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Review

▪ Do some review of concepts from the last lecture

▪ We will revisit kernel, stride, and pooling in the context of the Le-Net 5 model



3

LeNet-5

▪ Created by Yann LeCun in the 1990s

▪ Used on the MNIST data set

▪ Novel Idea: Use convolutions to efficiently learn features on data set
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LeNet—Structure Diagram

Input: A 32 x 32 grayscale image (28 x 28) 
with 2 pixels of padding all around.
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LeNet—Structure Diagram

Next, we have a 
convolutional layer.
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LeNet—Structure Diagram

This is a 5x5 convolutional 
layer with stride 1.
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LeNet—Structure Diagram

This means the resulting “filter” has 
dimension 28x28. (Why?)



8

LeNet—Structure Diagram

They use a depth of 6.  This means 
there are 6 different kernels that 
are learned. 
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LeNet—Structure Diagram

They use a depth of 6.  This means 
there are 6 different kernels that 
are learned. 

So the output of this 
layer is 6x28x28.
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LeNet—Structure Diagram

What is the total number of 
weights in this layer?
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LeNet—Structure Diagram

What is the total number of 
weights in this layer?

Answer: Each kernel has 5x5=25 weights (plus a 
bias term, so actually 26 weights). So total 
weights = 6x26 = 156. 
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LeNet—Structure Diagram

Next is a 2x2 pooling layer. (with stride 2)
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LeNet—Structure Diagram

So output size is 6x14x14.
(we downsample by a factor of 2)
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LeNet—Structure Diagram

So output size is 6x14x14.
(we downsample by a factor of 2)

Note: The original paper actually does a more complicated pooling then max or 
avg. pooling, but this is considered obsolete now. 
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LeNet—Structure Diagram

No weights! (pooling layers have no weights to be 
learned – it is a fixed operation.)
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LeNet—Structure Diagram

Another 5x5 convolutional layer 
with stride 2. This time the depth is 
16. 
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LeNet—Structure Diagram

Output size: 16 x 10 x 10 How 
many weights? (tricky!)



The kernels “take in” the full depth of the previous layer. So each 
5x5 kernel now “looks at” 6x5x5 pixels. 
Each kernel has 6x5x5 = 150 weights + bias term = 151.
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LeNet—Structure Diagram
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LeNet—Structure Diagram

So, total weights for this layer = 16*151 = 2416. 



20

LeNet—Structure Diagram

Another 2x2 pooling layer. 
Output is 16 x 5 x 5.
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LeNet—Structure Diagram

We “flatten” this to a length 
400 vector. (not shown)
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LeNet—Structure Diagram

The following layers are just 
fully connected layers! 
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LeNet—Structure Diagram

From 400 to 120.
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LeNet—Structure Diagram

Then from 120 to 84.



25

LeNet—Structure Diagram

Then from 84 to 10.
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LeNet—Structure Diagram

And a softmax output of 
size 10 for the 10 digits.
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LeNet-5

How many total weights in the network?

Conv1: 1*6*5*5 + 6   = 156

Conv3: 6*16*5*5 + 16 = 2416

FC1: 400*120 + 120   = 48120

FC2: 120*84  + 84    = 10164

FC3: 84*10 + 10      = 850

Total:               = 61706

Less than a single FC layer with [1200x1200] weights!

Note that Convolutional Layers have relatively few weights.
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Motivation

▪ Early layers in a Neural Network are the 
hardest (i.e. slowest) to train

▪ Due to vanishing gradient property

▪ But these ”primitive” features should be 
general across many image classification 
tasks
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Motivation

▪ Later layers in the network are capturing features that are more particular to the specific image 
classification problem

▪ Later layers are easier (quicker) to train since adjusting their weights has a more immediate 
impact on the final result
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Motivation

▪ Famous, competition-winning models are difficult to train from scratch

– Huge datasets (like ImageNet)

– Long number of training iterations

– Very heavy computing machinery

– Time experimenting to get hyper-parameters just right



31

Transfer Learning

▪ However, the basic features (edges, shapes) learned in the early layers of the network should
generalize

▪ Results of the training are just weights (numbers) that are easy to store

▪ Idea: keep the early layers of a pre-trained network, and re-train the later layers for a specific 
application

▪ This is called Transfer Learning
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Transfer Learning

Convolutions

Fully Connected

softmax classifier
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Transfer Learning

Convolutions

Fully Connected

Train last layer
on new data.
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Transfer Learning

Convolutions

Fully Connected

Train last layer
on new data.

Perhaps, after a while
train back a few more layers
(or even the whole network).
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Transfer Learning Options

▪ The additional training of a pre-trained network on a specific new dataset is referred to as 
“Fine-Tuning”

▪ There are different options on “how much” and “how far back” to fine-tune

– Should I train just the very last layer?

– Go back a few layers?

– Re-train the entire network (from the starting point of the existing network)?
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While there are no “hard and fast” rules, 
there are some guiding principles to keep 
in mind.

1) The more similar your data and problem are 
to the source data of the pre-trained network, 
the less fine-tuning is necessary

Guiding Principles for 
Fine-Tuning

E.g. Using a network trained on ImageNet to 
distinguish “dogs” from “cats” should need 
relatively little fine-tuning.  It already 
distinguished different breeds of dogs and 
cats, so likely has all the features you will 
need.
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2) The more data you have about your 
specific problem, the more the network will 
benefit from longer and deeper fine-tuning

Guiding Principles for 
Fine-Tuning

E.g. If you have only 100 dogs and 100 cats 
in your training data, you probably want to 
do very little fine-tuning.  If you have 10,000 
dogs and 10,000 cats you may get more 
value from longer and deeper fine-tuning.
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3) If your data is substantially different in 
nature than the data the source model was 
trained on, Transfer Learning may be of 
little value

Guiding Principles for 
Fine-Tuning

E.g. A network that was trained on recognizing 
typed Latin alphabet characters would not be 
useful in distinguishing cats from dogs.  But it 
likely would be useful as a starting point for 
recognizing Cyrillic Alphabet characters. 




