intel.

Intel® Firmware Support Package

External Architecture Specification

Version 2.4 (Errata A)

December 2022

Document Number: 736809 -2.4 (Errata A)

intel

Information in this document is provided in connection with intel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in intel's terms and conditions of sale for such products, intel
assumes no liability whatsoever and intel disclaims any express or implied warranty, relating to sale and/or use of intel products including
liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual
property right.

A "mission critical application" is any application in which failure of the intel product could result, directly or indirectly, in personal injury or death.
Should you purchase or use intel's products for any such mission critical application, you shall indemnify and hold intel and its subsidiaries,
subcontractors and affiliates, and the directors, officers, and employees of each, harmless against all claims costs, damages, and expenses and
reasonable attorneys' fees arising out of, directly or indirectly, any claim of product liability, personal injury, or death arising in any way out of
such mission critical application, whether or not intel or its subcontractor was negligent in the design, manufacture, or warning of the intel
product or any of its parts.

Intel may make changes to specifications and product descriptions at any time, without notice. Designers must not rely on the absence or
characteristics of any features or instructions marked "reserved" or "undefined". Intel reserves these for future definition and shall have no
responsibility whatsoever for conflicts or incompatibilities arising from future changes to them. The information here is subject to change without
notice. Do not finalize a design with this information.No license (express or implied, by estoppel or otherwise) to any intellectual property rights is
granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product
specifications and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or visit
www.intel.com/design/literature.htm.

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation.
Performance varies depending on system configuration. No product or component can be absolutely secure. Check with your system
manufacturer or retailer or learn more at intel.com.

No product or component can be absolutely secure.

Intel and the Intel logo are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other countries.

*Other names and brands may be claimed as the property of others.

Copyright © 2014-2022, Intel Corporation. All rights reserved.

Intel® Firmware Support Package
External Architecture Specification December 2022
2 Document Number: 736809-2.4 (Errata A)

http://www.intel.com/design/literature.htm
http://intel.com/

Contents
1.0 Introduction 11
1.1 U o L0 21T 11
1.2 LN T a¥o LT YU T L= o ol 11
13 RSN o Yol U] g =T o 3OO 11
2.0 FSP Overview 12
2.1 DESIZN PRIlOSOPNY .ouvieeeeeeceeeteiteessees st st sessessss s s 12
2.2 TECNNICAL OVEIVIEW ettt se st ssassss st s s s st st et s st s s s nenntas 12
2.2.1 Data Structure DeSCriPtiONS ... sssasesns 12
3.0 FSP Integration 13
3.1 FSP DiStriDUTION PaCKAgE ... cuueuueeeeeeeeseeseeseessesssesssesssesssssssessasssasssssssans 13
4.0 FSP Binary Format 14
4.1.1 FSP-T: Temporary RAM initialization phase ... 14
41.2 FSP-M: Memory initialization Phase ... eeeeseesseesseesseessesssesssesssesssesssesssesssees 14
41.3 FSP-S: Silicon initialization Phaseeeneeeseeseessesssesssessessssessessessesssessesees 14
41.4 FSP-I: SMM initialization phase ... 15
41.5 OEM ComMPOoNENtS (FSP-0)oierrereersernesressssnsesrsssssssesssssssssssessssssssessssssssessssssssssssssssssssns 17
4.2 FSP Component IdentifiCation ... sessessessssssesssssssssssssssssssssssssssssssesssssssasssnes 17
4.2.1 FSP IMage ID @nd REVISIONirsressssssssssssssnsssaens 17
4.2.2 FSP Component LayOUL ... sssssssssssssaseens 17
5.0 FSP Information Tables 19
5.1.1 FSP_INFO _HEADER..... st sseses st sse s s ssssssssssssssssssssssssssssssssssssasesns 19
5.1.2 FSP_INFO_EXTENDED _HEADER......ereeeeseereeseasetseesesse s ssessssssesssssssasssssssssssaseens 23
5.1.3 Locating FSP_INFO_HEADER.......eerseeeceseescsseessesessesss s ssssesssssssssesssssssssesssssens 24
5.1.4 FSP DESCIIPLION FilEuuiricinsissireesesisesesessssssssssessesesssssssssssssessssessssssssssssssssessssssssssssssssessens 25
5.1.5 FSP PatCh Table (FSPP)... e ssissessessesss s ssssssssessssssessssssssssssssssssssesns 26
6.0 FSP Configuration Data 28
6.1 UPD Standard FIELAS ... ssssssesssssssssessssssssssssssssssssssssssssssssesssssssssssssssssessssssanes 29
6.1.1 FSP-T UPD StrUCTUI ...ttt sssss s sss s s assssssssssssessssssssssssssssssssssssssnans 29
6.1.2 FSP-M UPD STrUCTUI .ttt sss s s sssssssssssssssssssssnssnans 31
6.1.3 FSP-=S UPD StrUCTUIE ettt sesressessessss e ssessessesssssssssessessessessssssssessensensens 33
6.1.4 FSP-I UPD STrUCTUIE wooeeeeeeeeeeeseeses s snss s sessses s ssse s ssssss s ssssasessenns 35
7.0 Boot Flow 37
7.1 API MOAE BOOT FLOW ...ttt seeeesses s seassesses s s s bbb snnan 37
7.1.1 [2oTo) o (o3 VYA BT=E=Tal 1 o] 1 o] o N 37
7.2 DiSpatCh MOAE BOOT FLOW ...t ssesesssssssessessessesssssssssssssessessesssssssssssssssessessssssns 41
7.2.1 HISH LEVEL OVEIVIEW ...t enses s ssse s ssssasesssnns 42
7.2.2 BOOT FLOW DESCIIPTION w.ouveeueeueereeeeeeetenssesssesssessseessesssesssesssssssesssesssesssesssesssssssssssssssssssssssssssses 42
Intel® Firmware Support Package
December 2022 External Architecture Specification

Document Number: 736809-2.4 (Errata A)

3

intel

8.0

8.1
8.2
8.3
8.4

9.0

9.1
9.2
9.3
9.4
9.5

9.6

9.7

9.8

9.9

9.10

9.11

7.2.3 Alternate BoOt FIOW DESCriPTION ..ttt seseesses s ssesssessessesssssesseens 46

System Management Mode

MOdEL T = NO SMM L.ttt

Model 2 - FSP owns SMRAM

Model 3 - Bootloader provides the MM Foundation (Dispatch Mode Only)......cccoucnueennes 49
HIGN LOVEL FLOW ettt 50
FSP APl Mode Interface 52
Entry-Point Invocation ENVIFONMENT ... ssssssssssssans
Data StruCture CONVENTION ... e sessssse s s s sssssesens
ENtry-Point Calling CoONVENTION..... et esseseesessesssssessesssssesssssssssssse s s s sssssesssssssssessesans
Return Status Code... e ssesnas

] e =T 1
9.5.1 Pl Specification Architecturally Defined Status Codes

9.5.2 Debug LOg MESSAEEScuuunmrrnmrrrnmsresnsssssssssssssssssssenns

9.53 POST Progress Codes

9.54 MIPI Sys-T Catalog Debug LOg MESSAZESc.overeereenremrerreeneesseesessesseesessesssssssssessssssssseans
9.5.5 Related Definitions.....ereernneerneersessseesseesssenns

FSP Variable Services ...

9.6.1 Variable Store Contents..... e

9.6.2 API Mode Variable Sequence......ccoueeneeneenneen:

9.6.3 Variable Service Descriptions........ccoeeseeneenneen.

TempRaMINit APl

9.7.1 Prototype.....orerererereneserereseeeeeneens

9.7.2 Parameters........ccccuuu..

9.7.3 Return Values

9.7.4 DESCrIPLION....rrcrrrre s

FSPMeMOTIYINIt APl

9.8.1 Prototype.....ccooervenee

9.8.2 Parameters

9.8.3 REtUIN ValUES ...

9.8.4 DESCrIPLION...crerrrrrc s

TempRamMEXit APl ...

9.9.1 Prototype.....orerererereneserereseeeeeneens

9.9.2 Parameters.....

9.93 REtUIN ValUES ...

9.9.4 DESCrIPLION...crerrrrrc s

FSPSIlICONINIT AP

9.10.1 Prototype.....ccuuurerenn.

9.10.2 Parameters

9.10.3 Return Values ...

1< It O 107 S B T= 1Tl] o 4 [0 o ISP
FspMultiPhaseMem/Silnit APl ...

9.11.1T Prototype.. s

Intel® Firmware Support Package
External Architecture Specification December 2022

4

Document Number: 736809-2.4 (Errata A)

LS Tt I O = U =Y 0 01T (= PP 76
9.11.3 Related DefiNitiONS. ...ttt sans 76
9,114 RETUIMN VALUES ettt sseses st sassssssssssnens 78
9.11.5 DeSCHIPHION. s 78
912 FSPSMMINIT AP 79
0.2, PrOtOtY Pt s 80
S It 1 = 1=V 0 [T (= PP 80
9.12.3 RETUIMN VALUEBS ..ttt s 80
1S It [P B 1= =Tl] o o o PP 80
0.T3 NOTIfYPRASE APttt s s sss s s 80
O0.13.T PrOtOtY P s s 81
LS TRt T o= 1 =Y 0 011 (= TP 81
9.13.3 Related DefiNitiONS. ...ttt sans 81
0. 13.4 RELUIMN VALUES ettt e s sss s sss s bbb s bes s es s sesas s sassans 81
9.13.5 DeSCHIPHION. s 82
10.0 FSP Dispatch Mode Interface 83
10.1 DiSpatCh MOdE DESIGN.....iiirrisissssssss s bbb 83
10.2 PEI Phase REQUITEMENTS ... seessesssesssesssesssesssesssesssessssssssssss s sss s 84
10.3 DXE and BDS Phase REQUINEMENTSocoereenmernerserssrsssssessseesseesssesssessesssesssesssssssssssssssssssssssssssssass 84
T0.4 DiSPATCN MO APttt 85
10.4.T TeMPRAMINIT AP ..ottt s s st s st 86
10.4.2 EFI PEI Core Firmware Volume Location PPl........ e 86
10.4.3 FSP Temporary RAM EXit PPl ... eessssesessssssssessssssssssssssesssssssssessssssssseens 86
10.4.4 FSP_TEMP_RAM_EXIT_PPLTeMPRAMEXit ().creerreermersmermesmessessmessssssssssssssesssesssesssssneens 87
10.4.5 FSP-M Architectural Configuration PPl....... e sesseesessesssesesseens 88
10.4.6 EDK I PEI VAriable PPl sesssessessesssessessesssssssssssssssesssssssasesnes 89
10.4.7 EDKII_PEI_VARIABLE_PPL.GetVariable ()cninennenesessssssesessesssessesseens 90
10.4.8 EDKII_PEI_VARIABLE_PPl.GetNextVariableName ()coeoermeerneenne .92
10.4.9 EDKII_PEI_VARIABLE_PPLSetVariable ()......ceenmeeenessisssesssesssssssssssessseens 93
10.4.10 EDKII_PEI_VARIABLE_PPIL.QueryVariablelnfo ()cenenenneenseenseensesseesseeseens 95
T10.4.TT FSP Error INfOrMatioN .. sessessessssssssssssssessssssssssssesssssssssesssssssssssnns 96
T10.4.T2 FSP DEDUEG MESSAZES ..oeueerenreureeeesesseeseisessessessessessessssssesssssstssesssssstsstssssssassssssssssssssssssassanes 98
11.0 FSP Output
111 FSP_RESERVED _MEMORY_RESOURCE_HOB
11.2 FSP_NON_VOLATILE_STORAGE_HOB2 ...t snesssssssssssssssssessssssssssssssssssssssssssssssssssnns
11.3 FSP_NON_VOLATILE_STORAGE_HOB.....orerreereereireereeseiseessesseeeenne
11.4 FSP_BOOTLOADER_TOLUM_HOB.....coreereesereeseineesseesesseessessessseans
11.5 EFI_PEI_GRAPHICS _INFO _HOB....oeeereeereteisseesessesssessssesssssssssssssssssasesssssssasesssssssasessessssassasesnns
11.6 EFI_PEI_GRAPHICS_DEVICE_INFO_HOB.....coorieereereereeseesesessssssessessssssessesssssssssesssssssssessssssaes
11.7 FSP_ERROR_INFO _HOB ...t seiseeseesessesss st ssssse s esss s esssssssssssssssssesssssssssssssssans
11.8 FSP_SMM_BOOTLOADER_FV_CONTEXT_HOB
12.0 Other Host Bootloader Considerations 106
T2.T ACP ettt R AR AR AR R AR R 106

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 5

intel

12.2
12.3
13.0
131
13.2
13.3
13.4
13.5
13.6
13.7
13.8
13.9
13.10
13.11
14.0
Figures
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

BUS ENUMEIATION oot ees s sesssesssesssessessse s es s s s s s sess s sesssesssessnes 106
SOCUNIEY wreueureureeeeeessesse e eesses s ee s ess s s e s R s R £ R £ AR R st bas 106
Appendix A - Data Structures 107
BOOT _MODE.....oieieeeeesmeesssesssesssssssssasssssesssessssssssessssessssessssassssesss s sss s ass st s sssessssessssassssasasassssessssssssnes 107
L1 >T0T o 117 [0 Yo L= PP 107
EFI_STATUS .o eeceeeeeessmeesseess s ssee s s sss s e ssse s s R R R n s 107
13.2.T UEfiBASETYPE.N ettt eses s s 107
13.2.2 OEM Status COU@. s sans 108
EFI_PEI_GRAPHICS_INFO_HOB......ccstierrersereemsssssssssssessssssssssssssssss s sssssssssssssssssssssssssssessssessans 108
GIAPRICSINTOHOD. Pttt sees s es s ssesn s 108
EFI_PEI_GRAPHICS_DEVICE_INFO_HOB......coccrseereeeneeermeessmesessessessssessans 109
(€70 T aT1et=] g o]z (0] o 1 o 00PN 109
EF] _GUID e ieeeeeeeeneeeseesssesssesssses s ssssesssee s sss s es eS8 R R R R 109
Base.h 109

UEBTIBASETYPE.N ettt s s sss s s s st 109
EFI_MEMORY _TYPE ..coeeereeereerreeemeeesseesseessseesssessssssssssses s s ssssssssssssssssssssssssssssssssssssessssessssessanes 110
UETIMUIEIPRASE. N .ot sesssss s s e s s s s ss s s sassssssssanes 110
HaNd Off BLOCK (HOB) ...ttt sssss s s sssssssssssssssssssssssssssessssssssssssssssssssssssssnans 110
PiHob.h 110

Firmware Volume and Firmware File@SYSTEM ... ssesssesssesssesans 113
PiFirmMWArEVOIUME. P ..ottt s s s 113
PUFITMWEATEFILE. R .ottt s bbb bbbt 115
Debug Error LeVel.... e

DeDUQGLIBD N

Event Code Types....neneeneenesseeseessessesseenns

EFI_STATUS_CODE_STRING_DATA

Appendix B — Acronyms 120
FSP ComMPONENnt LOGICAl VIEW ... seesessessesssesssssesssessessessessessesssssesssssssssssssssssaseans 16
FSP Component Layout View

FSP Component Headers..............

API Mode BOOt FIOWcccuerrereereemeemsenseesseessenssensseens

Dispatch Mode BOOt FIOW.......ovninenerensensinsinssnessessesessenens

SMM DIVEIS..icseereereseseeessissssessessesesssssees

FspMemorylnit() Variable Services INVOCatioN SEQUENCEveeeeneeesmeessmessssssssesssseessssesssesnss 60
FspSiliconlnit() Variable Services INVOCation SE@QUENCEoeveeneenmeenneenesnesseesseesseesseessessseess 61
DiSPAtCh MO DESIGN....cuieieureeeeresrerserseesses s sseesses s sess s es s bbb 83

Intel® Firmware Support Package

External Archite
6

cture Specification December 2022
Document Number: 736809-2.4 (Errata A)

Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.
Table 12.
Table 13.
Table 14.
Table 15.
Table 16.
Table 17.
Table 18.
Table 19.
Table 20.
Table 21.
Table 22.
Table 23.

December 2022

FSP_INFO _HEADERoseesetectsectseessseessesssssssesssssssssssesss s s s s sssssssssssssssssssssssssssssasssssssasssssssssssssssssns
FSP_INFO _EXTENDED HEADER.....ersrereessissssssssesesssssssssessssssssesssssssssssssssssssssessssssssessssssssessesans
FSPP — PatchData ENCOAING......ciiirisisssssssssssssssssssssssssss s ssssssssssssssssssssssssssssssssssassssassssasssss
UPD Standard Fields ...
EFI_STATUS_CODE_TYPE to MIPI_SYST_SEVERITY Mapping
Return Values - FSpEVeNtHANALEN()....uuuweereereersennessissensessssssessessssssssnens
LiSt Of FSP Variable SEIVICES ..ttt sess s sess s sssss s s ssssssssssssssssssssssssssssssssssassns
Return Values — GetVariable Serviceeeeeeenenes
Return Values — GetNextVariableNQMeE SEIVICE. .. ssessessesesssssssessessens
Return Values — SetVariable Service....nnns
Return Values — QUeryVariableINfO SEIVICE ... ssssse s ssssssssssssssesans
Return Values - TempRaAMINIt() APl ...eenreenneenneenneesseeseesssesssesssesnnns
Return Values - FSPMEMOIYINIt() APl ... ereereessessesssesssesssesssssss s sssssssssssssssssssssssssssss
Return Values - TEMPRAMEXIE() APl . eeeeeeeseeeresetssesssssessesssssssssessssssssssssssssssssssessssssssessssssssessssans
Return Values - FspSiliconInit() APl........uee.
Return Values - FspMultiPhaseSilnit() API

Return Values - FSpSMMINit() APl .. eneeereenseesseenseesseesssessesssesssesnens
Return Values — NotifyPhase() APl ...
Return Values - TEMPRAMEXIL() PP ... sssssssssssssssssssssssssssssssssssessssan
RetUrn Values - GELVAIIADIE()...eeeeeereeseessesserssessesssssessessssssssssssssssssssssssasessssssssssssssssasssssssssassassssssansans
Return Values - GEtNextVariablENAME()......ereeeeeesesessesssssssssesssssssssssssssssssssssssssssssssssssessens
Return Values = SEEVAIIADIE() e sesssss s sssssssssssssssssessssessssasassesssssas
Return Values - QUEeryVariablelINfo() ... nsensesssssensssssssssssessssssssssssssssssssssssssssssssesssss

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 7

intel

Revision History

Date

Revision

Description

December 2022

2.4 Errata A

o Fixed HeaderLength field in FSP_INFO_HEADER

August 2022

2.4

e Based on FSP EAS v2.3.

o FSP_INFO_HEADER changes
—Updated SpecVersion from 0x23 to 0x24
— Updated HeaderRevision from 6 to 7

— Defined bit 2 in ImageAttribute to indicate support for 64-bit
interfaces.

e Extended FSP API calling convention to support both 32-bit and 64-bit
interfaces.

e Updated FSP status code and OEM status code definition to support
both 32-bit and 64-bit interfaces.

e Added FSP-I SMM component
o Added FspMultiPhaseMemlnit() API

e Added Variable Services interface

July 2021

2.3

e Based on FSP EAS v2.2 — Backward compatibility is retained.
o FSP_INFO_HEADER changes

— Updated SpecVersion from 0x22 to 0x23

— Updated HeaderRevision from 5 to 6

— Added ExtendedIimageRevision
o Added FSP_NON_VOLATILE_STORAGE_HOB2

May 2020

2.2

e Based on FSP EAS v2.1 — Backward compatibility is retained.

o Added multi-phase silicon initialization to increase the modularity of the
FspSiliconlnit() API.

e Added FSP event handlers.
o Added FspMultiPhaseSilnit() API
o FSP_INFO_HEADER changes
— Updated SpecVersion from 0x21 to 0x22
— Updated HeaderRevision from 4 to 5
— Added FspMultiPhaseSilnitEntryOffset
e Added FSPT_ARCH_UPD
— Added FspDebugHandler
e FSPM_ARCH_UPD changes
—Added FspEventHandler
e Added FSPS_ARCH_UPD

Intel® Firmware Support Package
External Architecture Specification

8

December 2022
Document Number: 736809-2.4 (Errata A)

intel.

— Added EnableMultiPhaseSiliconlinit, bootloaders designed for FSP
2.0/2.1 can disable the FspMultiPhaseSilnit() APl and continue to use
FspSiliconlnit() without change.

—Added FspEventHandler

May 2019 2.1 e Based on FSP EAS v2.0 - Backward compatibility is retained.
* Added Dispatch Mode to ease integration with UEFI bootloaders.
o FSP_INFO_HEADER changes

—Updated SpecVersion from 0x20 to 0x21

— Updated HeaderRevision from 3 to 4

— Defined bit 1 in ImageAttribute to indicate support for dispatch
mode.

e FSPM_ARCH_UPD changes

— Modified StackBase and StackSize to only contain FSP heap data
during pre-memory phase.

o FSP_STATUS_RESET_REQUIRED_* may now be returned by

NotifyPhase()

o Added description of dispatch mode boot flow
o Added dispatch mode API definitions
e Added FSP_ERROR_INFO & FSP_ERROR_INFO_HOB
e Added EFI_PEI_GRAPHICS_DEVICE_INFO_HOB
April 2016 2.0 e Based on FSP EAS v1.1a - Removed compatibility with v1.x
o Updated FSP Binary format with FSP component information, layout,
parsing and identification
o FSP_INFO_HEADER changes

— Updated HeaderRevision from 2 to 3

—Reduced ImageAttribute field from 4 to 2 bytes

— Defined new ComponentAttribute field and defined ComponentType
(Bits15:12)

— Defined Bit0 and Bit1 in ComponentAttribute for Debug/Release &
Test/Official respectively

—Renamed Reserved to Reserved1

—Renamed ApiEntryNum to Reserved?2

—Renamed FsplnitEntryOffset to Reserved3

— Added SpecVersion at offset 11

e Removed VPD configuration data and updated UPD configuration data &

UPD common header structure

o Added Reset Request status return types
e Updated API sections to clarify optional APl and calling order of API
e Updated the input parameters of TempRaminit(), FspMemoryinit(),
TempRameExit(), FspSiliconlnit() and NotifyPhase() API
e TempRaminit()
— Stack usage/stack allocation to bootloader clarified
Intel® Firmware Support Package
December 2022 External Architecture Specification

Document Number: 736809-2.4 (Errata A) 9

intel

—Calling convention exception clarified
—Removed parameter structure/description.
— Updated API parameters to use FSPT_UPD
o FspMemorylnit()
—Simplified the APl and remove the parameter structures
—Minor clarification related to stack base and size and cleanup
— Defined Arch UPDs for FSP-M component FSPM_ARCH_UPD
e TempRamExit() - Updated APl parameters
o NotifyPhase() - Added EndOfFirmware phase
e Clarified NVS HOB Fast Boot / S3 path
¢ Updated BootFlow diagram and added description

Intel® Firmware Support Package
External Architecture Specification December 2022
10 Document Number: 736809-2.4 (Errata A)

. I
Introduction I n te ®

1.0 Introduction

1.1 Purpose

The purpose of this document is to describe the external architecture and interfaces
provided in the Intel® Firmware Support Package (FSP). Implementation specific details
are outside the scope of this document. Refer to Integration Guide for details.

1.2 Intended Audience

This document is targeted at all platform and system developers who need to generate
or consume FSP binaries in their bootloader solutions. This includes, but is not limited
to: System firmware or UEFI firmware or BIOS developers, bootloader developers,
system integrators, as well as end users.

1.3 Related Documents
e Intel® FSP EAS version 2.3: https://cdrdv2.intel.com/v1/dl/getContent/644852

e Boot Specification File (BSF) Specification: https://software.intel.com/en-
us/download/boot-setting-file-specification-release-10

e Unified Extensible Firmware Interface (UEFI) Specification:
http://www.uefi.org/specifications

e Platform Initialization (PI) Specification v1.7 (Errata A):
https://uefi.org/sites/default/files/resources/Pl_Spec_1 7 _A_final May1.pdf

e Binary Configuration Tool (BCT) for Intel® Firmware Support Package — available
at: http://www.intel.com/fsp

e Intel® Firmware Module Management Tool (Intel® FMMT) — available at:
https://software.intel.com/en-us/download/intel-firmware-module-management-
tool-intel-fmmt-r22

e A Tour Beyond BIOS Launching Standalone SMM drivers in the PEI Phase using the
EFI Developer Kit Il (May 2015):
https://www.intel.com/content/dam/develop/public/us/en/documents/a-tour-
beyond-bios-launching-standalone-smm-drivers-in-pei-using-the-efi-developer-

kit-ii.pdf

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 11

https://cdrdv2.intel.com/v1/dl/getContent/644852
https://software.intel.com/en-us/download/boot-setting-file-specification-release-10
https://software.intel.com/en-us/download/boot-setting-file-specification-release-10
http://www.uefi.org/specifications
https://uefi.org/sites/default/files/resources/PI_Spec_1_7_A_final_May1.pdf
http://www.intel.com/fsp
https://software.intel.com/en-us/download/intel-firmware-module-management-tool-intel-fmmt-r22
https://software.intel.com/en-us/download/intel-firmware-module-management-tool-intel-fmmt-r22
https://www.intel.com/content/dam/develop/public/us/en/documents/a-tour-beyond-bios-launching-standalone-smm-drivers-in-pei-using-the-efi-developer-kit-ii.pdf
https://www.intel.com/content/dam/develop/public/us/en/documents/a-tour-beyond-bios-launching-standalone-smm-drivers-in-pei-using-the-efi-developer-kit-ii.pdf
https://www.intel.com/content/dam/develop/public/us/en/documents/a-tour-beyond-bios-launching-standalone-smm-drivers-in-pei-using-the-efi-developer-kit-ii.pdf

intel.

2.0

FSP Overview

FSP Overview

2.1

2.2

2.2.1

Design Philosophy

Intel recognizes that it holds the key programming information that is crucial for
initializing Intel silicon. Some key programming information is treated as proprietary
information and may only be available with legal agreements.

Intel® Firmware Support Package (Intel® FSP) is a binary distribution of necessary Intel
silicon initialization code. The first design goal of FSP is to provide ready access to the
key programming information that is not publicly available. The second design goal is
to abstract the complexities of Intel Silicon initialization and expose a limited number
of well-defined interfaces.

A fundamental design philosophy is to provide the ubiquitously required silicon
initialization code. As such, FSP will often provide only a subset of the product’s
features.

Technical Overview

The FSP provides chipset and processor initialization in a format that can easily be
incorporated into many existing bootloaders.

The FSP performs the necessary initialization steps as documented in the BIOS Writers
Guide (BWG) / BIOS Specification including initialization of the processor, memory
controller, chipset, and certain bus interfaces, if necessary.

FSP is not a stand-alone bootloader; therefore, it needs to be integrated into a
bootloader to carry out other functions such as:

e Initializing non-Intel components
e Bus enumeration and device discovery

e Industry standards

Data Structure Descriptions

All data structures defined in this specification conform to the “little endian” byte order
(i.e., the low-order byte of a multibyte data items in memory is at the lowest address),
while the high-order byte is at the highest address.

All reserved fields defined in this specification must be zero unless stated otherwise.

Intel® Firmware Support Package
External Architecture Specification December 2022

12

Document Number: 736809-2.4 (Errata A)

FSP Integration I n te I®

3.0 FSP Integration

The FSP binary can be integrated into many different bootloaders and embedded
operating systems.

Below are some required steps for the integration:
e Customizing

The FSP has configuration parameters that can be customized to meet the needs of
the target platform.

e Rebasing

The FSP is not Position Independent Code (PIC) and each FSP component has to be
rebased if it is placed at a location which is different from the preferred base
address specified during the FSP build.

e Placing

Once the FSP binary is ready for integration, the bootloader needs to be modified
to place this FSP binary at the specific base address identified above.

