
Matrix Decomposition Techniques

Matrix Decomposition

● Last week we examined the idea of latent spaces and how we

could use Latent Dirichlet Allocation to create a ”topic space.”

● LDA is not the only method to create latent spaces, so today we’ll

investigate some more “mathematically rigorous” ways to

accomplish the same task.

● Let’s start by reviewing latent spaces…

“Rabbit”

“Dish”

“Pet”

“Rabbit”

“Dish”

“Pet”

From 3D to a 2D space made of a bit of

each of the original dimensions.

Latent Spaces – A Reminder

● Latent spaces are a “hidden” set of axes that we use to look at the information in a

different way.

● For NLP, we typically want to go from a “word space,” which may be 1000s of

dimensions, to a smaller dimensionality “combinations of words space.” We called this a

“topic space” last week.

● We used LDA to decide on how the topics were defined last week – it’s not our only

option.

● Clustering can work MUCH better in these lower dimensional spaces due to the curse of

dimensionality.

● Let’s look at some other ways to get to latent spaces.

Dimensionality Reduction without NLP

● Dimensionality reduction is an “old” technique in terms of mathematical

problems. The most famous version is Principal Component Analysis (PCA).

Dimensionality Reduction without NLP

● A principle component analysis shifts the axes around to find a set of axes that

capture most of the variance in the data. In this example, with just this one

axes, we’re getting the majority of how the data changes.

Principle Component 1

Dimensionality Reduction without NLP

● If we add back the same number of components we capture the data fully.

However, we don’t HAVE to add that last component back. We could just

convert to a lower dimensionality representation of the data.

Principle Component 1

Principle Component 2

Dimensionality Reduction without NLP

● If we stick with one dimension in this example, we’ve captured MOST of what

makes each data point special, and we’re only storing half as much data (PC1

vs [x,y]).

Principle Component 1

Simple PCA Example in Python

Output:

Input:
from sklearn.datasets import load_iris

iris_data = iris.data
iris_data = pd.DataFrame(iris.data)
iris_data.columns = [‘Sepal_Length', ‘Sepal_Width', ‘Petal_Length', ‘Petal_Width']
print(iris_data.head()) # print function requires Python 3

Simple PCA Example in Python

Output:

Input:
from sklearn.decomposition import PCA

pca_1 = PCA(n_components=1)
iris_1_component = pca_1.fit_transform(iris_data)
print(pca_1.components_[0]) # print function only works in Python 3

array([0.36158968, -0.08226889, 0.85657211, 0.35884393])

First principal component is:

0.36 * Sepal_length + (-0.08 * Sepal_width) + 0.86 * Petal_length + 0.36 * Petal_width

Simple PCA Example in Python

Output:

Input:
from sklearn.decomposition import PCA

iris_1_component_df = pd.DataFrame(iris_reduced,
columns=[“new_component”])

print(iris_1_component_df.head()) # print function only works in Python 3

Values of observations on

this new component

Principle Component Analysis: The Math
● In PCA, we start by finding the covariance matrix. Then we can find

eigenvalues and eigenvectors on that matrix.

● Let’s imagine that we have some covariance matrix we’re calling A. We can

imagine there is some linear transformation X that can be equivalent to

applying a scaler to A.

● This last line is a set of equations that we can solve for lambda’s – the

eigenvalues. This also gives us the eigenvectors, with equation 1.

Principle Component Analysis

● The eigenvectors will define the new axis set, since the eigen-decomposition is

asking “what axes can we find that make the covariance matrix as small (and

diagonal) as possible.”

● The new space is a latent space. Great!

● So, can we just use this with text?

Principle Component Analysis

● Not really.

● One way to calculate principal components uses the covariance matrix of the

data.

● A covariance matrix requires that the variance of each data point be truly

meaningful. For example, does the appearance of x1 precipitate a change in

x2? For something like CountVectorizer, we’re approximating those

relationships in a multinomial way, but we’re not really setup to truly

understand the covariance.

Enter: Singular Value Decomposition (SVD)

● Singular value decomposition is another method of finding the principle

components, but without relying on the covariance matrix. We can interact with

the data directly to get out resulting latent space. We also don’t need a

square matrix like in PCA.

● SVD results in taking one matrix: our data, and converting it to a product of

three matrices.

● This separation is called a “matrix factorization.” We’re taking one matrix and

breaking it into sub-matrices or “factors.”

