
Intro to Natural Language Processing (NLP)



What is Natural Language Processing (NLP)?

By “natural language” we mean a language that is used for everyday communication by humans.

NLP is an Intersection of several fields

▪ Computer Science

▪ Artificial Intelligence

▪ Linguistics

It is basically teaching computers to process human language

Two main components:

▪ Natural Language Understanding (NLU)

▪ Natural Language Generation (NLG)

NLP is AI Complete

▪ Requires all types of knowledge humans possess  It’s hard!



Natural Language Understanding (NLU)

• Deriving meaning from natural language

• Imagine a Concept (aka Semantic or 
Representation) space

▪ In it, any idea/word/concept has unique 
computer representation

▪ Usually via a vector space

▪ NLU  Mapping language into this 
space



Natural Language Generation (NLG)

• Mapping from computer representation space 
to language space

• Opposite direction of NLU

▪ Usually need NLU to perform NLG!

• NLG is really hard!



NLP: Speech vs Text

• Natural Language can refer to Text or Speech

• Goal of both is the same: translate raw data (text or speech) into underlying 
concepts (NLU) then possibly into the other form (NLG)
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History of NLP

• NLP has been through (at least) 3 major eras:

▪ 1950s-1980s: Linguistics Methods and Handwritten Rules

▪ 1980s-Now: Corpus/Statistical Methods

▪ Now-???: Deep Learning

• Lucky you!  You’re right near the start of a paradigm shift!



1950s - 1980s: Linguistics/Rule Systems 

• NLP systems focus on:

▪ Linguistics: Grammar rules, sentence structure parsing, etc

▪ Handwritten Rules: Huge sets of logical (if/else) statements

▪ Ontologies: Manually created (domain-specific!) knowledge bases to augment 

rules above

• Problems:

▪ Too complex to maintain

▪ Can’t scale!

▪ Can’t generalize!



1980s - Now: Corpus/Statistical Methods 

• NLP starts using Machine Learning methods

• Use statistical learning over huge datasets of unstructured text

▪ Corpus: Collection of text documents

▪ e.g. Supervised Learning: Machine Translation

▪ e.g. Unsupervised Learning: Deriving Word "Meanings" (vectors)



Now - ???: Deep Learning

• Deep Learning made its name with Images first

• 2012: Deep Learning has major NLP breakthroughs

▪ Researchers use a neural network to win the Large Scale Visual Recognition 

Challenge (LSVRC)

▪ This state of the art approach beat other ML approaches with half their error 

rate (26% vs 16%)

• Very useful for unified processing of Language + Images



NLP Definitions

• Phonemes: the smallest sound units in a language

• Morphemes: the smallest units of meaning in a language

• Syntax: how words and sentences are constructed from these two building 
blocks

• Semantics: the meaning of those words and sentences

• Discourse: semantics in context. Conversation, persuasive writing, etc.



Levels of NLP
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NLU Applications

• ML on Text (Classification, Regression, Clustering)

• Document Recommendation

• Language Identification

• Natural Language Search

• Sentiment Analysis

• Text Summarization

• Extracting Word/Document Meaning (vectors)

• Relationship Extraction

• Topic Modeling

• …and more!



NLU Application: Document Classification 

• Classify “documents” - discrete collections of text - into categories

▪ Example: classify emails as spam vs. not spam

▪ Example: classify movie reviews as positive vs. negative

▪ Example: classify legal documents as relevant vs. not relevant to a topic



NLU Application: Document Recommendation 

• Choosing the most relevant document based on some information:

▪ Example: show most relevant webpages based on query to search engine

▪ Example: recommend news articles based on past articles liked

▪ Example: recommend restaurants based on Yelp reviews



NLU Application: Topic Modeling 

• Breaking a set of documents into topics at the word level

▪ Example: see how prevalence of certain topics covered in a magazine changes 

over time

▪ Example: find documents belonging to a certain topic

explain



NLG Applications

• Image Captioning

• (Better) Text Summarization

• Machine Translation

• Question Answering/Chatbots

• …so much more

• Notice NLU is almost a prerequisite for NLG



NLG Application: Image Captioning

• Automatically generate captions for images

Captions automatically generated. 