¢ Interfacing

The bootloader needs to add code to setup the operating environment for the FSP,
call the FSP with the correct parameters, and parse the FSP output to retrieve the
necessary information returned by the FSP.

3.1 FSP Distribution Package

The FSP distribution package contains the following:
e FSPBinary

e Integration Guide

e Data structure definitions

e Boot Settings File (BSF)

The Binary Configuration Tool (BCT) can be used to configure the FSP. BCT is available
as a separate package.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 13

intel.

4.0

FSP Binary Format

FSP Binary Format

4.1.1

4.1.2

4.1.3

The FSP binary follows the UEFI Platform Initialization Firmware Volume Specification
format. The Firmware Volume (FV) format is described in the Platform Initialization (PI)
Specification - Volume 3: Shared Architectural Elements specification as referenced in
Section 1.3 Related Documents.

Firmware Volume (FV) is a way to organize/structure binary components and enables a
standardized way to parse the binary and handle the individual binary components that
make up the Firmware Volume (FV).

The FSP will have several components each containing one or more Firmware Volumes
(FV). Each component provides a phase of initialization as below.

FSP-T: Temporary RAM initialization phase

Primary purpose of this phase is to initialize the Temporary RAM along with any other
early initialization.

This phase consists of below FSP API
e TempRaminit()

FSP-M: Memory initialization phase

Primary purpose of this phase is to initialize the permanent memory along with any
other early silicon initialization.

This phase consists of below FSP API
e FspMemorylnit()

e FspMultiPhaseMeminit()

e TempRamExit()

FSP-S: Silicon initialization phase

Primary purpose of this phase is to complete the silicon initialization including CPU and
IO controller initialization.

This phase consists of below FSP API
e FspSiliconinit()
e FspMultiPhaseSilnit()

e NotifyPhase() -Post PCl bus enumeration, Ready To Boot and End of Firmware.

Intel® Firmware Support Package
External Architecture Specification December 2022

14

Document Number: 736809-2.4 (Errata A)

intel.

FSP Binary Format

4.1.4 FSP-I: SMM initialization phase

An FSP may include an FSP-I component. This phase will initialize SMM and provide OS
runtime silicon services; including Reliability, Availability, and Serviceability (RAS)

features implemented by the CPU.

This phase consists of below FSP API
e FspSmminit()

Intel® Firmware Support Package
External Architecture Specification

December 2022
15

Document Number: 736809-2.4 (Errata A)

intel
I n te ® FSP Binary Format

Figure 1. FSP Component Logical View

Intel® FSP

API

FSP INFO Header

FSP INFO Header

FSP INFO Header

FSP INFO Header

Intel® Firmware Support Package
External Architecture Specification December 2022
16 Document Number: 736809-2.4 (Errata A)

intel
FSP Binary Format I n te ®

4.1.5

4.2

4.2.1

4.2.2

OEM Components (FSP-0)

An FSP may include optional OEM components that provide OEM extensibility. This
component shall have an FSP_INFO_HEADER with component type in Image attribute
field set to FSP-O.

FSP Component Identification

Each FSP component will have an FSP_INFO_HEADER as the first FFS file in the first
Firmware Volume (FV). The FSP_INFO_HEADER will have an attribute field that can be
used to identify that component as an FSP-T / FSP-M / FSP-S / FSP-1 / FSP-O
component.

There can be only one instance of the FSP-T / FSP-M / FSP-S / FSP-1 in an FSP binary,
while multiple instances of the FSP-O component are valid.

FSP Image ID and Revision

The FSP_INFO_HEADER structure inside each FSP component also contains an Image
Identifier field and an Image Revision field that provide the identification and revision
information for the FSP binary. It is important to verify these fields while integrating the
FSP as the FSP configuration data could change over different FSP Image identifiers
and revisions.

The FSP Image Identifier field should be the same for all the FSP components within
the same FSP binary.
FSP Component Layout

All the FSP components are packaged back-to-back within the FSP and the size of each
component is available in the component’s FSP_INFO_HEADER structure.

Furthermore, if there are multiple Firmware Volume(s) inside the FSP component, they
are also packaged back-to-back. These components can be packaged in any order
inside the FSP binary.

Intel® Firmware Support Package

December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 17

. I
I n te ® FSP Binary Format

Figure 2. FSP Component Layout View

FSP Top
FSP-T
Temp RAM Phase Data
FSP_INFO_HEADER - T
FSP Base

Intel® Firmware Support Package
External Architecture Specification December 2022
18 Document Number: 736809-2.4 (Errata A)

FSP Information Tables

intel.

5.0 FSP Information Tables

Each FSP component has an FSP_INFO_HEADER table and may optionally have

additional tables as described below.

All FSP tables must have a 4 bytes aligned base address and a size that is a multiple of

4 bytes.

All FSP tables must be placed back-to-back.

All FSP tables must begin with a DWORD signature followed by a DWORD length field.

A generic table search algorithm for additional tables can be implemented with a
signature search algorithm until a terminator signature ‘FSPP’ is found.

5.1.1 FSP_INFO_HEADER

The FSP_INFO_HEADER structure conveys the information required by the bootloader

to interface with the FSP binary.

Table 1. FSP_INFO_HEADER

Byte Size Field Description
Offset in
Bytes
4 Signature ‘FSPH'. Signature for the FSP_INFO_HEADER.

4 4 HeaderLength Length of the header in bytes. The current value
for this field is 88.

8 2 Reserved1 Reserved bytes for future.

10 1 SpecVersion Indicates compliance with a revision of this
specification in the BCD format.
3:0 - Minor Version
7 : 4 - Major Version
For revision v2.4 the value will be 0x24.

11 1 HeaderRevision Revision of the header. The current value for
this field is 7.

December 2022
Document Number: 736809-2.4 (Errata A)

Intel® Firmware Support Package
External Architecture Specification
19

intel.

FSP Information Tables

Byte Size Field Description
Offset in
Bytes

12 4 ImageRevision Revision of the FSP binary.
Major.Minor.Revision.Build
If FSP HeaderRevision is <= 5, the
ImageRevision can be decoded as follows:
7 :0 - Build Number
15:8 - Revision
23:16 - Minor Version
31:24 - Major Version
If FSP HeaderRevision is >= 6, ImageRevision
specifies the low-order bytes of the build
number and revision while
ExtendedIimageRevision specifies the high-
order bytes of the build number and revision.
7 :0 - Low Byte of Build Number
15:8 - Low Byte of Revision
23:16 - Minor Version
31:24 - Major Version

16 8 Imageld 8 ASCII character byte signature string that will
help match the FSP binary to a supported
hardware configuration. Bootloader should not
assume null-terminated.

24 4 ImageSize Size of this component in bytes.

28 ImageBase Preferred base address for this component. If

the FSP component is located at the address
different from the preferred address, the FSP
component needs to be rebased.

Intel® Firmware Support Package
External Architecture Specification

20

December 2022
Document Number: 736809-2.4 (Errata A)

FSP Information Tables

intel.

Byte
Offset

Size

in
Bytes

Field

Description

32

ImageAttribute

Attributes of the FSP binary. The value of this
field must be consistent across the FSP-T, FSP-
M and FSP-S components within a FSP image.

 Bit 0: Graphics Support — Set to 1 when FSP
supports enabling Graphics Display.

o Bit 1: Dispatch Mode Support — Set to 1 when
FSP supports the optional Dispatch Mode API
defined in Section 7.2 and 70.0. This bit is only
valid if FSP HeaderRevision is >= 4.

o Bit 2: 64-bit Mode Support —Setto 1 to
indicate FSP supports 64-bit long mode
interfaces. Set to O to indicate FSP supports
32-bit mode interfaces. This bit is only valid if
FSP HeaderRevision is >= 7.

e Bit 3: FSP Variable Services Support — Set to 1
to indicate FSP utilizes the FSP Variable
Services defined in Section 9.6 to store non-
volatile data. This bit is only valid if FSP
HeaderRevision is >= 7.

e Bits 15:3 - Reserved

34

ComponentAttribute

Attributes of the FSP Component
o Bit O — Build Type
0 - Debug Build
1 - Release Build
¢ Bit 1 — Release Type
0 - Test Release
1 - Official Release
o Bit 11:2 - Reserved
e Bits 15:12 — Component Type
0000 - Reserved
0001 - FSP-T
0010 - FSP-M
0011 - FSP-S
0100 - FSP-I (FSP SMM)
0101 to 0111 - Reserved
1000 - FSP-O
1001 to 1111 — Reserved

December 2022

Document Number: 736809-2.4 (Errata A)

Intel® Firmware Support Package
External Architecture Specification
21

intel.

FSP Information Tables

Byte Size Field Description
Offset in
Bytes
36 4 CfgRegionOffset Offset of the UPD configuration region. This
offset is relative to the respective FSP
Component base address.
Please refer to Section 6.0 for details.
40 4 CfgRegionSize Size of the UPD configuration region.
Please refer to Section 6.0 for details.
44 4 Reserved2 This value must be 0x00000000 if the FSP
HeaderRevision is >=3.
48 4 TempRamlInitEntryOf | Offset for the API to setup a temporary stack till
fset the memory is initialized.
If the value is set to 0x00000000, then this API
is not available in this component.
52 4 Reserved3 This value must be 0x00000000 if the FSP
HeaderRevision is >=3.
56 4 NotifyPhaseEntryOff | Offset for the API to inform the FSP about the
set different stages in the boot process.
If the value is set to 0x00000000, then this API
is not available in this component.
60 4 FspMemorylnitEntry Offset for the API to initialize the Memory.
Offset If the value is set to 000000000, then this API
is not available in this component.
64 4 TempRamExitEntryO | Offset for the API to tear down the temporary
ffset memory.
If the value is set to 0x00000000, then this API
is not available in this component.
68 4 FspSiliconlnitEntryOf | Offset for the API to initialize the processor and
fset chipset.
If the value is set to 0x00000000, then this API
is not available in this component.
72 4 FspMultiPhaseSilnitE | Offset for the API for the Multi-Phase processor

ntryOffset

and chipset initialization defined in Section
9.11. This value is only valid if FSP
HeaderRevision is >= 5.

If the value is set to 0x00000000, then this API
is not available in this component.

Intel® Firmware Support Package
External Architecture Specification

22

December 2022
Document Number: 736809-2.4 (Errata A)

|
FSP Information Tables I n te I®

Byte Size Field Description
Offset in
Bytes
76 2 ExtendedIimageRevis | This value is only valid if FSP HeaderRevision is
ion >=6.

ExtendedIimageRevision specifies the high-
order byte of the revision and build number in
the FSP binary revision.

7 : 0 - High Byte of Build Number
15:8 - High Byte of Revision

The FSP binary build number can be decoded
as follows:

Build Number = (ExtendedIimageRevision[7:0]
<< 8) | ImageRevision[7:0]

Revision = (ExtendedimageRevision[15:8] << 8)
| ImageRevision[15:8]

Minor Version = ImageRevision[23:16]
Major Version = ImageRevision[31:24]

78 2 Reserved4
80 4 FspMultiPhaseMeml Offset for the API for the Multi-Phase memory
nitEntryOffset initialization defined in Section 9.71. This value
is only valid if FSP HeaderRevision is >= 7.
If the value is set to 0x00000000, then this API
is not available in this component.
84 4 FspSmmiInitEntryOff | Offset for the API to initialize SMM defined in
set Section 9.72. This value is only valid if FSP
HeaderRevision is >= 7.
If the value is set to 0x00000000, then this API
is not available in this component.
5.1.2 FSP_INFO_EXTENDED_HEADER

The FSP_INFO_EXTENDED_HEADER structure conveys additional information about
the FSP binary component. This allows FSP producers to provide additional
information about the FSP instantiation.

Table 2. FSP_INFO_EXTENDED_HEADER

Byte Size Field Description
Offse in

t Bytes

0 4 Signature ‘FSPE'. Signature for the

FSP_INFO_EXTENDED_HEADER.

4 4 Length Length of the table in bytes, including all
additional FSP producer defined data.

8 1 Revision FSP producer defined revision of the table.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 23

intel.

5.1.3

FSP Information Tables

Byte Size Field Description
Offse in
t Bytes

9 1 Reserved Reserved for future use.

10 6 FspProducerld FSP producer identification string.

16 4 FspProducerRevision FSP producer implementation revision number.
Larger numbers are assumed to be newer
revisions.

20 4 FspProducerDataSize Size of the FSP producer defined data (n) in
bytes.

24 n FSP producer defined data of size (n) defined by
FspProducerDataSize.

Locating FSP_INFO_HEADER

The FSP_INFO_HEADER structure is stored in a firmware file, called the
FSP_INFO_HEADER file and is placed as the first firmware file within each of the FSP
component’s first Firmware Volume (FV). All firmware files will have a GUID that can be
used to identify the files, including the FSP_INFO_HEADER file. The
FSP_INFO_HEADER file GUID is FSP_FFS_INFORMATION_FILE_GUID

#define FSP_FFS INFORMATION FILE GUID \
{ 0x912740be, 0x2284, 0x4734, { 0xb9, 0x71, 0x84, 0xb0, 0x27,
0x35, 0x3f, 0x0c }};

The bootloader can find the offset of the FSP_INFO_HEADER within the FSP
component’s first Firmware Volume (FV) by the following steps described below:

e Use EFI_FIRMWARE_VOLUME_HEADER to parse the FSP FV header and skip the
standard and extended FV header.

e The EFI_FFS_FILE_HEADER with the FSP_FFS_INFORMATION_FILE_GUID is
located at the 8-byte aligned offset following the FV header.

e The EFI_RAW_SECTION header follows the FFS File Header.

¢ Immediately following the EFI_RAW_SECTION header is the raw data. The format
of this data is defined in the FSP_INFO_HEADER and additional header structures.

A pictorial representation of the data structures that is parsed in the above flow is
provided in Figure 3.

Intel® Firmware Support Package
External Architecture Specification December 2022

24

Document Number: 736809-2.4 (Errata A)

intel
FSP Information Tables I n te ®

Figure 3. FSP Component Headers

Firmware Volume
Header
Firmware File RAW Section
Header Header
Firmware Volume
Extended Header
Fi Fil RAW Data has
= irmware File
S : the FSP INFO
c 8 Byte Alignment Section (Type Header
g RAW)
=
§ Firmware File 1
E —
= e
L Q . .
i Firmware File 2
>
0
g
[
g
(1]
=
E
= More Firmware
Files
5.14 FSP Description File

An FSP component may optionally include an FSP description file. This file will provide
information about the FSP including information about different silicon revisions the
FSP supports. The contents of the FSP description file must be an ASCIl encoded text
string.

The file, if present, must have the following file GUID and be included in the FDF file as
shown below.

#define FSP_FFS_INFORMATION FILE GUID \

{ 0xd9093578, 0x08eb, 0x44df, { O0xb9, 0xd8, 0xd0, Oxcl, 0xd3,
O0xd5, 0Ox5d, 0x96 }};

#

Description file

#

FILE RAW = D9093578-08EB-44DF-B9D8-D0C1D3D55D9%6 {

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 25

intel.

5.1.5

Table 3.

5.1.5.1

FSP Information Tables

SECTION RAW = FspDescription/FspDescription.txt
}

FSP Patch Table (FSPP)

FSP Patch Table contains offsets inside the FSP binary which store absolute addresses
based on the FSP base. When the FSP is rebased the offsets listed in this table needs to
be patched accordingly.

A PatchEntryNum of O is valid and indicates that there are no entries in the patch table
and should be handled as a valid patch table by the rebasing software.

typedef struct {

UINT32 Signature; ///< FSP Patch Table Signature “FSPP”
UINT16 Length; ///< Size including the PatchData
UINT8 Revision; ///< Revision is set to 0x01

UINT8 Reserved;

UINT32 PatchEntryNum; ///< Number of entries to Patch
UINT32 PatchDatal]; ///< Patch Data

} FSP_PATCH TABLE;

FSPP - PatchData Encoding

BIT [23:00] | Image OFFSET to patch

BIT [27:24] | Patch type

0000: Patch DWORD at OFFSET with the delta of the new and old base.
NewValue = OldValue + (NewBase - OldBase)

1111: Same as 0000

Others: Reserved

BIT [28:30] | Reserved

BIT [31] 0: The FSP image offset to patch is determined by Bits[23:0]

1: The FSP image offset to patch is calculated by (ImageSize -
(0x1000000 - Bits[23:0]))

If the FSP image offset to patch is greater than the ImageSize in the
FSP_INFO_HEADER, then this patch entry should be ignored.

Example

Let's assume the FSP image size is 0x38000. And we need to rebase the FSP base from
OxFFFC0000 to OxFFFO000O.

Below is an example of the typical implementation of the FSP_PATCH_TABLE:

FSP_PATCH TABLE mFspPatchTable =
{

0x5050534¢0, ///< Signature (FSPP)
1o, ///< Length;
0x01, ///< Revision;

Intel® Firmware Support Package
External Architecture Specification December 2022

26

Document Number: 736809-2.4 (Errata A)

FSP Information Tables I n te I®

December 2022

0x00, ///< Reserved;

1, ///< PatchEntryNum;

{

OxFFFFFFEFC ///< Patch FVBASE at end of FV

}
b

Looking closer at the patch table entries:
OxFFFFFFFC, ///< Patch FVBASE at end of FV

The image offset to patch in the FSP image is indicated by BIT[23:0], OXFFFFFC. Since
BIT[31] is 1, the actual FSP image offset to patch should be:

ImageSize — (0x1000000 — OxFFFFFC) = 0x38000 - 4 = 0x37FFC

If the DWORD at offset Ox37FFC in the original FSP image is OXFFFC0O0OQO, then the new
value should be:

OldValue + (NewBase - OldBase) = OxFFFCO000 + (OxFFFOO000 - OxFFFC0000) =
OxFFFO0000

Thus, the DWORD at FSP image offset 0x37FFC should be patched to xFFFOO00O after
the rebasing.

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 27

intel.

6.0

FSP Configuration Data

FSP Configuration Data

Each FSP module contains a configurable data region which can be used by the FSP
during initialization. This configuration region is a data structure called the Updateable
Product Data (UPD) and will contain the default parameters for FSP initialization. The
UPD data structure is only used by the FSP when the FSP is being invoked using the API
mode interface defined in Section 8.0.

When the FSP is invoked according to the dispatch mode interface defined in Section
10.0, the UPD configuration region and the UPD data structure are not used by the FSP.
In dispatch mode, the PPl database and PCD database are shared between the boot
loader and the FSP. Because they are shared, the UPD configuration region is not
needed to provide a mechanism to pass configuration data from the bootloader to the
FSP. Instead, configuration data is communicated to the FSP using PCD and PPI. The
bootloader may utilize the UPD to influence PCD and PPI contents provided to the FSP
in dispatch mode.

The UPD parameters can be statically customized using a separate Binary Configuration
Tool (BCT). There will be a Boot Setting File (BSF) provided along with FSP binary to
describe the configuration options within the FSP. This file contains the detailed
information on all configurable options, including description, help information, valid
value range and the default value.

The UPD data can also be dynamically overridden by the bootloader during runtime in
addition to static configuration. Platform limitations like lack of updateable memory
before calling TempRaminit() APl may pose restrictions on the FSP-T data runtime
update. Any such restrictions will be documented in the Integration Guide.

The UPD data is organized as a structure. The TempRaminit(), FspMemoryinit() and
FspSiliconlnit() APl parameters include a pointer which can be initialized to point to the
UPD data structure. If this pointer is initialized to NULL when calling these APIs’, the
FSP will use the default built-in UPD configuration data in the respective FSP
components. However, if the bootloader needs to update any of the UPD parameters, it
is recommended to copy the whole UPD structure from the FSP component to memory,
update the parameters and initialize the UPD pointer to the address of the updated
UPD structure. The FSP API will then use this data structure instead of the default
configuration region data for platform initialization. The UPD data structure is a project
specific structure. Please refer to the Integration Guide for the details of this structure.

The UPD structure has some standard fields followed by platform specific parameters
and the UPD structure definition will be provided as part of the FSP distribution
package.

Intel® Firmware Support Package
External Architecture Specification December 2022

28

Document Number: 736809-2.4 (Errata A)

|
FSP Configuration Data I n te I®

6.1 UPD Standard Fields

The first few fields of the UPD Region are standard for all FSP implementations as
documented below.

Table 4. UPD Standard Fields

Offset Field

0x00 - 0x07 UPD Region Signature. The signature will be
EXXXXXX_T" for FSP-T

EXXXXXX_M" for FSP-M

EXXXXXX_S" for FSP-S

EXXXXXX_1" for FSP-I

Where XXXXXX is a unique signature

0x08 Revision of the Data structure
0x09 - Ox1F Reserved[23]
0x20-n Platform Specific Parameters, where the n is equal to

(FSP_INFO_HEADER.CfgRegionSize — 1)

typedef struct {

UINT64 Signature;
UINTS8 Revision;
UINTS8 Reserved[23];

} FSP_UPD HEADER;

6.1.1 FSP-T UPD Structure

The UPD data structure definition for the FSP-T component will be provided as part of
the FSP release package and documented in the integration guide as well.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 29

intel.

typedef struct {
FSP_UPD HEADER
FSPT ARCH2 UPD

/**

FSP Configuration Data

UpdHeader;
FsptArchUpd;

Platform specific parameters

**/
} FSPT UPD;

typedef struct {
UINTS
UINTS
UINT32
FSP _DEBUG HANDLER
UINTS

} FSPT ARCH UPD;

typedef struct {
UINTS
UINTS
UINT32
EFI PHYSICAL ADDRESS
UINTS

} FSPT_ARCH2 UPDj;

Revision;
Reserved[3];
Length;
FspDebugHandler;
Reservedl [20];

Revision;
Reserved[3];
Length;
FspDebugHandler;
Reservedl [16];

Revision

Revision of the structure. If this value is 1 then the
structure definition shall be FSPT_ARCH_UPD. If this
value is 2 then the structure definition shall be
FSPT_ARCH2_UPD. The current value of Revision is 2 for
this version of the specification. All FSP implementations
compliant to v2.4 of this specification shall use
FSPT_ARCH2_ UPD regardless of whether 32-bit x86 or
64-bit x64 mode is used.

Length

Length of the structure in bytes. The current value for this
field is 32.

FspDebugHandler

Optional debug handler for the bootloader to receive
debug messages occurring during FSP execution. This
function shall have a signature matching
FSP_DEBUG_HANDLER. Refer to Section 9.5 for more
details.

Intel® Firmware Support Package
External Architecture Specification
30

December 2022
Document Number: 736809-2.4 (Errata A)

FSP Configuration Data

intel.

6.1.2 FSP-M UPD Structure
The UPD data structure definition for the FSP-M component will be provided as part of
the FSP release package and documented in the integration guide as well.
typedef struct {
FSP UPD HEADER UpdHeader;
FSPM ARCH2 UPD FspmArchUpd;
/* *
Platform specific parameters
* % /
} FSPM UPD;
typedef struct {
UINTS Revision;
UINTS8 Reserved[3];
VOID *NvsBufferPtr;
VOID *StackBase;
UINT32 StackSize;
UINT32 BootLoaderTolumSize;
UINT32 BootMode;
FSP EVENT HANDLER FspEventHandler;
UINTS Reservedl [4];
} FSPM ARCH UPD;
typedef struct {
UINTS8 Revision;
UINTS8 Reserved[3];
UINT32 Length;
EFI PHYSICAL ADDRESS NvsBufferPtr;
EFI PHYSICAL ADDRESS StackBase;
UINT64 StackSize;
UINT32 BootLoaderTolumSize;
UINT32 BootMode;
EFI PHYSICAL ADDRESS FspEventHandler;
UINTS Reservedl[16];
} FSPM ARCH2 UPDj;
Intel® Firmware Support Package
December 2022 External Architecture Specification

Document Number: 736809-2.4 (Errata A)

31

intel.

Intel® Firmware Support Package
External Architecture Specification

32

FSP Configuration Data

Revision

Revision of the structure. If this value is 1 or 2 then the
structure definition shall be FSPM_ARCH_UPD. If this
value is 3 then the structure definition shall be
FSPM_ARCH2_UPD. The current value of Revision is 3
for this version of the specification. All FSP
implementations compliant to v2.4 of this specification
shall use FSPM_ARCH2_ UPD regardless of whether 32-
bit x86 or 64-bit x64 mode is used.

Length

Length of the structure in bytes. The current value for
this field is 64.

This value only exists if Revision >= 3.

NvsBufferPtr

This value is deprecated starting with v2.4 of this
specification and will be removed in an upcoming
version of this specification. If BIT3 (Variable Support)
in the ImageAttribute field of the FSP_INFO_HEADER is
set, then this value is unused and must be set to NULL.
In this case, the FSP shall use the FSP variable services
described in Section 9.6 instead.

Pointer to the non-volatile storage (NVS) data buffer. If
it is NULL it indicates the NVS data is not available.
Refer to Section 11.2 and 11.3 for more details.

StackBase

Pointer to the temporary RAM base address to be
consumed inside FspMemoryinit() API.

For FSP implementations compliant to v2.0 or v2.4 of
this specification, the temporary RAM is used to
establish a stack and a HOB heap. For FSP
implementations compliant to v2.1, v2.2, or v2.3 of this
specification, the temporary RAM is only used for a
HOB heap.

FSP implementations compliant to v2.1 through v2.3 of
this specification will run on top of the stack provided
by the bootloader instead of establishing a separate
stack. Starting with v2.4 of this specification, the
behavior from v2.0 is restored and a separate stack will
be established.

December 2022
Document Number: 736809-2.4 (Errata A)

FSP Configuration Data

intel.

StackSize

For FSP implementations compliant to v2.0 or v2.4 of
this specification, the temporary RAM size used to
establish a stack and HOB heap. Consumed by the
FspMemoryinit() API.

For FSP implementations compliant to v2.1 through
v2.3 of this specification, the temporary RAM size used
to establish a HOB heap inside the FspMemoryinit() API.
Starting with v2.4 of this specification, the behavior
from v2.0 is restored and a separate stack will be
established.

Refer to the Integration Guide for the minimum
required temporary RAM size.

BootloaderTolumSize

Size of memory to be reserved by FSP below "top of
low usable memory" for bootloader usage. Refer to
Section 11.4 for more details.

BootMode

Current boot mode. Values are defined in Section 13.1
Appendix A — Data Structures. Refer to the Integration
Guide for supported boot modes.

FspEventHandler

Optional event handler for the bootloader to be
informed of events occurring during FSP execution.
This function shall have a signature matching
FSP_EVENT_ HANDLER. Refer to Section 9.5 for more
details.

This value is only valid if Revision is >= 2.

6.1.3 FSP-S UPD Structure

The UPD data structure definition for the FSP-S component will be provided as part of
the FSP release package and documented in the integration guide as well.

December 2022
Document Number: 736809-2.4 (Errata A)

Intel® Firmware Support Package
External Architecture Specification
33

intel.

typedef struct {
FSP UPD HEADER
FSPS_ARCH2 UPD

/**
Platform specific

**/
} FSPS_UPD;

typedef struct {
UINTS
UINTS
UINT32
FSP EVENT HANDLER
UINTS
UINTS
} FSPS_ARCH UPD;

typedef struct {
UINTS
UINTS
UINT32

FSP Configuration Data

UpdHeader;
FspsArchUpd;

parameters

Revision;

Reserved[3];

Length;

FspEventHandler;
EnableMultiPhaseSiliconInit;
Reservedl [19];

Revision;
Reserved[3];
Length;

EFI PHYSICAL ADDRESS FspEventHandler;

UINTS8
} FSPS_ARCH2 UPD;

Intel® Firmware Support Package
External Architecture Specification

34

Reservedl [16];

December 2022
Document Number: 736809-2.4 (Errata A)

FSP Configuration Data

intel.

