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NORMALIZATION AND RESCALING OF INPUTS

Ideally, we want all inputs to have roughly the same scale
Helps stabilize learning

How to adjust inputs?
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SHIFTING AND RESCALING

To have inputs range [0, 1]:

Xi — Xmin

xl- =
Xmax — Xmin

To have inputs range [-1, 1]:

Xi — Xmin
Xi = 2 ( —1
Xmax — Xmin
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NORMALIZING

Mean zero, standard deviation one

n
_ 1 i
XX o= —E(xl-—x)2
He ' =

i@ Nervana Al Academy \ 5




OVERHEAD VIEW OF COST CURVE

Un-Normalized Normalized







REGULARIZATION

Goal: prevent overfitting

Want network to generalize beyond training data

How to do this?

One way: stop large weights from dominating

How? Penalize models with large weights

(intel/ Nervana Al Academy \ 8




|2 REGULARIZATION

Adjust loss function to include a second term

1 n m
J = %Z()A’i - y)? + AZ wf
=1 Jj=1

= Bigger sum of weights costs us more

= lis the regularization hyper-parameter

— Bigger A means more regularization

— More penalty for big weights

— Less attention to raw data fit
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SCATTER PLOT

25

20
°
°
15
10 [ ]
°
Vertical (Value) Axis Major Gridlines
5 ° | |
0
1 2 3 4 5 6 7 8 9
-5
-10
-15

i@ Nervana Al Academy




OVERFITTING

25

20

15

10

-10

i@ Nervana Al Academy




POSSIBLE MODEL AFTER REGULARIZATION
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T00 MUCH REGULARIZATION!
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DIFFERENT TYPES OF REGULARIZATION

We’'ll see different techniques that act as a form of regularization

= Not always just a term of the loss function

= Dropout (next class!)

Key takeaway:

» regularization = less memorization
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BASIC IDEA

Use biology as inspiration for math model

Neurons:
= Get signals from previous neurons IQ,H

= Generate signal (or not) according to inputs

= Pass that signal on to future neurons

By layering many neurons, can create complex model
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THE BASIC “NEURON" VISUALIZATION

ACTIVATION
FUNCTION




READS ROUGHLY THE SAME AS A TENSORFLOW GRAPH

ACTIVATION
FUNCTION




READS ROUGHLY THE SAME AS A TENSORFLOW GRAPH

Data flows

into neuron S

from previous
layers

ACTIVATION
FUNCTION




READS ROUGHLY THE SAME AS A TENSORFLOW GRAPH

Some form of computation

/ transforms the inputs

ACTIVATION
FUNCTION




READS ROUGHLY THE SAME AS A TENSORFLOW GRAPH

The neuron outputs
the transformed data

ACTIVATION

FUNCTION




MATHEMATICAL DESCRIPTION OF ANEURON

m
zZ=Db+ ZWi'Xi
=1

=Wix+b

a=f(z)




MATHEMATICAL DESCRIPTION OF ANEURON

m
/Z=b+ ZWi'Xi
i=1 \

m inputs

z = netinput

=Wix+b

a=f(z)




MATHEMATICAL DESCRIPTION OF ANEURON

m
zZ=Db+ ZWi'Xi
=1

Vectorized \
=Wtx+b

a=f(z)




MATHEMATICAL DESCRIPTION OF ANEURON

m
zZ=Db+ ZWi-xi
=1

=Wix+b

Activation value

\ / Activation function
a = f(z)




INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)




INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)
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INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

Represents the activation
function a=f(z)
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INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

X: [m x 1] vector of inputs
Inputs _» @ (leaving out transpose op for now)
W: [m x 1] vector of weights 0_ @_
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INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

Inputs : | @ Result of matmul is scalar
(Biasis scalar




INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

The add operation outputs z




INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

The activation function applies
a non-linear transformation and
passes it along to the next layer
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BATCHED VERSION

X: [n x m] matrix of inputs (batched)

-------------------------

-------------------------

W: [m x 1] vector of weights
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BATCHED VERSION

g, ‘: Result of matmul is vector
. Inputs : (one entry for each example)

Bias is scalar (each prediction
gets same bias added)
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BATCHED VERSION

The add operation outputs z as a vector
one entry for each example

Q-S-
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BATCHED VERSION

Activation is a vector, one entry
for each input example

Q-&-
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A CLASSICAL VISUALIZATION OF NEURONS




A CLASSICAL VISUALIZATION OF NEURONS

bias neuron
(constant 1)



A CLASSICAL VISUALIZATION OF NEURONS

Activation function

------------------

-------------------




WHERE ARE THE WEIGHTS?

