
Intro to Natural Language Processing (NLP)

What is Natural Language Processing (NLP)?

By “natural language” we mean a language that is used for everyday communication by humans.

NLP is an Intersection of several fields

▪ Computer Science

▪ Artificial Intelligence

▪ Linguistics

It is basically teaching computers to process human language

Two main components:

▪ Natural Language Understanding (NLU)

▪ Natural Language Generation (NLG)

NLP is AI Complete

▪ Requires all types of knowledge humans possess  It’s hard!

Natural Language Understanding (NLU)

• Deriving meaning from natural language

• Imagine a Concept (aka Semantic or
Representation) space

▪ In it, any idea/word/concept has unique
computer representation

▪ Usually via a vector space

▪ NLU  Mapping language into this
space

Natural Language Generation (NLG)

• Mapping from computer representation space
to language space

• Opposite direction of NLU

▪ Usually need NLU to perform NLG!

• NLG is really hard!

NLP: Speech vs Text

• Natural Language can refer to Text or Speech

• Goal of both is the same: translate raw data (text or speech) into underlying
concepts (NLU) then possibly into the other form (NLG)

Concept SpaceText Speech

Text to Speech

Speech to Text

NLU

NLG

NLU

NLG

History of NLP

• NLP has been through (at least) 3 major eras:

▪ 1950s-1980s: Linguistics Methods and Handwritten Rules

▪ 1980s-Now: Corpus/Statistical Methods

▪ Now-???: Deep Learning

• Lucky you! You’re right near the start of a paradigm shift!

1950s - 1980s: Linguistics/Rule Systems

• NLP systems focus on:

▪ Linguistics: Grammar rules, sentence structure parsing, etc

▪ Handwritten Rules: Huge sets of logical (if/else) statements

▪ Ontologies: Manually created (domain-specific!) knowledge bases to augment

rules above

• Problems:

▪ Too complex to maintain

▪ Can’t scale!

▪ Can’t generalize!

1980s - Now: Corpus/Statistical Methods

• NLP starts using Machine Learning methods

• Use statistical learning over huge datasets of unstructured text

▪ Corpus: Collection of text documents

▪ e.g. Supervised Learning: Machine Translation

▪ e.g. Unsupervised Learning: Deriving Word "Meanings" (vectors)

Now - ???: Deep Learning

• Deep Learning made its name with Images first

• 2012: Deep Learning has major NLP breakthroughs

▪ Researchers use a neural network to win the Large Scale Visual Recognition

Challenge (LSVRC)

▪ This state of the art approach beat other ML approaches with half their error

rate (26% vs 16%)

• Very useful for unified processing of Language + Images

NLP Definitions

• Phonemes: the smallest sound units in a language

• Morphemes: the smallest units of meaning in a language

• Syntax: how words and sentences are constructed from these two building
blocks

• Semantics: the meaning of those words and sentences

• Discourse: semantics in context. Conversation, persuasive writing, etc.

Levels of NLP

Morphemes Phonemes

Syntax

Semantics

Discourse

Text
Speech

Early Rules Engines

Corpus Methods

Modern Deep Learning is
about here!

NLU Applications

• ML on Text (Classification, Regression, Clustering)

• Document Recommendation

• Language Identification

• Natural Language Search

• Sentiment Analysis

• Text Summarization

• Extracting Word/Document Meaning (vectors)

• Relationship Extraction

• Topic Modeling

• …and more!

NLU Application: Document Classification

• Classify “documents” - discrete collections of text - into categories

▪ Example: classify emails as spam vs. not spam

▪ Example: classify movie reviews as positive vs. negative

▪ Example: classify legal documents as relevant vs. not relevant to a topic

NLU Application: Document Recommendation

• Choosing the most relevant document based on some information:

▪ Example: show most relevant webpages based on query to search engine

▪ Example: recommend news articles based on past articles liked

▪ Example: recommend restaurants based on Yelp reviews

NLU Application: Topic Modeling

• Breaking a set of documents into topics at the word level

▪ Example: see how prevalence of certain topics covered in a magazine changes

over time

▪ Example: find documents belonging to a certain topic

explain

NLG Applications

• Image Captioning

• (Better) Text Summarization

• Machine Translation

• Question Answering/Chatbots

• …so much more

• Notice NLU is almost a prerequisite for NLG

NLG Application: Image Captioning

• Automatically generate captions for images

Captions automatically generated.