Revision

Revision of the structure. If this value is 1 then the structure
definition shall be FSPS_ARCH_UPD. If this value is 2 then
the structure definition shall be FSPS_ARCH2_ UPD. The
current value of Revision is 2 for this version of the
specification. All FSP implementations compliant to v2.4 of
this specification shall use FSPS_ARCH2 UPD regardless
of whether 32-bit x86 or 64-bit x64 mode is used.

Length

Length of the structure in bytes. The current value for this
field is 32.

FspEventHandler

Optional event handler for the bootloader to be informed of
events occurring during FSP execution. This function shall
have a signature matching FSP_EVENT HANDLER. Refer
to Section 9.5 for more details.

EnableMultiPhaseSiliconlInit

This value is deprecated and has been removed starting
with v2.4 of this specification. Multi-phase silicon
initialization is mandatory for all FSP implementations
compliant to v2.4 of this specification, see Section 9.717 for
further details.

For FSP implementations compliant to v2.2 through v2.3 of
this specification, an FSP binary may optionally implement
multi-phase silicon initialization, see Section 9.1 for further
details. This is only supported if the
FspMultiPhaseSilnitEntryOffset field in FSP_INFO_ HEADER
is non-zero, see Section 5.1.7 for further details.

To enable multi-phase silicon initialization, the bootloader
must set EnableMultiPhaseSiliconInit toanon-
zero value.

6.1.4 FSP-1 UPD Structure

If the FSP includes the FSP-I component, the UPD data structure definition for it will be
provided as part of the FSP release package and documented in the Integration Guide.

December 2022
Document Number: 736809-2.4 (Errata A)

Intel® Firmware Support Package
External Architecture Specification
35

intel.

FSP Configuration Data

typedef struct {

FSP_UPD HEADER UpdHeader;

FSPI ARCH UPD FspiArchUpd;

/ * %

Platform specific parameters

* % /

} FSPI UPD;
typedef struct {

UINTS Revision;

UINTS Reserved[3];

UINT32 Length;

EFI PHYSICAL ADDRESS BootloaderSmmFvBaseAddress;
UINT64 BootloaderSmmFvLength;

EFI PHYSICAL ADDRESS BootloaderSmmEFvContextData;
UINT16 BootloaderSmmFvContextDatalLength;
UINTS8 Reservedl [30];

} FSPI_ARCH UPD;

Revision Revision of the structure is 1 for this version of the
specification.
Length Length of the structure in bytes. The current value

for this field is 64.

BootloaderSmmFvBaseAddress

The physical memory-mapped base address of the
bootloader SMM firmware volume (FV).

BootloaderSmmFvLength

The length in bytes of the bootloader SMM firmware
volume (FV).

BootloaderSmmFvContextData

The physical memory-mapped base address of the
bootloader SMM FV context data. This data is
provided to bootloader SMM drivers through a HOB
by the FSP MM Foundation. Please see Section 11.8
for details.

BootloaderSmmFvContextDataLength

The length in bytes of the bootloader SMM FV
context data. This data is provided to bootloader
SMM drivers through a HOB by the FSP MM
Foundation. Please see Section 11.8 for details.

Intel® Firmware Support Package
External Architecture Specification

36

December 2022
Document Number: 736809-2.4 (Errata A)

[]
Boot Flow I n te I ®

7.0 Boot Flow

The FSP v2.1 specification defines two possible FSP boot flows. The first boot flow is
the “API mode” boot flow. This boot flow is very similar to the boot flow defined in the
FSP v2.0 specification. This specification also defines the “dispatch mode” boot flow. It
is not required for a specific implementation of FSP to support the dispatch mode boot
flow. The APl mode boot flow is mandatory for all FSP implementations.
FSP_INFO_HEADER indicates if dispatch mode is supported by the FSP.

7.1 APl Mode Boot Flow

Figure 4. API Mode Boot Flow

VA Reset System m
Reset Vector

Switch to 32 bit Mode Find FSP Header in FSP-S
FSP-T call FspSiliconinit()
Find FSP Header in FSP-T
call TempRaminit() Reset
Setup Stack Required?
Pre-Mem Init

Call FspMultiPhaseSilnit()

Find FSP Header in FSP-M FSP-M

call FspMemoryinit()
Reset
Required?

Reset Bus and Device Init
Required? call NotifyPhase() API (post PCl)
Boot Device Init
call NotifyPhase() API
(ReadyToBoot)
Call FspMultiPhaseMeminit()
Load OS / Payload
call NotifyPhase() AP1

(EndOfFirmware)
FW handoff to 0S

Reset FSP-1 °
Required?
Find FSP Header in FSP-I
call FspSmminit(
Migrate Temp Stack 2 it)
call TempRameExit()

7.1.1 Boot Flow Description
e Bootloader starts executing from Reset Vector.

o Switches the mode to 32-bit mode.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 37

intel.

Boot Flow

o If 64-bit mode support is indicated by FSP_INFO_HEADER.ImageAttribute[2],
switch to x64 long mode and execute the remaining steps in this mode.

o Initializes the early platform as needed.

o Finds FSP-T and calls the TempRamiInit() API. The bootloader also has the
option to initialize the temporary memory directly, in which case this step
and step 2 are skipped.

FSP initializes temporary memory and returns from TempRaminit() API.
Bootloader initializes the stack in temporary memory.

o Initializes the platform as needed.
o Finds FSP-M and calls the FspMemorylnit() API.

FSP initializes memory and returns from FspMemoryinit() API.

o If the FspMemorylnit() APl returns the status code
FSP_STATUS VARIABLE REQUEST:

= The bootloader shall call the FspMultiPhaseMeminit() APl with the
EnumMultiPhaseGetVariableRequestinfo parameter to get the details of the
requested non-volatile data access request.

= Bootloader shall perform the access request and return the results to the
FSP by calling the FspMultiPhaseMeminit() API with the
EnumMultiPhaseCompleteVariableRequest parameter.

= The call to the FspMultiPhaseMeminit() APl with the
EnumMultiPhaseCompleteVariableRequest parameter could return
FSP_STATUS VARIABLE REQUEST again. In this scenario, the
previous calling sequence of
EnumMultiPhaseGetVariableRequestinfo followed by
EnumMultiPhaseCompleteVariableRequest will be repeated until
EnumMultiPhaseCompleteVariableRequest returns a status code
otherthan FSP_STATUS VARIABLE REQUEST. Execution of the
FspMemoryinit() API shall not be considered complete until a status
code other than FSP STATUS VARIABLE REQUEST is returned.

Bootloader calls the FspMultiPhaseMeminit() APl with the
EnumMultiPhaseGetNumberOfPhases parameter to discover the number of
memory initialization phases supported by the FSP.

If the number of phases returned previously is greater than zero, the Bootloader
must call the FspMultiPhaseMeminit() APl with the EnumMultiPhaseExecutePhase
parameter n times, where n is the number of phases returned previously.
Bootloader may perform board specific code in between each phase as needed.

Intel® Firmware Support Package
External Architecture Specification December 2022

38

Document Number: 736809-2.4 (Errata A)

Boot Flow InteL

o The number of phases, what is done during each phase, and anything the
bootloader may need to do in between phases shall be described in the
Integration Guide.

o If the FspMultiPhaseMeminit() APl returns the status code
FSP_STATUS VARIABLE REQUEST:

* The bootloader shall call the FspMultiPhaseMeminit() APl with the
EnumMultiPhaseGetVariableRequestinfo parameter to get the
details of the requested non-volatile data access request.

» Bootloader shall perform the access request and return the results
to the FSP by calling the FspMultiPhaseMeminit() API with the
EnumMultiPhaseCompleteVariableRequest parameter.

* The call to the FspMultiPhaseMeminit() API with the
EnumMultiPhaseCompleteVariableRequest parameter could return
FSP_STATUS VARIABLE REQUEST again. In this scenario, the
previous calling sequence of
EnumMultiPhaseGetVariableRequestinfo followed by
EnumMultiPhaseCompleteVariableRequest will be repeated until
EnumMultiPhaseCompleteVariableRequest returns a status code
otherthan FSP STATUS VARIABLE REQUEST. Execution of
EnumMultiPhaseExecutePhase shall not be considered complete
until a status code other than FSP_STATUS VARIABLE REQUEST
is returned.

e Bootloader relocates itself to Memory.

e Bootloader calls TempRameEXxit() API. If Bootloader initialized the temporary
memory in step 1)d)... this step and the next step are skipped.

e FSP returns from TempRamExit() API.
e Bootloader finds FSP-S and calls FspSiliconinit() API.
e FSP returns from FspSiliconlinit() API.

o If the FspSiliconlnit() APl returns the status code
FSP STATUS VARIABLE REQUEST:

*» The bootloader shall call the FspMultiPhaseSilnit() APl with the
EnumMultiPhaseGetVariableRequestinfo parameter to get the
details of the requested non-volatile data access request.

» Bootloader shall perform the access request and return the results
to the FSP by calling the FspMultiPhaseSilnit() APl with the
EnumMultiPhaseCompleteVariableRequest parameter.

» The call to the FspMultiPhaseSilnit() APl with the
EnumMultiPhaseCompleteVariableRequest parameter could return

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 39

intel.

Boot Flow

FSP STATUS VARIABLE REQUEST again. In this scenario, the
previous calling sequence of
EnumMultiPhaseGetVariableRequestinfo followed by
EnumMultiPhaseCompleteVariableRequest will be repeated until
EnumMultiPhaseCompleteVariableRequest returns a status code
other than FSP_STATUS VARIABLE REQUEST. Execution of the
FspSiliconlnit() API shall not be considered complete until a status
code other than FSP_STATUS VARIABLE REQUEST is returned.

e Bootloader calls the FspMultiPhaseSilnit() APl with the
EnumMultiPhaseGetNumberOfPhases parameter to discover the number of silicon
initialization phases supported by the bootloader.

e If the number of phases returned previously is greater than zero, the Bootloader
must call the FspMultiPhaseSilnit() APl with the EnumMultiPhaseExecutePhase
parameter n times, where n is the number of phases returned previously.
Bootloader may perform board specific code in between each phase as needed.

o The number of phases, what is done during each phase, and anything the
bootloader may need to do in between phases shall be described in the
Integration Guide.

o If the FspMultiPhaseSilnit() APl returns the status code
FSP STATUS VARIABLE REQUEST:

The bootloader shall call the FspMultiPhaseSilnit() APl with the
EnumMultiPhaseGetVariableRequestinfo parameter to get the
details of the requested non-volatile data access request.

Bootloader shall perform the access request and return the results
to the FSP by calling the FspMultiPhaseSilnit() APl with the
EnumMultiPhaseCompleteVariableRequest parameter.

The call to the FspMultiPhaseSilnit() APl with the
EnumMultiPhaseCompleteVariableRequest parameter could return
FSP STATUS VARIABLE REQUEST again. In this scenario, the
previous calling sequence of
EnumMultiPhaseGetVariableRequestinfo followed by
EnumMultiPhaseCompleteVariableRequest will be repeated until
EnumMultiPhaseCompleteVariableRequest returns a status code
other than FSP STATUS VARIABLE REQUEST. Execution of the
EnumMultiPhaseExecutePhase shall not be considered complete
until a status code other than FSP STATUS VARIABLE REQUEST
is returned.

e If the FSP includes the FSP-1 component, bootloader finds FSP-1 and calls
FspSmminit() API.

Intel® Firmware Support Package
External Architecture Specification
40

December 2022
Document Number: 736809-2.4 (Errata A)

Boot Flow InteL

o FSP-l copies its SMM code into SMRAM.

o FSP programs the SMBASE register value for all the threads and programs the
SMRR.

o FSP can enable and handle SMI sources as required.
o FSP dispatches bootloader provided SMM drivers.
o FSP closes and locks SMRAM.

o FSP returns to bootloader.
e Bootloader continues and device enumeration.
e Bootloader calls NotifyPhase() APl with AfterPciEnumeration parameter.

e Bootloader calls NotifyPhase() APl with ReadyToBoot parameter before transferring
control to OS loader.

e When booting to a non-UEFI OS, Bootloader calls NotifyPhase() APl with
EndOfFirmware parameter immediately after ReadyToBoot.

e When booting to a UEFI OS, Bootloader calls NotifyPhase() with EndOfFirmware
parameter during ExitBootServices.

Note: If FSP returns the reset required status in any of the APIs’, then bootloader performs
the reset. Refer to the Integration Guide for more details on Reset Types.

7.2 Dispatch Mode Boot Flow

Dispatch mode is an optional boot flow intended to enable FSP to integrate well in to
UEFI bootloader implementations. Implementation of this boot flow necessitates that
the underlying FSP implementation uses the Pre-EFI Initialization (PEI) environment
defined in the PI Specification. It is possible to implement an FSP without using PEI, so
bootloaders must check that dispatch mode is available using the FSP_INFO_HEADER,
see Section 5.1.1 for further details. The Integration Guide will also specify if an FSP
implements dispatch mode. See Section 10.0 for a full description of dispatch mode.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 41

intel.

7.2.1

Boot Flow

High Level Overview

Figure 5. Dispatch Mode Boot Flow

7.2.2

PeiCore)

|

. Locate PeiCore and report
sevan [{ e e =

Dispatch BFV PEIM and
initialize PCD Database

MemoryDiscovered Dispatch FSP-M and rest
Callbacks PEIM

Dispatch PostMem DlspatcgoFSStFP’/I—eSmand rest
PEIM and report FSP-S FV PEIM

os <: X64 NotifyPhase Drivers

DxeCore

[

Dispatch DXE Drivers and
process FSPS FV

|

Blue blocks are from the FSP binary and green blocks are from the bootloader. Blocks
with mixed colors indicate that both bootloader and FSP modules are dispatched
during that phase of the boot flow.

Dispatch mode is intended to implement a boot flow that is as close to a standard UEFI
boot flow as possible. In dispatch mode, FSP exposes Firmware Volumes (FV) directly
to the bootloader. The PEIM in these FV are executed directly in the context of the PEI
environment provided by the boot loader. FSP-T, FSP-M, and FSP-S could contain one
or multiple FVs. The exact FVs layout will be described in the Integration Guide. In
dispatch mode, the PPI database, PCD database, and HOB list are shared between the
boot loader and the FSP.

In dispatch mode, the NotifyPhase() APl is not used. Instead, FSP-S contains DXE
drivers that implement the native callbacks on equivalent events for each of the
NotifyPhase() invocations.

Boot Flow Description

This boot flow assumes that the bootloader is a typical UEFI firmware implementation
conforming to the PI Specification. Therefore, the bootloader will follow the standard
four phase Pl boot flow progressing from SEC phase, to PEI phase, to DXE phase, to
BDS phase.

e Bootloader provided SEC phase starts executing from Reset Vector.

o Switches the mode to 32-bit mode.

Intel® Firmware Support Package
External Architecture Specification December 2022

42

Document Number: 736809-2.4 (Errata A)

Boot Flow InteL

o If 64-bit mode support is indicated by
FSP_INFO_HEADER.ImageAttribute[2], switch to x64 long mode and
execute the remaining steps in this mode.

o Initializes the early platform as needed.
o Finds FSP-T and calls the TempRaminit() API. SEC also has the option

to initialize the temporary memory directly, in which case this step and
step 2 are skipped.

e FSPinitializes temporary memory and returns from TempRaminit() API.
e SEC initializes the stack in temporary memory.

e SECfinds FSP-M and adds an instance of EFI_PEI_CORE_FV_LOCATION_PPI
containing the address of FSP-M to the PpiList passed into PEI core.

e SEC calls the entry point for the PEI core inside FSP-M.

o Boot loader passes the FSP-M PEI core a EFI_SEC_PEI_HAND_OFF
data structure with the BootFirmwareVolumeBase and
BootFirmwareVolumeSize members pointing to a FV provided by the
platform.

*» The bootloader provides the Boot Firmware Volume (BFV).
Consequently, in FSP dispatch mode PEI core is not in the BFV
unlike most UEFI firmware implementations.

e PEl core dispatches the PEIM in the BFV provided by the bootloader.
e Bootloaderinstalls FSPM_ARCH_CONFIG_PPI.

e One of the PEIM provided by the bootloader installs a
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI for each FV contained in FSP-M.

o The bootloader must not install the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-M until the
bootloader is ready for FSP-M to execute.

o If FSP-M requires any DynamicEx PCD values, the bootloader must
ensure those PCD contain valid data before installing the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-M.

e PEI core will continue to dispatch PEIM. During the course of dispatch, PEIM
included with FSP-M will be executed.

o Some of the PEIM contained in FSP-M may require configuration data
to be provided by the bootloader. If this is the case, the configuration
data may be stored in either DynamicEx PCD or PPI.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 43

[]
Intel® Boot Flow

= If the configuration data is stored in PCD, then it is assumed
that the PCD contains valid data before FSP-M begins
execution.

= If the configuration data is stored in PPI, then the needed PPI
will either be in the PEIM’s DEPEX, or the PEIM will register a
callback for the needed PPl and not attempt to access the PPI
until the callback is invoked by PEI core.

e FSP-Minstalls FSP_TEMP_RAM_EXIT_PPI.

e After dispatching the PEIM in FSP-M, memory will be initialized. Accordingly,
FSP-M will call (*PeiServices)->InstallPeiMemory().

o PEIl core shadows to main memory.

o PEl core invokes TemporaryRamDone() from
EFI_PEI_TEMPORARY_RAM_DONE_PPI. The implementation of
EFI_PEI_TEMPORARY_RAM_DONE_PPI is provided by the bootloader.

o The bootloader implementation of
EFI_PEI_TEMPORARY_RAM_DONE_PPI calls TempRameExit() from
FSP_TEMP_RAM_EXIT_PPI.

» For platforms that use the SEC implementation in UefiCpuPkg,
SEC core implements EFI_PEI_TEMPORARY_RAM_DONE_PPI.
The TemporaryRamDone() implementation in SEC core will call
SecPlatformDisableTemporaryMemory(). This function would
then locate FSP_TEMP_RAM_EXIT_PPI and call
TempRamEXxit().

» [f the bootloader did not call TempRamInit() in step 1.d) then
the bootloader would not call TempRamExit().

o PEl core follows up with an installation of the
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI. Refer to Volume 1
of the PI Specification for details.

e Post memory PEIM provided by the bootloader are now executed.

e One of the PEIM provided by the bootloader installs a
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI for each FV contained in FSP-S.

o The bootloader must not install the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-S until the
bootloader is ready for FSP-S to execute.

o If FSP-S requires any DynamicEx PCD values, the bootloader must
ensure those PCD contain valid data before installing the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-S.

Intel® Firmware Support Package
External Architecture Specification December 2022
44 Document Number: 736809-2.4 (Errata A)

Boot Flow InteL

e PEIl core will continue to dispatch PEIM. During the course of dispatch, PEIM
included with FSP-S will be executed.

o Some of the PEIM contained in FSP-S may require configuration data
to be provided by the bootloader. If this is the case, the configuration
data may be stored in either DynamicEx PCD or PPI.

= If the configuration data is stored in PCD, then it is assumed
that the PCD contain valid data before FSP-S begins execution.

= If the configuration data is stored in PPI, then the needed PPI
will either be in the PEIM’s DEPEX, or the PEIM will register a
callback for the needed PPl and not attempt to access the PPI
until the callback is invoked by PEI core.

e If the FSP includes the FSP-1 component and the bootloader chooses to use
FSP SMM Model 2 (FSP owns SMRAM), bootloader finds FSP-I and calls
FspSmminit() API.

o FSP-l copies its SMM code into SMRAM.

o FSP programs the SMBASE register value for all the threads and
programs the SMRR.

o FSP can enable and handle SMI sources as required.
o FSP dispatches bootloader provided SMM drivers.
o FSP closes and locks SMRAM.

o FSP returns to bootloader.

e If (1) the FSP includes the FSP-I component, (2) the bootloader chooses to use
FSP SMM Model 3 (Bootloader provides the MM Foundation), and (3) the
bootloader chooses to initialize the MM Foundation in post-memory PEI:

o Bootloader copies its SMM code into SMRAM.

o Bootloader programs the SMBASE register value for all the threads and
programs the SMRR.

o Bootloader enables and handles SMI sources as required.
o Bootloader dispatches bootloader provided SMM drivers.
o Bootloader dispatches FSP provided SMM drivers

o Bootloader closes and locks SMRAM.

o Bootloader returns to PEI.
e End of PEl is reached, and DXE begins execution.

e Any DXE drivers included in FSP-S are dispatched. These drivers may create
events to be notified at different points in the boot flow. FSP shall use a subset

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 45

intel.

7.2.3

Boot Flow

of the events defined by the Pl Specification, see Section 10.3 for the full list of
events the FSP may use.

e If (1) the FSP includes the FSP-I component, (2) the bootloader chooses to use
FSP SMM Model 3 (Bootloader provides the MM Foundation), and (3) the
bootloader chooses to initialize the MM Foundation in DXE:

o Bootloader copies its SMM code into SMRAM.

o Bootloader programs the SMBASE register value for all the threads and
programs the SMRR.

o Bootloader enables and handles SMI sources as required.

o Bootloader dispatches bootloader provided SMM drivers.

o Bootloader dispatches FSP provided SMM drivers

o Bootloader closes and locks SMRAM.

o Bootloader returns to DXE.

e DXE signals EFI_END_OF_DXE_EVENT_GROUP_GUID and transitions to BDS
phase.

o Note: The Pl Specification does not require that Step 19 occurs before
Step 21, however most implementations appear to use this order.

e BDS starts the PCI bus driver, which enumerates PCl devices. After
enumeration, the PCl bus driver installs the
EFI_PCI_ENUMERATION_PROTOCOL. DXE signals any applicable events.

e BDS signals EFI_EVENT_GROUP_READY_TO_BOOT immediately before
loading the OS boot loader.

e BDS executes the OS boot loader. The OS boot loader loads the OS kernel into
memory.

e The OS boot loader calls ExitBootServices(), DXE signals this event before
shutting down the UEFI Boot Services.

Alternate Boot Flow Description

In some scenarios, the bootloader may wish to use a customized version of the PEI
Foundation. For example, many software debugger implementations need to be linked
with PEI core directly. For this reason, as an alternative to using the PEI core included
with FSP-M, the bootloader may instead elect to use its own implementation of PEI
core. In this case, the bootloader provided SEC will not produce the
EFI_PEI_CORE_FV_LOCATION_PPI, and instead of calling the entry point for the PEI
core inside FSP-M it shall call the entry point for the PEI core inside the BFV. Note that
this will result in two copies of PEI core being present in the final image, one in the BFV

Intel® Firmware Support Package
External Architecture Specification December 2022

46

Document Number: 736809-2.4 (Errata A)

Boot Flow InteL

and one in the FSP-M. If firmware storage space is under pressure, one may elect to
post process FSP-M using Intel® FMMT to remove the PEI core included with FSP.

This is generally considered to be a debug feature, and is discouraged for use in a
production environment as it deviates from the boot flow that receives the most
validation. It is also inefficient due to the duplicate copy of PEI core it introduces.

e Bootloader provided SEC phase starts executing from Reset Vector.

o Switches the mode to 32-bit mode.

o If 64-bit mode support is indicated by
FSP_INFO_HEADER.ImageAttribute[2], switch to x64 long mode and
execute the remaining steps in this mode.

o Initializes the early platform as needed.

o Finds FSP-T and calls the TempRaminit() API. SEC also has the option to
initialize the temporary memory directly, in which case this step and step 2
are skipped.

e FSPinitializes temporary memory and returns from TempRaminit() API.

e SEC initializes the stack in temporary memory.

e SEC calls the entry point for the PEI core inside the Boot Firmware Volume (BFV).
e PEl core dispatches the PEIM in the BFV provided by the bootloader.

e Boot loader installs FSPM_ARCH_CONFIG_PPI.

e One of the PEIM provided by the bootloader installs a
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI for each FV contained in FSP-M.

o The bootloader must not install the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-M until the
bootloader is ready for FSP-M to execute.

o If FSP-M requires any DynamicEx PCD values, the bootloader must ensure
those PCD contain valid data before installing the
EFI_PEI_FIRMWARE_VOLUME_INFO_PPI(s) for FSP-M.

e PEl core will encounter a second PEI core in FSP-M. Because it is not a PEIM, the
dispatcher will skip it. PEI core will proceed to dispatch the PEIM in FSP-M.

e The boot flow proceeds the same as step 9 in the primary boot flow from here
forwards.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 47

intel.

8.0

System Management Mode

System Management Mode

8.1

System Management Mode (SMM) is a special-purpose operating mode provided for
handling system-wide functions including certain system hardware control operations
during system runtime. Such operations are required to address various situations from
simple use cases like writing to the flash part to complex proprietary algorithms like
initializing the memory controller for a memory online operation.

SMM provides a mechanism to run trusted firmware code during runtime to address
these use cases and is intended for use only by system firmware.

The processor executes SMM code in a separate address space (SMRAM typically near
top of memory also known as TSEG) that can be made inaccessible from the other
operating modes providing the necessary protection for trusted firmware code. Other
SMM protections are out of scope for this document. Please refer to relevant platform
specific documentation for details.

In addition to FSP-T/M/S, an FSP binary may optionally include an FSP-I component.
The FSP-I component is intended to provide SMM mode and other late silicon
functionality that is executed when the system is in SMM. For example, services related
runtime reliability/availability/serviceability like ECC error handling, error isolation to a
specific DIMM module, etc. are required during runtime. These operations require that
the system is in SMM and are typically platform dependent and the system firmware
being the platform specific component is expected to provide these services.

The FSP-I component includes three sub-components as below

“Standalone SmmFoundation” along with drivers providing MM Services necessary to
dispatch and support the SMM mode drivers.

“Standalone Smmlpl” that opens the SMRAM, loads SmmFoundation in SMRAM and
closes the SMRAM after the load process is complete.

“Standalone SmmDrivers” that handle specific SMI sources. The standalone
SmmDrivers conform to the Platform Initialization (Pl) Management Mode Core
Interface Specification.

The FSP-I component is designed to allow various usage models as explained below.

Model 1 - No SMM

Certain platforms are designed for workloads that may require real time and
predictable response time. SMM by its nature is transparent to the operating system
and may cause jitter which cannot be tolerated by such platforms. Workloads requiring
functional safety is another example of platforms that may decide to disable SMM.

Intel® Firmware Support Package
External Architecture Specification December 2022

48

Document Number: 736809-2.4 (Errata A)

System Management Mode I n te I®

8.2

8.3

System firmware for such platforms may decide to disable SMM and not use FSP-I. If an
FSP binary provides the FSP-I component, usage of FSP-I can be mandatory for certain
processors and chipsets. The Integration Guide will document if FSP-1is mandatory for
specific FSP implementations. If an FSP binary provides the FSP-I component, then
FSP-I shall support model 2 (FSP owns SMRAM) at a minimum. If the FSP binary
supports dispatch mode, then model 3 (Bootloader provides the MM Foundation) must
also be supported in addition to model 2.

Model 2 - FSP owns SMRAM

This model is applicable for both (1) bootloaders implementing Pl specification
(Dispatch Mode) as well as (2) bootloaders that don't implement Pl specification (API
Mode).

In this model, the FSP-I component manages the SMRAM independently without any
bootloader involvement. Bootloader can provide SMM drivers for extensibility. The
bootloader does this by providing a Firmware Volume (FV) to FSP-I via the
BootloaderSmmFvBaseAddress and BootloaderSmmFvLength UPDs. FSP-I will create
an EFI_HOB_FIRMWARE_VOLUME HOB for this bootloader provided FV and insert it
into the HOB list provided to the MM Foundation. In some cases, FSP-I may require the
bootloader to provide services in SMM. In this scenario, FSP-I will consume those
services through MM protocol(s) installed by bootloader SMM drivers. Any required
SMM services will be described in the Integration Guide.

Model 3 - Bootloader provides the MM Foundation
(Dispatch Mode Only)

This model is applicable for bootloaders that implement the Pl specification (Dispatch
Mode) only. In this mode, the bootloader provides the MM Foundation. Any Firmware
Volumes (FVs) contained in the FSP-I component are registered with the bootloader
provided MM Foundation and any Standalone MM drivers included in those FVs are
dispatched.

