

Input Normalization

3

Normalization and rescaling of inputs

Ideally, we want all inputs to have roughly the same scale

Helps stabilize learning

How to adjust inputs?

4

Shifting and rescaling

To have inputs range [0, 1]:

To have inputs range [-1, 1]:

𝑥𝑖 =
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑖 = 2
𝑥𝑖 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
− 1

5

Normalizing

Mean zero, standard deviation one

𝜎 =
1

𝑛
෍

𝑖=1

𝑛

𝑥𝑖 − ҧ𝑥 2
𝑥𝑖 =

𝑥𝑖 − ҧ𝑥

𝜎
;

6

Overhead view of cost curve
Un-Normalized Normalized

Regularization

8

Regularization

Goal: prevent overfitting

Want network to generalize beyond training data

How to do this?

One way: stop large weights from dominating

How? Penalize models with large weights

9

L2 Regularization

Adjust loss function to include a second term

▪ Bigger sum of weights costs us more

▪ 𝜆 is the regularization hyper-parameter

– Bigger 𝜆 means more regularization

– More penalty for big weights

– Less attention to raw data fit

𝐽 =
1

2𝑛
෍

𝑖=1

𝑛

ො𝑦𝑖 − 𝑦𝑖
2 + 𝜆෍

𝑗=1

𝑚

𝑤𝑖
2

10

Scatter Plot

11

Overfitting

12

Possible model after regularization

13

Too much regularization!

14

Different types of regularization

We’ll see different techniques that act as a form of regularization

▪ Not always just a term of the loss function

▪ Dropout (next class!)

Key takeaway:

▪ regularization = less memorization

Neural Networks

16

Basic Idea

Use biology as inspiration for math model

Neurons:

▪ Get signals from previous neurons

▪ Generate signal (or not) according to inputs

▪ Pass that signal on to future neurons

By layering many neurons, can create complex model

17

The basic “neuron” visualization

activation
function

18

Reads roughly the same as a TensorFlow graph

activation
function

19

Reads roughly the same as a TensorFlow graph

activation
function

Data flows
into neuron
from previous
layers

20

Reads roughly the same as a TensorFlow graph

activation
function

Some form of computation
transforms the inputs

21

Reads roughly the same as a TensorFlow graph

activation
function

The neuron outputs
the transformed data

22

Mathematical Description of a Neuron

𝑎 = 𝑓 𝑧

𝑧 = 𝑏 + ෍

𝑖=1

𝑚

𝑊𝑖 ⋅ 𝑥𝑖

= 𝑊𝑡𝑥 + 𝑏

23

Mathematical Description of a Neuron

𝑎 = 𝑓 𝑧

𝑧 = 𝑏 + ෍

𝑖=1

𝑚

𝑊𝑖 ⋅ 𝑥𝑖

= 𝑊𝑡𝑥 + 𝑏
m inputs

z = net input

24

Mathematical Description of a Neuron

𝑎 = 𝑓 𝑧

𝑧 = 𝑏 + ෍

𝑖=1

𝑚

𝑊𝑖 ⋅ 𝑥𝑖

= 𝑊𝑡𝑥 + 𝑏

Vectorized

25

Mathematical Description of a Neuron

𝑎 = 𝑓 𝑧

𝑧 = 𝑏 + ෍

𝑖=1

𝑚

𝑊𝑖 ⋅ 𝑥𝑖

= 𝑊𝑡𝑥 + 𝑏
Activation value

Activation function

26

Inside a single neuron (TensorFlow graph)

W
var

add

Inputs

b
var

activation

matmul

27

Inside a single neuron (TensorFlow graph)

W
var

add

Inputs

b
var

activation

matmul

Represents the function 𝑧 = 𝑊𝑡𝑋 + 𝑏

28

Inside a single neuron (TensorFlow graph)

W
var

add

Inputs

b
var

activation

matmul

Represents the activation
function 𝑎=𝑓(𝑧)

29

Inside a single neuron (TensorFlow graph)

W
var

add

Inputs

b
var

activation

matmul

X: [m x 1] vector of inputs

(leaving out transpose op for now)

