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Motivation

▪ Have shown how to use Neural Networks with structured numerical data

▪ Images can be upsampled / downsampled to be a certain size

▪ Image values are numbers (greyscale, RGB)

▪ But how do we work with text?

▪ Issue 1: How to deal with pieces of text (sequences of words that vary in length)?

▪ Issue 2: How to convert words into something numerical?
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Issue: Variable length sequences of words

▪ With images, we forced them into a specific input dimension

▪ Not obvious how to do this with text

▪ We will use a new structure of network called a “Recurrent Neural Network” which will 
be discussed next lecture
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Tokenization

▪ Need to convert word into something numerical

▪ First approach: Tokenization

▪ Treat as a categorical variable with huge number of categories (one hot encoding)

▪ Deal with some details around casing, punctuation, etc.

“The cat in the hat.”

[‘the’,’cat’,’in’,’the’,’hat’,’<EOS>’]
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Tokenization

▪ Use tokens to build a vocabulary

▪ Vocabulary is a one-to-one 
mapping from index # to a token

▪ Usually represented by a list and 
a dictionary

index word

{
‘<EOS>’: 0,
‘the’:       1, 
‘cat’:        2, 
‘in’:          3, 
‘hat’:       4, 
‘.’:     5

}

[
‘<EOS>’,
‘the’, 
‘cat’, 
‘in’, 
‘hat’, 
‘.’

]

index word
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Issues with Tokenization

▪ Tokenization loses a lot of information about words:

– Part of speech

– Synonymy (distinct words with same or similar meaning)

– Polysemy (single word with multiple meanings) 

– General context in which word is likely to appear 
(e.g. “unemployment” and “inflation” ) are both about economics

▪ Increasing vocabulary size is difficult (would require re-training the model)

▪ Vector length is huge -> large number of weights

▪ Yet information in vector is very sparse
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Word Vectors

▪ Goal: represent a word by an m-dimensional vector (for medium-sized m, say, m=300)

▪ Have “similar” words be represented by “nearby” vectors in this m-dimensional space

▪ Words in a particular domain (economics, science, sports) could be closer to one 
another than words in other domains.

▪ Could help with synonymy 

– e.g. “big” and ”large” have nearby vectors

▪ Could help with polysemy 

– “Java” and ”Indonesia” could be close in some dimensions

– “Java” and “Python” are close in other dimensions
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Word Vectors

▪ Vectors would be shorter length and information-dense, rather than very long and 
information-sparse

▪ Would require fewer weights and parameters

▪ Fortunately, there are existing mappings which can be downloaded and used

▪ These were trained on big corpora for a long time

▪ Let’s understand how they were developed and trained
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What makes two words similar?

▪ Idea: similar words occur in similar contexts

▪ For a given word, look at the words in a “window” around it

▪ Consider trying to predict a word given the context

▪ This is exactly the CBOW (continuous bag of words) model

“We hold these truths to be self-evident, that all men are created equal”

([‘truths’, ‘to’, ‘be’, ‘that’, ’all’, ‘men’], ‘self-evident’)

target wordcontext
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CBOW Model

Train a neural network on a large corpus of data.

Single Hidden Layer
(with dimension m)

Target word
(one hot encoded)

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)

Context words
(one hot encoded)
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CBOW Model

Once the network is trained, weights -> word vectors.

Context words
(one hot encoded)

Single Hidden Layer
(with dimension m)

Target word
(one hot encoded)

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)



Context words
(one hot encoded)
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Skip-gram Model

Same idea, except we predict the context from the target.

Single Hidden Layer
Neural Network

Target word
(one hot encoded)

w(t)

w(t-2)

w(t-1)

w(t+1)

w(t+2)
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Word2Vec

▪ Distributed Representations of Words and Phrases and Their Compositionality—
Mikolov et al.

▪ Uses a Skip-gram model to train on a large corpus

▪ Lots of details to make it work better

– Aggregation of multi-word phrases (e.g. Boston Globe)

– Subsampling (i.e. oversample less common words)

– Negative Sampling (give network examples of wrong words)
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GloVe

▪ Global Vectors for Word Representation (GloVe)

▪ Use co-occurrence matrix with neighboring words to determine similarity

𝑓 frequency of a word, with a maximum cap

𝑃_𝑖𝑗 probability words i and j occur together

𝐽 =
1

2


𝑖,𝑗=1

𝑊

𝑓 𝑃𝑖𝑗 𝑢𝑖
𝑇𝑣𝑗 − log 𝑃𝑖𝑗

2
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GloVe

▪ GloVe is publicly available

▪ Developed at Stanford: https://nlp.stanford.edu/projects/glove/

▪ Trained on huge corpora