Weights are shown to be arrows
in classical visualizations of NNs
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WHERE ARE THE WEIGHTS?




WHERE IS THE NET VALUE (2)?

Not shown! Usually given
via formulas in papers

K-
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To keep visual noise down, we'll use this notation for now
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BASIC IDEA

Model inspired by biological neurons

Biological neurons either pass no signal, full signal, or something in between

Want a function that is like this and has an easy derivative.
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SIGMOID (LOGISTIC)

Value at z«0? ~0 1
Value at z=0? =0.5 O'(Z) — Z
Value at z>>0? ~1 1+e
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SIGMOID (LOGISTIC) o() = —

14 eZ
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EASY DERIVATIVE? Quotient rule
d f®) @@~ fxg ()

1

2
0(2) = 7 = dx g(x) g(x)
: 0—(=e™) e””
o'(z) = (1 + e~%)2 - (1 + e~%)2
1+e?-1 Te? 1

T (+e?)?2 (A+e?)* (1+e?)?

_ 1 1 1 1
“Tte? (+eD Tte?\ Tve

=o(1— o)




We can plug in the sigmoid as our activation function
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Depending on the inputs and weights, the neuron will output a value
between (0, 1)
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As an example, assume that x; outputs 0.5, and x, outputs 1.0

0.5

v
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Recall that the bias neuron always outputs 1.0

0.5

v
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We can now indicate the weights on the connecting edges
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When training, we adjust the weights parameters to create outputs that
better fit the data
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With these values, we end up with net z=-10

0.5 z=(05-—40) + (1.0 - 5) + (1.0 - 5)

v
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We then plug z into the sigmoid function to get our output

0.5 0(z) =0(—10) = 0.0

v
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The output can then be passed onto another neuron, with a weight
associated with that connection

0.5

i@Nervana"AlAcademy \ 57



Inputs don’t need to be limited to passing data into a single neuron.
They can pass data to as many as we like.
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NEURAL LAYERS

Typically, neurons are grouped into layers.

Each neuron in the layer receives input from the same neurons
= Weights are different for each neuron

All neurons in this layer output to the same neurons in a subsequent layer
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ASINGLENEURAL LAYER




having diff igh
ASINGLENEURALLAYER  rclrons respon to imputs diferenty

Each neuron has the same
value for x_1,x_2 plugged in
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WHAT DOES A LAYER OF NEURONS LOOK LIKE IN TF?

Almost identical to single neuron!




WEIGHTS: NOW A MATRIX (INSTEAD OF VECTOR)

X: [n x m] matrix of inputs

------------------------

-------------------------

W: [m x h]
matrix of weights
h is # neurons
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BIAS IS NOW A VECTOR (INSTEAD OF A SCALAR)

_____________________ Result of matmul is [n x h] matrix
] E Each row is the activations of
Inputs — neurons for a single example

Q&

Bias is [h x 1] vector
(Each neuron gets its own bias)

-------------------------
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LIS AMATRIX

Add outputs an [n x h] matrix.

Each row corresponds to the z
values at each neuron for an
individual example
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ACTIVATION IS A MATRIX

Activation is [n x h]

Each row corresponds to
the activation values at
each neuron per example

Q-&-
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MATRIX MULTIPLICATION AS LAYER TRANSFORMS

We dictate the size of each layer
by defining different sized weights

Bias isn't shown here
(usually “implied”)




current, e = X € RW*3

-
Cd
/ \

Xis [nx 3]
(n data points)
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current_value = XW@® € R4

Xis[nx 3]
(n data points)

WM is [3 x 4]
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current_ value = XWDw (@) ¢ rnx4




current_ value = XWDw (@) ¢ rnx4

Xis[nx 3]
(n data points)

W@ s [3 x 4]
W@ is [4x 4]

Weights dictate
number of neurons!




WEIGHT SIZES, IN GENERAL:

W => [num previous neurons, num new_neurons]

=> [previous_size, current size]

b => [num new neurons]

=> [current size]
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FEEDFORWARD NEURAL NETWORK




WEIGHTS




INPUT LAYER
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OUTPUT LAYER




ANNOTATIONS
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LAYER NUMBERS




ACTIVATIONS




WEIGHTS




NETINPUTS







