
Class 5

What We Discussed in the Previous Lesson

Using the Deep Learning Accelerator Suite to implement CNN networks on the
FPGA with the OpenVINO™ toolkit

The different architectures and primitives that are provided as part of the DLA
Suite, how they are implemented on the FPGA and how they can be customized

2

Agenda

Introduction and acceleration stack overview

Developing a SW host application

Getting Acceleration Functions

Getting started with the Acceleration Stack

3

4

Objectives

Explain How the acceleration stack enables abstraction of the FPGA in
Cloud/Enterprise clusters transparently

Define the process for a host application to discover and configure an FPGA
accelerator

Explain where to get accelerated functions for the FPGA

Define the process to create an accelerator function unit for the FPGA

Explain the process for adding an FPGA accelerator card into a cluster and
installing the acceleration stack

Relate sample designs to get started

5

The Future is Heterogenous

Span from CPU, GPU, FPGA to dedicated devices with
consistent programming models, languages, and tools

CPUs GPUs FPGAs ASSP

6

Separation of Concerns

Two groups of developers:

▪ Domain experts concerned with getting a result

– Host application developers leverage optimized libraries

▪ Tuning experts concerned with performance

– Typical FPGA developers that create optimized libraries

Intel® Math Kernel Library is a simple example of raising the level of abstraction
to the math operations

▪ Domain experts focus on formulating their problems

▪ Tuning experts focus on vectorization and parallelization

7

FPGA Enabled Performance and Agility

z

Workload N
Workload 2

Workload 1

Efficient Performance:
improve performance/watt

Workload Optimization:
ensure Xeon cores serve their
highest value processing

Real-Time: high bandwidth
connectivity and low-latency
parallel processing

Milliseconds

FPGAs enhance CPU-based processing by accelerating algorithms and minimizing bottlenecks

Developer Advantage: code
re-use across Intel FPGA data
center products

8

Using FPGAs Just Got Easier

FPGA IO InterfacesOS Driver

Low-Level FPGA Management

Gap: Creating Full-Stack Accelerated
Applications on FPGA is Difficult and

Time Consuming

Open Programmable
Acceleration Engine (OPAE) FPGA Interface Manager

(Standard I/O Interfaces)

Prebuilt and provided
for specific board

Provides standard C API to
standardized FPGA interface manager

Accelerator Function (AF)
(Loadable Workload)

Libraries

Software Frameworks

User Application User Design

Increase
Abstraction

Increase
User Base

Orchestration / Rack
Management

Programmable Accelerator Card

Core Cache Interface

Ecosystem of FPGA
Workloads

Application & FPGA
Development

FPGA Deployment
& Management

Data Center Operator
Integrated Services

Vendors

HW &
SW Developer

End Application
User

Enabled by

9

Loadable AFU image(.gbs)

FPGA Platforms (Programmable Acceleration Cards)

Intel Xeon FPGA
Acceleration Libraries

Frameworks

Orchestration / Rack Level Management

FPGA Interface
Manager (FIM)

Intel® DAAL
Intel® MKL
Intel® MKL-DNN

Rack Scale Design

Hardware

Vertical Software
Frameworks/Libs
(DL, Networking,
Genomics, etc.)

Applications/
Orchestration

Intel® DL Deployment Toolkit

The Acceleration Stack for Intel® Xeon CPU w/ FPGA

10

IP Libraries: DLA, GEMM, VirtIO, pHMM
Compression, Encryption, etc..

Open Programmable Acceleration Engine
(OPAE Software API)

Drivers, virtualization, API’s, acceleration engine
Intel FPGA SDK for OpenCL™, Intel Quartus® Prime

FPGA Images

User Applications Deep Learning, Networking, Genomics, etc.

