

2

Legal Disclaimer
INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING
LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE
OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND
AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE
ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH
MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL
PRODUCT OR ANY OF ITS PARTS.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or characteristics of any features or
instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising
from future changes to them. The information here is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Code names featured are used internally within Intel to identify products that are in development and not yet publicly announced for release. Customers, licensees and other
third parties are not authorized by Intel to use code names in advertising, promotion or marketing of any product or services and any such use of Intel's internal code names is
at the sole risk of the user.

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on
system configuration. Check with your system manufacturer or retailer or learn more at intel.com.

This sample source code is released under the Intel Sample Source Code License Agreement.

Intel, the Intel logo, Intel Atom, Intel Core, Movidius, Myriad, OpenVINO, and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2020, Intel Corporation. All rights reserved.

3

Agenda

Chapter Outcome: Deploy Custom Models on Intel® Neural
Compute Stick 2 (Intel® NCS2) Using the OpenVINO™ Toolkit

• Why would you need a custom model?

• What makes a model “custom”?

• End-to-end training and inference of a custom model on Intel NCS2

• Additional profiling and fine tuning steps

• OpenVINO toolkit support for custom layers

4

Why Do We Need a Custom Model?

The OpenVINO™ toolkit model zoo downloads and compiles a number of
pretrained deep neural networks such as GoogLeNet, AlexNet, SqueezeNet,
MobileNet* and so on, trained on an ImageNet dataset, with over a thousand
classes (also called categories) of images.

For a custom application like a door security camera, do we need all 1000
categories? NO.

Instead, you probably need just 15 to 20 classes, such as ‘person’, ‘dog’,
‘mailman’, ‘person wearing hoody’, and so on.

By reducing your dataset from a thousand classes down to 20, you are also
reducing the number of features that need to be extracted.

5

What Makes a Model Custom?

• Custom dataset

• Customized classification labels

• Custom layers within the model

• The Intel® Deep Learning Deployment Toolkit (Intel® DLDT) of the
OpenVINO™ toolkit supports standard layers for most of the popular
Image Classification and Object Detection topologies.

• Any layer that is unsupported by Intel DLDT is considered a custom layer.
The OpenVINO toolkit needs explicit instructions to deploy a model with
such layers. This will be covered later in the chapter.

6

Benefits of Custom Neural Network Models
Customizing neural networks allows us to achieve the following:

1. Save time during network training because you have a reduced dataset.

▪ This in turn saves money spent on keeping the training hardware up and
running.

▪ This also helps speed up development time, so you can get to market
faster.

2. Reduce hardware bill of materials (BOM) cost by minimizing the memory
footprint of your model.

3. The forward pass during inference would be faster because of the reduced
complexity (that is, the edge device can process camera frames much faster).

7

Some Context Before We Begin

Creating a custom dataset, customized labels, and custom layers are steps that
are necessary during model training.

At the point of inference, the OpenVINO™ toolkit refers to the trained custom
model, customized labels, and layers to deploy on the preferred hardware.

To illustrate this, we will start with a brief introduction of the end-to-end data
science workflow, show steps needed for customization during training, and
follow with deployment using the OpenVINO toolkit using two examples:

• Example 1: Image Classification model that uses a custom dataset and
customized classification labels

• Example 2: Object Detection model that demonstrates the use of custom
layers through the OpenVINO toolkit

Both examples will use TensorFlow*

2. Approach

3. Values7. Model

4. People

8. Deploy

1. Challenge

6. Data

5. Technology

Steps Involved

Example End-to-End Data Science Process
Intel AI Case Study

Technology
Data

Model

Deploy

Corrosion
L H

Challenge

For the problem at hand, brainstorm
opportunities using the 70+ AI solutions in Intel’s
portfolio
and rank the business value of each

Approach

Identify approach & complexity of each solution
with Intel’s guidance; choose high-ROI industrial
defect detection using DL

1

Discuss ethical, social, legal, security & other risks
and mitigation plans with Intel experts prior to
kickoff

Values

People

Secure internal buy-in for AI pilot and new SW
development philosophy, grow talent via Intel AI
developer program

Value

Simplicity

1DL = Deep Learning

Technology
Data

Model

Prepare data for model development working with Intel and/or partner to get the time-
consuming data layer right (~12 weeks)

Develop model by training, testing inference and documenting results working with
Intel and/or partner for the pilot (~12 weeks)

Challenge

Approach

Values
People

Deploy

Source
Data

Transmit
Data

Ingest
Data

Cleanup
Data

Integrate
Data

Stage
Data

Train
(Topology

Experiments)

Train
(Tune Hyper-
parameters)

