
Class 4

What We Discussed in the Previous Lesson

Using the Intel® Distribution of Open Visual Inference and Neural Network
Optimization (OpenVINO™) toolkit to bring trained models from a DL framework
into the Deep Learning Deployment Toolkit and optimize it and then deploy it
on a CPU and FPGA.

3

Agenda

Intel® FPGA Deep Learning Acceleration Suite

Execution on the FPGA

4

Objective

Explain the major components of the Deep Learning Acceleration Suite.

Explain how network topologies are mapped onto FPGA architectures using the
Intel® Distribution of OpenVINO™ toolkit.

Explain the different architectures available for the FPGA and how lower
precision is handled in those architectures.

5

Deep Learning: Training vs. Inference

Lots of
labeled data!

Training

Inference

Forward

Backward

Model weights

Forward

“Bicycle”

“Strawberry” “Bicycle”?

Error

Human
Bicycle

Strawberry

??????

libraries

Intel® Deep Learning
Deployment Toolkittools

Frameworks

Intel® DAAL

hardware
Memory & Storage Networking

Intel Python
Distribution

Mlib BigDL

Intel® Nervana™ Graph

intel® AI portfolio
experiences

Associative
Memory Base

Visual Intelligence

Intel® FPGA DL
Acceleration

Suite
Intel® Math Kernel Library

(MKL, MKL-DNN)

Compute

More
*

6

Intel® Distribution of
OpenVINO™ toolkit

*Other names and brands may be claimed as the property of others

Solving Machine Learning Challenges with FPGA

Real-Time
deterministic
low latency

Ease-of-use
software abstraction,
platforms & libraries

Flexibility
customizable hardware

for next gen DNN architectures

Intel® FPGAs can be customized
to enable advances in machine

learning algorithms.

Intel® FPGA hardware
implements a deterministic low

latency data path unlike any
other competing compute

device.

Intel® FPGA solutions enable
software-defined programming

of customized machine
learning accelerator libraries.

7

Why Intel® FPGAs for Machine Learning?

Convolutional Neural Networks are Compute Intensive

Fine-grained & low latency
between compute and memory

Convolutional Neural Networks are Compute Intensive

Function 2Function 1 Function 3

IO IO

Optional
Memory

Optional Memory

Pipeline Parallelism

Feature Benefit

Highly parallel
architecture

Facilitates efficient low-batch video
stream processing and reduces latency

Configurable
Distributed
Floating Point DSP
Blocks

FP32 9Tflops, FP16, FP11
Accelerates computation by tuning
compute performance

Tightly coupled
high-bandwidth
memory

>50TB/s on chip SRAM bandwidth,
random access, reduces latency,
minimizes external memory access

Programmable
Data Path

Reduces unnecessary data movement,
improving latency and efficiency

Configurability
Support for variable precision (trade-off
throughput and accuracy). Future proof
designs, and system connectivity

8

FPGAs Provide Deterministic System Latency

FPGAs leverages parallelism across the entire chip to reduce compute latency

FPGAs have flexible and customizable I/Os with low & deterministic I/O latency

FPGA Xeon

I/O Latency

Compute Latency

System Latency = I/O Latency + Compute Latency

9

I/O Latency

Intel® FPGAs

Future Proof: Rapid Innovation of DL Topologies

▪ Deep Learning is undergoing constant innovation

– Better Accuracy/Higher Compute Density

▪ Efforts to improve throughput and efficiency are ongoing

– Batching, Sparsity, Weight Sharing, Compression, etc.

▪ This rapid and constant evolution can present a challenge if implemented on
a fixed architecture (e.g., a GPU) . . .

Ideal for an Intel® FPGA!

10

11

Intel® FPGA Deep Learning Acceleration Suite

CNN acceleration engine for common
topologies executed in a graph loop
architecture

▪ AlexNet, GoogleNet, LeNet, SqueezeNet,
VGG16, ResNet, Yolo, SSD…

Software Deployment

▪ No FPGA compile required

▪ Run-time reconfigurable

Customized Hardware Development

▪ Custom architecture creation w/ parameters

▪ Custom primitives using OpenCL™ flow

Convolution PE
Array

Crossbar

prim prim prim custom

D
D

R

Memory
Reader
/Writer

Feature Map Cache

D
D

R

Config
Engine

FPGA Usage with Intel Distribution of OpenVINO™ toolkit

▪ Supports common software frameworks (Caffe*, TensorFlow*)

▪ Model Optimizer enhances model for improved execution,
storage, and transmission

▪ Inference Engine optimizes inference execution across Intel®
hardware solutions using unified deployment API

