

2

Motivation for Neural Nets

 Use biology as inspiration for
mathematical model

 Get signals from previous neurons

 Generate signals (or not)
according to inputs

 Pass signals on to next neurons

 By layering many neurons, can
create complex model

 Can think of it as a complicated computation engine

 We will ”train it” using our training data

 Then (hopefully) it will give good answers on new data

3

Neural Net Structure

Input
(Feature Vector)

Output
(Label)

4

Basic Neuron Visualization

activation
function

5

Basic Neuron Visualization

activation
function

Data from
previous layer

6

Basic Neuron Visualization

activation
function

Some form of computation
transforms the inputs

7

Basic Neuron Visualization

activation
function

The neuron outputs the
transformed data

8

Basic Neuron Visualization

activation
function

x1

x2

x3

w2

9

Basic Neuron Visualization

activation
function

x1

x2

x3

w2

1

10

Basic Neuron Visualization

activation
function

x1

x2

x3

w2

1

f(z)

z = x1w1+ x2w2+ x3w3+b

z = “net input”

b = “bias term”

f = activation function

a = output to next layer

11

In Vector Notation

𝑧 = 𝑏 +

𝑖=1

𝑚

𝑥𝑖𝑤𝑖

𝑧 = 𝑏 + 𝑥𝑇𝑤

𝑎 = 𝑓(𝑧)

When we choose:

Then a neuron is simply a ”unit” of logistic regression!

weights  coefficients inputs  variables

bias term  constant term

12

Relation to Logistic Regression

𝑓 𝑧 =
1

1+𝑒−𝑧

𝑧 = 𝑏 +

𝑖=1

𝑚

𝑥𝑖𝑤𝑖 = 𝑥1𝑤1 + 𝑥2𝑤2 + ⋯+ 𝑥𝑚𝑤𝑚 + 𝑏

13

Relation to Logistic Regression

This is called the “sigmoid” function: 𝜎 𝑧 =
1

1 + 𝑒−𝑧

14

Nice Property of Sigmoid Function

𝜎 𝑧 =
1

1 + 𝑒−𝑧

𝜎′ 𝑧 =
0 − (−𝑒−𝑧)

1 + 𝑒−𝑧 2
=

𝑒−𝑧

1 + 𝑒−𝑧 2

=
1 + 𝑒−𝑧 − 1

1 + 𝑒−𝑧 2 =
1 + 𝑒−𝑧

1 + 𝑒−𝑧 2
−

1

1 + 𝑒−𝑧 2

=
1

1 + 𝑒−𝑧
−

1

1 + 𝑒−𝑧 2
=

1

1 + 𝑒−𝑧
1 −

1

1 + 𝑒−𝑧

𝜎′ 𝑧 = 𝜎(𝑧)(1 − 𝜎(𝑧))

𝑑

𝑑𝑥
⋅
𝑓(𝑥)

𝑔(𝑥)
=

𝑓′ 𝑥 𝑔 𝑥 − 𝑓 𝑥 𝑔′(𝑥)

𝑔 𝑥 2

Quotient rule

This will be helpful!

15

Example Neuron Computation

(sigmoid)
activation

function

x1

x2

x3

w2

1

f(z)

z = x1w1+ x2w2+ x3w3+b

16

Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

f(z)

z = x1w1+ x2w2+ x3w3+b

17

Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

f(z)

z = .9(2)+ .2(3)+ .3(-1)+.5 = 2.6

18

Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

z = .9(2)+ .2(3)+ .3(-1)+.5 = 2.6

f(z)=f(3.5)=1/(1+exp(-2.6))
= .93

19

Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

z = .9(2)+ .2(3)+ .3(-1)+.5 = 2.6

f(z)=f(3.5)=1/(1+exp(-2.6))
= .93

Neuron would output
the value .93

20

Why Neural Nets?

 Why not just use a single neuron?
Why do we need a larger network?

 A single neuron (like logistic
regression) only permits a linear
decision boundary.

 Most real-world problems are
considerably more complicated!

21

Feedforward Neural Network

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

22

Weights

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

23

Input Layer

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

24

Hidden Layers

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

25

Output Layer

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

26

Weights (represented by matrices)

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

𝑊(1) 𝑊(2) 𝑊(3)

27

Net Input (sum of weighted inputs, before activation function)

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

𝑧(2) 𝑧(3) 𝑧(4)

28

Activations (output of neurons to next layer)

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

 𝑦1

 𝑦2

 𝑦3

𝑎(1)
𝑎(2) 𝑎(3)

𝑎(4)

29

Matrix representation of computation

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝑧(2) = 𝑥𝑊(1)

𝑎(2) = 𝜎(𝑧 2)

𝑥 = 𝑥1, 𝑥2, 𝑥3

(𝑥 = 𝑎(1))

𝑊(1) is a
3x4 matrix

𝑧(2) is a
4-vector

𝑎(2) is a
4-vector

𝑎(2)𝑧(2)

𝑊(1)

30

Continuing the Computation

For a single training instance (data point)

Input: vector x (a row vector of length 3)

Output: vector 𝑦 (a row vector of length 3)

𝑧(2) = 𝑥𝑊(1) 𝑎(2) = 𝜎(𝑧 2)

𝑧(3) = 𝑎(2)𝑊(2) 𝑎(3) = 𝜎(𝑧 3)

𝑧(4) = 𝑎(3)𝑊(3) 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧 4)

31

Multiple data points

In practice, we do these computation for many data points at the same time,
by “stacking” the rows into a matrix. But the equations look the same!

Input: matrix x (an nx3 matrix) (each row a single instance)

Output: vector 𝑦 (an nx3 matrix) (each row a single prediction)

𝑧(2) = 𝑥𝑊(1) 𝑎(2) = 𝜎(𝑧 2)

𝑧(3) = 𝑎(2)𝑊(2) 𝑎(3) = 𝜎(𝑧 3)

𝑧(4) = 𝑎(3)𝑊(3) 𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧 4)

32

Now we know how feedforward NNs do Computations.

Next, we will learn how to adjust the weights to learn from data.

