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ANOMALY DETECTION

Lesson 8: Evaluating Anomaly Detection



Learning objectives

You will be able to:
= Evaluate different techniques for anomaly detection

= Perform anomaly detection on a wide variety of data types

= Explain other types of anomaly detection




Evaluation anomaly detection: labeled data

How well does our algorithm perform?

= For labeled data, anomaly detection is a unbalanced classification problem*

= Therefore, can use suitably modified performance metrics for classification*
— Avoid metrics like accuracy that don't work well for unbalanced data

= Many methods discussed provide a score of how anomalous each point is

— Classification: we care about the value of the score

— Anomaly detection: we care about the rank of the score




Labeled data: precision and recall

Measures of rank for anomaly detection
= |tis common to use the score to rank how likely a point is an anomaly
= Typically, have the resources to look only at n points.
= Gives rise to metrics evaluated on the n *highest ranked” points:
— Precision at n (P@n): Fraction of points in top n that are actually anomalies

— Recall at n (R@n): Fraction of anomalies found in top n points

— Average precision: Take average of P@k with k = 1,2,...n and k" pointis an
anomaly (values of k corresponding to normal points are ignored)




Scoring process: precision at n (P@n)

Point | Feature | Feature | Feature | Feature Anomaly
# 1 2 3 4 Score
L 10 10 8 10 -0.035985
2 10 5 10 3 -0.033510
3 10 5 5 3 -0.005384
4 10 6 6 3 0.000330

Points 1 and 3 (as ordered by score) are actual anomalies

P@1=1.0 (the lowest score is an anomaly)
P@2=0.5 (one of the two lowest scores is an anomaly)

P@3 = 0.667 (two of the three lowest scores are anomalies)
P@4 =0.5 (two of the four lowest scores are anomalies)




Scoring process: average precision

Point | Feature | Feature | Feature | Feature Anomaly
# 1 2 3 4 Score
1 10 10 10 -0.035985
2 10 5 10 -0.033510
3 10 5 3 -0.005384
4 10 6 6 3 0.000330

P@n for true anomalies: P@1 = 1.0;: P@3 = 0.667

Average Precision is the average of these results:
AP = (1.0 +0.667) /2 =0.833




Scoring process: recall at n (R@n)

Point | Feature | Feature | Feature | Feature Anomaly
# 1 2 3 4 Score
1 10 10 10 -0.035985
2 10 5 10 -0.033510
3 10 5 5 3 -0.005384
4 10 6 6 3 0.000330
R@1=0.5 (one row finds half the anomalies)
R@2=0.5 (two rows finds half the anomalies)
R@3=1.0 (three rows finds all the anomalies)
R@4 =1.0 (four rows finds all the anomalies)




Adjustment for chance: adjusted P@n

How much better are we doing than a random ordering?

= If there are A anomalies and N data points, a random ordering of points has
and expected P@n of

Expected(P@ n) = (expected # anomalies intop n)/ n=n(A/ N)In=AI N
= Adjusted P@n allows for effects of chance

— Subtract effect of chance and compare with perfect detector

A
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Adjustment for chance: adjusted average precision

Can also correct average precision for chance

= Adjusted AP measure the gain in average precision over the expected
random score compares to the gain of a perfect anomaly detector

ap-4

Adjusted AP = AN

1- 2
N

= For a good anomaly detector, the adjusted AP >0

— For arandom ordering AP =0

— Orderings worse than average have AP <0




P@n and Adjusted P@n

When to use

» Not needed: if looking at different detection methods with the same metric
on the same dataset

= Must be used: if looking at different datasets with different proportions of
anomalies

= In all cases: adjusting for chances helps interpretability




Example: Statlog Shuttle sensor dataset

P@n vs n; Average precision and total # of anomalies indicated

1.0 | G S —— « 12345 readings, each on 8
i Sensors
0.8 1 | « Trying to detect abnormal
: operating modes
5 0.6 1 | » 867 readings are in
= | abnormal modes (i.e.
0.4 : anomalies)
i  Isolation forest with 100
0.2 1 ! . :f?e”rage srecision estimators used for anomaly
: —-- number of anomalies detection.
0 560 10I00 15I00 20I00

n: number of items
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29



https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)

Example: Statlog Shuttle sensor data set —small n

P@n vs n; Average precision indicated

» 12345 readings, each on 8
sensors

» Trying to detect abnormal
operating modes

» 867 readings are in
abnormal modes (i.e.