Source: https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

NLG Application: Machine Translation

Example from Google®’s machine translation system (2016)

Source: https://ai.googleblog.com/2016/09/a-neural-network-for-

machine.html

• Automatically translate text between language

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

NLG Application: Machine Translation

Source: https://ai.googleblog.com/2016/09/a-neural-network-for-

machine.html

https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

NLG Application: Text Summarization

• Automatically generate text summaries of documents

▪ Example: generate headlines of news articles

Source: https://ai.googleblog.com/2016/08/text-summarization-with-

tensorflow.html

https://ai.googleblog.com/2016/08/text-summarization-with-tensorflow.html

Where We’re Headed

• Today:

▪ Regular Expression (regex) Basics

• Upcoming:

▪ NLP Preprocessing Tasks (Week 2)

▪ Deriving features from text (Week 3)

▪ Machine Learning with Text (Week 4)

▪ Topic Modeling on Text (Weeks 5-7)

▪ Advanced Topics for NLG including Deep Learning (Week 8)

Regular Expressions

What are Regular Expressions (“RegEx”)?

• A regex describes a pattern to look for in text

• Examples:

▪ Does a string contain the word ”cat”?

▪ Does a string contain 3 letters and then 2 numbers followed by a space?

▪ Does a string contain one or more letters (and only letters)?

• Typical Usage:

▪ Find strings that contain the regex pattern

▪ Retrieve the part of a string matching the pattern

Use Cases for Regex

• Parsing documents with expected component structure

▪ Use regex to grab the pieces you want

▪ e.g. HTML, find all headers aka within <h> tags

▪ e.g. remove known boilerplate sections from emails

• Validating User Input

▪ e.g. does email match xxx@xxx.com?

• NLP Preprocessing

▪ What pattern(s) represent individual words in text?

▪ e.g. space + letters + space  grab the letters

Regex in Python

• Import

• Compile pattern

• Pattern methods

Metacharacters

• . Matches any single character

• ^ Beginning of string

• $ End of string

• * matches 0 or more characters

• + matches 1 or more characters

• ? Optional character

Metacharacters: Examples

• Helper function:

Metacharacters: Examples

• . Matches any single character

• ^ Beginning of string

Metacharacters: Examples

• $ End of string

Metacharacters: Examples

• * matches 0 or more characters

• + matches 1 or more characters

Metacharacters: Examples

• ? Optional character

More Metacharacters

• { m,n} specify number of times character is matched between m and n
times

• [] list characters to be matched

• \ escape character

• | or

• () capture group inside parenthesis

Metacharacters: Examples

• { m,n} specify number of times character is matched between m and n
times

• [] list characters to be matched

Metacharacters: Examples

• \ escape character

• | or

Character Classes

• \s - matches any whitespace

• \w - matches any alpha character. Equivalent to [A-Za-z]

• \d - matches any numeric character. Equivalent to [0-9]

You may negate these by capitalizing. For example, \D matches anything not
a digit

Handling Groups

• ()

Parenthesis control which parts of the string are returned after a match

Character Classes and Groups Example

Splitting by Regex

• re.split()

• Can be used to split a string on any REGEX match

• Frequently done when you don’t know the type of whitespace or to
handle dashes and underscores

Lookaheads/Lookbehinds

• Allow you to keep the cursor in place, but still check to see if certain
conditions are met before or after that character

• Look ahead: (?=\d) checks to see if the character is followed by a number

• Look Behind: (?<=[aeiou]) checks to see if the character is preceded by a
vowel

examples

Search and Replace

• re.sub() allows for quick and easy search and replace

Find all

• Frequently we will want to find all occurrences of a certain bit of text in a
corpus

• pattern.findall(text) is very useful for doing this

Regex Flags

• re.I - ignore case

• re.L - locale dependent

• re.M - Multiline

• re.S - dot matches all

• re.U unicode dependent

• re.X verbose

Greedy vs Non-Greedy

• + and * operators are greedy, they try to match as much as they can.

<div>this is some text</div>

<.+> will not match <div> it will match the entire line.

To make it non greedy (lazy) you can add a ? After the operator

<.+?> will match just <div>

