriction on whether Source 2 is read or written. Normally, the Write AECS Huffman Tables
flag is not used, as the application would typically not care what the generated Huffman tables were.

If the application does care what tables were used, it can set the Write AECS Huffman Tables flag and have the tables
written as part of the AECS. Note, however, that the output accumulator will contain the end of the output bit stream, not
the Deflate header.

3.4.5.3 Header Generation with Statistics Input
Normally, the statistics used to construct the Huffman Tables are the counts of the tokens generated by the compressor. If
the Header Gen Stats Input bit is set in the Compress Flags, then the normal compress operation is suppressed, and Source
1 and Destination are not used.

Instead, Source 2 must be read and written as AECS. On input, the Huffman Table section (see Section 6.4.2) contains the
statistics count values. In each DWORD, bits 18:0 contain the counts, and bits 31:19 should be 0. On output, the AECS
contains the generated Huffman Tables and optionally a Deflate header, as is produced with 2-Pass header generation.

In this mode, the Enable Header Generation field must specify one of the 2-Pass modes.

3.4.6 Compression Early Abort

In certain cases, an application may be compressing data that might or might not be compressible to a given level. In such a
case, the application might want to abort the compression early if the compression job looks likely to not achieve the
desired level of compression.

The advantage of doing this is that if the compression does not achieve the desired level of compression, the application
can be notified sooner, and thus the compression latency can be reduced. The disadvantage of doing this is that since the

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 21

level of compression is only being estimated, and the estimate will in general be based on only a portion of the input file,
then it is possible that a file that actually does achieve the desired level of compression might be considered
“incompressible” and aborted, when (in hindsight) it shouldn’t have been.

The estimate of the compressed size of the output is the number of literals plus twice the number of references. In other
words, it approximates the size of the output by assuming that each literal will take one byte, that each reference will take
two bytes, and disregarding the block header.

This feature is controlled by two fields in the Compression 2 Flags (Section 6.3.5.2).

The Early Abort Size field determines when the compressor will perform the check. It can check as soon as 512, 1024, 2048,
or 4096 input bytes have been processed. It only checks once, when the specified threshold is passed.

When the check occurs, the size estimate is compared against the input size (as measured at the input of the Deflate
compressor) multiplied by the Early Abort Threshold. If the estimate is greater than or equal to the threshold, the
compression job is aborted with an error.

Note that the estimated size can never be greater than the input size and can only be equal if no matches were found.

If the input size is equal to the Early Abort Size, then the check is done at the end of the input. This probably only makes
sense to do if one is doing Header Generation. In this case, an abort would avoid the header generation and the 2nd half of
the processing if any. Otherwise, rather than setting the Early Abort Size to the input size, the application is probably better
off setting the Max Destination Size to the desired limit and getting an output overflow if that size is exceeded.

3.4.7 Last Descriptor Bit

In general, a compression job can be continued across multiple descriptors, but there is a case where this cannot be done.

When Compression with Indexing is being done (cf. Section 3.4.3), all of the descriptors require their Source 1 size to be a
multiple of the miniblock size, except for the last one. This means that if in this mode a Source 1 size is not a multiple, then
this descriptor cannot be continued with a following descriptor.

Starting with Generation 2, this is enforced with a new Compression AECS bit (cf. Section 6.4.2): Last Descriptor Bit. If a
compression operation reads an AECS that has this bit set, then the operation is terminated with an error. Conversely,
when a compression descriptor cannot be continued with a following descriptor, this bit is set when writing the AECS.

When the Last Descriptor Bit feature is not present, then continuing a compression job when it is not allowed will not result
in an error, but it will also not generate correct results. In this case, this restriction must be enforced by software.

The presence of the Last Descriptor Bit is indicated by IAACAP bit 0 (see Section 7.2.2).

3.5 Encryption/Decryption

Intel IAA can perform data encryption. It can also perform data decryption, in which case the decrypted output can be
written to the destination buffer, sent to the filter unit, or sent to the decompress unit.

A large encryption/decryption job can be divided into a series of separate descriptors, with the internal state passed
between them via the AECS.

Three encryption algorithms are supported: GCM (Galois Counter Mode), AES-CFB (AES Cipher Feedback Mode), and AES-
XTS. In each case, supported key sizes are 128 and 256 bits.

Due to space limitations in the descriptor structure, most of the flags and parameters associated with
encryption/decryption are contained in the AECS. This is described in Section 6.4.1. Decryption can only be used with the
following opcodes: Decrypt, Decompress, CRC64, Scan, or Extract.

AES-XTS cannot be used with indexing.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 22

Decryption can be piped into other operations, so for example, one descriptor can do a decrypt-decompress operation. But
encryption cannot be piped, so to do the inverse of the above would take two descriptors: one to do the compression and
one to do the encryption.

Cryptographic processing is done one cryptographic block at a time (i.e., 16-bytes at a time). This means that when one
crypto job is spread over multiple descriptors, partial blocks are stored in the “Crypto Input Accumulator” within the AECS,
and then this data gets processed with the start of the data from the next descriptor. The last descriptor in the job should
set the “Flush Crypto Accumulator” flag in the crypto flags in the AECS, so that the final partial block will be processed.

Note that this means the amount of output generated for an Encrypt or Decrypt operation might vary from the input size by
up to 31 bytes. For example, on the first descriptor of a multi-descriptor decrypt job, the input could be 31 bytes long, and
the output size would be 0. Conversely, on the last descriptor, the input could be 1 byte long, and the output size be 32
bytes.

3.5.1 AES-CFB

For encryption in CFB mode, the Initialization Vector (IV) is encrypted and then XORed with the plaintext to generate the
ciphertext. Additionally, the ciphertext becomes the “IV” for the following block. The final ciphertext is returned as the final
“IV.”

This same process is done for decryption. The difference is that the ciphertext (which becomes the “IV” of the next block) is
an input rather than an output.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 23

3.5.2 GCM

GCM provides both encryption and authentication. The encryption is just AES in Counter Mode. The authentication is
provided by computing a cryptographic hash.

In this mode, the hardware only does the processing associated with the bulk data; the rest of the calculations must be
done by software. The GCM calculations for encryption are show in Figure 3-3.

IV

Counter 0 Counter 1 Counter 2Incr Incr

AECS AECS AECS

Plaintext 1

Ciphertext 1

Plaintext 2

Ciphertext 2

GMUL GMUL

GMUL

GMUL

Auth Data 1 Lengths

Auth Tag

IAA Operation

Figure 3-3 GCM Calculations

The dashed section indicates the operations done by the accelerator hardware. In particular, for each block of input data, it
will encrypt the IV/counter, XOR that with the input text, XOR the ciphertext with the hash to get a new hash and increment
the IV/counter. The initial counter increment, the encryption of Counter 0, and the final addition/hashing of the lengths and
encrypted Counter 0 must be done by software. Similarly, the initial hashing of the Additional Authentication Data must be
done in software.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 24

3.5.3 XTS

AES-XTS is a block-oriented cipher mode. This means that normally it could only handle buffers that were a multiple of the
cipher block size. To allow it to handle arbitrary sized buffers, XTS uses “ciphertext stealing” (CTS) at the end of the stream
when the stream size is not a multiple of the cipher block size.

The practical implication of this is that XTS cannot be used on buffers that are smaller than 16 bytes. An attempt to do so
will result in an error.

Ciphertext Stealing is invoked at the end of the input stream if the Flush Crypto Accumulator flag is set, and the total
number of bytes in this job (i.e., the number of input bytes in this descriptor and in previous linked descriptors) is not a
multiple of 16 (i.e., not a multiple of the cipher block size).

3.5.4 Decryption with Indexing

When using index mode to access encrypted data randomly (cf. Section 3.3.2), extra steps must be taken.

In particular, the actual data sent to the accelerator must start at an AES block boundary (16-byte boundary). Then the
“Drop Initial Bits” feature (cf. Section 3.7) should be used to skip over the start of generated plaintext, so that the
subsequent processing will start at the appropriate location.

Finally, the IV or initial counter value must be calculated appropriately. For CFB, this will generally be the previous block’s
ciphertext, except for the first block where it is the IV. For GCM (where only the AES Counter Mode portion is useful), the IV
stored in the AECS must be the original IV added to the appropriate number of increments, based on the index of the block
starting the decryption.

3.6 Checksum Calculations

As a check, the accelerator generates a pair of checksums of the “raw” data. In particular, there are “compress-like”
operations (i.e., Encrypt, Compress) that take original “raw” user data and create a processed version of it. For these
functions, the checksums are computed on the original input data. Then there are “decompress-like” operations (i.e.,
Decrypt, Decompress) that take the processed data and try to recreate the original raw data. For these functions, the
checksums are computed on the output data. Finally, there are the filter operations, which take “raw” data and process it
further. For these functions, the checksums are computed on the input to the filter processor (i.e., after any decryption or
decompression). The basic idea is that the checksums between complementary operations should match. The details of
where the checksums are computed is given in Table 3-6.

Table 3-6 Checksum Location

Operation Type Checksum Location

Encrypt, Compress Compress-like Input

Decrypt, Decompress Decompress-like Output

CRC64, Scan, Extract, Select, Expand Filter Input to Filter

The accelerator can generate either of two 32-bit CRCs: using the polynomial defined in ITU-T recommendation V.42, or in
RFC 3720. It also computes the XOR checksum of the data. For this, the data are treated as 16-bit words. If there are an odd
number of bytes, the final byte is zero-extended to 16 bits. Then these 16-bit words are all XORed together.

The initial values of the CRC and XOR checksum are read from the AECS for operations where the AECS is read; otherwise,
initial values of 0 are used. The final values of the checksums are written to the completion record. They are also written to
the AECS, for any operation where the AECS is written. The latter allows the values to be linked across the descriptors in a
job, while the former allows the software to get the values even when the AECS is not written.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 25

3.7 Drop Initial Bits vs. Drop Initial Bytes

There are two similar fields found in the AECS (cf. Section 6.4.1): Drop Initial Bytes and Drop Initial Bits1.

The Drop Initial Bytes field applies only to the input to the filter unit. The Drop Initial Bits field usually applies to the input to
the decompress unit. However, if the opcode specifies a filter operation and the decompressor is not enabled, then the
Drop Initial Bits field applies to the input of the filter unit.

If both of these fields (“Drop Initial Bits” and “Drop Initial Bytes”) are being applied to the input to the filter unit, then at
least one must be zero. If both are non-zero, the accelerator will return an error.

The primary use for Drop Initial Bits is to enable indexing on encrypted data (Section 3.5.4). Thus, it would typically be used
for the input of the decompressor or filter unit, whichever is immediately downstream from the decryption unit.

Note that if Drop Initial Bits applies to the input of the filter unit, and the filter parser is PRLE, then Drop Initial Bits must be
0.

For a filter operation without decompression, the Source 1 size must be greater than the amount of data being dropped,
except for EXPAND, where the Source 1 size must be greater or equal to the amount of data being dropped.

If decompression is enabled without decryption, then the sum of the Drop Initial Bits + Ignore End Bits cannot be greater
than the Source 1 Size. If decompression is enabled with decryption, and Flush Crypto Input Accumulator is set, then the
sum cannot be greater than the Source 1 Size plus the size of the Crypto Input Accumulator.

3.8 Filter Functions

The filter functions take one or two inputs, a primary input, and an optional secondary input. The primary input may be
read from memory or received from the output of decompression or decryption. The primary input is parsed as described in
3.8.1. The output of the parser is an array of unsigned integers.

If the secondary input is used, depending on the operation type, it may be a bit vector or an array of packed unsigned
integers. It can be packed in either little-endian format (starting at bit 0 of each byte) or big-endian format (starting at
bit 7). When the secondary input is used, the operation cannot also use the AECS. Thus, any filter operation that uses the
secondary input uses default values for any configuration information that would have been read from the AECS. This
means that such operations cannot be used with decryption.

The output of the filter function may be either an array or a bit vector depending on the function.

For filter operations, the output buffer size specified in the descriptor must be large enough to hold the entire output of the
operation. If the output does not fit into the specified output buffer, the operation fails with an unknown amount of the
input processed. In this case, the software must resubmit the descriptor with a larger output buffer.

3.8.1 Parser

One of the following parsers may be selected to process the primary input to the filter function. The parser reads a byte
stream and outputs a series of unsigned integers.

3.8.1.1 Packed Array
This is the standard parser. The input is a packed array of unsigned integers with a specified bit width. (The bit width need
not be a multiple of the size of a byte.) The data can be packed in little-endian format (starting at bit 0 of each byte) or big-
endian format (starting at bit 7).

1 Drop Initial Bits is not available on all IAA implementations. The availability of this feature is indicated by IAACAP bit 1 (see Section 7.2.2).

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 26

3.8.1.2 Parquet RLE
The input is in the Parquet RLE format. The first byte of the data stream gives the bit width. This is followed by the encoded
data. The bit-width cannot exceed 32-bits.

The format is:
parquet-rle: <bit-width> <encoded-data>
bit-width := bit-width of data stored as one byte
encoded-data := <run>*
run := <bit-packed-run> | <rle-run>
bit-packed-run := <bit-packed-header> <bit-packed-values>
bit-packed-header := varint-encode(<bit-pack-count> << 1 | 1)
// we always bit-pack a multiple of 8 values at a time, so we only store the number of values / 8
bit-pack-count := (number of values in this run) / 8
bit-packed-values := data stored as a packed array of bit-width values
rle-run := <rle-header> <repeated-value>
rle-header := varint-encode((number of times repeated) << 1)
repeated-value := value that is repeated, using a fixed-width of round-up-to-next-byte(bit-width)

3.8.2 Output Modification

Output Modification is an SQL filter feature that allows optionally generating an alternative representation of the result of
the query being performed. In general, a SQL filter function results in two forms of output: 1) a bit vector (where the output
bit-width is 1) or 2) an array of elements (where the output bit-width is greater than 1). For example, functions that
perform a scan query, i.e., “is an element within a given range?,” generate a bit vector, where each bit represents
membership in that range. Functions that extract elements from an input array result in an output that could be either a
bit-vector or an array depending on the bit-width of the input.

