

2

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES
NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR
WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY
RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE
INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND
THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT
OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER
OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or instructions
marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to
them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other third
parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is at the sole
risk of the user.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system
configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, and OpenVINO are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.

3

Part one

• What is an Object Detector?

• Popular object detection topologies

• OpenVINO™ toolkit support for
object detection

Part two

• Deploy pretrained YOLO* v3 model
on Intel Neural Compute Stick 2
using the OpenVINO Toolkit

Agenda
Chapter Outcome: Deploy an object detector model on Intel® Neural
Compute Stick 2

A More Challenging Computer Vision Problem
Multiple objects/subjects in a single image

Man with dogs image source: https://pixabay.com/en/man-dogs-hiking-edge-cliff-1181873/

https://pixabay.com/en/man-dogs-hiking-edge-cliff-1181873/

Object Detection
Identify different objects in an image, and locate them

Man with dogs image source: https://pixabay.com/en/man-dogs-hiking-edge-cliff-1181873/

Dog Dog

Person

https://pixabay.com/en/man-dogs-hiking-edge-cliff-1181873/

Popular Object Detection Topologies
Single Shot MultiBox Detector (SSD) – Network Architecture

https://arxiv.org/pdf/1512.02325.pdf

https://arxiv.org/pdf/1512.02325.pdf

8

Single Shot MultiBox Detector—SSD
• Builds on VGG-16 as the “base network”.

• Replaces fully connected layers in the VGG-16 topology with auxiliary feature
layers that extract features at multiple scales.

• Uses a default set of bounding box shapes at various aspect ratios and
compares these to the bounding box in the ground truth image to identify
localization.

• Therefore, each added feature layer produces either (a) a prediction score for
a category, or (b) shape offset relative to default box coordinates. This
implies that each forward pass classifies as well as localizes the object.

https://arxiv.org/pdf/1512.02325.pdf

https://arxiv.org/pdf/1512.02325.pdf

9

You Only Look Once (YOLO)
Network Architecture

• Applies a single neural network to the entire image

• The image is divided into smaller regions and the network makes predictions
for bounding boxes and classification labels

• The bounding boxes are weighted by predicted probabilities

• Read more about YOLO and test some samples:
https://pjreddie.com/darknet/yolo/

https://pjreddie.com/darknet/yolo/

10

Faster R-CNN—Network Architecture

11

Faster R-CNN

The Regional Proposal Network is a deep, fully convolutional network that first
generates regional proposals using a selective search

• Takes an input image of any size and outputs a set of rectangular object
proposals

These regional proposals are fed to a Fast R-CNN

• The RoI (Region of Interest) Pooling phase accepts a set of feature maps
and the regional proposals

• The pooled area is fed through a convolutional neural network (CNN) and
two fully connected layers to identify the final bounding box and class
labels

13

• SSD MobileNet

• SSD Lite MobileNet

• SSD tResNe50

• Faster R-CNN Inception V2/ResNet*

• Faster R-CNN NasNet COCO

• Mask R-CNN Inception ResNet V2
COCO

• Mask R-CNN ResNet 50 COCO

• Faster R-CNN Inception ResNet V2
Open Images

• Faster R-CNN ResNet 101 AVA v2.1

Supported Image Classification Topologies

Most common object detection topologies are supported
through the OpenVINO™ Toolkit.

For a complete list of all supported topologies, refer to the OpenVINO™ Toolkit documentation

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_Convert_Model_From_TensorFlow.html

15

Workflow—Deploy Object Detector Using OpenVINO™ Toolkit

Step 1: Freeze the TensorFlow* model

• Obtain Darknet framework configuration, YOLO* v3 weights, and COCO labels, and freeze them into a frozen
graph format (.pb file)

Step 2: Create intermediate representation (IR) files through the Model Optimizer

• Using the frozen graph from Step 2, generate the .bin and .xml files.

• Alternative: Use the frozen graph from the Model Downloader

Step 3: Test the model with the IR files

• Use the Inference Engine in the target environment via OpenVINO™ toolkit sample applications

• We will focus on deployment to the Intel® Neural Compute Stick 2 (Intel® NCS2)

Step 4: Integrate the Inference Engine in your application

• Deploy the model in the target environment (CPU, processor graphics, Intel NCS2, field-programmable gate
array (FPGA))

• We will cover this in Chapter 5 when we learn how to deploy custom models

16

Step 1: Freeze the TensorFlow* Model

In this chapter, we will use a pretrained YOLO* v3 model to demonstrate how
an object detector can be deployed

For custom models, refer to Chapter 5.

