
Lesson 1: Introduction



2

Learning objectives

You will be able to:

▪ Define various types of anomalies 

▪ Discuss the applications of anomaly detection

▪ Explain the basic statistics related to anomaly detection

▪ Use Python* to apply anomaly detection to one-dimensional data
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What is an anomaly?

Data that differs a lot from the rest. 

▪ An anomaly is “an observation which deviates so much from other observations 
as to arouse suspicions that it was generated by a different mechanism.” 
(Hawkins 1980)

▪ Also called “abnormality” or “deviant.”

▪ “Outlier” is also used as a synonym, but here we will use a more precise 
definition.
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What is an anomaly (continued)?

Anomalies are a subset of outliers (Aggarwal 2013)

▪ All observations = normal data + outliers

▪ Outliers = noise + anomalies 

▪ Noise = uninteresting outliers 

▪ Anomaly = sufficiently interesting outlier
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Anomalies: two fundamental questions

How big must the deviation be for a point to be classified as an anomaly?

▪ No easy answer. The classification depends in part on subjective judgment.

How do I separate an anomaly from noise?

▪ Depends on what is “sufficiently interesting” for you.
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Types of anomalies

▪ Point anomalies: an individual data point seems strange when compared with 
the rest of the data. Example: an unusually large credit card purchase

▪ Contextual anomalies: the data seems strange in a specific context, but not 
otherwise. Example: a US credit card holder makes a purchase in Japan

▪ Collective anomalies: a collection of data points seems strange when compared 
with entire dataset, although each point may be OK. Example: ten consecutive 
credit card purchases for a sandwich at hourly intervals
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Applications and use cases

▪ Fraud detection in credit card purchases

▪ Intrusion detection in computer networks

▪ Fault detection in mechanical equipment

▪ Earthquake warning

▪ Automated surveillance

▪ Monitoring gene expression for cancer classification

▪ Detect fake social media accounts
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Anomaly detection: the fundamental idea

The approach used by almost all anomaly detection algorithms

▪ Create a model for what normal data should look like*

▪ Calculate a score for each data point that measures how far from normal it is

▪ If score is above a previously specified threshold, classify point as an anomaly

Devising an appropriate model and score is essential

*Note: “normal” is used here in the sense of “typical” or “usual,” which may or may not be 
related to the normal distribution. 
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Anomaly detection: modeling the data

The approach you take depends on what you know

▪ If you have examples of normal or anomalous data, you can use this 
information to find anomalies

– Supervised anomaly detection (lesson 6)

▪ If you don’t have any prior information about normal or anomalous data, you 
have to use a different approach

– Unsupervised anomaly detection (this lesson and several others)

– Requires probability and statistics to look for anomalies
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Probability distribution

▪ The chance of obtaining a data value (or range of values)

▪ The normal (Gaussian) distribution is the probability distribution most 
commonly used to model data

▪ Caution: while it is mathematically convenient and easy to use, the normal 
distribution may not be appropriate for your specific data. Do NOT use it 
without thinking about your data first.
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Cumulative distribution function (CDF)

▪ For a real-valued random variable X, the CDF evaluated at x is the probability 
that X will take a value less than or equal to x

▪ Usually denoted as F(x). Four basic properties:

  

0 £ F(x) £1  for all x

lim
x®-¥

F(x) = 0

lim
x®+¥

F(x) = 1

F(x) is a non-decreasing function of x
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Probability distribution vs. CDF

▪ Both are useful for anomaly detection

▪ If you want to identify anomalies as low probability events, then using a 
probability distribution is straightforward

▪ For visual inspection of anomalies, the CDF is often more robust
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Can you see the anomaly?

