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Motivation for Neural Nets

 Use biology as inspiration for 
mathematical model

 Get signals from previous neurons

 Generate signals (or not) 
according to inputs

 Pass signals on to next neurons

 By layering many neurons, can 
create complex model



 Can think of it as a complicated computation engine

 We will ”train it” using our training data

 Then (hopefully) it will give good answers on new data
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Neural Net Structure

Input
(Feature Vector)

Output
(Label)



4

Basic Neuron Visualization

activation
function
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Basic Neuron Visualization

activation
function

Data from 
previous layer
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Basic Neuron Visualization

activation
function

Some form of computation 
transforms the inputs
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Basic Neuron Visualization

activation
function

The neuron outputs the 
transformed data
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Basic Neuron Visualization

activation
function
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Basic Neuron Visualization
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Basic Neuron Visualization

activation
function
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f(z)

z = x1w1+ x2w2+ x3w3+b



z = “net input”

b = “bias term”

f = activation function

a = output to next layer
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In Vector Notation

𝑧 = 𝑏 +  

𝑖=1

𝑚

𝑥𝑖𝑤𝑖

𝑧 = 𝑏 + 𝑥𝑇𝑤

𝑎 = 𝑓(𝑧)



When we choose:

Then a neuron is simply a ”unit” of logistic regression!

weights  coefficients inputs  variables

bias term  constant term
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Relation to Logistic Regression

𝑓 𝑧 =
1

1+𝑒−𝑧

𝑧 = 𝑏 +  

𝑖=1

𝑚

𝑥𝑖𝑤𝑖 = 𝑥1𝑤1 + 𝑥2𝑤2 + ⋯+ 𝑥𝑚𝑤𝑚 + 𝑏
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Relation to Logistic Regression

This is called the “sigmoid” function: 𝜎 𝑧 =
1

1 + 𝑒−𝑧
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Nice Property of Sigmoid Function

𝜎 𝑧 =
1

1 + 𝑒−𝑧

𝜎′ 𝑧 =
0 − (−𝑒−𝑧)

1 + 𝑒−𝑧 2
=

𝑒−𝑧

1 + 𝑒−𝑧 2

=
1 + 𝑒−𝑧 − 1

1 + 𝑒−𝑧 2 =
1 + 𝑒−𝑧

1 + 𝑒−𝑧 2
−

1

1 + 𝑒−𝑧 2

=
1

1 + 𝑒−𝑧
−

1

1 + 𝑒−𝑧 2
=

1

1 + 𝑒−𝑧
1 −

1

1 + 𝑒−𝑧

𝜎′ 𝑧 = 𝜎(𝑧)(1 − 𝜎(𝑧))

𝑑

𝑑𝑥
⋅
𝑓(𝑥)

𝑔(𝑥)
=

𝑓′ 𝑥 𝑔 𝑥 − 𝑓 𝑥 𝑔′(𝑥)

𝑔 𝑥 2

Quotient rule

This will be helpful!



15

Example Neuron Computation

(sigmoid)
activation

function

x1

x2

x3

w2

1

f(z)

z = x1w1+ x2w2+ x3w3+b
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Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

f(z)

z = x1w1+ x2w2+ x3w3+b
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Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

f(z)

z = .9(2)+ .2(3)+ .3(-1)+.5 = 2.6
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Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

z = .9(2)+ .2(3)+ .3(-1)+.5 = 2.6

f(z)=f(3.5)=1/(1+exp(-2.6))
= .93



19

Example Neuron Computation

(sigmoid)
activation

function

.9

.2

.3

3

1

z = .9(2)+ .2(3)+ .3(-1)+.5 = 2.6

f(z)=f(3.5)=1/(1+exp(-2.6))
= .93

Neuron would output 
the value .93
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Why Neural Nets?

 Why not just use a single neuron?  
Why do we need a larger network?

 A single neuron (like logistic 
regression) only permits a linear 
decision boundary.

 Most real-world problems are 
considerably more complicated!
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Feedforward Neural Network
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Weights
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Input Layer
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Hidden Layers
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Output Layer
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Weights (represented by matrices)
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Net Input (sum of weighted inputs, before activation function) 
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Activations (output of neurons to next layer)
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Matrix representation of computation

𝑥1

𝑥2

𝑥3

𝜎

𝜎

𝜎

𝜎

𝑧(2) = 𝑥𝑊(1)

𝑎(2) = 𝜎(𝑧 2 )

𝑥 = 𝑥1, 𝑥2, 𝑥3

(𝑥 = 𝑎(1))

𝑊(1) is a 
3x4 matrix

𝑧(2) is a 
4-vector

𝑎(2) is a 
4-vector

𝑎(2)𝑧(2)

𝑊(1)
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Continuing the Computation

For a single training instance (data point)

Input: vector x (a row vector of length 3)

Output: vector  𝑦 (a row vector of length 3)

𝑧(2) = 𝑥𝑊(1) 𝑎(2) = 𝜎(𝑧 2 )

𝑧(3) = 𝑎(2)𝑊(2) 𝑎(3) = 𝜎(𝑧 3 )

𝑧(4) = 𝑎(3)𝑊(3)  𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧 4 )
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Multiple data points

In practice, we do these computation for many data points at the same time, 
by “stacking” the rows into a matrix. But the equations look the same!

Input: matrix x (an nx3 matrix) (each row a single instance)

Output: vector  𝑦 (an nx3 matrix) (each row a single prediction)

𝑧(2) = 𝑥𝑊(1) 𝑎(2) = 𝜎(𝑧 2 )

𝑧(3) = 𝑎(2)𝑊(2) 𝑎(3) = 𝜎(𝑧 3 )

𝑧(4) = 𝑎(3)𝑊(3)  𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧 4 )
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Now we know how feedforward NNs do Computations.  

Next, we will learn how to adjust the weights to learn from data.




