

We have several means by which to help “regularize” neural networks –
that is, to prevent overfitting

 Regularization penalty in cost function

 Dropout

 Early stopping

 Stochastic / Mini-batch Gradient descent (to some degree)

2

Regularizing Neural Networks

 One option is to explicitly add a penalty to the loss function for having high weights.

 This is a similar approach to Ridge Regression

 Can have an analogous expression for Categorical Cross Entropy

3

Penalized Cost function

𝐽 =
1

2𝑛

𝑖=1

𝑛

 𝑦𝑖 − 𝑦𝑖
2 + 𝜆

𝑗=1

𝑚

𝑊𝑖
2

 Dropout is a mechanism where at each training iteration (batch) we randomly remove
a subset of neurons

 This prevents the neural network from relying too much on individual pathways,
making it more “robust”

 At test time we “rescale” the weight of the neuron to reflect the percentage of the
time it was active

4

Dropout

5

Dropout—Visualization

(a) Standard Neural Net (b) After applying dropout

If the neuron was present with probability p, at test time we scale the
outbound weights by a factor of p.

6

Dropout—Visualization

(a) At training time (b) At test time

Present with
probability p

Always
present

 Another, more heuristical approach to regularization is early stopping.

 This refers to choosing some rules after which to stop training.

 Example:

– Check the validation log-loss every 10 epochs.

– If it is higher than it was last time, stop and use the previous model (i.e. from 10 epochs
previous)

7

Early Stopping

 We have considered approaches to gradient descent which vary the number of data
points involved in a step.

 However, they have all used the standard update formula:

 There are several variants to updating the weights which give better performance in
practice.

 These successive “tweaks” each attempt to improve on the previous idea.

 The resulting (often complicated) methods are referred to as “optimizers”.

8

Optimizers

W ≔𝑊 − 𝛼 ⋅ 𝛻𝐽

 Idea, only change direction by a little bit each time.

 Keeps a “running average” of the step directions, smoothing out the variation of the
individual points.

 Here, 𝜂 is referred to as the “momentum”. It is generally given a value <1

9

Momentum

𝑣t ≔ 𝜂 ⋅ 𝑣𝑡−1 − 𝛼 ⋅ 𝛻𝐽

W ≔ 𝑊 − 𝑣𝑡

10

Gradient Descent vs Momentum

11

Gradient Descent vs Momentum

 Idea: Control “overshooting” by looking ahead.

 Apply gradient only to the “non-momentum” component.

12

Nesterov Momentum

W ≔𝑊 − 𝑣𝑡

𝑣𝑡 = 𝜂 ⋅ 𝑣𝑡−1 − 𝛼 ⋅ 𝛻(𝐽 − 𝜂 ⋅ 𝑣𝑡−1)

13

Nesterov Momentum

Momentum Vector

Gradient/correction

Nesterov steps

Standard momentum steps

 Idea: scale the update for each weight separately.

 Update frequently-updated weights less

 Keep running sum of previous updates

 Divide new updates by factor of previous sum

14

AdaGrad

𝑊 ≔𝑊 −
𝜂

𝐺𝑡 + 𝜖
⨀𝛻𝐽

 Quite similar to AdaGrad.

 Rather than using the sum of previous gradients, decay older gradients more than
more recent ones.

 More adaptive to recent updates

15

RMSProp

Idea: use both first-order and second-order change information and
decay both over time.

16

adam

mt = β1mt−1 + (1 − β1)𝛻J vt = β2vt−1 + 1 − β2 𝛻J

 𝑚𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 𝑣𝑡 =

𝑣𝑡

1 − 𝛽1
𝑡

𝑊 ≔𝑊 −
𝜂

 𝑣𝑡 + 𝜖
⨀ 𝑚𝑡

 RMSProp and Adam seem to be quite popular now.

 Difficult to predict in advance which will be best for a particular problem.

 Still an active area of inquiry.

17

Which one should I use?!

