
Intel® MPI Library Developer Reference
for Linux* OS

Contents
Intel® MPI Library Developer Reference for Linux* OS......................... 3
Introduction .. 4

Introducing Intel® MPI Library ...4
What's New ..4
Notational Conventions ..5
Related Information...5

Chapter 1: Command Reference
Compiler Commands..6

Compilation Command Options ...7
mpirun... 10
mpiexec.hydra .. 10

Global Hydra Options... 11
Local Hydra Options .. 18
gtool Options.. 19

cpuinfo .. 21
impi_info.. 23
mpitune ... 24

mpitune Configuration Options.. 26
mpitune_fast.. 31

Chapter 2: Environment Variable Reference
Compilation Environment Variables .. 33
Hydra Environment Variables .. 37
I_MPI_ADJUST Family Environment Variables .. 47
Tuning Environment Variables ... 55

Autotuning ... 56
I_MPI_TUNING_AUTO Family Environment Variables.................... 57

Process Pinning ... 62
Environment Variables for Process Pinning .. 63
Interoperability with OpenMP* API... 69

GPU Support... 77
Environment Variables for Fabrics Control ... 78

Communication Fabrics Control ... 78
Shared Memory Control ... 78
OFI*-capable Network Fabrics Control.. 84

Environment Variables for Memory Policy Control... 85
Environment Variables for Asynchronous Progress Control............................. 88
Environment Variables for Multi-EP .. 89
Other Environment Variables... 91

Chapter 3: Miscellaneous
Java* Bindings for MPI-2 Routines ... 102

Chapter 4: Notices and Disclaimers

Intel® MPI Library Developer Reference for Linux* OS

2

Intel® MPI Library Developer
Reference for Linux* OS
Documentation for older versions of the Intel® MPI Library are available for download only. For a list of
available documentation downloads by product version, see Download Documentation for Intel Parallel Studio
XE. To download the previous versions of Intel MPI Library documentation, refer to this page.

What's New

This Developer Reference provides you with the complete reference for the Intel MPI Library. It is intended to
help a user fully utilize the Intel MPI Library functionality. For examples and detailed functionality description,
please refer to the Intel MPI Library Developer Guide.

The following are some popular topics in the Intel MPI Library Developer Reference:

Command Reference
Command Reference provides reference information on compilation and runtime commands (mpirun, cpuinfo,
impi_info) and describes how to use these commands.

Environment Variable Reference
Environment Variable Reference provides syntax, arguments, and descriptions for Fabrics Control, Tuning,
Autotuning, Process Pinning, and I_MPI_ADJUST Family environment variables.

Global Options and Environment Variables for mpiexec.hydra
Describes the Global Options and provides Environment Variables used with the Hydra process manager.

mpitune_fast
mpitune_fast tunes the Intel MPI Library to the cluster configuration using the Autotuning functionality.

Mpitune Configuration Options
Tune your MPI application with the mpitune utility.

Intel® MPI Library Developer Reference for Linux* OS

3

https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-parallel-studio-xe-current-previous.html
https://software.intel.com/content/www/us/en/develop/articles/download-documentation-intel-parallel-studio-xe-current-previous.html
https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-documentation-overview.html

Introduction
This Developer Reference provides you with the complete reference for the Intel® MPI Library. It is intended
to help an experienced user fully utilize the Intel MPI Library functionality. You can freely redistribute this
document in any desired form.

Document Organization
Section Description
Section 1.Introduction Introduces this document and the Intel MPI Library.
Section 2.Command Reference Describes compilation and job startup commands and

their options.
Section 3. Environment Variable Reference Describes environment variables .
Section 4.Miscellaneous Contains information not related to the sections above.

Introducing Intel® MPI Library
Intel® MPI Library is a multi-fabric message passing library that implements the Message Passing Interface,
v3.1 (MPI-3.1) specification. It provides a standard library across Intel® platforms that enable adoption of
MPI-3.1 functions as their needs dictate.

Intel® MPI Library enables developers to change or to upgrade processors and interconnects as new
technology becomes available without changes to the software or to the operating environment.

You can get the latest information for the Intel® MPI Library at https://software.intel.com/intel-mpi-library.

What's New
This page lists changes to the product that are reflected in the documentation. For a list of all changes, refer
to the Release Notes.

Intel® MPI Library 2021.6 (Intel® oneAPI 2022.2)
• I_MPI_OFFLOAD enables all GPU features including Intel MPI GPU pinning
• Multi-rail support: I_MPI_MULTIRAIL enables multi-rail capability and is used to identify NICs serviced by

the provider and to pick one on the same NUMA.

Intel® oneAPI 2021.5
• Converged release and release_mt libraries. All features previously available in release_mt only are

available in release library.
• Added hcoll argument for I_MPI_COLL_EXTERNAL.
• Added -prepend-timestamp option to Global Options topic.
• Added I_MPI_COLL_DIRECT variable to I_MPI_ADJUST Family Environment Variables topic.

Intel® oneAPI 2021.4
• Changed the I_MPI_STARTUP_MODE default value to pmi_shm_netmod.

Intel® oneAPI 2021.3
• Changed the default pinning order to bunch.
• Added new value for the I_MPI_SHM variable (icx).

Additionally, minor updates have been made to fix inaccuracies in the document and improve user
experience.

 Intel® MPI Library Developer Reference for Linux* OS

4

https://software.intel.com/intel-mpi-library
https://software.intel.com/content/www/us/en/develop/articles/intel-mpi-library-release-notes.html

Intel® oneAPI 2021.2
• No documentation changes.

Intel® oneAPI Gold
• Removed all content specific to Intel® Parallel Studio XE (see notice on title page).
• Added Intel® Ethernet 800 Series support.
• Added MPI + OpenMP offload examples.
• Added new algorithm for MPI_Sendrecv_replace (I_MPI_ADJUST_SENDRECV_REPLACE=2).
• Added I_MPI OFFLOAD variable to GPU Support topic.
• Reworked directory layout:

• Removed intel64/.
• Mpivars.[c]sh and mpi modulefile moved to env/.
• Mpivars.[c]sh renamed to vars.[c]sh.

• Removed deprecated symbolic links.
• Removed static libraries for debug configurations.

Notational Conventions
The following conventions are used in this document.

This type style Document names
This type style Hyperlinks
This type style Commands, arguments, options, file names

THIS_TYPE_STYLE Environment variables
<this type style> Variables or placeholders for actual values
[items] Optional items
{ item | item } Selectable items separated by vertical bar(s)

Related Information
Description of some of the Intel® MPI Library functionality is available in man1 pages: mpiexec.hydra,
hydra_nameserver, and compiler wrappers.

The following related documents that might be useful to the user:

• Product Web Site
• Intel® MPI Library Support
• Intel® Cluster Tools Products
• Intel® Software Development Products

Introduction

5

http://www.intel.com/go/mpi
http://www.intel.com/software/products/support/mpi
https://software.intel.com/content/www/us/en/develop/tools/parallel-studio-xe.html
http://www.intel.com/software/products

Command Reference 1
This section provides information on different command types and how to use these commands:

• Compilation Commands lists the available Intel® MPI Library compiler commands, related options, and
environment variables.

• mpirun provides the description and examples for the mpirun command.
• mpiexec.hydra gives full information on the mpiexec.hydra command, its options, environment

variables, and related features and utilities.
• cpuinfo provides the syntax, arguments, description and output examples for the cpuinfo utility.
• impi_info provides information on available environment variables.
• mpitune_fast provides information on configuration options for the mpitune_fast utility.
• mpitune provides information on configuration options for the mpitune utility.

Compiler Commands
The following table lists the available Intel® MPI Library compiler commands with their underlying compilers
and programming languages.

Intel MPI Library Compiler Wrappers
Compiler Command Default Compiler Supported Languages

Generic Compilers
mpicc gcc, cc C

mpicxx g++ C/C++

mpifc gfortran Fortran77*/Fortran 95*
GNU* Compilers
mpigcc gcc C

mpigxx g++ C/C++

mpif77 gfortran Fortran 77

mpif90 gfortran Fortran 95
Intel® Fortran, C++ Compilers
mpiicc icc C

mpiicpc icpc C++

mpiifort ifort Fortran77/Fortran 95

Notes on Compiler Commands
• Compiler commands are available only in the Intel MPI Library Software Development Kit (SDK).
• For the supported versions of the listed compilers, refer to the Intel® MPI Library System Requirements.
• To display mini-help of a compiler command, execute it without any parameters.
• Compiler wrapper scripts are located in the <install-dir>/bin directory, where <install-dir> is the

Intel MPI Library installation directory.
• The environment settings can be established by sourcing the <install-dir>/env/vars.[c]sh script. To

use a specific library configuration, pass one of the following arguments to the script to switch to the
corresponding configuration: release or debug.

• Ensure that the corresponding underlying compiler is already in your PATH. If you use Intel® compilers,
source the vars.sh script from the installation directory to set up the compiler environment.

 1 Intel® MPI Library Developer Reference for Linux* OS

6

https://www.intel.com/content/www/us/en/developer/articles/system-requirements/mpi-library-system-requirements.html

Compilation Command Options

-nostrip
Use this option to turn off the debug information stripping while linking the Intel® MPI Library statically.

-config=<name>
Use this option to source a compiler configuration file. The file should contain the environment settings to be
used with the specified compiler.

Use the following naming convention for configuration files:

<install-dir>/etc/mpi<compiler>-<name>.conf
where:

• <compiler>={cc,cxx,f77,f90}, depending on the language compiled.
• <name> is the name of the underlying compiler with spaces replaced by hyphens; for example, the

<name> value for cc -64 is cc--64.

-profile=<profile_name>
Use this option to specify an MPI profiling library. <profile_name> is the name of the configuration file
(profile) that loads the corresponding profiling library. The profiles are taken from <install-dir>/etc .

The Intel MPI Library comes with several predefined profiles for the Intel® Trace Collector:

• <install-dir>/etc/vt.conf — regular tracing library
• <install-dir>/etc/vtfs.conf — fail-safe tracing library
• <install-dir>/etc/vtmc.conf — correctness checking tracing library
• <install-dir>/etc/vtim.conf — load imbalance tracing library

You can also create your own profile as <profile-name>.conf. You can define the following environment
variables in a configuration file:

• PROFILE_PRELIB - libraries (and paths) to load before the Intel MPI Library
• PROFILE_POSTLIB - libraries to load after the Intel MPI Library
• PROFILE_INCPATHS - C preprocessor arguments for any include files
For example, create a file myprof.conf with the following lines:

PROFILE_PRELIB="-L<path_to_myprof>/lib -lmyprof"
PROFILE_INCPATHS="-I<paths_to_myprof>/include"

Use the -profile=myprof option for the relevant compiler wrapper to select this new profile.

-t or -trace
Use the -t or -trace option to link the resulting executable file against the Intel® Trace Collector library.
Using this option has the same effect as the -profile=vt option.

You can also use the I_MPI_TRACE_PROFILE environment variable to <profile_name> to specify another
profiling library. For example, set I_MPI_TRACE_PROFILE to vtfs to link against the fail-safe version of the
Intel Trace Collector.

To use this option, include the installation path of the Intel® Trace Collector in the VT_ROOT environment
variable. Source the vars.[c]sh script provided in the Intel® Trace Analyzer and Collector installation folder.

Command Reference 1

7

-trace-imbalance
Use the -trace-imbalance option to link the resulting executable file against the load imbalance tracing
library of Intel Trace Collector. Using this option has the same effect as the -profile=vtim option.

To use this option, include the installation path of the Intel Trace Collector in the VT_ROOT environment
variable. Source the vars.[c]sh script provided in the Intel® Trace Analyzer and Collector installation folder.

-check_mpi
Use this option to link the resulting executable file against the Intel® Trace Collector correctness checking
library. The default value is libVTmc.so. Using this option has the same effect as the -profile=vtmc
option.

You can also use the I_MPI_CHECK_PROFILE environment variable to <profile_name> to specify another
checking library.

To use this option, include the installation path of the Intel Trace Collector in the VT_ROOT environment
variable. Source the vars.[c]sh script provided in the Intel® Trace Analyzer and Collector installation folder.

-ilp64
Use this option to enable partial ILP64 support. All integer arguments of the Intel MPI Library are treated as
64-bit values in this case.

-no_ilp64
Use this option to disable the ILP64 support explicitly. This option must be used in conjunction with -i8
option of Intel® Fortran Compiler.

If you specify the -i8 option for the separate compilation with Intel Fortran Compiler, you still have to use
the i8 orilp64 option for linkage.

-dynamic_log
Use this option in combination with the -t option to link the Intel Trace Collector library dynamically. This
option does not affect the default linkage method for other libraries.

To run the resulting programs, include $VT_ROOT/slib in the LD_LIBRARY_PATH environment variable.

-g
Use this option to compile a program in debug mode and link the resulting executable file against the
debugging version of the Intel MPI Library. See I_MPI_DEBUG for information on how to use additional
debugging features with the -g builds.

The optimized library is linked with the -g option by default.

Use vars.{sh|csh} [debug|debug_mt] at runtime to load a particular libmpi.so configuration.

-link_mpi=<arg>
Use this option to always link the specified version of the Intel MPI Library. See the I_MPI_LINK environment
variable for detailed argument descriptions. This option overrides all other options that select a specific
library .

Use vars.{sh|csh}[debug|debug_mt] during runtime to load particular libmpi.so configuration.

-O
Use this option to enable compiler optimization.

 1 Intel® MPI Library Developer Reference for Linux* OS

8

-fast
Use this option to maximize speed across the entire program. This option forces static linkage method for the
Intel MPI Library.

This option is supported only by the mpiicc, mpiicpc, and mpiifort Intel® compiler wrappers.

-echo
Use this option to display everything that the command script does.

-show
Use this option to learn how the underlying compiler is invoked, without actually running it. Use the following
command to see the required compiler flags and options:

$ mpiicc -show -c test.c
Use the following command to see the required link flags, options, and libraries:

$ mpiicc -show -o a.out test.o
This option is particularly useful for determining the command line for a complex build procedure that directly
uses the underlying compilers.

-show_env
Use this option to see the environment settings in effect when the underlying compiler is invoked.

-{cc,cxx,fc}=<compiler>
Use this option to select the underlying compiler. The tables below list the available LLVM and IL0 compiler
options and commands used to invoke them.

LLVM Compiler Options for Intel® oneAPI
Language/Model Product Name Compiler Driver Compiler

Wrapper
Command Example

C Intel® oneAPI
DPC++/C++
Compiler

icx mpiicc -cc=icx $ mpiicc -cc=icx
-c test.c

C++ Intel® oneAPI
DPC++/C++ C

icpx mpiicpc -cxx=icpx $ mpiicpc -
cxx=icpx -c
test.cpp

SYCL*/DPC++ Intel® oneAPI
DPC++/C++
Compiler

dpcpp mpiicpc -cxx=dpcpp $ mpiicpc -
cxx=dpcpp -
c test.cpp

Fortran Intel® oneAPI
Fortran Compiler

ifx mpiifort -fc=ifx $ mpiifort -fc=ifx
-c test.

NOTE Make sure that the wrapper name is in your PATH. Alternatively, you can specify the full path to
the compiler.

-nofortbind, -nofortran
Use this option to disable mpiicc linking with Fortran bindings. This has the same effect as the
I_MPI_FORT_BIND variable.

Command Reference 1

9

-v
Use this option to print the compiler wrapper script version and its underlying compiler version.

-norpath
Use this option to disable rpath for the compiler wrapper for the Intel® MPI Library.

mpirun
Launches an MPI job and provides integration with job schedulers.

Syntax

mpirun <options>
Arguments

<options> mpiexec.hydra options as described in the
mpiexec.hydra section. This is the default operation
mode.

Description

Use this command to launch an MPI job. The mpirun command uses Hydra as the underlying process
manager.

The mpirun command detects if the MPI job is submitted from within a session allocated using a job
scheduler like Torque*, PBS Pro*, LSF*, Parallelnavi* NQS*, Slurm*, Univa* Grid Engine*, or LoadLeveler*.
The mpirun command extracts the host list from the respective environment and uses these nodes
automatically according to the above scheme.

In this case, you do not need to create a host file. Allocate the session using a job scheduler installed on your
system, and use the mpirun command inside this session to run your MPI job.

Example

$ mpirun -n <# of processes> ./myprog
This command invokes the mpiexec.hydra command (Hydra process manager), which launches the myprog
executable.

mpiexec.hydra
Launches an MPI job using the Hydra process manager.

Syntax

mpiexec.hydra<g-options> <l-options> <executable>
or

mpiexec.hydra<g-options> <l-options> <executable1> : <l-options> <executable2>
Arguments

<g-options> Global options that apply to all MPI processes

<l-options> Local options that apply to a single argument set

<executable> ./a.out or path/ name of the executable file

Description

Use the mpiexec.hydra utility to run MPI applications using the Hydra process manager.

 1 Intel® MPI Library Developer Reference for Linux* OS

10

Use the first short command-line syntax to start all MPI processes of the <executable> with the single set
of arguments. For example, the following command executes a.out over the specified processes and hosts:

$ mpiexec.hydra -f <hostfile> -n <# of processes> ./a.out
where:

• <# of processes> specifies the number of processes on which to run the a.out executable
• <hostfile> specifies a list of hosts on which to run the a.out executable

Use the second long command-line syntax to set different argument sets for different MPI program runs. For
example, the following command executes two different binaries with different argument sets:

$ mpiexec.hydra -f <hostfile> -env <VAR1> <VAL1> -n 2 ./a.out : \
-env <VAR2> <VAL2> -n 2 ./b.out

NOTE You need to distinguish global options from local options. In a command-line syntax, place the
local options after the global options.

Global Hydra Options
This section describes the global options of the Intel® MPI Library's Hydra process manager. Global options
are applied to all arguments sets in the launch command. Argument sets are separated by a colon ':'.

-tune <filename>
Use this option to specify the file name that contains the tuning data in a binary format.

-usize <usize>
Use this option to set MPI_UNIVERSE_SIZE, which is available as an attribute of the MPI_COMM_WORLD.

<size> Define the universe size

SYSTEM Set the size equal to the number of cores passed to mpiexec through the
hostfile or the resource manager.

INFINITE Do not limit the size. This is the default value.

<value> Set the size to a numeric value ≥ 0.

-hostfile <hostfile> or -f <hostfile>
Use this option to specify host names on which to run the application. If a host name is repeated, this name
is used only once.

See also the I_MPI_HYDRA_HOST_FILE environment variable for more details.

NOTE Use the following options to change the process placement on the cluster nodes:

• Use the -perhost, -ppn, and -grr options to place consecutive MPI processes on every host using
the round robin scheduling.

• Use the -rr option to place consecutive MPI processes on different hosts using the round robin
scheduling.

Command Reference 1

11

-machinefile <machine file> or -machine <machine file>
Use this option to control process placement through a machine file. To define the total number of processes
to start, use the -n option. For example:

$ cat ./machinefile
node0:2
node1:2
node0:1

-hosts-group
Use this option to set node ranges using brackets, commas, and dashes (like in Slurm* Workload Manager).

For more details, see the I_MPI_HYDRA_HOST_FILE environment variable in Hydra Environment Variables.

-silent-abort
Use this option to disable abort warning messages.

For more details, see the I_MPI_SILENT_ABORT environment variable in Hydra Environment Variables.

-nameserver
Use this option to specify the nameserver in the hostname:port format.

For more details, see the I_MPI_HYDRA_NAMESERVER environment variable in Hydra Environment Variables.

-genv <ENVVAR> <value>
Use this option to set the <ENVVAR> environment variable to the specified <value> for all MPI processes.

-genvall
Use this option to enable propagation of all environment variables to all MPI processes.

-genvnone
Use this option to suppress propagation of any environment variables to any MPI processes.

NOTE The option does not work for localhost.

-genvexcl <list of env var names>
Use this option to suppress propagation of the listed environment variables to any MPI processes.

-genvlist <list>
Use this option to pass a list of environment variables with their current values. <list> is a comma
separated list of environment variables to be sent to all MPI processes.

-pmi-connect <mode>
Use this option to choose the caching mode of process management interface (PMI) message. Possible values
for <mode> are:

<mode> The caching mode to be used

nocache Do not cache PMI messages.

 1 Intel® MPI Library Developer Reference for Linux* OS

12

cache Cache PMI messages on the local pmi_proxy management processes to
minimize the number of PMI requests. Cached information is automatically
propagated to child management processes.

lazy-cache cache mode with on-request propagation of the PMI information.
alltoall Information is automatically exchanged between all pmi_proxy before any

get request can be done. This is the default mode.