In Model 3, the bootloader provided MM Foundation can optionally support Traditional
MM drivers in addition to Standalone MM drivers if desired. This Traditional MM
support would only be used by bootloader SMM drivers; FSP-1 shall only contain
Standalone MM drivers.

In some cases, FSP-I may require the bootloader to provide services in SMM. In this
scenario, FSP-I will consume those services through MM protocol(s) installed by
bootloader SMM drivers. Any required SMM services will be described in the Integration
Guide.

FSP-I may require specific SMI sources to be enabled for proper operation. If this is the
case, those SMI sources and any APIs used by the FSP to register handlers for those
SMI sources will be documented in the Integration Guide.

Intel® Firmware Support Package

December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 49

intel.

8.4

8.4.1.1

System Management Mode

High Level Flow

APl Mode

A high-level boot flow involving FSP-I APl mode is provided below. As the APl mode is
utilized by bootloaders not implementing the Platform Initialization (PI) specification,
execution details have been abstracted as necessary.

o v A~ W

8.
0.

Early initialization
Memory initialization including programming chipset registers reserving
SMRAM memory

FspSiliconInit API is called by bootloader
Bootloader calls FspSmminit entry point
FSP SMM module copies the SMM functionality code to the SMRAM

FSP SMM module programs the SMBASE register value for all the threads and
programs the SMRR

FSP SMM module enables SMI sources as required
FSP SMM module closes and locks SMRAM
FSP SMM module returns to bootloader

10. Bootloader continues execution

When an SMI occurs, FSP SMM modaule services it, clears the SMI status bits, sets End of
SMI status, and returns from SMM to normal mode of operation.

Figure 6. SMM Drivers

Intel® Firmware Support Package

External Architecture Specification

50

Manage =
(GUID1) : sMmI
— L. H cg:ld gMI — Event
ROOt B andier priver N Sources
SMI
—p SMI — Event
SMM Entry Handler Sources
(CPU) (Driver) Manage
——fTullr)z)
v Manage(GUID3)
SMI Handler ‘
Manage(NULL) T SMI
4 SMI Handler]
Handler
A
SMM Exit L, SMI - SMI Handler |
(CPU) Handler
December 2022

Document Number: 736809-2.4 (Errata A)

System Management Mode I n te I®

8.4.1.2 Dispatch Mode

In model 2 (FSP owns SMRAM), the bootloader will include an FSP-I wrapper PEIM that
will invoke the FspSmmilnit entry point during post-memory PEI: after memory
initialization is complete but before DXE IPL.

In model 3 (bootloader provides the MM Foundation), the bootloader will register any
Firmware Volumes (FVs) contained in FSP-I with the MM Foundation, causing SMM
drivers contained in FSP-I to be dispatched along with bootloader provided SMM
drivers. This can happen either in post-memory PEI or early DXE (before BDS).

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 51

intel.

9.0

FSP API Mode Interface

FSP API Mode Interface

9.1

9.2

9.3

Entry-Point Invocation Environment

There are some requirements regarding the operating environment for FSP execution.
The bootloader is responsible to set up this operating environment before calling the
FSP API. These conditions have to be met before calling any entry point (otherwise, the
behavior is not determined). These conditions include:

e Interrupts should be turned off.
e The FSP API should be called only by the system BSP, unless otherwise noted.

e Sufficient stack space should be available for the FSP API function to execute.
Consult the Integration Guide for platform specific stack space requirements.

Specially for x86 32bit API mode:

e The system is in flat 32-bit mode.

e Both the code and data selectors should have full 4GB access range.
Specially for x64 64bit APl mode:

e The system is in 64-bit long mode with paging enabled.

e The full address space required by the FSP and bootloader execution shall be
identity mapped (virtual address equals physical address), although the attributes
of certain regions may not have all read, write, and execute attributes or be
unmarked for purposes of platform protection. The mappings to other regions are
undefined and may vary from implementation to implementation. Please refer to
Integration Guide for page table address space range required by FSP execution.

e Selectors are set to flat and are otherwise not used.

Other requirements needed by individual FSP API will be covered in the respective
sections.

Data Structure Convention

All data structure definitions should be packed using compiler provided directives such
as #pragma pack (1) to avoid alignment mismatch between the FSP and the
bootloader.

Entry-Point Calling Convention

e AllFSP APIs defined in the FSP_INFO_HEADER can be either 32-bit or 64-bit
interface depending on FSP_INFO_HEADER.ImageAttribute BIT2 (64-bit support).

Intel® Firmware Support Package
External Architecture Specification December 2022

52

Document Number: 736809-2.4 (Errata A)

FSP API Mode Interface I n te I ®

9.4

9.5

December 2022

When FSP_INFO_HEADER.ImageAttribute[2] is O, it indicates the FSP APIs provided
by current FSP component only support 32-bit interfaces. Accordingly, when
FSP_INFO_HEADER.ImageAttribute[2] is 1, it indicates the FSP APIs provided by
current FSP component only support 64-bit interfaces.

e The FSP API 32-bit interface is similar to the default C __cdecl convention. Like the
default C __cdecl convention, with the FSP API interface:

— All parameters are pushed onto the stack in right-to-left order before the API is
called.

e The FSP API 64-bit interface is similar to the EFIAPI calling convention defined by
UEFI specification, with the FSP API interface:

— The first 4 parameters are passed from left to right in RCX, RDX, R8 and R9
registers. The arguments five and above are passed onto the stack.

— The 32 bytes shadow space is allocated on stack by caller before the API call.

— A caller must always call with the stack 16-byte aligned.

e The calling function needs to clean the stack up after the API returns.

e The return value is returned in the EAX/RAX register. All the other registers
including floating point registers are preserved, except as noted in the individual
API descriptions below or in Integration Guide.

Return Status Code

All FSP API return a status code to indicate the APl execution result. These return status
codes are defined in Section 13.2 Appendix A — EFI_STATUS.

Sometimes for an initialization to take effect, a reset may be required. The FSP APl may
return a status code indicating that a reset is required as documented in 13.2.2 OEM
Status code.

When an FSP API returns one of the FSP_STATUS_RESET_REQUIRED codes, the
bootloader can perform any required housekeeping tasks and issue the reset.

When an FSP API returns FSP_STATUS_VARIABLE_REQUEST, the bootloader shall
perform an FSP variable access request. See Section 9.6 for details.

FSP Events

FSP may optionally include the capability of generating events messages to aid in the
debugging of firmware issues. These events fall under three categories: Error, Progress,
and Debug. The event reporting mechanism follows the status code services described
in Section 6 and 7 of the PI Specification v1.7 Volume 3.

The bootloader may provide an event handler to the FSP through the

FSPM_ARCH UPD.FspEventHandler and FSPS_ARCH UPD.FspEventHandler

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 53

[]
I n te I® FSP API Mode Interface

UPDs. Providing these event handlers is entirely optional. If the bootloader does not
wish to handle FSP events, it may set these UPDs to NULL. FSP will only call
FSPM_ARCH_UPD.FspEventHandler during FSP-M and

FSPS_ARCH _UPD.FspEventHandler during FSP-S.

Due to the nature of early boot stages, FSP-T is mostly assembly code. Accordingly,
FSP-T uses a simpler interface that only provides debug log messages using
FSPT_ARCH UPD.FspDebugHandler. Due to the need for a stack to be established to
call this handler, FSP-T can only call FspDebugHandler() after temporary memory is
initialized. This may delay the output of debug log messages until later in the FSP-T
flow.

The event handlers provided by the bootloader should not use more than 4KB of stack
space.

A similar feature is provided for dispatch mode, see Section 10.4.12.

9.5.1 Pl Specification Architecturally Defined Status Codes

The PI Specification provides a rich set of status code classes and sub-classes, which
may be used by the FSP. The bootloader may also parse these Pl Specification defined
status code events if desired.

If a bootloader chooses to implement the MIPI Sys-T specification, it is recommended
that Pl Specification architecturally defined status codes returned by the FSP be
translated into human readable string descriptions and then output in either

MIPI SYST STRING GENERIC format or if the bootloader chooses to support

MIPI SYST TYPE CATALOG in catalog format. See Volume 3, Chapter 6 of the PI
Specification for these descriptive strings. The bootloader should also provide a
MIPI_SYST SEVERITY * value thatis appropriate. Below is an example (but not
required) mapping:

Table 5. EFI_STATUS_CODE_TYPE to MIPI_SYST_SEVERITY Mapping

Status Code Type Status Code Severity MIPI Sys-T Severity
EFI_DEBUG_CODE N/A MIPI_SYST_SEVERITY_DEBUG
EFI_PROGRESS_CODE N/A MIPI_SYST_SEVERITY_INFO
EFI_ERROR_CODE EFI_ERROR_MINOR MIPI_SYST_SEVERITY_WARNING
EFI_ERROR_CODE EFI_ERROR_MAJOR MIPI_SYST_SEVERITY_ERROR
EFI_ERROR_CODE EFI_ERROR_UNRECOVERED MIPI_SYST_SEVERITY_FATAL
EFI_ERROR_CODE EFI_ERROR_UNCONTAINED MIPI_SYST_SEVERITY_FATAL

Intel® Firmware Support Package
External Architecture Specification December 2022
54 Document Number: 736809-2.4 (Errata A)

|
FSP API Mode Interface I n te I ®

9.5.2

9.5.3

9.5.4

Debug Log Messages

The FSP may use this event mechanism to provide debug log messages to the
bootloader. When FSP-M or FSP-S provide debug log messages this way, the Type
parameter's EFI_STATUS_CODE_TYPE_MASK will be set to EFI_DEBUG_CODE and the
Data parameter shall contain a EFI_STATUS_CODE_STRING_DATA payload. Please see
Section 6.6.2 of the PI Specification v1.7 Volume 3 for details on
EFI_STATUS_CODE_STRING_DATA. The FSP shall only pass a EFI_STRING_TYPE of
EfiStringAscii for the purposes of debug log messages. The Instance parameter
shall contain the ErrorLevel, please see Section 13.9 for details. The bootloader may
parse these debug log events if desired.

If a bootloader chooses to implement the MIPI Sys-T specification, it is recommended
that debug log messages provided in this way be output in

MIPI SYST STRING GENERIC format. The bootloader sets the MIPI SYST SEVERITY *
value for each message and can use the ErrorLevel values provided by the FSP to aid in
deciding that value.

It should be noted that the strings for these log messages increase the binary size of
the FSP considerably. Accordingly, FSP binaries intended for production use are
unlikely includes debug log messages.

POST Progress Codes

The FSP may use this event mechanism to provide POST codes to the bootloader. If
FSP-M or FSP-S provide POST codes this way, the Type parameter’s
EFI_STATUS_CODE_TYPE_MASK will be set to EFI_PROGRESS_CODE and the Value
parameter will have the upper 16-bits (EFI_STATUS_CODE_CLASS_MASK and
EFI_STATUS_CODE_SUBCLASS_MASK) will be set to FSP_POST_CODE. The lower 16-
bits (EFI_STATUS_CODE_OPERATION_MASK) will contain the POST code. The
bootloader may parse these POST code events if desired.

MIPI Sys-T Catalog Debug Log Messages

The FSP may use this event mechanism to provide MIPI Sys-T catalog style debug
messages. If FSP-M or FSP-S provide catalog debug messages this way, the Type
parameter's EFI_STATUS_CODE_TYPE_MASK will be set to EFI_DEBUG_CODE and the
Value parameter will have the upper 16-bits (EFI_STATUS_CODE_CLASS_MASK and
EFI_STATUS_CODE_SUBCLASS_MASK) will be set to FSP_CATALOG MESSAGE. The
Instance parameter shall contain the ErrorLevel, please see Section 13.9 for details. The
MIPI Sys-T message’s payload data will be provided via the Data parameter and will
always be in MIPI SYST CATALOG ID64 P64 format, please see Section 9.1.4 of the MIPI
Sys-T v1.0 Specification. The bootloader sets the MIPI SYST SEVERITY * value for
each message and can use the ErrorLevel values provided by the FSP to aid in deciding
that value.

Intel® Firmware Support Package

December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 55

. I
I n te ® FSP API Mode Interface

It should be noted that generating catalog style debug messages requires conversion of
DebuglLib style format strings to C99 style format strings. There is not a 1:1 mapping
between these, and runtime data conversion is needed to generate a MIPI Sys-T
message payload. The inclusion of these format strings and the code to parse and
translate the variable argument list into a message payload increases the binary size of
the FSP considerably and can have a substantial impact on boot performance.
Accordingly, FSP binaries intended for production use are unlikely to include catalog
debug log messages.

9.5.5 Related Definitions
#define FSP EVENT CODE 0xF5000000
#define FSP POST CODE (FSP_EVENT CODE | 0x00F80000)

#define FSP CATALOG MESSAGE (FSP_EVENT CODE | 0x00F90000)
See Section 13.70-13.11 Appendix A — Data Structures for the definitions of

EFI_STATUS_CODE_TYPE, EFI_STATUS_CODE_VALUE, and
EFI_STATUS_CODE_DATA.

9.5.5.1 FspEventHandler

Handler for FSP events, provided by the bootloader.

9.5.5.1.1 Prototype

typedef
EFI_STATUS
(EFIAPI *FSP EVENT HANDLER) (
IN EFI_STATUS CODE TYPE Type,
IN EFI STATUS CODE VALUE Value,
IN UINT32 Instance,
IN OPTIONAL EFI GUID *CallerId,

IN OPTIONAL EFI STATUS CODE DATA *Data
) 7

Intel® Firmware Support Package
External Architecture Specification December 2022
56 Document Number: 736809-2.4 (Errata A)

FSP API Mode Interface

9.5.5.1.2 Parameters

intel.

Type

Indicates the type of event being reported. See Section 13.70
Appendix A — Data Structures for the definition of
EFI_STATUS_CODE_TYPE.

Value

Describes the current status of a hardware or software entity.
This includes information about the class and subclass that is
used to classify the entity as well as an operation.

For progress events, the operation is the current activity. For
error events, it is the exception. For debug events, it is not
defined at this time.

See Section 13.10 Appendix A — Data Structures for the
definition of EFI_STATUS_CODE_VALUE.

Instance

The enumeration of a hardware or software entity within the
system. A system may contain multiple entities that match a
class/subclass pairing. The instance differentiates between
them.

An instance of O indicates that instance information is
unavailable, not meaningful, or not relevant. Valid instance
numbers start with 1.

CallerId

This parameter can be used to identify the sub-module within
the FSP generating the event. This parameter may be NULL.

Data

This optional parameter may be used to pass additional data.
The contents can have event-specific data.

For example, the FSP provides a
EFI_STATUS_CODE_STRING_DATA instance to this parameter
when sending debug messages.

This parameter is NULL when no additional data is provided.

See Section 13.11 Appendix A — Data Structures for the
definition of EFI_STATUS_CODE_STRING_DATA.

9.5.5.1.3 Return Values

The return status will be passed back through the EAX/RAX register.

Table 6. Return Values - FspEventHandler()

EFI_SUCCESS

The event was handled successfully.

EFI_INVALID_PARAMETER

Input parameters are invalid.

EFI_DEVICE_ERROR

The event handler failed.

December 2022
Document Number: 736809-2.4 (Errata A)

Intel® Firmware Support Package
External Architecture Specification
57

intel.

9.5.5.2

9.5.5.2.1

9.5.5.2.2

9.5.5.2.3

9.6

Table 7.

FSP API Mode Interface

FspDebugHandler

Handler for FSP-T debug log messages provided by the bootloader.

Prototype
typedef
UINT32
(EFIAPI *FSP DEBUG HANDLER) (
IN CHARS8* DebugMessage,
IN UINT32 MessageLength
)
Parameters
DebugMessage A pointer to the debug message to be written to the log.
MessageLength Number of bytes to written to the debug log.

Return Values

The return value will be passed back through the EAX/RAX register. The return value
indicates the number of bytes actually written to the debug log. If the return value is
less than Messagelength, an error occurred.

FSP Variable Services

The FSP variable services enable the FSP to read and write non-volatile data. The
method and implementation of non-volatile data storage can vary depending on
chipset and platform design. Therefore, the FSP performs non-volatile data access
indirectly through the bootloader. The bootloader exposes non-volatile data to the FSP
using an associative array abstract data type. The key-value pairs stored in this
associative array shall have a key composed of a string (referred to as the variable
name) and a GUID. The GUID is used to establish a namespace, so that in the case
where bootloader data and FSP data is stored in a shared space, name collisions are a
non-issue. The value of each key-value pair is an opaque byte array. These key-value
pairs are referred to as variables. The FSP can read and write an arbitrary number of
these key-value pairs (aka variables) during the FspMemorylnit() and FspSiliconlinit() API.
The FSP accesses this associative array through a set of four variable services provided
by the bootloader:

List of FSP Variable Services

GetVariable Retrieves a variable's value using its name and GUID.

GetNextVariableName This service is called multiple times to retrieve the name
and GUID of all variables currently available in the
associative array.

Intel® Firmware Support Package
External Architecture Specification December 2022

58

Document Number: 736809-2.4 (Errata A)

FSP API Mode Interface

intel.

SetVariable

Stores a new value to the variable with the given name and
GUID.

QueryVariablelnfo

This service informs the FSP of how much non-volatile
storage space is allocated for the storage of variables, how
much is remaining, and what the maximum allowable size is
for each variable.

The minimum amount of storage space required by the FSP
will be mentioned in the Integration Guide.

9.6.1 Variable Store Contents

The associative array that the bootloader uses to provide non-volatile data storage to
the FSP can be initially empty or can contain data for the bootloader’s private use. The
FSP shall not assume that any of variables used by the FSP exist. In the case where pre-
existing variables do not exist, the FSP shall gracefully enter a “first boot” flow that
creates any variables that the FSP needs and initializes them with appropriate data.
This will likely increase the FSP’s execution time as these non-volatile data must be

regenerated from scratch.

If the platform is resuming from S3, then the FSP can require that non-volatile data
from the initial S5 resume does exist; if it does not then the FSP can request a reset,
converting the S3 resume into an S5 resume.

The minimum amount of storage space required by the FSP will be mentioned in the

Integration Guide.

9.6.2 API Mode Variable Sequence

Because access to non-volatile data can sometimes be critical to successfully
completing the boot sequence, access to variables is not done through an optional
function pointer like FSP events. Instead, the FSP halts execution indicates to the
bootloader that a variable access request is pending and must be completed before the

boot flow can continue.

December 2022
Document Number: 736809-2.4 (Errata A)

Intel® Firmware Support Package
External Architecture Specification
59

I n te I® FSP API Mode Interface

Figure 7. FspMemoryinit() Variable Services Invocation Sequence

Call FspMemoryInit()

Call
YES® FspMultiPhaseMeminit()
GetVariableRequestinfo

SP_STATUS_VARIABLE_REQUEST
returned ?

Call
FspMultiPhaseMeminit()
CompleteVariableRequest

Call
FspMultiPhaseMeminit()
ExecutePhase

Call
FspMultiPhaseMeminit()
GetNumberOfPhases

NO

PhasesExecuted >=
NumberOfPhases ?

YES

Continue to
FspTempRamExit/
FspSiliconInitQ

The FspMultiPhaseMeminit() APl is used to transfer information about the variable
request back to the bootloader and to inform the FSP of when the variable access is
complete. If FspMemorylnit() returns the status code

FSP_STATUS VARIABLE REQUEST, then the FspMultiPhaseMeminit() APl shall be
called by the bootloader with the EnumMultiPhaseGetVariableRequestinfo action given.
The FSP will populate a FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS
structure given by the bootloader and return (see Section 9.71.) The bootloader parses
the given data and performs the variable access. Once the access is complete, the
bootloader calls the FspMultiPhaseMeminit() APl with the
EnumMultiPhaseCompleteVariableRequest action to indicate to the FSP that the I/O is
done and that the FSP can continue execution. FSP_STATUS VARIABLE REQUEST can
also be returned by FspMultiPhaseMeminit() when either the
EnumMultiPhaseCompleteVariableRequest or EnumMultiPhaseExecutePhase actions
are given. The bootloader shall be prepared to handle variable access requests in in
these scenarios as well.

The variable services invocation flow above applies for
FspSiliconlnit()/FspMultiPhaseSilnit() as well.

Intel® Firmware Support Package
External Architecture Specification December 2022
60 Document Number: 736809-2.4 (Errata A)

[|
FSP API Mode Interface I n te I ®

Figure 8. FspSiliconinit() Variable Services Invocation Sequence

9.6.3

9.6.3.1

9.6.3.1.1

December 2022

Call FspSiliconlnit()

Call FspMultiPhaseSilnit()
GetVariableRequestinfo

SP_STATUS_VARIABLE_REQUEST
returned ?

Call FspMultiPhaseSilnit()
CompleteVariableRequest

Call FspMultiPhaseSilnit()
ExecutePhase

Call FspMultiPhaseSilnit()
GetNumberOfPhases

NO

PhasesExecuted >=
NumberOfPhases ?

YES

Continue to

FspNotifyPhase()

Variable Service Descriptions

When FSP_STATUS VARIABLE REQUEST is returned, the bootloader shall invoke
FspMultiPhaseMem/Silnit() with the EnumMultiPhaseGetVariableRequestinfo action
given. The VariableRequest member of the
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure returned by this
APl indicates which variable service should be invoked.

GetVariable
This service retrieves a variable's value using its name and GUID.

When the VariableRequest member of the
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure contains
EnumFspVariableRequestGetVariable, the FSP is requesting this service.

Parameters

The members of FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS are used
in the following manner when the GetVariable service is requested:

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 61

intel.

9.6.3.1.2

9.6.3.1.3

FSP API Mode Interface

VariableRequest

Shall be set to EnumFspVariableRequestGetVariable by the
FSP.

VariableName

A pointer to an FSP provided buffer containing a null-
terminated string that is the variable's name.

VariableNameSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

VariableGuid

A pointer to an FSP provided buffer containing an EFI_GUID
that is the variable's GUID. The combination of VariableGuid
and VariableName must be unique.

Attributes

If non-NULL, a pointer to an FSP provided buffer that the
bootloader shall set this buffer to the variable's attributes
before invoking EnumMultiPhaseCompleteVariableRequest. If
NULL, the bootloader does not return the variable's attributes.

DataSize

On entry, points to an FSP provided buffer that indicates the
size in bytes of the FSP provided buffer pointed to by the Data
member. The bootloader shall set DataSize to the size of the
data written into the Data buffer before invoking
EnumMultiPhaseCompleteVariableRequest.

Data

Points to an FSP provided buffer which will hold the returned
variable value. May be NULL with a zero DataSize in order to
determine the size of the buffer needed. If non-NULL and the
buffer size (indicated by DataSize) is large enough to hold the
variable's value, the bootloader shall copy the variable’s value
to this buffer before invoking
EnumMultiPhaseCompleteVariableRequest.

MaximumVariableStor
ageSize

Unused; bootloader shall ignore this value and the FSP shall
set itto NULL.

RemainingVariableSt
orageSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

MaximumVariableSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

Description

Reads the specified variable from non-volatile storage. If the Data buffer is too small to
hold the contents of the variable, the error EFI_BUFFER_TOO_SMALL is returned and
DataSize is set to the required buffer size to obtain the data.

Return Values

Once the variable is read, the bootloader calls the FspMultiPhaseMemlInit() API with the
EnumMultiPhaseCompleteVariableRequest action to indicate to the FSP that the

Intel® Firmware Support Package
External Architecture Specification

62

December 2022
Document Number: 736809-2.4 (Errata A)

|
FSP API Mode Interface I n te I ®

variable read is complete. When invoking EnumMultiPhaseCompleteVariableRequest,
the bootloader shall provide an
FSP_MULTI_PHASE_COMPLETE_VARIABLE_REQUEST_PARAMS structure. The
VariableRequestStatus member of this structure will be set to one of the following
values:

Table 8. Return Values - GetVariable Service

EFI_SUCCESS The variable was read successfully.
EFI_NOT_FOUND The variable was not found.
EFI_BUFFER_TOO_SMALL The DataSize is too small for the resulting data. DataSize is
updated with the size required for the specified variable.
EFI_INVALID_PARAMETER VariableName, VariableGuid, DataSize or Data is NULL.
EFI_DEVICE_ERROR The variable could not be retrieved because of a device error.
9.6.3.2 GetNextVariableName

This service is called multiple times to retrieve the name and GUID of all variables
currently available.

When the VariableRequest member of the
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure contains
EnumFspVariableRequestGetNextVariableName, the FSP is requesting this service.

9.6.3.2.1 Parameters

The members of FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS are used
in the following manner when the GetNextVariableName service is requested:

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 63

intel.

9.6.3.2.2

FSP API Mode Interface

VariableRequest

Shall be set to EnumFspVariableRequestGetNextVariableName
by the FSP.

VariableName

A pointer to an FSP provided buffer containing a null-
terminated string that is the current variable's name.

If the buffer size (indicated by VariableNameSize) is large
enough to hold the next variable’'s name, the bootloader shall
copy the next variable's name to this buffer before invoking
EnumMultiPhaseCompleteVariableRequest.

VariableNameSize

A pointer to an FSP provided buffer containing the size of the
buffer pointed to by VariableName. The bootloader shall copy
the size of the buffer needed to contain the next variable’s
name to this buffer before invoking
EnumMultiPhaseCompleteVariableRequest.

VariableGuid

A pointer to an FSP provided buffer containing an EFI_GUID
that is the current variable's GUID. The bootloader shall copy
the next variable's GUID to this buffer before invoking
EnumMultiPhaseCompleteVariableRequest.

Attributes

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

DataSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

Data

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

MaximumVariableStor
ageSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

RemainingVariableSt
orageSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

MaximumVariableSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

Description

This service is called multiple times to retrieve the VariableName and VariableGuid of
all variables currently available in the system. On each call, the previous results are
passed into the interface, and, on return, the interface returns the data for the next
variable. To get started, VariableName should initially contain L"\0" and the buffer
pointed to by VariableNameSize should contain sizeof (CHAR16). When the entire
variable list has been returned, EFI_NOT_FOUND is returned.

Intel® Firmware Support Package
External Architecture Specification

64

December 2022
Document Number: 736809-2.4 (Errata A)

FSP API Mode Interface

9.6.3.2.3 Return Values

intel.

Once the next variable name is read, the bootloader calls the FspMultiPhaseMeminit()
API with the EnumMultiPhaseCompleteVariableRequest action to indicate to the FSP
that reading the next variable name is complete. When invoking
EnumMultiPhaseCompleteVariableRequest, the bootloader shall provide an
FSP_MULTI_PHASE_COMPLETE_VARIABLE_REQUEST_PARAMS structure. The
VariableRequestStatus member of this structure will be set to one of the following

values:

Table 9. Return Values — GetNextVariableName Service

EFI_SUCCESS

The next variable name was read successfully.

EFI_NOT_FOUND

All variables have been enumerated.

EFI_BUFFER_TOO_SMALL

The VariableNameSize is too small for the resulting data.
VariableNameSize is updated with the size required for the
specified variable.

EFI_INVALID_PARAMETER

VariableName, VariableGuid, or VariableNameSize is NULL.

EFI_DEVICE_ERROR

The variable name could not be retrieved because of a device
error.

9.6.3.3 SetVariable

This service stores a new value to the variable with the given name and GUID.

When the VariableRequest member of the
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure contains
EnumFspVariableRequestSetVariable, the FSP is requesting this service.

9.6.3.3.1 Parameters

The members of FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS are used
in the following manner when the SetVariable service is requested:

December 2022
Document Number: 736809-2.4 (Errata A)

Intel® Firmware Support Package
External Architecture Specification
65

intel.

9.6.3.3.2

9.6.3.3.3

FSP API Mode Interface

VariableRequest

Shall be set to EnumFspVariableRequestSetVariable by the
FSP.

VariableName

A pointer to an FSP provided buffer containing a null-
terminated string that is the name of the variable. Each
VariableName is unique for each VariableGuid. VariableName
must contain 1 or more characters. If VariableName is an
empty string, then EFI_INVALID_PARAMETER is returned.

VariableNameSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

VariableGuid

A pointer to an FSP provided buffer containing an EFI_GUID
that is the variable's GUID.

Attributes

A pointer to an FSP provided buffer containing the attributes
bitmask for the variable.

DataSize

A pointer to an FSP provided buffer containing the size in
bytes of the Data buffer. Unless the
EFI_VARIABLE_APPEND_WRITE attribute is set, a size of zero
causes the variable to be deleted. When the
EFI_VARIABLE_APPEND_WRITE attribute is set, then a
SetVariable() call with a DataSize of zero will not cause any
change to the variable value.

Data

A pointer to an FSP provided buffer containing the new data
for the variable.

MaximumVariableStor
ageSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

RemainingVariableSt
orageSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

MaximumVariableSize

Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

Description

This service stores a new value to the variable with the given name and GUID. If a

variable with the given name and GUID does not exist and DataSize is not zero, then a
new variable is created. If DataSize is set to zero, the EFI_VARIABLE_APPEND_WRITE
attribute is not set, and an existing variable with the given name and GUID exists, then

that variable is deleted.

Return Values

Once the variable is written, the bootloader calls the FspMultiPhaseMeminit() APl with
the EnumMultiPhaseCompleteVariableRequest action to indicate to the FSP that the
variable write is complete. When invoking EnumMultiPhaseCompleteVariableRequest,

Intel® Firmware Support Package
External Architecture Specification

66

December 2022
Document Number: 736809-2.4 (Errata A)

FSP API Mode Interface

the bootloader shall provide an

intel.

FSP_MULTI_PHASE_COMPLETE_VARIABLE_REQUEST_PARAMS structure. The
VariableRequestStatus member of this structure will be set to one of the following

values:

Table 10. Return Values - SetVariable Service

EFI_SUCCESS

The bootloader has successfully stored the variable and its
data as defined by the Attributes.

EFI_INVALID_PARAMETER

An invalid combination of attribute bits, name, and GUID was
supplied, or the DataSize exceeds the maximum allowed.

EFI_INVALID_PARAMETER

VariableName is an empty string.

EFI_OUT_OF_RESOURCES

Not enough storage is available to hold the variable and its
data.

EFI_DEVICE_ERROR

The variable could not be stored because of a hardware error.

EFI_WRITE_PROTECTED

The variable is read-only.

EFI_WRITE_PROTECTED

The variable cannot be deleted.

EFI_SECURITY_VIOLATION

The variable could not be written due to
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, or
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_AC
CESS, or
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS
being set. The FSP is forbidden from writing to authenticated
variables. This feature is only relevant for UEFI Secure Boot
and the FSP does not require the bootloader to implement
UEFI Secure Boot.

EFI_NOT_FOUND

The variable trying to be updated or deleted was not found.

9.6.3.4 QueryVariableinfo

This service informs the FSP of how much nonvolatile storage space is allocated for the
storage of variables, how much is remaining, and what the maximum allowable size is

for each variable.

When the VariableRequest member of the
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS structure contains
EnumFspVariableRequestQueryVariablelnfo, the FSP is requesting this service.

9.6.3.4.1 Parameters

The members of FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS are used
in the following manner when the QueryVariablelnfo service is requested:

December 2022
Document Number: 736809-2.4 (Errata A)

Intel® Firmware Support Package
External Architecture Specification
67

intel.

FSP API Mode Interface

VariableRequest Shall be set to EnumFspVariableRequestQueryVariablelnfo by
the FSP.

VariableName Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

VariableNameSize Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

VariableGuid Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

Attributes A pointer to an FSP provided buffer containing the Attributes
bitmask that specifies the type of variables on which to return
information.

DataSize Unused; bootloader shall ignore this value and the FSP shall
set it to NULL.

Data Unused; bootloader shall ignore this value and the FSP shall

set it to NULL.

MaximumVariableStor
ageSize

A pointer to an FSP provided buffer which the bootloader shall
set to the maximum size of the storage space available for
variables associated with the Attributes specified before
invoking EnumMultiPhaseCompleteVariableRequest.

RemainingVariableSt
orageSize

A pointer to an FSP provided buffer which the bootloader shall
set to the remaining size of the storage space available for
variables associated with the Attributes specified before
invoking EnumMultiPhaseCompleteVariableRequest.

MaximumVariableSize

A pointer to an FSP provided buffer which the bootloader shall
set to the maximum size of an individual variable associated
with the attributes specified before invoking
EnumMultiPhaseCompleteVariableRequest.

9.6.3.4.2 Description

This service informs the FSP of how much non-volatile storage space is allocated for
the storage of variables, how much is remaining, and what the maximum allowable size

is for each variable.

The minimum amount of storage space required by the FSP will be mentioned in the

Integration Guide.

9.6.3.4.3 Return Values

Once the storage utilization data is ready, the bootloader calls the
FspMultiPhaseMeminit() APl with the EnumMultiPhaseCompleteVariableRequest action
to indicate to the FSP that these data are available. When invoking

Intel® Firmware Support Package
External Architecture Specification
68

December 2022
Document Number: 736809-2.4 (Errata A)

FSP API Mode Interface I n te I ®

EnumMultiPhaseCompleteVariableRequest, the bootloader shall provide an
FSP_MULTI_PHASE_COMPLETE_VARIABLE_REQUEST_PARAMS structure. The
VariableRequestStatus member of this structure will be set to one of the following
values:

Table 11. Return Values - QueryVariablelnfo Service

EFI_SUCCESS The usage of non-volatile storage was determined
successfully.

EFI_INVALID_PARAMETER An invalid combination of Attribute bits was supplied

EFI_UNSUPPORTED The given Attribute bitmask is not supported on this

platform, and the MaximumVariableStorageSize,
RemainingVariableStorageSize, MaximumVariableSize are
undefined.

9.7 TempRamlinit API

This FSP APl is called after coming out of reset and typically performs the following
functions - loads the microcode update, enables code caching for a region specified by
the bootloader and sets up a temporary memory area to be used prior to main memory
being initialized.

The TempRamlinit() APl should be called using the same entry point calling convention
described in the previous section. However, platform limitations, such as the
unavailability of a stack, may require steps as mentioned below:

A hardcoded stack must be set up with the following values:

1. The return address where the TempRaminit() API returns control.

2. A pointer to the input parameter structure for TempRaminit() APl when this APl is
in 32-bit mode. When this API is in 64-bit mode, the pointer to the input parameter
structure will be passed by RCX register instead of stack.

The ESP/RSP register must be initialized to point to this hardcoded stack.

Since the stack may not be writeable, this APl cannot be called using the “call”
instruction, but needs to be jumped to directly.

The TempRaminit() API preserves the following general purpose registers EBX/RBX,
EDI/RDI, ESI/RSI, EBP/RBP and the following floating point registers MM0, MM1. In
addition, for 64-bit FSP APl mode, the preserved list will be extended to include
general purpose registers from R12 to R15 and following floating point registers from
XMMG6 to XMM15.The bootloader can use these registers to save data across the
TempRamlinit() API call. Refer to Integration Guide for other register usage.

Calling this APl may be optional. Refer to the Integration Guide for any prerequisites
before directly calling FspMemoryinit() API.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 69

intel.

9.7.1

9.7.2

9.7.3

Table 12.

9.7.4

FSP API Mode Interface

If the bootloader uses this API, then it should be called only once after the system
comes out the reset, and it must be called before any other FSP API.

Prototype

typedef

EFI_STATUS

(EFIAPI *FSP TEMP RAM INIT) (
IN VOID *FsptUpdDataPtr

) ;

Parameters

FsptUpdDataPtr Pointer to the FSPT_UPD data structure. If NULL, FSP
will use the defaults from FSP-T component. Refer to
the Integration Guide for the structure definition.

Return Values

If this function is successful, the FSP initializes the ECX/RCX and EDX/RDX registers to
point to a temporary but writeable memory range available to the bootloader. Register
ECX/RCX points to the start of this temporary memory range and EDX/RDX points to
the end of the range [ECX/RCX, EDX/RDX], where ECX/RCX is inclusive and EDX/RDX is
exclusive in the range. The bootloader is free to use the whole range described.
Typically, the bootloader can reload the ESP/RSP register to point to the end of this
returned range so that it can be used as a standard stack.

Return Values - TempRamlnit() API

EFI_SUCCESS Temporary RAM was initialized successfully.

EFI_INVALID_PARAMETER Input parameters are invalid.

EFI_UNSUPPORTED The FSP calling conditions were not met.

EFI_DEVICE_ERROR Temp RAM initialization failed.
Description

After the bootloader completes its initial steps, it finds the address of the
FSP_INFO_HEADER and then from the FSP_INFO_HEADER finds the offset of the
TempRamlinit() APL. It then converts the offset to an absolute address by adding the
base of the FSP component and invokes the TempRamlInit() API.

The temporary memory range returned by this API is intended to be primarily used by
the bootloader as a stack. After this stack is available, the bootloader can switch to
using C functions. This temporary stack should be used to do only the minimal

Intel® Firmware Support Package
External Architecture Specification December 2022

70

Document Number: 736809-2.4 (Errata A)

|
FSP API Mode Interface I n te I ®

9.8

9.8.1

9.8.2

9.8.3

Table 13.

initialization that needs to be done before memory can be initialized by the next call
into the FSP.

Refer to the Integration Guide for details on FSPT_UPD parameters.

FspMemorylnit API

This FSP APl initializes the system memory. This FSP APl accepts a pointer to a data
structure that will be platform-dependent and defined for each FSP binary.

FspMemoryinit() APl initializes the memory subsystem, initializes the pointer to the
HobListPtr, and returns to the bootloader from where it was called. Since the system
memory has been initialized in this API, the bootloader must migrate its stack and data
from temporary memory to system memory after this API.

Prototype

typedef

EFI STATUS

(EFIAPI *FSP _MEMORY INIT) (
IN VOID *FspmUpdDataPtr,
OUT VOID **HobListPtr

) ;

Parameters

FspmUpdDataPtr Pointer to the FSPM_UPD data structure. If NULL, FSP will
use the default from FSP-M component. Refer to the
Integration Guide for structure definition.

HobListPtr Pointer to receive the address of the HOB list as defined in
the Section 13.7 - Appendix A — Data Structures

Return Values

The FspMemoryinit() APl will preserve all the general-purpose registers except
EAX/RAX. The return status will be passed back through the EAX/RAX register.

Return Values - FspMemorylnit() API

EFI_SUCCESS FSP execution environment was initialized successfully.

EFI_INVALID_PARAMETER Input parameters are invalid.

EFI_UNSUPPORTED The FSP calling conditions were not met.

EFI_DEVICE_ERROR FSP memory initialization failed.

Intel® Firmware Support Package

December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 71

intel.

9.8.4

FSP API Mode Interface

EFI_OUT_OF_RESOURCES Stack range requested by FSP is not met.

FSP_STATUS_RESET_REQUIRED_* A reset is required. These status codes will not be
returned during S3. See Section 13.2.2 for details.

FSP_STATUS_VARIABLE_REQUEST A FSP variable access is required. See Section 9.6 for
details.

Description

When FspMemoryinit() APl is called, the FSP requires a stack available for its use. Before
calling the FspMemorylnit() API, the bootloader should setup a stack of required size as
mentioned in Integration Guide and initialize the FSPM_ARCH UPD.StackBase and
FSPM_ARCH_UPD.StackSize parameters. FSP consumes this stack region only inside
this API.

A set of parameters that the FSP may need to initialize memory under special
circumstances, such as during an S3 resume or during fast boot mode, are returned by
the FSP to the bootloader during a normal boot. The bootloader is expected to store
these parameters in a non-volatile memory such as SPI flash and return a pointer to
this structure through FSPM_ARCH UPD.NvsBufferPtr when it is requesting the FSP
to initialize the silicon under these special circumstances. Refer to Section 11.2
FSP_NON_VOLATILE STORAGE HOB2 and Section 11.3

FSP_NON VOLATILE STORAGE HOB for the details on how to get the returned NVS
data from FSP.

This API should be called only once before system memory is initialized. This API will
produce a HOB list and update the HobListPtr output parameter. The HOB list will
contain a number of Memory Resource Descriptor HOB which the bootloader can use
to understand the system memory map. The bootloader should not expect a complete
HOB list after the FSP returns from this API. It is recommended for the bootloader to
save this HobListPtr returned from this APl and parse the full HOB list after the
FspSiliconlnit() API.

When this API returns, the bootloader data and stack are still in temporary memory. It
is the responsibility of the bootloader to

e Migrate any data from temporary memory to system memory
e Setup a new bootloader stack in system memory
If an initialization step requires a reset to take effect, the FspMemoryinit() APl will return

one of the FSP_STATUS RESET REQUIRED statuses as described in Section 9.4. This
API will not request a reset during S3 resume flow.

Intel® Firmware Support Package
External Architecture Specification December 2022

72

Document Number: 736809-2.4 (Errata A)

|
FSP API Mode Interface I n te I ®

9.9 TempRamEXxit API

This FSP APl is called after FspMemoryinit() API. This FSP API tears down the temporary
memory set up by TempRaminit() API. This FSP APl accepts a pointer to a data structure
that will be platform dependent and defined for each FSP binary.

TempRamExit() API provides bootloader an opportunity to get control after system
memory is available and before the temporary memory is torn down.

This APl is an optional API, refer to Integration Guide for prerequisites before directly
calling FspSiliconlnit() API.

9.9.1 Prototype
typedef
EFI STATUS
(EFIAPI *FSP TEMP RAM EXIT) (
IN VOID *TempRamExitParamPtr
)
9.9.2 Parameters
TempRamExitParamPtr Pointer to the TempRamExit parameters structure. This
structure is normally defined in the Integration Guide. If itis
not defined in the Integration Guide, pass NULL.
9.9.3 Return Values

The TempRameEXxit() APl will preserve all the general-purpose registers except EAX/RAX.
The return status will be passed back through the EAX/RAX register.

Table 14. Return Values - TempRamEXxit() API

EFI_SUCCESS FSP execution environment was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR Temporary memory exit.

9.94 Description

This API should be called only once after the FspMemorylnit() APl and before
FspSiliconlnit() API.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 73

intel.

9.10

9.10.1

9.10.2

9.10.3

Table 15.

FSP API Mode Interface

This API tears down the temporary memory area set up in the cache and returns the
cache to normal mode of operation. After the cache is returned to normal mode of
operation, any data that was in the temporary memory is destroyed. It is therefore
expected that the bootloader migrates any bootloader specific data that it might have
had in the temporary memory area and also set up a stack in the system memory
before calling TempRameEXxit() API.

After the TempRameEXxit() API returns, the bootloader is expected to set up the BSP
MTRRs to enable caching. The bootloader can collect the system memory map
information by parsing the HOB data structures and use this to set up the MTRR and
enable caching.

FspSiliconlnit API

This FSP APl initializes the processor and the chipset including the 10 controllers in the
chipset to enable normal operation of these devices.

This API should be called only once after the system memory has been initialized, data
from temporary memory migrated to system memory and cache configuration has
been initialized.

Prototype

typedef

EFI_STATUS

(EFIAPI *FSP SILICON INIT) (
IN VOID *FspsUpdDataPtr
) ;

Parameters

FspsUpdDataPtr Pointer to the FSPS_UPD data structure. If NULL, FSP will
use the default parameters. Refer to the Integration Guide for
structure definition.

Return Values

The FspSiliconlnit API will preserve all the general-purpose registers except EAX/RAX.
The return status will be passed back through the EAX/RAX register.

Return Values - FspSiliconinit() API

EFI_SUCCESS FSP execution environment was initialized successfully.

EFI_INVALID_PARAMETER Input parameters are invalid.

Intel® Firmware Support Package
External Architecture Specification December 2022

74

Document Number: 736809-2.4 (Errata A)

FSP API Mode Interface I n te I ®

9.10.4

9.11

December 2022

EFI_UNSUPPORTED The FSP calling conditions were not met.

EFI_DEVICE_ERROR FSP silicon initialization failed.

FSP_STATUS_RESET_REQUIRED_* A reset is required. These status codes will not be
returned during S3.

FSP_STATUS_VARIABLE_REQUEST | A FSP variable access is required. See Section 9.6 for
details.

Description

This API should be called only once after the FspMemoryinit() API (if the bootloader is
not using TempRamExit() API) or the TempRamEXxit() API.

This FSP APl accepts a pointer to a data structure that will be platform dependent and
defined for each FSP binary. This will be documented in the Integration Guide.

This APl adds HOBs to the HobListPtr to pass more information to the bootloader. To
obtain the additional information, the bootloader must parse the HOB list again after
the FSP returns from this API.

If an initialization step requires a reset to take effect, the FspSiliconinit() API will return
an FSP_STATUS_RESET_ REQUIRED as described in Section 9.4. This API will not
request a reset during S3 resume flow.

FspMultiPhaseMem/Silnit API

This FSP API provides multi-phase memory and silicon initialization, which brings
greater modularity to the existing FspMemoryinit() and FspSiliconlnit() API. Increased
modaularity is achieved by adding an extra APl to FSP-M and FSP-S. This allows the
bootloader to add board specific initialization steps throughout the MemorylInit and
Siliconlnit flows as needed. The FspMemorylnit() APl is always called before
FspMultiPhaseMeminit(); it is the first phase of memory initialization. Similarly, the
FspSiliconinit() APl is always called before FspMultiPhaseSilnit(); it is the first phase of
silicon initialization. After the first phase, subsequent phases are invoked by calling the
FspMultiPhaseMem/Silnit() API.

The FspMultiPhaseMeminit() APl may only be called after the FspMemoryinit() APl and
before the FspSiliconinit() API; or in the case that FSP-T is being used, before the
TempRamExit() APl. The FspMultiPhaseSilnit() APl may only be called after the
FspSiliconinit() APl and before NotifyPhase() API; or in the case that FSP-I is being used,
before the FspSmminit() APl. The multi-phase APIs may not be called at any other time.

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 75

intel.

9.11.1

9.11.2

9.11.3

Prototype

typedef
EFI_STATUS

FSP API Mode Interface

(EFIAPI *FSP MULTI PHASE INIT) (

IN FSP MULTI PHASE PARAMS
) 7

Parameters

*MultiPhaseInitParamPtr

MultiPhaseInitParamPtr

Pointer to the FSP_MULTI_PHASE_PARAMS

data structure.

Related Definitions

typedef enum {

EnumMultiPhaseGetNumberOfPhases = 0x0,
EnumMultiPhaseExecutePhase = 0x1,
EnumMultiPhaseGetVariableRequestInfo = 0x2,
EnumMultiPhaseCompleteVariableRequest = 0x3

} FSP_MULTI PHASE ACTION;
typedef struct {

IN FSP MULTI PHASE ACTION MultiPhaseAction;
IN UINT32 PhaseIndex;

IN OUT VOID
} FSP_MULTI PHASE PARAMS;
typedef struct {

*MultiPhaseParamPtr;

UINT32 NumberOfPhases;
UINT32 PhasesExecuted;
} FSP_MULTI PHASE GET NUMBER OF PHASES PARAMS;

typedef enum {

EnumFspVariableRequestGetVariable = 0x0,
EnumFspVariableRequestGetNextVariableName = 0x1,
EnumFspVariableRequestSetVariable = 0x2,
EnumFspVariableRequestQueryVariableInfo = 0x3

} FSP_VARIABLE REQUEST TYPE;
typedef struct {

IN FSP _VARIABLE REQUEST TYPE VariableRequest;

IN OUT CHARI1®6
IN OUT UINT64
IN OUT EFI GUID

Intel® Firmware Support Package
External Architecture Specification

76

*VariableName;
*VariableNameSize;
*VariableGuid;

December 2022
Document Number: 736809-2.4 (Errata A)

|
FSP API Mode Interface I n te I ®

IN OUT UINT32 *Attributes;

IN OUT UINT64 *DataSize;

IN OUT VOID *Datay;

ouT UINT64 *MaximumVariableStorageSize;
ouT UINT64 *RemainingVariableStorageSize;
ouT UINT64 *MaximumVariableSize;

} FSP MULTI PHASE VARIABLE REQUEST INFO PARAMS;
typedef struct {

EFI STATUS VariableRequestStatus;
} FSP_ MULTI PHASE COMPLETE VARIABLE REQUEST PARAMS;

EnumMultiPhaseGetNumberOfPhases

This action returns the number of Memoryinit or SiliconInit phases that the FSP
supports. This indicates the maximum number of times the FspMultiPhaseMem/Silnit()
API may be called by the bootloader with the EnumMultiPhaseExecutePhase action
given.

When this action is called, the bootloader must set Phaselndex to zero and provide an
instance of FSP_MULTI_PHASE_GET_NUMBER_OF_PHASES_PARAMS to the
MultiPhaseParamPtr. The NumberOfPhases value inside this instance will be used to
return the number of phases to the bootloader. The PhasesExecuted value inside this
instance informs the bootloader of how many of those phases have already been
executed thus far. If the bootloader has not yet executed any phases, then the
PhasesExecuted integer will be set to 0x0.

The EnumMultiPhaseGetNumberOfPhases action can be invoked by the bootloader as
many times as desired. It only retrieves the current status; it does not modify it.

EnumMultiPhaseExecutePhase

This action executes the memory or silicon initialization phase provided by the
Phaselndex parameter. The MultiPhaseParamPtr shall be NULL. Note that Phaselndex is
a one-based index, not a zero-based index. On the first call, Phaselndex shall be 0x1;
setting Phaselndex to 0x0 will resultin EFT_INVALID PARAMETER being returned.

EnumMultiPhaseGetVariableRequestInfo

This action provides information to the bootloader about a pending non-volatile I/O
request being made by the FSP. When FSP_STATUS VARIABLE REQUEST is returned,
the bootloader shall invoke FspMultiPhaseMem/Silnit() with the
EnumMultiPhaseGetVariableRequestinfo action given.

When this action is called, the bootloader must set Phaselndex to zero and provide an
instance of FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS to the
MultiPhaseParamPtr. The FSP will copy data detailing its pending non-volatile 1/O
request into this bootloader provided buffer. The bootloader will then use this data to

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 77

intel.

9.11.4

Table 16.

9.11.5

FSP API Mode Interface

service the FSP’s access request. Please see Section 9.6 for a detailed description of this
calling sequence.

EnumMul tiPhaseCompleteVariableRequest
This action informs the FSP that the variable access request is complete.

When this action is called, the bootloader must set Phaselndex to zero and provide an
instance of FSP_MULTI_PHASE_COMPLETE_VARIABLE_REQUEST_PARAMS to the
MultiPhaseParamPtr. The VariableRequestStatus value inside this instance shall be set
to indicate to the FSP whether the variable access request was successful or not
according to the return values provided in Section 9.6.3.

In the case where the bootloader must return data to the FSP, the bootloader must
write any relevant data into the buffer(s) provided by the FSP via
FSP_MULTI_PHASE_VARIABLE_REQUEST_INFO_PARAMS before invoking this action.
This action will allow the FSP will continue execution where it left off. Please see
Section 9.6 for a detailed description of this calling sequence.

Return Values

The FspMultiPhaseMem/Silnit APl will preserve all the general-purpose registers except
EAX/RAX. The return status will be passed back through the EAX/RAX register.

Return Values - FspMultiPhaseSilnit() API

EFI_SUCCESS FSP execution environment was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.

EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR FSP silicon initialization failed.

FSP_STATUS_RESET_REQUIRED_* A reset is required. These status codes will not be
returned during S3. This status code can only be given
when either the
EnumMultiPhaseCompleteVariableRequest or
EnumMultiPhaseExecutePhase actions are given.

FSP_STATUS_VARIABLE_REQUEST | A FSP variable access is required. See Section 9.6 for
details. This status code can only be given when either
the EnumMultiPhaseCompleteVariableRequest or
EnumMultiPhaseExecutePhase actions are given.

Description

This APl may only be called after the FspSiliconInit() APl and before NotifyPhase() API,
and may not be called at any other time.

An FSP binary may optionally implement multi-phase silicon initialization. When using
multi-phase silicon initialization, the FspSiliconlnit() APl is always called first; it is the

Intel® Firmware Support Package
External Architecture Specification December 2022

78

Document Number: 736809-2.4 (Errata A)

FSP API Mode Interface I n te I ®

9.12

December 2022

first phase of silicon initialization. After the first phase, subsequent phases are invoked
by calling the FspMultiPhaseSilnit() APl. When single-phase silicon initialization is used,
only the FspSiliconlnit() APl is called.

If the FspMultiPhaseSilnitEntryOffset field in FSP_INFO_HEADER is non-zero, the FSP
includes support for multi-phase SiliconlInit, see Section 5.1.1 for further details. To
enable multi-phase, the bootloader must set

FSPS_ARCH UPD.EnableMultiPhaseSiliconInit toanon-zero value.

If FSSPS_ARCH_UPD.EnableMultiPhaseSiliconInit is setto anon-zero value,
then the bootloader must invoke the FspMultiPhaseSilnit() APl with the
EnumMultiPhaseExecutePhase parameter n times, where n == NumberOfPhases
returned by EnumMultiPhaseGetNumberOfPhases. The bootloader must invoke the
FspMultiPhaseSilnit() APl with the EnumMultiPhaseExecutePhase parameter in the
correct sequence; Phaselndex must be set to 1 on the first call, 2 on the second call,
and so on. The bootloader must complete the multi-phase sequence by invoking the
FspMultiPhaseSilnit() APl with Phaselndex == NumberOfPhases before invoking the
NotifyPhase() AP| with the AfterPciEnumeration parameter.

If FSPS_ARCH UPD.EnableMultiPhaseSiliconInit is setto azero orifthe
FspMultiPhaseSilnitEntryOffset field in FSP_INFO_HEADER is zero, then the bootloader
must not invoke the FspMultiPhaseSilnit() API at all.

The breakdown of which silicon initialization steps are implemented in which phase
may vary for different processor and the chipset designs and will be detailed in the
Integration Guide.

This APl may add HOBs to the HobListPtr to pass more information to the bootloader.
To obtain the additional information, the bootloader must parse the HOB list again
after the FSP returns from this API.

If an initialization step requires a reset to take effect, the FspMultiPhaseSilnit() AP1 will
return an FSP_STATUS_RESET_ REQUIRED as described in Section 9.4. This API will not
request a reset during S3 resume flow.

FspSmminit API

This FSP APl initializes SMM and provides any OS runtime silicon services; including
Reliability, Availability, and Serviceability (RAS) features implemented by the CPU.

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 79

[]
I n te I® FSP API Mode Interface

9.12.1 Prototype

typedef
EFI_STATUS
(EFIAPI *FSP_SMM INIT) (
IN VOID *FspiUpdDataPtr

)

9.12.2 Parameters

FspiUpdDataPtr Pointer to instance of FSPI_UPD structure.

9.12.3 Return Values

The FspSmminit() APl will preserve all the general-purpose registers except RAX. The
return status will be passed back through the RAX register.

Table 17. Return Values - FspSmmlinit() API

EFI_SUCCESS FSP execution environment was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_UNSUPPORTED The API calling conditions were not met.

9.12.4 Description

This API should only be called once after the FspSiliconinit() API. It may only be called
on the boot strap processor (BSP).

This FSP APl accepts a pointer to a data structure that will be platform dependent and
defined for each FSP binary. This will be documented in the Integration Guide.