An optional flag bit forces the output to be considered an array, even if the bit-width is 1. This can be used to unpack a bit
vector into an array of bytes, words, or DWORDs. Use of the Force Array Output Mod flag does not change whether one can
apply the Invert Output flag. That is, if a nominal bit-vector output is forced to use array output modification, it can still be
inverted.

3.8.2.1 Modification When Output is Normally a Bit Vector
If the output of a function is normally a bit vector, the output can be modified in the following ways.

First, the bit vector can be optionally inverted (i.e., each bit is flipped).

Secondly, the output can be modified to consist of an array, where the array elements are the indices of the “1” bits of the
bit vector. This can be used when the output bit vector is expected to be sparse in nature. The index of the first element (bit
0 of the bit vector) can be set to an arbitrary value instead of the default start index of 0. If the index of any output element
is too large for the specified output width, the operation stops and reports an error.

3.8.2.2 Modification When Output is Normally an Array
If the output of a function is normally an array of elements, then the bit width of the output elements is normally the same
as the input bit width; i.e., the output is packed. When the output modification feature is enabled, output bit width can be
adjusted to 8, 16, or 32 (with the high order bits padded with zeroes). This unpacks the output array into a desired word
size. Using this feature makes the output array larger, but it makes it easier for software to process the data. The specified
output bit width must be no smaller than the input bit width.

If the output bit width is 1, the output is treated as a bit vector, and the output modifications described in Section 3.8.2.1
apply, unless the Force Array Output flag is set.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 27

3.8.3 Aggregation

In addition to generating the output data, the accelerator also computes several “aggregates” of the data. The type of
aggregation depends on the type of output. In particular, it depends on the nominal, pre-modified output width: whether it
is 1-bit wide or wider.

If the “pre-modification” output is a bit vector or an array output whose bit width is 1, then the following data are
accumulated:

• Population count (the number of 1 bits).
• First (the index of the first 1 bit).
• Last (the index of the last 1 bit).

This data can be used to determine the sparsity of the output. If the output is sparse, software can use it to determine
where to start and end processing, so that it doesn’t need to process the 0 bits at the start or end of the vector.

If the “pre-modification” output is an array whose bit-width is greater than 1, then the following data are accumulated:
• Sum (the sum mod 232 of the output values).
• Minimum value.
• Maximum value.

Note that the population count is actually a special case of “sum.”

Note that if the Force Array Output flag is set, then the array aggregates are computed. So, in most cases, the min and max
values would be 0 and 1, rather than the indices of the first and last 1-bit.

3.9 Chaining of Functions

• If IAACAP bit 2 is 0, the output of decryption/decompression can be chained into the input of the filter unit for all
operations other than CRC64.

• If IAACAP bit 2 is 1, the output of decryption/decompression can be chained into the input of the filter unit for all
operations.

3.10 Operation Types

The operations No-op, Drain, and Translation Fetch are the same as in Intel® DSA.

3.10.1 Decompress

The Decompress operation decompresses the input and writes the decompressed data to memory. The Source 1 Address
and Source 1 Transfer Size specify the location of the compressed input data. The Destination Address and Maximum
Destination Size specify the location of the decompressed output data. The Source 2 Address and Source 2 Transfer Size
optionally specify the AECS. The Read Source 2 and Write Source 2 fields indicate the usage of the AECS (read, written,
neither, or both). Decompression Flags control aspects of the decompression operation. The “Enable Decompression” flag
must be set.

Optionally the input to the decompressor can be taken from the output of the decryption unit.

If the Status of the operation is Output buffer overflow, the decompression job can be resumed by submitting a follow-on
descriptor with a new buffer to contain the remaining decompressed output. The Write Source 2 flag should be 2 for the
final (or only) descriptor in a decompression job, to ensure that the state of the decompressor can be saved in the AECS in
case of output buffer overflow. The Write Source 2 flag should be 1 for descriptors before the final descriptor in a multiple-
descriptor job. The Read Source 2 flag should be 1 for all but the first descriptor in a multiple-descriptor job.

The output may be suppressed (for verification purposes) or replaced with index output (see Section 3.3.2). If the Enable
Indexing flag is set, then the Suppress Output flag must also be set.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 28

3.10.2 Compress

The Compress operation compresses the input and writes the compressed data to memory. The Source 1 Address and
Source 1 Transfer Size specify the location of the input data. The Destination Address and Maximum Destination Size specify
the location of the compressed output data. The Source 2 Address and Source 2 Transfer Size optionally specify the AECS.
The Read Source 2 and Write Source 2 fields indicate the usage of the AECS (read, written, neither, or both). The
Compression Flags and Compression Flags 2 control aspects of the compression operation.

If the compressed output does not fit into the output buffer, the operation fails with an error.

In one usage, the output buffer is sized large enough to store the input as a “stored block.” If the compressed output is too
large to fit into this buffer, then the partial results of the compression should be thrown away by software and replaced by
a stored block.

Usage of the Source 2 / AECS is:

Condition Source 2 Read Source 2 Write
Statistics Mode w/o dictionary Not allowed Not allowed
Statistics Mode with dictionary Required Not allowed
1-Pass Header Gen Mode, w/o dictionary Optional Optional
1-Pass Header Gen Mode, with dictionary Required Optional
2-Pass Header Gen Mode Optional Required
Otherwise Required Optional

3.10.3 CRC64

The CRC64 operation computes an arbitrary CRC up to 64-bits in width.

The CRC Bit Order flag indicates whether bit-0 in each data byte is the least-significant or the most-significant bit. Having
bit-0 be least-significant corresponds to the “normal form” of the data, whereas having bit-0 be most-significant
corresponds to the “bit-reversed form” of the data. This field also impacts the byte order of the CRC output. If bit-0 is least-
significant, then the least significant bit of the CRC is bit-0 of byte-0. If bit-0 is most significant, then the least significant bit
of the CRC is bit-7 of byte-7, or bit 63 of the CRC.

The CRC is essentially the residue (remainder) after polynomial division. The “initial value” of the CRC is essentially a
constant that is XORed with the initial data bytes. This constant has the same size in bits as the polynomial. In some CRCs,
this initial value is zero. In others, it is all 1’s. This is determined by the “invert CRC” flag bit. If this flag bit is 0, then the
initial value is 0. If the flag bit is set, then the initial value is the “bitwise inverse of 0” or all 1’s. As described below, this
feature can be used to compute the CRC for polynomials smaller than 64-bits. Because of this, when the “invert CRC” flag is
set, the initial value will only have 1-bits from the least-significant 1-bit in the polynomial to the most significant bit. E.g., if
the polynomial represents a 32-bit CRC, the initial value will only have 32 1-bits.

Additionally, if the invert CRC flag is set, the final residue is XORed with the initial value before being returned.

The CRC Polynomial field defines the CRC polynomial in normal (not bit-reversed) form, regardless of the state of the CRC
Bit Order flag. In the polynomial definition, bit-63 is always most significant.

Although this operation is designed to generate 64-bit CRCs, it can also be used to generate smaller arbitrary CRCs. In that
case, the polynomial is placed in the most-significant portion of the CRC Polynomial field (i.e., starting at bit 63), and the
results are found in the most-significant portion of the CRC64 field in the completion record, whose location does depend
on the value of the CRC Bit Order flag.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 29

The following are some well-known CRCs and the programming required to generate them:

Table 3-7 Examples of CRC64 Parameters
CRC Polynomial Bit Order Invert CRC Output

CRC32 (gzip) 04C11DB700000000 1 1 00000000XXXXXXXX
CRC32 (wimax) 04C11DB700000000 0 1 XXXXXXXX00000000
CRC32 (iSCSI) 1EDC6F4100000000 1 1 00000000XXXXXXXX

T10DIF 8BB7000000000000 0 0 XXXX000000000000
CRC-16-CCITT 1021000000000000 1 1 000000000000XXXX

3.10.4 Scan

The Scan operation determines whether each element in the input data stream is in the inclusive range defined by the
configuration variables Low Filter Param and High Filter Param (i.e., if (Low Filter Param ≤ element value ≤ High Filter
Param)). The output is a bit vector where each 1 indicates that the corresponding input element is in the range.

The output may be modified by inverting each bit and/or by converting to an array of indices.

By selecting suitable values for the parameters and the Invert Output Bits flag, any of the following filter functions may be
realized: =, ≠, <, ≤, ≥, >, within a range, and outside a range.

3.10.5 Extract

The Extract operation returns the elements in the input data stream whose indices fall within the range defined by the
configuration variables Low Filter Param and High Filter Param. The indices of the input values are assigned sequentially
starting with 0. The output is an array of the input values whose indices fall within the range.

By default, the output bit width is the same as the input bit width. The output may be modified as described in
Section 3.8.2.

If Low Filter Param is 0 and High Filter Param is at least the number of elements in the input, then all elements are
extracted. With output modification, this can be used to unpack a packed array to a desired word size (byte, word, or
DWORD).

3.10.6 Select

The Select operation returns the elements in the primary input whose indices correspond to 1-bits in the secondary input.
The indices of the input values are assigned sequentially starting with 0. The output is an array of the input values selected
by the bit vector.

The secondary input is a bit vector with at least as many bits as the number of elements in the input.

By default, the output bit width is the same as the input bit width. The output may be modified as described in
Section 3.8.2.

3.10.7 Expand

The Expand operation generates an array in which the elements in the primary input are placed according to 1 bits in the
secondary input. The secondary input is a bit vector. The number of elements in the output is the same as the length of the
secondary input. For each bit in the secondary input that is 1, the corresponding value in the output is the next sequential
value taken from the primary input. For each bit in the secondary input that is 0, the corresponding value in the output is 0.

For this operation, the descriptor field named Number of Input Elements contains the number of bits in the secondary
input, rather than the primary input. The number of elements in the primary input is the same as the number of 1 bits in
the secondary input.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 30

By default, the output bit width is the same as the input bit width. The output may be modified as described in
Section 3.8.2.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 31

4 ERROR HANDLING

4.1 Descriptor Checks

For the set of features and operations common to both Intel® IAA and Intel® DSA, the device performs the checks on each
descriptor as described in the Intel® DSA Architecture specification. Some additional checks/clarification on checks are that
an error will be generated when any of the following are violated:

• No unsupported flags in any of the flag fields are set. This includes flags that are reserved for use with certain
operations or that are disabled in the configuration. Flags fields include Operation Flags, Decompression Flags,
Compression Flags, and Filter Flags. See Table 4-1 through Table 4-3 for details.

• Required flags in the Flags field are set. For example, the Request Completion Record flag must be 1 in a descriptor
for any operation other than No-op, Drain, and Translation Fetch.

• The Source 1 Transfer Size, Source 2 Transfer Size, and Maximum Destination Size (if applicable for the descriptor
type) are not greater than the value specified by the WQ Maximum Transfer Size field in the WQ Config register
and are non-zero if required by the operation.

• The destination buffer does not overlap the Source 1 buffer.
• If Read Source 2 or Write Source 2 is non-zero, the Source 2 buffer does not overlap the Source 1 buffer or the

destination buffer. If Read Source 2 is 1, or if Write Source 2 is non-zero, then Source 2 points to an AECS structure
(cf. Section 3.2), and the size used for the overlap check is twice the Source 2 Transfer Size.

These checks may be performed in any order. Thus, an indication of one type of error in the completion record does not
imply that there are not also other errors. The same invalid descriptor may report different error codes at different times or
with different versions of the device.

4.2 Descriptor Reserved Field Checking

Reserved fields in descriptors fall into three categories: fields that are always reserved; fields that are reserved under some
conditions (e.g., based on a capability, configuration field, how the descriptor was submitted, or values of other fields in the
descriptor itself); and fields that are reserved based on the operation type. For additional details on descriptor formats and
a more detailed view of flag restrictions, see Section 6.

Table 4-1 shows what Operation Flags are allowed for each Intel IAA-specific operation. Table 4-2 shows the decompress
and filter flags that are allowed for the analytic and crypto operations. Note that the filter flags are not present in
descriptors for encrypt and decrypt, so those cells are X-ed out. The compression flags and the CRC flags are only defined
for a single opcode, so these are not listed here. Table 4-3 summarizes the descriptor fields that are allowed for each Intel
IAA-specific operation type. For common operations, refer to the Intel DSA specification.

Operation Flag bits 23, 7:6, and 0 are reserved for all operation types. For the cases of Compression Flags, Encryption Flags,
and CRC64 Flags, all of the non-reserved fields are allowed for all operations for which those flags are defined, so they are
not listed in tabular form here.

Table 4-4 gives additional constraints on the input size.

