
Latent Dirichlet Allocation and Topic Modeling



Topic Modeling

• Every document we read can be thought of as consisting of many topics all 

stacked upon one another. 

• Today, we’re going to focus on how we can unpack these topics using NLP 

techniques.



Amazon Buys Whole Foods

Food types 

and price 

changes



Topic Modeling

● Goal: break text documents down into “topics” by word:

Business

Prices

Food

Topics:



Takeover Close Prices Discounts

Doc 1 1 1 1 1

Doc 2 1 1 0 0

Doc 3 0 0 1 1

Doc 4 1 1 1 0

Doc 5 1 0 0 0

Topic Modeling



Takeover Close Prices Discounts

Doc 1 1 1 1 1

Doc 2 1 1 0 0

Doc 3 0 0 1 1

Doc 4 1 1 1 0

Doc 5 1 0 0 0

Topic Modeling

In the first document, we see that all of our “words-of-interest” show up. So 

maybe they’re all just one big topic? We need to investigate more.



Takeover Close Prices Discounts

Doc 1 1 1 1 1

Doc 2 1 1 0 0

Doc 3 0 0 1 1

Doc 4 1 1 1 0

Doc 5 1 0 0 0

Topic Modeling

If we look at Doc 2, we see that ‘takeover’ and ‘close’ appear together again, 

but ‘prices’ and ‘discounts’ do not appear. Maybe we have two topics in Doc1, 

and only one of those topics also shows up in Doc 2.



Takeover Close Prices Discounts

Doc 1 1 1 1 1

Doc 2 1 1 0 0

Doc 3 0 0 1 1

Doc 4 1 1 1 0

Doc 5 1 0 0 0

Topic Modeling

The inverse happens in Doc 3. So it seems likely that we have 2 topics in 

document 1, since we see that these don’t always have to appear together.



Takeover Close Prices Discounts

Doc 1 1 1 1 1

Doc 2 1 1 0 0

Doc 3 0 0 1 1

Doc 4 1 1 1 0

Doc 5 1 0 0 0

Topic Modeling

Doc 4 adds a bit of confusion, but we see that ‘takeover’ and ‘close’ appear 

together again. Even if there’s an extra appearance by ‘prices’ which doesn’t 

quite fit our original plan. So maybe ’prices’ is a cross-topic word.



Takeover Close Prices Discounts

Doc 1 1 1 1 1

Doc 2 1 1 0 0

Doc 3 0 0 1 1

Doc 4 1 1 1 0

Doc 5 1 0 0 0

Topic Modeling

Mathematically, we want to find “topics” that are collections of words that 

appear in similar documents. More generally, a collection of features in a 

dataset is called a “latent feature”. Let’s look at an example



Latent Features: Example

If we had data on people’s heights and weights, we would likely observe a high 

correlation. That is because there is an “latent feature” of “Size” affecting both.

Height

Weight

Latent feature: 

“Size”



Latent Spaces for NLP

● In NLP, we use topic modeling techniques to find latent features that are collections of 

individual words.

● Under the hood, what we’re doing when creating topics is shifting vectorizer axes in a 

clever way. 

● This creates a new space, that’s some combination of our previous columns, that’s 

“hidden” or latent to us. 

● We can use this new space to look at each document and understand more about it.

● Let’s look at a simple example.



Latent Spaces

“I love my pet rabbit.”
“That dish yesterday was amazing.” 
“She cooked the best rabbit dish ever.”
“I gave leftovers of that dish to my pet, mr. rabbit” “Rabbits 

make messy pets.”
“My rabbit growls when I pet her.” “He has 

five rabbits.”
“I had this weird dish with fried rabbit.” “That’s 

my pet rabbit’s favorite dish.”
…



“I love my pet rabbit.”
“That dish yesterday was amazing.” 
“She cooked the best rabbit dish ever.”
“I gave leftovers of that dish to my pet, mr. rabbit” “Rabbits 

make messy pets.”
“My rabbit growls when I pet her.” “He 

has five rabbits.”
“I had this weird dish with fried rabbit.” “That’s 

my pet rabbit’s favorite dish.”
…
Remove stop words, only keep nouns, end up with 3 features: 

“rabbit”, “pet”, “dish”