W: [m x 1] vector of weights

30

Inside a single neuron (TensorFlow graph)

W
var

add

Inputs

b
var

activation

matmul Result of matmul is scalar

Bias is scalar

31

Inside a single neuron (TensorFlow graph)

W
var

add

Inputs

b
var

activation

matmul The add operation outputs z

z

32

Inside a single neuron (TensorFlow graph)

W
var

add

Inputs

b
var

activation

matmul

The activation function applies
a non-linear transformation and
passes it along to the next layer

33

Batched version

W
var

add

Inputs

b
var

activation

matmul

X: [n x m] matrix of inputs (batched)

W: [m x 1] vector of weights

34

Batched version

W
var

add

Inputs

b
var

activation

matmul

Result of matmul is vector
(one entry for each example)

Bias is scalar (each prediction
gets same bias added)

35

Batched version

W
var

add

Inputs

b
var

activation

matmul

z

The add operation outputs z as a vector
one entry for each example

36

Batched version

W
var

add

Inputs

b
var

activation

matmul

Activation is a vector, one entry
for each input example

37

A classical visualization of neurons

𝑥1

𝑥2

+1

𝑎

inputs

38

A classical visualization of neurons

𝑥1

𝑥2

+1

𝑎

bias neuron
(constant 1)

39

A classical visualization of neurons

𝑥1

𝑥2

+1

𝑎

Activation function

40

Where are the weights?

𝑥1

𝑥2

+1

𝑎

Weights are shown to be arrows
in classical visualizations of NNs

41

Where are the weights?

𝑥1

𝑥2

+1

𝑎

𝑊1

𝑏

𝑊2

42

Where is the net value (z)?

𝑥1

𝑥2

+1

𝑎

Not shown! Usually given
via formulas in papers

43

To keep visual noise down, we’ll use this notation for now

𝑥1

𝑥2

+1

𝑎

Our first activation function

45

Basic idea

Model inspired by biological neurons

Biological neurons either pass no signal, full signal, or something in between

Want a function that is like this and has an easy derivative.

46

Sigmoid (logistic)

Value at 𝑧≪0?

Value at 𝑧=0?

Value at 𝑧≫0?

≈0

=0.5

≈1

𝜎 𝑧 =
1

1 + 𝑒−𝑧

47

Sigmoid (logistic) 𝜎 𝑧 =
1

1 + 𝑒−𝑧

48

Easy derivative?

𝜎 𝑧 =
1

1 + 𝑒−𝑧

𝜎′ 𝑧 =
0 − (−𝑒−𝑧)

1 + 𝑒−𝑧 2
=

𝑒−𝑧

1 + 𝑒−𝑧 2

=
1 + 𝑒−𝑧 − 1

1 + 𝑒−𝑧 2
=

1 + 𝑒−𝑧

1 + 𝑒−𝑧 2
−

1

1 + 𝑒−𝑧 2

=
1

1 + 𝑒−𝑧
−

1

1 + 𝑒−𝑧 2=
1

1 + 𝑒−𝑧
1 −

1

1 + 𝑒−𝑧

= 𝜎(1 − 𝜎)

𝑑

𝑑𝑥
⋅
𝑓(𝑥)

𝑔(𝑥)
=
𝑓′ 𝑥 𝑔 𝑥 − 𝑓 𝑥 𝑔′(𝑥)

𝑔 𝑥 2

Quotient rule

49

We can plug in the sigmoid as our activation function

𝑥1

𝑥2

+1

𝜎

50

Depending on the inputs and weights, the neuron will output a value
between (0, 1)

𝑥1

𝑥2

+1

𝜎

51

As an example, assume that 𝑥1 outputs 0.5, and 𝑥2 outputs 1.0

𝑥1

𝑥2

+1

𝜎

0.5

1.0

52

Recall that the bias neuron always outputs 1.0

𝑥1

𝑥2

+1

𝜎

0.5

1.0

1.0

53

We can now indicate the weights on the connecting edges

𝑥1

𝑥2

+1

𝜎

0.5

1.0

1.0

-40

5

5

≈ 0.0

54

When training, we adjust the weights parameters to create outputs that
better fit the data

