

White Paper

Performance Monitoring Unit Sharing Guide
Peggy Irelan and Shihjong Kuo

PMU Sharing Guide

Table of Contents

1. About this document ... 4

2. Programmer’s Reference Manual Volume 3B and these Guidelines 5

3. Sharing guidelines .. 7

4. Appendix – MSR Definition(s) ... 9

Acknowledgements

This material has been reviewed and updated in coordination with ecosystem OEMs, OSVs,
VMVs, ISVs and Tool providers.

Thanks to all the technical contributors and facilitators for supporting the breath of the
reviews.

A special thanks to VMware* for raising attention to this issue and the impact to the
ecosystem, and for providing the motivation to start the development of these guidelines.

* Other names and brands may be claimed as the property of others

PMU Sharing Guide

Terms
Term Definition

PerfMon
Short for Performance Monitoring. The term used for the current
collective monitoring hardware resources e.g. counter/controls etc
supported on Intel platforms.

PMU

The Performance Monitoring Unit of processors supporting Intel® 64 and
IA-32 architectures. Generally, it consists of collections of MSRs. The
collection of MSRs include counter registers, event programming MSRs,
global event control MSRs. PMUs of older processors are model-specific;
PMU interfaces in more recent processors are evolving towards higher
degrees of architectural stability.

MSR

Model Specific Register. PMU counter and counter control registers are
implemented as MSR registers. They are accessed via the RDMSR and
WRMSR instruction. Certain counter registers can be accessed via the
RDPMC instruction. As defined in Volume 2B of the Programmer’s
Reference Manual. RDPMC is available to software at any privilege level;
RDMSR and WRMSR are available only to software running at ring 0.

PEBS
Precise Event Based Sampling. A special counting mode in which
counters can be configured to overflow, interrupt the processor, and
capture machine state at that point.

CPL and Ring Level

Intel processors operate in privilege levels zero through three. Typically
operating system code executes in privilege level 0. User (or privilege
levels 1, 2, or 3) refers to less privileged states of execution. User code
typically executes at privilege level 3.

In-use

Defines a software convention between software agent’s interactions
with PMU hardware with respect to the subscription of PMU hardware. A
set of PMU hardware (a counter control register, associated counter MSR,
or feature) is “in-use” if conditions described in the guidelines section of
this document are met.

Agent

Short for PMU agent. A PMU agent is a privileged software process that
reads and writes to PMU hardware. Specifically, it could be any one of the
following:

Firmware (BIOS), OS, hosted VMM, Performance Monitoring tools, ISR, or
any other ring 0 software.

First-use Agent
A PMU agent that discovers a set of PMU hardware was not in-use and
programs that piece of PMU hardware to in-use state.

ISR Interrupt Service Routine.

PMI

Performance Monitoring Interrupt. This interrupt is generated when a
counter overflows and has been programmed to generate an interrupt, or
when the PEBS interrupt threshold has been reached.

The interrupt vector for this interrupt is controlled through the Local
Vector Table in the Local APIC.

VMX
Virtual Machine eXtensions. Hardware extensions provided to enable x86
hardware virtualization.

SMM System Management Mode.

http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

PMU Sharing Guide

 About this document
Until fairly recently, the performance monitoring unit (PMU) of Intel® processors employed
model-specific programming interfaces and required unique treatment by performance-
monitoring users or software agents.

In order to facilitate simpler development and maintenance of performance monitoring
tools, Intel has begun the transition to create an architecturally-defined approach for
software agents to interacting with the PMU. This approach is known as "architectural
Performance Monitoring (PerfMon)," as opposed to the traditional "model-specific
Performance Monitoring (PerfMon)." The purpose of architectural PerfMon is to provide a
functionally and logically consistent set of capabilities with a consistent hardware
interface that developers can rely on now and in the future.

Performance Monitoring (PerfMon) is a limited system resource. While programming control
of PMU hardware is available on a first come first serve basis, there is currently no
hardware mechanism available to ‘reserve’ a piece of PMU resource. A software agent can
intentionally or unintentionally overwrite previously programmed PMU settings. This
situation can be improved with software updates and PMU sharing guidelines between
users or agents.

This paper provides a set of guidelines between multiple software agents sharing the PMU
hardware on Intel processors. These conventions are not attempting to address PerfMon
virtualization but how independent software components (e.g., BIOS and OS; e.g., hosted
Virtual Machine Monitor (VMM) and hosting OS) can coordinate use of PerfMon. In the case
of PerfMon virtualization (HV and guest), the software is not fully independent, and a
HyperVisor/VMM can use different approaches, as long as it uses these conventions
globally relative to other independent software (e.g., BIOS). All PerfMon resource
definitions are documented in Volume 3B of the Intel® 64 and IA-32 Architectures
Software Developer's Manual.