Additional operation-specific reserved fields and flags are described with the respective descriptor details in Section 6.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 32

Table 4-1 Operations Flags Applicability

De
cr

yp
t

En
cr

yp
t

De
co

m
pr

es
s

Co
m

pr
es

s

CR
C6

4

Sc
an

Ex
tr

ac
t

Se
le

ct

Ex
pa

nd

O
p

Fl
ag

s

Block on Fault ● ● ● ● ● ● ● ● ●
Comp Rec Addr Valid ● ● ● ● ● ● ● ● ●
Req Comp Record ● ● ● ● ● ● ● ● ●
Req Comp Interrupt ● ● ● ● ● ● ● ● ●
Completion Record TC Selector ● ● ● ● ● ● ● ● ●
Source 1 TC Selector ● ● ● ● ● ● ● ● ●
Dest TC Selector ● ● ● ● ● ● ● ●
Cache Control ● ● ● ● ● ● ● ●
Strict Ordering ● ● ● ● ● ● ● ●
Dest Readback ● ● ● ● ● ● ● ●
Read Source 2 ● ● ● ● ● ● ● ● ●
Write Source 2 ● ● ● ●
Source 2 TC Selector ● ● ● ● ● ● ● ● ●
CRC Select ● ● ● ● ● ● ● ● ●
AECS R/W Toggle Selector ● ● ● ● ● ● ●

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 33

Table 4-2 Analytics Flags Applicability

De
cr

yp
t

En
cr

yp
t

Sc
an

Ex
tr

ac
t

Se
le

ct

Ex
pa

nd

De
co

m
pr

es
s

0: Enable Decompress ● ● ● ●

1: Flush Output ● ● ● ● ● ●

2: Stop on EOB ● ● ● ●

3: Check for EOB ● ● ● ●

4: Select bFinal EOB ● ● ● ●

5: Decompress Bit Order ● ● ● ●

8-6: Ignore End Bits ● ● ● ●

9: Suppress Output ● ● ● ● ● ●

13: Load Partial ● ●

14: Ignore End Bits Extension ● ● ● ●

Fi
lte

r

1-0: Source 1 Parser ● ● ● ●

6-2: Source 1 Width ● ● ● ●

11-7: Source 2 Width

12: Source 2 Bit Order ● ●

14-13: Output Width ● ● ● ●

15: Output Bit Order ● ● ● ●

16: Invert Output ● ● ● ●

27: Force Array Output Mod ● ● ● ●

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 34

Table 4-3 Operation-Specific Allowed Fields

De
cr

yp
t

En
cr

yp
t

De
co

m
pr

es
s

Co
m

pr
es

s

CR
C6

4

Sc
an

Ex
tr

ac
t

Se
le

ct

Ex
pa

nd

By
te

s

4-6 Operations Flags ● ● ● ● ● ● ● ● ●
7 Operation ● ● ● ● ● ● ● ● ●

8-15 Comp Rec Address ● ● ● ● ● ● ● ● ●

16-23
Readback Address 1
Source 1 Address ● ● ● ● ● ● ● ● ●

24-31
Readback Address 2
Destination Address ● ● ● ● ● ● ● ●

32-35 Source 1 Size ● ● ● ● ● ● ● ● ●
36-37 Comp Interrupt Handle ● ● ● ● ● ● ● ● ●

38-39

Decompress Flags ● ● ● ● ●
Encryption Flags ● ●
Compression Flags ●
CRC Flags ●

40-47 Source 2 Address ● ● ● ● ● ● ● ● ●
48-51 Destination Size ● ● ● ● ● ● ● ●
52-55 Source 2 Size ● ● ● ● ● ● ● ● ●

56-59

Filter Flags ● ● ● ●
Compression 2 Flags ●
CRC64 Polynomial ●

60-63
Num Elements ● ● ● ●
CRC64 Polynomial ●

Table 4-4 Data Size Checks
Field/Data Item Restriction

Source 1 Size
For a filter operation without decompression, the Source 1 Size must be greater than the amount of
data being dropped. The exception is for EXPAND, where the Source 1 Size must be greater or equal
to the amount of data being dropped.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 35

4.3 AECS Checks

Table 4-5 and Table 4-6 give constraints on AECS parameters. See Section 6 for additional restrictions and details.

Table 4-5 Non-Compress AECS Checks

 Field/Data Item Restriction

Format 1 Output Bits Valid Bit 0 of Output Bits Valid must be 0. See Section 3.2.1.

Format 2 Output Bits Valid Bit 0 of Output Bits Valid must be 1. See Section 3.2.1.

 AECS Format AECS format must be 1. See Section 3.2.1.

 Output Bits Valid Output Bits Valid (ignoring bit 0) must be a multiple of 8.

 Drop Initial Bits / Drop Initial Bytes For a filter operation without decompression, at least one of Drop Initial Bits and
Drop Initial Bytes must be 0.

 Drop Initial Bits / Drop Initial Bytes If the opcode is Encrypt or Decrypt, both Drop Initial Bits and Drop Initial Bytes
must be 0.

 Input Accumulator Size None of the Input Accumulator QW Sizes can be greater than 64.

 Input Accumulator Size If any of the Input Accumulator QW Sizes is 0, all higher order sizes must be 0;
i.e., the non-zero sizes must be in a contiguous group starting at index 0.

 Input Accumulator Size For the Input Accumulator: If (size[31] ≠ 0) then sum (size[0] + … +size[31]) must
be ≥ 193). If (size[30] ≠ 0) then sum (size[0] + … +size[30]) must be ≥ 129).

Source 2 Size

If the History Buffer Write Pointer is non-zero, that portion of the history buffer
must be completely read; the number of bytes specified by Source 2 Size cannot
end in the middle of the specified portion of the History Buffer

 History Buffer Write Pointer /
Output Bits Valid

If Indexing is enabled, then (History Buffer Write Pointer{2:0}) must be the same
as (Output Bits Valid{5:3})

 Drop Initial Bits If Decompress is not enabled and the parser is PRLE, Drop Initial Bits must be 0.

 Drop Initial Bits If the opcode is CRC64 and decompress is not enabled, Drop Initial Bits must be 0.

 Drop Initial Bits / Ignore End Bits If Decompression is enabled and Decryption is not, the sum of Drop Initial Bits
and Ignore End Bits cannot be greater than the Source 1 Size.

Drop Initial Bits / Ignore End Bits

If Decompression and Decryption are both enabled and Flush Crytpo Input
Accumulator is set, the sum of Drop Initial Bits and Ignore End Bits cannot be
greater than the Source 1 Size plus the Crypto Input Accumulator Size.

 Ignore End Bits If Decrypt is enabled and Flush Crypto Input Accumulator is not set, Drop End Bits
must be 0.

 Stored Block Bytes Remaining If the Decompress State is 2 or 6 (Looking at a Stored Block), the Stored Block
Bytes Remaining must be non-zero.

 Cipher Flags If the opcode is Encrypt or Decrypt, Enable Crypto must be set.

 Cipher Flags Enable Crypto can only be used for opcodes: Encrypt, Decrypt, Decompress,
CRC64, Scan, and Extract.

 Cipher Flags Any operation other than Encrypt, Decrypt, and Decompress that has Enable
Crypto set must also set Flush Crypto Accumulator.

 Cipher Accumulator Size Any operation other than Encrypt, Decrypt, and Decompress that has Enable
Crypto set must set Cipher Accumulator Size to 0.

 Cipher Accumulator Size The Cipher Accumulator Size must be no greater than 40.

 Cipher Algorithm The Cipher Algorithm must be 0, 1, or 2.

 History Buffer Write Pointer If the low 15 bits of the History Buffer Write Pointer ≥ 4096, then bit 15 must be
set.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 36

Table 4-6 Compress AECS Checks

Field/Data Item Restriction

Output Accumulator Size The Output Accumulator Size must be ≤ 64 × 32.

Output Accumulator Size If Enable Header Generation is not 0, then the Output Accumulator Size must be < 64 × 32.

4.4 Error Codes

4.4.1 Operation Status Codes

The operation status code for a descriptor is written to the Status field of the completion record for the descriptor if the
Completion Record Address Valid flag in the descriptor is 1. If the operation status is 0x1a, 0x1b, or 0x1d, or if the
Completion Record Address Valid Flag is 0 and the operation status is not equal to 0x01, then the operation status code is
instead written to the SWERROR register or to the Event Log if enabled.

The operation status codes are the same as for Intel DSA, with the exception of those listed in Table 4-7.

Table 4-7 Operation Status Codes

Status Code Description

0x02 Unused.
0x05–0x09 Unused.

0x0a Analytics error. A more specific code is in the Error Code field.
0x0b Output buffer overflow. AECS is written if the Write Source 2 flag is non-zero.
0x11 Invalid Operation Flags. A field in Operation Flags contains an unsupported or reserved value.
0x12 Non-zero reserved field (other than a flag).
0x13 Invalid value for Source 1 Transfer Size, Source 2 Transfer Size, or Maximum Destination Size.

0x14-0x15 Unused.
0x17-0x18 Unused.

0x1b Completion Record Address is not 64-byte aligned.

0x1c

Misaligned Address, size, or stride field:
• The AECS address was not a multiple of 32 bytes.
• The AECS size was not a multiple of 32 bytes.
• In a Translation Fetch operation: Region Stride is less than 4096 or is not a power of 2

0x23 Timeout waiting for response to a Page Request. The error is also recorded in SWERROR.
0x24 Watchdog timer expired without the device making progress.

0x30
Invalid flag in bytes 38:39 of the descriptor. Depending on the opcode, this could be
Decompression, Compression, Encryption, or CRC Flags. A field in the flags contains an
unsupported or reserved value.

0x31
Invalid flag in bytes 56:59 of the descriptor. Depending on the opcode, this could be Filter or
Compression 2 Flags. A field in the flags contains an unsupported or reserved value.

0x32
Invalid Input Size. The input size when the Decompress Bit Order flag is set was not a multiple of
2.

0x33 Invalid Number of Elements: Number of Elements is 0 for a filter operation.
0x35 Invalid Invert Output: The Invert Output flag was used when the output was not a bit-vector.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 37

4.4.2 Error Code

When the Operation Status Code has the value 0x0a, the Error Code (byte 1 of the Completion Record) contains an error
code that provides more detail on the type of error. The error codes are listed in Table 4-8:

Table 4-8 Error Codes

Error Code Detected Error Description

0x01 Header too large to
save/restore

Reached the end of the input stream before decoding header and header is too
large to fit in input buffer.

0x02 Undefined CL code Bad Code Length code, CL CAM is not hit, or code length of 0.

0x03 First code in LL tree is 16

0x04 First code in D tree is 16

0x05 No valid LL code All of the LL codes are specified with 0 length.

0x06 Wrong number of LL codes After parsing LL code lengths, total codes != expected value. Last CL code gave a
repeat count that pushed the total above the expected value.

0x07 Wrong number of DIST codes After parsing DIST code lengths, total codes != expected value. Last CL code gave a
repeat count that pushed the total above the expected value.

0x08 Bad CL code lengths First code of length N is greater than 2N-1 or last code is greater than 27.

0x09 Bad LL code lengths First code of length N is greater than 2N-1 or last code is greater than 215.

0x0A Bad DIST code lengths First code of length N is greater than 2N-1 or last code is greater than 215.

0x0B Bad LL Codes Bad Literal/Length Code: Neither ALUs nor EB CAM have hit, or 0 code length.

0x0C Bad D Code Bad Distance Code: D CAM not hit, or 0 code length.

0x0D Invalid Block Type Block Type 0x3 detected.

0x0E Invalid Stored Length Length of stored block doesn’t match inverse length.

0x0F Bad End of File End of file flag was set but last token was not EOB.

0x10 Bad Length Decode Decoded Length is 0 or greater than 258.

0x11 Bad Distance Decode Decoded Distance is 0 or greater than History Buffer Size.

0x12 Distance before Start of File Distance of reference is before start of file.

0x13 Timeout Engine has input data and room in the output buffer but is not making forward
progress.

0x14 PRLE Format Error PRLE record contains an error or is truncated.

0x15 Filter Function Word Overflow Filter Function processing resulted in an output element that was too wide to fit
into the specified output bit-width.

0x16 AECS Error AECS contains an invalid value.

0x17 Source 1 Too Small Source 1 contained fewer than expected elements.

0x18 Source 2 Too Small Source 2 contained fewer than expected elements.

0x19 Unrecoverable Output
Overflow

Output buffer was too small for generated output and the operation was not
Decompress.

0x1A Distance Spans Miniblocks During index generation as part of decompress, a match referenced data in a
different miniblock.

0x1B Length Spans Miniblocks During index generation as part of decompress, a match had a length extending
into the next miniblock.

0x1C Invalid Block Size During index generation as part of decompress, a block header occurred that was
not on a multiple of the miniblock size.

0x1D Verify Failure Internal verification hardware detected a possible error in the output.

0x1E Invalid Huffman Code A compression job tried to use a Huffman code with zero size.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 38

Error Code Detected Error Description

0x1F PRLE bit-width Invalid The bit-width specified in the first byte of a PRLE stream was greater than 32, was
equal to 0, or was missing.

0x20 Too Few Elements Processed The input stream ended before specified Number of Input Element was seen.

0x23 Too Many LL Codes The number of LL codes specified in the Deflate header exceeded 286.

0x24 Too Many D Codes The number of D codes specified in the Deflate header exceeds 30.

0x25 Administrative Timeout
This operation was terminated because it exceeded a temporary timeout limit
imposed by an administrative command. Resubmitting the descriptor is
recommended.

0x26 Invalid Crypto Flag Crypto was enabled for an opcode that doesn’t support cryptography, or some
cryptographic flag/parameter was used inappropriately or had an invalid value.

0x27 Invalid Crypto Size A crypto operation was attempted with the XTS algorithm, with a total input size
less than 16 bytes.

0x28 Data Size Too Large A compress descriptor with 1-pass Header Generation enabled attempted to
compress more than 4kB.

0x29 Compression Early Abort The Compression Early Abort feature was triggered. See Section 3.4.6.

0x2A Can’t Make Deflate Header A Deflate header couldn’t be generated because there were not at least 257
Literal/Length tokens defined.

0x2B Invalid Compression Linking
A compression descriptor with indexing enabled was attempted after the previous
linked descriptor compressed an amount of data that was not a multiple of the
miniblock size. See Section 3.4.7.

0x2C Deflate Header Too Large The generated Deflate header could not fit into the output accumulator.

0x2D AECS Format Error The AECS format fields contained incorrect values. See Section 3.2.1.

0x2E Inconsistent State An inconsistency in the internal state of the decompress engine was noticed. This
typically is indicative of a corrupted AECS image being loaded.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 39

5 SOFTWARE ARCHITECTURE

5.1 Intel® Query Processing Library

The Intel® Query Processing Library (QPL) provides user-mode access to the device in a manner that is more user-friendly
and less dependent on the hardware interface. The library provides functions for each operation type and provides both
blocking and non-blocking modes of operation.

The library interfaces with the kernel-mode driver to request access to the hardware on behalf of the application. It
normally services application requests using ENQCMD to a limited portal. If the ENQCMD fails due to congestion, the library
may use a kernel-mode driver service to proxy the request to ensure forward progress. Additionally, the library can service
application requests using MOVDIR64B to a dedicated work queue portal.