𝑥1

𝑥2

+1

𝜎

0.5

1.0

1.0

-40

5

5

≈ 0.0

55

With these values, we end up with net 𝑧=−10

𝑥1

𝑥2

+1

𝜎

0.5

1.0

1.0

-40

5

5

𝑧 = (0.5 ⋅ −40) + (1.0 ⋅ 5) + (1.0 ⋅ 5)

56

We then plug z into the sigmoid function to get our output

𝑥1

𝑥2

+1

𝜎

0.5

1.0

1.0

-40

5

5

≈ 0.0

𝜎(𝑧) = 𝜎(−10) ≈ 0.0

57

The output can then be passed onto another neuron, with a weight
associated with that connection

𝑥1

𝑥2

+1

𝜎 𝜎

0.5

1.0

1.0

-40

5

5

≈ 0.0

10

58

Inputs don’t need to be limited to passing data into a single neuron.
They can pass data to as many as we like.

𝑥1

𝑥2

+1

𝜎

𝜎

Layers of Neurons

60

Neural Layers

Typically, neurons are grouped into layers.

Each neuron in the layer receives input from the same neurons

▪ Weights are different for each neuron

All neurons in this layer output to the same neurons in a subsequent layer

61

A single neural layer

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

62

A single neural layer

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

But having different weights means
neurons respond to inputs differently

Each neuron has the same
value for 𝑥_1, 𝑥_2 plugged in

63

What does a layer of neurons look like in TF?

W
var

add

Inputs

b
var

activation

matmul

Almost identical to single neuron!

64

Weights: now a matrix (instead of vector)

W
var

add

Inputs

b
var

activation

matmul

X: [n x m] matrix of inputs

W: [m x h]
matrix of weights
h is # neurons

65

Bias is now a vector (instead of a scalar)

W
var

add

Inputs

b
var

activation

matmul

Result of matmul is [n x h] matrix
Each row is the activations of
neurons for a single example

Bias is [h x 1] vector
(Each neuron gets its own bias)

z

66

Z is a matrix

W
var

add

Inputs

b
var

activation

matmul

Add outputs an [n x h] matrix.

Each row corresponds to the z
values at each neuron for an
individual example

67

Activation is a matrix

W
var

add

Inputs

b
var

activation

matmul

Activation is [n x h]

Each row corresponds to
the activation values at
each neuron per example

68

Matrix multiplication as layer transforms

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎
We dictate the size of each layer
by defining different sized weights

Bias isn’t shown here
(usually “implied”)

69

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑣𝑎𝑙𝑢𝑒 = 𝑋 ∈ ℝ𝑛×3

X is [n x 3]
(n data points)

70

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 = 𝑋𝑊 1 ∈ ℝ𝑛×4

X is [n x 3]
(n data points)

𝑊(1) is [3 x 4]

71

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 = 𝑋𝑊 1 𝑊(2) ∈ ℝ𝑛×4

X is [n x 3]
(n data points)

𝑊(1) is [3 x 4]

𝑊(2) is [4 x 4]

72

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑣𝑎𝑙𝑢𝑒 = 𝑋𝑊 1 𝑊(2) ∈ ℝ𝑛×4

X is [n x 3]
(n data points)

𝑊(1) is [3 x 4]

𝑊(2) is [4 x 4]

Weights dictate
number of neurons!

73

Weight sizes, in general:

W => [num_previous_neurons, num_new_neurons]

=> [previous_size, current_size]

b => [num_new_neurons]

=> [current_size]

A Feedforward Network

75

Feedforward neural network

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

76

weights

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

77

input layer

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

78

Hidden layers

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

79

Output layer

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

80

Annotations

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

81

Layer numbers

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑙(1)

𝑙(2) 𝑙(3)

𝑙(4)

82

Activations

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑎(1)

𝑎(2) 𝑎(3)

𝑎(4)

83

Weights

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑊(1) 𝑊(2) 𝑊(3)

84

Net inputs

𝑥1

𝑥2

𝑥3
𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

ො𝑦1

ො𝑦2

ො𝑦3

𝑧(2) 𝑧(3)

𝑧(4)

