
Machine Learning and NLP

Machine Learning and NLP

• Machine Learning Review

▪ Supervised vs. Unsupervised Learning, Classification vs. Regression

▪ Simple Classification Example

• Text Classification Examples

▪ Logistic Regression

▪ Naive Bayes

▪ Comparing Methods: Classification Metrics

Machine Learning and NLP

• Machine Learning Review

▪ Supervised vs. Unsupervised Learning

▪ Classification vs. Regression

• Text Classification Examples

▪ Logistic Regression

▪ Naive Bayes

▪ Comparing Methods: Classification Metrics

What is Machine Learning?

Machine learning allows

computers to learn and infer

from data by applying

algorithms to observed data

and make predictions based on

the data.

Machine Learning Vocabulary

• Target/Outcome: predicted category or value of

the data (column to predict)

• Features: properties of the data used for prediction

(non-target columns)

• Example: a single data point within the data (one

row)

• Label: the target value for a single data point

Types of Machine Learning

Here, the data points have known outcome. We train the model

with data. We feed the model with correct answers. Model

Learns and finally predicts new data’s outcome.

Here, the data points have unknown outcome. Data is given to

the model. Right answers are not provided to the model. The

model makes sense of the data given to it.

Can teach you something you were probably not aware of in

the given dataset.

Unsupervised

Supervised

7

Types of Supervised And Unsupervised Learning

Supervised Unsupervised

Classification

Regression

Clustering

Recommendation

Supervised Learning

data points have known outcomeSupervised

Supervised Learning Example: Housing Prices

Target/OutcomeFeature

LabelExample

Supervised Learning Example: Housing Prices

Supervised Learning Example: Housing Prices

Machine Learning and NLP

• Machine Learning Review

▪ Supervised vs. Unsupervised Learning

▪ Classification vs. Regression

• Text Classification Examples

▪ Logistic Regression

▪ Naive Bayes

▪ Comparing Methods: Classification Metrics

Regression

Classification

Types of Supervised Learning

outcome is continuous (numerical)

outcome is a category

Regression

Classification

Types of Supervised Learning

outcome is continuous (numerical)

outcome is a category

Regression vs Classification Problems

Some supervised learning questions we can ask regarding movie data:

• Regression Questions

▪ Can you predict the gross earnings for a movie? $1.1 billion

• Classification Questions

▪ Can you predict whether a movie will win an Oscar or not? Yes | No

▪ Can you predict what the MPAA rating is for a movie? G | PG | PG-13 | R

Regression
Predict a real numeric value for an entity with a given set of features.

Price

Address

Type

Age

Parking

School

Transit

Total sqft

Lot Size

Bathrooms

Bedrooms

Yard

Pool

Fireplace

$

sqft

Property Attributes Linear Regression Model

Supervised Learning Overview

data with

answers
model

predicted

answers

data without

answers

fit

+

+

predict

model

model

Classification: Categorical Answers

emails labeled as

spam/not spam
model

spam or not

spam

unlabeled

emails

fit

+

+

model

model

predict

Machine Learning and NLP

• Machine Learning Review

▪ Supervised vs. Unsupervised Learning, Classification vs. Regression

▪ Classification Example

• Text Classification Examples

▪ Logistic Regression

▪ Naive Bayes

▪ Comparing Methods: Classification Metrics

Machine Learning and NLP

• Machine Learning Review

▪ Supervised vs. Unsupervised Learning, Classification vs. Regression

▪ Classification Example

• Text Classification Examples

▪ Logistic Regression

▪ Naive Bayes

▪ Comparing Methods: Classification Metrics

One of the most popular machine learning techniques for binary classification

Binary classification = how do you best split this data into two groups?