The library has two main purposes. One is to map from a user-friendly API to the device-centric data structures (e.g.,
Descriptors, Completion Records, etc.). The other is to provide necessary functionality that is not provided by the hardware.
This includes such things as computing Huffman Tables and Deflate headers and creating stored blocks when compressed
data actually expands. It also orchestrates the flow to the hardware when multiple hardware invocations are needed for a
single task. For example, dynamic compression with verify requires that the hardware be invoked three times: once to
generate the statistics, once to do the compression, and once to perform the verification.

It also provides optimized software-only implementations, for cases where the accelerator hardware is not present.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 40

6 STRUCTURE FORMATS

6.1 Descriptor

An Intel® IAA descriptor is a 64-byte structure that is submitted to a WQ portal to initiate an operation. The format of a
generic Intel IAA descriptor is shown in Figure 6-1.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Destination Address

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Maximum Destination Size

Source 2 Address

Source 2 Transfer Size

Reserved

Reserved Flags2

Flags1

Flags3
Figure 6-1 Generic Intel® IAA Descriptor Format

The details of the descriptors for various operations vary. In particular, some of the fields may be reserved, and the details
of the “Flags” fields will be operation specific. This section describes the common fields, and then the following sections will
describe the variations specific to different opcodes.

6.1.1 Trusted Fields

Offset: 0; Size: 4 bytes (32 bits)

When a descriptor is submitted to an SWQ, these fields carry the Privilege and PASID of the software entity that submitted
the descriptor. When a descriptor is submitted to a DWQ, these fields in the descriptor are ignored; the device uses the WQ
Priv and WQ PASID fields of the WQCFG register.

On Intel CPUs, when software submits a descriptor to an SWQ using ENQCMD, these fields in the source descriptor are
reserved. The value of IA32_PASID MSR is placed in the PASID field and the Priv field is set to 0 before the descriptor is sent
to the device. When software uses ENQCMDS, these fields in the source descriptor must be initialized appropriately by
software. If the Privileged Mode Enable field of the PCI Express PASID capability is 0, the Priv field must be 0.

Table 6-1 Descriptor Trusted Fields

Bits Description

31 Priv (User/Supervisor)
0: The descriptor is a user-mode descriptor submitted directly by a user-mode client or submitted by the kernel on behalf of a
user-mode client.
1: The descriptor is a kernel-mode descriptor submitted by kernel-mode software.

30:20 Reserved

19:0 PASID
This field contains the Process Address Space ID of the requesting process.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 41

6.1.2 Operation

Offset: 7; Size: 1 byte (8 bits)

This field specifies the operation to be executed.

Table 6-2 Operation Types

Operation Code Type

0x00 No-op

0x01 Unused

0x02 Drain

0x03 – 0x09 Reserved

0x0A Translation Fetch

0x0B-0x3F Reserved

0x40 Decrypt

0x41 Encrypt

0x42 Decompress

0x43 Compress

0x44 CRC64

0x45-0x4F Reserved

0x50 Scan

0x51 Reserved

0x52 Extract

0x53 Select

0x54 Reserved

0x55 Reserved

0x56 Expand

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 42

6.1.3 Operation Flags

Offset: 4; Size: 3 bytes (24 bits)

See the Intel® DSA architecture documentation for meanings and restrictions for these flags for No-op, Drain, and
Translation Fetch.

Table 6-3 Operations Flags

Operation Flags

Bits Description

23 Reserved: Must be 0.

22 AECS R/W Toggle Selector
Let A be the Source 2 Address and S be the Source 2 Transfer Size. Then if Source 2 is being read as AECS or being
written:
0: Reads are done from (A), and writes are done to (A+S).
1: Reads are done from (A+S), and writes are done to (A).
If Read Source 2 ≠ 1 and Write Source 2 = 0, then this field is reserved.

21 CRC Select
0: Use the CRC polynomial 0x104c11db7, following ITU-T Recommendation V.42.
1: Use the CRC polynomial 0x11edc6f41, following RFC 3720.
This field is reserved for the CRC64 opcode when IAACAP bit 0 is 0.

20 Reserved: Must be 0.

19:18 Write Source 2
0: Source 2 is not written.
1: AECS written at completion of operation.
2: AECS written only if output overflow occurs.
3: Reserved.
A value of 2 is only allowed for Decompress.
This field is reserved if Read Source 2 has a value of 2.
This field is reserved for operation types other than Decompress, Compress, Encrypt, and Decrypt.
This field is reserved if the operation is Compress and in the Compression Flags: Stats Mode is 1.
A value of 1 is required if the Compression Flag Enable Header Gen has a value of 5, 6, or 7.

17:16 Read Source 2
0: Source 2 is not read.
1: Source 2 is read as AECS.
2: Source 2 is read as secondary input to filter function.
3: Reserved.
The value 2 is required for Select and Expand. The value 2 is reserved for all other operation types.
A value of 1 is required when encryption/decryption is enabled. (See Section 6.4.1)
This field is reserved for No-op, Drain, and Translation Fetch. If IAACAP Bit-0 is 0, then this field is reserved for CRC64.
If the operation is Compress:
• This field is reserved if in the Compression Flags: Stats Mode is 1 and Load Dictionary is 0
• This field must be 1 if in the Compression Flags any of the following conditions are true:

o Load Dictionary is not 0
o Stats Mode and Enable Header Generation are both 0
o Header Gen Stats Input is set in the Compression Flags

15 Reserved: Must be 0.

14 Destination Readback
0: No readback is performed.
1: After all writes to the destination have been issued by the device, a read of the final destination address is performed
before the operation is completed. The readback is performed only if the descriptor is completed successfully.
This field is reserved if the Destination Readback Support field in GENCAP is 0.
This field is reserved for No-op, Drain, Translation Fetch, and CRC64.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 43

Operation Flags

Bits Description

13 Strict Ordering
0: Default behavior: writes to the destination can become globally observable out of order. The completion record write
has strict ordering, so it always completes after all writes to the destination are globally observable.
1: Forces strict ordering of all memory writes, so they become globally observable in the exact order issued by the
device.
This field is reserved for operation types that do not write to memory: No-op, Drain, Translation Fetch, and CRC64.
Note that this flag has nothing to do with the order in which descriptors are executed. It only affects ordering of the
writes generated by this descriptor.

12 Completion Record TC Selector
This field selects the Traffic Class value used for writing the completion record. It selects one of the two TC values in the
Group Configuration Register corresponding to the WQ that the descriptor was submitted to. See the Intel DSA
architecture specification for information on the use of Traffic Classes.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
This field is reserved when Completion Record Address Valid is 0.

11 Source 2 TC Selector
This field selects the TC value used for reads and writes to Source 2 Address. It selects one of the two TC values in the
Group Configuration Register corresponding to the WQ that the descriptor was submitted to.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
This field is reserved when Read Source 2 and Write Source 2 are both 0 and for operation types that do not use Source
2: No-op, Drain and Translation Fetch.

10 Destination TC Selector
This field selects the TC value used for writes to Destination Address. It selects one of the two TC values in the Group
Configuration Register corresponding to the WQ that the descriptor was submitted to.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
For most operation types, this field selects the TC value used for writes to Destination Address.
For Drain, this field selects the TC value used for readback from Readback Address 2 and is referred to as the Address 2
TC selector. This is reserved when Readback Address 2 Valid is 0.
This field is reserved for operation types that do not use Destination Address: No-op, Drain, Translation Fetch, and
CRC64.

9 Source 1 TC Selector
This field selects the TC value used for reads from Source 1 Address. It selects one of the two TC values in the Group
Configuration Register corresponding to the WQ that the descriptor was submitted to.
0: Use TC-A in the Group Configuration Register.
1: Use TC-B in the Group Configuration Register.
For most operation types, this field selects the TC value used for reads from Source Address.
For Drain, this field selects the TC value used for readback from Readback Address 1 and is referred to as the Address 1
TC selector. This is reserved when Readback Address 1 Valid is 0.
This field is reserved for operation types that do not use Source 1: No-op and Drain.

8 Cache Control
For operations that write to memory:
0: Hint to direct data writes to memory.
1: Hint to direct data writes to CPU cache.
This hint does not affect writing to the completion record, which is always directed to cache.
If the Cache Control Support field in GENCAP is 0, this field is reserved.
This field is reserved for No-op, Drain, Translation Fetch, and CRC64.

7:5 Reserved: Must be 0.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 44

Operation Flags

Bits Description

4 Request Completion Interrupt
0: No interrupt is generated when the operation completes.
1: An interrupt is generated when the operation completes.
If both a completion record and a completion interrupt are generated, the interrupt is always generated after the
completion record is written.
See the Intel DSA architecture specification for information regarding the interrupt to be generated.
This field is reserved if User-mode Interrupts Enable is 0 and Priv is 0 (indicating a user-mode descriptor). If WQ PASID
Enable control is 0, this field is not-reserved, independent of the setting of the User-mode Interrupts Enable control (See
the Intel DSA architecture specification for further details).
For Drain, either Request Completion Record or Request Completion Interrupt must be set.

3 Request Completion Record
0: A completion record is written only if the operation status is not equal to 0x01.
1: A completion record is always written at the completion of the operation.
This flag must be 1 for any operation other than No-op, Drain, and Translation Fetch.
This flag must be 0 if Completion Record Address Valid is 0.
For Drain, either Request Completion Record or Request Completion Interrupt must be set.

2 Completion Record Address Valid
0: The completion record address is not valid.
1: The completion record address is valid.
This flag must be 1 for any operation other than No-op, Drain, and Translation Fetch.

1 Block On Fault
0: Page faults cause partial completion of the descriptor.
1: The device waits for page faults to be resolved and then continues the operation.
This flag does not affect the handling of page faults on Completion Record Address, Descriptor List Address, or Drain
Readback Address, all of which always block on fault. See the Intel DSA architecture specification for further details.
This field is reserved if the Block on Fault Enable field in WQCFG is 0.
This field is reserved for certain operation types: No-op and Drain.

0 Reserved: Must be 0.

6.1.4 Completion Record Address

Offset 8; Size 8 bytes (64 bits)

This field specifies the address of the completion record. The completion record is 64 bytes and must be aligned on a 64-
byte boundary. If the Completion Record Address Valid flag is 0, this field is reserved.

If the Request Completion Record flag is 1, a completion record is written to this address at the completion of the
operation. If Request Completion Record flag is 0, a completion record is written only if there is an error.

The Completion Record Address Valid and Request Completion Record flags must both be 1 and the Completion Record
Address must be valid for any operation other than No-op, Drain, and Translation Fetch.

6.1.5 Source 1 Address

Offset: 16; Size: 8 bytes (64 bits)

This field specifies the address of the primary source data. This field is reserved for No-op. The value of this field is ignored
if Source 1 Transfer Size is zero. If the Source Address and Transfer Size are not both aligned to a multiple of 64 bytes, an
implementation may read more source data than required by the descriptor. For example, source data may be read in
aligned 32-byte chunks. The excess data is discarded.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 45

6.1.6 Destination Address

Offset: 24; Size: 8 bytes (64 bits)

This field specifies the address of the destination buffer.

The destination buffer must not overlap the Source 1 buffer. It must not overlap the Source 2 buffer if either the Read
Source 2 or Write Source 2 flag is non-zero. For the purpose of this check, the destination buffer size is Maximum
Destination Size.

This field is reserved for No-op, Translation Fetch, and CRC64.

This field is ignored if Maximum Destination Size is zero.

6.1.7 Source 1 Transfer Size

Offset: 32; Size: 4 bytes (32 bits)

This field indicates the number of bytes to be read from the Source1 address to perform the operation. This field is reserved
for No-op and Drain.

The maximum allowed transfer size is dependent on the WQ the descriptor was submitted to. It is specified by the WQ
Maximum Transfer Size field for the WQ in the WQ Configuration Table (which is, in turn, limited by the Maximum
Supported Transfer Size field in the General Capabilities Register).

For the operation Compress, if Enable Indexing is not 0, the size must be a multiple of specified miniblock size, unless it is
the last descriptor in the sequence. See Section 3.4.7 for further information.

If the operation is other than No-op or Drain, then at least one of Source 1 Transfer Size, Source 2 Transfer Size, and
Maximum Destination Size (or in some generations Source 1 Transfer Size, and Maximum Destination Size) must be non-
zero. Which set of values is considered in indicated by IAACAP bit 0 (see Section 7.2.2).

Most of the functions require some Source 1 data. In this context, no Source 1 data means that either the Source 1 Transfer
Size is zero, or that it is equal to the dropped bits or dropped bytes as appropriate. The only functions (that process data)
that accept no Source 1 data are: Decrypt, Encrypt, Decompress, Compress, and Expand. The other data processing
operations (e.g., CRC64, etc.) require a non-zero amount of Source 1 data.

6.1.8 Completion Interrupt Handle

Offset: 36; Size: 2 bytes (16 bits)

This field specifies the interrupt table entry to be used to generate a completion interrupt. See the Intel DSA architecture
specification for details.

This field is reserved if the Request Completion Interrupt flag is 0.

6.1.9 Source 2 Address

Offset: 40; Size: 8 bytes (64 bits)

This field specifies the address of either the AECS or the secondary input to the filter function, depending on the values of
the Read Source 2 and Write Source 2 flags. If this field specifies the address of the AECS, it may be read or written or both
(despite the field name). If this field specifies the address of the AECS, then its value (the address) must be 32-byte aligned.

The Source 2 buffer must not overlap the Source 1 buffer or the Destination buffer. If Source 2 points to an AECS, then the
size used for the overlap check is twice the Source 2 Transfer Size.

This field is reserved if the operation type is No-op, Drain, or Translation Fetch or if Read Source 2 and Write Source 2 are
both 0.

This value is ignored if Source 2 Transfer Size is zero.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 46

6.1.10 Maximum Destination Size

Offset: 48; Size: 4 bytes (32 bits)

This field indicates the maximum size of the output buffer. The maximum allowed size is specified by the WQ Maximum
Transfer Size field for the WQ in the WQ Configuration Table.

