
Lesson 8: Evaluating Anomaly Detection
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Learning objectives

You will be able to:

▪ Evaluate different techniques for anomaly detection

▪ Perform anomaly detection on a wide variety of data types

▪ Explain other types of anomaly detection
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Evaluation anomaly detection: labeled data

How well does our algorithm perform?

▪ For labeled data, anomaly detection is a unbalanced classification problem*

▪ Therefore, can use suitably modified performance metrics for classification*

– Avoid metrics like accuracy that don’t work well for unbalanced data

▪ Many methods discussed provide a score of how anomalous each point is

– Classification: we care about the value of the score

– Anomaly detection: we care about the rank of the score
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Labeled data: precision and recall

Measures of rank for anomaly detection

▪ It is common to use the score to rank how likely a point is an anomaly

▪ Typically, have the resources to look only at n points.

▪ Gives rise to metrics evaluated on the n “highest ranked” points:

– Precision at n (P@n): Fraction of points in top n that are actually anomalies

– Recall at n (R@n): Fraction of anomalies found in top n points

– Average precision: Take average of P@k with k = 1,2,…n and kth point is an 
anomaly (values of k corresponding to normal points are ignored)



Scoring process: precision at n (P@n)

Point
#

Feature 
1

Feature 
2

Feature 
3

Feature 
4

Anomaly 
Score

1 10 10 8 10 -0.035985

2 10 5 10 3 -0.033510

3 10 5 5 3 -0.005384

4 10 6 6 3 0.000330

Points 1 and 3 (as ordered by score) are actual anomalies 

P@1 = 1.0     (the lowest score is an anomaly)

P@2 = 0.5     (one of the two lowest scores is an anomaly)

P@3 = 0.667 (two of the three lowest scores are anomalies)

P@4 = 0.5     (two of the four lowest scores are anomalies)



Scoring process: average precision

Point
#

Feature 
1

Feature 
2

Feature 
3

Feature 
4

Anomaly 
Score

1 10 10 8 10 -0.035985

2 10 5 10 3 -0.033510

3 10 5 5 3 -0.005384

4 10 6 6 3 0.000330

P@n for true anomalies: P@1 = 1.0; P@3 = 0.667

Average Precision is the average of these results:

AP = (1.0 + 0.667) / 2 = 0.833



Scoring process: recall at n (R@n)

Point
#

Feature 
1

Feature 
2

Feature 
3

Feature 
4

Anomaly 
Score

1 10 10 8 10 -0.035985

2 10 5 10 3 -0.033510

3 10 5 5 3 -0.005384

4 10 6 6 3 0.000330

R@1 = 0.5     (one row finds half the anomalies)

R@2 = 0.5     (two rows finds half the anomalies)

R@3 = 1.0     (three rows finds all the anomalies)

R@4 = 1.0     (four rows finds all the anomalies)



Adjustment for chance: adjusted P@n

How much better are we doing than a random ordering?

▪ If there are A anomalies and N data points, a random ordering of points has 
and expected P@n of

▪ Adjusted P@n allows for effects of chance

– Subtract effect of chance and compare with perfect detector

  Expected(P@n) = (expected # anomalies in top n) / n = n(A / N ) / n = A / N

  

Adjusted P@ n =
P@ n-

A

N

1-
A

N



Adjustment for chance: adjusted average precision

Can also correct average precision for chance

▪ Adjusted AP measure the gain in average precision over the expected 
random score compares to the gain of a perfect anomaly detector

▪ For a good anomaly detector, the adjusted AP > 0 

– For a random ordering AP = 0

– Orderings worse than average have AP <0

  

Adjusted AP =
AP -

A

N

1-
A

N



P@n and Adjusted P@n

When to use

▪ Not needed: if looking at different detection methods with the same metric 
on the same dataset

▪ Must be used: if looking at different datasets with different proportions of 
anomalies

▪ In all cases: adjusting for chances helps interpretability
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Example: Statlog Shuttle sensor dataset

• 12345 readings, each on 8 

sensors

• Trying to detect abnormal 

operating modes

• 867 readings are in 

abnormal modes (i.e. 

anomalies)

• Isolation forest with 100 

estimators used for anomaly 

detection.

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29

https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
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Example: Statlog Shuttle sensor data set – small n

• 12345 readings, each on 8 

sensors

• Trying to detect abnormal 

operating modes

• 867 readings are in 

abnormal modes (i.e. 

anomalies)

• Isolation forest with 100 

estimators used for anomaly 

detection.

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29

https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
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Example: small n, bad anomaly detector

• 12345 readings, each on 8 

sensors

• Trying to detect abnormal 

operating modes

• 867 readings are in 

abnormal modes (i.e. 

anomalies)

• Isolation forest with 3

estimators used for anomaly 

detection.