Logistic Regression

Kid-Friendly

Not Kid-Friendly

Number of Animals

The most basic regression technique is linear regression

Logistic Regression

y = β1x + β0

Kid-Friendly

Not Kid-Friendly

Number of Animals

Problem: The y values of the line go from -∞ to +∞

Let’s try applying a transformation to the line to limit the y values from 0 to 1

Logistic Regression

y = β1x + β0

Kid-Friendly

Not Kid-Friendly

Number of Animals

The sigmoid function (aka the “S” curve) solves this problem

If you input the Number of Animals (x), the equation gives you the probability that the

movie is Kid-Friendly (p), which is a number between 0 and 1

Logistic Regression

p =
1 + e-(β1x + β0)

1 .Kid-Friendly

Not Kid-Friendly

Number of Animals

Logistic Regression examples
Predict a label for an entity with a given set of features.

SPAM

Prediction Sentiment Analysis

Steps for classification with NLP

1. Prepare the data: Read in labelled data and preprocess the data

2. Split the data: Separate inputs and outputs into a training set and a test set, repsectively

3. Numerically encode inputs: Using Count Vectorizer or TF-IDF Vectorizer

4. Fit a model: Fit a model on the training data and apply the fitted model to the test set

5. Evaluate the model: Decide how good the model is by calculating various error metrics

Building a Logistic Regression model

A classic use of text analytics is to flag messages as spam

Below is data from the SMS Spam Collection Data, which is a set of over 5K English text

messages that have been labeled as spam or ham (legitimate)

Step 1: Prepare the data

Text Message Label

Nah I don't think he goes to usf, he lives around here though ham

Free entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive

entry question(std txt rate)T&C's apply 08452810075over18's

spam

WINNER!! As a valued network customer you have been selected to receivea £900 prize reward!

To claim call 09061701461. Claim code KL341. Valid 12 hours only.

spam

I'm gonna be home soon and i don't want to talk about this stuff anymore tonight, k? I've cried

enough today.

ham

I HAVE A DATE ON SUNDAY WITH WILL!! ham

… …

Step 1: Prepare the data [Code]

make sure the data is labeled

import pandas as pd

data = pd.read_table('SMSSpamCollection.txt', header=None)

data.columns = ['label', 'text']

print(data.head()) # print function requires Python 3

Input:

Output:

Step 1: Prepare the data [Code]

remove words with numbers, punctuation and capital letters

import re

import string

alphanumeric = lambda x: re.sub(r"""\w*\d\w*""", ' ', x)

punc_lower = lambda x: re.sub('[%s]' % re.escape(string.punctuation), ' ', x.lower())

data['text'] = data.text.map(alphanumeric).map(punc_lower)

print(data.head())

Input:

Output:

To fit a model, the data needs to be split into inputs and outputs

The inputs and output of these models have various names

• Inputs: Features, Predictors, Independent Variables, X’s

• Outputs: Outcome, Response, Dependent Variable, Y

Step 2: Split the data (into inputs and outputs)

label congrats eat tonight winner chicken dinner wings

0 ham 0 1 0 0 0 0 0

1 ham 0 1 1 0 0 0 0

2 spam 0 0 0 1 0 0 0

. … … … … … … … …

Step 2: Split the data [Code]

split the data into inputs and outputs

X = data.text # inputs into model

y = data.label # output of model

Input:

Output:

Step 2: Split the data (into a training and test set)

Why do we need to split data into training and test sets?

• Let’s say we had a data set with 100 observations and we found a model that fit the

data perfectly

• What if you were to use that model on a brand new data set?