See the I_MPI_HYDRA_PMI_CONNECT environment variable for more details.

-perhost <# of processes >, -ppn <# of processes >, or -grr <# of processes>
Use this option to place the specified number of consecutive MPI processes on every host in the group using
round robin scheduling. See the I_MPI_PERHOST environment variable for more details.

NOTE When running under a job scheduler, these options are ignored by default. To be able to control
process placement with these options, disable the I_MPI_JOB_RESPECT_PROCESS_PLACEMENT
variable.

-rr
Use this option to place consecutive MPI processes on different hosts using the round robin scheduling. This
option is equivalent to "-perhost 1". See the I_MPI_PERHOST environment variable for more details.

-trace [<profiling_library>] or -t [<profiling_library>]
Use this option to profile your MPI application with Intel® Trace Collector using the indicated
<profiling_library>. If you do not specify <profiling_library>, the default profiling library libVT.so
is used.

Set the I_MPI_JOB_TRACE_LIBS environment variable to override the default profiling library.

-trace-imbalance
Use this option to profile your MPI application with Intel® Trace Collector using the libVTim.so library.

-aps
Use this option to collect statistics from your MPI application using Application Performance Snapshot. The
collected data includes hardware performance metrics, memory consumption data, internal MPI imbalance
and OpenMP* imbalance statistics. When you use this option, a new folder aps_result_<date>-<time>
with statistics data is generated. You can analyze the collected data with the aps utility, for example:

$ mpirun -aps -n 2 ./myApp
$ aps aps_result_20171231_235959

NOTE

1. To use this option, set up the Application Performance Snapshot environment beforehand. See
the tool's https://software.intel.com/content/www/us/en/develop/documentation/application-
snapshot-user-guide/top.htmlUser Guide.

2. If you use the options -trace or -check_mpi, the -aps option is ignored.

Command Reference 1

13

https://software.intel.com/content/www/us/en/develop/documentation/application-snapshot-user-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/application-snapshot-user-guide/top.html

-mps
Use this option to collect only MPI and OpenMP* statistics from your MPI application using Application
Performance Snapshot. Unlike the -aps option, -mps doesn't collect hardware metrics. The option is
equivalent to:

$ mpirun -n 2 aps -c mpi,omp ./myapp

-trace-pt2pt
Use this option to collect the information about point-to-point operations using Intel® Trace Analyzer and
Collector. The option requires that you also use the -trace option.

-trace-collectives
Use this option to collect the information about collective operations using Intel® Trace Analyzer and
Collector. The option requires that you also use the -trace option.

NOTE
Use the -trace-pt2pt and -trace-collectives to reduce the size of the resulting trace file or the
number of message checker reports. These options work with both statically and dynamically linked
applications.

-configfile <filename>
Use this option to specify the file <filename> that contains the command-line options with one executable
per line. Blank lines and lines that start with '#' are ignored. Other options specified in the command line are
treated as global.

You can specify global options in configuration files loaded by default (mpiexec.conf in <installdir>/etc,
~/.mpiexec.conf, and mpiexec.conf in the working directory). The remaining options can be specified in
the command line.

-branch-count <num>
Use this option to restrict the number of child management processes launched by the Hydra process
manager, or by each pmi_proxy management process.

See the I_MPI_HYDRA_BRANCH_COUNT environment variable for more details.

-pmi-aggregate or -pmi-noaggregate
Use this option to switch on or off, respectively, the aggregation of the PMI requests. The default value is -
pmi-aggregate, which means the aggregation is enabled by default.

See the I_MPI_HYDRA_PMI_AGGREGATE environment variable for more details.

-gdb
Use this option to run an executable under GDB* (GNU debugger). You can use the following command:

$ mpiexeс.hydra -gdb -n <# of processes><executable>

-gdba <pid>
Use this option to attach the GNU* debugger to the existing MPI job. You can use the following command:

$ mpiexec.hydra -gdba <pid>

 1 Intel® MPI Library Developer Reference for Linux* OS

14

-nolocal
Use this option to avoid running the <executable> on the host where mpiexec.hydra is launched. You can
use this option on clusters that deploy a dedicated main node for starting the MPI jobs and a set of dedicated
compute nodes for running the actual MPI processes.

-hosts <nodelist>
Use this option to specify a particular <nodelist> on which the MPI processes should be run. For example,
the following command runs the executable a.out on the hosts host1 and host2:

$ mpiexec.hydra -n 2 -ppn 1 -hosts host1,host2 ./a.out

NOTE If <nodelist> contains only one node, this option is interpreted as a local option. See Local
Options for details.

-iface <interface>
Use this option to choose the appropriate network interface. For example, if the IP emulation of your
InfiniBand* network is configured to ib0, you can use the following command.

$ mpiexec.hydra -n 2 -iface ib0 ./a.out
See the I_MPI_HYDRA_IFACE environment variable for more details.

-demux <mode>
Use this option to set the polling mode for multiple I/O. The default value is poll.

Arguments

<spec> Define the polling mode for multiple I/O

poll Set poll as the polling mode. This is the default value.

select Set select as the polling mode.

See the I_MPI_HYDRA_DEMUX environment variable for more details.

-enable-x or -disable-x
Use this option to control the Xlib* traffic forwarding. The default value is -disable-x, which means the Xlib
traffic is not forwarded.

-l, -prepend-rank
Use this option to insert the MPI process rank at the beginning of all lines written to the standard output.

-ilp64
Use this option to preload the ILP64 interface.

-s <spec>
Use this option to direct standard input to the specified MPI processes.

Arguments

<spec> Define MPI process ranks

all Use all processes.

Command Reference 1

15

none Do not direct standard output to any processes.

<l>,<m>,<n> Specify an exact list and use processes <l>, <m> and <n> only. The default
value is zero.

<k>,<l>-<m>,<n> Specify a range and use processes <k>, <l> through <m>, and <n>.

-noconf
Use this option to disable processing of the mpiexec.hydra configuration files.

-ordered-output
Use this option to avoid intermingling of data outut from the MPI processes. This option affects both the
standard output and the standard error streams.

NOTE When using this option, end the last output line of each process with the end-of-line '\n'
character. Otherwise the application may stop responding.

-path <directory>
Use this option to specify the path to the executable file.

-tmpdir <dir>
Use this option to set a directory for temporary files. See the I_MPI_TMPDIR environment variable for more
details.

-version or -V
Use this option to display the version of the Intel® MPI Library.

-info
Use this option to display build information of the Intel® MPI Library. When this option is used, the other
command line arguments are ignored.

-localhost
Use this option to explicitly specify the local host name for the launching node.

-rmk <RMK>
Use this option to select a resource management kernel to be used. Intel® MPI Library only supports pbs.

See the I_MPI_HYDRA_RMK environment variable for more details.

-outfile-pattern <file>
Use this option to redirect stdout to the specified file.

-errfile-pattern <file>
Use this option to redirect stderr to the specified file.

-gpath <path>
Use this option to specify the path to the executable file.

 1 Intel® MPI Library Developer Reference for Linux* OS

16

-gwdir <dir>
Use this option to specify the working directory in which the executable file runs.

-gumask <umask>
Use this option to perform the "umask <umask>" command for the remote executable file.

-gdb-ia
Use this option to run processes under Intel® architecture specific GNU* debugger.

-prepend-pattern
Use this option to specify the pattern that is prepended to the process output.

-prepend-timestamp
Use this option to prepend timestamp to stdout or stderr line.

-verbose or -v
Use this option to print debug information from mpiexec.hydra, such as:

• Service processes arguments
• Environment variables and arguments passed to start an application
• PMI requests/responses during a job life cycle

See the I_MPI_HYDRA_DEBUG environment variable for more details.

-print-rank-map
Use this option to print out the MPI rank mapping.

-print-all-exitcodes
Use this option to print the exit codes of all processes.

-bootstrap <bootstrap server>
Use this option to select a built-in bootstrap server to use. A bootstrap server is the basic remote node
access mechanism that is provided by the system. Hydra supports multiple runtime bootstrap servers such
as ssh, rsh, pdsh, fork, persist,slurm, ll, lsf, or sge to launch MPI processes. The default bootstrap
server is ssh. By selecting slurm, ll, lsf, or sge, you use the corresponding srun, llspawn.stdio,
blaunch, or qrsh internal job scheduler utility to launch service processes under the respective selected job
scheduler (Slurm*, LoadLeveler*, LSF*, and SGE*).

Arguments

<arg> String parameter

ssh Use secure shell. This is the default value.

rsh Use remote shell.

pdsh Use parallel distributed shell.

pbs Use Torque* pbsdsh command.

pbsdsh Alias for pbs bootstrap.

fork Use fork call.

persist Use Hydra persist server. See below for details.

slurm Use Slurm* srun command.

Command Reference 1

17

ll Use LoadLeveler* llspawn.stdio command.

lsf Use LSF blaunch command.

sge Use Univa* Grid Engine* qrsh command.

See I_MPI_HYDRA_BOOTSTRAP for details.

-bootstrap-exec <bootstrap server>
Use this option to set the executable to be used as a bootstrap server. The default bootstrap server is ssh.
For example:

$ mpiexec.hydra -bootstrap-exec <bootstrap_server_executable> -f hosts -env <VAR1> <VAL1> -n 2 ./
a.out

See I_MPI_HYDRA_BOOTSTRAP for more details.

-bootstrap-exec-args <args>
Use this option to provide the additional parameters to the bootstrap server executable file.

$ mpiexec.hydra -bootstrap-exec-args <arguments> -n 2 ./a.out
For tight integration with the Slurm* scheduler (including support for suspend/resume), use the method
outlined on the Slurm page here: http://www.schedmd.com/slurmdocs/mpi_guide.html#intel_mpi

See I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS for more details.

-v6
Use this option to force using the IPv6 protocol.

Local Hydra Options
This section describes the local options of the Intel® MPI Library's Hydra process manager. Local options are
applied only to the argument set they are specified in. Argument sets are separated by a colon ':'.

-n <number-of-processes> or -np <number-of-processes>
Use this option to set the number of MPI processes to run with the current argument set.

-env <envar> <value>
Use this option to set the <envar> environment variable to the specified <value> for all MPI processes in the
current argument set.

-envall
Use this option to propagate all environment variables in the current argument set. See the
I_MPI_HYDRA_ENV environment variable for more details.

-envnone
Use this option to suppress propagation of any environment variables to the MPI processes in the current
argument set.

NOTE The option does not work for localhost.

 1 Intel® MPI Library Developer Reference for Linux* OS

18

-envexcl <list-of-envvar-names>
Use this option to suppress propagation of the listed environment variables to the MPI processes in the
current argument set.

-envlist <list>
Use this option to pass a list of environment variables with their current values. <list> is a comma
separated list of environment variables to be sent to the MPI processes.

-host <nodename>
Use this option to specify a particular <nodename> on which the MPI processes are to be run. For example,
the following command executes a.out on hosts host1 and host2:

$ mpiexec.hydra -n 2 -host host1 ./a.out : -n 2 -host host2 ./a.out

-path <directory>
Use this option to specify the path to the <executable> file to be run in the current argument set.

-wdir <directory>
Use this option to specify the working directory in which the <executable> file runs in the current argument
set.

gtool Options

-gtool
Use this option to launch such tools as Intel® VTune™ Amplifier XE, Intel® Advisor, Valgrind*, and the GDB*
(GNU Debugger) for the specified processes through the mpiexec.hydra and mpirun commands. An
alternative to this option is the I_MPI_GTOOL environment variable.

Syntax

-gtool "<command line for tool 1>:<ranks set 1>[=launch mode 1][@arch 1]; <command line
for tool 2>:<ranks set 2>[=exclusive][@arch 2]; … ;<command line for a tool n>:<ranks
set n>[=exclusive][@arch n]" <executable>
or:

$ mpirun -n <# of processes> -gtool "<command line for tool 1>:<ranks set 1>[=launch
mode 1][@arch 1]" -gtool "<command line for a tool 2>:<ranks set 2>[=launch mode 2]
[@arch 2]" … -gtool "<command line for a tool n>:<ranks set n>[=launch mode 3][@arch
n]" <executable>
In the syntax, the separator ';' and the -gtool option are interchangeable.

Arguments

<arg> Parameters

<rank set> Specify the range of ranks that are involved in the tool execution.
Separate ranks with a comma or use the '-' symbol for a set of
contiguous ranks. To run the tool for all ranks, use the all argument.

Command Reference 1

19

NOTE If you specify incorrect rank index, the corresponding warning is
printed and the tool continues working for valid ranks.

[=launch mode] Specify the launch mode (optional). See below for the available values.

[@arch] Specify the architecture on which the tool runs (optional). For a given <rank
set>, if you specify this argument, the tool is launched only for the processes
residing on hosts with the specified architecture. This parameter is optional.

NOTE Rank sets cannot overlap for the same @arch parameter. Missing @arch parameter is also
considered a different architecture. Thus, the following syntax is considered valid: -gtool
"gdb:0-3=attach;gdb:0-3=attach@hsw;/usr/bin/gdb:0-3=attach@knl"Also, note that some
tools cannot work together or their simultaneous use may lead to incorrect results.
The following table lists the parameter values for [=launch mode]:

[=launch mode] Tool launch mode (optional). You can specify several values for each tool,
which are separated with a comma ','.

exclusive Specify this value to prevent the tool from launching for more than one rank
per host.

attach Specify this value to attach the tool from -gtool to the executable. If you
use debuggers or other tools that can attach to a process in a debugger
manner, you need to specify this value. This mode has been tested with
debuggers only.

node-wide Specify this value to apply the tool from -gtool to all ranks where
the <rank set> resides or for all nodes in the case of all ranks.
That is, the tool is applied to a higher level than the executable (to
the pmi_proxy daemon).

Use the -remote argument for ranks to use the tool on remote nodes
only.

NOTE The tool attached to an MPI process may be executed without having access to stdin. To pass
input to it, run a rank under the tool directly, for example: -gtool "gdb --args:0"

Examples

The following examples demonstrate different scenarios of using the -gtool option.

Example 1

Launch the Intel® VTune™ Amplifier XE and Valgrind* through the mpirun command:

$ mpirun -n 16 -gtool "vtune -collect hotspots -analyze-system \
-r result1:5,3,7-9=exclusive@bdw;valgrind -log-file=log_%p:0,1,10-12@hsw" a.out

This command launches vtune for the processes that are run on the Intel® microarchitecture codenamed
Broadwell. Only one copy of vtune is launched for each host, the process with the minimal index is affected.
At the same time, Valgrind* is launched for all specified processes that are run on the Intel®
microarchitecture codenamed Haswell. Valgrind's results are saved to the files log_<process ID>.

Example 2

 1 Intel® MPI Library Developer Reference for Linux* OS

20

Set different environment variables for different rank sets:

$ mpirun -n 16 -gtool "env VARIABLE1=value1 VARIABLE2=value2:3,5,7-9; env VARIABLE3=value3:0,11"
a.out

Example 3

Apply a tool for a certain process through the -machinefile option.

In this example, suppose m_file has the following content:

$ cat ./m_file
hostname_1:2
hostname_2:3
hostname_3:1

The following command line demonstrates how to use the -machinefile option to apply a tool:

$ mpirun -n 6 -machinefile m_file -gtool "vtune -collect hotspots -analyze-system \
-r result1:5,3=exclusive@hsw;valgrind:0,1@bdw" a.out

In this example, the use of -machinefie option means that processes with indices 0 and 1 are located on
the hostname_1 machine, process 3 is located on the hostname_2 machine, and process 5 - on the
hostname_3 machine. After that, vtune is applied only ranks 3 and 5 (since these ranks belong to different
machines, the exclusive option matches both of them) in case if hostname_2 and hostname_3 machines
have Intel® microarchitecture codenamed Haswell. At the same time, the Valgrind* tool is applied to both
ranks allocated on hostname_1 machine in case if it has Intel® microarchitecture codenamed Broadwell.

-gtoolfile <gtool_config_file>

Use this option to specify the -gtool parameters in a configuration file. All the same rules apply.
Additionally, you can separate different command lines with section breaks.

For example, if gtool_config_file contains the following settings:

env VARIABLE1=value1 VARIABLE2=value2:3,5,7-9; env VARIABLE3=value3:0,11
env VARIABLE4=value4:1,12

The following command sets VARIABLE1 and VARIABLE2 for processes 3, 5, 7, 8, and 9 and sets VARIABLE3
for processes 0 and 11, while VARIABLE4 is set for processes 1 and 12:

$ mpirun -n 16 -gtoolfile gtool_config_file a.out

NOTE The options and the environment variable -gtool, -gtoolfile and I_MPI_GTOOL are mutually
exclusive. The options -gtool and -gtoolfile are of the same priority and have higher priority than
I_MPI_GTOOL. The first specified option in a command line is effective and the second one is ignored.
Therefore, use I_MPI_GTOOL if you do not specify -gtool or -gtoolfile.

cpuinfo
Provides information on processors used in the system.

Syntax

cpuinfo [[-]<options>]
Arguments

<options> Sequence of one-letter options. Each option controls a specific part of the
output data.

g General information about single cluster node shows:

Command Reference 1

21

• the processor product name
• the number of packages/sockets on the node
• core and threads numbers on the node and within each package
• SMT mode enabling

i Logical processors identification table identifies threads, cores, and
packages of each logical processor accordingly.

• Processor - logical processor number.
• ThreadId - unique processor identifier within a core.
• CoreId - unique core identifier within a package.
• PackageId - unique package identifier within a node.

d Node decomposition table shows the node contents. Each entry
contains the information on packages, cores, and logical processors.

• Package Id - physical package identifier.
• Cores Id - list of core identifiers that belong to this package.
• Processors Id - list of processors that belong to this package. This

list order directly corresponds to the core list. A group of
processors enclosed in brackets belongs to one core.

c Cache sharing by logical processors shows information of sizes and
processors groups, which share particular cache level.

• Size - cache size in bytes.
• Processors - a list of processor groups enclosed in the parentheses

those share this cache or no sharing otherwise.

s Microprocessor signature hexadecimal fields (Intel platform notation)
show signature values:

• extended family
• extended model
• family
• model
• type
• stepping

f Microprocessor feature flags indicate what features the microprocessor
supports. The Intel platform notation is used.

n Table shows the following information about NUMA nodes:

• NUMA Id - NUMA node identifier.
• Processors - a list of processors in this node.

If the node has no processors, the node is not shown.

A Equivalent to gidcsf
gidc Default sequence

? Utility usage info

Description

The cpuinfo utility prints out the processor architecture information that can be used to define suitable
process pinning settings. The output consists of a number of tables. Each table corresponds to one of the
single options listed in the arguments table.

 1 Intel® MPI Library Developer Reference for Linux* OS

22

NOTE
The architecture information is available on systems based on the Intel® 64 architecture.

The cpuinfo utility is available for both Intel microprocessors and non-Intel microprocessors, but it may
provide only partial information about non-Intel microprocessors.

An example of the cpuinfo output:

$ cpuinfo -gdcs
===== Processor composition =====
Processor name : Intel(R) Xeon(R) X5570
Packages(sockets) : 2
Cores : 8
Processors(CPUs) : 8
Cores per package : 4
Threads per core : 1
===== Processor identification =====
Processor Thread Id. Core Id. Package Id.
0 0 0 0
1 0 0 1
2 0 1 0
3 0 1 1
4 0 2 0
5 0 2 1
6 0 3 0
7 0 3 1
===== Placement on packages =====
Package Id. Core Id. Processors
0 0,1,2,3 0,2,4,6
1 0,1,2,3 1,3,5,7
===== Cache sharing =====
Cache Size Processors
L1 32 KB no sharing
L2 256 KB no sharing
L3 8 MB (0,2,4,6)(1,3,5,7)
===== Processor Signature =====
 _________ ________ ______ ________ _______ __________
xFamily	xModel	Type	Family	Model	Stepping
_________	________	______	________	_______	__________
00	1	0	6	a	5
_________	________	______	________	_______	__________

impi_info
Provides information on available Intel® MPI Library environment variables.

Syntax

impi_info <options>
Arguments

<options> List of options.

-a | -all Show all IMPI variables.

-h | -help Show a help message.

-v | -variable Show all available variables or description of the specified
variable.

Command Reference 1

23

-c | -category Show all available categories or variables of the specified
category.

-e | -expert Show all expert variables.