0.4 - anomalies)
e |solation forest with 100
021 o bon esUmqtors used for anomaly
——- average precision detectlon.
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n: number of items
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29



https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)

Example: small n, bad anomaly detector

P@n vs n for a bad classifier

1.0 1 — P@n » 12345 readings, each on 8
—— Adjusted P@n

Sensors

« Trying to detect abnormal
operating modes

« 867 readings are in
abnormal modes (i.e.
anomalies)

 |solation forest with 3
estimators used for anomaly
detection.
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n: number of items

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29



https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)

Example: same data, different classifier

P@n vs n for kNN average distance

1.0 — P@n  Using a KNN classifier
—— Adjusted P@n : : -

0.8 - —-—- adjusted average precision mStead Wlth k - 20

' « Parameter k has been tuned

oe » Note: preprocessing
5 ' skipped, so poor results
& expected
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n: number of items
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29



https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)

Example: same data, different classifier

P@n vs n for kNN average distance

» Used best practices

« Scaled features, used PCA

* Tuned parameter k (600 NN)

« Same algorithm, same data,
much better results

0.2
— P@n
004 — Adjusted P@n
——- adjusted average precision
0 200 400 600 800 1000

n: number of items
https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29



https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)

Labeled data: receiver operator characteristic score

We can also use the Receiver Operator Characteristic (ROC) curve to evaluate
anomaly detectors

Very common technique in classification problems

Not sensitive to class imbalance

Ranks the false negative rate (horizontal axis) against the true positive rate
(vertical axis)

Area under the curve (AUC) is a single number that tells us how well the detector
does separating cases:

P (randomly chosen anomaly score > randomly chosen normal score) = ROC AUC




Example: Statlog Shuttle data ROC Curve

ROC curves for different anomaly detectors
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False positive rate
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Labeled data: summary

In a classification problem, the score + threshold is used to determine the class
* Precision@n (P@n): Fraction of points in the top n that are actually anomalies
— Commonly used, “top heavy” (i.e. emphasizes the highest ranked point)
— Caveat: can be sensitiveton
= Average Precision: Average of P@n evaluated at outlier positions
— Commonly used, not sensitive to external parameter n, top heavy
= ROC AUC: Probability of a random anomaly scoring higher than random normal point
— Commonly used, no external parameters, doesn't require thresholds

— Caveat: Doesn't reward finding anomalies “early” (low n); score can be made up at the tail end
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Unlabeled/unsupervised anomaly detection

Methods described so far don’t work when we don’t have ground truth labels

= In clustering analysis, there are internal measures of cluster “goodness” (e.g. the
average distance of a point to cluster centers)

= The types of internal measure used can bias the result toward certain types of
clusters

— For example, k-means typically scores better than density-based methods if
the metric is the average distance of a point to cluster centers

— Use of internal measures in anomaly detection are generally not used; they
introduce too much bias into the method




Unlabeled/unsupervised anomaly detection

Approach:

Find a classification dataset with similar characteristics / separation
or
Generate labeled data with similar distributions as the expected anomalies

Treat one of the classes as the anomaly class. Down-sample if necessary to get a
reasonable normal:anomaly ratio

Benchmark model on classification dataset
Investigate anomalies flagged in actual data to see if model generalizes well

Extra: try mislabeling a few of the “close” anomalies, to see what effect
mislabeling has on your dataset




Unlabeled/unsupervised anomaly detection

Even though we have generated labels / used a classification problem:
= No train/test split or cross-validation
— Doesn’t make sense to train model parameters on a different dataset
— If we could train directly on dataset, we would use supervised methods

= Model parameters (e.g. number of neighbors) determined by evaluating metric
over a “reasonable” range of parameters

= Model evaluation is given as a box-plot of the outputs on the classification
problem after running over the reasonable range of parameters

= Reasonable ranges generally require subject matter expertise




Example: ranges of values while scanning

mean ROC AUC (mean over all k per data set)
hyperparamsg :
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On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study

by G. O. Campos et al. (http://doi.org/10.1007/s10618-015-0444-8)
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Categorical models

Datasets with discrete, unordered values
= So far we have focused on datasets with numerical data
= Many of the techniques presented can be applied to categorical data as well

= The challenges is to construct a meaningful distance function that can be used
to analyze the data

— For categorical data, distance function is often called a “similarity function”




Categorical models: similarity functions

Some examples

= Similarity = 1 if categories are the same, O otherwise

= Similarity = 1 if categories are the same. Otherwise
sim(c,,c,) =1/[1+log(n )log(n,)]

— Here n; is the number of elements in category j (with j =1, 2)

= Similarity between two categories is [log(n/N)]? if they are the same, O otherwise

— Here n = number in category, N = number of data points




Similarities to distances

* If we have d numeric features and c categorical features

s S
sim(x,y)=ax.y, +asim(x_,y_ )

i=1 i=1
* Could use cosine distance (but we lose separation in similarity variable)
sim(x,y)

dist(x,y) =cos™
\/ sim(x,x)sim(y,y)

* Could combine numeric distance and similarity score:

d C
squared dist(x,y) = é(xl. -y )+ é(l— sim(x_,y ))

i=1 i=1




Other types of anomaly detection

Three examples
= Generative models

— Find the probability distribution to describe the feature space and use this
to detect anomalies

= |Information-theoretic models
— Anomalies increase amount of information needed to summarize the data
= Frequent pattern mining

— If an instance of the data contains patterns found frequently, it is unlikely
to be an anomaly
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CONCLUSION



Use Python* for anomaly detection

Next up is a look at applying these concepts in Python*

= See notebook entitled Evaluating Anomaly Detection_student.ipynb




Learning objectives recap

In this session you learned how to:
= Evaluate different techniques for anomaly detection
= Perform anomaly detection on a wide variety of data types

= Explain other types of anomaly detection
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