▪ Intel® FPGA DLA Suite provides turn-key or customized CNN
acceleration for common topologies

GoogLeNet Optimized Template

ResNet Optimized Template

Additional, Generic CNN Templates

SqueezeNet Optimized Template

VGG Optimized Template

OpenVINO™ toolkit /
Intel® Deep Learning
Deployment Toolkit

Intel®
Xeon®

Processor

Conv
PE Array

Crossbar

DDR

Memory
Reader
/Writer

Feature Map Cache

DDR

DDR

DDR

Config
Engine

Trained Model
Caffe*, TensorFlow*, etc…

Heterogenous
CPU/FPGA

Deployment

Optimized Acceleration Engine
Pre-compiled Graph Architectures

Hardware Customization Supported

Model Optimizer

FP Quantize

Model Compress

Model Analysis

Inference Engine
DLA Runtime

Engine
MKL-DNN

Intel®
FPGA

Intermediate
Representation

*Other names and brands may be claimed as the property of others

13

DLA User Flows

IP
Architect

Neural
Net

Design
Intel® FPGA SDK

for OpenCL™

Bitstream
Library

Application
Developer

Compile

User Customization
of DLA Suite
Source Code

Intel® Distribution of
OpenVINO™ toolkit

Turnkey Software Deployment Flow

FPGA Architecture Development Flow

Design ProgramRun

Choose from many
precompiled FPGA Images

Or

Custom create
FPGA bitstream

14

Customization for Architecture Developers

Add a custom primitive into crossbar

▪ Primitive types supported:

– Unary (ReLU, Tanh, Abs, Power, …)

– Binary (Eltwise Add, Mult, …)

▪ Parameterizable from Deep Learning
Framework

Convolution PE
Array

Crossbar

prim prim prim custom

D
D

R

Memory
Reader
/Writer

Feature Map Cache

D
D

R

Config
Engine

custom

15

Machine Learning on Intel® FPGA Platform

Acceleration Stack Platform Solution

DLA Runtime Engine DLA Workload

OpenCL™ Runtime
BBS

Hardware
Platform & IP

Software Stack

DL Deployment Toolkit

Acceleration Stack

Application

PAC Family
Boards

Intel® Xeon
CPU

ML Framework (Caffe*,
TensorFlow*)

For more information on the Acceleration Stack for Intel® Xeon® CPU with FPGAs on
the Intel® Programmable Acceleration Card, visit the Intel® FPGA Acceleration Hub

Also will be available on other
platforms in the near future

https://www.altera.com/solutions/acceleration-hub/acceleration-stack.html

16

DLA Architecture: Built for Performance

Maximize Parallelism on the FPGA

▪ Filter Parallelism (Processing Elements (PE))

▪ Input-Depth Parallelism

▪ Winograd Transformation

▪ Batching

▪ Feature Stream Buffer

▪ Filter Cache

Choosing FPGA Bitstream

▪ Data Type / Design Exploration

▪ Primitive Support
ReLU

Convolution /

Fully

Connected

Norm MaxPool

Stream Buffer

Conv
PE

Array

Crossbar

ReLU
Max
Pool

DDR

Memory
Reader
/Writer

Feature Map Cache

DDR

DDR

DDR

Config
Engine

Norm

Execute

CNN Computation in One Slide

Inew 𝑥 𝑦

= ෍

𝑥′=−1

1

෍

𝑦′=−1

1

Iold 𝑥 + 𝑥′ 𝑦 + 𝑦′ × F 𝑥′ 𝑦′

Input Feature Map

(Set of 2D Images)

Filter

(3D Space)

Output Feature

Map

Repeat for Multiple Filters

to Create Multiple “Layers”

of Output Feature Map

17

18

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected
Norm MaxPool

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer

19

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected
Norm MaxPool

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer

output

input

20

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected
Norm MaxPool

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer
output

input

21

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Stream Buffer

output

input

Blocks are run-time reconfigurable and bypassable

22

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer
output

input

23

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer

output

input

MaxPool

24

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer
output

input

25

Mapping Graphs in DLA

ReLU
Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer

output

input

26

Mapping Graphs in DLA

Convolution /

Fully Connected

AlexNet Graph

Conv ReLu Norm MaxPool Fully Conn.