Enter: Singular Value Decomposition (SVD)

DATA

=
U

𝛴
V*

Singular Value Decomposition (SVD)

Why does converting to 3 matrices help?

● The columns of U are the eigenvectors of MM*, meaning those eigenvectors

are informed about the data. They know something about our data set.

U

Singular Value Decomposition (SVD)

Why does converting to 3 matrices help?

● The rows of V are the eigenvectors of M*M, so they also know something

about our data.

V*

Singular Value Decomposition (SVD)

Why does converting to 3 matrices help?

● 𝛴 is made up of the square roots of the eigenvalues from both MM* and

M*M, placed along the diagonal. These are known as the “Singular Values.”

𝛴

Singular Value Decomposition (SVD)

● If all the vectors and singular values are aligned properly, these three matrices

multiply together to give us exactly our data back.

● However, what if we chopped off the vectors and singular values that are

small, and only contribute a little bit to giving us our data back? We’d then be

approximating our data and getting close to the right answer… but we’d have

fewer dimensions!

● The remaining eigenvectors can help us determine our latent space axes as

well.

Truncated SVD

APPROXIMATE

DATA

=
U

𝛴
V*

SVD in Python

Output:

Input:

import numpy as np

U, sigma, V = np.linalg.svd(iris_data)

iris_reconst = np.matrix(U)[:, :4] * np.diag(sigma) * np.matrix(V)

print(np.array(iris_reconst[:5, :])) # first 5 rows of reconstructed data
print(np.array(iris_data)[:5,]) # first 5 rows of original data

array([[5.1, 3.5, 1.4, 0.2],

[4.9, 3. , 1.4, 0.2],

[4.7, 3.2, 1.3, 0.2],

[4.6, 3.1, 1.5, 0.2],

[5. , 3.6, 1.4, 0.2]])

array([[5.1, 3.5, 1.4, 0.2],

[4.9, 3. , 1.4, 0.2],

[4.7, 3.2, 1.3, 0.2],

[4.6, 3.1, 1.5, 0.2],

[5. , 3.6, 1.4, 0.2]])

Identical

SVD in Python (reducing dimensions)

Output:

Input:

import numpy as np

U, sigma, V = np.linalg.svd(iris_data)

iris_reconst = np.matrix(U)[:, :2] * np.diag(sigma[:2]) * np.matrix(V[:2])

print(np.array(iris_reconst[:5, :])) # first 5 rows of reconstructed data
print(np.array(iris_data)[:5,]) # first 5 rows of original data

array([[5.1, 3.5, 1.4, 0.2],

[4.9, 3. , 1.4, 0.2],

[4.7, 3.2, 1.3, 0.2],

[4.6, 3.1, 1.5, 0.2],

[5. , 3.6, 1.4, 0.2]])

array([[5.1, 3.5, 1.4, 0.2],

[4.7, 3.2, 1.5, 0.3],

[4.7, 3.2, 1.3, 0.2],

[4.6, 3.1, 1.5, 0.3],

[5.1, 3.5, 1.4, 0.2]])

Close, with only

one dimension

Latent Semantic Analysis (LSA)

● If we apply SVD, and keep track of the how the words (features) are

combined in the latent space, it’s called Latent Semantic Analysis (LSA).

● Essentially, we do SVD with reducing the dimensionality (“Truncated SVD”).

Then we keep track that the new 1st dimension is made up of mostly old

dimensions that were called “bat, glove, base, and outfield.”

● That sounds an awful lot like topic modeling.

Pet Rabbits Eating Rabbit

“I love my pet rabbit.” 87% 13%

“That’s my pet rabbit’s favorite dish.” 42% 58%

“She cooks the best rabbit dish.” 14% 84%

Topic Modeling

● Documents are not required to be one topic or another. They will be an overlap of

many topics.

● For each document, we will have a ‘percentage breakdown’ of how much of each topic

is involved.

● The topics will not be defined by the machine, we must interpret the word groupings.

Why does LSA work?

DATA

Words

D
o

c
u

m
e

n
ts

=
U

W
o

rd
s

New Dimensions

𝛴

New Dimensions

N
e

w
 D

im
e

n
s
io

n
s

V*

N
e

w
 D

im
e

n
s
io

n
s Documents

We end up creating a system where the words and documents are both understood in our

latent space individually. We can then recombine them to get our original data back.

Why does LSA work?

