Software

Intro to Natural Language Processing (NLP)



What is Natural Language Processing (NLP)?

By “natural language” we mean a language that is used for everyday communication by humans.
NLP is an Intersection of several fields
«  Computer Science
Artificial Intelligence
Linguistics
It is basically teaching computers to process human language
Two main components:
« Natural Language Understanding (NLU)
Natural Language Generation (NLG)
NLP is Al Complete

Requires all types of knowledge humans possess = It's hard!

Software




Natural Language Understanding (NLU)

. Deriving meaning from natural language
05F » heiress 7
. Imagine a Concept (aka Semantic or . X
. ar .
resentation . |
Representation) space ] iece | couess
. | i »duchess-
« Init, any idea/word/concept has unique 14istet | £
computer representation Ot i .‘ . empley
! /
. 01k Iy | " r madam ; ’l" |
« Usually via a vector space (8 {heir )
ok nepHIew , .' J i
» NLU - Mapping language into this ' | - woman &
-01F ' buncle ' ; arl, 7
space ! | / * quee
‘ brother / J I/ dduke
-0.2¢ ! / I ,’
{ ! |
oak f / | ‘emperor |
Jl ; l‘
04+ 4
f sir |
-05F {man Lking .

05 -04 -03 -02 -01 0 01 02 03 04 05

Software




Natural Language Generation (NLG)

Chas

HL | am version 2.0 of the Mcrosoft
Chatbot! | am already a fot smarter

« Mapping from computer representation space o Wb e o e o
to language space

Wow Deevid, you e

(eally govd at bl
chatbots!

« Opposite direction of NLU
n Wow Desvid, you are really good at

= Usually need NLU to perform NLG! bulkding chatbots

« NLG is really hard!

ML 1 am version 2.0 of the Microsalt
' Chatbot! | am already 2 lot smarter
now! What would you like me to say?

And | hear Craftworks is
tull af salented people

lite yoq, afthough 1 find
that senpdy impossible to
byt

Ok, 1 will say the following sentence
from now one And | hear Craftworks

5 full of talented pecple ke you
although 1 find that simply
impossibie to befieye!

Software




NLP: Speech vs Text

« Natural Language can refer to Text or Speech

« Goal of both is the same: translate raw data (text or speech) into underlying
concepts (NLU) then possibly into the other form (NLG)

Text to Speech
S

s
—)

NLG

Speech to Text

—




History of NLP

e NLP has been through (at least) 3 major eras:
= 1950s-1980s: Linguistics Methods and Handwritten Rules
= 1980s-Now: Corpus/Statistical Methods

=  Now-222: Deep Learning

o Lucky you! You’re right near the start of a paradigm shift!




1950s - 1980s: Linguistics/Rule Systems

e NLP systems focus on:
= Linguistics: Grammar rules, sentence structure parsing, etc
= Handwritten Rules: Huge sets of logical (if /else) statements

=  Ontologies: Manually created (domain-specificl) knowledge bases to augment
rules above

« Problems:
= Too complex to maintain

» Can't scalel

=  Can’t generalize!

Software




1980s - Now: Corpus/Statistical Method:s

o NLP starts using Machine Learning methods

« Use statistical learning over huge datasets of unstructured text
= Corpus: Collection of text documents

= e.g. Supervised Learning: Machine Translation

= e.g. Unsupervised Learning: Deriving Word "Meanings" (vectors)




Now - 222: Deep Learning

« Deep Learning made its name with Images first

o 2012: Deep Learning has major NLP breakthroughs

= Researchers use a neural network to win the Large Scale Visual Recognition
Challenge (LSVRC)

= This state of the art approach beat other ML approaches with half their error
rate (26% vs 16%)

- Very useful for unified processing of Language + Images




NLP Definitions

« Phonemes: the smallest sound units in a language

« Morphemes: the smallest units of meaning in a language

« Syntax: how words and sentences are constructed from these two building
blocks

« Semantics: the meaning of those words and sentences

« Discourse: semantics in context. Conversation, persuasive writing, etc.




Levels of NLP

Morphemes Phonemes

‘ « === Early Rules Engines

Corpus Methods —P

Modern Deep Learning is
i g about here!

D|scourse

Software



NLU Applications

« ML on Text (Classification, Regression, Clustering)
« Document Recommendation

« Language Identification

« Natural Language Search

« Sentiment Analysis

« Text Summarization

« Extracting Word/Document Meaning (vectors)

« Relationship Extraction

« Topic Modeling

...and more!