Test
Inference

Document
Results

10% 5% 5% 60% 10% 10%

30% 30% 20% 20%

Project breakdown is approximated based on engineering estimates for time spent on each step in this real customer POC/pilot; time distribution is expected to be similar but vary somewhat for other deep learning use cases

Example End-to-End Data Science Process
Intel AI Case Study

End-to-End Training and Inference

Inference engine supports
multiple devices for
heterogeneous flows

(device-level optimization)

Model optimizer:
• Converting
• Optimizing
• Preparing for inference

(device agnostic,
generic optimization)

Inference engine
lightweight API to use in
applications for inference

Train a DL model.
Currently supports:
• Caffe*
• Apache MXNet*
• TensorFlow*

Optimize/
Heterogeneous

Prepare Optimize InferenceTrain

Intel®
MKL-
DNN

cl-DNN

CPU: Intel® Xeon®
/Intel® Core™
/Intel Atom®

processors

GPU

DLA

Intel®
Movidius™
technology

API

Run Model
Optimizer

Intel® Movidius™
Myriad™ 2/Intel

Movidius Myriad X

FPGA

User Application

Inference Engine
.xml
.bin

IR

Frozen
Graph (.pb)

Profile

Dl Workbench:
• Get throughput, latency,

execution time per layer
• Visualize original IR and

compare with MO
optimized runtime
graph

Run Dl
WorkBench

.xml
.bin

IR

14

Steps Involved in Training and Inference

STEP 1: Train a custom model—Challenge identification, dataset preparation,
topology identification/fine tuning, and training

STEP 2: Fine tune—Optimize the neural network using the Model Optimizer to
gain better execution time

STEP 3: Profile—Analyze the neural network for bandwidth, complexity, and
execution time using the Deep Learning Workbench

STEP 4: Deploy—Deploy the customized neural network on an edge device
powered by Intel® Movidius™ Neural Compute Stick

16

Create Custom Dataset
What is the custom problem you are trying to solve?

• Create a custom data set to identify 10 most stolen cars in the US

What is the starter data set?

• Let’s start with the VMMR dataset

• Contains 9000+ labels representing various models and types of cars

Create custom data set

• Contains labels for 10 most stolen cars

• Samples reduced from 290 K images to a few thousand images

• Apply data preprocessing techniques to accomplish customization

http://vmmrdb.cecsresearch.org/
http://vmmrdb.cecsresearch.org/

17

Network Configuration Pre-deployment

Ensuring that deployment accuracy on NCS is equivalent to training accuracy
requires configuring the following parameters:

• Mean subtraction

• Scale

• Color channel configuration

• Input image size

18

Mean Subtraction

• Mean subtraction on the input data to a convolutional neural network (CNN)
is a common technique

• The mean is calculated on the data set

• For example, the mean on ImageNet is calculated on a per channel basis to
be:

Mean calculation in TensorFlow* is calculated for each topology differently. For
more information refer to https://tensorflow.org.

19

Scale

Typical 8-bit per pixel per channel images will have a scale of 0-255. Many CNN
networks use the native scale, but some do not.

Example – TensorFlow* Inception v3: The input_mean and the input_std are
listed below. This is a scaling factor.

You divide 255/128, and it’s about 2. In this case, the scale is 2, but the
mean subtraction is 128. In the end, the scale is actually -1 to 1.

20

Color Channel Configuration
• Different models may be trained with different color channel orientations

(either RGB or BGR).

• Color channel configuration depends on the framework, topology, and image
processing library used (for example, OpenCV, scikit-image).

• Typically, the Slim TensorFlow* models (at least Inception and MobileNet*)
use RGB.

21

Input Image Size for Example Topologies

TensorFlow*

Topologies Color channel config Image size

AlexNet RGB 227 x 277

GoogLeNet RGB 224 x 224

VGG-16 RGB 224 x 224

Inception V1 RGB 224 x 224

Inception V3 RGB 299 x 299

Inception V4 RGB 299 x 299

MobileNet* RGB 224 x 224

Input image size configuration are topology specific. The following table shows
the image size and color channel orientations for popular topologies:

Refer to the AI from the DataCenter to the Edge Course to understand training a custom Image
Classification model using TensorFlow*/Keras*.

23

Model Optimizer General Parameters
To maintain inference accuracy, maintaining consistency between topology
specific parameters during training and inference is necessary.

The Model Optimizer provides general parameters to set the mean, scale, color
channel configuration, and image size.

