
Class 3

What’s Been Discussed So Far

In class 1:

▪ Refresher on deep learning CNN algorithms

▪ What FPGAs are and why they are excellent accelerators that provide a flexible,
deterministic low-latency, high-throughput, and energy-efficient solution for accelerating
the constantly changing networks and precisions for Deep Learning (DL) inference

In class 2:

▪ The components that make up a computer vision application that includes deep learning
inference

▪ Intel is providing software that abstracts away the hardware platforms allowing computer
vision applications to run on heterogenous systems

▪ Common programming languages and libraries for computer vision applications

2

3

Agenda

Introduction to the Open Visual Inference Neural Network Optimization
(OpenVINO™) Toolkit

▪ Overview

▪ Model Optimizer

▪ Inference Engine

4

Objectives

Explain the components of the Intel® Distribution of OpenVINO™ toolkit.

Explain how to optimize a model from frameworks such as Caffe* or
TensorFlow*, into a format that the inference engine requires.

Use the inference engine to target the CPU or FPGA accelerator.

*Other names and brands may be claimed as the property of others

libraries

Intel® Deep Learning
Deployment Toolkittools

Frameworks

Intel® DAAL

hardware
Memory & Storage Networking

Intel Python
Distribution

Mlib BigDL

Intel® Nervana™ Graph

experiences

Associative
Memory Base

Intel® Distribution of
OpenVINO™ toolkit

Visual Intelligence

Intel® FPGA DL
Acceleration

Suite
Intel® Math Kernel Library

(MKL, MKL-DNN)

Compute

More
*

Intel® AI Portfolio

5*Other names and brands may be claimed as the property of others

6

Intel® Distribution of OpenVINO™ Toolkit

* OpenVX and the OpenVX logo are trademarks of the Khronos Group Inc.
OpenCL and the OpenCL logo are trademarks of Apple Inc. used by permission by Khronos

GPU = CPU with Intel® Integrated Graphics Processing Unit
VPU = Movidius™ Vision Processing UnitGPUCPU FPGA VPU

Intel® Distribution of oPENVINO™ toolkit

Trained
Models

Intel® Deep Learning Deployment Toolkit

Model Optimizer
Convert & Optimize

IR

Inference Engine
Optimized Inference

Component tools
Traditional Computer Vision

Intel® FPGA Deep Learning Acceleration Suite

OpenCV
library

OpenVX*
API

BitstreamsFPGA Runtime Environment (RTE) (from

Intel® FPGA SDK for OpenCL™)

7

Enable deployment of trained model on all Intel® architectures

▪ CPU, GPU, VPU, FPGA, …

Optimize for best execution

Enable user to validate and tune

Easy-to-use runtime API across all devices

Caffe

TensorFlow™

MxNet

Others

.bin

IR
.xml

In
fe

re
n

ce
 E

n
g

in
e

C

o
m

m
o

n
 A

P
I

 (
C

+
+

)

Load, Infer

CPU Plugin

GPU Plugin

FPGA Plugin

Model
Optimizer

Extendibility
(C++)

Extendibility
(OpenCL)

Converts and optimizes
for given target

Deep Learning Deployment Toolkit

8

Deep Learning Deployment Toolkit Details

Model Optimizer

– Imports trained models from popular deep learning
frameworks regardless of training hardware

– Conservative topology transformations

– Converts to a range of data types (Matched to HW)

Inference Engine

– Optimizes Inference execution for target hardware
(computational graph analysis, scheduling, model
compression, quantization)

– Enables seamless integration with application logic

Model Optimizer
Convert & Optimize

Inference Engine
Run!