NLU Application: Document Classification

« Classify “documents” - discrete collections of text - into categories

= Example: classify emails as spam vs. not spam

=  Example: classify movie reviews as positive vs. negative

= Example: classify legal documents as relevant vs. not relevant to a topic

Software




NLU Application: Document Recommendation

o Choosing the most relevant document based on some information:
=  Example: show most relevant webpages based on query to search engine

=  Example: recommend news articles based on past articles liked

= Example: recommend restaurants based on Yelp reviews

Software




NLU Application: Topic Modeling S

« Breaking a set of documents into topics at the word level

= Example: see how prevalence of certain topics covered in a magazine changes
over time

= Example: find documents belonging to a certain topic

Software




NLG Applications

« Image Captioning

o (Better) Text Summarization

« Machine Translation

« Question Answering/Chatbots

e ..SO0 much more

« Notice NLU is almost a prerequisite for NLG




NLG Application: Image Captioning

« Automatically generate captions for images

man in black shirt is playing guitar. construction worker in orange safety two young girls are playing with lego boy is doing backflip on wakeboard
vest is working on road toy.

Captions automatically generated.

Source: https://cs.stanford.edu/people /karpathy /cvpr2015.pdf

Software



https://cs.stanford.edu/people/karpathy/cvpr2015.pdf

NLG Application: Machine Translation

« Automatically translate text between language

Input sentence: Translation (PBMT): Translation (GNMT): Translation (human)

ZF sk kTig kA n | Ui Kegiang premier Li Kegiang will start the Li Kegiang will Initiate the

YMTPLERFEHEAE) B added this line to start annual dialogue annual dialogue

DU;&?{;@@&@%SE’(} the annual dialogue mechanism with Prime mechanism belweer

| B ERNG Fe o) mechanism with the Minister Trudeau of premiers of China and

i3, Canadian Prime Minister | Canada and hold the first | Canada during this visil,
Trudeau two prime annual dialogue between and hold the first annua
ministers held its first the two premiers. dialogue with Premier
annual session, Trudeau of Canada

Example from Google®’s machine translation system (2016)

Source: https://ai.googleblog.com /2016 /09/a-neural-network-for-
machine.html

Software



https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

NLG Application: Machine Translation

6 R e : ST v perfect translation

neural (GNMT)

phrase-based (PBMT)

Translation quality
w

English  English  English  Spanish  French  Chinese

> > > > > >

Spanish  French Chinese  English  English  English

Translation model

Source: https://ai.googleblog.com /2016 /09 /a-neural-network-for-
machine.html

Software



https://ai.googleblog.com/2016/09/a-neural-network-for-machine.html

NLG Application: Text Summarization

« Automatically generate text summaries of documents

= Example: generate headlines of news articles

Input: Article 1st sentence Model-written headline
metro-goldwyn-mayer reported a third-quarter mgm reports 16 million net
net loss of dlrs 16 million due mainly to the loss on higher revenue

effect of accounting rules adopted this year

starting from july I, the island province of hainan hainan to curb spread of
in southern china will implement strict market diseases
access control on all incoming livestock and
animal products to prevent the possible spread of
epidemic diseases

australian wine exports hit a record 52.1 million australian wine exports hit

liters worth 260 million dollars (143 million us) record high in september

in september, the government statistics office
reported on monday

Source: https: //ai.googleblog.com /2016 /08 /text-summarization-with-

tensorflow.himl

Software


https://ai.googleblog.com/2016/08/text-summarization-with-tensorflow.html

Where We're Headed

« Today:
= Regular Expression (regex) Basics

« Upcoming:
= NLP Preprocessing Tasks (Week 2)
= Deriving features from text (Week 3)
=  Machine Learning with Text (Week 4)
= Topic Modeling on Text (Weeks 5-7)

= Advanced Topics for NLG including Deep Learning (Week 8)







What are Regular Expressions (“RegEx”)?

« Aregex describes a pattern to look for in text

« Examples:
= Does a string contain the word "cat”2
= Does a string contain 3 letters and then 2 numbers followed by a space?
= Does a string contain one or more letters (and only letters)?

« Typical Usage:

= Find strings that contain the regex pattern

= Retrieve the part of a string matching the pattern

Software




Use Cases for Regex

« Parsing documents with expected component structure
= Use regex to grab the pieces you want
= e.g. HTML, find all headers aka within <h> tags
= e.g. remove known boilerplate sections from emails
« Validating User Input
= e.g. does email match xxx@xxx.com?
« NLP Preprocessing

=  What pattern(s) represent individual words in text?

= e.g.space + letters + space = grab the letters

Software




Regex in Python

« Import

1 import re

« Compile pattern

1 p = re.compile('Sherlock Holmes')

« Pattern methods

1 p.search(text

1 p.match(text)|




Metacharacters

« . Matches any single character
« N Beginning of string

« S End of string

« * matches 0 or more characters

e + matches 1 or more characters

« ? Optional character




Metacharacters: Examples

« Helper function:

import re

def search pattern in string(pattern, string):
Returns the string from the first match of
“pattern” in “string.
Returns "No match" if not found.
search = re.compile(pattern).search(string)
if not search:

return "No match"

else:

return "Found pattern: " + search.group()

Software




Metacharacters: Examples

« . Matches any single character
print(search pattern_in string(".", "Sherlock Holmes"))