“I love my pet rabbit.”
“That dish yesterday was amazing.” 
“She cooked the best rabbit dish ever.”
“I gave leftovers of that dish to my pet, mr. rabbit” “Rabbits 

make messy pets.”
“My rabbit growls when I pet her.” “He 

has five rabbits.”
“I had this weird dish with fried rabbit.” “That’s 

my pet rabbit’s favorite dish.”
…
Remove stop words, only keep nouns, end up with 3 features: 

“rabbit”, “pet”, “dish”



“Rabbit”

“Dish”

“Pet”



“Rabbit”

“Dish”

“Pet”



“Rabbit”

“Dish”

“Pet”



“Rabbit”

“Dish”

“Pet”

Clustering is easier in this latent space



What are our clusters?

“I love my pet rabbit.” “Rabbits 

make messy pets.”

“My rabbit growls when I pet her.” “He 

has five rabbits.”

“That dish yesterday was amazing.” 

“She cooked the best rabbit dish ever.” 

“I had this weird dish with fried rabbit.”

“I gave leftovers of that dish to my pet, Mr. Rabbit” “That’s my 

pet rabbit’s favorite dish.”



“I love my pet rabbit.” “Rabbits 

make messy pets.”

“My rabbit growls when I pet her.” “He 

has five rabbits.”

“That dish yesterday was amazing.” 

“She cooked the best rabbit dish ever.” 

“I had this weird dish with fried rabbit.”

“I gave leftovers of that dish to my pet, Mr. Rabbit” “That’s my 

pet rabbit’s favorite dish.”

Axis 1: 1.5(Rabbit) +1.1 (Pet) + 0.1(Dish)

Axis 2: 0.9(Rabbit) + 0.02(Pet) + 1.6(Dish)

Axis 1: High

Axis 2: Low

Axis 1: Low

Axis 2: High

Axis 1: High

Axis 2: High



“I love my pet rabbit.” “Rabbits 

make messy pets.”

“My rabbit growls when I pet her.” “He 

has five rabbits.”

“That dish yesterday was amazing.” 

“She cooked the best rabbit dish ever.” 

“I had this weird dish with fried rabbit.”

“I gave leftovers of that dish to my pet, Mr. Rabbit” “That’s my 

pet rabbit’s favorite dish.”

TOPIC 1: 1.5(Rabbit) +1.1 (Pet) + 0.1(Dish)  Pet Rabbits

TOPIC 2: 0.9(Rabbit) + 0.02(Pet) + 1.6(Dish)  Eating Rabbit

TOPIC 1: High

TOPIC 2: Low

TOPIC 1: Low

TOPIC 2: High

TOPIC 1: High

TOPIC 2: High



Pet Rabbits Eating Rabbit

“I love my pet rabbit.” 87% 13%

“That’s my rabbit’s favorite dish.” 42% 58%

“She cooks the best rabbit dish.” 14% 84%

Topic Modeling

● Documents are not required to be one topic or another. They will be an overlap of 

many topics. 

● For each document, we will have a ‘percentage breakdown’ of how much of each topic 

is involved.

● The topics will not be defined by the machine, we must interpret the word groupings.



What is a topic?

● When writing about a topic, certain words are more likely to come up. For 

example, if I used the words - hoop, backboard, ball, sneakers, and coach –

you’d be able to assume I’m talking about basketball. 

● A topic is just a conglomeration of words/ideas that tend to appear together.

● Mathematically, a topic is a probability distribution over all possible words.



What is a topic?

Word Probability in “Pet Rabbit” Probability in “Eating Rabbit”

pet 2.3E-7 1.2E-10

rabbit 7.9E-7 3.4E-8

dish 6.8E-11 4.5E-7

car 3.1E-12 1.8E-12

plate 8.3E-14 1.4E-9

affair 3.0E-13 3.1E-13

love 5.4E-8 3.9E-10

the 3.1E-5 3.2E-5



What is a topic?
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rabbit 7.9E-7 3.4E-8

dish 6.8E-11 4.5E-7

car 3.1E-12 1.8E-12

plate 8.3E-14 1.4E-8

affair 3.0E-13 3.1E-13

love 5.4E-8 3.9E-10

the 3.1E-5 3.2E-5



Topic Modeling Summary

● Choose some algorithm to figure out how words are related

● Create a latent space that makes use of those in-document correlations to transition 

from a “word space” to a latent “topic space”

● Each axis in the latent space represents a topic

● Construct a probabilistic understanding of how much each topic contributes to each 

document.