Description

The impi_info utility provides information on environment variables available in the Intel MPI Library. For
each variable, it prints out the name, the default value, and the value data type. By default, a reduced list of
variables is displayed. Use the -all option to display all available variables with their descriptions.

The example of the impi_info output:

$./impi_info
| NAME | DEFAULT VALUE | DATA TYPE |
==
I_MPI_THREAD_SPLIT	0	MPI_INT
I_MPI_THREAD_RUNTIME	none	MPI_CHAR
I_MPI_THREAD_MAX	-1	MPI_INT
I_MPI_THREAD_ID_KEY	thread_id	MPI_CHAR

mpitune
Tunes the Intel® MPI Library parameters for the given MPI application.

Syntax

mpitune <options>
Arguments

mpitune Options Options

-c | --config-file <file> Specify a configuration file to run a tuning session.

-d | --dump-file <file> Specify a file that stores the collected results. The option is used in the
analyze mode.

-m | --mode {collect |
analyze}

Specify the mpitune mode. The supported modes are collect and
 analyze:

• the collect mode runs the tuning process and saves results in
temporary files;

• the analyze mode transforms temporary files into a JSON-tree,
which is used by the Intel MPI Library, and generates a table that
represents algorithm values in a human-readable format.

-h | --help Display the help message.

-v | --version Display the product version.

Description

The mpitune utility allows you to automatically adjust Intel MPI Library parameters, such as collective
operation algorithms, to your cluster configuration or application.

The tuner iteratively launches a benchmarking application with different configurations to measure
performance and stores the results of each launch. Based on these results, the tuner generates optimal
values for the parameters being tuned.

 1 Intel® MPI Library Developer Reference for Linux* OS

24

NOTE Starting with the Intel MPI Library 2019 Update 4 release, you must specify two mpitune
configuration files, which differ in their mode and dump-file fields. A simpler alternative may be to use
one of the single configuration file templates shipped with the Intel MPI Library. In this case, you must
use the command line to define the mode and dump-file fields.

• The -mode option defines one of two possible MPI tune modes: collect or analyze.
• The -dump-file option defines the path to the temporary files when in analyze mode. This path is

returned by mpitune after the first iteration.

The configuration files should specify all tuner parameters, which are passed to the tuner with the --
config-file option. A typical configuration file consists of the main section, specifying generic options, and
search space sections for specific library parameters (for example, for specific collective operations). To
comment a line, use the hash symbol #. All configuration file examples are available at <installdir>/etc/
tune_cfg. Please note that configuration files for Intel® MPI Benchmarks are already created.

The tuning process consists of two steps: data collection (the collect mode) and data analysis (the
analyze mode):

$ mpitune -m collect -c <path-to-config-file2>
$ mpitune -m analyze -c <path-to-config-file1>

Another variant of the launch is:

$ mpitune -m analyze -c <path-to-config-file1>
where the path to the dump-file received in the first step is used in the config file with templates inside.

The tuning results are presented as a JSON tree and can be added to the library with the I_MPI_TUNING
environment variable.

MPI Options Support
The following MPI options are available within the utility:

MPI Options Description

-f <filename> Specify a file containing host names.

-hosts <hostlist> Specify a comma-separated list of hosts.

-np <value> Specify the number of processes.

Examples

$ mpitune -np 2 -ppn 1 -hosts HOST1,HOST2 -m collect -c <path-to-config-file2>
$ mpitune -np 2 -ppn 1 -hosts HOST1,HOST2 -m analyze -c <path-to-config-file1>

Configuration File Format
All tuner parameters should be specified in two configuration files, passed to the tuner with the --config-
file option. A typical configuration file consists of the main section, specifying generic options, and search
space sections for specific library parameters (for example, for specific collective operations). Configuration
files differ in mode and dump-file fields only. To comment a line, use the hash symbol #.

You can also specify MPI options to simplify mpitune usage. MPI options are useful for Intel® MPI
Benchmarks that have special templates for mpitune located at <install-dir>/etc/tune_cfg. The
templates require no changes in configuration files to be made.

For example, to tune the Bcast collective algorithm, use the following option:

$ mpitune -np 2 -ppn 2 -hosts HOST1 -m analyze -c <path-to-Bcast.cfg>

Command Reference 1

25

Experienced users can change configuration files to use this option for other applications.

Output Format
The tuner presents results in a JSON tree view (since the 2019 release), where the comm_id=-1 layer is
added automatically for each tree:

{
 "coll=Reduce": {
 "ppn=2": {
 "comm_size=2": {
 "comm_id=-1": {
 "msg_size=243": {
 "REDUCE=8": {}
 },
 "msg_size=319": {
 "REDUCE=11": {}
 },
 "msg_size=8192": {
 "REDUCE=8": {}
 },
 "msg_size=28383": {
 "REDUCE=9": {}
 },
 "msg_size=-1": {
 "REDUCE=1": {}
 }
 }
 }
 }
 }
}

To add the resulting JSON tree to the library, use the I_MPI_TUNING environment variable.

Old Output Format
The old output format is only valid for Intel MPI Library 2018 and prior versions:

I_MPI_ADJUST_BCAST=2:0-0;1:1-64;2:65-509;1:510-8832;3:8833-0
Use the resulting variable value with the application launch to achieve performance gain.

See Also

MPI Tuning in the Developer Guide.

For available configuration options, refer to mpitune Configuration Options.

mpitune Configuration Options

Application Options

-app
Sets a template for the command line to be launched to gather tuning results. The command line can contain
variables declared as @<var_name>@. The variables are defined further on using other options.

For example:

-app: mpirun -np @np@ -ppn @ppn@ IMB-MPI1 -msglog 0:@logmax@ -npmin @np@ @func@

 1 Intel® MPI Library Developer Reference for Linux* OS

26

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/analysis-and-tuning/mpi-tuning.html

NOTE The application must produce output (in stdout or file or any other destination) that can be
parsed by the tuner to pick the value to be tuned and other variables. See the -app-regex and -app-
regex-legend options below for details.

-app-regex
Sets a regular expression to be evaluated to extract the required values from the application output. Use
regular expression groups to assign the values to variables. Variables and groups associations are set using
the -app-regex-legend option.

For example, to extract the #bytes and t_max[usec] values from this output:

#bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]
0 1000 0.06 0.06 0.06
1 1000 0.10 0.10 0.10

use the following configuration:

-app-regex: (\d+)\s+\d+\s+[\d.+-]+\s+([\d.+-]+)

-app-regex-legend
Specifies a list of variables extracted from the regular expression. Variables correspond to the regular
expression groups. The tuner uses the last variable as the performance indicator of the launch. Use the -
tree-opt to set the optimization direction of the indicator.

For example:

-app-regex-legend: size,time

-iter
Sets the number of iterations for each launch with a given set of parameters. Higher numbers of iterations
increase accuracy of results.

For example:

-iter: 3

Search Space Options
Use these options to define a search space, which is a set of combinations of Intel® MPI Library parameters
that the target application uses for launches. The library parameters are generally configured using run-time
options or environment variables.

NOTE A search space line can be very long, so line breaking is available for all the search space
options. Use a backslash to break a line (see examples below).

-search
Defines the search space by defining variables declared with the -app option and by setting environment
variables for the application launch.

For example:

-search: func=BCAST, \
np=4,ppn={1,4},{,I_MPI_ADJUST_BCAST=[1,3]},logmax=5

Command Reference 1

27

The -app variables are defined as <var1>=<value1>[,<var2>=<value2>][,...]. The following syntax is
available for setting values:

Syntax Description Examples
<value> Single value. Can be a number or a string. 4
{<value1>[,<value2
>][,...]}

List of independent values. {2,4}

[<start>,<end>[,<st
ep>]]

Linear range of values with the default step of
1.

[1,8,2] — expands to {1,2,4,6,8}

(<start>,<end>[,<st
ep>])

Exponential range with the default step of 2. (1,16) — expands to {1,2,4,8,16}

To set environment variables for the command launch, use the following syntax:

Syntax Description Examples
<variable>=<value> Single variable definition. Any type of

the syntax above can be used for the
value: single values, lists or ranges.

I_MPI_ADJUST_BCAST=3
I_MPI_ADJUST_BCAST=[1,3]

{,<variable>=<value>} A special case of the syntax above.
When set this way, the variable
default value is first used in an
application launch.

{,I_MPI_ADJUST_BCAST=[1,3]
}

<prefix>{<value1>
[,<value2>][,...]} Multi-value variable definition.

Prefix is a common part for all
the values, commonly the
variable name.

A value can be a singular value or
a combination of values in the
format:
<prefix>(<value1>[,<value2>
][,...]). Prefix is optional and
a value in the combination is a
string, which can utilize the list
and range syntax above.

I_MPI_ADJUST_ALLREDUCE{=1,
=2,(=9,_KN_RADIX=(2,8))}
See below for a more complete
example.

The following example shows a more complex option definition:

I_MPI_ADJUST_BCAST{=1,=2,(=9,_KN_RADIX=(2,8)),(={10,11},_SHM_KN_RADIX=[2,8,2])}
This directive consecutively runs the target application with the following environment variables set:

I_MPI_ADJUST_BCAST=1
I_MPI_ADJUST_BCAST=2
I_MPI_ADJUST_BCAST=9,I_MPI_ADJUST_BCAST_KN_RADIX=2
I_MPI_ADJUST_BCAST=9,I_MPI_ADJUST_BCAST_KN_RADIX=4
I_MPI_ADJUST_BCAST=9,I_MPI_ADJUST_BCAST_KN_RADIX=8
I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=2
I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=4
I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=6
I_MPI_ADJUST_BCAST=10,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=8
I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=2
I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=4
I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=6
I_MPI_ADJUST_BCAST=11,I_MPI_ADJUST_BCAST_SHM_KN_RADIX=8

 1 Intel® MPI Library Developer Reference for Linux* OS

28

-search-excl
Excludes certain combinations from the search space. The syntax is identical to that of the -search option.
For example:

-search-excl: I_MPI_ADJUST_BCAST={1,2}
or

-search-excl: func=BCAST,np=4,ppn=1,I_MPI_ADJUST_BCAST=1

-search-only
Defines a subset of the search space to search in. Only this subset is used for application launches. The
syntax is identical to the -search option.

This option is useful for the second and subsequent tuning sessions on a subset of parameters from the
original session, without creating a separate configuration file.

Output Options
Use these options to customize the output. The tuner can produce output of two types:

• table— useful for verifying the tuning results, contains values from all the application launches
• tree— an internal output format, contains the optimal values

-table
Defines the layout for the resulting output table. The option value is a list of variables declared with the -app
option, which are joined in colon-separated groups. Each group denotes a specific part of the table.

For example:

-table: func:ppn,np:size:*:time
The last group variables (time) are rendered in table cells. The second last group variables are used for
building table columns (*, denotes all the variables not present the other variable groups). The third last
group variables are used for building table rows (size). All other variable groups are used to make up the
table label. Groups containing several variables are complex groups and produce output based on all the
value combinations.

For example, the option definition above can produce the following output:

Label: "func=BCAST,ppn=2,np=2"

Legend:
set 0: ""
set 1: "I_MPI_ADJUST_BCAST=1"
set 2: "I_MPI_ADJUST_BCAST=2"
set 3: "I_MPI_ADJUST_BCAST=3"
Table:
 | set 0 | set 1 | set 2 | set 3
-----------|-------------|-------------|-------------|------------
"size=0" | "time=0.10" | "time=0.08" | "time=0.11" | "time=0.10"
 | "time=0.12" | "time=0.09" | "time=0.12" | "time=0.11"
 | | "time=0.10" | |
-----------|-------------|-------------|-------------|------------
"size=4" | "time=1.12" | "time=1.11" | "time=1.94" | "time=1.72"
 | "time=1.35" | "time=1.18" | "time=1.97" | "time=1.81"
 | "time=1.38" | "time=1.23" | "time=2.11" | "time=1.89"

Command Reference 1

29

-----------|-------------|-------------|-------------|------------
"size=8" | "time=1.21" | "time=1.10" | "time=1.92" | "time=1.72"
 | "time=1.36" | "time=1.16" | "time=2.01" | "time=1.75"
 | "time=1.37" | "time=1.17" | "time=2.24" | "time=1.87"
-----------|-------------|-------------|-------------|------------
...

Cells include only unique values from all the launches for the given parameter combination. The number of
launches is set with the -iter option.

-table-ignore
Specifies the variables to ignore from the -table option definition.

-tree
Defines the layout for the resulting tree of optimal values of the parameter that is tuned (for example,
collective operation algorithms). The tree is rendered as a JSON structure. The option value is a list of
variables declared with the -app option, which are joined in colon-separated groups. Each group denotes a
specific part of the tree. Groups containing several variables are complex groups and produce output based
on all the value combinations.

Example:

-tree: func:ppn,np:size:*:time
The first two groups (func and ppn,np) make up the first two levels of the tree. The last group variables
(time) are used as the optimization criteria and are not rendered. The second last group contains variables
to be optimized (*, denotes all the variables not present the other variable groups). The third last group
variables are used to split the search space into intervals based on the optimal values of parameters from the
next group (for example, I_MPI_ADJUST_<operation> algorithm numbers).

For example, the option definition above can produce the following output:

{
 "func=BCAST":
 {
 "ppn=1,np=4":
 {
 "size=0":
 {"I_MPI_ADJUST_BCAST": "3"},
 "size=64":
 {"I_MPI_ADJUST_BCAST": "1"},
 "size=512":
 {"I_MPI_ADJUST_BCAST": "2"},
 ...
 }
 }
}

This tree representation is an intermediate format of tuning results and is ultimately converted to a string
that the library can understand. The conversion script is specified with -tree-postprocess option.

-tree-ignore
Specifies the variables to ignore from the -tree option definition.

 1 Intel® MPI Library Developer Reference for Linux* OS

30

-tree-intervals
Specifies the maximum number of intervals where the optimal parameter value is applied. If not specified,
any number of intervals is allowed.

-tree-tolerance
Specifies the tolerance level. Non-zero tolerance (for example, 0.03 for 3%) joins resulting intervals with the
performance indicator value varying by the specified tolerance.

-tree-postprocess
Specifies an executable to convert the resulting JSON tree to a custom format.

-tree-opt
Specifies the optimization direction. The available values are max (default) and min.

-tree-file
Specifies a log file where the tuning results are saved.

-tree-view
Specify the mode to present the json-tree. The available values are “simple” and “default”. The “default”
mode enables an interpolation mechanism; the “simple” mode disables the interpolation mechanism. The
resulting tree contains message sizes used during the launch.

-mode
Specifies the mpitune mode. The available values are “collect” for gathering data and “analyze” for
converting this data to a JSON-tree. Note that the -mode field can be defined in the configuration file as
macros @-mode@, although the real value must be defined in the command line.

-dump-file
Specifies the path for the dump-file, which is returned by mpitune after the first iteration. The first iteration
can be initialized by way of “” (an nempty string). Note that the -dump-file field can be defined in the
configuration file as macros @-dump-file@, although the real value must be defined in the command line.

mpitune_fast

This utility tunes the Intel® MPI Library to the cluster configuration using the Autotuning functionality.

Syntax

mpitune_fast <options>
Arguments

Options Description

-c | --colls Set custom collective operations to tune, delimited by
commas.

-d | --results_dir <path-to-results-dir> Set custom directory for tuning results, host files,
and logs. Default: the current working directory.

-h | --help Display the help message.

-n <n> Specify the number of nodes. This can be a comma-
delimited set of values to set up several launches.

-pd <path-to-performance-results-dir>, Set a custom directory for validation performance
results.

Command Reference 1

31

Options Description

--perf_results_dir <path-to-performance-
results-dir>

Default: performance_results_<timestamp>.

-ppn <n> Specify the number of processes per node. This can be a
comma-delimited set of values to set up several launches.

-val <path-to-tuning-file>,
--validate <path-to-tuning-file>

Run the tuning file validation cycle to validate the existing
tuning file.

Description

The mpitune_fast utility allows you to automatically set up the Intel MPI Library and launch with Autotuning
enabled and configured for your cluster configuration.

The tool iteratively launches the Intel® MPI Benchmarks utility with the proper autotuner environment and
generates a .dat file with the tuning parameters for your cluster configuration.

After generation the tuning file, set it as I_MPI_TUNING_BIN:

$ export I_MPI_TUNING_BIN=./tuning_results.dat
$ mpiexec <args>

Workload Managers Support
mpitune_fast supports Slurm and LSF workload managers. It automatically defines job allocated hosts and
performs launches.

MPI Options Support
The following MPI options are available within the utility:

Options Description

-f <filename> Specify a file containing host names.

-hosts HOSTS, --hosts
HOSTS

Set the host names, delimited by commas. Example: --hosts
host1,host2

Example (default launch):

$ mpitune_fast -f ./hostfile
Example (customized launch):

$ mpitune_fast -ppn 8,4,2,1 -f ./hostfile -c alltoall,allreduce,barrier
See Also

Autotuning

mpitune

MPI Tuning in the Intel MPI Library Developer Guide

For available configuration options, refer to mpitune Configuration Options.

Cluster-Wide MPI Tuning Using Intel® MPI Library

 1 Intel® MPI Library Developer Reference for Linux* OS

32

https://software.intel.com/content/www/us/en/develop/documentation/imb-user-guide/top.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/analysis-and-tuning/mpi-tuning.html
https://www.intel.com/content/www/us/en/developer/articles/technical/cluster-wide-mpi-tuning-using-intel-mpi-library.html

Environment Variable Reference 2
This section provides information on different variables:

• Compilation Environment Variables
• Hydra Environment Variables
• I_MPI_ADJUST Family Environment Variables
• Tuning Environment Variables
• Environment Variables for Process Pinning
• Environment Variables for Fabrics Control
• Environment Variables for Asynchronous Progress Control
• Environment Variables for Multi-EP
• Other Environment Variables

Compilation Environment Variables

I_MPI_{CC,CXX,FC,F77,F90}_PROFILE
Specify the default profiling library.

Syntax

I_MPI_CC_PROFILE=<profile-name>
I_MPI_CXX_PROFILE=<profile-name>
I_MPI_FC_PROFILE=<profile-name>
I_MPI_F77_PROFILE=<profile-name>
I_MPI_F90_PROFILE=<profile-name>
Argument

<profile-name> Specify a default profiling library.

Description

Set this environment variable to select a specific MPI profiling library to be used by default. This has the
same effect as using -profile=<profile-name> as an argument for mpiicc or another Intel® MPI Library
compiler wrapper.

I_MPI_TRACE_PROFILE
Specify the default profile for the -trace option.

Syntax

I_MPI_TRACE_PROFILE=<profile-name>
Argument

<profile-name> Specify a tracing profile name. The default value is vt.

Description

Set this environment variable to select a specific MPI profiling library to be used with the -trace option of
mpiicc or another Intel MPI Library compiler wrapper.

The I_MPI_{CC,CXX,F77,F90}_PROFILE environment variable overrides I_MPI_TRACE_PROFILE.

Environment Variable Reference 2

33

I_MPI_CHECK_PROFILE
Specify the default profile for the -check_mpi option.

Syntax

I_MPI_CHECK_PROFILE=<profile-name>
Argument

<profile-name> Specify the checking profile name. The default value is
vtmc.

Description

Set this environment variable to select a specific MPI checking library to be used with the -check_mpi option
to mpiicc or another Intel MPI Library compiler wrapper.

The I_MPI_{CC,CXX,F77,F90}_PROFILE environment variable overrides I_MPI_CHECK_PROFILE.

I_MPI_CHECK_COMPILER
Turn on/off compiler compatibility check.

Syntax

I_MPI_CHECK_COMPILER=<arg>
Arguments

<arg> Binary indicator.

enable | yes | on | 1 Enable checking the compiler.

disable | no | off | 0 Disable checking the compiler. This is the default value.

Description

If I_MPI_CHECK_COMPILER is set to enable, the Intel MPI Library compiler wrapper checks the underlying
compiler for compatibility. Normal compilation requires using a known version of the underlying compiler.

I_MPI_{CC,CXX,FC,F77,F90}
Set the path/name of the underlying compiler to be used.

Syntax

I_MPI_CC=<compiler>
I_MPI_CXX=<compiler>
I_MPI_FC=<compiler>
I_MPI_F77=<compiler>
I_MPI_F90=<compiler>
Arguments

<compiler> Specify the full path/name of compiler to be used.

Description

Set this environment variable to select a specific compiler to be used. Specify the full path to the compiler if
it is not located in the search path.

NOTE Some compilers may require additional command line options.