Source: https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

https://cs.stanford.edu/people/karpathy/cvpr2015.pdf


NLG Application: Machine Translation

Example from Google®’s machine translation system (2016)

Source: https://ai.googleblog.com/2016/09/a-neural-network-for-

machine.html

• Automatically translate text between language

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html


NLG Application: Machine Translation

Source: https://ai.googleblog.com/2016/09/a-neural-network-for-

machine.html

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html


NLG Application: Text Summarization

• Automatically generate text summaries of documents

▪ Example: generate headlines of news articles

Source: https://ai.googleblog.com/2016/08/text-summarization-with-

tensorflow.html

https://ai.googleblog.com/2016/08/text-summarization-with-tensorflow.html


Where We’re Headed

• Today:

▪ Regular Expression (regex) Basics

• Upcoming:

▪ NLP Preprocessing Tasks (Week 2)

▪ Deriving features from text (Week 3)

▪ Machine Learning with Text (Week 4)

▪ Topic Modeling on Text (Weeks 5-7)

▪ Advanced Topics for NLG including Deep Learning (Week 8)



Regular Expressions



What are Regular Expressions (“RegEx”)?

• A regex describes a pattern to look for in text

• Examples:

▪ Does a string contain the word ”cat”?

▪ Does a string contain 3 letters and then 2 numbers followed by a space?

▪ Does a string contain one or more letters (and only letters)?

• Typical Usage:

▪ Find strings that contain the regex pattern

▪ Retrieve the part of a string matching the pattern



Use Cases for Regex

• Parsing documents with expected component structure

▪ Use regex to grab the pieces you want

▪ e.g. HTML, find all headers aka within <h> tags

▪ e.g. remove known boilerplate sections from emails

• Validating User Input

▪ e.g. does email match xxx@xxx.com?

• NLP Preprocessing

▪ What pattern(s) represent individual words in text?

▪ e.g. space + letters + space  grab the letters



Regex in Python

• Import

• Compile pattern

• Pattern methods



Metacharacters

• .    Matches any single character 

• ^   Beginning of string

• $    End of string

• *    matches 0 or more characters

• +    matches 1 or more characters

• ?    Optional character



Metacharacters: Examples

• Helper function:



Metacharacters: Examples

• .    Matches any single character 

• ^   Beginning of string



Metacharacters: Examples

• $    End of string



Metacharacters: Examples

• *    matches 0 or more characters

• +    matches 1 or more characters



Metacharacters: Examples

• ?    Optional character



More Metacharacters

• { m,n}   specify number of times character is matched between m and n 
times

• [ ]   list characters to be matched

• \ escape character

• |   or

• ( )  capture group inside parenthesis



Metacharacters: Examples

• { m,n}   specify number of times character is matched between m and n 
times

• [ ]   list characters to be matched



Metacharacters: Examples

• \ escape character

• |   or



Character Classes

• \s  - matches any whitespace

• \w - matches any alpha character. Equivalent to [A-Za-z]

• \d  - matches any numeric character. Equivalent to [0-9]

You may negate these by capitalizing. For example, \D matches anything not 
a digit



Handling Groups

• ()

Parenthesis control which parts of the string are returned after a match



Character Classes and Groups Example



Splitting by Regex

• re.split()

• Can be used to split a string on any REGEX match

• Frequently done when you don’t know the type of whitespace or to 
handle dashes and underscores



Lookaheads/Lookbehinds

• Allow you to keep the cursor in place, but still check to see if certain 
conditions are met before or after that character

• Look ahead: (?=\d) checks to see if the character is followed by a number

• Look Behind: (?<=[aeiou]) checks to see if the character is preceded by a 
vowel

examples



Search and Replace

• re.sub() allows for quick and easy search and replace



Find all

• Frequently we will want to find all occurrences of a certain bit of text in a 
corpus

• pattern.findall(text) is very useful for doing this



Regex Flags

• re.I - ignore case

• re.L - locale dependent

• re.M - Multiline

• re.S - dot matches all

• re.U unicode dependent

• re.X verbose



Greedy vs Non-Greedy

• + and * operators are greedy, they try to match as much as they can.

<div>this is some text</div>

<.+> will not match <div> it will match the entire line.

To make it non greedy (lazy) you can add a ? After the operator

<.+?> will match just <div>




