(intel') Nervana Al Academ

~ INTRODUCTION TO
~ NEURAL NETWORKS

e 2

\

NORMALIZATION AND RESCALING OF INPUTS

Ideally, we want all inputs to have roughly the same scale
Helps stabilize learning

How to adjust inputs?

intel' Nervana Al Academy \ 3

SHIFTING AND RESCALING

To have inputs range [0, 1]:

Xi — Xmin

xl- =
Xmax — Xmin

To have inputs range [-1, 1]:

Xi — Xmin
Xi = 2 (—1
Xmax — Xmin

intel' Nervana Al Academy \ 4

NORMALIZING

Mean zero, standard deviation one

n
_ 1 i
XX o= —E(xl-—x)2
He ' =

i@ Nervana Al Academy \ 5

OVERHEAD VIEW OF COST CURVE

Un-Normalized Normalized

REGULARIZATION

Goal: prevent overfitting

Want network to generalize beyond training data

How to do this?

One way: stop large weights from dominating

How? Penalize models with large weights

(intel/ Nervana Al Academy \ 8

|2 REGULARIZATION

Adjust loss function to include a second term

1 n m
J = %Z()A’i - y)? + AZ wf
=1 Jj=1

= Bigger sum of weights costs us more

= lis the regularization hyper-parameter

— Bigger A means more regularization

— More penalty for big weights

— Less attention to raw data fit

i@ Nervana Al Academy \ 9

SCATTER PLOT

25

20
°
°
15
10 []
°
Vertical (Value) Axis Major Gridlines
5 ° | |
0
1 2 3 4 5 6 7 8 9
-5
-10
-15

i@ Nervana Al Academy

OVERFITTING

25

20

15

10

-10

i@ Nervana Al Academy

POSSIBLE MODEL AFTER REGULARIZATION

. oo
"""""""
......

..........
............

intel' Nervana Al Academy 12

T00 MUCH REGULARIZATION!

25
20

15

10 L]

Vertical (Value) Axis Major Gridlines
P\ I I
5

-5

intel' Nervana Al Academy

DIFFERENT TYPES OF REGULARIZATION

We’'ll see different techniques that act as a form of regularization

= Not always just a term of the loss function

= Dropout (next class!)

Key takeaway:

» regularization = less memorization

i@Nervana"AlAcademy \ 14

BASIC IDEA

Use biology as inspiration for math model

Neurons:
= Get signals from previous neurons IQ,H

= Generate signal (or not) according to inputs

= Pass that signal on to future neurons

By layering many neurons, can create complex model

intel'Nervana"AIAcademy \ 16

THE BASIC “NEURON" VISUALIZATION

ACTIVATION
FUNCTION

READS ROUGHLY THE SAME AS A TENSORFLOW GRAPH

ACTIVATION
FUNCTION

READS ROUGHLY THE SAME AS A TENSORFLOW GRAPH

Data flows

into neuron S

from previous
layers

ACTIVATION
FUNCTION

READS ROUGHLY THE SAME AS A TENSORFLOW GRAPH

Some form of computation

/ transforms the inputs

ACTIVATION
FUNCTION

READS ROUGHLY THE SAME AS A TENSORFLOW GRAPH

The neuron outputs
the transformed data

ACTIVATION

FUNCTION

MATHEMATICAL DESCRIPTION OF ANEURON

m
zZ=Db+ ZWi'Xi
=1

=Wix+b

a=f(z)

MATHEMATICAL DESCRIPTION OF ANEURON

m
/Z=b+ ZWi'Xi
i=1 \

m inputs

z = netinput

=Wix+b

a=f(z)

MATHEMATICAL DESCRIPTION OF ANEURON

m
zZ=Db+ ZWi'Xi
=1

Vectorized \
=Wtx+b

a=f(z)

MATHEMATICAL DESCRIPTION OF ANEURON

m
zZ=Db+ ZWi-xi
=1

=Wix+b

Activation value

\ / Activation function
a = f(z)

INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

Intel'Nervana'AIAcademy ~ 27

INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

Represents the activation
function a=f(z)

Intel'Nervana'AIAcademy \ 28

INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

X: [m x 1] vector of inputs
Inputs _» @ (leaving out transpose op for now)
W: [m x 1] vector of weights 0_ @_

Intel'Nervana'AIAcademy ~ 29

INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

Inputs : | @ Result of matmul is scalar
(Biasis scalar

INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

The add operation outputs z

INSIDE A SINGLE NEURON (TENSORFLOW GRAPH)

The activation function applies
a non-linear transformation and
passes it along to the next layer

Intel'Nervana'AIAcademy ~ 32

BATCHED VERSION

X: [n x m] matrix of inputs (batched)

W: [m x 1] vector of weights

Intel'Nervana"AIAcademy \ 33

BATCHED VERSION

g, ‘: Result of matmul is vector
. Inputs : (one entry for each example)

Bias is scalar (each prediction
gets same bias added)

Intel'Nervana"AIAcademy \ 34

BATCHED VERSION

The add operation outputs z as a vector
one entry for each example

Q-S-

lntel'Nervana"AIAcademy \ 35

BATCHED VERSION

Activation is a vector, one entry
for each input example

Q-&-

lntel'Nervana"AIAcademy \ 36

A CLASSICAL VISUALIZATION OF NEURONS

A CLASSICAL VISUALIZATION OF NEURONS

bias neuron
(constant 1)

A CLASSICAL VISUALIZATION OF NEURONS

Activation function

WHERE ARE THE WEIGHTS?