This field is reserved if the operation type is No-op, Drain, or CRC64.

If the operation is other than No-op or Drain, then one of Source 1 Transfer Size, Source 2 Transfer Size, and Maximum
Destination Size must be non-zero.

For Translation Fetch, this field contains the Region Stride.

6.1.11 Source 2 Transfer Size

Offset: 52; Size: 4 bytes (32 bits)

This field indicates the size of the Source 2 buffer. The maximum allowed size is specified by the WQ Maximum Transfer
Size field for the WQ in the WQ Configuration Table.

If Source 2 is an AECS, then the transfer size must be a non-zero multiple of 32-bytes, and it must be no greater than 64kB.
If Source2 is Filter Input Data, then the transfer size must be non-zero.

This field is reserved if the operation type is No-op or Drain, or if Read Source 2 and Write Source 2 are both 0.

If the operation is Select or Expand, then the Source 2 Transfer Size must be non-zero.

If the operation is Compress, and Source 2 is being read, then the Source 2 transfer size must be 1,568 bytes plus the size of
the dictionary data, if any. The dictionary data size is determined by bits 11:10 of the Compression Flags (Load Dictionary).
In this case, the size of the Source 2 transfer size must be equal to the value from Table 6-4.

Table 6-4 Source 2 Sizes for Different Values of Load Dictionary

Load Dictionary Src2 Transfer Size

0 1,568

1 7,712

2 9,760

3 13,856

If the operation is Encrypt or Decrypt, then the Source 2 transfer size must be 192. For other operations which have decrypt
enabled, the size must be at least 192.

If the AECS is written, then the amount of data written may be less than the specified size. See Section 3.2 for more details.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 47

6.2 Completion Record

The completion record is a 64-byte structure in memory that the device writes when an operation is complete or
encounters an error. A completion record address is in each descriptor. Software should not depend on the value of unused
fields (including fields that are unused for specific operation types). The completion record address must be 64-byte
aligned.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

Bytes Completed Status

Fault Address

Error codeUnused

Invalid Flags

Output Size

Min / First 32

40

48

56

Sum / Population count Max / Last

Output Bits

CRC

UnusedXOR Checksum

Unused

Crypto Hash Low

Crypto Hash High

Fault Info

Figure 6-2 Intel® IAA Completion Record Format

For some operations, some of these fields are unused and are written as 0. For example, the Min/First, Max/Last, and
Sum/Population Count fields are only relevant for filter operations. Likewise, the Crypto Hash fields are only relevant for
operations doing encryption or decryption.

A slight variant is generated for the CRC64 operation. The completion record for that will be described in Section 6.3.6.

6.2.1 Status

Offset: 0; Size: 1 byte (8 bits)

This field reports the completion status of the descriptor. Hardware never writes 0 to this field. Software should initialize
this field to 0 so it can detect when the completion record has been written. See Section 4.4.1 for a list of the operation
status codes and their meanings.

Table 6-5 Completion Record Status Field

Bits Description

7 R/W (Not used unless Operation Status indicates a translation fault – code 0x03, 0x04 or 0x1a)
0: The faulting access was a read.
1: The faulting access was a write.

6 Unused.

5:0 Operation Status
See Section 4.4.1 for the meaning of this field.

6.2.2 Error Code

Offset: 1; Size: 1 byte (8 bits)

When the Status field is equal to 0x0A, this field indicates the type of error. If Status has any other value, this field is
unused. Software should not depend on the value of this field for operation types where it is unused. See Section 4.4.2 for a
listing of the error codes.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 48

6.2.3 Fault Info

Offset: 2; Size: 1 byte (8 bits)

If the operation was partially completed due to a page fault and Completion Record Fault Info Support in GENCAP is 1, this
field contains additional information about the fault encountered.

Table 6-6 Completion Record Fault Info

Bits Description

7:4 Unused.

3:1 Operand Identifier:
0: Unknown
1: Source 1
2: Source 2 (fault detected when reading Source 2)
3: Destination
4: Source 2 (fault detected when writing Source 2)
5: Completion Record Address
6-7: Reserved

0 Fault Address Masked
0: The fault address field contains the address that caused the fault.
1: The fault address is masked or not available

6.2.4 Bytes Completed

Offset: 4; Size: 4 bytes (32 bits)

This field can be used in some cases to continue a partially executed operation. In particular:
• If the operation terminated due to a page fault, this field contains the number of bytes successfully written to the

output.
• If a Decompress operation terminates with an Output Buffer Overflow status, this field contains the number of

bytes that were consumed from Source 1.
• Otherwise (e.g., if the operation fully completed or terminated due to some other error), this field contains 0.

The only partially processed operations that can be successfully continued from where it left off are:

• A Decompress operation that resulted in an Output Buffer Overflow.
• A Translation Fetch operation that resulted in a page fault.

6.2.5 Fault Address

Offset: 8; Size: 8 bytes (64 bits)

If the operation terminated due to a page fault and Completion Record Fault Info Support in GENCAP is 1, the Fault Info
field specifies if the Fault Address is available. If Completion Record Fault Info Support in GENCAP is 0, this field always
contains the address that caused the fault.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 49

6.2.6 Invalid Flags

Offset: 16; Size: 4 bytes (32 bits)

If the Operation Status is Invalid Operation Flags, Invalid Decompression Flags, Invalid Compression Flags, Invalid CRC Flags,
or Invalid Filter Flags, this field contains a bitmask of the flags field that was found to be invalid, to aid in debugging. If a bit
in this field is 1, it indicates that the flag at the corresponding bit position in the flags field of the descriptor was invalid. The
implementation is not obligated to indicate every invalid flag that may be present in the descriptor, but it must indicate at
least one anytime it reports an invalid flags error code.

If the operation status is anything other than Invalid Operation Flags, Invalid Decompression Flags, Invalid Compression
Flags, Invalid CRC Flags, or Invalid Filter Flags, this field is unused.

6.2.7 Output Size

Offset: 24; Size: 4 bytes (32 bits)

This field contains the number of bytes written to the destination buffer. This field is not used for the following operation
types: No-op, Drain, or Translation Fetch.

6.2.8 Output Bits

Offset: 28; Size: 1 byte (8 bits)

This field contains the number of bits written to the last byte of the destination. If this field is 0, all bits were written. This
value should be used to determine the number of output elements generated when the output width is less than 8. This
field is not used for the following operation types: No-op, Drain, or Translation Fetch.

In the case of compress, if the Compress Bit Order flag is set (so that the output consists of 16-bit words), then Output Bits
gives the number of bits written in the last word (0 if all were written).

6.2.9 XOR Checksum

Offset: 30; Size: 2 bytes (16 bits)

This field contains the XOR checksum computed on the uncompressed data (either the output of the decompressor, or the
primary input when the Enable Decompression flag is 0). For the purpose of computing this checksum, the data is treated as
16-bit words. If there are an odd number of bytes, the final byte is zero-extended to 16 bits. See Section 3.6 for further
details. This field is not used for the following operation types: No-op, Drain, or Translation Fetch.

6.2.10 CRC

Offset: 32; Size: 4 bytes (32 bits)

This field contains the CRC computed on the uncompressed data (either the output of the decompressor, or the primary
input when the Enable Decompression flag is 0). See Section 3.6 for further details. This field is not used for the following
operation types: No-op, Drain, or Translation Fetch.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 50

6.2.11 Aggregates

Offset: 36; Size: 12 bytes (3 × 32 bits)

These fields contain information about the output, as follows:

Table 6-7 Completion Record Aggregates fields

Field Byte Offset Value when output is an array Value when output is a bit vector

Min/First 32 Minimum value in output. Index of first 1-bit in output.

Max/Last 36 Maximum value in output. Index of last 1-bit in output.

Sum/Population Count 40 Sum of all output values. Number of 1-bits in output.

These fields are only used for the following operation types: Scan, Extract, Select, and Expand.

6.2.12 Crypto Hash

Offset: 48; Size: 16 bytes (128 bits)

These fields contain the generated hash value when the operation involves encryption or decryption, and the algorithm is
GCM. Otherwise, they are written as 0.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 51

6.3 Descriptor Types

6.3.1 Intel® DSA Operations

The following operations are imported from Intel® DSA:
• No-op (0x00)
• Drain (0x02)
• Translation Fetch (0x0A)

These behave the same as in Intel DSA.

For further information about these operations, see the Intel DSA architecture documentation.

6.3.2 Decompress Descriptor (0x42)

This descriptor applies to the Decompress operation.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Destination Address

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Maximum Destination Size

Source 2 Address

Source 2 Transfer Size

Reserved

Reserved

Decompression Flags

Decompress Descriptor

Figure 6-3 Decompress Descriptor

The Decompression Flags are described in Table 6-8.

The flags enabling and controlling Decryption are located in the AECS (see Table 6-15).

6.3.2.1 Decompression Flags
Offset: 38; Size: 2 bytes (16 bits)

Table 6-8 Decompression Flags

Decompression Flags

Bits Description

15 Reserved: Must be 0.

14 Ignore End Bits Extension
This provides a fourth high-order bit for Ignore End Bits.
• This bit is reserved unless Decompress Bit Order is set.
• If Decompress Bit Order is set, then the number of ignored bits in the last 16-bit word is given by {Ignore End Bits

Extension, Ignore End Bits}.

13 Load Partial
0: Load AECS starting at offset 0.
1: Load AECS starting at offset 448.
This field is reserved except when decompress is enabled and Read Source 2 has the value 1 (Read as AECS). See
Section 3.2.
This field is reserved if Write Source 2 is not 0.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 52

Decompression Flags

Bits Description

12:10 Enable Indexing
0: Indexing is not enabled.
1: Enable indexing with a miniblock size of 512 bytes.
2: Enable indexing with a miniblock size of 1kB.
3: Enable indexing with a miniblock size of 2kB.
4: Enable indexing with a miniblock size of 4kB.
5: Enable indexing with a miniblock size of 8kB.
6: Enable indexing with a miniblock size of 16kB.
7: Enable indexing with a miniblock size of 32kB.
If this field is not 0, then Suppress Output must be set.
This field is reserved for operations other than Decompress.

9 Suppress Output
0: Decompressed / filter data is written to the output stream.
1: Decompressed / filter data is not written to the output stream.

8:6 Ignore End Bits
• Specifies the number of bits to ignore at the end of the compressed input stream. A value of 0 means that the

entire last byte is processed, while a value of 7 means only one bit of the last input byte is processed.
• If decryption is enabled, then this flag must be 0 unless Flush Crypto Input Accumulator is set.
• If Decompress Bit Order is set, then {Ignore End Bits Extension, Ignore End Bits} gives the number of bits to ignore

in the last 16-bit word.

5 Decompress Bit Order
Specifies the bit order of the decompression input.
0: Bit 0 of each 16-bit word is the least significant bit. (Little endian. This is the normal format for a Deflate stream.)
1: Bit 0 of each 16-bit word is the most significant bit and bit 15 is the least significant bit. (Big endian.)
If this flag is set, then the Source 1 Size must be an even number of bytes.

4 Select BFinal EOB
0: Any EOB block is treated as an appropriate EOB.
1: Only EOB blocks with BFinal in the header are treated as an appropriate EOB.

3 Check for EOB
0: Do not check whether the last token is an appropriate EOB.
1: If the last token processed is not an appropriate EOB, Status is set to Analytics error and Error Code is set to Bad End
of File.

2 Stop on EOB
0: Do not stop processing when an appropriate EOB is detected.
1: Stop processing when an appropriate EOB is detected.

1 Flush Output
0: A partial output word is saved in the AECS. This value should be used for a Decompress descriptor that is part of a
multiple-descriptor job and is not the last descriptor in the job.
1: A partial output word is written to the output stream. If it would overflow the output buffer, it is saved in the AECS,
so that the job can be completed by a subsequent descriptor. This value should be used for a Decompress descriptor
that is the last (or only) descriptor in a job. For filter operations, output flushing is automatic, and this flag is ignored.
This flag must be 0 if Enable Indexing is non-zero and Write Source 2 is non-zero.

0 Enable Decompression
0: Pass Source 1 data or decrypted data directly to the filter function.
1: Decompress Source 1 data or decrypted data.
• If this field is 0, all other decompression flags except for Flush Output and Suppress Output are reserved.
• If Operation is Decompress, this field must be 1.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 53

6.3.3 Analytics Descriptor (0x50, 0x52, 0x53, 0x56)

This descriptor applies to Scan, Extract, Select, and Expand, although some of the fields are not used for some of the
operations.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Destination Address

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Maximum Destination Size

Source 2 Address

Source 2 Transfer Size

Reserved

Reserved Filter Flags

Decompression Flags

Number of Input Elements

Analytics Descriptor

Figure 6-4 Analytics Descriptor

The Decompression Flags are described in Table 6-9, and the Filter Flags in Table 6-10.

The flags enabling and controlling Decryption are located in the AECS (see Table 6-15).

6.3.3.1 Decompression Flags
Offset: 38; Size: 2 bytes (16 bits)

Table 6-9 Decompression Flags

Decompression Flags

Bits Description

15 Reserved: Must be 0.

14 Ignore End Bits Extension
This provides a fourth high-order bit for Ignore End Bits.
• This bit is reserved unless Decompress Bit Order is set.
• If Decompress Bit Order is set, then the number of ignored bits in the last 16-bit word is given by {Ignore End Bits

Extension, Ignore End Bits}.

13 Load Partial
0: Load AECS starting at offset 0.
1: Load AECS starting at offset 448.
This field is reserved except when decompress is enabled and Read Source 2 has the value 1 (Read as AECS). See
Section 3.2.
This field is reserved if Write Source 2 is not 0.

12:10 Reserved: Must be 0.

9 Suppress Output
0: Decompressed / filter data is written to the output stream.
1: Decompressed / filter data is not written to the output stream.