Trained
Model

9

Deployment Toolkit Benefits

To Speed up deployment by

adjusting trained model

for target device

& providing unified optimized
inference runtime

Easy-to-use Tools:
Model Optimizer, Inference Engine,

Validation Application

Model Optimizer Quantization,
Batch-Normalization Merging

CPU, GPU, FPGA & more

Inference Engine: Simple to use unified
API of Inference Runtime
▪ API independent of training framework

& target device
▪ Lightweight to run on IoT devices

10

End-to-End Machine Learning

1
Train

2
Prepare
model

3
Inference

Trained Model

Caffe*
TensorFlow*
MXNet*

Model
Optimizer

Optimized Model

GPUCPU

MKLDNN clDNN

Inference Engine

Real-time Data

DLA
Runtime

FPGA

Agenda

▪ Introduction to Deep Learning Inference on FPGAs

▪ Model Optimizer

▪ Inference Engine

11

12

Model Optimizer

▪ Convert models from frameworks (Caffe*, TensorFlow*, MXNet*, ONNX*)

– Caffe2, PyTorch, and others via ONNX format

▪ Converts to a unified Model (IR, later n-graph)

▪ Optimizes topologies (Node merging, batch normalization elimination,
performing horizontal fusion)

▪ Folds constants paths in graph

*Other names and brands may be claimed as the property of others

13

Model Optimizer Performed Optimizations

▪ Node merging

▪ Horizontal fusion

▪ Batch normalization to scale shift

▪ Fold scale shift with convolution

▪ Drop unused layers (dropout)

▪ FP16/Int8 quantization

▪ Model optimizer can add normalization and mean operations, so some preprocessing is
‘added’ to the deep learning model

--mean_values (104.006, 116.66, 122.67)

--scale_values (0.07, 0.075, 0.084)

14

Model Optimizer Options

Option for Deployment Description

--input_model Network binary weights file
TensorFlow* .pb
Caffe* .caffemodel
MXNet* .params

--input_proto Caffe .prototxt file

--data_type IP Precision (i.e., FP16)

--scale Network normalization factor (Optional)

--output_dir Output directory path (Optional)

Python script: $MO_DIR/mo.py

Full Model Optimizer options covered in Model Optimizer documentations

15

Run Model Optimizer Caffe*

To generate IR .xml and .bin files for Inference Engine

$ source $MO_DIR/venv/bin/activate

$ cd $MO_DIR/

$ python mo.py \

--input_model <model dir>/<weights>.caffemodel \

--scale 1 \

--data_type FP16 \

--output_dir <output dir>

Start working...

Framework plugin: CAFFE

Network type: CLASSIFICATION

Batch size: 1

Precision: FP16

Layer fusion: false

Horizontal layer fusion: NONE

Output directory: /home/student/work

Custom kernels directory:

Network input normalization: 1

Writing binary data to:

/…/GoogleNet/GoogleNet.bin

16

Configure Model Optimizer for TensorFlow*

Location $MO_DIR/mo.py

Configure MO for TensorFlow*

1. Install Prerequisites (Python*, Bazel*)

2. Install TensorFlow

1. Clone TensorFlow source, checkout appropriate branch, prepare
environment, build TensorFlow, Install TensorFlow wheel

3. Build the Graph Transform Tool via bazel

4. Run model_optimizer_tensorflow/configure.py script

5. Install Model Optimizer as Python package (setup.py)

Details of each step described in the Model Optimizer documentation

17

Convert TensorFlow* Models using Model Optimizer

Generate protobuf binary file (.pb)

▪ Clone Repository with Models

▪ Checkout specific revision

▪ Go to slim directory and modify downloading logic of synset files

▪ Generate inference graph for model with export_inference_graph.py

▪ Build tool for freezing inference graph

▪ Freeze inference graph with freeze_graph

Get input and output layer names for the model using summarize_graph

▪ Build and run summarize_graph

Run Model Optimizer (mo.py)

18

Run Model Optimizer for TensorFlow*

To generate IR .xml and .bin files for Inference Engine

$ cd $MO_DIR

$ python3 mo.py \

--input_model=$MODEL_DIR/<model>.pb \

--input=<name of input layer> \

--output=<name of output layer> \

--data_type=FP16 \

--input_shape 1,244,244,3 \

--model_name <Model Name> Output File Name

Batch size, height, width, number of channels

Agenda

▪ Introduction to Deep Learning Inference on FPGAs

▪ Model Optimizer

▪ Inference Engine

19

20

Inference Engine Common API

P
lu

g
-I

n
 A

rc
h

it
e

ct
u

re

Inference
Engine
Runtime

Movidius API

Movidius™
Myriad 2

DLA

Intel® Integrated
Graphics(GPU)

