

2

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE
OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND
AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other
third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is
at the sole risk of the user.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, and OpenVINO are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.

3

Part one

• What is Image Classifier?

• Popular image classification
topologies

• OpenVINO™ toolkit support for
image classification

Part Two

• Deep dive into OpenVINO toolkit

• Learn how to create hardware-
agnostic intermediate representation
(IR) using Model Optimizer

• Learn how to create FP16
quantization to work with Intel Neural
Compute Stick 2 (Intel® NCS2) using
pretrained Inception model

• Learn how to deploy on NCS2
through the Inference Engine

Agenda
Chapter Outcome: Deploy an Image Classifier Model on Intel® Neural Compute

Stick 2

What is Image Classification?

Image source:
https://commons.wikimedia.org/wiki/File:US_Navy_100310-N-4178C-005_Three-year-old_Joey_Adams_identifies_items_from_flash_cards_during_an_in-home_therapy_session._Adams.jpg

https://commons.wikimedia.org/wiki/File:US_Navy_100310-N-4178C-005_Three-year-old_Joey_Adams_identifies_items_from_flash_cards_during_an_in-home_therapy_session._Adams.jpg

Image Classification
• Image classification is a computer vision problem that aims to classify a

subject or an object present in an image into predefined classes.

• Traditional approaches to providing such visual perception to machines
have relied on complex computer algorithms that use feature descriptors,
like edges, corners, colors, and so on, to identify or recognize objects in
the image.

• Deep learning takes a rather interesting, and by far most efficient
approach, to solving real-world imaging problems. It uses multiple layers
of interconnected neurons, where each layer uses a specific computer
algorithm to identify and classify a specific descriptor.

Popular Image Classification Topologies
AlexNet

9

AlexNet

• Created in 2012 for the ImageNet Large Scale Visual Recognition Challenge

• Task: Predict the correct label from among 1000 classes

• Dataset: Around 1.2 million images

• Considered the “flash point” for modern deep learning

• Demolished the competition

• Top five error rate of 15.4%

• Next best: 26.2%

10

GoogLeNet

11

GoogLeNet

• The winner of the ImageNet Large Scale Visual Recognition Challenge
2014 competition was GoogLeNet (also known as Inception V1) from
Google

• The module is based on several very small convolutions in order to
drastically reduce the number of parameters****

• Their architecture consisted of a 22-layer deep convolutional neural
network but reduced the number of parameters from 60 million (AlexNet)
to 4 million

• It achieved a top-five error rate of 6.67%

12

Inception V3 schematic

13

Inception
• Szegedy, et al. 2014

• Idea: network would want to use different receptive fields

• Want computational efficiency

• Also want to have sparse activations of groups of neurons

• Hebbian principle: “Fire together, wire together”

• Solution: Turn each layer into branches of convolutions

• Each branch handles smaller portion of workload

• Concatenate different branches at the end

14

ResNet-50

• ResNet* stands for Residual Network

• The number indicates the number of layers in the network. For example:
ResNet-34, ResNet-50, ResNet-152, and so on

• Works by flowing information in earlier layers in the network to later layers—
a concept known as skip connection

• In deep neural networks, this mitigates the problem of vanishing gradients

15

• Assumption: Best transformation
over multiple layers is close to
ℱ(𝑥)+𝑥

• 𝑥->input to series of layers

• ℱ(𝑥)->function represented by
several layers (such as convs)

• Enforce this by adding “shortcut
connections”

• Add the inputs from an earlier layer
to the output of current layer

ResNet* Architecture

17

• Inception v1- v4

• Inception ResNet* v2

• MobileNet* v1-128

• MobileNet v1-160

• MobileNet v1- 224

• VGG-16

• VGG-19

• ResidualNet-50 v1and v2

• ResidualNet-101 v1 and v2

• ResidualNet-152 v1 and v2

Supported Image Classification Topologies

Most common Image Classification topologies are supported
through the OpenVINO™ toolkit.

