

We have several means by which to help “regularize” neural networks –
that is, to prevent overfitting

 Regularization penalty in cost function

 Dropout

 Early stopping

 Stochastic / Mini-batch Gradient descent (to some degree)

2

Regularizing Neural Networks

 One option is to explicitly add a penalty to the loss function for having high weights.

 This is a similar approach to Ridge Regression

 Can have an analogous expression for Categorical Cross Entropy

3

Penalized Cost function

𝐽 =
1

2𝑛

𝑖=1

𝑛

 𝑦𝑖 − 𝑦𝑖
2 + 𝜆

𝑗=1

𝑚

𝑊𝑖
2

 Dropout is a mechanism where at each training iteration (batch) we randomly remove
a subset of neurons

 This prevents the neural network from relying too much on individual pathways,
making it more “robust”

 At test time we “rescale” the weight of the neuron to reflect the percentage of the
time it was active

4

Dropout

5

Dropout—Visualization

(a) Standard Neural Net (b) After applying dropout

If the neuron was present with probability p, at test time we scale the
outbound weights by a factor of p.

6

Dropout—Visualization

(a) At training time (b) At test time

Present with
probability p

Always
present

 Another, more heuristical approach to regularization is early stopping.

 This refers to choosing some rules after which to stop training.

 Example:

– Check the validation log-loss every 10 epochs.

– If it is higher than it was last time, stop and use the previous model (i.e. from 10 epochs
previous)

7

Early Stopping

 We have considered approaches to gradient descent which vary the number of data
points involved in a step.

 However, they have all used the standard update formula:

 There are several variants to updating the weights which give better performance in
practice.

 These successive “tweaks” each attempt to improve on the previous idea.

 The resulting (often complicated) methods are referred to as “optimizers”.

8

Optimizers

W ≔𝑊 − 𝛼 ⋅ 𝛻𝐽

 Idea, only change direction by a little bit each time.

 Keeps a “running average” of the step directions, smoothing out the variation of the
individual points.

 Here, 𝜂 is referred to as the “momentum”. It is generally given a value <1

9

Momentum

𝑣t ≔ 𝜂 ⋅ 𝑣𝑡−1 − 𝛼 ⋅ 𝛻𝐽

W ≔ 𝑊 − 𝑣𝑡

10

Gradient Descent vs Momentum

11

Gradient Descent vs Momentum

 Idea: Control “overshooting” by looking ahead.

 Apply gradient only to the “non-momentum” component.

12

Nesterov Momentum

W ≔𝑊 − 𝑣𝑡

𝑣𝑡 = 𝜂 ⋅ 𝑣𝑡−1 − 𝛼 ⋅ 𝛻(𝐽 − 𝜂 ⋅ 𝑣𝑡−1)

13

Nesterov Momentum

Momentum Vector

Gradient/correction

Nesterov steps

Standard momentum steps

 Idea: scale the update for each weight separately.

 Update frequently-updated weights less

 Keep running sum of previous updates

 Divide new updates by factor of previous sum

14

AdaGrad

𝑊 ≔𝑊 −
𝜂

𝐺𝑡 + 𝜖
⨀𝛻𝐽

 Quite similar to AdaGrad.

 Rather than using the sum of previous gradients, decay older gradients more than
more recent ones.

 More adaptive to recent updates

15

RMSProp

Idea: use both first-order and second-order change information and
decay both over time.

16

adam

mt = β1mt−1 + (1 − β1)𝛻J vt = β2vt−1 + 1 − β2 𝛻J

 𝑚𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 𝑣𝑡 =

𝑣𝑡

1 − 𝛽1
𝑡

𝑊 ≔𝑊 −
𝜂

 𝑣𝑡 + 𝜖
⨀ 𝑚𝑡

 RMSProp and Adam seem to be quite popular now.

 Difficult to predict in advance which will be best for a particular problem.

 Still an active area of inquiry.

17

Which one should I use?!