9.13 NotifyPhase API

This FSP APl is used to notify the FSP about the different phases in the boot process.
This allows the FSP to take appropriate actions as needed during different initialization
phases. The phases will be platform dependent and will be documented with the FSP
release. The current FSP specification supports three notify phases:

e Post PCl enumeration
e Ready to Boot

e End of Firmware

Intel® Firmware Support Package
External Architecture Specification December 2022
80 Document Number: 736809-2.4 (Errata A)

intel
FSP API Mode Interface I n te ®

9.13.1 Prototype

typedef
EFI STATUS
(EFIAPI *FSP NOTIFY PHASE) (
IN NOTIFY PHASE PARAMS *NotifyPhaseParamPtr
) ;
9.13.2 Parameters

NotifyPhaseParamPtr Address pointer to the NOTIFY_PHASE_PARAMS

9.13.3 Related Definitions

typedef enum {

EnumInitPhaseAfterPciEnumeration = 0x20,
EnumInitPhaseReadyToBoot = 0x40,
EnumInitPhaseEndOfFirmware = 0xFO

} FSP_INIT PHASE;
typedef struct {
FSP INIT PHASE Phase;
} NOTIFY PHASE PARAMS;

EnumInitPhaseAfterPciEnumeration

This stage is notified when the bootloader completes the PCl enumeration and the
resource allocation for the PCl devices is complete.

EnumInitPhaseReadyToBoot
This stage is notified just before the bootloader hand-off to the OS loader.
EnumInitPhaseEndOfFirmware

This stage is notified just before the firmware/Preboot environment transfers
management of all system resources to the OS or next level execution environment.

When booting to non-UEFI OS, this stage is notified immediately after the
EnumlinitPhaseReadyToBoot. When booting to UEFI OS this stage is notified at
ExitBootServices callback from OS.

9.134 Return Values

The NotifyPhase() APl will preserve all the general purpose registers except EAX/RAX.
The return status will be passed back through the EAX/RAX register.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 81

intel.

Table 18.

9.13.5

FSP API Mode Interface
Return Values - NotifyPhase() API
EFI_SUCCESS The notification was handled successfully.
EFI_UNSUPPORTED The notification was not called in the proper order.

EFI_INVALID_PARAMETER The notification code is invalid.

FSP_STATUS_RESET_REQUIRED_* A reset is required. These status codes will not be

returned during S3.

Description

EnumInitPhaseAfterPciEnumeration

FSP will use this notification to do some specific initialization for processor and chipset
that requires PCl resource assignments to have been completed.

This APl must be called before executing 3" party code, including PCl Option ROM, for
secure design reasons.

On S3 resume path this APl must be called before the bootloader hand-off to the OS
resume vector.

EnumInitPhaseReadyToBoot

FSP will perform required configuration by the BWG / BIOS Specification when it is
notified that the bootloader is ready to transfer control to the OS loader.

On S3 resume path this APl must be called after EnuminitPhaseAfterPciEnumeration
notification and before the bootloader hand-off to the OS resume vector.

EnumInitPhaseEndOfFirmware

FSP can use this notification to perform some handoff of the system resources before
transferring control to the OS.

When booting to non-UEFI OS this stage is notified immediately after the
EnumInitPhaseReadyToBoot. When booting to UEFI OS this stage is notified at
ExitBootServices callback from OS.

On the S3 resume path this APl must be called after EnuminitPhaseReadyToBoot
notification and before the bootloader hand-off to the OS resume vector.

After this phase, the whole FSP flow is considered to be complete and the results of
any further FSP API calls are undefined.

If an initialization step requires a reset to take effect, the NotifyPhase() API will return an
FSP STATUS RESET REQUIRED as described in Section 9.4. This APl will not request a
reset during S3 resume flow.

Intel® Firmware Support Package
External Architecture Specification December 2022

82

Document Number: 736809-2.4 (Errata A)

intel
FSP Dispatch Mode Interface I n te ®

10.0

FSP Dispatch Mode Interface

10.1

Figure 9.

Dispatch mode is an optional boot flow intended to enable FSP to integrate well in to
UEFI bootloader implementations. The FSP_INFO_HEADER indicates if an FSP
implements dispatch mode, see Section 5.1.1 for further details.

Dispatch Mode Design

Dispatch Mode Design

PCD ,
Database / ¢———— S

UEFI Boot
Loader

FSP Binary

X64
NotifyPhase

drivers

Dispatch mode is intended to enable a boot flow that is as close to a standard UEFI
boot flow as possible. FSP dispatch mode fully conforms to the Pl Specification and
assumes the boot loader will follow the standard four phase Pl boot flow progressing
from SEC phase to PEIl phase, to DXE phase, and to BDS phase. It is recommended that
the reader have knowledge of the contents of the P/ Specification before continuing.

In dispatch mode, FSP-T, FSP-M, FSP-S, and FSP-I (in FSP SMM model 3) are containers
that expose firmware volumes (FVs) directly to the bootloader. The PEIMs in these FVs
are executed directly in the context of the PEI environment provided by the bootloader.
FSP-T, FSP-M, FSP-S, and FSP-I could contain one or multiple FVs. The exact number of
FVs contained in FSP-T, FSP-M, FSP-S, and FSP-I will be described in the Integration
Guide. In dispatch mode, the PPl database, PCD database, and HOB list are shared
between the bootloader and the FSP.

UPDs are not needed to provide a mechanism to pass configuration data from the
bootloader to the FSP. Instead, configuration data is communicated to the FSP using
PCDs and PPIs. These mechanisms are native to bootloader implementations
conforming to the Pl Specification and constitute a more natural method of supplying
configuration data to the FSP. These PCDs and PPlIs are platform specific. The FSP
Distribution Package will contain source code definitions of the configuration data

Intel® Firmware Support Package

December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 83

intel.

10.2

10.3

FSP Dispatch Mode Interface

structures consumed by the FSP. The configuration data structures will also be
described by the Integration Guide.

The bootloader must provide the PCD database implementation. Any dynamic PCDs
consumed by the FSP must be included in the PCD database provided by the
bootloader. The FSP Distribution Package will contain a DSC file which defines all PCDs
used by the FSP. The recommended method of including these PCDs is to use the
!'include directive in the bootloader’s top-level platform DSC file. Because the FSP is
a pre-compiled binary, all dynamic PCDs consumed by the FSP must be of the
DynamicEx type. Refer to MdeModulePkg/Universal/PCD/Pei/Pcd.inf for more details on
platform token numbers. In addition to the DSC file included in the FSP Distribution
Package, the Integration Guide will also list the PCDs (along with TokenSpace GUID and
TokenNumber) consumed by the FSP.

In dispatch mode, the NotifyPhase() APl is not used. Instead, FSP-S contains DXE
drivers that implement the native callbacks on equivalent events for each of the
NotifyPhase() invocations. The inclusion of DXE drivers allows dispatch mode to
provide capabilities that would not be possible in API mode.

PEI Phase Requirements

PEIMs contained in FSP firmware volumes are intended to be executed within the
processor context and calling conventions defined by the PI Specification, Volume 1 for
either the 1A-32 or x64 platforms. The exact target platform will be specified in the
Integration Guide.

PEIMs contained in the FSP shall use a subset of the API provided by the PEI
Foundation. Specifically, PEIMs contained in FSP firmware volumes should not use the
following architecturally defined PPlIs:

e EFI_PEI_READ_ONLY_VARIABLE2_PPI

If BIT3 (Variable Support) of the ImageAttribute field in the FSP_INFO_HEADER is set,
the FSP shall use the EDKII_PEI_VARIABLE_PPI to access NV storage. As
EFI_PEI_READ_ONLY_VARIABLE2_PPI only supports reads, it is considered legacy, and
should not be used. If BIT3 is not set, variable access from PEIMs contained in FSP
firmware volumes is forbidden.

DXE and BDS Phase Requirements

DXE drivers contained in FSP firmware volumes are intended to be executed within the
processor context and calling conventions defined by the PI Specification, Volume 2 for
x64 platforms.

DXE drivers contained in the FSP shall use a subset of the API provided by the DXE
Foundation. Specifically, DXE drivers contained in FSP firmware volumes shall not use
the following UEFI services:

Intel® Firmware Support Package
External Architecture Specification December 2022

84

Document Number: 736809-2.4 (Errata A)

FSP Dispatch Mode Interface I n te I®

10.4

e ExitBootServices()

e SetWatchdogTimer()

e SetTime()

e SetWakeupTime()

e UpdateCapsule()

e QueryCapsuleCapabilities()

If BIT3 (Variable Support) of the ImageAttribute field in the FSP_INFO_HEADER is not
set, then DXE drivers contained in FSP firmware volumes shall not use the following
UEFI services:

e GetVariable()

e GetNextVariableName()
e SetVariable()

e QueryVariablelnfo()

The FSP may use the following PI Specification defined events during DXE phase:

1. EFI_END_OF_DXE_EVENT_GROUP_GUID - The PI Specification requires the
bootloader to signal this event prior to invoking any UEFI drivers or
applications that are not from the platform manufacturer or connecting
consoles.

2. EFI_PCI_ENUMERATION_PROTOCOL - The PI Specification requires the
bootloader to install this protocol after PCl enumeration is complete.

3. EFI_EVENT_GROUP_READY_TO_BOOT - The PI Specification requires the
bootloader to signal this event when it is about to load and execute a boot
option.

4. Create an event to be notified when ExitBootServices() is invoked using
EVT_SIGNAL_EXIT_BOOT_SERVICES.

DXE drivers may use other events for platform specific use cases. Any additional events
beyond those described above will be documented in the Integration Guide.

Dispatch Mode API

FSP dispatch mode fully conforms to the PI Specification. Accordingly, dispatch mode
does not require many FSP specific API definitions since the PI Specification already
defines most API. This section therefore only describes FSP specific extensions to the
PI Specification. Most FSP APl will be platform specific and therefore documented in
the Integration Guide.

Intel® Firmware Support Package

December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 85

intel.

FSP Dispatch Mode Interface

10.4.1 TempRamlnit API
The PI Specification defines a code module format for PEI and DXE (PEIMs and DXE
drivers, respectively). However, the Pl Specification does not define a module format for
SEC phase. Temporary RAM must be initialized during the SEC phase. Therefore, in
dispatch mode FSP-T uses the same API defined in Section 9.7 to provide
TempRaminit() to the bootloader SEC implementation.
10.4.2 EFI PEI Core Firmware Volume Location PPI
If the boot flow described in Section 7.2.2 is followed, the PEI Foundation does not
reside in the Boot Firmware Volume (BFV). In compliance with the Pl Specification v1.7,
SEC must pass the EFI_PEI_CORE_FV_LOCATION_PPI as a part of the PPI list provided
to the PEI Foundation Entry Point. Please see Section 6.3.9 of the Pl Specification v1.7
Volume 1 for more details on this PPI. If the alternate boot flow described in Section
7.2.3 is followed, then the PEI Foundation resides in the BFV. Accordingly, this PPI
should not be produced.
10.4.3 FSP Temporary RAM Exit PPI
FSP_TEMP_RAM_EXIT_PPI
10.4.3.1 Summary
Tears down the temporary memory set up by TempRaminit() API.
10.4.3.2 GUID
#define FSP TEMP RAM EXIT GUID \
{Oxbclcfbdb, 0x7e50, 0x42be, \
{Oxb4d, 0x87, 0x22, 0xe0, 0xa9, 0x0c, O0xb0, 0x52}}
10.4.3.3 Prototype
typedef struct {
FSP TEMP RAM EXIT TempRamExit;
} FSP_TEMP RAM EXIT PPI;
10.4.3.4 Parameters
TempRamExit Tears down the temporary memory set up by TempRamiInit()
API.
Intel® Firmware Support Package
External Architecture Specification December 2022

86

Document Number: 736809-2.4 (Errata A)

FSP Dispatch Mode Interface

10.4.3.5

10.4.4

10.4.4.1

10.4.4.2

10.4.4.3

10.4.4.4

Description

intel.

This PPI provides the equivalent functionality as the TempRamExit() function defined in
Section 9.9 to bootloaders that use the FSP in dispatch mode. The TempRamExit()
function defined in this PPI tears down the temporary memory set up by TempRaminit()
API. Bootloaders that use dispatch mode must not use the TempRamExit() API defined
in Section 9.9, they must use this PPl instead.

FSP_TEMP_RAM_EXIT_PPlL.TempRameExit ()

Summary

Tears down the temporary memory set up by TempRaminit() API.

Prototype

typedef
EFI_STATUS

(EFIAPI *FSP TEMP RAM EXIT) (
IN VOID *TempRamExitParamPtr

) 7

Parameters

TempRamExitParamPtr

Pointer to the TempRamEXxit parameters structure. This
structure is normally defined in the Integration Guide. If
it is not defined in the Integration Guide, pass NULL.

Description

This APl is intended to be used by the bootloader's implementation of
EFI_PEI_TEMPORARY_RAM_DONE_PPI. This API tears down the temporary memory
set up by the TempRamlInit() API. This APl accepts a pointer to a data structure that will
be platform dependent and defined for each FSP binary.

The FSP_TEMP_RAM_EXIT_PPI->TempRamEXxit() APl provides the bootloader an
opportunity to get control after system memory is available and before the temporary
memory is torn down. Therefore, is the boot loader’s responsibility to call
FSP_TEMP_RAM_EXIT_PPI->TempRamExit() when ready.

This APl is an optional API, refer to the Integration Guide for prerequisites before
installing the EFI_PEI_FIRMWARE_VOLUME_INFO_PPI instances to begin dispatch of
PEIMs in FSP-S firmware volume(s).

Implementation Note: The UefiCpuPkg in EDK2 provides a reference implementation
of SEC phase. If the boot loader elects to use this, at time of writing the UefiCpuPkg

December 2022
Document Number: 736809-2.4 (Errata A)

Intel® Firmware Support Package
External Architecture Specification
87

intel.

10.4.4.5

Table 19.

10.4.5
10.4.5.1

10.4.5.2

10.4.5.3

10.4.5.4

FSP Dispatch Mode Interface

implementation of SEC core produces the EFI_PEI_TEMPORARY_RAM_DONE_PPI. The
TemporaryRamDone() implementation in SEC core will call
SecPlatformDisableTemporaryMemory(), this function is implemented by the boot
loader. The boot loader implementation of this function would then locate
FSP_TEMP_RAM_EXIT_PPI and call TempRameEXxit() when ready.

Return Values

Return Values - TempRamEXxit() PPI

EFI_SUCCESS FSP execution environment was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.

EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR Temporary memory exit.

FSP-M Architectural Configuration PPI

FSPM_ARCH_CONFIG_PPI

Summary

Architectural configuration data for FSP-M.

GUID

#define FSPM ARCH CONFIG GUID \
{0x824d5a3a, 0xaf92, 0x4cOc, \
{0x9f, 0x19, 0x19, 0x52, Ox6d, Oxca, 0Ox4d4a, Oxbb}}

Prototype

typedef struct {

UINTS8 Revision;

UINTS Reserved[3]

VOID *NvsBufferPtr;

UINT32 BootLoaderTolumSize;
UINTS8 Reservedl[4];

} FSPM ARCH CONFIG PPI;

Parameters

Revision Revision of the structure is 1 for this version of the
specification.

Intel® Firmware Support Package
External Architecture Specification December 2022

88

Document Number: 736809-2.4 (Errata A)

|
FSP Dispatch Mode Interface I n te I®

10.4.5.5

10.4.6

10.4.6.1

10.4.6.2

December 2022

NvsBufferPtr This value is deprecated starting with v2.4 of this

specification and will be removed in an upcoming
version of this specification. If BIT3 (Variable
Support) in the ImageAttribute field of the
FSP_INFO_HEADER is set, then this value is
unused and must be set to NULL. In this case, the
FSP shall use the FSP variable services described in
Section 10.4.6 instead.

Pointer to the non-volatile storage (NVS) data buffer. If it is
NULL it indicates the NVS data is not available. Refer to
Section 11.2 and 11.3 for more details.

BootloaderTolumSize | Size of memory to be reserved by FSP below "top of low
usable memory" for bootloader usage. Refer to Section 11.4
for more details.

Description

This PPI contains architectural configuration data that is needed by PEIMs in FSP-M
and/or FSP-S. It is the responsibility of the bootloader to install this PPI. The
bootloader must be able to provide these data within the pre-memory PEI timeframe.
In adherence with the weak ordering requirement for PEIMs, any PEIM contained in FSP
that uses this PPI shall either include this PPl in its DEPEX or shall register a callback
using (*PeiServices)->NotifyPpi () and refrain from accessing these data until the
callback is invoked by the PEI Foundation.

As a performance optimization, it is recommended (but not required) that the boot
loader install this PPl before installing EFI_PEI_FIRMWARE_VOLUME_INFO_PPI
instances for the firmware volume(s) contained in FSP-M. This will reduce the number
of times the PEI Dispatcher will need to loop in order to complete PEI phase.

EDK Il PEI Variable PPI

EDKII_PEI_VARIABLE_PPI

Summary

The EDKII PEI Variable PPI provides access to the FSP Variable Services.

GUID

#define EDKII PEI VARIABLE PPI GUID \
{O0xe7b2cd04, 0x4bl4d, O0x44c2, \
{0xb7, 0x48, Oxce, Oxaf, 0x2b, 0x66, 0x4a, 0xb0}}

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 89

intel.

10.4.6.3

10.4.6.4

10.4.6.5

10.4.7

10.4.7.1

FSP Dispatch Mode Interface

Prototype
typedef struct {
EDKII PEI GET VARIABLE GetVariable;
EDKII PEI GET NEXT VARIABLE NAME GetNextVariableName;
EDKITI PEI SET VARIABLE SetVariable;
EDKII PEI QUERY VARIABLE INFO QueryVariableInfo;

} EDKII PEI VARIABLE PPI;

Parameters

GetVariable Retrieves a variable's value using its name and GUID.

GetNextVariableName | This serviceis called multiple times to retrieve the name
and GUID of all variables currently available.

SetVariable Stores a new value to the variable with the given name and
GUID.
QueryVariableInfo This service informs the FSP of how much nonvolatile

storage space is allocated for the storage of variables, how
much is remaining, and what the maximum allowable size is
for each variable.

Description

The EDKII PEI Variable PPI provides access to the FSP variable services described in
Section 9.6. The bootloader is required to publish this PPI in dispatch mode. In dispatch
mode, the FSP calls this PPI directly instead of using the Multi-Phase invocation
sequence described in Section 9.6.1. Generally this PPl provides access to the UEFI
variable services, but other implementations are possible.

EDKII_PEI_VARIABLE_PPl.GetVariable ()

Summary

This service retrieves a variable's value using its name and GUID.

Intel® Firmware Support Package
External Architecture Specification December 2022

920

Document Number: 736809-2.4 (Errata A)

FSP Dispatch Mode Interface

10.4.7.2 Prototype

typedef
EFI_STATUS

intel.

(EFIAPI *EDKII PEI GET VARIABLE) (
IN CONST EDKII PEI VARIABLE PPI *This,

IN CONST CHARI1®G
IN CONST EFI GUID

ouT UINT32
IN OUT UINTN
ouT VOID

)7

10.4.7.3 Parameters

*VariableName,
*VariableGuid,
*Attributes, OPTIONAL
*DataSize,

*Data OPTIONAL

This A pointer to this instance of the EDKII_PEI_VARIABLE_PPI.

VariableName A pointer to a null-terminated string that is the variable's
name.

VariableGuid A pointer to an EFI_GUID that is the variable's GUID. The
combination of VariableGuid and VariableName must be
unique.

Attributes If non-NULL, on return, contains the variable's attributes.

DataSize On entry, points to the size in bytes of the Data buffer. On
return, points to the size of the data returned in Data.

Data Points to the buffer which will hold the returned variable value.
May be NULL with a zero DataSize in order to determine the
size of the buffer needed.

10.4.7.4 Description

Reads the specified variable from non-volatile storage. If the Data buffer is too small to
hold the contents of the variable, the error EFI_BUFFER_TOO_SMALL is returned and
DataSize is set to the required buffer size to obtain the data.

10.4.7.5 Return Values

Table 20. Return Values - GetVariable()

EFI_SUCCESS

The variable was read successfully.

EFI_NOT_FOUND

The variable was not found.

December 2022

Document Number: 736809-2.4 (Errata A)

Intel® Firmware Support Package
External Architecture Specification
91

intel.

10.4.8

10.4.8.1

10.4.8.2

10.4.8.3

FSP Dispatch Mode Interface

EFI_BUFFER_TOO_SMALL The DataSize is too small for the resulting data. DataSize is
updated with the size required for the specified variable.

EFI_INVALID_PARAMETER VariableName, VariableGuid, DataSize or Data is NULL.

EFI_DEVICE_ERROR The variable could not be retrieved because of a device error.

EDKII_PEI_VARIABLE_PPIl.GetNextVariableName ()

Summary

This service is called multiple times to retrieve the name and GUID of all variables
currently available.

Prototype

typedef

EFI_STATUS

(EFIAPI *EDKII PEI GET NEXT VARIABLE NAME) (
IN CONST EDKII PEI VARIABLE PPI *This,

IN OUT UINTN *VariableNameSize,
IN OUT CHAR1G6 *VariableName,
IN OUT EFI GUID *VariableGuid
) ;
Parameters
This A pointer to this instance of the EDKII_PEI_VARIABLE_PPI.
VariableNameSize On entry, points to the size of the buffer pointed to by

VariableName. On return, the size of the buffer needed to
contain the next variable’'s name.

VariableName A pointer to a buffer containing a null-terminated string that is
the variable's name. On entry, the buffer contains the current
variable name. On return, the buffer contains the next
variable's name.

If the buffer size (indicated by VariableNameSize) is large
enough to hold the next variable's name, the bootloader shall
copy the next variable's name to this buffer.

VariableGuid A pointer to a buffer containing an EFI_GUID that is the current
variable's GUID. On return, the bootloader shall copy the next
variable's GUID to this buffer.

Intel® Firmware Support Package
External Architecture Specification December 2022

92

Document Number: 736809-2.4 (Errata A)

|
FSP Dispatch Mode Interface I n te I®

10.4.8.4 Description
Return the next variable name and GUID.

This function is called multiple times to retrieve the VariableName and VariableGuid of
all variables currently available in the system. On each call, the previous results are
passed into the interface, and, on return, the interface returns the data for the next
variable. To get started, VariableName should initially contain L"\0" and the buffer
pointed to by VariableNameSize should contain sizeof (CHAR16). When the entire
variable list has been returned, EFI_NOT_FOUND is returned.

10.4.8.5 Return Values

Table 21. Return Values - GetNextVariableName()

EFI_SUCCESS The next variable name was read successfully.
EFI_NOT_FOUND All variables have been enumerated.
EFI_BUFFER_TOO_SMALL The VariableNameSize is too small for the resulting data.

VariableNameSize is updated with the size required for the
specified variable.

EFI_INVALID_PARAMETER VariableName, VariableGuid, or VariableNameSize is NULL.
EFI_DEVICE_ERROR The variable name could not be retrieved because of a device
error.

10.4.9 EDKII_PEI_VARIABLE_PPl.SetVariable ()

10.4.9.1 Summary

Stores a new value to the variable with the given name and GUID.

10.4.9.2 Prototype

typedef

EFI_STATUS

(EFIAPI *EDKII PEI SET VARIABLE) (

IN CONST EDKII PEI VARIABLE PPT *This,

IN CHAR1G6 *VariableName,
IN EFI GUID *VariableGuid,
IN UINT32 Attributes,

IN UINTN DataSize,

IN VOID *Data

) ;

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 93

intel.

10.4.9.3 Parameters

FSP Dispatch Mode Interface

This

A pointer to this instance of the EDKII_PEI_VARIABLE_PPI.

VariableName

A Null-terminated string that is the name of the variable. Each
VariableName is unique for each VariableGuid. VariableName
must contain 1 or more characters. If VariableName is an
empty string, then EFI_INVALID_PARAMETER is returned.

VariableGuid

A pointer to an EFI_GUID that is the variable's GUID.

Attributes

Attributes bitmask for the variable.

DataSize

The size in bytes of the Data buffer. Unless the
EFI_VARIABLE_APPEND_WRITE attribute is set, a size of zero
causes the variable to be deleted. When the
EFI_VARIABLE_APPEND_WRITE attribute is set, then a
SetVariable() call with a DataSize of zero will not cause any
change to the variable value.

Data

The contents for the variable.

10.4.9.4 Description

Stores a new value to the variable with the given name and GUID. If a variable with the
given name and GUID does not exist and DataSize is not zero, then a new variable is

created. If DataSize is set to zero, the EFI_VARIABLE_APPEND_WRITE attribute is not
set, and an existing variable with the given name and GUID exists, then that variable is

deleted.

10.4.9.5 Return Values

Table 22. Return Values - SetVariable()

EFI_SUCCESS

The bootloader has successfully stored the variable and its
data as defined by the Attributes.

EFI_INVALID_PARAMETER

An invalid combination of attribute bits, name, and GUID was
supplied, or the DataSize exceeds the maximum allowed.

EFI_INVALID_PARAMETER

VariableName is an empty string.

EFI_OUT_OF_RESOURCES

Not enough storage is available to hold the variable and its
data.

EFI_DEVICE_ERROR

The variable could not be stored because of a hardware error.

EFI_WRITE_PROTECTED

The variable is read-only.

EFI_WRITE_PROTECTED

The variable cannot be deleted.

Intel® Firmware Support Package
External Architecture Specification
94

December 2022
Document Number: 736809-2.4 (Errata A)

|
FSP Dispatch Mode Interface I n te I ®

EFI_SECURITY_VIOLATION The variable could not be written due to
EFI_VARIABLE_AUTHENTICATED_WRITE_ACCESS, or
EFI_VARIABLE_TIME_BASED_AUTHENTICATED_WRITE_AC
CESS, or
EFI_VARIABLE_ENHANCED_AUTHENTICATED_ACCESS
being set. The FSP is forbidden from writing to authenticated
variables. This feature is only relevant for UEFI Secure Boot
and the FSP does not require the bootloader to implement
UEFI Secure Boot.

EFI_NOT_FOUND The variable trying to be updated or deleted was not found.

10.4.10 EDKII_PEI_VARIABLE_PPIl.QueryVariablelnfo ()
10.4.10.1 Summary
This service informs the FSP of how much nonvolatile storage space is allocated for the
storage of variables, how much is remaining, and what the maximum allowable size is
for each variable.
10.4.10.2 Prototype
typedef
EFI STATUS
(EFIAPI *EDKII PEI QUERY VARIABLE INFO) (
IN CONST EDKII PEI VARIABLE PPI *This,
IN UINT32 *Attributes,
OouT UINT64 *MaximumVariableStorageSize,
OouT UINT64 *RemainingVariableStorageSize,
ouT UINT64 *MaximumVariableSize
) ;
10.4.10.3 Parameters
This A pointer to this instance of the EDKII_PEI_VARIABLE_PPI.
Attributes Attributes bitmask to specify the type of variables on which to
return information.
MaximumVariableStor | Returnsthe maximum size of the storage space available for
ageSize variables associated with the Attributes specified.
RemainingVariableSt | Returnsthe remaining size of the storage space available for
orageSize variables associated with the Attributes specified.
MaximumVariableSize | Returnsthe maximum size of an individual variable associated
with the Attributes specified.
Intel® Firmware Support Package
December 2022 External Architecture Specification

Document Number: 736809-2.4 (Errata A) 95

intel.

10.4.10.4

10.4.10.5

Table 23.

10.4.11

10.4.11.1

10.4.11.2

10.4.11.3

FSP Dispatch Mode Interface

Description

This service informs the FSP of how much non-volatile storage space is allocated for
the storage of variables, how much is remaining, and what the maximum allowable size
is for each variable.

The minimum amount of storage space required by the FSP will be mentioned in the
Integration Guide.

Return Values

Return Values - QueryVariablelnfo()

EFI_SUCCESS The usage of non-volatile storage was determined
successfully.

EFI_INVALID_PARAMETER An invalid combination of Attribute bits was supplied

EFI_UNSUPPORTED The given Attribute bitmask is not supported on this

platform, and the MaximumVariableStorageSize,
RemainingVariableStorageSize, MaximumVariableSize are
undefined.

FSP Error Information

FSP_ERROR_INFO

Summary

Notifies the bootloader of a fatal error occurring during the execution of the FSP.

