experience
what's inside”

ANOMALY DETECTION

Lesson 6: Supervised Anomaly Detection



Learning objectives

You will be able to:
= Describe supervised anomaly detection
= Implement cost-sensitive learning

= Apply adaptive resampling and boosting methods

= Use Python* to perform supervised anomaly detection




Supervised anomaly detection

Introduction

= |n previous lessons, we discussed various approaches to unsupervised
anomaly detection. That is, how to detect anomalies when you don’t have
any additional information about the data.

= One issue that arises with unsupervised anomaly detection is that you often
label noise as anomalies because you don’t know any better.

= But what if you do know better? More specifically, what if you have examples
of anomalies and normal points that you could encounter?




Supervised anomaly detection

Knowledge is power
= If you have (domain-specific) information about your anomalies, use it.
= If you are really lucky, you might have a simple selection criterion:
— All heights above 6’ 5” are anomalies
= More often, information consists of examples of normal data and anomalies

= Extra information usually improves anomaly detection accuracy significantly

Whenever possible, use supervised methods.




Supervised anomaly detection: a classification
problem

A special case of classification
= Examples of anomalies and normal points = training data

= Unlabeled points = test data

= Therefore, the many classification techniques available (supervised machine
learning) can be used for anomaly detection




Supervised anomaly detection: a classification
problem

A classification problem with specific challenges
= Class imbalance
— Anomalies by definition are rare, so there will be few examples
= Contaminated normal data
— Only anomalies labeled; normal class contaminated by unlabeled anomalies

= Partially labeled data (“semi-supervised anomaly detection”)

— Typical case: only normal class labeled




Class imbalance

An illustration of the problem

= Consider screening test that uses x-ray scans to detect a rare cancer

= For atypical population tested, 99% of patients are healthy and 1% has cancer
= We want develop an algorithm to classify the scans as normal or anomalous

= Naturally, we want our algorithm to performance as well as possible

Must evaluate algorithm performance with care




Class imbalance

A useless anomaly detector

= Label all scans as normal without any analysis

= Confusion matrix (for 100 scans): Predicted

= Accuracy = (TP+TN) / Total Normal | Anomal
TP = true positive; TN = true negative True Normal 99 Y 0
Total = all data Anomal 1 0

= Accuracy = (0 + 99)/100 = 99% y

= Very high accuracy, but never find a sick patient




Class imbalance: effective anomaly detection

Evaluate the algorithm appropriately

= Overall accuracy is not a useful measure by which to judge the algorithm when
the anomalies are a small fraction of the overall data

= Typically, it is more costly to misclassify an anomalous point than normal data*

— For the cancer example: a false positive (normal point misclassified) will lead
to additional, diagnostic tests, which hopefully will correct the error

— A false negative (anomalous point misclassified) will lead to overlooking the
disease at an early, treatable stage and perhaps ignoring it until it is too late
to treat

= This cost should be included when evaluating the effectiveness of the algorithm

intel‘ | 9




Class imbalance: effective anomaly detection

Algorithm should take into account cost of making a mistake (misclassification)
= Use a cost-weighted approach when implementing algorithm
= Two main ways to do so:

— Cost-sensitive learning

— Adaptive resampling




Cost-sensitive learning

Classifier is trained using a weighted accuracy over the various classes

Consider two classes—normal (denoted by 0) and anomalies (denoted by 1)

In this case minimize the weighted accuracy given by:
J=cn,tcn

c; is cost of misclassifying a point from class i (withi =0, 1)

n; is number of misclassified instances from class i

The objective function above can be generalized to multiclass systems (different
types of anomaly)




Cost-sensitive learning

= The costs for each classes is often domain-dependent and should be specified
as part of the inputs for the algorithm

= However, if no information about the costs is available, you have to make an
educated guess

= One possibilityis ¢, = ZI/NZ. where N, is the number of points in class i

— The weighted accuracy then depends on the fraction of misclassifications for

each class offsetting the class imbalance

n n
= See Python* notebook for an example J=—2>+

i NO Nl




Adaptive resampling

Another way to address class imbalance

= Non-uniform sampling of the training set to favor the rare, anomaly class
— Oversample anomalies
— Undersample normal data
— Ordo both

= Sampling probabilities are chosen proportional to misclassification costs
— Oversampling is done with replacement
— Undersampling can be done with or without replacement

= Algorithm is trained on resampled dataset




Adaptive resampling

The case for undersampling

Undersampling often works better than oversampling
Typically, use most or all of anomalies and a small number of normal data points
As a result:

— Small training dataset, so training is fast

— Since the training dataset is small, can construct multiple training datasets
and average over the results leading to a better anomaly detector

However, the effectiveness of undersampling is limited by how sensitive the
classifier is to discarding normal data. When the classification model is mainly
dependent on the anomaly examples, undersampling works well*




Adaptive resampling vs. cost-sensitive learning

= Adaptive resampling (AS): select some of labeled data using cost-based weights
to create a training dataset and then treat all points in this sub-dataset equally

= Cost-senstive learning (CSL): use all of the labeled data as a training dataset and
use cost-based weights for classification

= If the cost functions are the same, the two approaches should produce similar
results. However:

— CSL keeps all the data, so more accurate if you analyze the data just once
— AS more efficient because it works with smaller datasets (for undersampling)

— If use AS to average over many training datasets, usually better than CSL




Boosting methods

Learning from your mistakes

= The process of converting a family of weak learners into a strong learner

= Weak learner = a classifier only a little better than random guessing

= Strong learner = a classifier highly correlated with the correct classification

= The weak learners are trained sequentially, each trying to correct the mistakes of
its predecessor




AdaBoost

A popular boosting algorithm
= Learning occurs through a weighted-error approach

For each round:

— Weight is increased for previously misclassified examples

— Weight is increased for correctly classified ones

Predictions for test data are obtained from a confidence-weighted majority vote
of the learners from all rounds

Typically used with decision trees, but works with any weak learner

Can be modified to include cost-sensitive learning




experience
what's inside”

CONCLUSION



Use Python* for anomaly detection

Next up is a look at applying these concepts in Python *

= See notebook entitled Supervised Anomaly Detection_student.ipynb




Learning objectives recap

In this session you learned how to:

= Describe supervised anomaly detection

= Implement cost-sensitive learning

= Apply adaptive resampling and boosting methods

= Use Python* to perform supervised anomaly detection




References

= Qutlier Analysis by C.C. Aggarwal (Springer 2013)
= [ntroduction to AdaBoost by N. Nikolaou

= Supervised Machine Learning: A Review of Classification Techniques by S.B.
Kotsiantis, Informatica 31 249-268 (2007)



http://www.cs.man.ac.uk/~nikolaon/~nikolaon_files/Introduction_to_AdaBoost.pdf
https://datajobs.com/data-science-repo/Supervised-Learning-[SB-Kotsiantis].pdf