Operating Systems OS Enablement: Linux, ESXi, Windows

FPGA HW & SW
Tool Chains

✓ Simplify FPGA
programming model

Common Infrastructure

*Other names and brands may be claimed as the property of others

11

Orchestrating FPGA-accelerated applications

End User
Developed IP

Static/Dynamic
FPGA Programming

Place
Workload

Storage Network

Orchestration Software (FPGA Enabled)

Intel
Developed IP

3rd -Party
Developed IP

Compute

Resource Pool

Software-Defined Infrastructure

Public and Private
Cloud Users

IP Repository

Launch Workload

Workload

Accelerators

Workload N
Workload 2

Workload 1

VM AF

Programmable Acceleration Card with Arria 10 FPGA
• Low-profile (half-length, half height) PCIe* slot card
• 168 mm × 56 mm
• Maximum component height: 14.47 mm

• PCIe × 16 mechanical

• Powered from PCIe+12V rail
• 70 W total board power
• 45 W FPGA power

• 2 – Banks of DDR4-2133 SDRAM, 4 GB each
• 64 bit data, 8 bit ECC
• Total 8 GB

• USB 2.0 port for
board firmware
update and FIM

image recovery

• Board Management Controller (BMC)
• Server class monitor system
• Accessed via USB or PCIe

• 128 MB Flash
• For storage of FPGA

configuration

• QSFP+ Slot
accepts
pluggable

optical modules

PCIe X 8 Gen3
connectivity to
Xeon host

12

FPGA Hardware + Interface Manager

FPGA Driver
(physical function – PF)

FPGA API (C) (enumeration, management, access)

Applications, Frameworks, Intel® Acceleration Libraries

Start developing for Intel FPGAs with OPAE today: http://01.org/OPAE

Bare Metal OS Virtual Machine

FPGA Driver
(virtual function - VF)

OS, Hypervisor

FPGA Driver (common – AFU, local memory)

Consistent API across product generations and platforms
▪ Abstraction for hardware specific FPGA resource details

Designed for minimal software overhead and latency
▪ Lightweight user-space library (libfpga)

Open ecosystem for industry and developer community
▪ License: FPGA API (BSD), FPGA driver (GPLv2)

FPGA driver being upstreamed into Linux kernel

Supports both virtual machines and bare metal platforms

Faster development and debugging of Accelerator Functions
with the included AFU Simulation Environment (ASE)

Includes guides, command-line utilities and sample code

13

Open Programmable Acceleration Engine (OPAE)
Simplified FPGA Programming Model for Application Developers

OS

http://github.com/OPAE

14

FPGA Accelerator Appears as PCIe Device

From the OS’s point of view

▪ FPGA hardware appears as a regular PCIe device

▪ FPGA accelerator appears as a set of features accessible by software programs
running on host

Unified C API model

▪ Supports different kinds of FPGA integration and deployment. (E.g.: A single
application can use the FPGA to accelerate certain algorithms)

▪ Resource management and orchestration services in a data center use to discover and
select the FPGA resources and organize them to be used by the workloads

Architecture supports Single Root I/O Virtualization (SROIV) PCIe extension enabling host
software to access the accelerator:

▪ Via a hypervisor/VMM (Virtual Function)

▪ Bypassing the VMM/Hypervisor Physical Functions

User Application Software

Orchestration Services

Application Libraries

Operating System

Drivers

Hypervisor

Intel® Xeon®

OPAE

AFU
FPGA

15

FPGA Driver Architecture
FME: FPGA Management Engine Driver

– Static circuits for power/thermal management,
reconfiguration, debugging, error reporting, performance
counters, etc.

Port:

– Interface between the static (FIM) and the reconfigurable
Acceleration Function (AF) region

– Controls communication from software to the accelerator

– Expose features such as reset and debug

– There may be multiple ports exposed through a VF

AFU: Accelerator Function Unit Driver

– Exposes a 256KB region as control registers through Port

– Reconfigurable circuits for application specific functions

– User process can share memory buffers with AFU

Virtual
FunctionPhysical Function

FME
Driver

AFU
Driver

Port

. . . .