8:6 Ignore End Bits
• Specifies the number of bits to ignore at the end of the compressed input stream. A value of 0 means that the

entire last byte is processed, while a value of 7 means only one bit of the last input byte is processed.
• If decryption is enabled, then this flag must be 0 unless Flush Crypto Input Accumulator is set.
• If Decompress Bit Order is set, then {Ignore End Bits Extension, Ignore End Bits} gives the number of bits to ignore

in the last 16-bit word.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 54

Decompression Flags

Bits Description

5 Decompress Bit Order
Specifies the bit order of the decompression input.
0: Bit 0 of each 16-bit word is the least significant bit. (Little endian. This is the normal format for a Deflate stream.)
1: Bit 0 of each 16-bit word is the most significant bit and bit 15 is the least significant bit. (Big endian.)
If this flag is set, then the Source 1 Size must be an even number of bytes.

4 Select BFinal EOB
0: Any EOB block is treated as an appropriate EOB.
1: Only EOB blocks with BFinal in the header are treated as an appropriate EOB.

3 Check for EOB
0: Do not check whether the last token is an appropriate EOB.
1: If the last token processed is not an appropriate EOB, Status is set to Analytics error and Error Code is set to Bad End
of File.

2 Stop on EOB
0: Do not stop processing when an appropriate EOB is detected.
1: Stop processing when an appropriate EOB is detected.

1 Flush Output
0: A partial output word is saved in the AECS. This value should be used for a Decompress descriptor that is part of a
multiple-descriptor job and is not the last descriptor in the job.
1: A partial output word is written to the output stream. If it would overflow the output buffer, it is saved in the AECS,
so that the job can be completed by a subsequent descriptor. This value should be used for a Decompress descriptor
that is the last (or only) descriptor in a job. For filter operations, output flushing is automatic, and this flag is ignored.
This flag must be 0 if Enable Indexing is non-zero and Write Source 2 is non-zero.

0 Enable Decompression
0: Pass Source 1 data or decrypted data directly to the filter function.
1: Decompress Source 1 data or decrypted data.
• If this field is 0, all other decompression flags except for Flush Output and Suppress Output are reserved.
• If Operation is Decompress, this field must be 1.

6.3.3.2 Filter Flags
Offset: 56; Size: 4 bytes (32 bits)

Table 6-10 Filter Flags

Filter Flags

Bits Description

31:28 Reserved: Must be 0.

27 Force Array Output Modification
0: Treat nominal 1-bit output as a bit-vector for output modification.
1: Treat nominal 1-bit output as an array for output modification.
This flag is ignored if the nominal output bit-width is not 1. For more details, see Section 3.8.2. This field is reserved
unless Output Width has a non-zero value. This field does not affect whether Invert Output is allowed.

26:17 Reserved: Must be 0.

16 Invert Output
0: The bits of the output are not inverted.
1: For operations whose output is a bit vector, each bit of the output is inverted.
This field is reserved for operation types whose output is an array with width greater than 1.

15 Output Bit Order
0: Bit 0 of each output byte is the LSB. (Little endian.)
1: Bit 7 of each output byte is the LSB. (Big endian.)

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 55

Filter Flags

Bits Description

14:13 Output Width
0: The output of the filter is unmodified; depending on the operation, the output is either a bit vector or an array whose
elements have the same width as the input.
1: The output elements are 8 bits.
2: Output elements are 16 bits.
3: Output elements are 32 bits.
• If this field is non-zero and the default filter output is an array, each element of the array is zero-extended to the

specified width. The specified width must be greater than or equal to the width of the primary input.
• If this field is non-zero and the default filter output is a bit vector, the output is modified to an array of indices of

the 1 bits in the bit vector. Each index has the specified width, which must be sufficient to represent the maximum
index value.

12 Source 2 Bit Order
0: Bit 0 of each Source 2 byte is the LSB. (Little endian)
1: Bit 7 of each Source 2 byte is the LSB. (Big endian)
This field is used only when Read Source 2 is 2; otherwise, it is reserved.

11:7 Source 2 Width
This field indicates the size in bits of the data elements in the secondary input stream. The element width is the value in
this field plus 1.
This field is reserved for all current operation types, where the secondary input stream is a bit vector.

6:2 Source 1 Width
This field indicates the size in bits of the data elements in the primary input stream. The element width is the value in
this field plus 1.
If Source 1 Parser is Parquet RLE, this field is reserved, because the field width is specified in the header of the input
stream.

1:0 Source 1 Parser
0: The input consists of a packed array of values in little-endian format with the bit width given by Source 1 Width.
1: The input consists of a packed array of values in big-endian format with the bit width given by Source 1 Width.
2: The input is in the Parquet RLE format, as described in Section 3.8.1.2.
3: Reserved.
If this field is 2, then Drop Initial Bits must be 0. (See Section 3.7)

6.3.3.3 Number of Input Elements
Offset: 60; Size: 4 bytes (32 bits)

This field is used to determine the end of the input stream for Filter Operations. Since the input elements are packed and
may be smaller than 1 byte, the number of elements cannot always be determined from the number of bytes of input. This
field indicates the number of elements in the primary input stream (after decompression, if applicable), except for the
Expand operation, where it specifies the number of bits in the secondary input stream.

For the operations where this field is not reserved, it must have a non-zero value.

This field is reserved for all operations except for: Scan, Extract, Select, and Expand.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 56

6.3.4 Decrypt/Encrypt Descriptor (0x40, 0x41)

This descriptor is used for the Encrypt and Decrypt operation.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Destination Address

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Maximum Destination Size

Source 2 Address

Source 2 Transfer Size

Reserved

Reserved Reserved

Decrypt/Encrypt Descriptor

Cipher Flags

Figure 6-5 Decrypt/Encrypt Descriptor

The flags enabling and controlling Encryption/Decryption are located in the AECS (see Table 6-15). The Cipher Flags are
described in Table 6-11.

6.3.4.1 Cipher Flags
Offset: 38; Size: 2 bytes (16 bits)

Table 6-11 Cipher Flags

Cipher Flags

Bits Description

15:10 Reserved: Must be 0.

9 Suppress Output
0: Encrypted data is written to the output stream
1: Encrypted data is not written to the output stream.

8:2 Reserved: Must be 0.

1 Flush Output
0: A partial output word is saved in the AECS. This value should be used for an Encrypt descriptor that is part of a
multiple-descriptor job and is not the last descriptor in the job.
1: A partial output word is written to the output stream. If it would overflow the output buffer, the operation returns an
error. This value should be used for an Encrypt descriptor that is the last (or only) descriptor in a job.

0 Reserved: Must be 0.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 57

6.3.5 Compress Descriptor (0x43)

This descriptor is used for the Compress operation.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Destination Address

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Maximum Destination Size

Source 2 Address

Source 2 Transfer Size

Reserved

Reserved Compression 2 Flags

Compression Flags

Reserved

Compress Descriptor

Figure 6-6 Compress Descriptor

The Compression Flags are described in Table 6-12. The Compression 2 Flags are described in Table 6-13.

6.3.5.1 Compression Flags
Offset: 38; Size: 2 bytes (16 bits)

Table 6-12 Compression Flags

Compression Flags

Bits Description

15 Header Gen Stats Input
0: Input is data to be compressed
1: Input contains statistics to be processed through Header Generation. See Section 3.4.5.3.
This field is reserved unless the Enable Header Generation field has a value of 5, 6, or 7.
If this field is set, then Write Source 2 must have a value of 1, Read Source 2 must have a value of 1, and the following
fields are reserved: Load Dictionary, Enable Zero-Compress-8, Enable Indexing, Compress Bit Order, Generate All
Literals, End Processing, and Early Abort Threshold.

14:12 Enable Header Generation
0: Header Generation is disabled.
1: 1-Pass Header Generation: Do not generate a Deflate Header
2: 1-Pass Header Generation: Generate a Deflate Header
3: 1-Pass Header Generation: Generate a bFinal Deflate Header
4: Reserved
5: 2-Pass Header Generation: Do not generate a Deflate Header
6: 2-Pass Header Generation: Generate a Deflate Header
7: 2-Pass Header Generation: Generate a bFinal Deflate Header
1-Pass header generation cannot be used if:

• The amount of data being compressed is more than 4kB, or
• Load Dictionary is non-zero

If 2-pass header generation is selected, then the Write AECS Huffman Tables flag in Compression 2 Flags must be set.

11:10 Load Dictionary
0: Do not load a dictionary.
1: Load a 2kB dictionary with 2 pointers/hash table entry.
2: Load a 4kB dictionary with 2 pointers/hash table entry.
3: Load a 4kB dictionary with 4 pointers/hash table entry.
This field is reserved if Enable Header Generation has the values 1, 2, or 3, if Header Gen Stats Input is set, or if Enable
Indexing is non-zero.

9 Reserved: Must be 0.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 58

Compression Flags

Bits Description

8:6 Enable Indexing
0: No Indexing.
1: Index every 512 bytes.
2: Index every 1KB.
3: Index every 2KB.
4: Index every 4KB.
5: Index every 8KB.
6: Index every 16KB.
7: Index every 32KB.
When indexing is enabled, the input buffer size must be a multiple of the indexing size, unless it is the last descriptor in a
job.
This field is reserved if bit 9 (Enable Zero-Compress-8) is set, if Header Gen Stats Input is set, or if Load Dictionary is non-
zero.

5 Compress Bit Order
Specifies the bit order of the compression output.
0: Bit 0 of each 16-bit word is the least significant bit. (Little endian. This is the normal format for a Deflate stream.)
1: Bit 0 of each 16-bit word is the most significant bit and bit 15 is the least significant bit. (Big endian.)
If this bit is set, then the output will consist of an even number of bytes.
This field is reserved if Header Gen Stats Input is set.

4 Generate All Literals
0: Generate literals and matches.
1: Generate only literals. This results in only doing Huffman Compression.
This field is reserved if Header Gen Stats Input is set.

3:2 End Processing
0: Append nothing after final output token.
1: Append EOB after final token.
2: Append EOB and non-bFinal Stored Block after final token.
3: Append EOB and bFinal Stored Block after final token.
This field is reserved if Header Gen Stats Input is set.

1 Flush Output
0: A partial output word is saved in the AECS. This value should be used for a Compress descriptor that is part of a
multiple-descriptor job and is not the last descriptor in the job.
1: A partial output word is written to the output stream. If it would overflow the output buffer, the operation returns an
error. This value should be used for a Compress descriptor that is the last (or only) descriptor in a job.

0 Stats Mode
0: Generate Huffman output.
1: Generate Statistics output.
This flag is reserved if Enable Header Generation is non-zero.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 59

6.3.5.2 Compression 2 Flags
Offset: 56; Size: 4 bytes (32 bits)

Table 6-13 Compression 2 Flags

Compression 2 Flags

Bits Description

31:7 Reserved: Must be 0.

6:5 Early Abort Size
Check for Early Abort after the specified number of data bytes have been compressed:
0: 512
1: 1024
2: 2048
3: 4096
This field is reserved unless Early Abort Threshold has a non-zero value.

4:2 Early Abort Threshold
0: Disable early aborts
1: Set the Early Abort threshold at 1/8.
2: Set the Early Abort threshold at 2/8.
3: Set the Early Abort threshold at 3/8.
4: Set the Early Abort threshold at 4/8.
5: Set the Early Abort threshold at 5/8.
6: Set the Early Abort threshold at 6/8.
7: Set the Early Abort threshold at 7/8.
This field is reserved if Header Gen Stats Input is set or if Generate All Literals is set.

1 Write AECS Huffman Tables
0: The size of the AECS written is the smaller of the specified size or 64 bytes.
1: The size of the AECS written is the smaller of the specified size or 1568 bytes.
• This flag is reserved unless Enable Header Generation is non-zero.
• This flag is required if Enable Header Generation has the values 5, 6, or 7.

0 Make Complete Tables
0: Do not modify input statistics.
1: Modify input statistics as described in Section 3.4.5.
This field is reserved unless Enable Header Gen has a non-zero value.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 60

6.3.6 CRC64 Descriptor (0x44)

The CRC64 operation computes a programmable arbitrary CRC of up to 64 bits in size.

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

32

40

48

56

Operation Operation Flags PASIDReserved

Completion Record Address

Source 1 Address

Reserved

Source 1 Transfer SizeCompletion Interrupt Handle

Priv

Reserved

Reserved CRC Polynomial

CRC Flags

Reserved

Source 2 Address

Source 2 Transfer Size

CRC-64 Descriptor

Figure 6-7 CRC-64 Descriptor

The CRC Flags are described in Table 6-14.

Unused

Unused

Byte 7 Byte 6 Byte 5 Byte 4 Byte 3 Byte 2 Byte 1 Byte 0 bytes

0

8

16

24

Bytes Completed Status

Fault Address

Error codeUnused

Invalid Flags

32

40

48

56

CRC-64

CRC-64 Completion Record

Fault Info

CRC

XOR Checksum

Figure 6-8 CRC-64 Completion Record.

The CRC64 field contains the CRC result, in the most-significant part of the field, as defined by the CRC Bit Order flag. See
Section 3.10.3 for details.

6.3.6.1 CRC Flags
Note that the flag bits 8:2,0 are identical to the Decompression Flags (Section 6.3.2.1).

Offset: 38; Size: 2 bytes (16 bits)

Table 6-14 CRC Flags

CRC Flags

Bits Description

15 CRC Bit Order
Specifies the bit order of the CRC input.
0: Bit 0 of each byte is the least significant bit.
1: Bit 0 of each byte is the most significant bit.

14 Invert CRC
If this value is 0, then the initial value of the CRC is 0, and the residue is returned. If this value is 1, then the initial value
of the CRC is all 1’s, and the inverse of the residue is returned.

13:10 Reserved: Must be 0.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 61

CRC Flags

Bits Description

9:6 Ignore End Bits
Specifies the number of bits to ignore at the end of the compressed input stream. A value of 0 means that the entire last
byte is processed, while a value of 7 means only one bit of the last input byte is processed.
A value larger than 7 is only allowed if Decompress Bit Order is set. In this case, the value gives the number of bits to
drop in the last 16-bit word.

