
Lesson 6: Supervised Anomaly Detection



2

Learning objectives

You will be able to:

▪ Describe supervised anomaly detection

▪ Implement cost-sensitive learning

▪ Apply adaptive resampling and boosting methods

▪ Use Python* to perform supervised anomaly detection
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Supervised anomaly detection

Introduction

▪ In previous lessons, we discussed various approaches to unsupervised 
anomaly detection. That is, how to detect anomalies when you don’t have 
any additional information about the data.

▪ One issue that arises with unsupervised anomaly detection is that you often 
label noise as anomalies because you don’t know any better.

▪ But what if you do know better? More specifically, what if you have examples 
of anomalies and normal points that you could encounter?
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Supervised anomaly detection

Knowledge is power

▪ If you have (domain-specific) information about your anomalies, use it.

▪ If you are really lucky, you might have a simple selection criterion: 

– All heights above 6’ 5” are anomalies

▪ More often, information consists of examples of normal data and anomalies

▪ Extra information usually improves anomaly detection accuracy significantly

Whenever possible, use supervised methods.
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Supervised anomaly detection: a classification 
problem

A special case of classification

▪ Examples of anomalies and normal points = training data

▪ Unlabeled points = test data

▪ Therefore, the many classification techniques available (supervised machine 
learning) can be used for anomaly detection
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Supervised anomaly detection: a classification 
problem

A classification problem with specific challenges

▪ Class imbalance

– Anomalies by definition are rare, so there will be few examples

▪ Contaminated normal data

– Only anomalies labeled; normal class contaminated by unlabeled anomalies

▪ Partially labeled data (“semi-supervised anomaly detection”)

– Typical case: only normal class labeled 
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Class imbalance

An illustration of the problem

▪ Consider screening test that uses x-ray scans to detect a rare cancer

▪ For a typical population tested, 99% of patients are healthy and 1% has cancer

▪ We want develop an algorithm to classify the scans as normal or anomalous

▪ Naturally, we want our algorithm to performance as well as possible

Must evaluate algorithm performance with care



8

Class imbalance

A useless anomaly detector

▪ Label all scans as normal without any analysis

▪ Confusion matrix (for 100 scans):

▪ Accuracy = (TP+TN) / Total

TP = true positive;  TN = true negative

Total = all data

▪ Accuracy = (0  +  99)/100 = 99%

▪ Very high accuracy, but never find a sick patient
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Class imbalance: effective anomaly detection

Evaluate the algorithm appropriately

▪ Overall accuracy is not a useful measure by which to judge the algorithm when 
the anomalies are a small fraction of the overall data

▪ Typically, it is more costly to misclassify an anomalous point than normal data*

– For the cancer example: a false positive (normal point misclassified) will lead 
to additional, diagnostic tests, which hopefully will correct the error

– A false negative (anomalous point misclassified) will lead to overlooking the 
disease at an early, treatable stage and perhaps ignoring it until it is too late 
to treat

▪ This cost should be included when evaluating the effectiveness of the algorithm



10

Class imbalance: effective anomaly detection

Algorithm should take into account cost of making a mistake (misclassification)

▪ Use a cost-weighted approach when implementing algorithm

▪ Two main ways to do so:

– Cost-sensitive learning

– Adaptive resampling
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Cost-sensitive learning

▪ Classifier is trained using a weighted accuracy over the various classes

▪ Consider two classes—normal (denoted by 0) and anomalies (denoted by 1)

▪ In this case minimize the weighted accuracy given by:

ci is cost of misclassifying a point from class i (with i = 0, 1)

ni is number of misclassified instances from class i

▪ The objective function above can be generalized to multiclass systems (different 
types of anomaly) 
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Cost-sensitive learning

▪ The costs for each classes is often domain-dependent and should be specified 
as part of the inputs for the algorithm

▪ However, if no information about the costs is available, you have to make an 
educated guess

▪ One possibility is where Ni  is the number of points in class i

– The weighted accuracy then depends on the fraction of misclassifications for 
each class offsetting the class imbalance

▪ See Python* notebook for an example
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Adaptive resampling

Another way to address class imbalance

▪ Non-uniform sampling of the training set to favor the rare, anomaly class

– Oversample anomalies

– Undersample normal data

– Or do both 

▪ Sampling probabilities are chosen proportional to misclassification costs

– Oversampling is done with replacement

– Undersampling can be done with or without replacement

▪ Algorithm is trained on resampled dataset
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Adaptive resampling

The case for undersampling

▪ Undersampling often works better than oversampling

▪ Typically, use most or all of anomalies and a small number of normal data points

▪ As a result:

– Small training dataset, so training is fast

– Since the training dataset is small, can construct multiple training datasets 
and average over the results leading to a better anomaly detector

▪ However, the effectiveness of undersampling is limited by how sensitive the 
classifier is to discarding normal data. When the classification model is mainly 
dependent on the anomaly examples, undersampling works well*
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Adaptive resampling vs. cost-sensitive learning

▪ Adaptive resampling (AS): select some of labeled data using cost-based weights 
to create a training dataset and then treat all points in this sub-dataset equally 

▪ Cost-senstive learning (CSL): use all of the labeled data as a training dataset and 
use cost-based weights for classification

▪ If the cost functions are the same, the two approaches should produce similar 
results. However:

– CSL keeps all the data, so more accurate if you analyze the data just once

– AS more efficient because it works with smaller datasets (for undersampling)

– If use AS to average over many training datasets, usually better than CSL
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Boosting methods

Learning from your mistakes

▪ The process of converting a family of weak learners into a strong learner

▪ Weak learner = a classifier only a little better than random guessing

▪ Strong learner = a classifier highly correlated with the correct classification

▪ The weak learners are trained sequentially, each trying to correct the mistakes of 
its predecessor
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AdaBoost

A popular boosting algorithm 

▪ Learning occurs through a weighted-error approach

▪ For each round:

– Weight is increased for previously misclassified examples

– Weight is increased for correctly classified ones

▪ Predictions for test data are obtained from a confidence-weighted majority vote 
of the learners from all rounds

▪ Typically used with decision trees, but works with any weak learner

▪ Can be modified to include cost-sensitive learning
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Use Python* for anomaly detection

Next up is a look at applying these concepts in Python *

▪ See notebook entitled Supervised_Anomaly_Detection_student.ipynb
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Learning objectives recap

In this session you learned how to:

▪ Describe supervised anomaly detection

▪ Implement cost-sensitive learning

▪ Apply adaptive resampling and boosting methods

▪ Use Python* to perform supervised anomaly detection

Learning objectives
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