OPAE Lib

Kernel Space

User Space

FPGA device driver

OPAE Lib

OPAE C API OPAE C API

AFU
Driver

Port

16

How HOST APPLICATIONS ENUMERATE the FPGA DEVICE: Sysfs

/sys/class/fpga/

Intel-fpga-dev.0

Intel-fpga-fme.0

socket_id

Perf

Iommu

Clock

CachePower

pr

Thermal_mgmt

Intel-fpga-port.0

Intel-fpga-dev.1

Intel-fpga-fme.1

Intel-fpga-port.1

Ex:

2 Intel(R) FPGA devices are installed in the host

Each FPGA device has one FME and one Port (AFU)

SW Application Development
For Acceleration Stack

17

18

The OPAE Library at a Glance

Enumerate, access, and manage FPGA
resources through API objects

A common interface across different FPGA
form factors

C API designed for extensibility

AFU Simulation Environment (ASE) allows
developing and debugging accelerator
functions and software applications without an
FPGA

Tools for partial reconfiguration, FPGA
hardware information, error reporting, etc.

Core Library
AFU Simulation

Environment
(ASE)

Tools
Documents

and Samples

Header files

(C API)

Runtime

Libraries
(*.so)

ASE

Libraries
(*.so)

fpgaconf

fpgainfo

fpgad

fpgadiag

19

Application Development with OPAE

User application
myapp.c

links against

includes OPAE C API

fpga.h

access.h

buffer.h

enum.h

event.h

utils.h

manage.h

mmio.h

properties.h

types.h

umsg.h

OPAE C library
(or, ASE OPEA C library)

implements

OPAE Intel FPGA driver
(or, RTL simulator)

interacts with

Object model

20

The OPAE Library Programming Model

Discover /
search resource

Acquire
ownership of

resource

Map AFU
registers to user

space

Allocate /
define shared
memory space

Start / stop
computation on

AFU and wait
for result

Deallocate
shared memory

Relinquish
ownershipReconfigure

AFU

Properties
Object

Token
Object

Handle
Object

Unmap MMIO

21

The OPAE Object Model

Properties
fpga_properties

Token
fpga_token

Handle
fpga_handle

describes a
resource

identifies a
resource

signifies
ownership

query information about a resource
enumerate resources based on criteria

acquire ownership of a resource

22

fpga_properties Object

An opaque type for a properties object
used by application to query and search
for appropriate resources

2 Object types for FPGA resources

▪ FPGA_DEVICE

– Corresponds to physical FPGA device

– Can invoke management functions

▪ FPGA_ACCELERATOR

– Represents an instance of an AFU

Defined in types.h file

Property FPGA* Accelerator* Description

Parent No Yes fpga_token of the parent object

ObjectType Yes Yes
The type of the resource : either FPGA_DEVICE or
FPGA_ ACCELER ATOR

Bus Yes Yes The bus number

Device Yes Yes The PCI device number

Function Yes Yes The PCI function number

SocketId Yes Yes The socket ID

DeviceId Yes Yes The device ID

NumSlots Yes No
Number of AFU slots available on an
FPGA_DEVICE resource

BBSID Yes No
The FPGA Interface Manager (FIM) ID of an
FPGA_DEVICE resource

BBSVersion Yes No The FIM version of an FPGA_DEVICE resource

VendorId Yes No The vendor ID of an FPGA_DEVICE resource

Model Yes No The model of an FPGA_DEVICE resource

LocalMemory Size Yes No
The local memory size of an FPGA_DEVICE
resource

Capabilities Yes No The capabilities of an FPGA_DEVICE resource

GUID Yes Yes
The Global Unique Identifier of an FPGA_DEVICE
or FPGA_ACCELERATOR resource

NumMMIO No Yes
The number of MMIO space of an
FPGA_ACCELERATOR resource

NumInterrupts No Yes
The number of interrupts of an
FPGA_ACCELERATOR resource

Accelerator State No Yes
The state of an FPGA_ACCELERATOR resource:
either FPGA_ACCELERATOR_ASSIGNED or
FPGA_ACCELER ATOR_UNASSIGNED