GUID

#define STATUS CODE DATA TYPE FSP _ERROR GUID \
{0x611le6a88, Oxadb7, 0x4301, \
{0x93, Oxff, Oxed, 0x73, 0x04, Oxb4d, 0x3d, Oxa6}}

Prototype

typedef struct {
EFI_STATUS CODE DATA DataHeader;
EFI GUID ErrorType;
EFI_STATUS Status;

} FSP_ERROR_INFO;

Intel® Firmware Support Package
External Architecture Specification December 2022

96

Document Number: 736809-2.4 (Errata A)

|
FSP Dispatch Mode Interface I n te I®

10.4.11.4

10.4.11.5

Parameters

DataHeader The data header identifying the data.
DataHeader.HeaderSize shall be sizeof

(EFI_STATUS_CODE DATA).

DataHeader. Size shall be sizeof
(FSP_ERROR INFO) - HeaderSize. Finally,
DataHeader. Type shall be

STATUS CODE DATA TYPE FSP ERROR GUID.

ErrorType A GUID identifying the nature of the fatal error. This
GUID is platform specific. A listing of all possible
GUIDs shall be provided by the Integration Guide.

Status A code describing the error encountered. Please see
Section 13.2 for a listing of possible error codes.

Description

In the case of a fatal error occurring during the execution of the FSP, it may not be
possible for the FSP to continue. If a fatal error that prevents the successful completion
of the FSP occurs, the FSP may use FSP_ERROR_INFO to report this error to the
bootloader. During PEI phase, (*PeiServices)-> ReportStatusCode () shall be used to
transmit this error notification to the bootloader. During DXE phase,
EFI_STATUS_CODE_PROTOCOL.ReportStatusCode () shall be used to transmit this
error notification to the bootloader. The bootloader must ensure that
ReportStatusCode () services are available before FSP-M begins execution. When the
FSP calls ReportStatusCode (), the Type parameter's EFI_STATUS_CODE_TYPE_MASK
must be EFI_ERROR_CODE with the EFI_STATUS_CODE_SEVERITY_MASK >=
EFI_ERROR_UNRECOVERED. The Value and Instance parameters must be 0. The
Callerld parameter should be a GUID that identifies the PEIM or DXE driver which was
executing at the time of the error.

The bootloader must register a listener for this status code. This listener should check if
DataHeader.Type ==STATUS CODE_DATA TYPE FSP_ERROR GUID to detectan
FSP_ERROR_INFO notification. If an FSP_ERROR_INFO notification is encountered, the
bootloader should assume that normal operation is no longer possible. In debug
scenarios, this notification should be considered an ASSERT. In a production
environment the most simple and least effective method of handling this error is a CPU
dead loop, which effectively causes a bricked system. A more robust and recommended
solution would be to initiate a firmware recovery. If the bootloader does not handle this
notification, the PEIM or DXE driver that called ReportStatusCode () will immediately
return back to the dispatcher with an EFI_STATUS return code matching the Status
field in FSP_ERROR_INFO. Continuing to dispatch FSP PEIMs or DXE Drivers after this
will result in undefined behavior. The bootloader should initiate recovery flows instead
of continuing with normal dispatch.

Intel® Firmware Support Package

December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 97

intel.

10.4.12

FSP Dispatch Mode Interface

FSP Debug Messages

FSP may optionally include the capability of generating log messages to aid in the
debugging of firmware issues. When technically feasible, these log messages will be
broadcast to the bootloader from the FSP by calling (*PeiServices)-> ReportStatusCode
() in PEl phase or EFI_STATUS_CODE_PROTOCOL.ReportStatusCode () in DXE phase.

The format of messages provided through ReportStatusCode() shall match those used
for FSP Events, please see Section 9.5 for details. All the message types (Debug
Messages, POST codes, etc.) described in Section 9.5 are also applicable to Dispatch
Mode.

It should be noted that the strings for these log messages increase the binary size of
the FSP considerably. Accordingly, FSP binaries intended for production use are
unlikely includes debug log messages.

Intel® Firmware Support Package
External Architecture Specification December 2022

98

Document Number: 736809-2.4 (Errata A)

FSP Output

11.0

intel.

FSP Output

11.1

11.2

December 2022

The FSP builds a series of data structures called the Hand Off Blocks (HOBs). These
data structures conform to the HOB format as described in the Platform Initialization
(Pl) Specification - Volume 3: Shared Architectural Elements specification as referenced
in Section 1.3 Related Documentation. The user of the FSP binary is strongly
encouraged to go through the specification mentioned above to understand the HOB
details and create a simple infrastructure to parse the HOB list, because the same
infrastructure can be reused with different FSP across different platforms.

The bootloader developer must decide on how to consume the information passed
through the HOB produced by the FSP. The PI Specification defines a number of HOB
and most of this information may not be relevant to a particular bootloader. For
example, to generate system memory map, bootloader needs to parse the resource
descriptor HOBs produced by FSP-M.

In addition to the PI Specification defined HOB, the FSP produces a number of FSP
architecturally defined GUID types HOB. The following sections describe the GUID and
structure of these FSPs defined HOB.

Additional platform-specific HOB may be defined in the Integration Guide.

FSP_RESERVED_MEMORY_RESOURCE_HOB

The FSP optionally reserves some memory for its internal use and a descriptor for this
memory region used by the FSP is passed back through a HOB. This is a generic
resource HOB, but the owner field of the HOB identifies the owner as FSP. This FSP
reserved memory region must be preserved by the bootloader and must be reported
as reserved memory to the OS.

This HOB follows the EFI_HOB_ RESOURCE_DESCRIPTOR format with the owner GUID
defined as below.

#define FSP_RESERVED_MEMORY_RESOURCE_HOB_GUID \
{ 0x69a79759, 0x1373, 0x4367, { Oxa6, Oxcd, Oxc7, 0xf5, 0x9e,
Oxfd, 0x98, 0Ox6e }}

This HOB is valid after FspMemorylnit() API.

FSP_NON_VOLATILE_STORAGE_HOB2

This HOB has been replaced by FSP variable services and is considered deprecated. If
BIT3 (Variable Support) of the ImageAttribute field in the FSP_INFO_HEADER is set,
then the FSP will not produce this HOB, nor will it use the NvsBufferPtr field in

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 99

intel.

FSP Output

FSPM_ARCH2_UPD, FSPM_ARCH_UPD, or FSP_ARCH_CONFIG_PPI. Bootloaders
should provide FSP variable services and only search for this HOB if BIT3 is not set.

The Non-Volatile Storage (NVS) HOB version 2 provides a mechanism for FSP to
request the bootloader to save the platform configuration data into non-volatile
storage so that it can be reused in special cases, such as S3 resume or fast boot.

One of the limitations of the HOB format is the 16-bit length field limits the amount of
data that can be stored in a single HOB to approximately 64KB. Version 2 of this HOB
allows >64KB of NVS data to be stored by specifying a pointer to the NVS data.

This HOB follows the EFI_HOB_GUID_TYPE format with the name GUID and content
defined as below:

#define FSP_NON VOLATILE STORAGE HOB2 GUID \

{ 0x4866788f, 0Ox6ba8, 0x47d8, { 0x83, Ox6, Oxac, 0xf7, 0x7f,
0x55, 0x10, Ox46 }}

typedef struct {

EFI_HOB_GUID TYPE GuidHob;
EFI PHYSICAL ADDRESS NvsDataPtr;
UINT64 NvsDatalLength;

} FSP_NON VOLATILE STORAGE HOB2;

GuidHob The GUID HOB header identifying the data.
GuidHob . Name shall be
FSP_NON VOLATILE STORAGE HOB2 GUID.

NvsDataPtr Pointer to the non-volatile storage (NVS) data buffer. If it is
NULL it indicates the NVS data was not produced,

bootloader should continue to pass the existing NVS data to
FSP during next boot.

NvsDataLength The total number of bytes in the non-volatile storage (NVS)
data buffer.

The bootloader needs to parse the HOB list to see if such a GUID HOB exists after
memory is initialized. The HOB(s) shall be populated after FSP-M is complete. If it
exists, the bootloader should extract the NVS data from the buffer specified by
FSP_NON_VOLATILE_STORAGE_HOB2.NvsDataPtr and then save it into a platform-
specific NVS device, such as flash, EEPROM, etc. On subsequent boots, the bootloader
should load the data block back from the NVS device to temporary memory and
populate the buffer pointer into FSPM_ARCH_UPD.NvsBufferPtr field before calling
FspMemoryinit() in APl mode or FSPM_ARCH_CONFIG_PPI.NvsBufferPtr before
installing FSPM_ARCH_CONFIG_PPI in dispatch mode. If the NVS device is memory
mapped, the bootloader can initialize the buffer pointer directly to the buffer.

Intel® Firmware Support Package
External Architecture Specification December 2022

100

Document Number: 736809-2.4 (Errata A)

FSP Output

11.3

intel.

In APl mode, the NVS data buffer shall be contained within the FSP reserved memory
region defined by FSP_ RESERVED MEMORY_ RESOURCE_HOB. In dispatch mode, the
NVS data buffer will be contained in a memory region reserved via a Memory Allocation
HOB (EFI_HOB_MEMORY ALLOCATION) with
EFI_HOB_MEMORY_ALLOCATION.AllocDescriptor.MemoryType set to
EfiBootServicesData.

If FSP_INFO_HEADER.SpecVersion >= 0x23, then the FSP should produce
FSP_NON_VOLATILE STORAGE | HOB2|nﬂEadofFSP NON_VOLATILE STORAGE_ HOB.
Bootloaders should practice defensive programming and not explicitly check the value
of FSP_INFO_HEADER.SpecVersion to determine which type of HOB to search for.
Instead, bootloaders should first search for FSP_NON_VOLATILE STORAGE_ HOB2, and
only search for FSP_NON_VOLATILE STORAGE HOB if the former is not found in the
HOB list.

This HOB must be parsed after FspMemorylinit() in APl mode or when a PPI
notification for EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI with the
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH type is invoked in dispatch mode
(EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK type will be invoked too early.)

If this HOB is not produced in S3 or fast boot, bootloader should continue to pass
the existing NVS data to FSP during next boot.

FSP_NON_VOLATILE_STORAGE_HOB

This HOB has been replaced by FSP variable services and is considered deprecated. If
BIT3 (Variable Support) of the ImageAttribute field in the FSP_INFO_HEADER is set,
then the FSP will not produce this HOB, nor will it use the NvsBufferPtr field in
FSPM_ARCH2_UPD, FSPM_ARCH_UPD, or FSP_ARCH_CONFIG_PPI. Moreover, this
HOB was replaced by FSP_ NON_VOLATILE STORAGE HOB2 before FSP variable
services were added. If a bootloader wishes to retain backwards compatibility back to
FSP v2.0, the bootloader should provide FSP variable services, then search for
FSP_NON_VOLATILE STORAGE HOB2, and only search for
FSP_NON_VOLATILE STORAGE HOB if the former is not found in the HOB list.

The Non-Volatile Storage (NVS) HOB provides a mechanism for FSP to request the
bootloader to save the platform configuration data into non-volatile storage so that it
can be reused in special cases, such as S3 resume or fast boot.

This HOB follows the EFI_HOB GUID_TYPE format with the name GUID defined as
below:

#define FSP _NON VOLATILE STORAGE HOB GUID \
{ 0x721lacf02, 0x4d77, 0x4c2a, { 0xb3, Oxdc, 0x27, Oxb, 0x7b,
0xa9, 0Oxe4d, 0xb0 }}

The bootloader needs to parse the HOB list to see if such a GUID HOB exists after
memory is initialized. The HOB shall be populated either after returning from

Intel® Firmware Support Package

December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 101

intel.

11.4

11.5

FSP Output

FspMemoryilnit() in APl mode or after all notification call backs for
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI are completed in dispatch mode. If it
exists, the bootloader should extract the data portion from the HOB structure and then
save it into a platform-specific NVS device, such as flash, EEPROM, etc. On the following
boot flow the bootloader should load the data block back from the NVS device to
temporary memory and populate the buffer pointer into
FSPM_ARCH_UPD.NvsBufferPtr field before calling FspMemorylnit() in APl mode or
FSPM_ARCH_CONFIG_PPI.NvsBufferPtr before installing FSPM_ARCH_CONFIG_PPI in
dispatch mode. If the NVS device is memory mapped, the bootloader can initialize the
buffer pointer directly to the buffer.

This HOB must be parsed after FspMemorylnit() in APl mode or when a PPI
notification for EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI with the
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH type is invoked in dispatch mode
(EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK type will be invoked too early.)

If this HOB is not produced in S3 or fast boot, bootloader should continue to pass
the existing NVS data to FSP during next boot.

FSP_BOOTLOADER_TOLUM_HOB

The FSP can reserve some memory below "top of low usable memory" for bootloader
usage. The size of this region is determined by
FSPM_ARCH_UPD.BootLoaderTolumSize when in APl mode or
FSPM_ARCH_CONFIG_PPI.BootLoaderTolumSize when in dispatch mode. The FSP
reserved memory region will be placed below this region.

This HOB will only be published when the BootLoaderTolumSize is valid and non-zero.

This HOB follows the EFI_HOB_ RESOURCE_DESCRIPTOR format with the owner GUID
defined as below:

#define FSP_BOOTLOADER_TOLUM_HOB_GUID \
{ O0x73ff4f56, Oxaa8e, 0x4451, { Oxb3, 0Oxle, 0x36, 0x35, 0x30,
0x67, Oxad, 0x44 }}

This HOB is valid after FspMemorylnit() in APl mode or when a PPI notification for
EFI_PEI_PERMANENT_MEMORY_INSTALLED_PPI with
EFI_PEI_PPI_DESCRIPTOR_NOTIFY_DISPATCH priority is invoked in dispatch mode
(EFI_PEI_PPI_DESCRIPTOR_NOTIFY_CALLBACK priority is too early.)

EFI_PEI_GRAPHICS_INFO_HOB

If BITO (Graphics Support) of the ImageAttribute field in the FSP_INFO_HEADER is set,
the FSP includes graphics initialization capabilities. To complete the initialization of the
graphics system, FSP may need some platform specific configuration data which would
be documented in the Integration Guide.

Intel® Firmware Support Package
External Architecture Specification December 2022

102

Document Number: 736809-2.4 (Errata A)

FSP Output

11.6

December 2022

intel.

When graphics capability is included in FSP and enabled as documented in Integration
Guide, FSP produces a EFI_PEI_GRAPHICS_INFO_HOB as described in the P/
Specification as referenced in Section 1.3 Related Documents, which provides
information about the graphics mode and framebuffer.

#define EFI PEI GRAPHICS INFO HOB GUID \
{ 0x39f62cce, 0x6825, 0x4669, { Oxbb, 0x56, 0x54, Oxla, Oxba,
0x75, 0x3a, 0x07 }}

Itis to be noted that the FrameBufferAddress address in
EFI_PEI_GRAPHICS_INFO_HOB will reflect the value assigned by the FSP. A bootloader
consuming this HOB should be aware that a generic PCl enumeration logic could
reprogram the temporary resources assigned by the FSP and it is the responsibility of
the bootloader to update its internal data structures with the new framebuffer address
after the enumeration is complete.

In APl mode, if FSPS_ARCH_UPD.EnableMultiPhaseSiliconlnit == 0 then this HOB is
valid after FspSiliconinit(). If FSPS_ARCH_UPD.EnableMultiPhaseSiliconlnit != 0, then
this HOB is valid after completing the multi-phase Siliconlnit sequence by invoking
the FspMultiPhaseSilnit() APl with Phaselndex == (NumberOfPhases - 1).

In dispatch mode, this HOB is valid after EFI_PEI_END_OF_PEI_PHASE_PPl is
installed.

EFI_PEI_GRAPHICS_DEVICE_INFO_HOB

If BITO (Graphics Support) of the ImageAttribute field in the FSP_INFO_HEADER is set,
the FSP includes graphics initialization capabilities. To complete the initialization of the
graphics system, FSP may need some platform specific configuration data which would
be documented in the Integration Guide.

When graphics capability is included in FSP and enabled as documented in Integration
Guide, FSP produces a EFI_PEI_GRAPHICS_DEVICE_INFO_HOB as described in the P/
Specification as referenced in Section 1.3 Related Documents, which provides
information about the graphics hardware which produces the framebuffer supplied by
EFI_PEI_GRAPHICS_INFO_HOB.

#define EFI_PEI GRAPHICS DEVICE INFO HOB GUID \
{ Oxebcb2ac9, 0xd35d, 0x4430, { 0x93, Oxo6e, 0xld, 0xe3, 0x32,
0x47, 0x8d, Oxe7 }}

Together, EFI_PEI_GRAPHICS_INFO_HOB and
EFI_PEI_GRAPHICS_DEVICE_INFO_HOB provide sufficient information to implement a
basic graphics driver.

In APl mode, if FSPS_ARCH_UPD.EnableMultiPhaseSiliconlnit == 0 then this HOB is
valid after FspSiliconlnit(). If FSPS_ARCH_UPD.EnableMultiPhaseSiliconinit != 0,

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 103

intel.

11.7

FSP Output

then this HOB is valid after completing the multi-phase Siliconlnit sequence by
invoking the FspMultiPhaseSilnit() APl with Phaselndex == (NumberOfPhases - 1).

In dispatch mode, this HOB is valid after EFI_PEI_END_OF_PEI_PHASE_PPI is
installed.

FSP_ERROR_INFO_HOB

In the case of an error occurring during the execution of the FSP, the FSP may
optionally produce an FSP_ERROR_INFO_HOB which describes the error in more
detail. This HOB is only produced in APl mode. In dispatch mode, ReportStatusCode () is
used as described in Section 710.4.6.

#define FSP_ERROR INFO HOB GUID \
{0x611e6a88, Oxadb7, 0x4301, \
{0x93, Oxff, Oxed, 0x73, 0x04, Oxb4, 0x3d, Oxa6c}}

typedef struct {

EFI_HOB GUID TYPE GuidHob;
EFI_STATUS CODE TYPE Type;
EFI STATUS CODE VALUE Value;

UINT32 Instance;
EFI GUID CallerId;
EFI _GUID ErrorType;
UINT32 Status;

} FSP_ERROR_INFO HOB;

GuidHob The GUID HOB header identifying the data.
GuidHob. Name shall be

FSP_ERROR INFO HOB GUID.

Type A ReportStatusCode() type identifier. The Type’'s
EFI_STATUS_CODE_TYPE_MASK must be
EFI_ERROR_CODE with the
EFI_STATUS_CODE_SEVERITY_MASK >=
EFI_ERROR_UNRECOVERED. See Section 6 of the
PI Specification v1.7 Volume 3.

Value A ReportStatusCode() Value. Used to determine
status code class and sub-class, see Section 6 of the
PI Specification v1.7 Volume 3. This field shall be set
to zero (0).

Instance A ReportStatusCode() Instance number. See Section
6 of the PI Specification v1.7 Volume 3. This field
shall be set to zero (0).

Intel® Firmware Support Package
External Architecture Specification December 2022

104

Document Number: 736809-2.4 (Errata A)

FSP Output

11.8

intel.

CallerIid An optional GUID which may be used to identify which
internal component of the FSP was executing at the
time of the error. If the FSP does not implement this
CallerId shall be zero (0).

ErrorType A GUID identifying the nature of the fatal error. This
GUID is platform specific. A listing of all possible
GUIDs shall be provided by the Integration Guide.

Status A code describing the error encountered. Please see
Section 13.2 for a listing of possible error codes.

If an FSP_ERROR_INFO_HOB is found, the bootloader should assume that normal
operation is no longer possible. In debug scenarios, this notification should be
considered an ASSERT. In a production environment the most simple and least
effective method of handling this error is a CPU dead loop, which effectively causes a
bricked system. A more robust and recommended solution would be to initiate a
firmware recovery. If a FSP_ERROR_INFO_HOB is produced after an FSP API call, the
bootloader should not call any of the subsequent FSP APIs (if any) and should instead
initiate recovery flows.

FSP_SMM_BOOTLOADER_FV_CONTEXT_HOB

In the scenario where FSP owns SMRAM (FSP SMM Model 2), the bootloader can
choose to provide a firmware volume containing any desired platform specific SMM
drivers. In this case, the bootloader may need to communicate platform specific
configuration data to these SMM drivers. The FSP SMM bootloader FV context HOB
provides a mechanism for the bootloader to provide these data.

This HOB follows the EFI_HOB_GUID_TYPE format with the name GUID defined as
below:

#define FSP_SMM BOOTLOADER FV_CONTEXT HOB GUID \
{ 0xf9fldbb9, 0xlbe5, 0x4c3d, { O0xb8, 0x17, Oxe6, 0xd8, 0xd,
Oxb5, 0x24, 0x3 }}

The contents of this HOB will be the data provided by
FSPI_ARCH UPD.BootloaderSmmFvContextData and
FSPI_ARCH UPD.BootloaderSmmFvContextDataLength.

This HOB will be present in the MM foundation’s HOB list. The start of the HOB list is
found in the MmConfigurationTable array of the EFI_MM_SYSTEM TABLE provided to
entry point of all bootloader SMM drivers. Please see the Pl Specification for details.

Intel® Firmware Support Package

December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 105

intel.

12.0

Other Host Bootloader Considerations

Other Host Bootloader Considerations

12.1

12.2

12.3

ACPI

ACPI is an independent component of the bootloader, and is not provided by the FSP in
APl mode. In dispatch mode, DXE drivers included with the FSP may optionally use the
EFI_ACPI_TABLE_PROTOCOL to install ACPI tables.

Bus Enumeration

FSP will initialize the processor and the chipset to a state in which all bus topologies
can be discovered by the host bootloader. However, it is the responsibility of the
bootloader to enumerate the bus topology.

Security

FSP will follow the BWG / BIOS Specification to lock the necessary silicon specific
registers. However, platform features like measured boot, verified, and authenticated
boot are responsibilities of the bootloader.

Intel® Firmware Support Package
External Architecture Specification December 2022

106

Document Number: 736809-2.4 (Errata A)

[
Appendix A - Data Structures I n te I ®

13.0 Appendix A - Data Structures

The declarations/definitions provided here were derived from the EDK2 source
available for download at https://github.com/tianocore/edk2

13.1 BOOT_MODE

PiBootMode.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiBootMode.h

#define BOOT WITH FULL CONFIGURATION 0x00
#define BOOT WITH MINIMAL CONFIGURATION 0x01
#define BOOT ASSUMING NO CONFIGURATION CHANGES 0x02
#define BOOT ON S4 RESUME 0x05

#define BOOT ON S3 RESUME 0x11

#define BOOT ON FLASH UPDATE 0x12

#define BOOT IN RECOVERY MODE 0x20

13.2 EFI_STATUS

13.2.1 UefiBaseType.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Base.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h

For x86 32-bit FSP API interface:
#define MAX BIT 0x80000000

For x64 64-bit FSP API interface:
#define MAX BIT 0x8000000000000000ULL

The following FSP return status are defined.

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 107

https://github.com/tianocore/edk2
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiBootMode.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Base.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h

intel.

Appendix A - Data Structures

#define ENCODE_ ERROR (StatusCode) \

((EFI_STATUS) (MAX BIT | (StatusCode)))
#define EFI SUCCESS 0
#define EFI INVALID PARAMETER ENCODE ERROR

#define EFI UNSUPPORTED ENCODE_ERROR
#define EFI NOT READY ENCODE_ERROR
#define EFI DEVICE ERROR ENCODE_ERROR
#define EFI_OUT OF RESOURCES ENCODE_ERROR
#define EFI_VOLUME CORRUPTED ENCODE_ERROR

#define
#define
#define

EFI_NOT_FOUND
EFI_TIMEOUT
EFI_ABORTED

ENCODE_ERROR
ENCODE_ERROR

#define EFI_INCOMPATIBLE VERSION
#define EFI_SECURITY VIOLATION
#define EFI_CRC_ERROR

#define EFI_COMPROMISED DATA

ENCODE_ERROR
ENCODE_ERROR
ENCODE_ERROR

(2
(3
(6
(7
(9
(1
ENCODE_ERROR (1
(1
(2
(2
(2
(2
ENCODE_ERROR (3

—_— — — — — — — ~—

typedef UINT64 EFI PHYSICAL ADDRESS;

13.2.2 OEM Status Code
The range of status code that has the highest bit clear and the next to highest bit set
are reserved for use by OEMs.
The FSP will use the following status to indicate that an APl is requesting that a reset is
required.
#define ENCODE RESET REQUEST (ResetType) \
((EFI_STATUS) ((MAX BIT >> 1) | (ResetType)))
#define FSP STATUS RESET REQUIRED COLD ENCODE RESET REQUEST (1)
#define FSP_STATUS RESET REQUIRED WARM ENCODE RESET REQUEST (2)
#define FSP_STATUS RESET REQUIRED 3 ENCODE_RESET REQUEST (3)
#define FSP STATUS RESET REQUIRED 4 ENCODE RESET REQUEST (4)
#define FSP STATUS RESET REQUIRED 5 ENCODE RESET REQUEST (5)
#define FSP STATUS RESET REQUIRED 6 ENCODE RESET REQUEST (6)
#define FSP STATUS RESET REQUIRED 7 ENCODE RESET REQUEST (7)
#define FSP_STATUS RESET REQUIRED 8 ENCODE RESET REQUEST (8)
#define FSP_STATUS VARIABLE REQUEST ENCODE RESET REQUEST (10)
13.3 EFI_PEI_GRAPHICS_INFO_HOB

GraphicsinfoHob.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsinfoHo
b.h

Intel® Firmware Support Package
External Architecture Specification December 2022
108 Document Number: 736809-2.4 (Errata A)

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h

[
Appendix A - Data Structures I n te I ®

13.4

13.5

December 2022

typedef struct {

EFI PHYSICAL ADDRESS FrameBufferBase;
UINT32 FrameBufferSize;

EFI GRAPHICS OUTPUT MODE INFORMATION GraphicsMode;
} EFI_PEI GRAPHICS INFO HOB;

EFI_PEl_GRAPHICS_DEVICE_INFO_HOB

GraphicsinfoHob.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsinfoHo
b.h

typedef struct {

UINT16 VendorId;

UINT16 DevicelId;

UINT16 SubsystemVendorId;
UINT16 SubsystemId;

UINT8 RevisionId;

UINT8 BarIndex;

} EFI_PEI GRAPHICS DEVICE INFO_HOB;

EFI_GUID

Base.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Base.h

typedef struct {
UINT32 Datal;
UINT16 DataZz;
UINT16 Data3;
UINT8 Data4d([8];
} GUID;

UefiBaseType.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h

typedef GUID EFI GUID;

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 109

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Base.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h

intel.

13.6

13.7

EFI_MEMORY_TYPE

UefiMultiPhase.h

Appendix A - Data Structures

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiMultiPhase.

h

/177

/// Enumeration of memory types.