Found pattern: S
« N Beginning of string
print(search pattern in string(""", "Sherlock Holmes")) # empty string

print(search pattern in string(""S", "Sherlock Holmes"))
print (search pattern_in string(""e", "Sherlock Holmes"))

Found pattern:
Found pattern: S
No match

Software




Metacharacters: Examples

« S End of string

print (search pattern_in string("$", "Sherlock Holmes")) # empty string
print (search_pattern_in_string("s$", "Sherlock Holmes"))
print(search pattern in string("t$", "Sherlock Holmes"))

Found pattern:
Found pattern: s
No match

Software




Metacharacters: Examples

« * matches O or more characters

print (search pattern in string("1*", "Sherlock Holmes")) # empty string
print(search pattern_in string("S*", "Sherlock Holmes"))

Found pattern:
Found pattern: S

e + matches 1 or more characters

print (search _pattern_in string("z*", "Sherlock Holmes")) # empty string

print(search pattern in string("z+", "Sherlock Holmes"))
print (search pattern in_string("S+", "Sherlock Holmes"))

Found pattern:
No match
Found pattern: S

Software




Metacharacters: Examples

« ? Optional character

1 print(search_pattern_in string("S3?h", "Sherlock Holmes")) # '3' is optional

Found pattern: Sh

Software




More Metacharacters

« {m,n} specify number of times character is matched between m and n
times

« [] list characters to be matched
« \ escape character

e | or

o () capture group inside parenthesis




Metacharacters: Examples

{ m,n} specify number of times character is matched between m and n

times

print(search pattern_in string("2/1,3)", "221B Baker Street, London"))
"221B Baker Street, London"))

print(search_pattern_in_string("2{3,4}",

Found pattern: 22
No match
o« [] list characters to be matched

print(search pattern in string("[ik]", "221B Baker Street, London"))

Found pattern: k

Software




Metacharacters: Examples

« \ escape character

string = "Is there any other point to which you would wish to draw my attention?"
# print(search pattern in string("?", string)) # would error
print search_pattern_in_string("\?", string)

Found pattern: ?

e | or

print(search pattern in string("z|k", "221B Baker Street, London"))

Found pattern: k

Software




Character Classes

« \s - matches any whitespace
« \w - matches any alpha character. Equivalent to [A-Za-Z]

« \d - matches any numeric character. Equivalent to [0-9]

You may negate these by capitalizing. For example, \D matches anything not
a digit




Handling Groups
« ()

Parenthesis control which parts of the string are returned after a match




Character Classes and Groups Example

pattern = " (\d+\w*)\s+([A-Z]{1}\w+\s+[A-Z]{1}\w+)"
p = re.compile(pattern)

m = p.match("221B Baker Street, London")
print(m.group(0)) # entire address
print(m.group(l)) # first part of address
print(m.group(2)) # second part of address

221B Baker Street
221B
Baker Street




Splitting by Regex
o re.split()
« Can be used to split a string on any REGEX match

« Frequently done when you don’t know the type of whitespace or to
handle dashes and underscores

import re

string = "hello; earthlings; how do you; do?"

delimiter = ";
split string = re.split(delimiter, string)

print(split string)

['hello", ' earthlings', ' how do you', ' do?']

Software




Lookaheads/Lookbehinds examples

« Allow you to keep the cursor in place, but still check to see if certain
conditions are met before or after that character

« Look ahead: (?=\d) checks to see if the character is followed by a number

« Look Behind: (?<=[aeiou]) checks to see if the character is preceded by a
vowel

10 string = "apple87" 10 string = "87apples”

12 pattern = r"[a-z]+(2=\d)" 12 pattern = r"[0-2]+(?=apples)"

14 search pattern in string(pattern, string) 14 search_pattern_in_ string(pattern, string)

'found pattern: apple’ 'found pattern: 87'

Software



Search and Replace

« re.sub() allows for quick and easy search and replace

import re

"Hey this is a random text from your friend.\n How are " \
"you doing [name goes here]?\n Well I hopel”

string

string = re.sub("\[name goes here\]", "REDACTED", string)

print(string)

Hey this 1s a random text from your friend.
How are you doing REDACTED?
Well I hope!

Software




Find all

« Frequently we will want to find all occurrences of a certain bit of text in a
corpus

« pattern.findall(text) is very useful for doing this

import re

# A Lot of text with the numbers '20°', '50', and '68" 1in iﬂ
string = "Lorem ipsum dolor sit amet, consectetur adipiscing 20 elit, sed dc
pattern = re.compile("\d+")

print(pattern.findall(string))

Software




Regex Flags

re.l - ignore case

« re.L-locale dependent
e re.M - Multiline

« re.S - dot matches all

« re.U unicode dependent

« re.Xverbose




Greedy vs Non-Greedy

« +and * operators are greedy, they try to match as much as they can.
<div>this is some text</div>

<.+> will not match <div> it will match the entire line.

To make it non greedy (lazy) you can add a ? After the operator

<.+?> will match just <div>




S
O
ftw
a
re