*FPGA and Accelerator state whether or not the property is available for the FPGA or Accelerator objects

23

Creating fpga_properties object

Initializes memory pointed at by prop to represent properties object

Populates with properties of the resource referred to by token

▪ Passing NULL token creates empty properties object which would match all FPGA resources in the
enumeration query

▪ Refine query criteria using fpgaPropertiesSet*() functions

Individual properties can be queried using fpgaPropertiesGet*() accessor functions

Destroy fpga_properties object using fpgaDestroyProperties() function

Located in properties.h file

fpga_result fpgaGetProperties(fpga_token token, fpga_properties *prop)

Error code

* Target property f rom f pga_properties object (i.e. f pgaSetObjectTy pe()

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv210fpga_token
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv215fpga_properties

Function that searches for FPGA resources in system that match criteria (may be more than one)

▪ All accelerators assigned to a host interface, all FPGAs of a specific type, etc.

Creates fpga_token objects and populates the array with these tokens

▪ Number of tokens in the returned tokens array, either max_tokens or num_matches whichever is smaller

Free the memory with tokens no longer needed using the fpgaDestroyToken() function

Located in enum.h file

24

Create an fpga_token
FPGA resource

to look for

Array of tokens to be populated

fpga_result fpgaEnumerate(const fpga_properties *filters, uint32_t num_filters, fpga_token *tokens,
uint32_t max_tokens, uint32_t *num_matches)

Error code

Number of

entries in array

Limit number of tokens

allocated/returned

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv215fpga_properties
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv210fpga_token

25

Receive fpga_handle

Acquires ownership of FPGA resource referenced by token

Ownership required to interact with accelerator function

Remains open until fpga_Close() function called or process terminates

▪ Can also reset accelerator using fpga_Reset() function

Located in access.h file

fpga_result fpgaOpen(fpga_token token, fpga_handle *handle, int flags)

Error code
Allows resource to be opened multiple times

(FPGA_OPEN_SHARED)

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv210fpga_token
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_handle

<empty>
objtype: FPGA_ACCELERATOR

guid: 0xabcdef

26

Enumeration and Discovery

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

fpga_properties prop;

fpga_token token;

fpga_guid myguid; /* 0xabcdef */

fpgaGetProperties(NULL, &prop);

fpgaPropertiesSetObjectType(prop, FPGA_ACCELERATOR);

fpgaPropertiesSetGUID(prop, myguid);

fpgaEnumerate(&prop, 1, &token, 1, &n);

fpgaDestroyProperties(&prop);

link
fpga_properties prop fpga_token token

<internal reference to accelerator

resource>

fpgaEnumerate()

fpga_handle handle

<internal reference to accelerator

resource>

fpgaOpen()

27

Acquire and Release Accelerator Resource

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

fpga_token token;

// ... enumeration ...

fpga_handle handle;

fpgaOpen(token, &handle, 0);

.

.

.

fpgaClose(handle);

link
fpga_token token

<internal reference to accelerator

resource>

SW application process
address space

(virtual)

28

Memory-Mapped I/O

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

control register

control register

control register

TEXT

DATA

BSS

SW application

fpgaMapMMIO(…, &mmio_ptr)

control registercontrol register

control register

control register
fpgaReadMMIO()

fpgaWriteMMIO()

mmio_ptr

libopae-c

29

MMIO Read/Write

Performs 64bit MMIO space write of value to specified byte offset

▪ Also supports 32 bit MMIO writes using fpgaWriteMMIO32() function

Reads use fpgaReadMMIO64() or fpgaReadMMIO32() functions

Located in mmio.h file

fpga_result fpgaWriteMMIO64(fpga_handle handle, uint32_t mmio_num, uint64_t offset, uint64_t value)

