Dropout and
Bayesian Neural Networks




From Prediction to Control

Neural network for predicting robot state

Can we also learn to control robot?

Example: reaching and grasping a cup

What are the inputs and outputs?

How to generalize to new situations, e.g., a mug?




Example 2: Learning Inverse Kinematics

Robots need to reach for objects
Object position is in cartesian space [X, vy, z]
We need the corresponding robot joint angles

Inverse kinematics calculates angles from position

L ammed Location of object
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Task space vs Configuration Space

Spaces for controlling robot
Task space: Euclidean space of end-effector
Configuration space: space of all joint angles

Kinematics transforms between the two
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Forward Kinematics in 2D
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Inverse Kinematics in 2D

Use equality:
/\/ ? +y? =12 + 13 — 2115 cos(9)

And: ¢ = 1 — 05

Algebraic rewriting:
2 +y® =12+ 15 — 2115 cos(m — 05)
= 12 + 15 — 2l115(cos 7 cos(0y) — sin(m)sin(s))

= l% + l2 — 2l115(—cos(62))
=15 + 15 + 2l113 cos(6s)




Inverse Kinematics in 2D

Use equality:

z? +y? =15 415 — 2115 cos(9)
SN
And: ¢ = m — 05

Algebraic rewriting:
2 +y? =12 + 13 — 2115 cos(m — 605)

[y
= 17 + 15 — 2l115(cos wcos(0y) — sin(m)sin(6s))
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= 12 4+ 15 + 21115 cos(0s)
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Inverse Kinematics via Neural Network

Now let's learn inverse kinematics via ANN
Randomly set the arm to joint angle configuration
Measure the position of gripper

Input: position » Output: joint angle
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Regularization

Regularization:

methods that attempt to minimize the error of our
loss function with respect to a set of inputs that
are not used for training

Dropout, simple but powerful regularization

During training, individual neurons are either
kept with probability p or dropped with 1 —p

The approach emulates learning an ensemble of
different variants (network structures) of an ANN

FSU




Dropout

Prevent overfitting

Disactivate neurons throughout learning
Drop with probability 1 —p

Weight Scaling Inference Rule (Hinton et al.)

If we set p = 0.5 then we need to scale outputs

tandard Neural Net After Applying Dropout
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Inverse Kinematics via Neural Network
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Play Video



https://youtu.be/EvP5u_A7Lvg

Uncertainty in Neural Networks

The output of an ANN is not guaranteed to be
accurate

Depends on task complexity, non-deterministic
environment, noise, training set, etc.

We need a way to assess the confidence /
uncertainty of an ANN in its outputs

|deally, probabilistic or Bayesian outputs

Efficient approximation via Dropout

FSU




Stochastic Forward Passes

Approximate the confidence of our model
Sampling multiple predictions at inference time

Each sample may result in different net output




Inverse Kinematics with Uncertainty

| Extimating Meural Metwork Confidence Using Drmpoust =

Model Unceriainty Graph
60 Stochastic Forward Passes
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Play Video



https://youtu.be/0YJvDr4erDo

Dimensionality Reduction




The Curse of Dimensionality

First mentioned by Bellman [Bellman, 1957]
Exponential growth in data and computation

High-dimensional spaces challenging for machine
learning

Human movement inherently low dimensional

Muscle Synergies [Bernstein 1967, Santello et al. 1998]




Muscle Synergies in Grasping

Finger muscles are co-activated
First 2 principal components account for > 80%

2 DOF are sufficient to achieve 80% of all grasps
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Figwre 6 Postural synergies defined by the first two principal compo-
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Dimensionality Reduction

Assume data lies on a manifold
Manifold has lower dimensionality than space
Goal: identify Manifold

Linear Nonlinear




Principal Component Analysis

Extracts a set of principal components
Eigenvectors: principal components

Eigenvalues: the variance of data along direction

PCA Projection on 1D
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Computing PCA

Approach
Remove mean X, =(I-111)X
Calculate covariance > =X.X!

Eigen-Decomposition > =UwVv?!
Fast computation of PCA via Intel MKL

= LNTEI.@' MATH KERNEL LIBRARY

THE FASTEST AND MOST-USED
MATH LIBRARY FOR INTEL'-BASED SYSTEMS'

e math processing routines, increase application performance, and reduce development time.
This ready-to-use math library includes:

ast Fourier Transforms (FFT) | Vector Statistics & Data Fitting | Vector Math & Miscellaneous Solvers




Application to Robot Learning

We can use PCA to reduce number of control
parameters needed to control robot

In grasping we can control robot hand using only 2
degrees-of-freedom instead of 15+

Approach: collect training data and perform PCA

Then control robot using only first 2-3 principal
components




Example 3: PCA for Arm Kinematics
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Play Video



https://youtu.be/ldLacVZyyXc

Example Application

Python code implementing the above examples
can be found in folder “ProbablitiesDropout”

The README includes instructions on learning and
testing a model

ProbabilitiesDropo
ut




Example 4: Projecting a Walking Gait

We can use PCA on demonstrations from a human
expert and analyze the individual components
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Summary

Neural network for robot control
Output of the network are controls

Training with Dropout to achieve better
performance, i.e., regularization

Tasks may involve high-dimensional variables
We can reduce dimensions using PCA

However, so far all training is supervised

FSU




The development of this course was supported by
an Intel Al Academy grant. We thank the sponsor

for the continuing support of open-source efforts
In research and education.