Blue = Overfitting

Black = Correct

Source:

https://en.wikipedia.org/wiki/Overfitting

Step 2: Split the data (into a training and test set)

To prevent the issue of overfitting, we divide observations into two sets

• A model is fit on the training data and it is evaluated on the test data

• This way, you can see if the model generalizes well

label congrats eat tonight winner chicken dinner wings

0 ham 0 1 0 0 0 0 0

1 ham 0 1 1 0 0 0 0

2 spam 0 0 0 1 0 0 0

3 spam 1 0 0 0 0 0 0

4 ham 0 0 0 0 0 1 0

5 ham 0 0 1 0 0 0 0

6 ham 0 0 0 0 0 0 0

7 spam 0 0 0 0 0 0 0

8 ham 0 0 0 0 0 1 0

9 ham 0 0 0 0 1 1 0

10 spam 0 0 0 0 0 0 0

11 ham 0 0 0 0 0 0 1

Training Set (70-80%)

Test Set (20-30%)

Step 2: Split the data [Code]

split the data into a training and test set

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

test size = 30% of observations, which means training size = 70% of observations

random state = 42, so we all get the same random train / test split

Input:

Output:

Step 3: Numerically encode the input data [Code]

from sklearn.feature_extraction.text import CountVectorizer

cv = CountVectorizer(stop_words=‘english’)

X_train_cv = cv.fit_transform(X_train) # fit_transform learns the vocab and one-hot

encodes

X_test_cv = cv.transform(X_test) # transform uses the same vocab and one-hot encodes

print the dimensions of the training set (text messages, terms)

print(X_train_cv.toarray().shape)

Input:

Output:

(3900, 6103)

Step 4: Fit model and predict outcomes [Code]

Use a logistic regression model

from sklearn.linear_model import LogisticRegression

lr = LogisticRegression()

Train the model

lr.fit(X_train_cv, y_train)

Take the model that was trained on the X_train_cv data and apply it to the X_test_cv

data

y_pred_cv = lr.predict(X_test_cv)

y_pred_cv # The output is all of the predictions

Input:

Output:

array(['ham', 'ham', 'ham', ..., 'ham', 'spam', 'ham'], dtype=object)

Step 5: Evaluate the model

After fitting a model on the training data and predicting outcomes for the test data, how

do you know if the model is a good fit?

A
c
tu

a
l

Actual Predicted

1 ham ham

2 ham ham

3 spam spam

4 spam spam

5 ham ham

6 ham spam

7 ham ham

8 ham ham

9 ham ham

10 spam spam

True Negative

(6)

False Positive

(1)

False Negative

(0)

True Positive

(3)

PredictedResult

true negative

true negative

true positive

true positive

true negative

false positive

true negative

true negative

true negative

true positive

ham spam

h
a
m

s
p

a
m

Confusion Matrix

Step 5: Evaluate the model

After fitting a model on the training data and predicting outcomes for the test data, how

do you know if the model is a good fit?

Error Metrics

• Accuracy = (TP + TN) / All

• Precision = TP / (TP + FP)

• Recall = TP / (TP + FN)

• F1 Score = 2*(P*R)/(P+R)

A
c
tu

a
l

True Negative

(6)

False Positive

(1)

False Negative

(0)

True Positive

(3)

Predicted

ham spam

h
a
m

s
p

a
m

Confusion Matrix

P = Precision R = Recall

Step 5: Evaluate the model

After fitting a model on the training data and predicting outcomes for the test data, how

do you know if the model is a good fit?

Error Metrics

• Accuracy = (TP + TN) / All = 0.9

• Precision = TP / (TP + FP) = 0.75

• Recall = TP / (TP + FN) = 1

• F1 Score = 2*(P*R)/(P+R) = 0.86

A
c
tu

a
l

True Negative

(6)

False Positive

(1)

False Negative

(0)

True Positive

(3)

Predicted

ham spam

h
a
m

s
p

a
m

Confusion Matrix

Step 5: Evaluate the model [Code]

from sklearn.metrics import confusion_matrix

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

cm = confusion_matrix(y_test, y_pred_cv)

sns.heatmap(cm, xticklabels=['predicted_ham', ‘predicted_spam'], yticklabels=['actual_ham', ‘actual_spam'],

annot=True, fmt='d', annot_kws={'fontsize':20}, cmap=“YlGnBu");

true_neg, false_pos = cm[0]

false_neg, true_pos = cm[1]

accuracy = round((true_pos + true_neg) / (true_pos + true_neg + false_pos + false_neg),3)

precision = round((true_pos) / (true_pos + false_pos),3)

recall = round((true_pos) / (true_pos + false_neg),3)

f1 = round(2 * (precision * recall) / (precision + recall),3)

print('Accuracy: {}'.format(accuracy))

print('Precision: {}'.format(precision))

print('Recall: {}'.format(recall))

print(‘F1 Score: {}’.format(f1))