Error code

Handle of previously opened
accelerator resource

Number of MMIO
space to access

https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_result
https://opae.github.io/0.13.0/docs/fpga_api/fpga_api.html#_CPPv211fpga_handle

30

Management and Reconfiguration

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

Storage

GBS file
xyz.gbs

SW application
(with admin privilege)

FPGA_ACCELERATOR

AFU_ID: 0xbe11e5

fpgaReconfigureSlot(…, buf,

len, 0)

load

GBS metadata
interface_id

afu_id

…

libopae-c

Partial configuration

31

Management and Reconfiguration

FPGA_DEVICE

FPGA_ACCELERATOR

AFU_ID: 0xabcdef

link

fpga_handle handle; /* handle to device */

FILE *gbs_file;

void *gbs_ptr;

size_t gbs_size;

/* Read bitstream file */

gbs_ptr = malloc(gbs_size);

fread(gbs_ptr, 1, gbs_len, gbs_file);

/* Program GBS to FPGA */

fpgaReconfigureSlot(handle, 0, gbs_ptr, gbs_size, 0);

/* ... */

FPGA_ACCELERATOR

AFU_ID: 0xbe11e5

32

OpenCL Development Approach

OpenCL™ Programming

OpenCL
Kernels

exe AFU
Bitstream

SW
Compiler

OpenCL
Compiler

OpenCL
Emulator

OPAE
Software FIM

CPU FPGA

AFU (incl.
OpenCL Support

Package)
Application

OpenCL
Host

Standard C/C++ Compiler linked with
▪ Intel® FPGA OpenCL Library
▪ OpenCL Support Package for Acceleration Stack

Library
▪ OPAE Library

Intel® FPGA Kernel Compiler (aoc)
▪ Compiles OpenCL kernel code
▪ Generates RTL
▪ Invokes Intel® Quartus Prime Design Software

FPGA Bitstream(<file>.aocx)
▪ Contains AFU .gbs file
▪ And other OpenCL kernel related information

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

33

Software Application Flow using OpenCL™

No different from traditional OpenCL™ flow

▪ C based development and optimization flow to create AFUs and Host Application

▪ Standard OpenCL™ FPGA application using the Intel® FPGA SDK for OpenCL

– FPGA OpenCL™ debug and profiling tools supported

▪ More information on using OpenCL with FPGAs

The Acceleration Stack abstracted away from user

▪ OPAE part of the Host Run-Time

– Host does not need to interact with OPAE SW directly

▪ OpenCL™ Support Package(OSP) part of the FPGA Interface Manager

– Kernel Avalon interface translated to CCI-P by the OSP

To learn more about using OpenCL with FPGAs, visit Intel FPGA Customer Training page

http://www.altera.com/opencl
https://www.altera.com/support/training/catalog.html?keywords=opencl

FPGA Interface Manager
(BBS)

AFU (GBS)

OpenCL

Host

OpenCL

Support
Package

HW

34

OpenCL™ Adds HW and SW Abstraction

CPU

FPGA

FPGA

Interface
Unit

OpenCL

Kernel
OpenCL

Kernel
OpenCL

KernelOPAE

OSP MMD

OpenCL

Runtime

PCIe*

DDR

External Memory

Interface

DDR

External Memory

Interface

CCI-P

Software
Stack

Software Stack and the OpenCL™ MMD Layer

Memory-Mapped Device (MMD) SW connects board driver to OpenCL runtime

▪ For the Acceleration Stack it links the OpenCL API to OPAE

Uses DMA BBB software driver unmodified and runs it in a separate thread.

