

2

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE
OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND
AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other
third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is
at the sole risk of the user.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, and OpenVINO are trademarks of Intel Corporation in the U.S. and/or other countries.

Microsoft, Windows, and the Windows logo are trademarks, or registered trademarks of Microsoft Corporation in the United States and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.

3

Agenda

Chapter Outcome: Profile an Image Classification Model Using the DL
Workbench

• Capabilities of the Deep Learning (DL) Workbench

• Installation instructions

• Profiling a trained deep learning model using the DL Workbench

4

What is the Deep Learning Workbench?
• A web-based graphical simulation environment to visualize deep learning

models on Intel® architecture (CPU, processor graphics, vision processing unit)

• Find the best deployment configurations for throughput versus latency

• Identify per layer execution time

• Compare model IR with run time graph

• Configure and measure accuracy of models

• Additionally, where possible, quantize a FP32 model to INT8 to fine-tune model
performance (CPU only)

The DL Workbench is a preview feature in OpenVINO™ toolkit release R3 2019.
Functionality is subject to change. Refer to DL Workbench documentation for up-
to-date information

https://docs.openvinotoolkit.org/latest/_docs_Workbench_DG_Introduction.html

5

DL Workbench—Installation
You can install the DL Workbench in one of the three ways:

• Install from the OpenVINO™ toolkit package (shown in this chapter)

• Use the “run_openvino_workbench.sh” script available in
/<path_to_installed_package>/deployment_tools/tools/workbench

• Pass the OpenVINO installer tar.gz file as input to the script

• Install from Docker Hub*

• Run DL Workbench by building a Docker* image locally (Linux* and
Windows*)

• Install from Dockerfile

• Build a Docker image that contains the OpenVINO toolkit package
including the DL Workbench

https://docs.openvinotoolkit.org/latest/_docs_Workbench_DG_Install_from_Package.html
https://docs.openvinotoolkit.org/latest/_docs_Workbench_DG_Install_from_Docker_Hub.html
https://docs.openvinotoolkit.org/latest/_docs_Workbench_DG_Install_from_Dockerfile.html

6

Model Profiling—Prerequisites

To start profiling a model, you will need:

A trained model

• Use one of the pretrained models from OpenVINO™ toolkit model zoo or provide a
custom model

Dataset to run inference on

• The DL Workbench generates a dataset in ImageNet format for pretrained classification
models

• You will need a sample custom dataset if profiling a custom model

Inference settings such as target device (CPU, GPU, VPU), number of runs, and
number of batches

This chapter demonstrates DL Workbench capabilities with pretrained models.
Steps are similar for custom models.

8

1: Launch the DL Workbench
Go to the Workbench Installation directory

• /<path_to_installed_package>/deployment_tools/tools/workbench

Run the installer script to launch the web interface for DL Workbench

• ./run_openvino_workbench.sh -PACKAGE_PATH <path-to-

archive>

Once complete, the URL to launch the DL Workbench is provided by the script
(the default URL is http://127.0.0.1:5665).

http://127.0.0.1:5665/

9

1: Launch DL Workbench

10

1: Select Pretrained Model

Imported frozen graph
is run through the
Model Optimizer (MO) to
generate IR

Select FP16 precision
for vision processing unit

11

1: Select or Auto-Generate Dataset

It is important to size the images as required by the topology selected.
GoogLeNet requires images 224 x 224.

12

1: Select Target Device

13

2: Run Singe Inference
Perform a standard inference on the target device (in this case VPU) with the
default settings

14

3: Visualize the Trained Model
Check the Model Performance Summary for statistics on the initial run of the
model

Shows execution time per layer and mean inference time

15

4: Check Model Execution Time Per Layer

Shows execution time for each layer in the topology

Check layer specific statistics

16

5: Compare Model IR with Runtime Graph
This gives a comparison of the model IR before it is run through the IE plugin
and the graph when executed through the IE.

You will likely notice how some layers are different between the two. This
happens because a model is changing during the inference process to achieve
better performance.

“The Layer Name table below shows each layer of a model. For those layers
that differ between versions of a model, the top-level rows represent layers of a
model during its runtime, while the subrows correspond to the layers of an
original IR. Gray areas show combined properties of layers of versions. The
layer parameter primitiveType shows a selected primitive type, and
the outputPrecisions parameter corresponds to the precision of a model.”

17

Original model IR before running
through IE plugin

Runtime graph through IE

5: Compare Model IR with Runtime Graph

18

6: Throughput Versus Latency Tuning

The sweet spot for throughput and latency tradeoff can be achieved by tuning
for batch sizes on different target devices and asynchronous inferences.

Now that we have executed a single inference on the model in Step 5, you can
change the parallel inputs and batch size variables until you obtain a desired
throughput with agreeable latency.

You can also set the latency threshold that you can tolerate at deployment on
the target device.

19

6: Throughput Versus Latency Tuning
The variation you get with changes to input variables depends on the model
and target hardware.

Optimizations like INT8 and Winograd are available for the CPU.

Variable values chosen here are for demonstration purposes only.

