
Lesson 6: Kalman Filters
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Learning Objectives

You will be able to do the following:

▪ Define “Kalman filter.” 

▪ Explain conceptually how a Kalman filter works.

▪ Describe the assumptions underlying the Kalman filter approach.

▪ Use Python* to apply a Kalman filter to time-series data.
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What Is a Kalman Filter?

A way to make a best guess about a signal in the presence of noise. 

▪ Fundamental idea: noisy signal is made less noisy (filter out some of the noise)

▪ Best guess = lowest error 

▪ Applications: 

– tracking objects (Apollo project, GPS, self-driving cars)

– image processing 

– economic and financial modeling
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The Kalman Filter: The Basics

What are the ingredients?

▪ A mathematical model of the system

▪ Measurements related to the system

▪ Example:

– Car moving at a constant velocity

– Model is position = velocity*time + system noise

– Measurements of position and velocity (which are also noisy)

Image: https://www.pexels.com/photo/action-asphalt-auto-automobile-210019/ 
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The Kalman Filter: The Basics

What is the goal?

▪ Estimate the variables of interest at any given time—your “state.” (In the 
previous example, these variables are the position and velocity of the car.)

▪ At each time point, the Kalman filter estimates your state by calculating the 
optimal compromise between two sources of data:

– the model with information from the previous time point 

– the latest measurement
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The Kalman Filter: The Basics

Where does the noise come in?

▪ The compromise is determined by the noise.

▪ If the model has relatively large errors, more weight is given to the 
latest measurement in making the current estimate.

▪ If the measurement has larger errors, more weight is given to the 
model in making the current estimate.

▪ Therefore, you need to estimate not only your state but also the 
errors (the covariance) for both the model and the measurements. 
These must be updated at each time step, too.
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Kalman Filter Is a Recursive Algorithm

Helps with practical implementation

▪ Uses information in previous time step to update estimates.

▪ Does not require information from all data ever acquired to be kept in memory.

▪ Has predictor-corrector structure—predict, measure, update, repeat.

Image: https://www.pexels.com/photo/road-car-fast-speed-20411/
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Fundamental Assumptions

The Kalman filter approach is based on three fundamental assumptions:

▪ The system can be described or approximated by a linear model.

▪ All noise (from both the system and the measurements) is white.

▪ All noise is Gaussian.
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Assumption 1: Linear Model

Variable at current time is a linear function of variable and noise at previous time.

▪ Many systems can be approximated this way.

▪ Linear systems are more easily analyzed mathematically.

▪ Nonlinear systems can often be approximated by linear models around a 
current estimate (for example, extended Kalman filter).
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Assumption 2: Whiteness

Noise value is not correlated in time.

▪ If you know noise now, doesn’t help you predict noise at other times.

▪ Useful, approximate description of real noise.

▪ Makes mathematics tractable.

Amplitude

Time
https://commons.wikimedia.org/w/index.php?curid=24084756
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Assumption 3: Gaussian Noise

At any point in time, probability density of noise amplitude is a Gaussian.

▪ System and measurement noise often a combination of many small sources of 
noise. Can show that net effect is approximately Gaussian.

▪ If only mean and variance are known (typical case in engineering systems), 
Gaussian distribution is a good choice as these two quantities completely 
determine the Gaussian distribution. 

▪ Makes mathematics tractable.

Amplitude

Probability
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Example: One-Dimensional Position Estimation

You and a friend are lost in car at night on a desolate country road. 
You stop to figure out where you are.

▪ You use stars to determine the position. 

At time t1, your measurement is z1 with standard deviation σz1

▪ Your friend uses GPS to determine the position. 

At time t2 (≈t1), hers is z2 with standard deviation σz2

▪ What is the best estimate of your position at the two times?
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Best Estimate at Time t1

Estimate of position x at time t1

Variance of the error in the estimate
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Best Estimate at Time t2

Estimate of position x at time t2

Variance of the error in the estimate
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Best Estimate at Time t2
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Rewrite Results at Time t2
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Add Motion of Car to Example 1

• Car moves at constant speed u from time t2 to time t3

• Use information from time t2 to predict position at time t3 (before new measurement).

• Measure position at time t3

• Use measurement to update prediction (using Kalman gain).

Have two key steps—prediction and update.
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What Is the Model for the System?

• Previously, car was stationary. Model was x = constant + noise

• Now car is moving with constant velocity u, so the model changes.

 

dx

dt
= u + w

• represents the noise: uncertainty in value of velocity, small accelerations, etc.

• Modeled as Gaussian white noise with mean zero and variance  
  
s

w

2

 w



22

Prediction of Position Just before Measurement

Car moves at  constant speed u from time t2 to time t3

• Just before the new measurement at time t3, the predicted position and error are
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Update Estimated Position after Measurement Is Made

At time t3 a measurement is made.

• Its value is z3 with standard deviation σz3 

• Combine this new information with the prediction made before measurement 

using the same process as done previously (for the static example).
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Update at Time t3

  
x̂(t

3
) = x̂(t

3

- ) +K(t
3
) z

3
- x̂(t

3

- )é
ë

ù
û

  

K(t
3
) =

s
x

2(t
3

- )

s
x

2(t
3

- ) +s
z

3

2 Kalman gain

  
s

x

2(t
3
) =s

x

2(t
3

- ) -K(t
3
)s

x

2(t
3

- )





26

Kalman Filter: General Case

Generalize from 1D dynamic case. 

▪ State is described by a vector.

▪ Error is described by a covariance matrix.

▪ Have prediction and update steps as before.

▪ Drop time for clarity; use subscript to denote time steps.
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Kalman Filter: Prediction Step 
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Kalman Filter: Update Step 

  
x̂*

k
= x̂

k
+ K

k

*[z
k
- H

k
x̂

k
]

  

z
k
 measurement vector

H
k
 measurement matrix

K
k

*  Kalman gain matrix

* denotes value after measurement   
P

k

* = P
k
- K

k

*H
k
P

k



29

Kalman Filter: Kalman Gain Matrix
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Kalman Filter: The Workflow

1. Make initial estimates of state vector and covariance matrix (time k=0).

2. Predict state and covariance for next time step.

3. Compute the Kalman gain.

4. Make a measurement.

5. Update estimates of state and covariance.

6. Repeat steps 2-5.
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Use Python to Identify and Transform Nonstationarity

Next up is a look at applying these concepts in Python.

▪ See notebook entitled Introduction_to_Kalman_Filter_student.ipynb
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Learning Objectives Recap

In this session you learned how to do the following:

▪ Define “Kalman filter.”

▪ Describe the assumptions underlying the Kalman filter approach.

▪ Explain conceptually how a Kalman filter works.

▪ Use Python to apply a Kalman filter to time-series data.
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