
Lesson 2: Stationary Time Series
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Learning Objectives

You will be able to do the following:

▪ Define "stationarity."

▪ Describe methods for determining stationarity.

▪ Explain how to transform nonstationary time-series data.

▪ Use Python* to identify and transform nonstationary time-series data.
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What Is Stationarity?

A stationary time series is a time series where there are no changes in the 
underlying system. 

▪ Constant mean (no trend)

▪ Constant variance (no heteroscedacticity)

▪ Constant autocorrelation structure

▪ No periodic component (no seasonality)
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Assumption 1: Constant Mean
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Assumption 2: Constant Variance
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Autocorrelation

Autocorrelation is a key concept in time-series analysis.

▪ Autocorrelation is the correlation between a measurement at two 
different times.

▪ The time interval between values is called the lag.

▪ For example, stock prices may be correlated from one day to the next 
with a lag value of 1.

▪ Autocorrelation often results in a pattern, whereas a time series 
without autocorrelation will exhibit randomness. 



8

No autocorrelation Has autocorrelation
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Assumption 3: Constant Autocorrelation Structure

A stationary time series has constant autocorrelation structure throughout 
the entire series. 

▪ If the autocorrelation remains constant throughout the series, a simple 
transformation can be used to remove the autocorrelation.

▪ This will be useful for several future models.
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Why Is Stationarity Important?

Stationarity is a fundamental assumption in many time-series forecasting 
models:

▪ Without it many basic time-series models would break down.

▪ Transformations can be applied to convert a nonstationary time series to a 
stationary one before modeling. 

▪ While there are more advanced time-series models that can handle 
nonstationary data, that is beyond the scope of this lesson.
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How to Identify Nonstationary Time-Series Data

There are several ways to identify nonstationary time-series data:

▪ Run-sequence plots

▪ Summary statistics

▪ Histogram plot

▪ Augmented Dickey-Fuller test
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Run-Sequence Plot

A run-sequence plot is simply a plot of your time-series data.

▪ This should always be your first step in time-series analysis.

▪ It often shows whether there is underlying structure.

▪ Be on the lookout for trend, seasonality, and autocorrelation.

▪ The previous plots are great examples.
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Summary Statistics

Calculating the mean and variance over time is a useful way to discern 
whether the series is stationary.

▪ A simple but effective way to do this is to split your data into chunks over 
time and compute statistics for each chunk.

▪ Large deviations in either the mean or the variance among chunks are 
problematic and mean that your data is nonstationary.
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Stationary

Data

Chunk 1 Chunk 2 Chunk 3

Mean:
Variance:

The chunks have similar mean and variance.

19.8

12.3

18.6

13.1

18.5

12.8f
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Nonstationary

Data

Chunk 1 Chunk 2 Chunk 3

Mean:
Variance:

19.8

12.3

30.6

13.1

49.5

12.8

There are large deviations in the mean between chunks.
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Nonstationary

Data

Chunk 1 Chunk 2 Chunk 3

Mean:
Variance:

There are large deviations in the variance between chunks.

19.8

11.8

18.6

40.6

18.5

41.3
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Histogram Plot

A histogram plot gives important clues into a time series’ underlying structure.

▪ If you see a distribution that is approximately normal, that’s a good indication 
your time series is stationary.

▪ If you see a nonnormal distribution, that’s a good indication your time series 
is nonstationary.
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Stationary
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Nonstationary
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Augmented Dickey-Fuller Test

The Augmented Dickey-Fuller test is a hypothesis test that tests specifically
for stationarity.

▪ We generally say that the series is nonstationary if the p-value is less than 
0.05.

▪ It is a less appropriate test to use with small datasets or when 
heteroscedasticity is present.

▪ It is best to pair ADF with other techniques, such as run-sequence plots, 
summary statistics, or histograms.
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How to Transform Nonstationary Time-Series Data

There are several ways to transform nonstationary time-series data:

▪ Remove trend (constant mean)

▪ Remove heteroscedasticity with log (constant variance)

▪ Remove autocorrelation with differencing (exploit constant structure)

▪ Remove seasonality (no periodic component)

▪ Oftentimes you’ll have to do several of these on one dataset!
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Example 1: Trend & Seasonality Present

A time series with a trend or seasonality component is a nonstationary series. 
To make it stationary, we can do the following:

▪ Subtract the trend so that the series has constant mean.

▪ Subtract the seasonality so that the series has no periodic component.
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Example 1: Trend & Seasonality Components



32

Example 1: Trend & Seasonality Components
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Example 1: Trend & Seasonality Removed
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Example 2: Heteroscedasticity Present

A time series with differing variances in two distinct regions is a nonstationary 
series. To make it stationary, we can do the following:

▪ Apply the log transformation.

▪ This squashes the larger values so that the variances are closer.
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Example 2: Heteroscedasticity Present
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Example 2: Heteroscedasticity Squashed
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Example 3: Autocorrelation Present

Say a given time series has autocorrelation with a lag of 1. By definition, this is 
a nonstationary series in its current form. To make it stationary, we can do the 
following:

▪ Difference the data by subtracting by a specific lag.

▪ How you determine the appropriate lag will be covered in the future during 
Lesson 4.
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Example 2: Autocorrelation Present
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Example 2: Autocorrelation Removed
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Use Python to Identify and Transform Nonstationarity

Next up is a look at applying these concepts in Python.

▪ See notebook entitled Introduction_to_Stationarity_student.ipynb
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Learning Objectives Recap

In this session you learned how to do the following:

▪ Define "stationarity"

▪ Describe methods for determining stationarity

▪ Explain how to transform nonstationary time-series data

▪ Use Python to identify and transform nonstationary time-series data
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