Blocks are run-time reconfigurable and bypassable

Stream Buffer
output

input

Efficient Parallel Execution of Convolutions

Parallel Convolutions
▪ Different filters of the same

convolution layer processed in
parallel in different processing
elements (PEs)

Vectored Operations
▪ Across the depth of feature map

PE Array geometry can be
customized to hyperparameters
of given topology

FPGA

Double-Buffer

On-Chip RAM

Filters
(on-chip RAM)

F
ilt

e
r

P
a

ra
lle

lis
m

(O
u

tp
u

t
D

e
p

th
)

External DDR

28

Winograd Transformation

Perform convolutions with fewer multiplication

▪ Allows more convolutions to be done on FPGA

Take 6 input features elements and 3 filter elements

▪ Standard convolution requires 12 multiplies

▪ Transformed convolution requires just 6 multiplies

ReLU

Convolution /

Fully

Connected

Norm

MaxPool

Winograd

Transform

Stream Buffer

Winograd

Transform

29

Fully Connected Computation and Batching

Fully Connected Layer computation does not allow for data reuse of weights

▪ Different from convolutions

▪ Very memory bandwidth intensive

Solution: Batch up images

▪ Weights reused across multiple images

𝑜 = 𝑰𝒗𝒆𝒄 ∗ 𝑾𝒗𝒆𝒄

…

𝑶𝒗𝒆𝒄 = 𝑰𝒎𝒂𝒕 ∗ 𝑾𝒗𝒆𝒄

Batching

30

Feature Data Cached On-Chip

Streamed to a daisy chain of parallel processing elements

Double buffered

▪ Overlap convolution with cache updates

▪ Output of one subgraph becomes input of another

▪ Eliminates unnecessary external memory accesses

Double-Buffer

On-Chip RAM

Stream buffer size

31

Filter Weights Cached in Each PE

Double buffered in order to support prefetching

▪ While one set is used to calculate output feature maps, another set is
prefetched

DDR
Conv Conv

DDR

32

DLA Architecture Selection

▪ DLDT ships with many FPGA images for various boards/data types/topologies

– <version>_<board>_<data type>_<Topologies/Feature>.aocx

– 4-0_PL1_FP11_GoogleNet.aox

– 4-0_RC_FP16_MobileNet_ResNet_VGG_Clamp.aocx

▪ Find ideal FPGA image that meets your needs

▪ Check documentation for list of FPGA images and supported topologies

– https://software.intel.com/en-us/articles/OpenVINO-InferEngine#fpga-plugin

▪ Create custom FPGA image based on need

▪ Example: ResNet focused image does not have Norm (better performance)

https://software.intel.com/en-us/articles/OpenVINO-InferEngine#fpga-plugin

33

Support for Different Topologies

Tradeoff between features and performance

Convolution PE Array

Crossbar

ReLU Norm MaxPool

Memory
Reader
/Writer

Feature Map Cache

Config
Engine

Convolution PE Array

Crossbar

ReLU Norm MaxPool

Memory
Reader
/Writer

Feature Map Cache

Config
Engine

LRN

Permute

Concat FlattenSoftMax

Reshape

vs

34

Supported Primitives and Topologies

TopologiesPrimitives

✓ Conv ✓ ReLu, Leaky ReLU

✓ Concat ✓ Eltwise

✓ Pooling ✓ Power

✓ ScaleShift ✓ Batch Norm

✓ Fully Connected ✓ LRM Normalization

✓ Custom

✓ AlexNet

✓ GoogLeNet ✓ SSD

✓ ResNet-18/50/101/152 ✓ SSD

✓ SqueezeNet ✓ SSD

✓ VGG-16/19 ✓ SSD

✓ Tiny Yolo

✓ LeNet

✓ MobileNet v1/v2

35

Design Exploration with Reduced Precision

Tradeoff between performance and accuracy

▪ Reduced precision allows more processing to be done in parallel

▪ Using smaller Floating Point format does not require retraining of network

▪ FP11 benefit over using INT8/9

– No need to retrain, better performance, less accuracy loss

FP11
FP10
FP9

Sign, 5-bit exponent, 10-bit mantissaFP16
Sign, 5-bit exponent, 5-bit mantissa

Sign, 5-bit exponent, 4-bit mantissa

Sign, 5-bit exponent, 3-bit mantissa

36

Summary

Deep Learning Accelerator Suite contains a library of architectures that support
a variety of different primitive and topologies.

Intel® Distribution of OpenVINO™ toolkit can be used to map a trained network
onto the FPGA architecture without needing an FPGA recompile or reload.

FPGAs can implement lower precision without the need to retrain.

The DLA architectures can be customized to add new primitives.

37

Legal Disclaimers/Acknowledgements

Intel technologies’ features and benefits depend on system configuration and
may require enabled hardware, software or service activation. Performance
varies depending on system configuration. Check with your system
manufacturer or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone,
Arria, Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of
Intel Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

http://www.intel.com/

38