OpenCL Host Application

OPAE Driver (Kernel Space)

OPAE Library

OpenCL MMD Layer for Intel® PAC

OpenCL Runtime Library from Intel®

CPU and FPGA Hardware

OPAE Calls: fpgaOpen, fpgaClose, fpgaReadMMIO, fpgaWriteMMIO

MMD Layer Calls: aocl_mmd_open/close, aocl_mmd_read/write

OpenCL Calls: clEnqueueWriteBuffer, clEnqueueReadBuffer, clEnqueueNDRangeKernel

36

OpenCL™ with Acceleration Stack Features

Standard OpenCL FPGA application can be used as is for the Acceleration Stack

▪ No code changes necessary, just switch the OSP in the compilation environment

– Acceleration Stack functionality built into the OpenCL Support Package

Easily leverage the capabilities of the Acceleration Stack

▪ Allow OpenCL to be used with virtualization

▪ No need develop RTL conforming to CCI-P interface

▪ No need to code at the lower OPAE level

Switch between OpenCL and Non-OpenCL Acceleration Stack applications without
rebooting

▪ FPGA Interface Manager for both are the same

Accelerator Functional Units
(AFU)

37

38

How Can FPGA Accelerators Be Created?

Accelerator
Functional
Unit (AFU)

Self-Developed Externally-Sourced

VHDL or Verilog
C/C++ Programming

Language Ecosystem Partner

Performance OptimizedHigher Productivity Contracted EngagementIntel® Reference Designs

Intel® HLS Compiler

Intel® FPGA SDK for

OpenCL™

Programmable Solutions Group 39

Growing List of Accelerator Solution Partners

*Other names and brands may be claimed as the property of others

Programmable Solutions Group 40

Machine Learning on Intel® FPGA Platform

Acceleration Stack Platform Solution

DLA Runtime Engine DLA Workload

OpenCL™ Runtime
BBS

Hardware
Platform & IP

Software Stack

DL Deployment Toolkit

Acceleration Stack

Application

PAC Family
Boards

Intel® Xeon
CPU

ML Framework (Caffe*,
TensorFlow*)

Ships with bitstreams for FPGA as part of OpenVINO™ toolkit

Intel® HLS
Compiler

41

Accelerator Functional Unit Development

HDL Programming OpenCL Programming

HDL

SW
Compiler

exe AFU
Image

Syn.
PAR

OPAE
Software FIM

CPU FPGA

AFU
Applicatio

n
AFU

Simulation
Environment

(ASE)

C

ASE
from Intel

OPAE
from Intel

Intel® Quartus
Prime Pro

Kernels

exe
AFU

Image

SW
Compiler

OpenCL
Compiler

OpenCL
Emulator

OPAE
Software FIM

CPU FPGA

AFUApplication

Host

Intel® FPGA SDK for OpenCL™

http://en.wikipedia.org/wiki/File:OpenCL_Logo.png

Programmable Solutions Group 42

FPGA Components (Acceleration Stack v1.1)

FPGA

Accelerator
Functional Unit (AFU)

DDR4

PCIe*

Partial
Reconfiguration
(PR) Region

FPGA
Interface

Unit
(FIU)

Core Cache
Interface

(CCI)

• Could be other interfaces in the future (e.g. UPI)
• ** Available in v1.1 of Acceleration Stack

QSFP+ 10Gb/40Gb

High Speed
Serial

Interface**

(HSSI)

DDR4
Local

Memory
Interfaces

EMIF

EMIF

*Other names and brands may be claimed as the property of others

Hardware System

43

AFU Overview Flow

AF Simulation Environment (ASE) enables seamless portability to real HW

▪ Allows fast verification of OPAE software together with AF RTL without HW

– SW Application loads ASE library and connects to RTL simulation

▪ For execution on HW, application loads Runtime library and RTL is compiled
by Intel® Quartus into FPGA bitstream

AFU Simulation
Environment

Xeon® FPGA

Simulation
Compilation

AFU RTL

OPAE SW
Application

Quartus®
Compilation

Software
Compilation

Test &
Validate AFU

Generate the
AF

Getting Started

44

Out-of-Box Flow for Acceleration Stack

Buy Server
w/ PAC

Download & Install
Deployment Package
of Acceleration Stack

Intel Website

Deployment
Flow

Development
Flow

Download & Install
Developer Package

of Acceleration
Stack

Install
Supported

OS

Supported OEM
Server Website

(e.g. Dell)