If so, what is its value?
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Outlier is at 250 °F



16

Fundamental statistics: mean

A type of average

▪ Mean: also known as the expected value

▪ For a discrete random variable X that can assume values x1, x2,...xn, it
is given by

▪ Here p(xi) is the probability of getting outcome xi where i = 1, 2,…n

  

m = E[X ] = x
i

i=1

n

å p(x
i
)
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Fundamental statistics: median and mode

Other types of averages

▪ Median: the value separating the higher half and lower half of the data

▪ Mode: the value that appears most often

Median and mode are usually less affected by outliers than mean
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Fundamental statistics: example

Assume values all have equal probability 

▪ values = 2, 2, 3, 4, 7, 8, 9

– mean = 5; median = 4; mode = 2

▪ Now introduce an outlier:

▪ values = 2, 2, 3, 4, 7, 8, 30

– mean = 8; median = 4; mode = 2

Mean changes, but median and mode do not
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Fundamental statistics (continued)

The spread of the data about the mean

▪ Variance: the expected value of the square of the deviation of a random 
variable from its mean

– For a discrete random variable:

Here σ is the standard deviation. It is used frequently in anomaly detection.

The value of σ is sensitive to the presence of anomalies

  

var ( X ) = s 2 = E ( X - E[X ])2é
ë

ù
û = (x

i
i=1

n

å - m)2 p(x
i
)
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Fundamental statistics (continued)

Multivariate data

▪ Covariance: it measures the joint variability of two random variables

The covariance of a variable with itself is just the variance 

  
cov ( X ,Y ) = E ( X - E[X ])(Y - E[Y])éë ùû = E[XY]- E[X ]E[Y]

  cov (X , X ) = var (X )
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Fundamental statistics (continued)

Multivariate data

▪ Consider a vector of random variables:

▪ Can construct a covariance matrix Σ whose entries are given by:

▪ The covariance matrix represents the generalization of variance to higher 
dimensions. It is often used in anomaly detection.

  
S

ij
= cov(X

i
, X

j
)
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Statistical tests

Scoring anomalies

▪ A common method for scoring anomalies in 1D data is the z-score

▪ If the mean and standard deviation are known, then for each data point 
calculate the z-score as 

▪ The z-score measures how far a point is away from the mean as signed 
multiple of the standard deviation

▪ Large absolute values of the z-score suggest an anomaly 

 
z

i
=

x
i
- m

s
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Statistical tests

A note of caution

▪ Since the mean and standard deviation are themselves sensitive to 
anomalies, the z-score can sometimes be unreliable

▪ The modified z-score tackles this problem by using medians instead:

▪ MAD = median absolute deviation from the median

▪ Large absolute values of the modified z-score suggest an anomaly 
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Dataset 1 z-score mod z-score

2 -1.1 -1

2 -1.1 -1

3 -0.7 -0.5

4 -0.4 0

7 0.7 1.5

8 1.1 2

9 1.5 2.5

Mean 5

Std deviation 2.7

Median 4

MAD 2

Example: normal data



25

Dataset 2 z-score mod z-score

2 -0.6 -1

2 -0.6 -1

3 -0.5 -0.5

4 -0.4 0

7 -0.1 1.5

8 0 2

30 2.4 13

Mean 8

Std deviation 9.2

Median 4

MAD 2

Example: data with an anomaly
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Statistical tests

Multivariate data

▪ The higher dimensional analog of the z-score is the Mahalanobis distance

▪ The Mahalanobis distance d of a data point from a set of observations is given 
by 

▪ Commonly used for anomaly detection

▪ Requires that the inverse covariance matrix exist (can be a problem)

▪ More robust versions of this distance have been devised
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Use Python* for anomaly detection

Next up is a look at applying these concepts in Python*

▪ See notebook entitled Introduction_to_Anomaly_Detection_student.ipynb
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Learning objectives recap

In this session you learned how to:

▪ Define various types of anomaly 

▪ Discuss the applications of anomaly detection

▪ Explain the basic statistics related to anomaly detection

▪ Use Python* to apply anomaly detection to one-dimensional data
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▪ Identification of Outliers by D.M. Hawkins (Champan & Hall 1980)

▪ Outlier Analysis by C.C. Aggarwal (Springer 2013)

– First chapter available free

▪ Eureka Statistics

http://charuaggarwal.net/outlierbook.pdf
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