CPU: Intel®
Xeon®/Core™/Atom®

clDNN PluginMKLDNN Plugin

OpenCL™Intrinsics

FPGA Plugin

Applications/Service

Intel®
FPGAs

Simple & Unified API for Inference
across all Intel® architecture (IA)

Optimized inference on large IA
hardware targets (CPU/GPU/FPGA)

Heterogeneity support allows execution
of layers across hardware types

Asynchronous execution improves
performance

Futureproof/scale your development for
future Intel® processors

Movidius
Plugin

Inference Engine Structure

Load model and weights
Set batch size (if needed)
Load Inference Plugin (CPU, GPU, FPGA)
Load network to plugin
Allocate input, output buffers

Fill input buffer with data
Run inference
Interpret output results

Initialization

Main loop

Initialize

• Fill Input
• Infer
• Interpret

Output

Inference Engine Workflow

22

Inference Engine Details

A runtime with a unified API for integrating inference with application logic

▪ Delivers optimized inference solution with reduced footprint on inference
execution for target hardware

libinference_engine.so library implements core functions

▪ Loading and parsing of model IR

▪ Preparation of input and output blobs

▪ Triggers inference using specified plug-in

Include file: inference_engine.hpp

23

Inference Engine Plugins

CPU MKLDNN Plugin (Intel® Math Kernel Library for Deep Neural Networks)

▪ Supports Intel® Xeon®/Core®/Atom® platform

▪ Widest set of network classes supported, easiest way to enable topology

GPU clDNN Plugin (Compute Library for Deep Neural Networks)

▪ Supports 9th generation and above Intel® HD and Iris graphics processors

▪ Extensibility mechanism to develop custom layers through OpenCL™

FPGA DLA Plugin

▪ Supports Intel® Arria 10 GX and above devices

▪ Basic set of layers are supported on FPGA, non-supported layers inferred through other
plugins

24

Inference Engine Classes

Class Details

InferencePlugin, InferenceEnginePluginPtr Main plugin interface

PluginDispatcher Finds suitable plug-in for specified device

CNNNetReader Build and parse a network from given IR

CNNNetwork Neural Network and binary information

Blob, TBlob, BlobMap Container object representing a tensor

InputInfo, InputsDataMap Information about input of the network

25

Inference Engine API Usage (1)

1. Load Plugin

– FPGA Plugin: libdliaPlugin.so

– Others: libclDNNPlugin.so (GPU), libMKLDNNPlugin.so (CPU)

– Plugin Dir: <OpenVINO install dir>/inference_engine/lib/<OS>/intel64

2. Load Network

InferenceEngine::PluginDispatcher dispatcher(<pluginDir>);

InferenceEngine::InferenceEnginePluginPtr enginePtr;

enginePtr = dispatcher.getSuitablePlugin(TargetDevice::eFPGA);

InferenceEngine::CNNNetReader netBuilder

netBuilder.ReadNetwork(“<Model>.xml”);

netBuilder.ReadWeights(“<Model>.bin”);

26

Inference Engine API Usage (2)

3. Prepare Input and Output Blobs

– For Input Blobs

– Allocate based on the size of the input, number of channels, batch size, etc.