Weights are shown to be arrows
in classical visualizations of NNs

Intel'Nervana"AIAcademy \ 40

WHERE ARE THE WEIGHTS?

WHERE IS THE NET VALUE (2)?

Not shown! Usually given
via formulas in papers

K-

lntel'Nervana"AIAcademy \ 42

To keep visual noise down, we'll use this notation for now

(intel/ Nervana Al Academy \ 43

BASIC IDEA

Model inspired by biological neurons

Biological neurons either pass no signal, full signal, or something in between

Want a function that is like this and has an easy derivative.

(intel/ Nervana Al Academy \ 45

SIGMOID (LOGISTIC)

Value at z«0? ~0 1
Value at z=0? =0.5 O'(Z) — Z
Value at z>>0? ~1 1+e

i@Nervana"AlAcademy \ 46

SIGMOID (LOGISTIC) o() = —

14 eZ

1.50

1.25

1.00

0.50

0.25 /

0.00

-0.25

—0.50

-10.0 -7.5 =5.0 —-2.5 0.0 25 5.0 7.5 10.0

intel'Nervana"AIAcademy \ 47

EASY DERIVATIVE? Quotient rule
d f®) @@~ fxg ()

1

2
0(2) = 7 = dx g(x) g(x)
: 0—(=e™) e””
o'(z) = (1 + e~%)2 - (1 + e~%)2
1+e?-1 Te? 1

T (+e?)?2 (A+e?)* (1+e?)?

_ 1 1 1 1
“Tte? (+eD Tte?\ Tve

=o(1— o)

We can plug in the sigmoid as our activation function

(intel/ Nervana Al Academy \ 49

Depending on the inputs and weights, the neuron will output a value
between (0, 1)

(intel/ Nervana Al Academy \ 50

As an example, assume that x; outputs 0.5, and x, outputs 1.0

0.5

v

(intel/ Nervana Al Academy \ 51

Recall that the bias neuron always outputs 1.0

0.5

v

(intel/ Nervana Al Academy \ 52

We can now indicate the weights on the connecting edges

i@Nervana’AlAcademy \ 53

When training, we adjust the weights parameters to create outputs that
better fit the data

i@Nervana’AlAcademy \ 54

With these values, we end up with net z=-10

0.5 z=(05-—40) + (1.0 - 5) + (1.0 - 5)

v

i@Nervana’AlAcademy \ 55

We then plug z into the sigmoid function to get our output

0.5 0(z) =0(—10) = 0.0

v

i@Nervana’AlAcademy \ 56

The output can then be passed onto another neuron, with a weight
associated with that connection

0.5

i@Nervana"AlAcademy \ 57

Inputs don’t need to be limited to passing data into a single neuron.
They can pass data to as many as we like.

i@Nervana’AlAcademy \ 58

NEURAL LAYERS

Typically, neurons are grouped into layers.

Each neuron in the layer receives input from the same neurons
= Weights are different for each neuron

All neurons in this layer output to the same neurons in a subsequent layer

(intel/ Nervana Al Academy \ 60

ASINGLENEURAL LAYER

having diff igh
ASINGLENEURALLAYER rclrons respon to imputs diferenty

Each neuron has the same
value for x_1,x_2 plugged in

intel'Nervana'AIAcademy \ 62

WHAT DOES A LAYER OF NEURONS LOOK LIKE IN TF?

Almost identical to single neuron!

WEIGHTS: NOW A MATRIX (INSTEAD OF VECTOR)

X: [n x m] matrix of inputs

W: [m x h]
matrix of weights
h is # neurons

Intel'Nervana'AIAcademy \ 64

BIAS IS NOW A VECTOR (INSTEAD OF A SCALAR)

_____________________ Result of matmul is [n x h] matrix
] E Each row is the activations of
Inputs — neurons for a single example

Q&

Bias is [h x 1] vector
(Each neuron gets its own bias)

Intel'Nervana'AIAcademy ~ 65

LIS AMATRIX

Add outputs an [n x h] matrix.

Each row corresponds to the z
values at each neuron for an
individual example

intel'Nervana"AIAcademy \ 66

ACTIVATION IS A MATRIX

Activation is [n x h]

Each row corresponds to
the activation values at
each neuron per example

Q-&-

Intel'Nervana"AIAcademy \ 67

MATRIX MULTIPLICATION AS LAYER TRANSFORMS

We dictate the size of each layer
by defining different sized weights

Bias isn't shown here
(usually “implied”)

current, e = X € RW*3

-
Cd
/ \

Xis [nx 3]
(n data points)

intel'Nervana"AIAcademy \ 69

current_value = XW@® € R4

Xis[nx 3]
(n data points)

WM is [3 x 4]

intel'Nervana"AIAcademy \ 70

current_ value = XWDw (@) ¢ rnx4

current_ value = XWDw (@) ¢ rnx4

Xis[nx 3]
(n data points)

W@ s [3 x 4]
W@ is [4x 4]

Weights dictate
number of neurons!

WEIGHT SIZES, IN GENERAL:

W => [num previous neurons, num new_neurons]

=> [previous_size, current size]

b => [num new neurons]

=> [current size]

i@Nervana"AlAcademy \ 73

FEEDFORWARD NEURAL NETWORK

WEIGHTS

INPUT LAYER

HIDDEN LAYERS

) © o
00
-

W o ‘
) \’)MV‘\ A
i e

&
‘= o €

OUTPUT LAYER

ANNOTATIONS

X1 \‘ (/ V1
: \H ° €
-4

LAYER NUMBERS

ACTIVATIONS

WEIGHTS

NETINPUTS

