
Lesson 6: Supervised Anomaly Detection

2

Learning objectives

You will be able to:

▪ Describe supervised anomaly detection

▪ Implement cost-sensitive learning

▪ Apply adaptive resampling and boosting methods

▪ Use Python* to perform supervised anomaly detection

3

Supervised anomaly detection

Introduction

▪ In previous lessons, we discussed various approaches to unsupervised
anomaly detection. That is, how to detect anomalies when you don’t have
any additional information about the data.

▪ One issue that arises with unsupervised anomaly detection is that you often
label noise as anomalies because you don’t know any better.

▪ But what if you do know better? More specifically, what if you have examples
of anomalies and normal points that you could encounter?

4

Supervised anomaly detection

Knowledge is power

▪ If you have (domain-specific) information about your anomalies, use it.

▪ If you are really lucky, you might have a simple selection criterion:

– All heights above 6’ 5” are anomalies

▪ More often, information consists of examples of normal data and anomalies

▪ Extra information usually improves anomaly detection accuracy significantly

Whenever possible, use supervised methods.

5

Supervised anomaly detection: a classification
problem

A special case of classification

▪ Examples of anomalies and normal points = training data

▪ Unlabeled points = test data

▪ Therefore, the many classification techniques available (supervised machine
learning) can be used for anomaly detection

6

Supervised anomaly detection: a classification
problem

A classification problem with specific challenges

▪ Class imbalance

– Anomalies by definition are rare, so there will be few examples

▪ Contaminated normal data

– Only anomalies labeled; normal class contaminated by unlabeled anomalies

▪ Partially labeled data (“semi-supervised anomaly detection”)

– Typical case: only normal class labeled

7

Class imbalance

An illustration of the problem

▪ Consider screening test that uses x-ray scans to detect a rare cancer

▪ For a typical population tested, 99% of patients are healthy and 1% has cancer

▪ We want develop an algorithm to classify the scans as normal or anomalous

▪ Naturally, we want our algorithm to performance as well as possible

Must evaluate algorithm performance with care

8

Class imbalance

A useless anomaly detector

▪ Label all scans as normal without any analysis

▪ Confusion matrix (for 100 scans):

▪ Accuracy = (TP+TN) / Total

TP = true positive; TN = true negative

Total = all data

▪ Accuracy = (0 + 99)/100 = 99%

▪ Very high accuracy, but never find a sick patient

Normal Anomal
y

Normal 99 0

Anomal
y

1 0

True

Predicted

9

Class imbalance: effective anomaly detection

Evaluate the algorithm appropriately

▪ Overall accuracy is not a useful measure by which to judge the algorithm when
the anomalies are a small fraction of the overall data

▪ Typically, it is more costly to misclassify an anomalous point than normal data*

– For the cancer example: a false positive (normal point misclassified) will lead
to additional, diagnostic tests, which hopefully will correct the error

– A false negative (anomalous point misclassified) will lead to overlooking the
disease at an early, treatable stage and perhaps ignoring it until it is too late
to treat

▪ This cost should be included when evaluating the effectiveness of the algorithm

10

Class imbalance: effective anomaly detection

Algorithm should take into account cost of making a mistake (misclassification)

▪ Use a cost-weighted approach when implementing algorithm

▪ Two main ways to do so:

– Cost-sensitive learning

– Adaptive resampling

11

Cost-sensitive learning

▪ Classifier is trained using a weighted accuracy over the various classes

▪ Consider two classes—normal (denoted by 0) and anomalies (denoted by 1)

▪ In this case minimize the weighted accuracy given by:

ci is cost of misclassifying a point from class i (with i = 0, 1)

ni is number of misclassified instances from class i

▪ The objective function above can be generalized to multiclass systems (different
types of anomaly)

J = c

0
n

0
+ c

1
n

1

12

Cost-sensitive learning

▪ The costs for each classes is often domain-dependent and should be specified
as part of the inputs for the algorithm

▪ However, if no information about the costs is available, you have to make an
educated guess

▪ One possibility is where Ni is the number of points in class i

– The weighted accuracy then depends on the fraction of misclassifications for
each class offsetting the class imbalance

▪ See Python* notebook for an example

c

i
= 1 N

i

J =
n

o

N
0

+
n

1

N
1

13

Adaptive resampling

Another way to address class imbalance

▪ Non-uniform sampling of the training set to favor the rare, anomaly class

– Oversample anomalies

– Undersample normal data

– Or do both

▪ Sampling probabilities are chosen proportional to misclassification costs

– Oversampling is done with replacement

– Undersampling can be done with or without replacement

▪ Algorithm is trained on resampled dataset

14

Adaptive resampling

The case for undersampling

▪ Undersampling often works better than oversampling

▪ Typically, use most or all of anomalies and a small number of normal data points

▪ As a result:

– Small training dataset, so training is fast

– Since the training dataset is small, can construct multiple training datasets
and average over the results leading to a better anomaly detector

▪ However, the effectiveness of undersampling is limited by how sensitive the
classifier is to discarding normal data. When the classification model is mainly
dependent on the anomaly examples, undersampling works well*

15

Adaptive resampling vs. cost-sensitive learning

▪ Adaptive resampling (AS): select some of labeled data using cost-based weights
to create a training dataset and then treat all points in this sub-dataset equally

▪ Cost-senstive learning (CSL): use all of the labeled data as a training dataset and
use cost-based weights for classification

▪ If the cost functions are the same, the two approaches should produce similar
results. However:

– CSL keeps all the data, so more accurate if you analyze the data just once

– AS more efficient because it works with smaller datasets (for undersampling)

– If use AS to average over many training datasets, usually better than CSL

16

Boosting methods

Learning from your mistakes

▪ The process of converting a family of weak learners into a strong learner

▪ Weak learner = a classifier only a little better than random guessing

▪ Strong learner = a classifier highly correlated with the correct classification

▪ The weak learners are trained sequentially, each trying to correct the mistakes of
its predecessor

17

AdaBoost

A popular boosting algorithm

▪ Learning occurs through a weighted-error approach

▪ For each round:

– Weight is increased for previously misclassified examples

– Weight is increased for correctly classified ones

▪ Predictions for test data are obtained from a confidence-weighted majority vote
of the learners from all rounds

▪ Typically used with decision trees, but works with any weak learner

▪ Can be modified to include cost-sensitive learning

19

Use Python* for anomaly detection

Next up is a look at applying these concepts in Python *

▪ See notebook entitled Supervised_Anomaly_Detection_student.ipynb

20

Learning objectives recap

In this session you learned how to:

▪ Describe supervised anomaly detection

▪ Implement cost-sensitive learning

▪ Apply adaptive resampling and boosting methods

▪ Use Python* to perform supervised anomaly detection

Learning objectives

21

References

▪ Outlier Analysis by C.C. Aggarwal (Springer 2013)

▪ Introduction to AdaBoost by N. Nikolaou

▪ Supervised Machine Learning: A Review of Classification Techniques by S.B.
Kotsiantis, Informatica 31 249-268 (2007)

http://www.cs.man.ac.uk/~nikolaon/~nikolaon_files/Introduction_to_AdaBoost.pdf
https://datajobs.com/data-science-repo/Supervised-Learning-[SB-Kotsiantis].pdf