 2 Intel® MPI Library Developer Reference for Linux* OS

34

NOTE The configuration file is sourced if it exists for a specified compiler. See -configfor details.

I_MPI_ROOT
Set the Intel MPI Library installation directory path.

Syntax

I_MPI_ROOT=<path>
Arguments

<path> Specify the installation directory of the Intel MPI Library.

Description

Set this environment variable to specify the installation directory of the Intel MPI Library.

NOTE If you are using the Visual Studio integration, you may need to use I_MPI_ONEAPI_ROOT.

VT_ROOT
Set Intel® Trace Collector installation directory path.

Syntax

VT_ROOT=<path>
Arguments

<path> Specify the installation directory of the Intel Trace
Collector.

Description

Set this environment variable to specify the installation directory of the Intel Trace Collector.

I_MPI_COMPILER_CONFIG_DIR
Set the location of the compiler configuration files.

Syntax

I_MPI_COMPILER_CONFIG_DIR=<path>
Arguments

<path> Specify the location of the compiler configuration files.
The default value is <install-dir>/etc

Description

Set this environment variable to change the default location of the compiler configuration files.

I_MPI_LINK
Select a specific version of the Intel MPI Library for linking.

Syntax

I_MPI_LINK=<arg>
Arguments

Environment Variable Reference 2

35

Argument Library Version

opt Multi-threaded optimized library (with the global lock).
This is the default value

dbg Multi-threaded debug library (with the global lock)

opt_mt Multi-threaded optimized library (with per-object lock for
the thread-split model)

dbg_mt Multi-threaded debug library (with per-object lock for the
thread-split model)

Description

Set this variable to always link against the specified version of the Intel MPI Library.

I_MPI_DEBUG_INFO_STRIP-
Turn on/off the debug information stripping while linking applications statically.

Syntax

I_MPI_DEBUG_INFO_STRIP=<arg>
Arguments

<arg> Binary indicator

enable | yes | on | 1 Turn on. This is the default value

disable | no | off | 0 Turn off

Description

Use this option to turn on/off the debug information stripping while linking the Intel MPI Library statically.
Debug information is stripped by default.

I_MPI_{C,CXX,FC,F}FLAGS
Set special flags needed for compilation.

Syntax

I_MPI_CFLAGS=<flags>
I_MPI_CXXFLAGS=<flags>
I_MPI_FCFLAGS=<flags>
I_MPI_FFLAGS=<flags>
Arguments

<flags> Flag list

Description

Use this environment variable to specify special compilation flags.

I_MPI_LDFLAGS
Set special flags needed for linking.

Syntax

I_MPI_LDFLAGS=<flags>
Arguments

<flags> Flag list

 2 Intel® MPI Library Developer Reference for Linux* OS

36

Description

Use this environment variable to specify special linking flags.

I_MPI_FORT_BIND
Disable mpiicc linking with Fortran bindings.

Syntax

I_MPI_FORT_BIND=<arg>
Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable linking. This is the default value

disable | no | off | 0 Disable linking

Description

By default, the mpiicc also links against the Fortran bindings even if Fortran is not used. Use this
environment variable to change this default behavior. Has the same effect as the -nofortbind option.

Hydra Environment Variables

I_MPI_HYDRA_HOST_FILE
Set the host file to run the application.

Syntax

I_MPI_HYDRA_HOST_FILE=<arg>
Argument

<arg> String parameter

<hostsfile> The full or relative path to the host file

Description

Set this environment variable to specify the hosts file.

I_MPI_HYDRA_HOSTS_GROUP
Set node ranges using brackets, commas, and dashes.

Syntax

I_MPI_HYDRA_HOSTS_GROUP=<arg>
Argument

<arg> Set a node range.

Description

Set this variable to be able to set node ranges using brackets, commas, and dashes (like in Slurm* Workload
Manager). For example:

I_MPI_HYDRA_HOSTS_GROUP=”hostA[01-05],hostB,hostC[01-05,07,09-11]”
You can set node ranges with the -hosts-group option.

Environment Variable Reference 2

37

I_MPI_HYDRA_DEBUG
Print out the debug information.

Syntax

I_MPI_HYDRA_DEBUG=<arg>
Argument

<arg> Binary indicator

enable | yes | on | 1 Turn on the debug output

disable | no | off | 0 Turn off the debug output. This is the default value

Description

Set this environment variable to enable the debug mode.

I_MPI_HYDRA_ENV
Control the environment propagation.

Syntax

I_MPI_HYDRA_ENV=<arg>
Argument

<arg> String parameter

all Pass all environment to all MPI processes

Description

Set this environment variable to control the environment propagation to the MPI processes. By default, the
entire launching node environment is passed to the MPI processes. Setting this variable also overwrites
environment variables set by the remote shell.

I_MPI_JOB_TIMEOUT
Set the timeout period for mpiexec.hydra.

Syntax

I_MPI_JOB_TIMEOUT=<timeout>
I_MPI_MPIEXEC_TIMEOUT=<timeout>
Argument

<timeout> Define mpiexec.hydra timeout period in seconds

<n> ≥ 0 The value of the timeout period. The default timeout value is zero, which
means no timeout.

Description

Set this environment variable to make mpiexec.hydra terminate the job in <timeout> seconds after its
launch. The <timeout> value should be greater than zero. Otherwise the environment variable setting is
ignored.

I_MPI_JOB_STARTUP_TIMEOUT
Set the mpiexec.hydra job startup timeout.

Syntax

I_MPI_JOB_STARTUP_TIMEOUT=<timeout>

 2 Intel® MPI Library Developer Reference for Linux* OS

38

Argument

<timeout> Define mpiexec.hydra startup timeout period in seconds

<n> ≥ 0 The value of the timeout period. The default timeout value is zero, which
means no timeout.

Description

Set this environment variable to make mpiexec.hydra terminate the job in <timeout> seconds if some
processes are not launched. The <timeout> value should be greater than zero.

I_MPI_JOB_TIMEOUT_SIGNAL
Define the signal to be sent when a job is terminated because of a timeout.

Syntax

I_MPI_JOB_TIMEOUT_SIGNAL=<number>

Argument

<number> Define the signal number

<n>> 0 The signal number. The default value is 9(SIGKILL)

Description

Define a signal number to be sent to stop the MPI job if the timeout period specified by the
I_MPI_JOB_TIMEOUT environment variable expires. If you set a signal number unsupported by the system,
the mpiexec.hydra command prints a warning message and continues the task termination using the
default signal number 9 (SIGKILL).

I_MPI_JOB_ABORT_SIGNAL
Define a signal to be sent to all processes when a job is terminated unexpectedly.

Syntax

I_MPI_JOB_ABORT_SIGNAL=<number>
Argument

<number> Define signal number

<n>> 0 The default value is 9(SIGKILL)

Description

Set this environment variable to define a signal for task termination. If you set an unsupported signal
number, mpiexec.hydra prints a warning message and uses the default signal 9 (SIGKILL).

I_MPI_JOB_SIGNAL_PROPAGATION
Control signal propagation.

Syntax

I_MPI_JOB_SIGNAL_PROPAGATION=<arg>
Argument

<arg> Binary indicator

enable | yes | on | 1 Turn on propagation

disable | no | off | 0 Turn off propagation. This is the default value

Description

Environment Variable Reference 2

39

Set this environment variable to control propagation of the signals (SIGINT, SIGALRM, and SIGTERM). If you
enable signal propagation, the received signal is sent to all processes of the MPI job. If you disable signal
propagation, all processes of the MPI job are stopped with the default signal 9 (SIGKILL).

I_MPI_HYDRA_BOOTSTRAP
Set the bootstrap server.

Syntax

I_MPI_HYDRA_BOOTSTRAP=<arg>
Argument

<arg> String parameter

ssh Use secure shell. This is the default value

rsh Use remote shell

pdsh Use parallel distributed shell

pbsdsh Use Torque* and PBS* pbsdsh command

fork Use fork call

slurm Use Slurm* srun command

ll Use LoadLeveler* llspawn.stdio command

lsf Use LSF* blaunch command

sge Use Univa* Grid Engine* qrsh command

Description

Set this environment variable to specify the bootstrap server.

I_MPI_HYDRA_BOOTSTRAP_EXEC
Set the executable file to be used as a bootstrap server.

Syntax

I_MPI_HYDRA_BOOTSTRAP_EXEC=<arg>
Argument

<arg> String parameter

<executable> The name of the executable file

Description

Set this environment variable to specify the executable file to be used as a bootstrap server.

I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS
Set additional arguments for the bootstrap server.

Syntax

I_MPI_HYDRA_BOOTSTRAP_EXEC_EXTRA_ARGS=<arg>
Argument

<arg> String parameter

<args> Additional bootstrap server arguments

Description

Set this environment variable to specify additional arguments for the bootstrap server.

 2 Intel® MPI Library Developer Reference for Linux* OS

40

NOTE If the launcher (blaunch, lsf, pdsh, pbsdsh) falls back to ssh, pass the arguments with the
invocation of ssh.

I_MPI_HYDRA_BOOTSTRAP_AUTOFORK
Control the usage of fork call for local processes.

I_MPI_HYDRA_BOOTSTRAP_AUTOFORK = <arg>
Argument

<arg> String parameter

enable | yes | on | 1 Use fork for the local processes. This is default value for ssh, rsh, ll, lsf,
and pbsdsh bootstrap servers

disable | no | off | 0 Do not use fork for the local processes. This is default value for the sge
bootstrap server

Description

Set this environment variable to control usage of fork call for the local processes.

NOTE This option is not applicable to slurm and pdsh bootstrap servers.

I_MPI_HYDRA_RMK
Use the specified value as the resource management kernel to obtain data about available nodes, externally
set process counts.

Syntax

I_MPI_HYDRA_RMK=<arg>
Argument

<arg> String parameter

<rmk> Resource management kernel. The supported values are slurm, ll, lsf,
sge, pbs, cobalt.

Description

Set this environment variable to use the resource management kernel.

I_MPI_HYDRA_PMI_CONNECT
Define the processing method for PMI messages.

Syntax

I_MPI_HYDRA_PMI_CONNECT=<value>
Argument

<value> The algorithm to be used

nocache Do not cache PMI messages

cache Cache PMI messages on the local pmi_proxy management processes to
minimize the number of PMI requests. Cached information is automatically
propagated to child management processes.

lazy-cache cache mode with on-demand propagation.

Environment Variable Reference 2

41

alltoall Information is automatically exchanged between all pmi_proxy before any
get request can be done. This is the default value.

Description

Use this environment variable to select the PMI messages processing method.

I_MPI_PERHOST
Define the default behavior for the -perhost option of the mpiexec.hydra command.

Syntax

I_MPI_PERHOST=<value>
Argument

<value> Define a value used for -perhost by default

integer > 0 Exact value for the option

all All logical CPUs on the node

allcores All cores (physical CPUs) on the node. This is the default value.

Description

Set this environment variable to define the default behavior for the -perhost option. Unless specified
explicitly, the -perhost option is implied with the value set in I_MPI_PERHOST.

NOTE
When running under a job scheduler, this environment variable is ignored by default. To control
process placement with I_MPI_PERHOST, disable the I_MPI_JOB_RESPECT_PROCESS_PLACEMENT
variable.

I_MPI_JOB_TRACE_LIBS
Choose the libraries to preload through the -trace option.

Syntax

I_MPI_JOB_TRACE_LIBS=<arg>
Argument

<arg> String parameter

<list> Blank separated list of the libraries to preload. The default value is vt

Description

Set this environment variable to choose an alternative library for preloading through the -trace option.

I_MPI_JOB_CHECK_LIBS
Choose the libraries to preload through the -check_mpi option.

Syntax

I_MPI_JOB_CHECK_LIBS=<arg>
Argument

<arg> String parameter

<list> Blank separated list of the libraries to preload. The default value is vtmc

 2 Intel® MPI Library Developer Reference for Linux* OS

42

Description

Set this environment variable to choose an alternative library for preloading through the -check_mpi option.

I_MPI_HYDRA_BRANCH_COUNT
Set the hierarchical branch count.

Syntax

I_MPI_HYDRA_BRANCH_COUNT =<num>
Argument

<num> Number

<n> >= 0 The default value is 16. This value means that hierarchical structure is
enabled if the number of nodes is more than 16.

If I_MPI_HYDRA_BRANCH_COUNT=0, then there is no hierarchical
structure.

If I_MPI_HYDRA_BRANCH_COUNT=-1, then branch count is equal to
default value.

Description

Set this environment variable to restrict the number of child management processes launched by the
mpiexec.hydra operation or by each pmi_proxy management process.

I_MPI_HYDRA_PMI_AGGREGATE
Turn on/off aggregation of the PMI messages.

Syntax

I_MPI_HYDRA_PMI_AGGREGATE=<arg>
Argument

<arg> Binary indicator

enable | yes | on | 1 Enable PMI message aggregation. This is the default value.

disable | no | off | 0 Disable PMI message aggregation.

Description

Set this environment variable to enable/disable aggregation of PMI messages.

I_MPI_HYDRA_GDB_REMOTE_SHELL
Set the remote shell command to run the GDB debugger. This command uses the Intel® Distribution for GDB.

Syntax

I_MPI_HYDRA_GDB_REMOTE_SHELL=<arg>
Argument

<arg> String parameter

ssh Secure Shell (SSH). This is the default value

rsh Remote shell (RSH)

Description

Environment Variable Reference 2

43

Set this environment variable to specify the remote shell command to run the GNU* debugger on the remote
machines. You can use this environment variable to specify any shell command that has the same syntax as
SSH or RSH.

I_MPI_HYDRA_IFACE
Set the network interface.

Syntax

I_MPI_HYDRA_IFACE=<arg>
Argument

<arg> String parameter

<network interface> The network interface configured in your system

Description

Set this environment variable to specify the network interface to use. For example, use "-iface ib0", if the
IP emulation of your InfiniBand* network is configured on ib0.

I_MPI_HYDRA_DEMUX
Set the demultiplexer (demux) mode.

Syntax

I_MPI_HYDRA_DEMUX=<arg>
Argument

<arg> String parameter

poll Set poll as the multiple I/O demultiplexer (demux) mode engine. This is the
default value.

select Set select as the multiple I/O demultiplexer (demux) mode engine

Description

Set this environment variable to specify the multiple I/O demux mode engine. The default value is poll.

I_MPI_TMPDIR
Specify a temporary directory.

Syntax

I_MPI_TMPDIR=<arg>
Argument

<arg> String parameter

<path> Temporary directory. The default value is /tmp

Description

Set this environment variable to specify a directory for temporary files.

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT
Specify whether to use the process-per-node placement provided by the job scheduler, or set explicitly.

Syntax

I_MPI_JOB_RESPECT_PROCESS_PLACEMENT=<arg>

 2 Intel® MPI Library Developer Reference for Linux* OS

44

Argument

<value> Binary indicator

enable | yes | on | 1 Use the process placement provided by job scheduler. This is the default value

disable | no | off | 0 Do not use the process placement provided by job scheduler

Description

If the variable is set, the Hydra process manager uses the process placement provided by job scheduler
(default). In this case the -ppn option and its equivalents are ignored. If you disable the variable, the Hydra
process manager uses the process placement set with -ppn or its equivalents.

I_MPI_GTOOL
Specify the tools to be launched for selected ranks. An alternative to this variable is the -gtool option.

Syntax

I_MPI_GTOOL=“<command line for a tool 1>:<ranks set 1>[=exclusive][@arch 1]; <command
line for a tool 2>:<ranks set 2>[=exclusive][@arch 2]; … ;<command line for a tool
n>:<ranks set n>[=exclusive][@arch n]”
Argument

<arg> Parameters

<command-line-for-a-tool> Specify a tool's launch command, including parameters.

<rank set> Specify the range of ranks that are involved in the tool execution.
Separate ranks with a comma or use the '-' symbol for a set of
contiguous ranks. To run the tool for all ranks, use the all argument.

NOTE If you specify incorrect rank index, the corresponding warning is
printed and the tool continues working for valid ranks.

[=exclusive] Specify this parameter to prevent launching a tool for more than one rank per
host. This parameter is optional.

[@arch] Specify the architecture on which the tool runs (optional). For a given <rank
set>, if you specify this argument, the tool is launched only for the processes
residing on hosts with the specified architecture. This parameter is optional.

Description

Use this option to launch the tools such as Intel® VTune™ Amplifier XE, Valgrind*, and GNU* Debugger for the
specified processes.

Examples
The following command line examples demonstrate different scenarios of using the I_MPI_GTOOL
environment variable.

Launch Intel® VTune™ Amplifier XE and Valgrind* by setting the I_MPI_GTOOL environment variable:

$ export I_MPI_GTOOL="vtune -collect hotspots -analyze-system -r result1:5,3,7-9=exclusive@bdw;\
valgrind -log-file=log_%p:0,1,10-12@hsw"
$ mpiexec.hydra -n 16 a.out

Environment Variable Reference 2

45

This command launches vtune for the processes that are run on the Intel® microarchitecture codenamed
Broadwell. Only one copy of vtune is launched for each host, the process with the minimal index is affected.
At the same time, Valgrind* is launched for all specified processes that are run on the Intel®
microarchitecture codenamed Haswell. Valgrind's results are saved to the files log_<process ID>.

Launch GDB by setting the I_MPI_GTOOL environment variable (for Intel® oneAPI, this launches the Intel®
Distribution for GDB):

$ mpiexec.hydra -n 16 -genv I_MPI_GTOOL="gdb:3,5,7-9" a.out
Use this command to apply GDB to the given rank set.

NOTE The options and the environment variable -gtool, -gtoolfile and I_MPI_GTOOL are mutually
exclusive. The options -gtool and -gtoolfile are of the same priority and have higher priority than
I_MPI_GTOOL. The first specified option in a command line is effective and the second one is ignored.
Therefore, use I_MPI_GTOOL if you do not specify -gtool or -gtoolfile.

I_MPI_HYDRA_TOPOLIB
Set the interface for topology detection.

Syntax

I_MPI_HYDRA_TOPOLIB=<arg>
Argument

<arg> String parameter

hwloc The hwloc* library functions are invoked for topology detection.

Description

Set this environment variable to define the interface for platform detection. The hwloc* interface is used by
default, but you may explicitly set the variable to use the native Intel MPI Library interface:
I_MPI_HYDRA_TOPOLIB=ipl.

I_MPI_PORT_RANGE
Specify a range of allowed port numbers.

Syntax

I_MPI_PORT_RANGE=<range>
Argument

<range> String parameter

<min>:<max> Allowed port range

Description

Set this environment variable to specify a range of the allowed port numbers for the Intel® MPI Library.

I_MPI_SILENT_ABORT
Control abort warning messages.

Syntax

I_MPI_SILENT_ABORT=<arg>
Argument

 2 Intel® MPI Library Developer Reference for Linux* OS

46

<arg> Binary indicator

enable | yes | on | 1 Do not print abort warning message

disable | no | off | 0 Print abort warning message. This is the default value

Description

Set this variable to disable printing of abort warning messages. The messages are printed in case of the
MPI_Abort call.

You can also disable printing of these messages with the -silent-abort option.

I_MPI_HYDRA_NAMESERVER
Specify the nameserver.

Syntax

I_MPI_HYDRA_NAMESERVER=<arg>
Argument

<arg> String parameter

<hostname>:<port> Set the hostname and the port.

Description

Set this variable to specify the nameserver for your MPI application in the following format:

I_MPI_HYDRA_NAMESERVER = hostname:port
You can set the nameserver with the -nameserver option.

I_MPI_ADJUST Family Environment Variables

I_MPI_ADJUST_<opname>
Control collective operation algorithm selection.

Syntax

I_MPI_ADJUST_<opname>="<presetid>[:<conditions>][;<presetid>:<conditions>[...]]"
Arguments

<presetid> Preset identifier

>= 0 Set a number to select the desired algorithm. The value 0 uses basic logic of
the collective algorithm selection.

<conditions> A comma separated list of conditions. An empty list selects all message sizes
and process combinations

<l> Messages of size <l>

<l>-<m> Messages of size from <l> to <m>, inclusive

<l>@<p> Messages of size <l> and number of processes <p>

<l>-<m>@<p>-<q> Messages of size from <l> to <m> and number of processes from <p> to <q>,
inclusive

Description

Set this environment variable to select the desired algorithm(s) for the collective operation <opname> under
particular conditions. Each collective operation has its own environment variable and algorithms.