For a complete list of all supported topologies, refer to the OpenVINO™ Toolkit documentation

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_Convert_Model_From_TensorFlow.html

19

Workflow—Deploy Image Classifier Using OpenVINO™ Toolkit

Step 1: Freeze the TensorFlow* model

• If your model is not already frozen, convert it to a frozen graph format (.pb file)

Step 2: Create intermediate representation (IR) files through the Model Optimizer

• Based on the trained network topology, weights, and biases values, generate the .bin and .xml files

Step 3: Test the model with the intermediate representation files

• Use the Inference Engine in the target environment via provided sample applications

• We will focus on deployment to the Intel® Neural Compute Stick 2 (Intel® NCS2)

Step 4: Integrate the Inference Engine in your application

• Deploy the model in the target environment (CPU, processor graphics, Intel NCS2, field-programmable gate

array (FPGA))

• We will cover this in Chapter 5 when we learn how to deploy custom models

20

Step 1: Freeze TensorFlow* Model
This step is required to export the inference graph—the protobuf (.pb) file,
which contains the network architecture

For the sake of simplicity, we will start with a pretrained model example from
the TensorFlow Slim Repo: inception_v1

(To create a frozen graph for a custom model, refer to chapter 5)

Instructions

• Download the TensorFlow-Slim models git repository

• Download and extract the checkpoint file

mkdir tf_models
cd tf_models
git clone https://github.com/tensorflow/models.git

wget -nc http://download.tensorflow.org/models/inception_v1_2016_08_28.tar.gz
tar -xvf inception_v1_2016_08_28.tar.gz

21

Step 1: Freeze TensorFlow* Model
Export the inference graph

The output is a frozen graph with the name specified in the –output_file
parameter

python3 models/research/slim/export_inference_graph.py \
--alsologtostderr \
--model_name=inception_v1 \
--output_file=inception_v1.pb

22

Step 2: Create Intermediate Representation Files Using Model Optimizer

The Model Optimizer creates hardware-agnostic IR files

• Takes as input the inference graph, checkpoint file, and required output quantization and
creates two output files

• Bin file contains the weights

• Xml file contains the network architecture

Trained
Model

Intermediate
Representation
(IR) file

Model Optimizer
ANALYZE

QUANTIZE

OPTIMIZE TOPOLOGY

CONVERT

23

Step 2: Create Intermediate Representation Files Using Model Optimizer

Instructions

Use the Inference graph and checkpoint files from Step 1 for Inception V1 and
create intermediate representation (IR) files in FP16 format

• --input_model: Frozen graph file in protobuf (.pb) format

• --input_checkpoint: Checkpoint file from Step 1

• --mean_value and --scale: Mean and scale values for the topology

• If you are using other topologies, refer here for mean and scale values

• --data_type: Required precision for the IR. Since we intend to deploy on Intel® Neural Compute Stick
2 (Intel® NCS2), we set this to FP16

• --model_name: Name of the output files. Inception_v1_FP16.xml and Inception_v1_Fp16.bin can be
found in the current directory

<MODEL_OPTIMIZER_INSTALL_DIR>/mo_tf.py --input_model ./inception_v1.pb --input_checkpoint
./inception_v1.ckpt -b 1 --mean_value [127.5,127.5,127.5] --scale 127.5 –data_type FP16 –
model_name inception_v1_FP16

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_Convert_Model_From_TensorFlow.html

24

Step 3: Test the IR Files with Sample Apps
The OpenVINO™ toolkit installation comes with many sample applications that
integrate the Inference Engine capabilities for demonstration

Build these samples using the OpenVINO toolkit installation instructions
(covered in Chapter 2)

To test the IR created in Steps 1–3, we will use the classification_sample_async

Instructions
• The executable samples will be found in the

<INFERENCE_ENGINE_SAMPLES_BUILD_DIR>/intel64/Release directory

• Run the following command to execute the sample application. We set the device to
MYRIAD (using the –d flag) to deploy to Intel® Neural Compute Stick 2 (Intel® NCS2)

<INFERENCE_ENGINE_SAMPLES_BUILD_DIR>/intel64/Release$./classification_sample -i
<path_to_image>/cat.bmp -m <path_to_model>/ inception_v1_FP16.xml –d MYRIAD

25

Step 3: Test the IR Files with Sample Apps
• The sample application requires IR input for models that have a single output

(Example: AlexNet, GoogLeNet, Inception V1)

• The sample verifies the results against the ImageNet dataset

• The sample application integrates the Inference Engine plugins to infer on
the specified target

• Sample output lists the top 10 labels with the highest probability

26

In Chapter 5, we will show you
how to use a custom topology
with the OpenVINO™ toolkit