Model Optimizer flags:

• -- input_shape: [N,H,W,C] format to specify batch size, height of image, width of image, number of color
channels

• -- scale: All input values coming from original network inputs will be divided by this value

• -- reverse_input_channels: Switch from BGR to RGB (only if input format is BGR). TensorFlow* uses
RGB as the default format

• -- mean_values: Mean values to be used for the input image per channel, in [R,G,B] order

• -- scale_values: Scale values to be used for the input image per channel, in [R,G,B] order

• -- data_type: FP16 to deploy on the Intel® Movidius™ Neural Compute Stick

24

When to Apply Mean and Scale Values on the MO Command Line?

Input data is preprocessed in two ways:

The input preprocessing operations are a part of a topology. In this case, the
application that uses the framework to infer the topology does not
preprocess the input.

• Does not require mean and scale as inputs to MO

The input preprocessing operations are not a part of a topology and the
preprocessing is performed within the application that feeds the model with
an input data.

• Requires mean and scale as inputs to MO

The VMMR model we trained earlier in this chapter uses the first approach.

25

Model Optimizer Parameter Values
Refer to the following table for default mean and scale values for different
topologies in TensorFlow*

For more information, refer to:

• Model Optimizer general parameters

• TensorFlow/ topology specific values

Topology --mean_values --scale

Inception v1 [127.5,127.5,127.5] 127.5

Inception v3 [127.5,127.5,127.5] 127.5

Inception V4 [127.5,127.5,127.5] 127.5

MobileNet* v1 224 [127.5,127.5,127.5] 127.5

VGG-16 [103.94,116.78,123.68] 1

VGG-19 [103.94,116.78,123.68] 1

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_Converting_Model_General.html
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_Convert_Model_From_TensorFlow.html

26

Output—Intermediate Representation Files
To generate the FP16 quantized intermediate representation (IR) files through
the Model Optimizer for the VMMR model, run the following command:

• Go to the MO install directory

• Run the command:

• mo.py –input_model <path_to_pb_file> --model_name <name_of_IR> -

-output_dir <path_to_FP16_IR> --input_shape [1,299,299,3] –

data_type FP16

FP16 quantized IR files:

• Bin file: Contains model weights

• Xml file: Contains model definition

28

What is the Deep Learning Workbench?

• A web-based graphical simulation environment to visualize deep learning
models on Intel® architecture (CPU, processor graphics, VPU)

• Configure and measure accuracy of models

• Additionally, where possible, quantize a FP32 model to INT8 to fine-tune
model performance

• To profile your custom model using the DL Workbench, refer to Chapter 5

30

OpenVINO™ ToolKit—Inference Engine workflow

Deploying a trained model on Intel® Neural Compute Stick 2 (Intel® NCS2)
requires us to write an application that directs the model to be executed on the
preferred hardware (CPU, GPU, or Intel NCS2).

The general flow of the application is as follows:

Load Plugin Load Network
Configure

Input/Output
Load Model Prepare Input Infer Process Output

31

Inference Engine Flags
The following flags are required to be passed to the Inference Engine:

-m: Model file - .xml file of the intermediate representation generated in Step 2

-i: Input image file path

-d: Device name – MYRIAD for deploying on Intel® Neural Compute Stick 2

--labels: Path to the labels file used by the model (optional)

You can test your model with the classification_sample_async application that
was compiled during the OpenVINO™ toolkit installation in Chapter 2. Reference
command line:

• <path_to_sample>/classification_sample_async –m

<path_to_FP16model_xml> -i <path_to_image> -d MYRIAD

32

• Classification_sample_async

Notice how the sample classifies the
input image as GMC Sierra (label 8) with
100% accuracy

Custom application

Output—Prediction of Class Label with Percentage of Accuracy

34

Standard/Custom TensorFlow Layers Supported by OpenVINO™ Toolkit

• Most common operations included in popular deep learning topologies can
be converted into intermediate representation layers through the Model
Optimizer

• Some layers can be fused with others in order to optimize model
performance

• List of ALL TensorFlow* operations that can be mapped to intermediate
representation layers can be found here:
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Supp
orted_Frameworks_Layers.html

• Any operation that does not have such a direct mapping is considered a
Custom Layer within the model

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_Supported_Frameworks_Layers.html

35

How Do I Convert a Model with Custom Layers Using OpenVINO™ Toolkit?