Environment Variable Reference 2

47

Environment Variables, Collective Operations, and Algorithms
Environment Variable Collective Operation Algorithms

I_MPI_ADJUST_ALLGATHER MPI_Allgather 1. Recursive doubling
2. Bruck's
3. Ring
4. Topology aware Gatherv +

Bcast
5. Knomial

I_MPI_ADJUST_ALLGATHERV MPI_Allgatherv 1. Recursive doubling
2. Bruck's
3. Ring
4. Topology aware Gatherv +

Bcast

I_MPI_ADJUST_ALLREDUCE MPI_Allreduce 1. Recursive doubling
2. Rabenseifner's
3. Reduce + Bcast
4. Topology aware Reduce +

Bcast
5. Binomial gather + scatter
6. Topology aware binominal

gather + scatter
7. Shumilin's ring
8. Ring
9. Knomial
10. Topology aware SHM-based

flat
11. Topology aware SHM-based

Knomial
12. Topology aware SHM-based

Knary

I_MPI_ADJUST_ALLTOALL MPI_Alltoall 1. Bruck's
2. Isend/Irecv + waitall
3. Pair wise exchange
4. Plum's

I_MPI_ADJUST_ALLTOALLV MPI_Alltoallv 1. Isend/Irecv + waitall
2. Plum's

I_MPI_ADJUST_ALLTOALLW MPI_Alltoallw Isend/Irecv + waitall

I_MPI_ADJUST_BARRIER MPI_Barrier 1. Dissemination
2. Recursive doubling
3. Topology aware

dissemination
4. Topology aware recursive

doubling
5. Binominal gather + scatter
6. Topology aware binominal

gather + scatter
7. Topology aware SHM-based

flat

 2 Intel® MPI Library Developer Reference for Linux* OS

48

Environment Variable Collective Operation Algorithms

8. Topology aware SHM-based
Knomial

9. Topology aware SHM-based
Knary

I_MPI_ADJUST_BCAST MPI_Bcast 1. Binomial
2. Recursive doubling
3. Ring
4. Topology aware binomial
5. Topology aware recursive

doubling
6. Topology aware ring
7. Shumilin's
8. Knomial
9. Topology aware SHM-based

flat
10. Topology aware SHM-based

Knomial
11. Topology aware SHM-based

Knary
12. NUMA aware SHM-based

(SSE4.2)
13. NUMA aware SHM-based

(AVX2)
14. NUMA aware SHM-based

(AVX512)

I_MPI_ADJUST_EXSCAN MPI_Exscan 1. Partial results gathering
2. Partial results gathering

regarding layout of processes

I_MPI_ADJUST_GATHER MPI_Gather 1. Binomial
2. Topology aware binomial
3. Shumilin's
4. Binomial with segmentation

I_MPI_ADJUST_GATHERV MPI_Gatherv 1. Linear
2. Topology aware linear
3. Knomial

I_MPI_ADJUST_REDUCE_SCATTE
R

MPI_Reduce_scatter 1. Recursive halving
2. Pair wise exchange
3. Recursive doubling
4. Reduce + Scatterv
5. Topology aware Reduce +

Scatterv

I_MPI_ADJUST_REDUCE MPI_Reduce 1. Shumilin's
2. Binomial
3. Topology aware Shumilin's
4. Topology aware binomial
5. Rabenseifner's

Environment Variable Reference 2

49

Environment Variable Collective Operation Algorithms

6. Topology aware
Rabenseifner's

7. Knomial
8. Topology aware SHM-based

flat
9. Topology aware SHM-based

Knomial
10. Topology aware SHM-based

Knary
11. Topology aware SHM-based

binomial

I_MPI_ADJUST_SCAN MPI_Scan 1. Partial results gathering
2. Topology aware partial

results gathering

I_MPI_ADJUST_SCATTER MPI_Scatter 1. Binomial
2. Topology aware binomial
3. Shumilin's

I_MPI_ADJUST_SCATTERV MPI_Scatterv 1. Linear
2. Topology aware linear

I_MPI_ADJUST_SENDRECV_REPL
ACE

MPI_Sendrecv_replace 1. Generic

2. Uniform (with restrictions)

I_MPI_ADJUST_IALLGATHER MPI_Iallgather 1. Recursive doubling
2. Bruck’s
3. Ring

I_MPI_ADJUST_IALLGATHERV MPI_Iallgatherv 1. Recursive doubling
2. Bruck’s
3. Ring

I_MPI_ADJUST_IALLREDUCE MPI_Iallreduce 1. Recursive doubling
2. Rabenseifner’s
3. Reduce + Bcast
4. Ring (patarasuk)
5. Knomial
6. Binomial
7. Reduce scatter allgather
8. SMP
9. Nreduce

I_MPI_ADJUST_IALLTOALL MPI_Ialltoall 1. Bruck’s
2. Isend/Irecv + Waitall
3. Pairwise exchange

I_MPI_ADJUST_IALLTOALLV MPI_Ialltoallv Isend/Irecv + Waitall

I_MPI_ADJUST_IALLTOALLW MPI_Ialltoallw Isend/Irecv + Waitall

I_MPI_ADJUST_IBARRIER MPI_Ibarrier Dissemination

I_MPI_ADJUST_IBCAST MPI_Ibcast 1. Binomial
2. Recursive doubling

 2 Intel® MPI Library Developer Reference for Linux* OS

50

Environment Variable Collective Operation Algorithms

3. Ring
4. Knomial
5. SMP
6. Tree knominal
7. Tree kary

I_MPI_ADJUST_IEXSCAN MPI_Iexscan 1. Recursive doubling
2. SMP

I_MPI_ADJUST_IGATHER MPI_Igather 1. Binomial
2. Knomial

I_MPI_ADJUST_IGATHERV MPI_Igatherv 1. Linear
2. Linear ssend

I_MPI_ADJUST_IREDUCE_SCATT
ER

MPI_Ireduce_scatter 1. Recursive halving
2. Pairwise
3. Recursive doubling

I_MPI_ADJUST_IREDUCE MPI_Ireduce 1. Rabenseifner’s
2. Binomial
3. Knomial

I_MPI_ADJUST_ISCAN MPI_Iscan 1. Recursive Doubling
2. SMP

I_MPI_ADJUST_ISCATTER MPI_Iscatter 1. Binomial
2. Knomial

I_MPI_ADJUST_ISCATTERV MPI_Iscatterv Linear

The message size calculation rules for the collective operations are described in the table. In the following
table, "n/a" means that the corresponding interval <l>-<m> should be omitted.

NOTE The I_MPI_ADJUST_SENDRECV_REPLACE=2 ("Uniform") algorithm can be used only in the case
when datatype and objects count are the same across all ranks.

To get the maximum number (range) of presets available for each collective operation, use the impi_info
command:

$ impi_info -v I_MPI_ADJUST_ALLREDUCE
I_MPI_ADJUST_ALLREDUCE
 MPI Datatype:
 MPI_CHAR
 Description:
 Control selection of MPI_Allreduce algorithm presets.
 Arguments
 <presetid> - Preset identifier
 range: 0-27

Message Collective Functions
Collective Function Message Size Formula

MPI_Allgather recv_count*recv_type_size

Environment Variable Reference 2

51

Collective Function Message Size Formula

MPI_Allgatherv total_recv_count*recv_type_size
MPI_Allreduce count*type_size
MPI_Alltoall send_count*send_type_size
MPI_Alltoallv n/a

MPI_Alltoallw n/a

MPI_Barrier n/a

MPI_Bcast count*type_size
MPI_Exscan count*type_size
MPI_Gather recv_count*recv_type_size if MPI_IN_PLACE is used, otherwise

send_count*send_type_size
MPI_Gatherv n/a

MPI_Reduce_scatter total_recv_count*type_size
MPI_Reduce count*type_size
MPI_Scan count*type_size
MPI_Scatter send_count*send_type_size if MPI_IN_PLACE is used, otherwise

recv_count*recv_type_size
MPI_Scatterv n/a

Examples

Use the following settings to select the second algorithm for MPI_Reduce operation:
I_MPI_ADJUST_REDUCE=2
Use the following settings to define the algorithms for MPI_Reduce_scatter operation:
I_MPI_ADJUST_REDUCE_SCATTER="4:0-100,5001-10000;1:101-3200;2:3201-5000;3"
In this case. algorithm 4 is used for the message sizes between 0 and 100 bytes and from 5001 and 10000
bytes, algorithm 1 is used for the message sizes between 101 and 3200 bytes, algorithm 2 is used for the
message sizes between 3201 and 5000 bytes, and algorithm 3 is used for all other messages.

I_MPI_ADJUST_<opname>_LIST
Syntax

I_MPI_ADJUST_<opname>_LIST=<presetid1>[-<presetid2>][,<presetid3>][,<presetid4>-
<presetid5>]
Description

Set this environment variable to specify the set of algorithms to be considered by the Intel MPI runtime for a
specified <opname>. This variable is useful in autotuning scenarios, as well as tuning scenarios where users
would like to select a certain subset of algorithms.

NOTE Setting an empty string disables autotuning for the <opname> collective.

I_MPI_COLL_INTRANODE
Syntax

I_MPI_COLL_INTRANODE=<mode>
Arguments

 2 Intel® MPI Library Developer Reference for Linux* OS

52

<mode> Intranode collectives type

pt2pt Use only point-to-point communication-based collectives

shm Enables shared memory collectives. This is the default value

Description

Set this environment variable to switch intranode communication type for collective operations. If there is
large set of communicators, you can switch off the SHM-collectives to avoid memory overconsumption.

I_MPI_COLL_INTRANODE_SHM_THRESHOLD
Syntax

I_MPI_COLL_INTRANODE_SHM_THRESHOLD=<nbytes>
Arguments

<nbytes> Define the maximal data block size processed by shared memory collectives

> 0 Use the specified size. The default value is 16384 bytes.

Description

Set this environment variable to define the size of shared memory area available for each rank for data
placement. Messages greater than this value will not be processed by SHM-based collective operation, but
will be processed by point-to-point based collective operation. The value must be a multiple of 4096.

I_MPI_COLL_EXTERNAL
Syntax

I_MPI_COLL_EXTERNAL=<arg>
Arguments

<arg> Description

enable | yes | on | 1 Enable the external collective operations functionality using available
collectives libraries.

disable | no | off | 0 Disable the external collective operations functionality. This is the default
value.

hcoll Enable the external collective operations functionality using HCOLL library.

Description

Set this environment variable to enable external collective operations. For reaching better performance, use
an autotuner after enabling I_MPI_COLL_EXTERNAL. This process gets the optimal collectives settings.

To force external collective operations usage, use the following I_MPI_ADJUST_<opname> values:
I_MPI_ADJUST_ALLREDUCE=24, I_MPI_ADJUST_BARRIER=11, I_MPI_ADJUST_BCAST=16,
I_MPI_ADJUST_REDUCE=13, I_MPI_ADJUST_ALLGATHER=6, I_MPI_ADJUST_ALLTOALL=5,
I_MPI_ADJUST_ALLTOALLV=5, I_MPI_ADJUST_SCAN=3, I_MPI_ADJUST_EXSCAN=3,
I_MPI_ADJUST_GATHER=5, I_MPI_ADJUST_GATHERV=4, I_MPI_ADJUST_SCATTER=5,
I_MPI_ADJUST_SCATTERV=4, I_MPI_ADJUST_ALLGATHERV=5, I_MPI_ADJUST_ALLTOALLW=2,
I_MPI_ADJUST_REDUCE_SCATTER=6, I_MPI_ADJUST_REDUCE_SCATTER_BLOCK=4,
I_MPI_ADJUST_IALLGATHER=5, I_MPI_ADJUST_IALLGATHERV=5, I_MPI_ADJUST_IGATHERV=3,
I_MPI_ADJUST_IALLREDUCE=9, I_MPI_ADJUST_IALLTOALLV=2, I_MPI_ADJUST_IBARRIER=2,
I_MPI_ADJUST_IBCAST=5, I_MPI_ADJUST_IREDUCE=4.

For more information on HCOLL tuning, refer to NVIDIA* documentation.

I_MPI_COLL_DIRECT
Syntax

Environment Variable Reference 2

53

I_MPI_COLL_DIRECT=<arg>
Arguments

<arg> Description

on Enable direct collectives. This is the default value.

off Disable direct collectives.

Description

Set this environment variable to control direct collectives usage. Disable this variable to eliminate OFI* usage
for intra-node communications in case of shm:ofi fabric.

I_MPI_CBWR
Control reproducibility of floating-point operations results across different platforms, networks, and
topologies in case of the same number of processes.

Syntax

I_MPI_CBWR=<arg>
Arguments

<arg> CBWR compatibility mode Description

0 None Do not use CBWR in a library-wide
mode. CNR-safe communicators may
be created with
MPI_Comm_dup_with_info
explicitly. This is the default value.

1 Weak mode Disable topology aware collectives.
The result of a collective operation
does not depend on the rank
placement. The mode guarantees
results reproducibility across different
runs on the same cluster
(independent of the rank placement).

2 Strict mode Disable topology aware collectives,
ignore CPU architecture, and
interconnect during algorithm
selection. The mode guarantees
results reproducibility across different
runs on different clusters
(independent of the rank placement,
CPU architecture, and
interconnection)

Description

Conditional Numerical Reproducibility (CNR) provides controls for obtaining reproducible floating-point results
on collectives operations. With this feature, Intel MPI collective operations are designed to return the same
floating-point results from run to run in case of the same number of MPI ranks.

Control this feature with the I_MPI_CBWR environment variable in a library-wide manner, where all collectives
on all communicators are guaranteed to have reproducible results. To control the floating-point operations
reproducibility in a more precise and per-communicator way, pass the {“I_MPI_CBWR”, “yes”} key-value
pair to the MPI_Comm_dup_with_info call.

 2 Intel® MPI Library Developer Reference for Linux* OS

54

NOTE
Setting the I_MPI_CBWR in a library-wide mode using the environment variable leads to performance
penalty.

CNR-safe communicators created using MPI_Comm_dup_with_info always work in the strict mode. For
example:

MPI_Info hint;
MPI_Comm cbwr_safe_world, cbwr_safe_copy;
MPI_Info_create(&hint);
MPI_Info_set(hint, “I_MPI_CBWR”, “yes”);
MPI_Comm_dup_with_info(MPI_COMM_WORLD, hint, & cbwr_safe_world);
MPI_Comm_dup(cbwr_safe_world, & cbwr_safe_copy);

In the example above, both cbwr_safe_world and cbwr_safe_copy are CNR-safe. Use cbwr_safe_world and
its duplicates to get reproducible results for critical operations.

Note that MPI_COMM_WORLD itself may be used for performance-critical operations without reproducibility
limitations.

Tuning Environment Variables

I_MPI_TUNING_MODE
Select the tuning method.

Syntax

I_MPI_TUNING_MODE=<arg>
Arguments

<arg > Description

none Disable tuning modes. This is the default value.

auto Enable autotuner.

auto:application Enable autotuner with application focused strategy (alias for auto).

auto:cluster Enable autotuner without application specific logic. This is typically performed
with the help of benchmarks (for example, IMB-MPI1) and proxy applications.

Description

Set this environment variable to enable the autotuner functionality and set the autotuner strategy.

I_MPI_TUNING_BIN
Specify the path to tuning settings in a binary format.

Syntax

I_MPI_TUNING_BIN=<path>
Argument

<path > A path to a binary file with tuning settings. By default, Intel® MPI Library uses
the binary tuning file located at <$I_MPI_ONEAPI_ROOT/etc>.

Description

Set this environment variable to load tuning settings in a binary format.

Environment Variable Reference 2

55

I_MPI_TUNING_BIN_DUMP
Specify the file for storing tuning settings in a binary format.

Syntax

I_MPI_TUNING_BIN_DUMP=<filename>
Argument

<filename> A file name of a binary that stores tuning settings. By default, the path is not
specified.

Description

Set this environment variable to store tuning settings in binary format.

I_MPI_TUNING
Load tuning settings in a JSON format.

Syntax

I_MPI_TUNING=<path>
Argument

<path> A path to a JSON file with tuning settings.

Description

Set this environment variable to load tuning settings in a JSON format.

NOTE The tuning settings in the JSON format are produced by the mpitune utility.

By default, the Intel® MPI Library loads tuning settings in a binary format. If it is not possible, the Intel MPI
Library loads the tuning file in a JSON format specified through the I_MPI_TUNING environment variable.
Thus, to enable JSON tuning, turn off the default binary tuning: I_MPI_TUNING_BIN="". If it is not possible
to load tuning settings from a JSON file and in a binary format, the default tuning values are used.

You do not need to turn off binary or JSON tuning settings if you use I_MPI_ADJUST family environment
variables. The algorithms specified with I_MPI_ADJUST environment variables always have priority over
binary and JSON tuning settings.

See Also
• Autotuning
• Environment Variables for Autotuning

Autotuning
If an application spends significant time in MPI collective operations, tuning might improve its performance.

Tuning is very dependent on the specifications of the particular platform. Autotuner searches for the best
possible implementation of a collective operation during application runtime. Each collective operation has its
own presets, which consist of the algorithm and its parameters, that the autotuning function goes through
and then evaluates the performance of each one. Once autotuning has evaluated the search space, it
chooses the fastest implementation and uses it for the rest of the application runtime, and this improves
application performance. The autotuner search space can be modified by the
I_MPI_ADJUST_<opname>_LIST variable (see I_MPI_ADJUST Family Environment Variables).

 2 Intel® MPI Library Developer Reference for Linux* OS

56

Autotuner determines the tuning parameters and makes them available for autotuning using
I_MPI_TUNING_MODE and the I_MPI_TUNING_AUTO family environment variables to find the best settings
(see Tuning Environment Variables and I_MPI_TUNING_AUTO Family Environment Variables).

NOTEI_MPI_TUNING_MODE and the I_MPI_TUNING_AUTO family environment variables support only
Intel processors, and cannot be used on other platforms.

The collectives currently available for autotuning are: MPI_Allreduce, MPI_Bcast, MPI_Barrier, MPI_Reduce,
MPI_Gather, MPI_Scatter, MPI_Alltoall, MPI_Allgatherv, MPI_Reduce_scatter, MPI_Reduce_scatter_block,
MPI_Scan, MPI_Exscan, MPI_Iallreduce, MPI_Ibcast, MPI_Ibarrier, MPI_Ireduce, MPI_Igather, MPI_Iscatter,
MPI_Ialltoall, MPI_Iallgatherv, MPI_Ireduce_scatter, MPI_Ireduce_scatter_block, MPI_Iscan, and
MPI_Iexscan.

Using autotuner involves these steps:

1. Launch the application with autotuner enabled and specify the dump file that stores results:
I_MPI_TUNING_MODE=auto
I_MPI_TUNING_BIN_DUMP=<tuning-results.dat>

2. Launch the application with the tuning results generated at the previous step:
I_MPI_TUNING_BIN= ./tuning-results.dat
Or use the -tune Hydra option.

If you experience performance issues, see I_MPI_TUNING_AUTO Family Environment Variables.

Examples

•$ export I_MPI_TUNING_MODE=auto
$ export I_MPI_TUNING_AUTO_SYNC=1
$ export I_MPI_TUNING_AUTO_ITER_NUM=5
$ export I_MPI_TUNING_BIN_DUMP=<tuning_results.dat>
$ mpirun -n 128 -ppn 64 IMB-MPI1 allreduce -iter 1000,800 -time 4800

•$ export I_MPI_TUNING_BIN=./tuning_results.dat
 $ mpirun -n 128 -ppn 64 IMB-MPI1 allreduce -iter 1000,800 -time 4800

NOTE To tune collectives on a communicator identified with the help of Application Performance
Snapshot (APS), execute the following variable at step 1:
I_MPI_TUNING_AUTO_COMM_LIST=comm_id_1, … , comm_id_n.

See Also
I_MPI_TUNING_AUTO Family Environment Variables

mpitune_fast
Make HPC Clusters More Efficient Using Intel® MPI Library Tuning Utilities

I_MPI_TUNING_AUTO Family Environment Variables

NOTE You must set I_MPI_TUNING_MODE to use any of the I_MPI_TUNING_AUTO family environment
variables.

NOTE The I_MPI_TUNING_AUTO family environment variables support only Intel processors, and
cannot be used on other platforms.

Environment Variable Reference 2

57

https://www.intel.com/content/www/us/en/developer/articles/technical/hpc-clusters-more-efficient-mpi-library-tuning.html

I_MPI_TUNING_AUTO_STORAGE_SIZE
Define size of the per-communicator tuning storage.