YOLO v3 model is trained using the Darknet framework. Generating a frozen
graph for this model requires:

• Downloading the YOLO v3 framework configuration from the YOLO git

• Obtaining the classification labels (COCO labels) against which the model is
trained

• Pretrained weights for the YOLO v3 model

• Run a converter using the above inputs to create a protobuf file

17

Step 1: Freeze the TensorFlow* Model
Instructions

(a) Download the YOLO* v3 framework configuration

• This provides some tools, like the convert_weights_pb.py, that builds a
Darknet model

• We will also use this file for creating a frozen graph in a later step

(b) Download the YOLO v3 weights

mkdir yolov3
cd yolov3
git clone https://github.com/mystic123/tensorflow-yolo-v3.git
cd tensorflow-yolo-v3

wget https://pjreddie.com/media/files/yolov3.weights

https://github.com/mystic123/tensorflow-yolo-v3.git

18

Step 1: Freeze the TensorFlow* Model

Instructions (continued)

(c) Download the COCO labels file

• This gives a list of 80 labels that the model is trained with
(https://github.com/pjreddie/darknet/blob/master/data/coco.names)

(d) Freeze the graph

wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names

python3 convert_weights_pb.py --class_names coco.names --data_format NHWC --weights_file
yolov3.weights

https://github.com/pjreddie/darknet/blob/master/data/coco.names

19

Step 2: Create IR Through the Model Optimizer

Now that we have a frozen graph, the next step is to use the Model Optimizer of
the OpenVINO™ toolkit to generate the intermediate representation files

Trained
Model

Intermediate
Representation
(IR) file

Model Optimizer
ANALYZE

QUANTIZE

OPTIMIZE TOPOLOGY

CONVERT

20

Instructions

• --input_model: Frozen graph from Step 2

• --batch: Batch size

• --tensorflow_use_custom_operations_config: Allows TensorFlow* custom
extensions for non-standard layers (learn more about this in Chapter 5)

• -o: Output path where the .bin and .xml files are saved

• --data_type: Required precision for the hardware you choose to deploy on.
Since we will be deploying on the Intel® Neural Compute Stick 2, we select
FP16.

Step 2: Create IR Through the Model Optimizer

python3 <MO_INSTALL_DIR>/mo_tf.py --input_model frozen_darknet_yolov3_model.pb --batch 1 --
tensorflow_use_custom_operations_config
/opt/intel/openvino/deployment_tools/model_optimizer/extensions/front/tf/yolo_v3.json -o FP16 --
data_type FP16

21

Step 3: Test the IR Files with Sample Apps
The OpenVINO™ toolkit installation comes with many sample applications that
integrate the Inference Engine capabilities for demonstration

• Build these samples using the OpenVINO toolkit installation instructions

• To test the IR created in Steps 1 – 3, we will use the
object_detection_demo_yolov3_async demo

Instructions

• The python demos will be found in the
<OPENVINO_INSTALL_DIR>/deployment_tools/open_model_zoo/demos/python_demosdirec
tory

• Download a sample video from https://github.com/intel-iot-devkit/sample-videos

• Run the following command to execute the sample using a sample video and infer on the
Intel® Neural Compute Stick 2 <OPENVINO_INSTALL_DIR>/deployment_tools/open_model_zoo/demos/python_demos/object_det
ection_demo_yolov3_async$python3 object_detection_demo_yolov3_async.py -i
<VIDEO_PATH>/person-bicycle-car-detection.mp4 –m <PATH_to_FP16_model_xml_file> -d MYRIAD

https://github.com/intel-iot-devkit/sample-videos

22

Step 3: Test the IR Files with Sample Apps
Output:

Demonstrates:

• A bounding box around objects detected

• The label of the object detected (Example: Person is 0, car is 672. To understand this,
check the coco.names labels file we downloaded in Step 1. The labels are 0 indexed)

• % accuracy

• Time taken to run the inference

23

In Chapter 5, we will show you
how to use a custom topology
with the OpenVINO™ toolkit