5 Decompress Bit Order
Specifies the bit order of the decompression input.
0: Bit 0 of each 16-bit word is the least significant bit. (Little endian. This is the normal format for a Deflate stream.)
1: Bit 0 of each 16-bit word is the most significant bit and bit 15 is the least significant bit. (Big endian.)

4 Select BFinal EOB
0: Any EOB block is treated as an appropriate EOB.
1: Only EOB blocks with BFinal in the header are treated as an appropriate EOB.

3 Check for EOB
0: Do not check whether the last token is an appropriate EOB.
1: If the last token processed is not an appropriate EOB, then Status is set to Analytics error and Error Code is set to Bad
End of File.

2 Stop on EOB
0: Do not stop processing when an appropriate EOB is detected.
1: Stop processing when an appropriate EOB is detected.

1 Reserved: Must be 0.

0 Enable Decompression
0: Pass Source 1 directly to the filter function.
1: Decompress Source 1 and pass the decompressed output to the filter function.
If this field is 0, CRC Flag bits [9:2] are reserved.

6.3.6.2 CRC Polynomial
Offset: 56; Size: 8 bytes (64 bits)

This field defines the polynomial for the CRC, as described in Section 3.10.3. The polynomial is described in its normal (not
bit-reversed) form, without the leading 1-bit, in the high order end of this field, so that bit-63 is the most significant bit.

For example, a 64-bit CRC would use all of the bits. A 32-bit CRC would place the polynomial in bits 63:32 of the field, and
bits 31:0 would be 0.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 62

6.4 Analytics Engine Configuration and State

The AECS structure contains parameters and internal state of the analytics engine. See Section 3.2 for more information.
The AECS has one of two different formats: one for decompression, Encrypt, Decrypt, and filter opcodes, and one for the
compression opcode.

6.4.1 AECS Format for Encrypt, Decrypt, Decompress, and Filter

When the amount of AECS data read is less than the full amount, the unread fields receive default values. See
Section 6.4.1.2 for details.

The format of the AECS for decompress and filter is shown in Table 6-15.

Table 6-15 AECS Format for Decompress and Filter

Byte 3 Byte 2 Byte 1 Byte 0 Byte Offset Category

CRC 0x0

Filter

Reserved XOR Checksum 0x4

Low Filter Parameter 0x8

High Filter Parameter 0xC

Output Modifier Index 0x10

Reserved Drop Initial Bytes 0x14

Crypto Accumulator Sizes Crypto Flags Crypto Algorithm 0x18

Crypto

Reserved 0x1C

Crypto Input Accumulator
0x20

0x34

Crypto Output Accumulator
0x38

0x44

AES Key Low
0x48

0x54

AES Key High
0x58

0x64

Reserved
0x68

0x74

Counter/IV
0x78

0x84

GCM H
0x88

0x94

Hash
0x98

0xA4

Output Accumulator Data
0xA8

Decompress

0xAC

Reserved Output Bits Valid 0xB0

Bit Offset for Indexing 0xB4

Input Accumulator Data
0xB8

0x1B4

Size QW 3 Size QW 2 Size QW 1 Size QW 0 0x1B8

Size QW 31 Size QW 30 Size QW 29 Size QW 28 0x1D4

Decompression State 0x1D8

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 63

Byte 3 Byte 2 Byte 1 Byte 0 Byte Offset Category

Reserved AECS Format Drop Initial Bits 0x1DC

Decompression Internal State
0x1E0

0x14E4

Table 6-16 AECS Fields for Decompress and Filter

Field Description

CRC On input, this field contains the CRC seed. On output, it is the CRC value. Note that these
values are inverted as is specified by the relevant CRC standards.

XOR Checksum Initial (on input) or final (on output) XOR Checksum value.

Low Filter Parameter Low Parameter value of filter functions.

High Filter Parameter High Parameter value of filter functions.

Output Modifier Index Base index associated with first output bit. When the output is a bit-vector that is being
modified, this value offsets the indices written to the output and the values aggregated.

Drop Initial Bytes
The number of initial bytes in the Filter Input that should be dropped before starting the
filter operation. See Section 3.7.
If the operation is Encrypt or Decrypt, then Drop Initial Bytes must be 0.

Drop Initial Bits

The number of initial bits in the decompress or filter input that should be dropped before
starting the decompress/filter operation. See Section 3.7.
If the operation is CRC64, and decompression is not enabled, then Drop Initial Bits must be
0.
If the operation is Encrypt or Decrypt, then Drop Initial Bits must be 0.

AECS Format

AECS Format:
0: Format-1
1: Format-2
This field is the low-order 3 bits within the specified byte. See Section 3.2.1 for information
on how to use this field.

Cryptographic Algorithm

Cryptographic Algorithm
0: GCM
1: AES-CFB
2: XTS
Other: Reserved

Crypto Flags

Bits:
0: Enable Crypto: 1=Enable Crypto
1: Key_size_256: 0=key size 128 bits, 1=key size 256 bits
2: Reserved
3: Flush Crypto Input Accumulator: 1=Flush Crypto Input Accumulator
7:4: Reserved

• These bits are all reserved except for the following operations: Decrypt,
Encrypt, Decompress, CRC64, Scan, and Extract.

• Enable Crypto is required for operations: Encrypt and Decrypt.
• If Enable Crypto is set, then the Operation Flag “Read Source 2” must

have a value 1.
• For operations other than Decrypt, Encrypt, and Decompress, Flush

Crypto Input Accumulator must be set.

Crypto Accumulator Size

Bits 5:0: Number of valid bytes in the Crypto Input Accumulator
Bits: 15:6: Reserved
This value must be less than or equal to 40.
For operations other than Decrypt, Encrypt, and Decompress, this field must be 0.

Crypto Input Accumulator Input data for the crypto unit that has not yet been processed

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 64

Field Description

AES Key Low AES 128-bit key, or low 128 bits of AES 256-bit key
AES Key High High 128 bits of AES 256-bit key
Counter/IV Value of the AES counter/IV. Initial value is read, final value is written.

GCM H GCM “H” parameter. This is the encrypted value of all zeros.

Hash
For GCM, this is the value of the hash. The initial value is read, and the final value
is written.

Output Accumulator Data Output data that has not yet been written to the output stream.

Output Accumulator Bits Valid

Number of valid data bits in output accumulator.
Bit 0 is treated as the AECS Format Valid bit; see Section 3.2.1.
For the purposes of the number of valid bits, it is treated as if it were 0.
Since the Output Accumulator contains whole bytes, the only valid values are: 0,
8, 16, 24, 32, 40, 48, and 56.

Bit Offset for Indexing Total number of consumed bits on input.

Input Accumulator Data Input Deflate data that has not yet been processed.

Size QWn The number of bytes valid in the corresponding Quadword in the Input Accumulator. Valid
values are 0-64.

Decompress Internal State Contains internal state of the Analytics hardware required to link together multiple
segments that belong to one logical file.

6.4.1.1 Decompress Internal State
The Decompress/Analytics Internal State is shown in Table 6-17.

Table 6-17 Decompress/Analytics Internal State

Format-1 Field Format-2 Field Byte Offset

EOB CAM Entry 0x1D8

AECS Format/Drop Initial Bits 0x1DC

ALU First Table Index Reserved 0x1E0-0x1F0

ALU Num Codes 0x1F4-0x204

ALU First Code 0x208-0x218

ALU First Len Code 0x21C-0x22C

LL CAM Entries 0x230-0x280

Reserved 0x284

LL CAM Total Lengths 0x288-0x294

Distance CAM Entries 0x298-0x30C

Distance CAM Total Lengths 0x310-0x320

Decompression Performance Hints 0x324

LL Mapping Table Reserved 0x328-0x33C

LL Mapping Table LL Mapping CAM Part 1 0x340-0x41C

LL Mapping Table Reserved 0x420-0x430

Decompress State 0x434

Stored Block Bytes Remaining 0x438

Reserved 0x43C

Reserved LL Mapping CAM Part 2 0x440-0x4CC

Reserved 0x4D0-0x4E0

History Buffer Write Pointer 0x4E4

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 65

Format-1 Field Format-2 Field Byte Offset

History Buffer 0x4E8-0x14E4

The format of the LL and Distance CAM entries is the following: Bits 14:0 give the code value, in non-bit-reversed form, in
the high-order bits of the field. Bit 15 is a valid bit, which should be set only for valid entries. Bits 30:16 give a bit-mask,
where the 1-bits correspond to the valid bits in the code. If the size of the code is N, then the high-order N bits of the bit-
mask should be 1, and the remaining bits should be 0.

The 5 DWORDs for each ALU field define 15 values, one for each of 15 ALUs, where each ALU is looking for codes of a
particular width. E.g., ALU-1 is looking for codes that are 1-bit wide, and ALU-5 is looking for codes that are 5-bits wide. The
way that these 15 fields are spread throughout the 5 DWORDS is shown in Table 6-18. The value in each field is stored
towards the least-significant end.

Table 6-18 ALU Field Definitions

ALU DWORD Bits

1 0 1:0

2 0 4:2

3 0 8:5

4 0 13:9

5 0 19:14

6 0 26:20

7 1 7:0

8 1 16:8

9 1 26:17

10 2 10:0

11 2 22:11

12 3 12:0

13 3 26:13

14 4 14:0

15 4 30:15

The basic idea behind each ALU is that (in the non-bit-reversed space) all of the codes of a given length are sequential
values. So, these can be represented as a first code and a number of codes.

In Format 1, there is a mapping table that maps to actual literal values. All of the literal values in that mapping table that
correspond to codes of a given length are found in sequential locations. So, the ALU must know where in the mapping table
corresponds to the first code. For example, ALU-4 might contain 3 codes starting with 0x8, and with a first table index of 10.
This means that the valid length-4 codes are 0x8, 0x9, and 0xA. And these correspond to the literals in the mapping table
entries 10, 11, and 12.

In Format 2, there is a mapping CAM. The index of the CAM entry is implicitly the value of the literal or length. For example,
CAM entry 0 defines the code for literal 00. For each CAM entry, the low order 4 bits contains the code length. The higher
order bits contain an index indicating how many codes of that length occurred previously. In the above example, the three
CAM entries would contain values 0x04, 0x14, 0x24. The location of these codes in the CAM depends on what three literal
values were being represented.

Both the mapping table and CAM are only used for LL codes in the range of 0…264 (i.e., each one contains 265 entries).
These correspond to the LL codes that do not contain extra bits. The LL codes that are followed by extra bits (i.e.,
LL[265]…LL[285]) are handled via the LL CAM.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 66

The actual fields are described in Table 6-19:

Table 6-19 ALU Field Descriptions

Field Description

EOB CAM Entry Huffman code for EOB token.

ALU First Table Index Index into mapping table for first code for this ALU.

ALU Num Codes Number of codes for this ALU.

ALU First Code First code value for this ALU.

ALU First Len Code First LL code value that is a length.

LL CAM Entries These 21 CAM entries contain the codes for LL tokens 265-285.

Reserved

LL CAM Total Lengths These contain the total lengths (code length plus number of extra bits) for LL
tokens 265-285.
There are six lengths per DWORD, in bits: 4:0, 9:5, 14:10, 20:16, 25:21, and 30:26.
The last DWORD only contains three lengths.

Distance CAM Entries This CAM contains the Huffman codes for the 30 Distance tokens.

Distance CAM Total Lengths This contains the total lengths for the distance tokens in the same format as for the LL CAM
Total Lengths.

Decompress Performance Hints Decompress Performance Hints. See Section 6.4.1.2 for details.
LL Mapping Table (Format 1) Each byte entry contains the value as indexed by the ALUs. For literals, the value is the literal

value. For lengths, the value is the length – 3.

LL Mapping CAM (Format 2) Each entry contains key value as describe above.

Decompress State Bits 3:0 indicate the state of the decompress parser. The possible values are:
0000: Looking at an LL token in a non-final block.
0100: Look at an LL token in a final block.
0010: Looking at a stored block byte in a non-final block.
0110: Looking at a stored block byte in a final block.
0XX1: Looking at the start of a block header.
1XXX: Processing terminated due to EOB.
Bits 31:16 give the number of bits since the last token processed to the end of the input
accumulator.

Stored Block Bytes Remaining Bits 14:0 indicate the number of remaining bytes in a stored block that has been
partially processed.
A value of 0 means that the parsing is not in the middle of a stored block.
If the Decompress State is 0010 or 0110, then this field must be non-zero.

History Buffer Write Pointer Bits 14:0 contain the write pointer into the history buffer. Bit 15 is set when the write
pointer becomes greater or equal to the size of the history buffer.

History Buffer History Buffer.

6.4.1.2 Decompression Performance Hints
The nibbles of this field provide “hints” to the decompressor to improve its performance. They are “hints” in the sense that
if they are set incorrectly or not set at all, then the decompression will still produce the correct output, but it may take
longer than if they are set correctly.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 67

In AECS Format-1, there is only the first hint present (bits 3:0). In Format-2, there is a varying number of hints depending on
the implementation. Setting a non-existent hint has no effect. That is, there is nothing wrong with settling a hint that isn’t
supported.

The hints are:

Bits 3:0 Total length (code length plus number of extra bits) of the shortest Length Code.
Bits 7:4 Total length of the shortest Literal Code
Bits 11:8 Total Length of the second Shortest Literal Code. This may be the same length as for the shortest Literal code

if there are more than one literal codes with the shortest length.

6.4.1.3 Default AECS Values
Other than for the following fields, the default AECS values are 0.

Table 6-20 Default Field Values

Field Value (Format 1) Value (Format 2)

Output Bits Valid 0 1

AECS Format 0 1

Decompress State Expecting Start of Deflate Header

Internal State ALUs and CAMs configured for Deflate Fixed Codes

6.4.2 AECS Format for Compress

The format of the AECS for compress is shown in Table 6-21.