There are three ways to address custom layers in trained models:

Register custom layers as extensions to the Model Optimizer (MO) (covered in
this chapter)

• The MO generates a valid and optimized intermediate representation (IR)

Sub-graph replacement in the MO

• Especially useful if you have sub-graphs that should not be expressed with the analogous
sub-graph in the IR, but another sub-graph should appear in the model

Registering definite sub-graphs of the model as those that should be offloaded
to TensorFlow* during inference

• MO generates IR that can only be inferred on CPU

• Each sub-graph is mapped to a single custom layer in IR

Read More:
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_customize_model_optimizer_Customize_Model_Optimizer.html

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_customize_model_optimizer_Customize_Model_Optimizer.html

36

MO Flags that Support Custom Layers

• --tensorflow_use_custom_operations_config: Use the configuration file with
custom operation description

• --tensorflow_custom_operations_config_update: Update the configuration
file with node name patterns with input/output nodes information

Read More:
https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_Convert_Model_From_TensorFlow.html

https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_Convert_Model_From_TensorFlow.html

37

Custom Layer Extensions Support in OpenVINO Toolkit

For the convenience of developers, the OpenVINO™ toolkit comes with an
extension library that provides the definition of custom layers.

You can find them in the path:
<OPENVINO_INSTALL_DIR>/deployment_tools/model_optimizer/extensions/front/tf

These libraries are compiled by default when the OpenVINO toolkit samples are
built as described in Chapter 2.

If this step was not done, the libraries will need to be compiled and your
application will have to use the AddExtension method to load and use these
extensions.

Read more:
https://docs.openvinotoolkit.org/2019_R1/_inference_engine_src_extension_README.html

https://docs.openvinotoolkit.org/2019_R1/_inference_engine_src_extension_README.html

38

Example—YOLO v3 Custom Layers

Why does YOLO* v3 need custom layers in TensorFlow*?

• YOLO v3 feature extractor (Darknet-53) includes three branches at the end
for making predictions at three different scales. These branches must end
with a Region layer.

• The Region layer is not implemented as a single layer in TensorFlow.

• Every public YOLO v3 model has implemented the Region layer using
simpler layers leading to non-uniformity and reduced performance.

• To generate IR for YOLO v3 using MO, these variant Region layers are cut
off from the original model and a custom Region layer definition is added
to the MO as a custom extension.

39

YOLO* v3.json Custom Extension
The yolo_v3.json custom extension implements the Region layer as shown:

[

{

"id": "TFYOLOV3",

"match_kind": "general",

"custom_attributes": {

"classes": 80,

"coords": 4,

"num": 9,

"mask": [0, 1, 2],

"entry_points": ["detector/yolo-v3/Reshape", "detector/yolo-v3/Reshape_4", "detector/yolo-v3/Reshape_8"]

}

}

]

• The “entry_points” custom attribute defines the Region layer

• The rest of the custom attributes can be taken from yolov3.cfg (if Darknet official shared
weights are used for training)

40

Generating YOLO v3 IR Using Custom Extensions Through MO

Using the --tensorflow_use_custom_operations_config flag as an input to the
MO, use the following command line to generate IR for YOLO* v3

• --input_model: Frozen graph (for steps on how to train YOLO v3, refer to
Chapter 4)

• --batch: Batch size

• --tensorflow_use_custom_operations_config: Uses yolo_v3.json extension

• -o: Output path where the .bin and .xml files are saved

• --data_type: Required precision for the hardware you choose to deploy on.
Since we will be deploying on the Intel® Neural Compute Stick 2, we select
FP16

python3 <MO_INSTALL_DIR>/mo_tf.py --input_model frozen_darknet_yolov3_model.pb --batch 1 --
tensorflow_use_custom_operations_config
/opt/intel/openvino/deployment_tools/model_optimizer/extensions/front/tf/yolo_v3.json -o FP16 --
data_type FP16

41

Deploy the IR Files with Sample Apps
The OpenVINO™ toolkit installation comes with many sample applications that
integrate the Inference Engine capabilities for demonstration

• Build these samples using the OpenVINO toolkit installation instructions

• To test the IR we just created, we will use the
object_detection_demo_yolov3_async demo

Instructions

• The Python* demos will be found in the
<OPENVINO_INSTALL_DIR>/deployment_tools/open_model_zoo/demos/python_demosdirec
tory

• Download a sample video from https://github.com/intel-iot-devkit/sample-videos

• Run the following command to execute the sample using a sample video and infer on the Intel®
Neural Compute Stick 2 <OPENVINO_INSTALL_DIR>/deployment_tools/open_model_zoo/demos/python_demos/object_det
ection_demo_yolov3_async$python3 object_detection_demo_yolov3_async.py -i
<VIDEO_PATH>/person-bicycle-car-detection.mp4 –m <PATH_to_FP16_model_xml_file> -d MYRIAD

https://github.com/intel-iot-devkit/sample-videos

42

Output—YOLO* v3 Bounding Box with Label Index and Accuracy

Output:

Demonstrates:

• A bounding box around objects detected

• The label of the object detected (Example: Person is 0, car is 672. To understand this,
check the coco.names labels file we downloaded in Step 1. The labels are 0 indexed)

• % accuracy

• Time taken to run the inference