Syntax

I_MPI_TUNING_AUTO_STORAGE_SIZE=<size>
Argument

<size> Specify size of the communicator tuning storage. The
default size of the storage is 512 Kb.

Description

Set this environment variable to change the size of the communicator tuning storage.

I_MPI_TUNING_AUTO_ITER_NUM
Specify the number of autotuner iterations.

Syntax

I_MPI_TUNING_AUTO_ITER_NUM=<number>
Argument

<number> Define the number of iterations. By default, it is 1.

Description

Set this environment variable to specify the number of autotuner iterations. The greater iteration number
produces more accurate results.

NOTE To check if all possible algorithms are iterated, make sure that the total number of collective
invocations for a particular message size in a target application is at least equal the value of
I_MPI_TUNING_AUTO_ITER_NUM multiplied by the number of algorithms.

I_MPI_TUNING_AUTO_WARMUP_ITER_NUM
Specify the number of warmup autotuner iterations.

Syntax

I_MPI_TUNING_AUTO_WARMUP_ITER_NUM=<number>
Argument

<number> Define the number of iterations. By default, it is 1.

Description

Set this environment variable to specify the number of autotuner warmup iterations. Warmup iterations do
not impact autotuner decisions and allow to skip additional iterations, such as infrastructure preparation.

I_MPI_TUNING_AUTO_SYNC
Enable the internal barrier on every iteration of the autotuner.

Syntax

I_MPI_TUNING_AUTO_SYNC=<arg>
Argument

<arg> Binary indicator

 2 Intel® MPI Library Developer Reference for Linux* OS

58

enable | yes | on | 1 Align the autotuner with the IMB measurement approach.

disable | no | off | 0 Do not use the barrier on every iteration of the autotuner.
This is the default value.

Description

Set this environment variable to control the IMB measurement logic. Setting this variable to 1 may lead to
overhead due to an additional MPI_Barrier call.

I_MPI_TUNING_AUTO_COMM_LIST
Control the scope of autotuning.

Syntax

I_MPI_TUNING_AUTO_COMM_LIST=<comm_id_1, ..., comm_id_n>
Argument

<comm_id_n, ...> Specify communicators to be tuned.

Description

Set this environment variable to specify communicators to be tuned using their unique id. By default, the
variable is not specified. In this case, all communicators in the application are involved into the tuning
process.

Environment Variable Reference 2

59

NOTE To get the list of communicators available for tuning, use the Application Performance Snapshot
(APS) tool, which supports per communicator profiling starting with the 2019 Update 4 release. For
example:

1. Source apsvars.sh:
$ source <path_to_aps>/apsvars.sh

2. Gather APS statistics:

$ export MPS_STAT_LEVEL=5
$ export APS_COLLECT_COMM_IDS=1
mpirun -aps -n 128 -ppn 64 IMB-MPI1 allreduce -npmin 128 -iter 1000,800 -time 4800

3. Generate an APS report:

$ aps-report aps_result_20190228/ -lFE
4. Get the results:

Communicators used in the application
Communicator Id Communicator Size Time (Rank Average)(sec) Ranks

4611686018431582688 4 1.80 (0.45) 0,1,2,3

4611686018431582208 4 0.59 (0.15) 0,1,2,3

4611686018429485552 2 0.51 (0.25) 0,1

4611686018429485520 2 0.01 (0.00) 0,1

4611686018431582672 4 0.00 (0.00) 0,1,2,3

5. Specify the communicators to be tuned:

$ export I_MPI_TUNING_AUTO_COMM_LIST=4611686018431582688
$ export MPS_STAT_LEVEL=5
$ export APS_COLLECT_COMM_IDS=1
$ export I_MPI_TUNING_AUTO=1
$ mpirun -aps -n 128 -ppn 64 IMB-MPI1 allreduce -iter 1000,800 -time 4800

I_MPI_TUNING_AUTO_COMM_DEFAULT
Mark all communicators with the default value.

Syntax

I_MPI_TUNING_AUTO_COMM_DEFAULT=<arg>
Argument

<arg> Binary indicator
enable | yes | on | 1 Mark communicators.

disable | no | off | 0 Do not mark communicators. This is the default value.

Description

Set this environment variable to mark all communicators in an application with the default value. In this
case, all communicators will have the identical default comm_id equal to -1.

 2 Intel® MPI Library Developer Reference for Linux* OS

60

https://software.intel.com/sites/products/snapshots/application-snapshot/

I_MPI_TUNING_AUTO_COMM_USER
Enable communicator marking with a user value.

Syntax

I_MPI_TUNING_AUTO_COMM_USER=<arg>
Argument

<arg> Binary indicator
enable | yes | on | 1 Enable marking of communicators.

disable | no | off | 0 Disable marking of communicators. This is the default
value.

Description

Set this environment variable to enable communicator marking with a user value. To mark a communicator in
your application, use the MPI_Info object for this communicator that contains a record with the comm_id key.
The key must belong the 0...UINT64_MAX range.

I_MPI_TUNING_AUTO_ITER_POLICY
Control the iteration policy logic.

Syntax

_MPI_TUNING_AUTO_ITER_POLICY=<arg>
Argument

<arg> Binary indicator
enable | yes | on | 1 Reduce the number of iterations with a message size

increase after 64Kb (by half). This is the default value.
disable | no | off | 0 Use the I_MPI_TUNING_AUTO_ITER_NUM value.

This value affects warmup iterations.
Description

Set this environment variable to control the autotuning iteration policy logic.

I_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD
Control the message size limit for the I_MPI_TUNING_AUTO_ITER_POLICY environment variable.

Syntax

I_MPI_TUNING_AUTO_ITER_POLICY_THRESHOLD=<arg>
Argument

<arg> Define the value. By default, it is 64KB.

Description

Set this environment variable to control the message size limit for the autotuning iteration policy logic
(I_MPI_TUNING_AUTO_ITER_POLICY).

I_MPI_TUNING_AUTO_POLICY
Choose the best algorithm identification strategy.

Syntax

I_MPI_TUNING_AUTO_POLICY=<arg>
Argument

<arg> Description
max Choose the best algorithm based on a maximum time

value. This is the default value.

Environment Variable Reference 2

61

min Choose the best algorithm based on a minimum time
value.

avg Choose the best algorithm based on an average time
value.

Description

Set this environment variable to control the autotuning strategy and choose the best algorithm based on the
time value across ranks involved into the tuning process.

Process Pinning
Use this feature to pin a particular MPI process to a corresponding set of CPUs within a node and avoid
undesired process migration. This feature is available on operating systems that provide the necessary kernel
interfaces.

This page describes the pinning process. You can simulate your pinning configuration using the Pinning
Simulator for Intel MPI Library.

Processor Identification
The following schemes are used to identify logical processors in a system:

• System-defined logical enumeration
• Topological enumeration based on three-level hierarchical identification through triplets (package/socket,

core, thread)

The number of a logical CPU is defined as the corresponding position of this CPU bit in the kernel affinity bit-
mask. Use the cpuinfo utility, provided with your Intel MPI Library installation or the cat /proc/cpuinfo
command to find out the logical CPU numbers.

The three-level hierarchical identification uses triplets that provide information about processor location and
their order. The triplets are hierarchically ordered (package, core, and thread).

See the example for one possible processor numbering where there are two sockets, four cores (two cores
per socket), and eight logical processors (two processors per core).

NOTE Logical and topological enumerations are not the same.

Logical Enumeration
0 4 1 5 2 6 3 7

Hierarchical Levels
Socket 0 0 0 0 1 1 1 1

Core 0 0 1 1 0 0 1 1

Thread 0 1 0 1 0 1 0 1

Topological Enumeration
0 1 2 3 4 5 6 7

Use the cpuinfo utility to identify the correspondence between the logical and topological enumerations. See
Processor Information Utility for more details.

Default Settings
If you do not specify values for any process pinning environment variables, the default settings below are
used. For details about these settings, see Environment Variables and Interoperability with OpenMP API.

• I_MPI_PIN=on
• I_MPI_PIN_RESPECT_CPUSET=on

 2 Intel® MPI Library Developer Reference for Linux* OS

62

https://software.intel.com/content/www/us/en/develop/articles/pinning-simulator-for-intel-mpi-library.html
https://software.intel.com/content/www/us/en/develop/articles/pinning-simulator-for-intel-mpi-library.html

• I_MPI_PIN_RESPECT_HCA=on
• I_MPI_PIN_CELL=unit
• I_MPI_PIN_DOMAIN=auto:compact
• I_MPI_PIN_ORDER=bunch

NOTE If hyperthreading is on, the number or processes on the node is greater than the number of
cores and no one process pinning environment variable is set. For better performance, the "spread"
order will automatically be used instead of the default "compact" order.

Environment Variables for Process Pinning

I_MPI_PIN
Turn on/off process pinning.

Syntax

I_MPI_PIN=<arg>
Arguments
<arg> Binary indicator

enable | yes | on
| 1

Enable process pinning. This is the default value.

disable | no |
off | 0

Disable process pinning.

Description

Set this environment variable to control the process pinning feature of the Intel® MPI Library.

I_MPI_PIN_PROCESSOR_LIST (I_MPI_PIN_PROCS)
Define a processor subset and the mapping rules for MPI processes within this subset.

This environment variable is available for both Intel and non-Intel microprocessors, but it may perform
additional optimizations for Intel microprocessors than it performs for non-Intel microprocessors.

Syntax Forms

I_MPI_PIN_PROCESSOR_LIST=<value>
The environment variable value has three syntax forms:

1. <proclist>
2. [<procset>][:[grain=<grain>][,shift=<shift>][,preoffset=<preoffset>]

[,postoffset=<postoffset>]
3. [<procset>][:map=<map>]
The following paragraphs provide detailed descriptions for each of these syntax forms.

NOTE The postoffset keyword has offset alias.

Environment Variable Reference 2

63

NOTE The second form of the pinning procedure has three steps:

1. Circular shift of the source processor list on preoffset*grain value.
2. Round robin shift of the list derived on the first step on shift*grain value.
3. Circular shift of the list derived on the second step on the postoffset*grain value.

NOTE The grain, shift, preoffset, and postoffset parameters have a unified definition style.

Syntax 1: <proclist>

I_MPI_PIN_PROCESSOR_LIST=<proclist>
Arguments
<proclis
t>

A comma-separated list of logical processor numbers and/or ranges of processors. The process with the
i-th rank is pinned to the i-th processor in the list. The number should not exceed the number of
processors on a node.

<l> Processor with logical number <l>.
<l>-<m> Range of processors with logical numbers from <l> to <m>.
<k>,<l>-
<m>

Processors <k>, as well as <l> through <m>.

Syntax 2: [<procset>][:[grain=<grain>][,shift=<shift>][,preoffset=
I_MPI_PIN_PROCESSOR_LIST=[<procset>][:[grain=<grain>][,shift=<shift>]
[,preoffset=<preoffset>][,postoffset=<postoffset>]
Arguments
<procset
>

Specify a processor subset based on the topological numeration. The default value is allcores.

all All logical processors. Specify this subset to define the number of CPUs on a node.

allcores All cores (physical CPUs). Specify this subset to define the number of cores on a node. This
is the default value.

If Intel® Hyper-Threading Technology is disabled, allcores equals to all.
allsocks All packages/sockets. Specify this subset to define the number of sockets on a node.

<grain> Specify the pinning granularity cell for a defined <procset>. The minimal <grain>value is a single
element of the <procset>. The maximal <grain> value is the number of <procset> elements in a
socket. The <grain>value must be a multiple of the <procset> value. Otherwise, the minimal
<grain> value is assumed. The default value is the minimal <grain> value.

<shift> Specify the granularity of the round robin scheduling shift of the cells for the <procset>. <shift>is
measured in the defined <grain>units. The <shift>value must be positive integer. Otherwise, no
shift is performed. The default value is no shift, which is equal to 1 normal increment.

<preoffse
t>

Specify the circular shift of the processor subset <procset>defined before the round robin shifting on
the <preoffset>value. The value is measured in the defined <grain>units. The
<preoffset>value must be non-negative integer. Otherwise, no shift is performed. The default value
is no shift.

<postoffs
et>

Specify the circular shift of the processor subset <procset>derived after round robin shifting on the
<postoffset>value. The value is measured in the defined <grain>units. The <postoffset>value
must be non-negative integer. Otherwise no shift is performed. The default value is no shift.

The following table displays the values for <grain>, <shift>, <preoffset>, and <postoffset> options:

<n> Specify an explicit value of the corresponding parameters. <n>is non-negative integer.
fine Specify the minimal value of the corresponding parameter.

 2 Intel® MPI Library Developer Reference for Linux* OS

64

https://en.wikipedia.org/wiki/Circular_shift
https://en.wikipedia.org/wiki/Round-robin_scheduling

core Specify the parameter value equal to the amount of the corresponding parameter units contained in
one core.

cache1 Specify the parameter value equal to the amount of the corresponding parameter units that share an
L1 cache.

cache2 Specify the parameter value equal to the amount of the corresponding parameter units that share an
L2 cache.

cache3 Specify the parameter value equal to the amount of the corresponding parameter units that share an
L3 cache.

cache The largest value among cache1, cache2, and cache3.
socket |
sock

Specify the parameter value equal to the amount of the corresponding parameter units contained in
one physical package/socket.

half |
mid

Specify the parameter value equal to socket/2.

third Specify the parameter value equal to socket/3.
quarter Specify the parameter value equal to socket/4.
octavo Specify the parameter value equal to socket/8.

Syntax 3: [<procset>][:map=<map>]
I_MPI_PIN_PROCESSOR_LIST=[<procset>][:map=<map>]
Arguments
<map> The mapping pattern used for process placement.

bunch The processes are mapped proportionally to sockets and the processes are ordered as close as possible
on the sockets.

scatter The processes are mapped as remotely as possible so as not to share common resources: FSB, caches,
and core.

spread The processes are mapped consecutively with the possibility not to share common resources.

Description

Set the I_MPI_PIN_PROCESSOR_LIST environment variable to define the processor placement. To avoid
conflicts with different shell versions, the environment variable value may need to be enclosed in quotes.

NOTE This environment variable is valid only if I_MPI_PIN is enabled.

The I_MPI_PIN_PROCESSOR_LIST environment variable has the following different syntax variants:

• Explicit processor list. This comma-separated list is defined in terms of logical processor numbers. The
relative node rank of a process is an index to the processor list such that the i-th process is pinned on i-th
list member. This permits the definition of any process placement on the CPUs.

For example, process mapping for I_MPI_PIN_PROCESSOR_LIST=p0,p1,p2,...,pn is as follows:

Rank on a
node

0 1 2 ... n-1 N

Logical CPU p0 p1 p2 ... pn-1 Pn
• grain/shift/offset mapping. This method provides circular shift of a defined grain along the

processor list with steps equal to shift*grain and a single shift on offset*grain at the end. This
shifting action is repeated shift times.

For example: grain = 2 logical processors, shift = 3 grains, offset = 0.

Environment Variable Reference 2

65

• Predefined mapping scenario. In this case, popular process pinning schemes are defined as keywords
selectable at runtime. There are two such scenarios: bunch and scatter.

In the bunch scenario the processes are mapped proportionally to sockets as closely as possible. This
mapping makes sense for partial processor loading. In this case, the number of processes is less than the
number of processors.

In the scatter scenario the processes are mapped as remotely as possible so as not to share common
resources: FSB, caches, and cores.

In the example, there are two sockets, four cores per socket, one logical CPU per core, and two cores per
shared cache.

 2 Intel® MPI Library Developer Reference for Linux* OS

66

Examples

To pin the processes to CPU0 and CPU3 on each node globally, use the following command:

$ mpirun -genv I_MPI_PIN_PROCESSOR_LIST=0,3 -n <number-of-processes><executable>
To pin the processes to different CPUs on each node individually (CPU0 and CPU3 on host1 and CPU0, CPU1
and CPU3 on host2), use the following command:

$ mpirun -host host1 -env I_MPI_PIN_PROCESSOR_LIST=0,3 -n <number-of-processes> <executable> : \
-host host2 -env I_MPI_PIN_PROCESSOR_LIST=1,2,3 -n <number-of-processes> <executable>

To print extra debugging information about process pinning, use the following command:

$ mpirun -genv I_MPI_DEBUG=4 -m -host host1 \
-env I_MPI_PIN_PROCESSOR_LIST=0,3 -n <number-of-processes> <executable> :\
-host host2 -env I_MPI_PIN_PROCESSOR_LIST=1,2,3 -n <number-of-processes> <executable>

NOTE If the number of processes is greater than the number of CPUs used for pinning, the process list
is wrapped around to the start of the processor list.

I_MPI_PIN_PROCESSOR_EXCLUDE_LIST
Define a subset of logical processors to be excluded for the pinning capability on the intended hosts.

Syntax

I_MPI_PIN_PROCESSOR_EXCLUDE_LIST=<proclist>
Arguments

<proclist> A comma-separated list of logical processor numbers and/or ranges of processors.

<l> Processor with logical number <l>.

<l>-<m> Range of processors with logical numbers from <l>to <m>.

<k>,<l>-<m> Processors <k>, as well as <l>through <m>.

Description

Set this environment variable to define the logical processors that Intel® MPI Library does not use for pinning
capability on the intended hosts. Logical processors are numbered as in /proc/cpuinfo.

Environment Variable Reference 2

67

I_MPI_PIN_CELL
Set this environment variable to define the pinning resolution granularity. I_MPI_PIN_CELL specifies the
minimal processor cell allocated when an MPI process is running.

Syntax

I_MPI_PIN_CELL=<cell>
Arguments

<cell> Specify the resolution granularity

unit Basic processor unit (logical CPU)

core Physical processor core

Description

Set this environment variable to define the processor subset used when a process is running. You can choose
from two scenarios:

• all possible CPUs in a node (unit value)
• all cores in a node (core value)

The environment variable has effect on both pinning types:

• one-to-one pinning through the I_MPI_PIN_PROCESSOR_LIST environment variable
• one-to-many pinning through the I_MPI_PIN_DOMAIN environment variable

The default value rules are:

• If you use I_MPI_PIN_DOMAIN, the cell granularity is unit.
• If you use I_MPI_PIN_PROCESSOR_LIST, the following rules apply:

• When the number of processes is greater than the number of cores, the cell granularity is unit.
• When the number of processes is equal to or less than the number of cores, the cell granularity is

core.

NOTE The core value is not affected by the enabling/disabling of Intel® Hyper-Threading Technology
in a system.

I_MPI_PIN_RESPECT_CPUSET
Respect the process affinity mask.

Syntax

I_MPI_PIN_RESPECT_CPUSET=<value>
Arguments

<value> Binary indicator

enable | yes | on
| 1

Respect the process affinity mask. This is the default value.

disable | no | off
| 0

Do not respect the process affinity mask.

Description

If you set I_MPI_PIN_RESPECT_CPUSET=enable, the Hydra process launcher uses job manager's process
affinity mask on each intended host to determine logical processors for applying Intel MPI Library pinning
capability.

 2 Intel® MPI Library Developer Reference for Linux* OS

68

If you set I_MPI_PIN_RESPECT_CPUSET=disable, the Hydra process launcher uses its own process affinity
mask to determine logical processors for applying Intel MPI Library pinning capability.

I_MPI_PIN_RESPECT_HCA
In the presence of Infiniband architecture* host channel adapter (IBA* HCA), adjust the pinning according to
the location of IBA HCA.

Syntax

I_MPI_PIN_RESPECT_HCA=<value>
Arguments

<value> Binary indicator

enable | yes | on
| 1

Use the location of IBA HCA if available. This is the default value.

disable | no | off
| 0

Do not use the location of IBA HCA.

Description

If you set I_MPI_PIN_RESPECT_HCA=enable , the Hydra process launcher uses the location of IBA HCA on
each intended host for applying Intel MPI Library pinning capability.

If you set I_MPI_PIN_RESPECT_HCA=disable, the Hydra process launcher does not use the location of IBA
HCA on each intended host for applying Intel MPI Library pinning capability.

Interoperability with OpenMP* API

I_MPI_PIN_DOMAIN
Intel® MPI Library provides an additional environment variable to control process pinning for hybrid MPI/
OpenMP* applications. This environment variable is used to define a number of non-overlapping subsets
(domains) of logical processors on a node, and a set of rules on how MPI processes are bound to these
domains by the following formula: one MPI process per one domain. See the picture below.

Figure 1 Domain Example

Environment Variable Reference 2

69

Each MPI process can create a number of children threads for running within the corresponding domain. The
process threads can freely migrate from one logical processor to another within the particular domain.