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29

https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
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Example: same data, different classifier

• Using a KNN classifier 

instead with k = 20

• Parameter k has been tuned

• Note: preprocessing 

skipped, so poor results 

expected

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29

https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
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Example: same data, different classifier

• Used best practices

• Scaled features, used PCA

• Tuned parameter k (600 NN)

• Same algorithm, same data, 

much better results

https://archive.ics.uci.edu/ml/datasets/Statlog+%28Shuttle%29

https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
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Labeled data: receiver operator characteristic score

We can also use the Receiver Operator Characteristic (ROC) curve to evaluate 
anomaly detectors

▪ Very common technique in classification problems

▪ Not sensitive to class imbalance

▪ Ranks the false negative rate (horizontal axis) against the true positive rate 
(vertical axis)

▪ Area under the curve (AUC) is a single number that tells us how well the detector 
does separating cases:

P (randomly chosen anomaly score > randomly chosen normal score) = ROC AUC
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Example: Statlog Shuttle data ROC Curve
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Labeled data: summary

In a classification problem, the score + threshold is used to determine the class

• Precision@n (P@n): Fraction of points in the top n that are actually anomalies

– Commonly used, “top heavy” (i.e. emphasizes the highest ranked point)

– Caveat: can be sensitive to n

▪ Average Precision: Average of P@n evaluated at outlier positions

– Commonly used, not sensitive to external parameter n, top heavy

▪ ROC AUC: Probability of a random anomaly scoring higher than random normal point

– Commonly used, no external parameters, doesn’t require thresholds

– Caveat: Doesn’t reward finding anomalies “early” (low n); score can be made up at the tail end
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Unlabeled/unsupervised anomaly detection

Methods described so far don’t work when we don’t have ground truth labels

▪ In clustering analysis, there are internal measures of cluster “goodness” (e.g. the 
average distance of a point to cluster centers)

▪ The types of internal measure used can bias the result toward certain types of 
clusters

– For example, k-means typically scores better than density-based methods if 
the metric is the average distance of a point to cluster centers 

– Use of internal measures in anomaly detection are generally not used; they 
introduce too much bias into the method 
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Unlabeled/unsupervised anomaly detection

Approach:

▪ Find a classification dataset with similar characteristics / separation
or
Generate labeled data with similar distributions as the expected anomalies

▪ Treat one of the classes as the anomaly class. Down-sample if necessary to get a 
reasonable normal:anomaly ratio

▪ Benchmark model on classification dataset

▪ Investigate anomalies flagged in actual data to see if model generalizes well

▪ Extra: try mislabeling a few of the “close” anomalies, to see what effect 
mislabeling has on your dataset
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Unlabeled/unsupervised anomaly detection

Even though we have generated labels / used a classification problem:

▪ No train/test split or cross-validation

– Doesn’t make sense to train model parameters on a different dataset

– If we could train directly on dataset, we would use supervised methods

▪ Model parameters (e.g. number of neighbors) determined by evaluating metric 
over a “reasonable” range of parameters

▪ Model evaluation is given as a box-plot of the outputs on the classification 
problem after running over the reasonable range of parameters

▪ Reasonable ranges generally require subject matter expertise
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Example: ranges of values while scanning 
hyperparams

On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study 

by G. O. Campos et al. (http://doi.org/10.1007/s10618-015-0444-8)
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Categorical models

Datasets with discrete, unordered values

▪ So far we have focused on datasets with numerical data

▪ Many of the techniques presented can be applied to categorical data as well

▪ The challenges is to construct a meaningful distance function that can be used 
to analyze the data 

– For categorical data, distance function is often called a “similarity function”
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Categorical models: similarity functions

Some examples 

▪ Similarity = 1 if categories are the same, 0 otherwise

▪ Similarity = 1 if categories are the same. Otherwise 

– Here nj is the number of elements in category j (with j =1, 2)

▪ Similarity between two categories is [log(n/N)]2 if they are the same, 0 otherwise 

– Here n = number in category, N = number of data points

  
sim(c

1
,c

2
) =1/ [1+ log(n

1
)log(n

2
)]



Similarities to distances

• If we have d numeric features and c categorical features

• Could use cosine distance (but we lose separation in similarity variable)

• Could combine numeric distance and similarity score:

  

sim(x, y) = x
i

i=1

d

å y
i
+ sim(x

c
i

i=1

c

å , y
c

i

)

  

dist(x, y) = cos-1 sim(x, y)

sim(x,x)sim( y, y)

  

squared  dist(x, y) = (x
i

i=1

d

å - y
i
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c
i

i=1

c

å , y
c

i

))



Other types of anomaly detection

Three examples

▪ Generative models

– Find the probability distribution to describe the feature space and use this 
to detect anomalies

▪ Information-theoretic models

– Anomalies increase amount of information needed to summarize the data

▪ Frequent pattern mining

– If an instance of the data contains patterns found frequently, it is unlikely 
to be an anomaly
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Use Python* for anomaly detection

Next up is a look at applying these concepts in Python*

▪ See notebook entitled Evaluating_Anomaly_Detection_student.ipynb



In this session you learned how to:

▪ Evaluate different techniques for anomaly detection

▪ Perform anomaly detection on a wide variety of data types

▪ Explain other types of anomaly detection
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Learning objectives recapLearning objectives
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