Usage and access, beyond Ring 0 programming, is not restricted. These guidelines are for
software agents including Firmware (BIOS), VMM, OS and Tools that program and utilize or
plan to utilize PerfMon resources.

These guidelines are not setting requirement for PerfMon virtualization under VMX.

All conventions are recommendations. There is no new hardware or hardware
enforcement being defined by this paper.

http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm

PMU Sharing Guide

Programmer’s Reference Manual Volume 3B and these Guidelines
PerfMon support and usage expectations outlined Programmer’s Reference Manual
Volume 3B must still be followed:

• Facility enumeration: The version identifier is retrieved by querying
CPUID.0AH:EAX[bits 7:0]. If the version identifier is greater than zero, architectural
performance monitoring capability is supported. Software queries the CPUID.0AH
for the version identifier first; it then analyzes the value returned in
CPUID.0AH.EAX, CPUID.0AH.EBX to determine the facilities available.

o Bits 8 through 15 of CPUID.0AH.EAX indicate the number of performance
monitoring counters available on the logical processor (each
IA32_PERFEVTSELx MSR is paired to the corresponding IA32_PMCx MSR).

o Bits 0 through 5 of CPUID.0AH.EDX indicate the number of fixed-function
performance counters available per thread.

• Events only supported by enumeration: A processor that supports architectural
performance monitoring may not support all the predefined architectural
performance events (Table 18-6). CPUID.0AH:EAX[31:24] indicates events not
available.

• No software precision programming decisions or functionality: Programming
decisions or software decisions for functionality should not be based on the event
values or dependent on the existence of performance monitoring events.

• Known starting state: Software requires a known starting state. After CPU reset,
all counters and control registers are disabled and clear/reset to ‘0. The only
exception to this is the IA32_PERF_GLOBAL_CTRL control MSR, all programmable
counter global enable bits are reset to ‘1.

General PerfMon programming guidelines:

• Disable PerfMon counter(s), using IA32_PERF_GLOBAL_CTRL or
IA32_PERFEVTSELx.ENABLE, before programming (writing) the counter
(IA32_PMCx) MSRs.

• Utilize kernel preemption disabling facilities provided before reading the in-use
indication and programming the counter(s) to reduce race conditions.

• To facilitate sharing agents must move to read-modify-write to access MSRs.

PMU Sharing Guide

• An ‘in-use’ resource is indicated by the following:

o Programmable counter is in-use if the ‘Event select field’ in
IA32_PERFEVNTSELx is non-zero.

o A fixed counter is in-use if its ‘Enable field’ in IA32_FIXED_CTR_CTRL is non-
zero.

o PMI or APIC Performance Monitoring Interrupt Vector is in-use if:

 The ‘INT/PMI’ bit, bit 20, in any IA32_PERFEVNTSELx is non-zero.

or

 The ‘INT/PMI’ bit, the 4th bit in the corresponding fixed counter
control field in IA32_FIXED_CTR_CTRL, is non-zero. E.g. If the
platform supports 3 fixed counters. The PMI in-use check is
IA32_FIXED_CTR_CTRL bits 3, 7 or 11 are non-zero the PMI vector is
in-use.

o Model specific feature or event MSRs are in-use if the ‘programming/enable’
MSR is non-zero.

 For example on Intel® Core™ i7 processor :

• PEBS is ‘in-use’ if (0x3F1) MS_PEBS_ENABLE[3:0] != 0.

• Load Latency feature is ‘in-use’ if (0x3F1)
MS_PEBS_ENABLE[35:32] != 0.

• Extended filter MSRs for the following:

o Offcore Traffic events are ‘in-use’ if (0x1A6/0x1A7)
MS_OFFCORE_REQ0/1 != 0.

o LBR filter is enabled/’in-use’ if (0x1C8)
MS_LBR_FILTER_SELECT != 0.

 Note: Model specific PerfMon events/features and the
corresponding MSRs are subject to change.

http://legal.intel.com/tmb/Namesdb/search.asp#8107

PMU Sharing Guide

Sharing Guidelines
Agents must provide a software calling and launch configuration facility to relinquish or
release the use of PerfMon resources.

o Agents must be able to be configured and function without PerfMon resources.

o Discontinue or relinquish use of the counter by zeroing the counter control register
(IA32_PERFEVNTSELx) or control field and the corresponding counter.

o Agents must discontinue or relinquish PerfMon resource on exit or unload.

o Note: Tools agents that follow these conventions and utilize counter resources
are at risk of being ‘killed’ by the user such that the tool is not able to cleanly
release the counter resources. Tools should maintain a resource usage history and
clean exit information file so that if they are launched again they can reclaim the
previously used resources.

o If the Tool is not able to cleanly exit, and does not implement a kill-reclaim
capability, these resources will remain in-use until reboot. Tools should
document the impact to the platform when the user kills the application
and does not reboot the system.