● We, as the humans, must understand the meaning of the topics. The machine doesn’t 

understand the meanings, just the correlations.



Let’s look at some example topics from the 
Fetch20 Dataset

Topic 0:

jesus matthew said people den col prophecy int away war men messiah den 

den radius prophet row isaiah psalm row col sea 

Topic 1:

year game good team think don just games like players better runs hit 

won league time baseball season win pitching 

Topic 2: 

graphics image edu data mail software ftp pub available send images 

package computer information use files thanks program processing code

It’s still on us to interpret these topics.



Let’s look at some example topics from the 
Fetch20 Dataset

Atheism

jesus matthew said people den col prophecy int away war men messiah den 

den radius prophet row isaiah psalm row col sea 

Baseball

year game good team think don just games like players better runs hit 

won league time baseball season win pitching 

Graphics

graphics image edu data mail software ftp pub available send images 

package computer information use files thanks program processing code



LDA is one of the algorithms we can choose to convert between 

word and topic spaces. It works by simulating the process of writing.

• Choose a topic to write about

• Choose words that are about that topic

• Add those words to the document 

Latent Dirichlet Allocation (LDA)



Start by deciding which topics will make up the document and in what percentage:

Technology: 50%      Music: 25%      Movies: 25%



Start by deciding which topics will make up the document and in what percentage:

Technology: 50%      Music: 25%      Movies: 25%

Now we roll a dice to decide which 

topic we start with: Technology



Start by deciding which topics will make up the document and in what percentage:

Technology: 50%      Music: 25%      Movies: 25%

Now we roll a dice to decide which 

topic we start with: Technology

Now we roll a new dice within the 

technology topic to see which word and 

we get: Computer

Now we repeat the process for the 
next word.

Computer



Start by deciding which topics will make up the document and in what percentage:

Technology: 50%      Music: 25%      Movies: 25%

Now we roll a dice to decide which 

topic we start with: Technology

Now we roll a new dice within the 

technology topic to see which word and 

we get: screen

Computer screen



Start by deciding which topics will make up the document and in what percentage:

Technology: 50%      Music: 25%      Movies: 25%

Now we roll a dice to decide which 

topic we start with: Technology

Now we roll a new dice within the 

technology topic to see which word and 

we get: the

Computer screen the



Start by deciding which topics will make up the document and in what percentage:

Technology: 50%      Music: 25%      Movies: 25%

Now we roll a dice to decide which 

topic we start with: 

Music

Now we roll a new dice within the 

technology topic to see which word and 

we get: guitar

Computer screen the guitar



Start by deciding which topics will make up the document and in what percentage:

Technology: 50%      Music: 25%      Movies: 25%

Now we roll a dice to decide which 

topic we start with: 

Movies

Now we roll a new dice within the 

technology topic to see which word and 

we get: theatre

Computer screen the guitar theatre



Start by deciding which topics will make up the document and in what percentage:

Technology: 50%      Music: 25%      Movies: 25%

Computer screen the guitar theatre 

headphones. Actress sings best mouse 

performance. We can continue this process over 

and over until we’ve generated 

essentially an entire document. This 

document will be made up of the 

topics we selected, and the words 

that are associated with that topic, 

all based on the probabilities.



Latent Dirichlet Allocation in Practice

We typically do this in reverse on the modeling side, relying on Bayesian 

methodology.

● Assume some topic distribution in the corpus

● Assume some word distribution for each topic

● Look at the corpus and try to find what topic and word distributions would 

be most likely to generate that data.

● For this to converge, we need to tell it how many topics to look for.



Why Dirichlet?

● Any probability distribution could be used for assigning the words to topics, it’s 

just a Bayesian process where we must select a prior. So why Dirichlet?

● The sparse Dirichlet distribution assumes that each topic will only be made from 

a small subset of the total available space. 

● In our case, the vast majority of words are not related to technology (or any 

other topic), so assuming that only a small subset of the total word 

probabilities are large makes sense.