Vendor Website
(e.g. Red Hat)

Download &
Install

Workload

Download &
Install

Simulator

Download &
HLS or OpenCL

(Optional)

Write Host
Application

Vendor Website

Create &
Simulate
Workload

45

46

Download Acceleration Stack on Acceleration Hub

47

Example Designs to Get Started

Example Description

Hello AFU Simple AFU with direct CCI connection for MMIO access

Hello Intr AFU Example use of user interrupts

Hello Mem AFU Example showing using USR Clock to auto close timing in
the AFU

DMA AFU Example DMA AFU to move data between host memory
and local FPGA memory. Uses BBB and bridges Avalon to
CCI

Streaming DMA AFU Example DMA AFU to move data between host memory
and the AFU directly as a streaming packet

Eth e2e e10 10Gb Ethernet loopback design

Eth e2e e40 40Gb Ethernet loopback design

NLB mode 0 Native LoopBack adaptor (rd/wr) with more features

NLB mode 0 stp Native LoopBack adaptor with SignalTap remote debug

NLB mode 3 Native LoopBack adaptor (rd/wr)

.

48

Recommended Getting Started Process

Install VM with Linux and install Acceleration Stack Development Flow

Run through quick start guide to validate environment

▪ Run ASE on Hello AFU

▪ Regenerate hello_afu .gbs file and host software application

If applicable, run the OpenCL example

Examine the DMA_AFU and/or Streaming_DMA_AFU example to understand how to move data using DMA
with AFU

Create your own by modifying one of the example designs (e.g. DLA through OpenVINO™ toolkit)

Follow-On Training:

Instructor Led Training Courses

▪ Introduction to High-Level Synthesis with Intel® FPGAs

▪ High-Level Synthesis Advanced Optimization Techniques

▪ Introduction to OpenCL

▪ Optimizing OpenCL™ for Intel® FPGAs (16 Hours Course)

Online Training Course

▪ Introduction to the Acceleration Stack for Intel® Xeon w/
FPGA

▪ OpenCL™ Development with the Acceleration Stack

▪ RTL development and acceleration with the Acceleration
Stack

▪ Application Development on the Acceleration Stack for
Intel® Xeon® CPU with FPGAs

▪ Introduction to High-Level Synthesis (7 courses)

▪ Introduction to Parallel Computing w/ OpenCL on FPGAs

▪ Deploying Intel FPGAs for Inferencing with OpenVINO
Toolkit

▪ Programmers’ Introduction to the Intel® FPGA Deep
Learning Acceleration Suite

https://www.altera.com/support/training/overview.html

https://www.altera.com/support/training/overview.html

50

Summary

Acceleration Stack for Intel Xeon CPU with FPGAs enables seamless integration
of the FPGA accelerators into clusters

DLA Suite comes with OpenVINO as bitstreams for the PAC cards that runs on
the acceleration stack

The OPAE software layer makes adoption of the FPGA into the host application
code seamless and

The acceleration stack makes building accelerator functions much faster and
board agnostic through the use of a standardized FIM

51

Legal Disclaimers/Acknowledgements

Intel technologies’ features and benefits depend on system configuration and
may require enabled hardware, software or service activation. Performance
varies depending on system configuration. Check with your system
manufacturer or retailer or learn more at www.intel.com.

Intel, the Intel logo, Intel Inside, the Intel Inside logo, MAX, Stratix, Cyclone,
Arria, Quartus, HyperFlex, Intel Atom, Intel Xeon and Enpirion are trademarks of
Intel Corporation or its subsidiaries in the U.S. and/or other countries.

OpenCL is the trademark of Apple Inc. used by permission by Khronos

*Other names and brands may be claimed as the property of others

© Intel Corporation

http://www.intel.com/

52

