


We have several means by which to help “regularize” neural networks –
that is, to prevent overfitting

 Regularization penalty in cost function

 Dropout

 Early stopping

 Stochastic / Mini-batch Gradient descent (to some degree)
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Regularizing Neural Networks



 One option is to explicitly add a penalty to the loss function for having high weights.

 This is a similar approach to Ridge Regression

 Can have an analogous expression for Categorical Cross Entropy
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 Dropout is a mechanism where at each training iteration (batch) we randomly remove 
a subset of neurons

 This prevents the neural network from relying too much on individual pathways, 
making it more “robust”

 At test time we “rescale” the weight of the neuron to reflect the percentage of the 
time it was active 
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Dropout
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Dropout—Visualization

(a) Standard Neural Net (b) After applying dropout



If the neuron was present with probability p, at test time we scale the 
outbound weights by a factor of p.
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Dropout—Visualization

(a) At training time (b) At test time

Present with 
probability p

Always 
present



 Another, more heuristical approach to regularization is early stopping.

 This refers to choosing some rules after which to stop training.

 Example: 

– Check the validation log-loss every 10 epochs.

– If it is higher than it was last time, stop and use the previous model (i.e. from 10 epochs 
previous)
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Early Stopping



 We have considered approaches to gradient descent which vary the number of data 
points involved in a step.

 However, they have all used the standard update formula:

 There are several variants to updating the weights which give better performance in 
practice.

 These successive “tweaks” each attempt to improve on the previous idea.

 The resulting (often complicated) methods are referred to as “optimizers”.
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Optimizers

W ≔𝑊 − 𝛼 ⋅ 𝛻𝐽



 Idea, only change direction by a little bit each time.

 Keeps a “running average” of the step directions, smoothing out the variation of the 
individual points.

 Here, 𝜂 is referred to as the “momentum”.  It is generally given a value <1

9

Momentum

𝑣t ≔ 𝜂 ⋅ 𝑣𝑡−1 − 𝛼 ⋅ 𝛻𝐽

W ≔ 𝑊 − 𝑣𝑡
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Gradient Descent vs Momentum 
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Gradient Descent vs Momentum 



 Idea: Control “overshooting” by looking ahead.

 Apply gradient only to the “non-momentum” component.
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Nesterov Momentum

W ≔𝑊 − 𝑣𝑡

𝑣𝑡 = 𝜂 ⋅ 𝑣𝑡−1 − 𝛼 ⋅ 𝛻(𝐽 − 𝜂 ⋅ 𝑣𝑡−1)
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Nesterov Momentum

Momentum Vector

Gradient/correction

Nesterov steps

Standard momentum steps



 Idea: scale the update for each weight separately.

 Update frequently-updated weights less

 Keep running sum of previous updates

 Divide new updates by factor of previous sum
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AdaGrad
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 Quite similar to AdaGrad.

 Rather than using the sum of previous gradients, decay older gradients more than 
more recent ones.

 More adaptive to recent updates
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RMSProp



Idea: use both first-order and second-order change information and 
decay both over time.
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adam
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 RMSProp and Adam seem to be quite popular now.

 Difficult to predict in advance which will be best for a particular problem.

 Still an active area of inquiry.
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Which one should I use?!