– Set input precision

– Fill in data (i.e., from RGB value of image)

– For Output Blobs

– Set output precision

– Allocate based on output format

27

Inference Engine API Usage (3)

4. Load the model to the plugin

5. Perform inference

6. Process output blobs

InferenceEngine::StatusCode status=enginePtr->LoadNetwork(netBuilder.getNetwork(), &resp);

status= enginePtr->Infer(inputBlobs, outputBlobs, &resp);

const TBlob<float>::Ptr fOutput =

std::dynamic_pointer_cast<TBlob<float>>(outputBlobs.begin()->second);

Using the Inference Engine API

IR
Parse

(using CNNNetReader)
Load Network

Create Engine
Instance

Infer

auto netBuilder = new InferenceEngine::CNNNetReader();
netBuilder->ReadNetwork(“Model.xml”);
netBuilder->ReadWeights(“Model.bin")

auto enginePtr = new InferenceEngine::InferenceEnginePluginPtr(getSuitablePlugin(eFPGA));

enginePtr->LoadNetwork(*netBuilder->network, &resp);

InferenceEngine::TBlob<float> output;
InferenceEngine::SizeVector inputDims;
netBuilder->getInputDimentions(inputDims);
InferenceEngine::TBlob<short> input(inputDims);
input.allocate();
enginePtr->Infer(input, output, &resp);

CNN Network
instance

CNNNetwork instance

Pre-processing

Most image formats are interleaved (RGB, BGR, BGRA, etc.)

Models usually expect RGB planar format:

▪ R-plane, G-plane, B-plane

Interleaved Planar

30

Batch Execution

For better performance, using a larger batch size will likely help

Allocate input and output Blob according to batch size

Set the Batch size on the network

netBuilder.getNetwork().setBatchSize(<size>);

Automatic Fallback with Hetero Plugin

$ classification_sample -d HETERO:FPGA,CPU …

The “priorities” define search order

Keeps all layers that can be executed on the device (FPGA)

Carefully respecting the topological and other limitations

Then follows priorities when searching (e.g. CPU)

32

Inference Engine Example Applications

Execute samples and demos with FPGA support

▪ Shipped with the Intel® Distribution of OpenVINO™ toolkit

▪ classification_sample

▪ object_detection_sample_ssd

▪ and many others

DLA FPGA IP
CNN primitives (Conv, FC, ReLU, MaxPool, Norm..)

33

IE Software Architecture with FPGAs

Board Support Package

DLA Software Runtime

Inference Engine

OpenCL™ Runtime

Driver to the FPGA board

OpenCL API to access FPGA

DLA API

Unified API for Intel® platforms

Inference Engine Plugin FPGA Plugin

Deep Learning
Deployment Toolkit

Intel® FPGA
DLA Suite

34

Prepare FPGA Environment for Inference

Intel® FPGA Runtime Environment for OpenCL™

Prepare FPGA Board for OpenCL

Set environment

▪ Use script to ensure DLA and OpenCL libraries part of LD_LIBRARY_PATH

35

Load FPGA Image and Execute IE Application

FPGAs needs to be preconfigured with primitives prior to application execution

Choose FPGA bitstream from the DLA suite

▪ Based on topology needs and data type requirements

▪ Option to create custom FPGA bitstream based on requirements

Execute User or Example Application

36

FPGA Image Selection

Precompiled FPGA image available with the toolkit

Choose image based on

▪ Primitives needed (architecture)

▪ Data type support for accuracy/performance trade-off

▪ K (filter) and C (channel depth) vectorization for performance

▪ Data path width

▪ On-chip stream buffer depth

May also generate customized FPGA image to meet your needs

37

Heterogeneous FPGA + CPU Execution

Use HETERO plugin

▪ Functions the FPGA does not support falls back to the CPU

▪ Fallback happens automatically

Manual splitting of original network may be required

▪ One network fully accelerated on the FPGA device

▪ Second network (consumes output of the first) executed on CPU or other
devices

▪ Easier to split in original framework model

– Create separate IR and load to different Inference Engine devices

38

Summary

Intel® Distribution of OpenVINO™ toolkit provides a simple to use tool flow with
a common front end to take models from common frameworks and target
different hardware platforms easily

39

Legal Disclaimers/Acknowledgements

Intel technologies’ features and benefits depend on system configuration and
may require enabled hardware, software or service activation. Performance
varies depending on system configuration. Check with your system
manufacturer or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone,
Arria, Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of
Intel Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

http://www.intel.com/

40