Agents should program the counter at the first opportunity.

o An agent that discovers a counter is in-use, at first opportunity or later, will
assume the counter has been claimed by another agent and will not change its
programming or disable it.

o This includes the VMM. The VMM should ensure any counter in-use by
firmware is not disabled.

o If an agent has programmed counters at its first opportunity, that agent reserves
the right to "reclaim" these counters if the counter, at any point, is reprogrammed
by another agent.

Agents should consume a minimal set of resources.

o If at all possible, use a fixed function counter.

o If a programmable counter is required, use the least capable counter.

o For example, on Intel® Core™ processors and Intel® Core™ Duo
processors Precise Event Based Sample (PEBS) is only available on counter
0. If at all possible, agents should avoid using counter 0 to allow PEBS to be
utilized by another agent.

If at all possible, configure the fixed counter(s) to be an always running (monotonically
increasing) counter(s) and not reprogram.

o Program the counters to count all ring levels and not generate a PMI (performance
monitoring interrupt).

o This enables agents to check the corresponding 4-bit counter control for ‘free
running’ configurations for possible read-only sharing.

PMU Sharing Guide

o For example, Fixed Counter 0 is free running if IA32_FIXED_CTR_CTRL[3:0]
= 3, Fixed Counter 1 is free running if IA32_FIXED_CTR_CTRL[7:4] = 3,
Fixed Counter 2 is free running if IA32_FIXED_CTR_CTRL[11:8] = 3.

Using Performance Monitoring Interrupts (PMI): If the agents require ‘sampling’ or enabling
PMI, the agent must:

o Poll for an available resource including PMI vector and check for other user(s).

o If other agents are using counters, do not use the ‘Freeze PerfMon on PMI’ feature
in IA32_DEBUGCTL MSR. Setting this bit will disable all counters upon interrupt,
possibly negatively impacting other users.

o Software must utilize the software freeze, read-modify-write to
IA32_PERF_GLOBAL_CTRL MSR, in the interrupt service routine and only
disable counters under their programming control.

Agents are free to utilize the SMM Freeze feature in IA32_DEBUGCTL MSR. Firmware must
not disable this feature while in SMM.

PMU Sharing Guide

Appendix – MSR Definition(s)
MSR definitions below for Intel® Core™ i7 processor.

Global Control and Status MSR

PMU Sharing Guide

IA32_PERFEVNTSELx MSR

IA32_FIXED_CTR_CTRL MSR

PMU Sharing Guide

IA32_PERF_CAPABILITIES MSR

MS_PEBS_ENABLE MSR (Intel® Core™ i7 processor

PMU Sharing Guide

IA32_DEBUGCTL MSR

PMU Sharing Guide

About the Authors

Peggy Irelan is a Principal Engineer within the Software & Services Group a
Intel. She works on processor observation/monitoring hardware
architecture and usage models. She has a particular interest in advancing
‘smart software’ enabled through hardware feedback, monitoring/sensing.
In her spare time, Peggy likes to try new adventures, the latest of which is
scuba diving this year reaching PADI Rescue Diver certification while
exploring Beqa, Fiji and Moorea, Tahiti. She can be reached at

t

peggy.j.irelan@intel.com

Shihjong Kuo is a technical lead in Server Platform Group. He works on CPU feature
documentation and instruction set enabling. He can be reached at shihjong.kuo@intel.com.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE,
EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS
GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR
SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR
IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT
OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED NOR
INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD CREATE A
SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.
Intel may make changes to specifications and product descriptions at any time, without notice. Designers
must not rely on the absence or characteristics of any features or instructions marked "reserved" or
"undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for
conflicts or incompatibilities arising from future changes to them. The information here is subject to
change without notice. Do not finalize a design with this information.
The products described in this document may contain design defects or errors known as errata which may
cause the product to deviate from published specifications. Current characterized errata are available on
request.
Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.
Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site.

mailto:peggy.j.irelan@intel.com
mailto:shihjong.kuo@intel.com
http://www.intel.com/

	 About this document
	Programmer’s Reference Manual Volume 3B and these Guidelines
	Sharing Guidelines
	Appendix – MSR Definition(s)
	About the Authors