DATA

Words

D
o

c
u

m
e

n
ts

=
U

W
o

rd
s

New Dimensions

𝛴
Weights

New Dimensions

N
e

w
 D

im
e

n
s
io

n
s

V*

N
e

w
 D

im
e

n
s
io

n
s Documents

The 𝛴 matrix acts as a set of weights to determine how the words and documents combine

together in the latent space to correctly represent the real data.

Why does LSA work?

DATA

Words

D
o

c
u

m
e

n
ts

=
U

W
o

rd
s

New Dimensions

𝛴

New Dimensions

N
e

w
 D

im
e

n
s
io

n
s

V*

N
e

w
 D

im
e

n
s
io

n
s Documents

If we truncate our analysis to a certain number of topics, we’re essentially saying let’s only

take the most USEFUL hidden dimensions. That’s akin to setting everything in the red region

of 𝛴 to 0. That means the word*document combinations no longer contribute.

Why does LSA work?

DATA

Words

D
o

c
u

m
e

n
ts

=
U

W
o

rd
s

New Dimensions

𝛴

New Dimensions

N
e

w
 D

im
e

n
s
io

n
s

V*

N
e

w
 D

im
e

n
s
io

n
s Documents

If these dimensions don’t contribute, we’re now limited to a smaller number of “topics” to

represent our data. Which means we won’t be able to reproduce the data exactly, but as long

as we don’t cut too many topics, we should still get a good representation of the data.

Latent Semantic Analysis (LSA)

So an LSA pipeline for topic modeling would look like:

1. Preprocess the text

2. Vectorize the text (TF-IDF, Binomial, Multinomial…)

3. Reduce the dimensionality with SVD, keeping track of the feature composition

of the new latent space

4. Investigate the output ”topics”

LSA with Python - Dataset Creation

Input:

Dataset creation same as in prior weeks

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.datasets import fetch_20newsgroups

ng_train = fetch_20newsgroups(subset=‘train’,
remove=(‘headers’, ‘footers’, ‘quotes’))

tfidf_vectorizer = TfidfVectorizer(ngram_range=(1, 2),
stop_words='english',
token_pattern=“\\b[a-z][a-z]+\\b”,
lowercase=True,
max_df = 0.6)

tfidf_data = tfidf_vectorizer.fit_transform(ng_train.data)

LSA with Python - Modeling

Output:

Input:

from sklearn.decomposition import TruncatedSVD

lsa_tfidf = TruncatedSVD(n_components=10)

lsa_tfidf_data = lsa_tfidf.fit_transform(tfidf_data)

show_topics(lsa_tfidf,tfidf.get_feature_names()) # a function I wrote

Topic 0: graphics, image, files, file, thanks, program, format, ftp, windows, gif

Topic 1: god, atheism, people, atheists, say, exist, belief, religion, believe,
bible

Topic 2: just, aspects graphics, aspects, group, graphics, groups, split, posts
week, week group, think

Non-Negative Matrix Factorization (NMF)

● SVD isn’t the only way to do matrix factorization. That means LSA isn’t the only

way to do topic modeling with matrix factorization.

● Non-negative Matrix Factorization is another mathematical technique to

decompose a matrix into sub-matrices.

● NMF assumes there are no negative numbers in your original matrix.

● In NMF, we break the data matrix M down into two component matrices.

● W is the features matrix. It will be of the shape (number of words, number of

topics). So a system with 5000 words and 10 topics will have W be (5000,10).

● H is the “coefficients matrix.” It’s of the shape (number of topics, number of

documents).

● The combination of these two tells us how each word contributes to each

document, via some assumed middle dimension of size 10 (in this example).

That hidden dimension is our topic space!

Non-Negative Matrix Factorization (NMF)

● Since NMF assumes no negative values, so we have to be careful about any

specialized document-vectorization we do. For instance, depending on how you

normalize TF-IDF, it may be possible to end up with a negative value.

● NMF and LSA are very similar in technique, but can end up with different

results due to different underlying assumptions.

● Always try both, to see which is working better for your dataset!

Non-Negative Matrix Factorization (NMF)

NMF with Python

Output:

Input:

from sklearn.decomposition import NMF

nmf_tfidf = NMF(n_components=10)

nmf_tfidf_data = lsa_tfidf.fit_transform(tfidf_data)

show_topics(nmf_tfidf,tfidf.get_feature_names()) # a function I wrote

Topic 0: jpeg, image, gif, file, color, images, format, quality, version, files

Topic 1: edu, graphics, pub, mail, ray, send, ftp, com, objects, server

Topic 2: jesus, matthew, prophecy, people, said, messiah, isaiah, psalm, david, king

Some rules of thumb, that you will break:

● In practice, LSA/NMF tends to outperform LDA on small documents. Things like

tweets, forum posts, etc. That’s not always true, but worth keeping in mind.

