
Dropout and
Bayesian Neural Networks

From Prediction to Control

● Neural network for predicting robot state

● Can we also learn to control robot?

● Example: reaching and grasping a cup

● What are the inputs and outputs?

● How to generalize to new situations, e.g., a mug?

Example 2: Learning Inverse Kinematics

● Robots need to reach for objects

● Object position is in cartesian space [x, y, z]

● We need the corresponding robot joint angles

● Inverse kinematics calculates angles from position

Location of object

δ

α

Task space vs Configuration Space

● Spaces for controlling robot

● Task space: Euclidean space of end-effector

● Configuration space: space of all joint angles

● Kinematics transforms between the two

x

y z

IK

FK

Forward Kinematics in 2D

Inverse Kinematics in 2D

Use equality:

And:

Algebraic rewriting:

Inverse Kinematics in 2D

Use equality:

And:

Algebraic rewriting:

Solve for theta:

Inverse Kinematics via Neural Network

● Now let's learn inverse kinematics via ANN

● Randomly set the arm to joint angle configuration

● Measure the position of gripper

● Input: position → Output: joint angle

Input units
(position)

Hidden units

Ouput units
(joint angles)

δ

α

α δ

Regularization

● Regularization:

methods that attempt to minimize the error of our
loss function with respect to a set of inputs that
are not used for training

● Dropout, simple but powerful regularization

● During training, individual neurons are either
kept with probability or dropped with

● The approach emulates learning an ensemble of
different variants (network structures) of an ANN

Dropout

● Prevent overfitting

● Disactivate neurons throughout learning

● Drop with probability

● Weight Scaling Inference Rule (Hinton et al.)

If we set then we need to scale outputs
by a factor of 2

Standard Neural Net After Applying Dropout

Inverse Kinematics via Neural Network

Play Video

https://youtu.be/EvP5u_A7Lvg

Uncertainty in Neural Networks

● The output of an ANN is not guaranteed to be
accurate

● Depends on task complexity, non-deterministic
environment, noise, training set, etc.

● We need a way to assess the confidence /
uncertainty of an ANN in its outputs

● Ideally, probabilistic or Bayesian outputs

● Efficient approximation via Dropout

Stochastic Forward Passes

● Approximate the confidence of our model

● Sampling multiple predictions at inference time

● Each sample may result in different net output

● The samples form a probability distribution

Inverse Kinematics with Uncertainty

Play Video

https://youtu.be/0YJvDr4erDo

Dimensionality Reduction

The Curse of Dimensionality

● First mentioned by Bellman [Bellman, 1957]

● Exponential growth in data and computation

● High-dimensional spaces challenging for machine
learning

Human movement inherently low dimensional

Muscle Synergies [Bernstein 1967, Santello et al. 1998]

Muscle Synergies in Grasping

● Finger muscles are co-activated

● First 2 principal components account for > 80%

● 2 DOF are sufficient to achieve 80% of all grasps

Data lies on a
low-dimensional manifold!
[Santello et al., 1998]

We can extract the manifold
via dimensionality
reduction!

Dimensionality Reduction

● Assume data lies on a manifold

● Manifold has lower dimensionality than space

● Goal: identify Manifold

Linear Nonlinear

Principal Component Analysis

● Extracts a set of principal components

● Eigenvectors: principal components

● Eigenvalues: the variance of data along direction

PCA Projection on 1D

Computing PCA

Approach

● Remove mean

● Calculate covariance

● Eigen-Decomposition

● Fast computation of PCA via Intel MKL

Application to Robot Learning

● We can use PCA to reduce number of control
parameters needed to control robot

● In grasping we can control robot hand using only 2
degrees-of-freedom instead of 15+

● Approach: collect training data and perform PCA

● Then control robot using only first 2-3 principal
components

Example 3: PCA for Arm Kinematics

Play Video

https://youtu.be/ldLacVZyyXc

Example Application

● Python code implementing the above examples
can be found in folder “ProbablitiesDropout”

● The README includes instructions on learning and
testing a model

Example 4: Projecting a Walking Gait

● We can use PCA on demonstrations from a human
expert and analyze the individual components

Summary

● Neural network for robot control

● Output of the network are controls

● Training with Dropout to achieve better
performance, i.e., regularization

● Tasks may involve high-dimensional variables

● We can reduce dimensions using PCA

● However, so far all training is supervised

The development of this course was supported by
an Intel AI Academy grant. We thank the sponsor
for the continuing support of open-source efforts
in research and education.