● Dirichlet does a better job than other choices for the Bayesian prior.



LDA in Python

● There are several libraries for LDA: two popular ones are Scikit-learn and Gensim

● Scikit-learn is nice because it quickly integrates with the other, more familiar Scikit-

learn/NLTK tools and has a consistent API.

● GenSim is another Python text processing package we’ll use for Word2Vec and a few 

other tools. It also has LDA as a built in package. 

● We can either prepare our corpus with GenSim tools or use the

corpus = matutils.Sparse2Corpus(counts) tool to convert from 

CountVectorizer to a format GenSim can use.

● For the exercises and following slides, you’ll see the Scikit-Learn API; you can see a 

conceptual Gensim example in the appendix.



Code: LDA (Scikit-learn)

from sklearn.datasets import fetch_20newsgroups

ng_train = fetch_20newsgroups(subset=‘train’, 
remove=(‘headers’, ‘footers’, ‘quotes’))

print("Data has {0:d} documents".format(len(ng_train.data)))
print(ng_train.data[0][:100]) # print requires Python 3

Data has 11314 documents

'I was wondering if anyone out there could enlighten me on this car I saw\nthe 

other day. It was a 2-d’

Output:

Input:



Code: LDA (Scikit-learn)

from sklearn.feature_extraction.text import CountVectorizer

count_vectorizer = CountVectorizer(ngram_range=(1, 2),
stop_words='english',
token_pattern=“\\b[a-z][a-z]+\\b",
lowercase=True,
max_features=1000)

X = count_vectorizer.fit_transform(ng_train.data)

# “X” is now our transformed data

Input:



Code: LDA (Scikit-learn)

import pandas as pd

print(count_vectorizer.get_feature_names()[92:97]) # print 5 random columns
df = pd.DataFrame(X.toarray(), columns=count_vectorizer.get_feature_names())
# create data frame
print(df.iloc[10:15, 92:97]) # values of these features on documents 10-15

“['bhj', 'bible', 'big', 'bike', ‘bios']"

Output:

Input:

df:



Code: LDA (Scikit-learn)

from sklearn.decomposition import LatentDirichletAllocation

lda = LatentDirichletAllocation(n_topics=4, random_state=42, 
learning_method='online')

data = lda.fit_transform(X)

print(data[0])

[ 0.00246896, 0.00251041, 0.99253159, 0.00248904]

Output:

Input:



Code: LDA (Scikit-learn)

from sklearn.decomposition import LatentDirichletAllocation

lda = LatentDirichletAllocation(n_topics=4, random_state=42, 
learning_method='online')

data = lda.fit_transform(X)

print(data[0])

[ 0.00246896, 0.00251041, 0.99253159, 0.00248904]

Output:

Input:

This document is 99% topic 3!



Code: LDA (Scikit-learn)

year game good team think don just games like players

Output:

Input:

The top 10 words for topic 2!

for word in lda.components_[2].argsort()[:10:-1]:

print(word)





Appendix



Code: LDA (gensim)

[(2: 0.95, 4: 0.21)]

[(0: 0.75, 1: 0.15, 5: 0.11)]

Output:

Input:

from gensim import corpora, models, similarities, matutils

lda = LdaModel(corpus, num_topics=5) # train model

print(lda[doc_bow]) # get topic probability distribution for a document

lda.update(corpus2) # update the LDA model with additional documents

print(lda[doc_bow])



Code: LDA (gensim)

[(0, u'0.002*"image" + 0.002*"don" + 0.002*"jpeg" + 0.002*"good" + 

0.001*"think" + 0.001*"people" + 0.001*"file" + 0.001*"year" + 0.001*"just" + 

0.001*"like"'), 

(1, u'0.002*"graphics" + 0.002*"edu" + 0.002*"god" + 0.001*"just" + 

0.001*"like" + 0.001*"does" + 0.001*"people" + 0.001*"know" + 0.001*"data" + 

0.001*"jesus"'),

(2, u'0.002*"think" + 0.002*"don" + 0.002*"just" + 0.002*"like" + 0.002*"does" 

+ 0.002*"god" + 0.001*"know" + 0.001*"people" + 0.001*"time" + 0.001*"good"')

… ]

Output:

Input:

lda.print_topics()