/17

typedef enum {
EfiReservedMemoryType,
EfiLoaderCode,
EfiLoaderData,
EfiBootServicesCode,
EfiBootServicesData,
EfiRuntimeServicesCode,
EfiRuntimeServicesData,
EfiConventionalMemory,
EfiUnusableMemory,
EfiACPIReclaimMemory,
EfiACPIMemoryNVS,
EfiMemoryMappedIO,
EfiMemoryMappedIOPortSpace,
EfiPalCode,
EfiPersistentMemory,
EfiMaxMemoryType

} EFI _MEMORY TYPE;

Hand Off Block (HOB)

PiHob.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiHob.h

typedef UINT32 EFI RESOURCE TYPE;

typedef UINT32 EFI_RESOURCE ATTRIBUTE TYPE;

//

// Value of ResourceType in EFI HOB RESOURCE DESCRIPTOR.
//

#define EFI_RESOURCE_SYSTEM MEMORY 0x00000000
#define EFI_RESOURCE_MEMORY MAPPED IO 0x00000001
#define EFI RESOURCE IO 0x00000002

#define EFI RESOURCE FIRMWARE DEVICE 0x00000003
#define EFI_RESOURCE_MEMORY MAPPED IO PORT 0x00000004
#define EFI RESOURCE MEMORY RESERVED 0x00000005
#define EFI_RESOURCE IO RESERVED 0x00000006
#define EFI_RESOURCE MAX MEMORY TYPE 0x00000007

Intel® Firmware Support Package
External Architecture Specification

110

December 2022
Document Number: 736809-2.4 (Errata A)

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiMultiPhase.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiMultiPhase.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiHob.h

intel
Appendix A - Data Structures I n te ®

//
// These types can be ORed together as needed.
// The first three enumerations describe settings

//

#define EFI RESOURCE ATTRIBUTE PRESENT 0x00000001
#define EFI RESOURCE ATTRIBUTE INITIALIZED 0x00000002
#define EFI RESOURCE ATTRIBUTE TESTED 0x00000004

//

// The rest of the settings describe capabilities

//

#define EFI_RESOURCE ATTRIBUTE SINGLE BIT ECC 0x00000008
#define EFTI RESOURCE ATTRIBUTE MULTIPLE BIT ECC 0x00000010
#define EFI RESOURCE ATTRIBUTE ECC RESERVED 1 0x00000020
#define EFI_RESOURCE ATTRIBUTE ECC RESERVED 2 000000040
#define EFI RESOURCE ATTRIBUTE READ PROTECTED 0x00000080
#define EFI _RESOURCE ATTRIBUTE WRITE PROTECTED 0x00000100
#define EFI RESOURCE ATTRIBUTE EXECUTION PROTECTED 0x00000200
#define EFI RESOURCE ATTRIBUTE UNCACHEABLE 0x00000400
#define EFI_RESOURCE ATTRIBUTE WRITE COMBINEABLE 0x00000800

#define EFI_RESOURCE ATTRIBUTE WRITE THROUGH CACHEABLE 0x00001000
#define EFI_RESOURCE ATTRIBUTE WRITE BACK CACHEABLE 0x00002000
#define EFI_RESOURCE ATTRIBUTE 16 BIT IO 0x00004000
#define EFI_RESOURCE_ATTRIBUTE 32 BIT IO 0x00008000
#define EFI_RESOURCE_ATTRIBUTE 64 BIT IO 0x00010000
#define EFI_RESOURCE ATTRIBUTE UNCACHED EXPORTED 0x00020000
#define EFI_RESOURCE ATTRIBUTE READ ONLY PROTECTED 0x00040000
#define EFI_RESOURCE ATTRIBUTE READ PROTECTABLE 0x00100000
#define EFI_RESOURCE_ATTRIBUTE WRITE PROTECTABLE 0x00200000
#define EFI_RESOURCE ATTRIBUTE EXECUTION PROTECTABLE 0x00400000
#define EFI_RESOURCE ATTRIBUTE READ ONLY PROTECTABLE 0x00800000

#define EFI RESOURCE ATTRIBUTE PERSISTABLE 0x01000000
#define EFI_RESOURCE_ATTRIBUTE MORE RELIABLE 0x02000000
//

// HobType of EFI_HOB GENERIC HEADER.

//

#define EFI_HOB TYPE MEMORY ALLOCATION 0x0002
#define EFI_HOB TYPE RESOURCE DESCRIPTOR 0x0003
#define EFI_HOB TYPE GUID EXTENSION 0x0004
#define EFI_HOB TYPE UNUSED 0XFFFE
#define EFI_HOB TYPE END OF HOB LIST OxFFFF

///

/// Describes the format and size of the data inside the HOB.
/// All HOBs must contain this generic HOB header.

/77

typedef struct {

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 111

intel.

Appendix A - Data Structures

UINT16 HobType;

UINT16 HobLength;
UINT32 Reserved;

} EFI_HOB_GENERIC HEADER;

/7

/// Describes various attributes of logical memory allocation.
/17

typedef struct {

EFI GUID Name;

EFI PHYSICAL ADDRESS MemoryBaseAddress;

UINT64 MemoryLength;

EFI MEMORY TYPE MemoryType;

UINTS8 Reserved[4];

} EFI_HOB MEMORY ALLOCATION HEADER;

/17

/// Describes all memory ranges used during the HOB producer
/// phase that exist outside the HOB list. This HOB type

/// describes how memory is used, not the physical attributes
/// of memory.

/17
typedef struct {
EFI HOB GENERIC HEADER Header;

EFI_HOB_MEMORY ALLOCATION HEADER AllocDescriptor;
} EFI_HOB MEMORY ALLOCATION;

/77

/// Describes the resource properties of all fixed,
/// nonrelocatable resource ranges found on the processor
/// host bus during the HOB producer phase.

/77

typedef struct {

EFI HOB GENERIC HEADER Header;

EFI _GUID Owner;

EFI RESOURCE TYPE ResourceType;

EFI RESOURCE ATTRIBUTE TYPE ResourceAttribute;

EFI PHYSICAL ADDRESS PhysicalStart;

UINT64 Resourcelength;

} EFI_HOB RESOURCE DESCRIPTOR;

/7

/// Allows writers of executable content in the HOB producer
/// phase to maintain and manage HOBs with specific GUID.
/17

typedef struct {

EFI HOB GENERIC HEADER Header;

EFI _GUID Name;

} EFI_HOB GUID TYPE;

Intel® Firmware Support Package
External Architecture Specification December 2022

112

Document Number: 736809-2.4 (Errata A)

[
Appendix A - Data Structures I n te I ®

/17

/// Union of all the possible HOB Types.

/17

typedef union {

EFI_HOB_GENERIC HEADER *Header;

EFI HOB MEMORY ALLOCATION *MemoryAllocation;
EFI HOB RESOURCE DESCRIPTOR *ResourceDescriptor;
EFI_HOB GUID TYPE *Guid;

UINTS8 *Raw;

} EFI_PEI HOB POINTERS;

13.8 Firmware Volume and Firmware Filesystem
Please refer to PiFirmwareVolume.h and PiFirmwareFile.h from EDK2 project for
original source.
PiFirmwareVolume.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareVolum
e.h
/77
/// EFI_FV FILE ATTRIBUTES
///
typedef UINT32 EFI _FV FILE ATTRIBUTES;
//7/
/// type of EFI FVB attribute
///
typedef UINT32 EFI FVB ATTRIBUTES 2;
typedef struct {
UINT32 NumBlocks;
UINT32 Length;
} EFI_FV_BLOCK MAP ENTRY;
//7/
/// Describes the features and layout of the firmware volume.
///
typedef struct {
UINTS8 ZeroVector[16];
EFI GUID FileSystemGuid;
UINT64 FvLength;
UINT32 Signature;
EFI_FVB ATTRIBUTES 2 Attributes;
UINT16 HeaderLength;
UINT16 Checksum;
UINT16 ExtHeaderOffset;
UINT8 Reserved[1l];
UINTS Revision;
Intel® Firmware Support Package
December 2022 External Architecture Specification

Document Number: 736809-2.4 (Errata A) 113

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareVolume.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareVolume.h

intel.

Appendix A - Data Structures

EFI_FV _BLOCK MAP ENTRY BlockMap[l];
} EFI_FIRMWARE VOLUME HEADER;

#define EFI_FVH_SIGNATURE SIGNATURE_32 ('_', 'R, 'V', 'H")
/77

/// Firmware Volume Header Revision definition

/77

#define EFI_FVH REVISION 0x02

///

/// Extension header pointed by ExtHeaderOffset of volume header.
//7/

typedef struct {

EFI _GUID FvName;

UINT32 ExtHeaderSize;

} EFI_FIRMWARE VOLUME EXT HEADER;

///

/// Entry struture for describing FV extension header
///

typedef struct {

UINT16 ExtEntrySize;

UINT16 ExtEntryType;

} EFI_FIRMWARE VOLUME EXT ENTRY;

#define EFI_FV_EXT TYPE OEM TYPE 0x01

/17

/// This extension header provides a mapping between a GUID
/// and an OEM file type.

i

typedef struct {

EFI FIRMWARE VOLUME EXT ENTRY Hdr;

UINT32 TypeMask;

} EFI_FIRMWARE VOLUME EXT ENTRY OEM TYPE;

#define EFI_FV_EXT TYPE GUID TYPE 0x0002

///

/// This extension header EFI_FIRMWARE VOLUME EXT ENTRY GUID TYPE
/// provides a vendor specific GUID FormatType type which

/// includes a length and a successive series of data bytes.

///

typedef struct {

EFI_FIRMWARE VOLUME EXT ENTRY Hdr;

EFI _GUID FormatType;

} EFI_FIRMWARE VOLUME EXT ENTRY GUID TYPE;

Intel® Firmware Support Package
External Architecture Specification December 2022

114

Document Number: 736809-2.4 (Errata A)

intel
Appendix A - Data Structures I n te ®

PiFirmwareFile.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareFile.h

/77
/// Used to verify the integrity of the file.
/17
typedef union {
struct {
UINT8 Header;
UINT8 File;
} Checksum;
UINT16 Checksumlé6;
} EFI_FFS INTEGRITY CHECK;

/17

/// FFS_FIXED CHECKSUM is the checksum value used when the
/// FFS_ATTRIB CHECKSUM attribute bit is clear.

/77

#define FFS_FIXED CHECKSUM OxARA

typedef UINT8 EFI_FV FILETYPE;
typedef UINT8 EFI_FFS FILE ATTRIBUTES;
typedef UINT8 EFI_FFS FILE STATE;

///

/// File Types Definitions

/17

#define EFI_FV_FILETYPE FREEFORM 0x02
///

/// FFS File Attributes.

/77

#define FFS_ATTRIB LARGE_FILE 0x01
#define FFS_ATTRIB_FIXED 0x04
#define FFS_ATTRIB_DATA_ALIGNMENT 0x38
#define FFS_ATTRIB_CHECKSUM 0x40
///

/// FFS File State Bits.

///

#define EFI_FILE_HEADER_CONSTRUCTION 0x01
#define EFI_FILE_HEADER VALID 0x02
#define EFI_FILE DATA VALID 0x04
#define EFI_FILE MARKED FOR_UPDATE 0x08
#define EFI_FILE_DELETED 0x10
#define EFI_FILE_HEADER INVALID 0x20
///

/// Each file begins with the header that describe the
/// contents and state of the files.
/17

Intel® Firmware Support Package
December 2022 External Architecture Specification
Document Number: 736809-2.4 (Errata A) 115

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareFile.h

intel.

Appendix A - Data Structures

typedef struct {

EFI GUID Name;

EFI FFS INTEGRITY CHECK IntegrityCheck;
EFI FV FILETYPE Type;

EFI FFS FILE ATTRIBUTES Attributes;
UINTS8 Size[3];

EFI FFS FILE STATE State;

} EFI_FFS FILE HEADER;

typedef struct {
EFI GUID Name;

EFI_FFS_INTEGRITY_CHECK IntegrityCheck;
EFI FV FILETYPE Type;
EFIiFFsiFILEiATTRIBUTES Attributes;
UINT8 Size[3];

EFI_FFS FILE STATE State;

UINT32 ExtendedSize;

} EFI_FFS FILE HEADER2;

#define IS FFS FILE2 (FfsFileHeaderPtr) \
(((((EFI_FFS_FILE_HEADER *) (UINTN) FfsFileHeaderPtr) -
>Attributes) & FFS ATTRIB LARGE FILE) == FFS ATTRIB LARGE FILE)

#define FFS FILE SIZE (FfsFileHeaderPtr) \
((UINT32) (*((UINT32 *) ((EFI_FFS_FILE_HEADER *) (UINTN)
FfsFileHeaderPtr)->Size) & OxO0ffffff))

#define FFS FILE2 SIZE(FfsFileHeaderPtr) \
(((EFI_FFS_FILE_HEADERZ *) (UINTN) FfsFileHeaderPtr) -
>ExtendedSize)

typedef UINT8 EFI SECTION TYPE;

#define EFI_SECTION_RAW 0x19
///

/// Common section header.

/77

typedef struct {

UINTS8 Size[3];

EFI_SECTION TYPE Type;
} EFI_COMMON SECTION HEADER;

typedef struct {

UINTS8 Size[3];
EFI_SECTION TYPE Type;
UINT32 ExtendedSize;

} EFI_COMMON SECTION HEADERZ;

/17

/// The leaf section which contains an array of zero or more
/// bytes.

/17

Intel® Firmware Support Package
External Architecture Specification December 2022

116

Document Number: 736809-2.4 (Errata A)

[
Appendix A - Data Structures I n te I ®

13.9

December 2022

typedef EFI COMMON SECTION HEADER EFI RAW SECTION;
typedef EFI COMMON SECTION HEADER2 EFI RAW SECTIONZ;

#define IS SECTION2 (SectionHeaderPtr) \

((UINT32) (*((UINT32 *) ((EFI_COMMON_SECTION_HEADER *) (UINTN)
SectionHeaderPtr)->Size) & O0xQ00ffffff) == OxO00ffffff)
#define SECTION SIZE (SectionHeaderPtr) \

((UINT32) (*((UINT32 *) ((EFI_COMMON_SECTION_HEADER *) (UINTN)
SectionHeaderPtr)->Size) & OxOQ00ffffff))
#define SECTION2 SIZE (SectionHeaderPtr) \

(((EFI_COMMON_SECTION_HEADERZ *) (UINTN) SectionHeaderPtr)-
>ExtendedSize)

Debug Error Level

Please refer to DebugLib.h from the EDK2 project for the original source.

DebuglLib.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Library/DebugLib.h

//

// Declare bits for PcdDebugPrintErrorLevel and the ErrorLevel
parameter of DebugPrint ()

//

#define DEBUG INIT 0x00000001 // Initialization

#define DEBUG WARN 0x00000002 // Warnings

#define DEBUG_LOAD 0x00000004 // Load events

#define DEBUG_FS 0x00000008 // EFI File system

#define DEBUG POOL 0x00000010 // Alloc & Free (pool)

#define DEBUG PAGE 0x00000020 // Alloc & Free (page)

#define DEBUG_ INFO 0x00000040 // Informational debug messages
#define DEBUG_DISPATCH 0x00000080 // PEI/DXE/SMM Dispatchers
#define DEBUG VARIABLE 0x00000100 // Variable

#define DEBUG BM 0x00000400 // Boot Manager
#define DEBUG BLKIO 0x00001000 // BlkIo Driver
#define DEBUG NET 0x00004000 // Network Io Driver

#define DEBUG_UNDI 0x00010000 // UNDI Driver
#define DEBUG LOADFILE 0x00020000 // LoadFile
#define DEBUG_EVENT 0x00080000 // Event messages

#define DEBUG GCD 0x00100000 // Global Coherency Database
changes
#define DEBUG CACHE 0x00200000 // Memory range cachability
changes

#define DEBUG VERBOSE 0x00400000 // Detailed debug messages that
may

// significantly impact boot performance
#define DEBUG ERROR 0x80000000 // Error

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 117

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Library/DebugLib.h

. I
I n te ® Appendix A - Data Structures

//

// Aliases of debug message mask bits
//

#define EFI_D INIT DEBUG_INIT
#define EFI D WARN DEBUG WARN
#define EFI_D LOAD DEBUG_LOAD
#define EFI D FS DEBUG_FS

#define EFI_D POOL DEBUG_POOL
#define EFI_D PAGE DEBUG_ PAGE
#define EFI D INFO DEBUG INFO
#define EFI D DISPATCH DEBUG DISPATCH
#define EFI_D VARIABLE DEBUG VARIABLE

#define EFI_D BM DEBUG_BM
#define EFI_D BLKIO DEBUG BLKIO
#define EFI_D NET DEBUG_NET

#define EFI D UNDI DEBUG UNDI
#define EFI_D LOADFILE DEBUG_LOADFILE
#define EFI_D EVENT DEBUG_EVENT
#define EFI_D VERBOSE DEBUG_VERBOSE
#define EFI_D ERROR DEBUG ERROR

13.10 Event Code Types

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiStatusCode.h

typedef UINT32 EFI_STATUS CODE TYPE;

#define EFI STATUS CODE TYPE MASK 0x000000FF
#define EFI STATUS CODE SEVERITY MASK O0xFF000000
#define EFI_STATUS CODE RESERVED MASK O0x00FFFF0O0

#define EFI_PROGRESS CODE 000000001
#define EFI_ERROR CODE 000000002
#define EFI_DEBUG_CODE 000000003
#define EFI_ERROR MINOR 0x40000000
#define EFI_ERROR_MAJOR 080000000
#define EFI ERROR UNRECOVERED 0x90000000
#define EFI ERROR UNCONTAINED 0xA0000000

typedef UINT32 EFI STATUS CODE VALUE;

#define EFI_STATUS CODE_CLASS MASK 0xFF000000
#define EFI_STATUS CODE_SUBCLASS MASK 0x00FF0000
#define EFI_STATUS CODE_OPERATION MASK Ox0000FFFF
#define EFI_SOFTWARE 0x03000000

Intel® Firmware Support Package
External Architecture Specification December 2022
118 Document Number: 736809-2.4 (Errata A)

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiStatusCode.h

[
Appendix A - Data Structures I n te I ®

13.11

December 2022

EFI_STATUS_CODE_STRING_DATA

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/StatusCodeDat
aTypeld.h

#define EFI STATUS CODE DATA TYPE STRING GUID \

{ 0x92D11080, 0x496F, 0x4D95,

{ 0xBE, Ox7E, 0x03, 0x74, 0x88, 0x38, 0x2B, O0x0A }}
typedef struct {

UINT16 HeaderSize;

UINT1l6 Size;

EFI GUID Type;
} EFI_STATUS CODE DATA;

typedef enum {
EfiStringAscii,
EfiStringUnicode,
EfiStringToken

} EFI_STRING TYPE;

typedef union {

CHARS *Ascii;

CHAR1G6 *Unicode;
EFI_STATUS CODE_STRING TOKEN Hii;
} EFI STATUS CODE STRING;

typedef struct {

EFI_STATUS CODE_ DATA DataHeader;
EFI_STRING TYPE StringType;
EFI_STATUS CODE_STRING String;

} EFI_STATUS CODE_STRING DATA;

Intel® Firmware Support Package
External Architecture Specification

Document Number: 736809-2.4 (Errata A) 119

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/StatusCodeDataTypeId.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/StatusCodeDataTypeId.h

. I
I n te ® Appendix B - Acronyms

14.0 Appendix B- Acronyms

ACPI Advanced Configuration and Power Interface
BCT Binary Configuration Tool
BIOS Basic Input Output System
BSP Boot Strap Processor
BSF Boot Setting File
BWG BIOS Writer's Guide a.k.a. BIOS Specification a.k.a. IA FW Specification
FDF Flash Description File
FSP Firmware Support Package(s)
FSP API Firmware Support Package Interface(s)
FV Firmware Volume
GUI Graphical User Interface
GUID Globally Unique IDentifier(s)
HOB Hand Off Block(s)
Pl Platform Initialization
PIC Position Independent Code
RAM Random Access Memory
ROM Read Only Memory
SMM System Management Mode
SOC System-On-Chip(s)
TOLUM Top of low usable memory
TPM Trusted Platform Module
UEFI Unified Extensible Firmware Interface
UPD Updatable Product Data
8

Intel® Firmware Support Package
External Architecture Specification December 2022
120 Document Number: 736809-2.4 (Errata A)

	External Architecture Specification
	Notices and Disclaimers
	Contents
	Revision History
	1.0 Introduction
	1.1 Purpose
	1.2 Intended Audience
	1.3 Related Documents

	2.0 FSP Overview
	2.1 Design Philosophy
	2.2 Technical Overview
	2.2.1 Data Structure Descriptions

	3.0 FSP Integration
	3.1 FSP Distribution Package

	4.0 FSP Binary Format
	4.1.1 FSP-T: Temporary RAM initialization phase
	4.1.2 FSP-M: Memory initialization phase
	4.1.3 FSP-S: Silicon initialization phase
	4.1.4 FSP-I: SMM initialization phase
	4.1.5 OEM Components (FSP-O)
	4.2 FSP Component Identification
	4.2.1 FSP Image ID and Revision
	4.2.2 FSP Component Layout

	5.0 FSP Information Tables
	5.1.1 FSP_INFO_HEADER
	5.1.2 FSP_INFO_EXTENDED_HEADER
	5.1.3 Locating FSP_INFO_HEADER
	5.1.4 FSP Description File
	5.1.5 FSP Patch Table (FSPP)
	5.1.5.1 Example

	6.0 FSP Configuration Data
	6.1 UPD Standard Fields
	6.1.1 FSP-T UPD Structure
	6.1.2 FSP-M UPD Structure
	6.1.3 FSP-S UPD Structure
	6.1.4 FSP-I UPD Structure

	7.0 Boot Flow
	7.1 API Mode Boot Flow
	7.1.1 Boot Flow Description

	7.2 Dispatch Mode Boot Flow
	7.2.1 High Level Overview
	7.2.2 Boot Flow Description
	7.2.3 Alternate Boot Flow Description

	8.0 System Management Mode
	8.1 Model 1 - No SMM
	8.2 Model 2 – FSP owns SMRAM
	8.3 Model 3 – Bootloader provides the MM Foundation (Dispatch Mode Only)
	8.4 High Level Flow
	8.4.1.1 API Mode
	8.4.1.2 Dispatch Mode

	9.0 FSP API Mode Interface
	9.1 Entry-Point Invocation Environment
	9.2 Data Structure Convention
	9.3 Entry-Point Calling Convention
	9.4 Return Status Code
	9.5 FSP Events
	9.5.1 PI Specification Architecturally Defined Status Codes
	9.5.2 Debug Log Messages
	9.5.3 POST Progress Codes
	9.5.4 MIPI Sys-T Catalog Debug Log Messages
	9.5.5 Related Definitions
	9.5.5.1 FspEventHandler
	9.5.5.1.1 Prototype
	9.5.5.1.2 Parameters
	9.5.5.1.3 Return Values

	9.5.5.2 FspDebugHandler
	9.5.5.2.1 Prototype
	9.5.5.2.2 Parameters
	9.5.5.2.3 Return Values

	9.6 FSP Variable Services
	9.6.1 Variable Store Contents
	9.6.2 API Mode Variable Sequence
	9.6.3 Variable Service Descriptions
	9.6.3.1 GetVariable
	9.6.3.1.1 Parameters
	9.6.3.1.2 Description
	9.6.3.1.3 Return Values

	9.6.3.2 GetNextVariableName
	9.6.3.2.1 Parameters
	9.6.3.2.2 Description
	9.6.3.2.3 Return Values

	9.6.3.3 SetVariable
	9.6.3.3.1 Parameters
	9.6.3.3.2 Description
	9.6.3.3.3 Return Values

	9.6.3.4 QueryVariableInfo
	9.6.3.4.1 Parameters
	9.6.3.4.2 Description
	9.6.3.4.3 Return Values

	9.7 TempRamInit API
	9.7.1 Prototype
	9.7.2 Parameters
	9.7.3 Return Values
	9.7.4 Description

	9.8 FspMemoryInit API
	9.8.1 Prototype
	9.8.2 Parameters
	9.8.3 Return Values
	9.8.4 Description

	9.9 TempRamExit API
	9.9.1 Prototype
	9.9.2 Parameters
	9.9.3 Return Values
	9.9.4 Description

	9.10 FspSiliconInit API
	9.10.1 Prototype
	9.10.2 Parameters
	9.10.3 Return Values
	9.10.4 Description

	9.11 FspMultiPhaseMem/SiInit API
	9.11.1 Prototype
	9.11.2 Parameters
	9.11.3 Related Definitions
	9.11.4 Return Values
	9.11.5 Description

	9.12 FspSmmInit API
	9.12.1 Prototype
	9.12.2 Parameters
	9.12.3 Return Values
	9.12.4 Description

	9.13 NotifyPhase API
	9.13.1 Prototype
	9.13.2 Parameters
	9.13.3 Related Definitions
	9.13.4 Return Values
	9.13.5 Description

	10.0 FSP Dispatch Mode Interface
	10.1 Dispatch Mode Design
	10.2 PEI Phase Requirements
	10.3 DXE and BDS Phase Requirements
	10.4 Dispatch Mode API
	10.4.1 TempRamInit API
	10.4.2 EFI PEI Core Firmware Volume Location PPI
	10.4.3 FSP Temporary RAM Exit PPI
	10.4.3.1 Summary
	10.4.3.2 GUID
	10.4.3.3 Prototype
	10.4.3.4 Parameters
	10.4.3.5 Description

	10.4.4 FSP_TEMP_RAM_EXIT_PPI.TempRamExit ()
	10.4.4.1 Summary
	10.4.4.2 Prototype
	10.4.4.3 Parameters
	10.4.4.4 Description
	10.4.4.5 Return Values

	10.4.5 FSP-M Architectural Configuration PPI
	10.4.5.1 Summary
	10.4.5.2 GUID
	10.4.5.3 Prototype
	10.4.5.4 Parameters
	10.4.5.5 Description

	10.4.6 EDK II PEI Variable PPI
	10.4.6.1 Summary
	10.4.6.2 GUID
	10.4.6.3 Prototype
	10.4.6.4 Parameters
	10.4.6.5 Description

	10.4.7 EDKII_PEI_VARIABLE_PPI.GetVariable ()
	10.4.7.1 Summary
	10.4.7.2 Prototype
	10.4.7.3 Parameters
	10.4.7.4 Description
	10.4.7.5 Return Values

	10.4.8 EDKII_PEI_VARIABLE_PPI.GetNextVariableName ()
	10.4.8.1 Summary
	10.4.8.2 Prototype
	10.4.8.3 Parameters
	10.4.8.4 Description
	10.4.8.5 Return Values

	10.4.9 EDKII_PEI_VARIABLE_PPI.SetVariable ()
	10.4.9.1 Summary
	10.4.9.2 Prototype
	10.4.9.3 Parameters
	10.4.9.4 Description
	10.4.9.5 Return Values

	10.4.10 EDKII_PEI_VARIABLE_PPI.QueryVariableInfo ()
	10.4.10.1 Summary
	10.4.10.2 Prototype
	10.4.10.3 Parameters
	10.4.10.4 Description
	10.4.10.5 Return Values

	10.4.11 FSP Error Information
	10.4.11.1 Summary
	10.4.11.2 GUID
	10.4.11.3 Prototype
	10.4.11.4 Parameters
	10.4.11.5 Description

	10.4.12 FSP Debug Messages

	11.0 FSP Output
	11.1 FSP_RESERVED_MEMORY_RESOURCE_HOB
	11.2 FSP_NON_VOLATILE_STORAGE_HOB2
	11.3 FSP_NON_VOLATILE_STORAGE_HOB
	11.4 FSP_BOOTLOADER_TOLUM_HOB
	11.5 EFI_PEI_GRAPHICS_INFO_HOB
	11.6 EFI_PEI_GRAPHICS_DEVICE_INFO_HOB
	11.7 FSP_ERROR_INFO_HOB
	11.8 FSP_SMM_BOOTLOADER_FV_CONTEXT_HOB

	12.0 Other Host Bootloader Considerations
	12.1 ACPI
	12.2 Bus Enumeration
	12.3 Security

	13.0 Appendix A – Data Structures
	13.1 BOOT_MODE
	PiBootMode.h

	13.2 EFI_STATUS
	13.2.1 UefiBaseType.h
	13.2.2 OEM Status Code

	13.3 EFI_PEI_GRAPHICS_INFO_HOB
	GraphicsInfoHob.h

	13.4 EFI_PEI_GRAPHICS_DEVICE_INFO_HOB
	GraphicsInfoHob.h

	13.5 EFI_GUID
	Base.h
	UefiBaseType.h

	13.6 EFI_MEMORY_TYPE
	UefiMultiPhase.h

	13.7 Hand Off Block (HOB)
	PiHob.h

	13.8 Firmware Volume and Firmware Filesystem
	PiFirmwareVolume.h
	PiFirmwareFile.h

	13.9 Debug Error Level
	DebugLib.h

	13.10 Event Code Types
	13.11 EFI_STATUS_CODE_STRING_DATA

	14.0 Appendix B – Acronyms