● In contrast, doing LSA/NMF on HUGE documents can lead to needing 100s of

topics to make sense of things. LDA usually does a better job on big documents

with many topics.

● LSA and NMF are similar techniques and one doesn’t systematically outperform

the other.

● LSA and NMF both perform differently with TF-IDF vs Count Vectorizer vs

Binomial Vectorizers. Try them all.

Some rules of thumb, that you will break:

● If you’re getting topics that make sense,

and your code isn’t buggy, your process is

good. There’s a lot of art in NLP, and

especially in topic modeling.

Similarity

● Two similar documents should be near each other in the latent space, since they

should have overlapping topics.

● We can’t rely on Euclidean distance in this space, because we want to count

documents as similar whether they have 900 mentions of a certain topic, or

only 600 mentions of a certain topic.

● Cosine distance measures this similarity well.

Similarity Cars

Dogs

No dogs,

only cars

No cars,

only dogs

Mostly

dogs

Similarity Cars

Dogs

No dogs,

only cars

No cars,

only dogs

Mostly

dogs

Similarity Cars

Dogs

No dogs,

only cars

No cars,

only dogs

Mostly

dogs

Most similar by

Euclidean Distance

Similarity Cars

Dogs

No dogs,

only cars

No cars,

only dogs

Mostly

dogs

Most similar by

Euclidean Distance

Similarity Cars

Dogs

No dogs,

only cars

No cars,

only dogs

Mostly

dogs

Most similar by

Euclidean Distance

Similarity Cars

Dogs

No dogs,

only cars

No cars,

only dogs

Mostly

dogs

Most similar by

Cosine Distance

Similarity

● By using cosine distance in the topic space, the length of the documents doesn’t

matter – either relative or absolute.

● Comparisons in the latent space can allow us to make recommendations: “If

you like this, you’ll probably like this!”

● If we know each documents breakdown in the latent space, we can find

documents about the same topics.

Clustering

● In our latent spaces, if we’ve done our dimensionality reduction, we should get

much more meaningful clusters.

● LSA/NMF allow us to use clustering, just like LDA does.

● We also know that distances are more meaningful. So a two documents that

are very similar will have very similar place in the topic space. Example: two

articles about baseball should be very high on the “bat, glove, outfield” topic

and very low on the “gif, jpg, png” topic.

● We can use this to document recommendation too!

Clustering with Python

Input:

from sklearn.cluster import Means

clus = KMeans(n_clusters=25,random_state=42)

Note: similarity in KMeans determined by Euclidean distance

labels = clus.fit_predict(lsa_tfidf_data)

Clustering with Python

● 2D visualization of resulting 25 clusters:

Topic Modeling Summary – A Reminder

● Choose some algorithm to figure out how words are related

(LDA, LSA, NMF)

● Create a latent space that makes use of those in-document correlations to transition

from a “word space” to a latent “topic space”

● Each axis in the latent space represents a topic

● We, as the humans, must understand the meaning of the topics. The machine doesn’t

understand the meanings, just the correlations.

Appendix

Output:

Input:

from gensim import corpora, models, utils

lsi = models.LsiModel(corpus, id2word=id2word, num_topics=200)

lsi.print_topics(num_topics=2, num_words=5)

topic #0(3.341): 0.644*"system" + 0.404*"user" + 0.301*"eps" + 0.265*"time" +
0.265*"response"

topic #1(2.542): 0.623*"graph" + 0.490*"trees" + 0.451*"minors" + 0.274*"survey" + -
0.167*"system"

LSA with Python (GenSim)

Output:

Input:

from gensim import corpora, models, utils

lsi = models.LsiModel(corpus, id2word=id2word, num_topics=200)

lsi.print_topics(num_topics=2, num_words=5)

topic #0(3.341): 0.644*"system" + 0.404*"user" + 0.301*"eps" + 0.265*"time" +
0.265*"response"

topic #1(2.542): 0.623*"graph" + 0.490*"trees" + 0.451*"minors" + 0.274*"survey" + -
0.167*"system"