If the I_MPI_PIN_DOMAIN environment variable is defined, then the I_MPI_PIN_PROCESSOR_LIST
environment variable setting is ignored.

If the I_MPI_PIN_DOMAIN environment variable is not defined, then MPI processes are pinned according to
the current value of the I_MPI_PIN_PROCESSOR_LIST environment variable.

The I_MPI_PIN_DOMAIN environment variable has the following syntax forms:

• Domain description through multi-core terms <mc-shape>
• Domain description through domain size and domain member layout <size>[:<layout>]
• Explicit domain description through bit mask <masklist>

The following tables describe these syntax forms.

Multi-Core Shape

I_MPI_PIN_DOMAIN=<mc-shape>

<mc-shape> Define domains through multi-core terms.

core Each domain consists of the logical processors that share a particular core. The
number of domains on a node is equal to the number of cores on the node.

socket | sock Each domain consists of the logical processors that share a particular socket.
The number of domains on a node is equal to the number of sockets on the
node. This is the recommended value.

numa Each domain consists of the logical processors that share a particular NUMA
node. The number of domains on a machine is equal to the number of NUMA
nodes on the machine.

node All logical processors on a node are arranged into a single domain.

cache1 Logical processors that share a particular level 1 cache are arranged into a
single domain.

cache2 Logical processors that share a particular level 2 cache are arranged into a
single domain.

cache3 Logical processors that share a particular level 3 cache are arranged into a
single domain.

cache The largest domain among cache1, cache2, and cache3 is selected.

NOTE If Cluster on Die is disabled on a machine, the number of NUMA nodes equals to the number
of sockets. In this case, pinning for I_MPI_PIN_DOMAIN = numa is equivalent to pinning for
I_MPI_PIN_DOMAIN = socket.

Explicit Shape

I_MPI_PIN_DOMAIN=<size>[:<layout>]

<size> Define a number of logical processors in each domain (domain size)

omp The domain size is equal to the OMP_NUM_THREADS environment variable
value. If the OMP_NUM_THREADS environment variable is not set, each node
is treated as a separate domain.

auto The domain size is defined by the formula size=#cpu/#proc, where #cpu
is the number of logical processors on a node, and #proc is the number of
the MPI processes started on a node

<n> The domain size is defined by a positive decimal number <n>

 2 Intel® MPI Library Developer Reference for Linux* OS

70

<layout> Ordering of domain members. The default value is compact
platform Domain members are ordered according to their BIOS numbering (platform-

depended numbering)

compact Domain members are located as close to each other as possible in terms of
common resources (cores, caches, sockets, and so on). This is the default
value

scatter Domain members are located as far away from each other as possible in terms
of common resources (cores, caches, sockets, and so on)

Explicit Domain Mask

I_MPI_PIN_DOMAIN=<masklist>
<masklist> Define domains through the comma separated list of hexadecimal numbers

(domain masks)

[m1,...,mn] For <masklist>, each mi is a hexadecimail bit mask defining an
individual domain. The following rule is used: the ith logical processor
is included into the domain if the corresponding mi value is set to 1.
All remaining processors are put into a separate domain. BIOS
numbering is used.

NOTE To ensure that your configuration in <masklist> is parsed
correctly, use square brackets to enclose the domains specified by the
<masklist>. For example: I_MPI_PIN_DOMAIN=[55,aa]

NOTE These options are available for both Intel® and non-Intel microprocessors, but they may
perform additional optimizations for Intel microprocessors than they perform for non-Intel
microprocessors.
To pin OpenMP* processes or threads inside the domain, the corresponding OpenMP feature (for
example, the KMP_AFFINITY environment variable for Intel® compilers) should be used.

NOTE The following configurations are effectively the same as if pinning is not applied:

• If you set I_MPI_PIN_DOMAIN=auto and a single process is running on a node (for example, due to
I_MPI_PERHOST=1)

• I_MPI_PIN_DOMAIN=node
If you do not want the process to be migrated between sockets on a multi-socket platform, specify the
domain size as I_MPI_PIN_DOMAIN=socket or smaller.

You can also use I_MPI_PIN_PROCESSOR_LIST, which produces a single-cpu process affinity mask for
each rank (the affinity mask is supposed to be automatically adjusted in presence of IBA* HCA).

See the following model of a symmetric multiprocessing (SMP) node in the examples:

Figure 2 Model of a Node

Environment Variable Reference 2

71

The figure above represents the SMP node model with a total of 8 cores on 2 sockets. Intel® Hyper-Threading
Technology is disabled. Core pairs of the same color share the L2 cache.

Figure 3 mpi run -n 2 -env I_MPI_PIN_DOMAIN socket ./a.out

In Figure 3, two domains are defined according to the number of sockets. Process rank 0 can migrate on all
cores on the 0-th socket. Process rank 1 can migrate on all cores on the first socket.

Figure 4 mpi run -n 4 -env I_MPI_PIN_DOMAIN cache2 ./a.out

In Figure 4, four domains are defined according to the amount of common L2 caches. Process rank 0 runs on
cores {0,4} that share an L2 cache. Process rank 1 runs on cores {1,5} that share an L2 cache as well, and
so on.

 2 Intel® MPI Library Developer Reference for Linux* OS

72

Figure 5 mpi run -n 2 -env I_MPI_PIN_DOMAIN 4:platform ./a.out

In Figure 5, two domains with size=4 are defined. The first domain contains cores {0,1,2,3}, and the second
domain contains cores {4,5,6,7}. Domain members (cores) have consecutive numbering as defined by the
platform option.

Figure 6 mpi run -n 4 -env I_MPI_PIN_DOMAIN auto:scatter ./a.out

In Figure 6, domain size=2 (defined by the number of CPUs=8 / number of processes=4), scatter layout.
Four domains {0,2}, {1,3}, {4,6}, {5,7} are defined. Domain members do not share any common
resources.

Figure 7 setenv OMP_NUM_THREADS=2 mpi run -n 4 -env I_MPI_PIN_DOMAIN omp:platform ./a.out

Environment Variable Reference 2

73

In Figure 7, domain size=2 (defined by OMP_NUM_THREADS=2), platform layout. Four domains {0,1}, {2,3},
{4,5}, {6,7} are defined. Domain members (cores) have consecutive numbering.

Figure 8 mpi run -n 2 -env I_MPI_PIN_DOMAIN [55,aa] ./a.out

In Figure 8 (the example for I_MPI_PIN_DOMAIN=<masklist>), the first domain is defined by the 55 mask.
It contains all cores with even numbers {0,2,4,6}. The second domain is defined by the AA mask. It contains
all cores with odd numbers {1,3,5,7}.

I_MPI_PIN_ORDER
Set this environment variable to define the mapping order for MPI processes to domains as specified by the
I_MPI_PIN_DOMAIN environment variable.

Syntax

I_MPI_PIN_ORDER=<order>
Arguments

<order> Specify the ranking order

range The domains are ordered according to the processor's BIOS numbering. This is
a platform-dependent numbering.

scatter The domains are ordered so that adjacent domains have minimal sharing of
common resources, whenever possible.

 2 Intel® MPI Library Developer Reference for Linux* OS

74

compact The domains are ordered so that adjacent domains share common resources
as much as possible.

spread The domains are ordered consecutively with the possibility not to share
common resources.

bunch The processes are mapped proportionally to sockets and the domains are
ordered as close as possible on the sockets. This is the default value.

Description

The optimal setting for this environment variable is application-specific. If adjacent MPI processes prefer to
share common resources, such as cores, caches, sockets, FSB, use the compact or bunch values. Otherwise,
use the scatter or spread values. Use the range value as needed. For detail information and examples
about these values, see the Arguments table and the Example section of I_MPI_PIN_ORDER in this topic.

The options scatter, compact, spread and bunch are available for both Intel® and non-Intel
microprocessors, but they may perform additional optimizations for Intel microprocessors than they perform
for non-Intel microprocessors.

Examples

For the following configuration:

• Two socket nodes with four cores and a shared L2 cache for corresponding core pairs.
• 4 MPI processes you want to run on the node using the settings below.

Compact order:

I_MPI_PIN_DOMAIN=2 I_MPI_PIN_ORDER=compact
Figure 9 Compact Order Example

Scatter order:

I_MPI_PIN_DOMAIN=2 I_MPI_PIN_ORDER=scatter
Figure 10 Scatter Order Example

Environment Variable Reference 2

75

Spread order:

I_MPI_PIN_DOMAIN=2 I_MPI_PIN_ORDER=spread

NOTE For I_MPI_PIN_ORDER=spread, the order will be switched to 'compact' if there are not enough
CPUs to emplace all domains.

Figure 11 Spread Order Example

Bunch order:

I_MPI_PIN_DOMAIN=2 I_MPI_PIN_ORDER=bunch
Figure 12 Bunch Order Example

 2 Intel® MPI Library Developer Reference for Linux* OS

76

GPU Support
This section provides information about the following GPU devices support in Intel® MPI Library:

1. GPU pinning
2. GPU buffers support

These features require the Level-Zero* library to be installed on the nodes. All environment variables have
I_MPI_OFFLOAD_* prefix.

Current support is limited to Intel® GPUs only.

I_MPI_OFFLOAD
Set this environment variable to enable all GPU features.

Syntax

I_MPI_OFFLOAD=<value>
Arguments

Value Description

0 Disabled (default value)

1 Auto. Intel MPI expects that libze_loader.so is already loaded and does not
load it twice

2 Enabled. Intel MPI loads libze_loader.so

Description

Set this environment variable to enable all GPU features such as GPU pinning and GPU buffers support, which
give you ability to distribute devices between MPI ranks and provide a pointer of an offloaded memory to MPI
functions.

I_MPI_OFFLOAD_LEVEL_ZERO_LIBRARY
Specify the name and full path to the Level-Zero library.

Syntax

I_MPI_OFFLOAD_LEVEL_ZERO_LIBRARY="<path>/<name>"

Arguments

<path> Full path to the Level-Zero library.

<name> Name of the Level-Zero library.

Environment Variable Reference 2

77

Description

Set this environment variable to specify the name and full path to Level-Zero library. Set this variable if
Level-Zero is not located in the default path. Default value: libze_loader.so.

Environment Variables for Fabrics Control
This section provides description of the general environment variables for controlling fabrics, as well as
description of variables for controlling specific fabrics:

• Communication Fabrics Control
• Shared Memory Control
• OFI*-capable network fabrics

Communication Fabrics Control

I_MPI_FABRICS
Select the particular fabrics to be used.

Syntax

I_MPI_FABRICS=ofi | shm:ofi | shm
Arguments

<fabric> Define a network fabric.

shm Shared memory transport (used for intra-node communication only).

ofi OpenFabrics Interfaces* (OFI)-capable network fabrics, such as Intel® Omni-
Path Architecture, InfiniBand*, and Ethernet (through OFI API).

Description

Set this environment variable to select a specific fabric combination.

The default values are shm:ofi for the regular mode and ofi for the multiple endpoints mode. In the
multiple endpoints mode, the default value ofi cannot be changed.

NOTE
This option is not applicable to slurm and pdsh bootstrap servers.

NOTE
DAPL, TMI, and OFA fabrics are deprecated.

Shared Memory Control

I_MPI_SHM
Select a shared memory transport to be used.

Syntax

I_MPI_SHM=<transport>
Arguments

<transport> Define a shared memory transport solution.

 2 Intel® MPI Library Developer Reference for Linux* OS

78

disable | no | off | 0 Do not use shared memory transport.

auto Select a shared memory transport solution automatically.

bdw_sse The shared memory transport solution tuned for Intel® microarchitecture code
name Broadwell. The SSE4.2. instruction set is used.

bdw_avx2 The shared memory transport solution tuned for Intel® microarchitecture code
name Broadwell. The AVX2 instruction set is used.

skx_sse The shared memory transport solution tuned for Intel® Xeon® processors based
on Intel® microarchitecture code name Skylake. The CLFLUSHOPT and SSE4.2
instruction set is used.

skx_avx2 The shared memory transport solution tuned for Intel® Xeon® processors based
on Intel® microarchitecture code name Skylake. The CLFLUSHOPT and AVX2
instruction set is used.

skx_avx512 The shared memory transport solution tuned for Intel® Xeon® processors based
on Intel® microarchitecture code name Skylake. The CLFLUSHOPT and AVX512
instruction set is used.

knl_ddr The shared memory transport solution tuned for Intel® microarchitecture code
name Knights Landing.

knl_mcdram The shared memory transport solution tuned for Intel® microarchitecture code
name Knights Landing. Shared memory buffers may be partially located in the
Multi-Channel DRAM (MCDRAM).

clx_sse The shared memory transport solution tuned for Intel® Xeon® processors based
on Intel® microarchitecture code name Cascade Lake. The CLFLUSHOPT and
SSE4.2 instruction set is used.

clx_avx2 The shared memory transport solution tuned for Intel® Xeon® processors based
on Intel® microarchitecture code name Cascade Lake. The CLFLUSHOPT and
AVX2 instruction set is used.

clx_avx512 The shared memory transport solution tuned for Intel® Xeon® processors based
on Intel® microarchitecture code name Cascade Lake. The CLFLUSHOPT and
AVX512 instruction set is used.

clx-ap The shared memory transport solution tuned for Intel® Xeon® processors based
on Intel® microarchitecture code name Cascade Lake Advanced Performance.

icx The shared memory transport solution tuned for Intel® Xeon® processors based
on Intel® microarchitecture code name Ice Lake.

Description

Set this environment variable to select a specific shared memory transport solution.

Automatically selected transports:

• icx for Intel® Xeon® processors based on Intel® microarchitecture code name Ice Lake
• clx-ap for Intel® Xeon® processors based on Intel® microarchitecture code name Cascade Lake Advanced

Performance
• bdw_avx2 for Intel® microarchitecture code name Haswell, Broadwell and Skylake
• skx_avx2 for Intel® Xeon® processors based on Intel® microarchitecture code name Skylake
• ckx_avx2 for Intel® Xeon® processors based on Intel® microarchitecture code name Cascade Lake
• knl_mcdram for Intel® microarchitecture code name Knights Landing and Knights Mill
• bdw_sse for all other platforms

The value of I_MPI_SHM depends on the value of I_MPI_FABRICS as follows: if I_MPI_FABRICS is ofi,
I_MPI_SHM is disabled. If I_MPI_FABRICS is shm:ofi, I_MPI_SHM defaults to auto or takes the specified
value.

Environment Variable Reference 2

79

I_MPI_SHM_CELL_FWD_SIZE
Change the size of a shared memory forward cell.

Syntax
I_MPI_SHM_CELL_FWD_SIZE=<nbytes>
Arguments

<nbytes> The size of a shared memory forward cell in bytes

> 0 The default <nbytes> value depends on the transport used and should
normally range from 64K to 1024K.

Description

Forward cells are in-cache message buffer cells used for sending small amounts of data. Lower values are
recommended. Set this environment variable to define the size of a forward cell in the shared memory
transport.

I_MPI_SHM_CELL_BWD_SIZE
Change the size of a shared memory backward cell.

Syntax
I_MPI_SHM_CELL_BWD_SIZE=<nbytes>
Arguments

<nbytes> The size of a shared memory backward cell in bytes

> 0 The default <nbytes> value depends on the transport used and should
normally range from 64K to 1024K.

Description

Backward cells are out-of-cache message buffer cells used for sending large amounts of data. Higher values
are recommended. Set this environment variable to define the size of a backwrad cell in the shared memory
transport.

I_MPI_SHM_CELL_EXT_SIZE
Change the size of a shared memory extended cell.

Syntax
I_MPI_SHM_CELL_EXT_SIZE=<nbytes>
Arguments

<nbytes> The size of a shared memory extended cell in bytes

> 0 The default <nbytes> value depends on the transport used and should
normally range from 64K to 1024K.

Description

Extended cells are used in the imbalanced applications when forward and backward cells are run out. An
extended cell does not have a specific owner - it is shared between all ranks on the computing node. Set this
environment variable to define the size of an extended cell in the shared memory transport.

I_MPI_SHM_CELL_FWD_NUM
Change the number of forward cells in the shared memory transport (per rank).

Syntax
I_MPI_SHM_CELL_FWD_NUM=<num>

 2 Intel® MPI Library Developer Reference for Linux* OS

80

Arguments

<num> The number of shared memory forward cells

> 0 The default value depends on the transport used and should normally range
from 4 to 16.

Description

Set this environment variable to define the number of forward cells in the shared memory transport.

I_MPI_SHM_CELL_BWD_NUM
Change the number of backward cells in the shared memory transport (per rank).

Syntax

I_MPI_SHM_CELL_BWD_NUM=<num>
Arguments

<num> The number of shared memory backward cells

> 0 The default value depends on the transport used and should normally range
from 4 to 64.

Description

Set this environment variable to define the number of backward cells in the shared memory transport.

I_MPI_SHM_CELL_EXT_NUM_TOTAL
Change the total number of extended cells in the shared memory transport.

Syntax

I_MPI_SHM_CELL_EXT_NUM_TOTAL=<num>
Arguments

<num> The number of shared memory backward cells

> 0 The default value depends on the transport used and should normally range
from 2K to 8K.

Description

Set this environment variable to define the number of extended cells in the shared memory transport.

NOTE
This is not “per rank” number, it is total number of extended cells on the computing node.

I_MPI_SHM_CELL_FWD_HOLD_NUM
Change the number of hold forward cells in the shared memory transport (per rank).

Syntax

I_MPI_SHM_CELL_FWD_HOLD_NUM=<num>
Arguments

<num> The number of shared memory hold forward cells

> 0 The default value depends on the transport used and must be less than
I_MPI_SHM_CELL_FWD_NUM.

Description

Environment Variable Reference 2

81

Set this environment variable to define the number of forward cells in the shared memory transport a rank
can hold at the same time. Recommended values are powers of two in the range between 1 and 8.

I_MPI_SHM_MCDRAM_LIMIT
Change the size of the shared memory bound to the multi-channel DRAM (MCDRAM) (size per rank).

Syntax
I_MPI_SHM_MCDRAM_LIMIT=<nbytes>
Arguments

<nbytes> The size of the shared memory bound to MCDRAM per rank

1048576 This is the default value.

Description

Set this environment variable to define how much MCDRAM memory per rank is allowed for the shared
memory transport. This variable takes effect with I_MPI_SHM=knl_mcdram only.

I_MPI_SHM_SEND_SPIN_COUNT
Control the spin count value for the shared memory transport for sending messages.

Syntax
I_MPI_SHM_SEND_SPIN_COUNT=<count>
Arguments

<count> Define the spin count value. A typical value range is between 1 and 1000.

Description

If the recipient ingress buffer is full, the sender may be blocked until this spin count value is reached. It has
no effect when sending small messages.

I_MPI_SHM_RECV_SPIN_COUNT
Control the spin count value for the shared memory transport for receiving messages.

Syntax
I_MPI_SHM_RECV_SPIN_COUNT=<count>
Arguments

<count> Define the spin count value. A typical value range is between 1 and 1000000.

Description

If the receive is non-blocking, this spin count is used only for safe reorder of expected and unexpected
messages. It has no effect on receiving small messages.

I_MPI_SHM_FILE_PREFIX_4K
Change the mount point of the 4 KB pages size file system (tmpfs) where the shared memory files are
created.

Syntax

I_MPI_SHM_FILE_PREFIX_4K=<path>
Arguments

<path> Define the path to the existed mount point of the 4 KB pages size file system
(tmpfs). By default, the path is not set.

 2 Intel® MPI Library Developer Reference for Linux* OS

82

Description

Set this environment variable to define a new path to the shared memory files. By default, the shared
memory files are created at /dev/shm/.

This variable affects shared memory transport buffers and RMA windows.

Example

I_MPI_SHM_FILE_PREFIX_4K=/dev/shm/intel/

I_MPI_SHM_FILE_PREFIX_2M
Change the mount point of the 2 MB pages size file system (hugetlbfs) where the shared memory files are
created.

Syntax

I_MPI_SHM_FILE_PREFIX_2M=<path>
Arguments

<path> Define the path to the existed mount point of the 2 MB pages size file system
(hugetlbfs). By default, the path is not set.

Description

Set this environment variable to enable 2 MB huge pages on the Intel MPI Library.

The variable affects shared memory transport buffers. It may affect RMA windows as well if the windows size
is greater than or equal to 2 MB.

Example

I_MPI_SHM_FILE_PREFIX_2M=/dev/hugepages

NOTE
The root privileges are required to configure the huge pages subsystem. Contact your system
administrator to obtain permission.