Table 6-21 AECS Format for Compress

Byte 3 Byte 2 Byte 1 Byte 0 Byte Offset Category

CRC 0x0
Checksums

Reserved XOR Checksum 0x4

Reserved 0x8

Reserved 0x18

Reserved Last Num Acc Bits Valid 0x1C
Output

Accumulator Output Accumulator Data
0x20

0x11C

Huffman Literal Code 0 0x120

Huffman Tables

Huffman Literal Code 285 0x594

Reserved 0x598

Reserved 0x59C

Huffman Distance Code 0 0x5A0

Huffman Distance Code 29 0x614

Reserved 0x618
Reserved 0x61C

Start Dictionary Data 0x64620
Dictionary

-- Varies

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 68

Table 6-22 AECS Fields for Compress

Field Description

CRC On input, this field contains the CRC seed. On output, it is the CRC value.

XOR Checksum Initial (on input) or final (on output) XOR Checksum value.

Last Descriptor Bit This indicates the last descriptor for compression indexing. See Section 3.4.7 for details.

Output Accumulator Data On input, this field can contain up to 2,048 bits. On output, it will contain fewer than 64. This can be
used by software to insert a Deflate block header.

Num Acc Bits Valid Number of bits that are valid in Output Accumulator Data. This value must be no greater than 2048.

Huffman Codes Bits 14:0: Non-bit-reversed Huffman code stored in low-order bits of field
Bits 18:15: Length of code word in bits.
Bits 31:19 : Reserved.

Start Dictionary Data Start of variable sized region containing dictionary data. See Section 3.4.4 for details.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 69

7 SUMMARY OF DIFFERENCES FROM INTEL® DSA

7.1 General Differences

The following lists some of the key aspects of Intel® IAA that are different from Intel® DSA:

• Partial Descriptor Completion: In general, Intel IAA completes the entire operation or returns an error. In the case
of an error, the entire operation must be re-executed. The two exceptions to this are the Decompress and
Translation Fetch operations. In the case of decompression where the output buffer is not large enough, the
operation would result in a recoverable “output overflow.” In this case, the operation is partially completed, the
accelerator finishes in a clean state, and the job can be continued (in a new descriptor) where it left off. In the case
of Translation Fetch, if a page fault occurs and Block on Fault is not set, then the operation is partially completed
and can be continued where it left off.

• Batch Processing: Intel IAA does not support batch processing or the Fence operation flag.
• Stateless Device: There is no state information stored within the accelerator between operations. Any state

information that must be passed between operations is written to the AECS by the first operation and then read
from the AECS by the second operation.

• Read Buffer Allocation: Intel IAA does not support Read Buffer allocation control.
• Completion Records: The Intel IAA Completion Record is 64 bytes in length and must be aligned on a 64-byte

boundary.
• Overlapping Buffers: None of the Source 1, Source 2, and Destination buffers (which are present for a given

operation) may overlap.
• Performance Monitoring Events:

o Intel IAA does not support the Operations events or Batch-related events.
o In Intel IAA, the EV_CL_WRITE event measures total data written, in units of 512 bytes rather than units of

32 bytes.
• Operations: The operations supported by Intel IAA are different from those supported by Intel DSA. See

Section 6.1.2 for a list of the operations supported. The OPCAP register allows runtime detection of supported
operations.

• CRC Operation: The CRC64 operation in Intel IAA is different from the CRC operation in Intel DSA. In particular,
CRC64 supports an arbitrary polynomial up to degree 64. In general, implementations for fixed CRCs may be faster
than implementations for arbitrary polynomials.

• Completion Record: Byte 1 has a different meaning. In Intel DSA, it is an operation-specific result, for Intel IAA, it is
either not used or is an error code.

• Inter-Domain Support: Intel IAA does not support Inter-Domain features.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 70

7.2 Configuration and Control Register Differences

Note that bits that are the same between Intel IAA and Intel DSA are not listed here. That is, any bit not listed here is the
same as for Intel DSA.

7.2.1 General Capabilities Register (GENCAP)

Table 7-1 General Capabilities Register (GENCAP) Description

GENCAP

Base: BARO Offset: 0x10 Size: 8 bytes (64 bits)

Bit Attr Size Description

63:42 RO 22 bits Unused

41 RO 1 bit Indexing Support
0: Indexing (for compress / decompress) is not supported.
1: Indexing is supported.

40 RO 1 bit Decompress Support
0: Decompression is not supported
1: Decompression is supported.

7.2.2 Intel IAA Capabilities Register (IAACAP)

Table 7-2 Intel® IAA Capabilities Register (IAACAP) Description

IAACAP

Base: BARO Offset: 0x180 Size: 8 bytes (64 bits)

Bit Attr Size Description

63:12 RO 52 bits Unused.

11 RO 1 bit Crypto XTS Support
0: Encryption and Decryption are not supported with the XTS algorithm.
1: Encryption and Decryption are supported with the XTS algorithm.
Typically, the OPCAP bit for ENCRYPT and DECRYPT would be cleared if no crypto
algorithm was supported.

10 RO 1 bit Crypto CFB Support
0: Encryption and Decryption are not supported with the CFB algorithm
1: Encryption and Decryption are supported with the CFB algorithm.
Typically, the OPCAP bit for ENCRYPT and DECRYPT would be cleared if no crypto
algorithm was supported.

9 RO 1 bit Crypto GCM Support
0: Encryption and Decryption are not supported with the GCM algorithm
1: Encryption and Decryption are supported with the GCM algorithm.
Typically, the OPCAP bit for ENCRYPT and DECRYPT would be cleared if no crypto
algorithm was supported.

8 RO 1 bit Header Generation Support
0: Compression Header Generation is not supported.
1: Compression Header Generation (see Section 3.4.5) is supported.
This value should be ignored if the COMPRESS opcode is not supported.

7 RO 1 bit Dictionary Compression Support
0: Compression with a dictionary is not supported.
1: Compression with a dictionary (see Section 3.4.4) is supported.
This value should be ignored if the COMPRESS opcode is not supported.

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 71

IAACAP

Base: BARO Offset: 0x180 Size: 8 bytes (64 bits)

Bit Attr Size Description

6 RO 1 bit Unused.

5 RO 1 bit Compression Early Abort Support
0: Compression Early Abort is not supported.
1: Compression Early Abort (see Section 3.4.6) is supported.
This value should be ignored if the COMPRESS opcode is not supported.

4 RO 1 bit Load Partial AECS Support
0: If the Decompress Flag bit 13 (Load Partial) is set, then the descriptor will return
an error.
1: Decompress Flag bit 13 (Load Partial) can be used.

3 RO 1 bit Force Array Output Modification Support
0: If the Filter Flag bit 27 (Force Array Output Modification) is set, then the
descriptor will return an error.
1: Filter Flag bit 27 (Force Array Output Modification) can be used.

2 RO 1 bit Chaining to CRC64
0: Operation CRC64 cannot be preceded by any other operation.
1: This operation can be preceded by some combination of Decrypt and
Decompress. See Section 3.1.

1 RO 1 bit Drop Initial Bits Support
0: If the Drop Initial Bits field in the AECS is non-zero, the descriptor will return an
error.
1: A non-zero value of the Drop Initial Bits field is allowed.
See Section 6.4.1.

0 RO 1 bit Generation 2 Minimum Capabilities
0: Minimum Generation 2 features are not present, in particular:

• The decompress internal state in the AECS is Format 1. In
particular, the Literal/Length Mapping is represented by a table.

• Completion Record checksum fields are written as 0 for CRC64.
• CRC Select is reserved for the CRC64 opcode.
• If the operation is other than No-op or Drain, at least one of

Source 1 Transfer Size and Maximum Destination Size must be
non-zero.

• Ignore End Bits Extension is not supported.
• Last Descriptor bit in the compression AECS is not present.

1: Minimum Generation 2 features are present, in particular:
• The decompress internal state in the AECS is Format 2. In particular, the

Literal/Length Mapping is represented by a CAM. (See Section 6.4.1.1)
• Completion Record checksum fields are written correctly for CRC64.
• CRC Select can be used with the CRC64 opcode.
• If the operation is other than No-op or Drain, at least one of Source 1

Transfer Size, Source 2 Transfer Size, and Maximum Destination Size
must be non-zero.

• Ignore End Bits Extension is supported.
• Last Descriptor bit in the compression AECS is present. (See

Section 3.4.7)

Intel® In-Memory Analytics Accelerator (INTEL® IAA) Architecture Specification Document ID:60941-03

August 2023 72

7.3 PCI Express (PCIe) Configuration Register Differences

7.3.1 Device ID (DID)

The Device ID (DID) Identifies the particular device.

DEVICE ID (DID)

Base: Rootbus CFG Offset: 0x2 Size: 2 bytes (16 bits)

Default Value: 0x0CFE

Bits Attr Size Default Value Description

15:0 ROS 16 0x0CFE Device ID (DID)
Allocated by the vendor.

7.3.2 Outstanding Page Request Capacity (PRSREQCAP)

Outstanding Page Request Capacity (PRSREQCAP) is the maximum number of outstanding page requests.

PRSREQCAP

Base: Rootbus CFG Offset: 0x248 Size: 4 bytes (32 bits)

Default Value: Implementation Defined

Bits Attr Size Default Value Description

31:0 RO 32 Implementation Defined Capacity (CAP)
How many page requests the function can issue.

	1 Introduction
	1.1 Audience
	1.2 References

	2 Overview
	2.1 Data Analytics Features

	3 Intel® Analytics Accelerator Architecture
	3.1 Operations Overview
	3.2 Analytics Engine Configuration and State
	3.2.1 AECS Format

	3.3 Decompression
	3.3.1 Verification
	3.3.2 Index Generation
	3.3.2.1 Structure of the Index Table

	3.3.3 Decompression With non-Byte-aligned Boundaries
	3.3.3.1 Ending on a non-Byte-aligned Boundary
	3.3.3.2 Starting on a non-Byte-aligned Boundary: Method 1
	3.3.3.3 Starting on a non-Byte-aligned Boundary: Method 2

	3.4 Compression
	3.4.1 Statistics Mode Output
	3.4.2 Compression Output Overflow
	3.4.3 Compression Indexing
	3.4.4 Compression with a Dictionary
	3.4.5 Compression Header Generation
	3.4.5.1 2-Pass Header Generation
	3.4.5.2 1-Pass Header Generation
	3.4.5.3 Header Generation with Statistics Input

	3.4.6 Compression Early Abort
	3.4.7 Last Descriptor Bit

	3.5 Encryption/Decryption
	3.5.1 AES-CFB
	3.5.2 GCM
	3.5.3 XTS
	3.5.4 Decryption with Indexing

	3.6 Checksum Calculations
	3.7 Drop Initial Bits vs. Drop Initial Bytes
	3.8 Filter Functions
	3.8.1 Parser
	3.8.1.1 Packed Array
	3.8.1.2 Parquet RLE

	3.8.2 Output Modification
	3.8.2.1 Modification When Output is Normally a Bit Vector
	3.8.2.2 Modification When Output is Normally an Array

	3.8.3 Aggregation

	3.9 Chaining of Functions
	3.10 Operation Types
	3.10.1 Decompress
	3.10.2 Compress
	3.10.3 CRC64
	3.10.4 Scan
	3.10.5 Extract
	3.10.6 Select
	3.10.7 Expand

	4 Error Handling
	4.1 Descriptor Checks
	4.2 Descriptor Reserved Field Checking
	4.3 AECS Checks
	4.4 Error Codes
	4.4.1 Operation Status Codes
	4.4.2 Error Code

	5 Software Architecture
	5.1 Intel® Query Processing Library

	6 Structure Formats
	6.1 Descriptor
	6.1.1 Trusted Fields
	6.1.2 Operation
	6.1.3 Operation Flags
	6.1.4 Completion Record Address
	6.1.5 Source 1 Address
	6.1.6 Destination Address
	6.1.7 Source 1 Transfer Size
	6.1.8 Completion Interrupt Handle
	6.1.9 Source 2 Address
	6.1.10 Maximum Destination Size
	6.1.11 Source 2 Transfer Size

	6.2 Completion Record
	6.2.1 Status
	6.2.2 Error Code
	6.2.3 Fault Info
	6.2.4 Bytes Completed
	6.2.5 Fault Address
	6.2.6 Invalid Flags
	6.2.7 Output Size
	6.2.8 Output Bits
	6.2.9 XOR Checksum
	6.2.10 CRC
	6.2.11 Aggregates
	6.2.12 Crypto Hash

	6.3 Descriptor Types
	6.3.1 Intel® DSA Operations
	6.3.2 Decompress Descriptor (0x42)
	6.3.2.1 Decompression Flags

	6.3.3 Analytics Descriptor (0x50, 0x52, 0x53, 0x56)
	6.3.3.1 Decompression Flags
	6.3.3.2 Filter Flags
	6.3.3.3 Number of Input Elements

	6.3.4 Decrypt/Encrypt Descriptor (0x40, 0x41)
	6.3.4.1 Cipher Flags

	6.3.5 Compress Descriptor (0x43)
	6.3.5.1 Compression Flags
	6.3.5.2 Compression 2 Flags

	6.3.6 CRC64 Descriptor (0x44)
	6.3.6.1 CRC Flags
	6.3.6.2 CRC Polynomial

	6.4 Analytics Engine Configuration and State
	6.4.1 AECS Format for Encrypt, Decrypt, Decompress, and Filter
	6.4.1.1 Decompress Internal State
	6.4.1.2 Decompression Performance Hints
	6.4.1.3 Default AECS Values

	6.4.2 AECS Format for Compress

	7 Summary of Differences from Intel® DSA
	7.1 General Differences
	7.2 Configuration and Control Register Differences
	7.2.1 General Capabilities Register (GENCAP)
	7.2.2 Intel IAA Capabilities Register (IAACAP)

	7.3 PCI Express (PCIe) Configuration Register Differences
	7.3.1 Device ID (DID)
	7.3.2 Outstanding Page Request Capacity (PRSREQCAP)