Input:

Step 5: Evaluate the model [Code]

Output:

Accuracy: 0.986

Precision: 1.0

Recall: 0.893

F1 Score: 0.943

What was our original goal?

To classify text messages as spam or ham

How did we do that?

By collecting labeled data, cleaning the data, splitting it into a training and test set, numerically

encoding it using Count Vectorizer, fitting a logistic regression model on the training data, and

evaluating the results of the model applied to the test set

Was it a good model?

It seems good, but let’s see if we can get better metrics with another classification technique, Naive

Bayes

Logistic Regression Checkpoint

Machine Learning and NLP

• Machine Learning Review

▪ Supervised vs. Unsupervised Learning,

▪ Classification vs. Regression

• Text Classification Examples

▪ Logistic Regression

▪ Naive Bayes

▪ Comparing Methods: Classification Metrics

One of the simpler and less computationally intensive techniques

Naive Bayes tends to perform well on text classifications

1. Conditional Probability and Bayes Theorem

2. Independence and Naive Bayes

3. Apply Naive Bayes to Spam Example and Compare with Logistic Regression

Naive Bayes

Conditional Probability = what’s the probability that something will happen, given that
something else has happened?

Spam Example = what’s the probability that this text message is spam, given that it

contains the word “cash”?

Naive Bayes: Bayes Theorem

P(A|B) =
P(B|A) x P(A)

P(B)
P(spam | cash) =

P(cash | spam) x P(spam)

P(cash)

Naive Bayes assumes that each event is independent, or that it has no effect on other events.
This is a naive assumption, but it provides a simplified approach.

Spam Example: Naive Bayes assumes that each word in a spam message (like “cash” and

“winner”) is unrelated. This is unrealistic, but it’s the naive assumption.

Naive Bayes: Independent Events

P(spam | winner of some cash) =

P(winner | spam) x P(of | spam) x P(some | spam) x P(cash | spam) x P(spam)

P(ham | winner of some cash) =

P(winner | ham) x P(of | ham) x P(some | ham) x P(cash | ham) x P(ham)

The higher probability wins

Naive Bayes: Fit model [Code]

Use a Naive Bayes model

from sklearn.naive_bayes import MultinomialNB

nb = MultinomialNB()

Train the model

nb.fit(X_train_cv, y_train)

Take the model that was trained on the X_train_cv data and apply it to the X_test_cv

data

y_pred_cv_nb = nb.predict(X_test_cv)

y_pred_cv_nb # The output is all of the predictions

Input:

Output:

array(['ham', 'ham', 'ham', ..., 'ham', 'spam', ‘ham'], dtype='<U4')

Naive Bayes: Results

Accuracy: 0.986

Precision: 0.939

Recall: 0.952

F1 Score: 0.945

Compare Logistic Regression and Naive Bayes

Logistic Regression

Accuracy: 0.986

Precision: 1.0

Recall: 0.893

F1 Score: 0.943

Naive Bayes

Accuracy: 0.986

Precision: 0.939

Recall: 0.952

F1 Score: 0.945

Machine Learning and NLP Review

• Machine Learning Review

▪ Supervised Learning > Classification Techniques > Logistic Regression & Naive Bayes

▪ Error Metrics for Classification > Accuracy | Precision | Recall | F1 Score

• Classification with NLP

▪ Make sure the data is labeled and split into a training and test set

▪ Clean the data and use one-hot encoding to put in a numeric format for modeling

▪ Fit the model on the training data, apply the model to the test data and evaluate