I_MPI_SHM_FILE_PREFIX_1G
Change the mount point of the 1 GB pages size file system (hugetlbfs) where the shared memory files are
created.

Syntax

I_MPI_SHM_FILE_PREFIX_1G=<path>
Arguments

<path> Define the path to the existed mount point of the 1 GB pages size file system
(hugetlbfs). By default, the path is not set.

Description

Set this environment variable to enable 1 GB huge pages on the Intel MPI Library.

The variable affects shared memory transport buffers. It may affect RMA windows as well if the windows size
is greater than or equal to 1 GB.

Example

I_MPI_SHM_FILE_PREFIX_1G=/dev/hugepages1G

Environment Variable Reference 2

83

NOTE
The root privileges are required to configure the huge pages subsystem. Contact your system
administrator to obtain permission.

OFI*-capable Network Fabrics Control

I_MPI_OFI_PROVIDER
Define the name of the OFI provider to load.

Syntax

I_MPI_OFI_PROVIDER=<name>
Arguments

<name> The name of the OFI provider to load

Description

Set this environment variable to define the name of the OFI provider to load. If you do not specify this
variable, the OFI library chooses the provider automatically. You can check all available providers by using
the I_MPI_OFI_PROVIDER_DUMP environment variable. If you set the wrong name for an available provider,
use FI_LOG_LEVEL=debug to get a hint to set the name correctly.

I_MPI_OFI_PROVIDER_DUMP
Control the capability of printing information about all OFI providers and their attributes from an OFI library.

Syntax

I_MPI_OFI_PROVIDER_DUMP=<arg>
Arguments

<arg> Binary indicator

enable | yes | on | 1 Print the list of all OFI providers and their attributes from
an OFI library

disable | no | off | 0 No action. This is the default value

Description

Set this environment variable to control the capability of printing information about all OFI providers and
their attributes from an OFI library.

I_MPI_OFI_DRECV
Control the capability of the direct receive in the OFI fabric.

Syntax

I_MPI_OFI_DRECV=<arg>
Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable direct receive. This is the default value

disable | no | off | 0 Disable direct receive

Description

 2 Intel® MPI Library Developer Reference for Linux* OS

84

Use the direct receive capability to block MPI_Recv calls only. Before using the direct receive capability,
ensure that you use it for single-threaded MPI applications and check if you have selected OFI as the network
fabric by setting I_MPI_FABRICS=ofi.

I_MPI_OFI_LIBRARY_INTERNAL
Control the usage of libfabric* shipped with the Intel® MPI Library.

Syntax

I_MPI_OFI_LIBRARY_INTERNAL=<arg>
Arguments

<arg> Binary indicator

enable | yes | on | 1 Use libfabric from the Intel MPI Library

disable | no | off | 0 Do not use libfabric from the Intel MPI Library

Description

Set this environment variable to disable or enable usage of libfabric from the Intel MPI Library. The variable
must be set before sourcing the vars.sh script.

Example

$ export I_MPI_OFI_LIBRARY_INTERNAL=1
$ source <installdir> /env/vars.sh

Setting this variable is equivalent to passing the -ofi_internal option to the vars.sh script.

For more information, refer to the Intel® MPI Library Developer Guide, section Libfabric* Support.

I_MPI_OFI_TAG_DYNAMIC
Enable dynamic tag partitioning.

Syntax

I_MPI_OFI_TAG_DYNAMIC=<arg>
Arguments

<arg> Binary indicator

enable | yes | on | 1 Enable automatic OFI tag partitioning

disable | no | off | 0 Use static OFI tag layout. This is the default value

Description

Set this environment variable to enable dynamic OFI Netmod tag partitioning based on the run configuration.
You can use it to get larger MPI tag space or to improve scalability in large-scale runs.

Environment Variables for Memory Policy Control
Intel® MPI Library supports non-uniform memory access (NUMA) nodes with high-bandwidth (HBW) memory
(MCDRAM) on Intel® Xeon Phi™ processors (codenamed Knights Landing). Intel® MPI Library can attach
memory of MPI processes to the memory of specific NUMA nodes. This section describes the environment
variables for such memory placement control.

I_MPI_HBW_POLICY
Set the policy for MPI process memory placement for using HBW memory.

Syntax

Environment Variable Reference 2

85

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/running-applications/fabrics-control/libfabric-support.html

I_MPI_HBW_POLICY=<user memory policy>[,<mpi memory policy>][,<win_allocate policy>]
In the syntax:

• <user memory policy> - memory policy used to allocate the memory for user applications (required)
• <mpi memory policy> - memory policy used to allocate the internal MPI memory (optional)
• <win_allocate policy> - memory policy used to allocate memory for window segments for RMA

operations (optional)

Each of the listed policies may have the values below:

Arguments

<value> The memory allocation policy used.

hbw_preferred Allocate the local HBW memory for each process. If the HBW memory is not
available, allocate the local dynamic random access memory.

hbw_bind Allocate only the local HBW memory for each process.

hbw_interleave Allocate the HBW memory and dynamic random access memory on the local
node in the round-robin manner.

Description

Use this environment variable to specify the policy for MPI process memory placement on a machine with
HBW memory.

By default, Intel MPI Library allocates memory for a process in local DDR. The use of HBW memory becomes
available only when you specify the I_MPI_HBW_POLICY variable.

Examples
The following examples demonstrate different configurations of memory placement:

• I_MPI_HBW_POLICY=hbw_bind,hbw_preferred,hbw_bind
Only use the local HBW memory allocated in user applications and window segments for RMA operations.
Use the local HBW memory internally allocated in Intel® MPI Library first. If the HBW memory is not
available, use the local DDR internally allocated in Intel MPI Library.

• I_MPI_HBW_POLICY=hbw_bind,,hbw_bind
Only use the local HBW memory allocated in user applications and window segments for RMA operations.
Use the local DDR internally allocated in Intel MPI Library.

• I_MPI_HBW_POLICY=hbw_bind,hbw_preferred
Only use the local HBW memory allocated in user applications. Use the local HBW memory internally
allocated in Intel MPI Library first. If the HBW memory is not available, use the local DDR internally
allocated in Intel MPI Library. Use the local DDR allocated in window segments for RMA operations.

I_MPI_BIND_NUMA
Set the NUMA nodes for memory allocation.

Syntax

I_MPI_BIND_NUMA=<value>
Arguments

<value> Specify the NUMA nodes for memory allocation.

localalloc Allocate memory on the local node. This is the default value.

Node_1,…,Node_k Allocate memory according to I_MPI_BIND_ORDER on the specified NUMA
nodes.

 2 Intel® MPI Library Developer Reference for Linux* OS

86

Description

Set this environment variable to specify the NUMA node set that is involved in the memory allocation
procedure.

I_MPI_BIND_ORDER
Set this environment variable to define the memory allocation manner.

Syntax

I_MPI_BIND_ORDER=<value>
Arguments

<value> Specify the allocation manner.

compact Allocate memory for processes as close as possible (in terms of NUMA nodes),
among the NUMA nodes specified in I_MPI_BIND_NUMA. This is the default
value.

scatter Allocate memory among the NUMA nodes specified in I_MPI_BIND_NUMA
using the round-robin manner.

Description

Set this environment variable to define the memory allocation manner among the NUMA nodes specified in
I_MPI_BIND_NUMA. The variable has no effect without I_MPI_BIND_NUMA set.

I_MPI_BIND_WIN_ALLOCATE
Set this environment variable to control memory allocation for window segments.

Syntax

I_MPI_BIND_WIN_ALLOCATE=<value>
Arguments

<value> Specify the memory allocation behavior for window segments.

localalloc Allocate memory on the local node. This is the default value.

hbw_preferred Allocate the local HBW memory for each process. If the HBW memory is not
available, allocate the local dynamic random access memory.

hbw_bind Allocate only the local HBW memory for each process.

hbw_interleave Allocate the HBW memory and dynamic random access memory on a local
node in the round-robin manner.

<NUMA node id> Allocate memory on the given NUMA node.

Description

Set this environment variable to create window segments allocated in HBW memory with the help of the
MPI_Win_allocate_shared or MPI_Win_allocate functions.

MPI_Info
You can control memory allocation for window segments with the help of an MPI_Info object, which is
passed as a parameter to the MPI_Win_allocate or MPI_Win_allocate_shared function. In an
application, if you specify such an object with the numa_bind_policy key, window segments are allocated in
accordance with the value for numa_bind_policy. Possible values are the same as for
I_MPI_BIND_WIN_ALLOCATE.

Environment Variable Reference 2

87

A code fragment demonstrating the use of MPI_Info:

MPI_Info info;
...
MPI_Info_create(&info);
MPI_Info_set(info, "numa_bind_policy", "hbw_preferred");
...
MPI_Win_allocate_shared(size, disp_unit, info, comm, &baseptr, &win);

NOTE
When you specify the memory placement policy for window segments, Intel MPI Library recognizes the
configurations according to the following priority:

1. Setting of MPI_Info.
2. Setting of I_MPI_HBW_POLICY, if you specified <win_allocate policy>.
3. Setting of I_MPI_BIND_WIN_ALLOCATE.

Environment Variables for Asynchronous Progress Control

I_MPI_ASYNC_PROGRESS
Control the usage of progress threads.

Syntax

I_MPI_ASYNC_PROGRESS=<arg>
Arguments

<arg> Binary indicator

disable | no | off | 0 Disable asynchronous progress threads for each rank. This
is the default value.

enable | yes | on | 1 Enable asynchronous progress threads.

Description

Set this environment variable to enable asynchronous progress. If disabled, the I_MPI_ASYNC_PROGRESS_*
knobs are ignored.

I_MPI_ASYNC_PROGRESS_THREADS
Control the number of asynchronous progress threads.

Syntax

I_MPI_ASYNC_PROGRESS_THREADS=<arg>
Arguments

<nthreads> Define the number of progress threads. The default value
is 1.

Description

Set this environment variable to control the number of asynchronous progress threads for each rank.

I_MPI_ASYNC_PROGRESS_PIN
Control the asynchronous progress threads pinning.

Syntax

 2 Intel® MPI Library Developer Reference for Linux* OS

88

I_MPI_ASYNC_PROGRESS_PIN=<arg>
Arguments

<arg> Comma-separated list of logical processors

<CPU list> Pin all progress threads of local processes to the listed
CPUs. By default, N progress threads are pinned to the
last N logical processors.

Description

Set this environment variable to control pinning for all progress threads of local processes.

Example

I_MPI_ASYNC_PROGRESS_THREADS=3
I_MPI_ASYNC_PROGRESS_PIN=”0,1,2,3,4,5”

In case of three MPI processes per node, progress threads of the first process are pinned to 0, 1, second are
pinned to 2, 3, and third are pinned to 4, 5.

I_MPI_ASYNC_PROGRESS_ID_KEY
Set the MPI info object key that is used to explicitly define the progress thread id for a communicator.

Syntax

I_MPI_ASYNC_PROGRESS_ID_KEY=<arg>
Arguments

<key> MPI info object key. The default value is thread_id.

Description

Set this environment variable to control the MPI info object key that is used to define the progress thread id
for a communicator. The progress thread id is used for work distribution between progress threads. By
default, communication goes over the first progress thread.

NOTE
Exclude selected processors for progress threads from pinning of computational threads to avoid
oversubscription of cores.

For more information and examples, refer to the Intel® MPI Library Developer Guide, section Asynchronous
Progress Control.

Environment Variables for Multi-EP

I_MPI_THREAD_SPLIT
Syntax

I_MPI_THREAD_SPLIT=<value>
Arguments

Value Binary Indicator

0 | no | off | disable Disable the MPI_THREAD_SPLIT model support. This is the default value.

1 | yes | on | enable Enable the MPI_THREAD_SPLIT model support.

Description

Environment Variable Reference 2

89

https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/additional-supported-features/asynchronous-progress-control.html
https://software.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/additional-supported-features/asynchronous-progress-control.html

Use this environment variable to control the I_MPI_THREAD_SPLIT programming model.

For more information on MPI_THREAD_SPLIT, refer to the Intel® MPI Library Developer Guide, section
MPI_THREAD_SPLIT Programming Model.

I_MPI_THREAD_RUNTIME
Syntax

I_MPI_THREAD_RUNTIME=<value>
Arguments

Value Thread Runtime

generic Enable runtime support (for example, pthreads, TBB). This is the default value
if OpenMP* cannot be detected at runtime.

openmp Enable OpenMP runtime support. This is the default value if OpenMP is
detected at runtime.

Description

Use this environment variable to control threading runtime support.

NOTEI_MPI_THREAD_SPLIT model support is enabled.

I_MPI_THREAD_MAX
Syntax

I_MPI_THREAD_MAX=<int>
Arguments

<int> The maximum number of threads per rank. The default value is
omp_get_max_threads() if I_MPI_THREAD_RUNTIME is set to openmp.
The value is 1 otherwise

Description

Use this environment variable to set the maximum number of threads to be used in each process
concurrently.

I_MPI_THREAD_ID_KEY
Syntax

I_MPI_THREAD_ID_KEY=<string>
Arguments

<string> Define the MPI info object key. The default value is thread_id

Description

Use this environment variable to set the MPI info object key that is used to explicitly define the logical thread
number thread_id.

 2 Intel® MPI Library Developer Reference for Linux* OS

90

https://www.intel.com/content/www/us/en/develop/documentation/mpi-developer-guide-linux/top/additional-supported-features/multiple-endpoints-support/mpi-thread-split-programming-model.html

Other Environment Variables

I_MPI_DEBUG
Print out debugging information when an MPI program starts running.

Syntax

I_MPI_DEBUG=<level>[,<flags>]
Arguments

<level> Indicate the level of debug information provided.

0 Output no debugging information. This is the default
value.

1 Output libfabric* version and provider.

2 Output information about the tuning file used.

3 Output effective MPI rank, pid and node mapping table.

4 Output process pinning information.

5 Output environment variables specific to the Intel® MPI
Library.

> 5 Add extra levels of debug information.

<flag
s>

Comma-separated list of debug flags

pid Show process id for each debug message.

tid Show thread id for each debug message for multithreaded library.

time Show time for each debug message.

datet
ime

Show time and date for each debug message.

host Show host name for each debug message.

level Show level for each debug message.

scope Show scope for each debug message.

line Show source line number for each debug message.

file Show source file name for each debug message.

nofun
c

Do not show routine name.

noran
k

Do not show rank.

nousr
warn

Suppress warnings for improper use case (for example, incompatible combination of controls).

flock Synchronize debug output from different process or threads.

nobuf Do not use buffered I/O for debug output.

Description

Set this environment variable to print debugging information about the application.

NOTE Set the same <level> value for all ranks.

Environment Variable Reference 2

91

You can specify the output file name for debug information by setting the I_MPI_DEBUG_OUTPUT
environment variable.

Each printed line has the following format:

[<identifier>] <message>
where:

• <identifier> is the MPI process rank, by default. If you add the '+' sign in front of the <level> number,
the <identifier> assumes the following format: rank#pid@hostname. Here, rank is the MPI process
rank, pid is the UNIX* process ID, and hostname is the host name. If you add the '-' sign,
<identifier> is not printed at all.

• <message> contains the debugging output.

The following examples demonstrate possible command lines with the corresponding output:

$ mpirun -n 1 -env I_MPI_DEBUG=2 ./a.out
...
[0] MPI startup(): shared memory data transfer mode

The following commands are equal and produce the same output:

$ mpirun -n 1 -env I_MPI_DEBUG=2,pid,host ./a.out
...
[0#1986@mpicluster001] MPI startup(): shared memory data transfer mode

NOTE Compiling with the -g option adds a considerable amount of printed debug information.

I_MPI_DEBUG_OUTPUT
Set output file name for debug information.

Syntax

I_MPI_DEBUG_OUTPUT=<arg>
Arguments

Argument String Value

stdout Output to stdout. This is the default value.

stderr Output to stderr.
<file_name> Specify the output file name for debug information (the maximum file name

length is 256 symbols).

Description

Set this environment variable if you want to split output of debug information from the output produced by
an application. If you use format like %r, %p or %h, rank, process ID or host name is added to the file name
accordingly.

I_MPI_DEBUG_COREDUMP
Controls core dump files generation in case of failure during MPI application execution.

Syntax

I_MPI_DEBUG_COREDUMP=<arg>
Arguments

Argument Binary Indicator

 2 Intel® MPI Library Developer Reference for Linux* OS

92

enable|yes|on|1 Enable coredump files generation.

disable|no|off|0 Do not generate coredump files. Default value.

Description

Set this environment variable to enable coredump files dumping in case of termination caused by
segmentation fault. Available for both release and debug builds.

I_MPI_STATS
Collect MPI statistics from your application using Application Performance Snapshot.

Syntax

I_MPI_STATS=<level>
Arguments

<level> Indicate the level of statistics collected

1,2,3,4,5 Specify the level to indicate amount of MPI statistics to be collected
by Application Performance Snapshot (APS).

The full description of levels is available in the official APS
documentation.

Description

Set this variable to collect MPI-related statistics from your MPI application using Application Performance
Snapshot. The variable creates a new folder aps_result_<date>-<time> containing statistics data. To
analyze the collected data, use the aps utility. For example:

$ export I_MPI_STATS=5
$ mpirun -n 2 ./myApp
$ aps-report aps_result_20171231_235959

I_MPI_STARTUP_MODE
Select a mode for the Intel® MPI Library process startup algorithm.

Syntax

I_MPI_STARTUP_MODE=<arg>
Arguments

Argument String Value

pmi_shm Use shared memory to reduce the number of PMI calls.

pmi_shm_netmod Use the netmod infrastructure for address exchange logic in addition to PMI
and shared memory. This is the default value.

Description

The pmi_shm_netmod mode reduce the application startup time. The efficiency of the modes is more clearly
observed with the higher -ppn value, while there is no improvement at all with -ppn 1.

I_MPI_PMI_LIBRARY
Specify the name to third party implementation of the PMI library.

Syntax

I_MPI_PMI_LIBRARY=<name>
Arguments

Environment Variable Reference 2

93

https://software.intel.com/content/www/us/en/develop/documentation/application-snapshot-user-guide/top/analyzing-applications/controlling-amount-of-collected-data.html

<name> Full name of the third party PMI library

Description

Set I_MPI_PMI_LIBRARY to specify the name of third party PMI library. When you set this environment
variable, provide full name of the library with full path to it.

Currently supported PMI versions: PMI1, PMI2

I_MPI_PMI_VALUE_LENGTH_MAX
Control the length of the value buffer in PMI on the client side.

Syntax

I_MPI_PMI_VALUE_LENGTH_MAX=<length>
Arguments

<length> Define the value of the buffer length in bytes.

<n> > 0 The default value is -1, which means do not override the value received from
the PMI_KVS_Get_value_length_max() function.

Description

Set this environment variable to control the length of the value buffer in PMI on the client side. The length of
the buffer will be the lesser of I_MPI_PMI_VALUE_LENGTH_MAX and PMI_KVS_Get_value_length_max().

I_MPI_OUTPUT_CHUNK_SIZE
Set the size of the stdout/stderr output buffer.

Syntax

I_MPI_OUTPUT_CHUNK_SIZE=<size>
Arguments

<size> Define output chunk size in kilobytes

<n>> 0 The default chunk size value is 1 KB

Description

Set this environment variable to increase the size of the buffer used to intercept the standard output and
standard error streams from the processes. If the <size> value is not greater than zero, the environment
variable setting is ignored and a warning message is displayed.

Use this setting for applications that create a significant amount of output from different processes. With the
-ordered-output option of mpiexec.hydra, this setting helps to prevent the output from
garbling.

NOTE Set the I_MPI_OUTPUT_CHUNK_SIZE environment variable in the shell environment before
executing the mpiexec.hydra/mpirun command. Do not use the -genv or -env options for setting
the <size> value. Those options are used only for passing environment variables to the MPI process
environment.

I_MPI_REMOVED_VAR_WARNING
Print out a warning if a removed environment variable is set.

Syntax

 2 Intel® MPI Library Developer Reference for Linux* OS

94

I_MPI_REMOVED_VAR_WARNING=<arg>
Arguments

Argument Binary Indicator

enable | yes | on | 1 Print out the warning. This is the default value

disable | no | off | 0 Do not print the warning

Description

Use this environment variable to print out a warning if a removed environment variable is set. Warnings are
printed regardless of whether I_MPI_DEBUG is set.

I_MPI_VAR_CHECK_SPELLING
Print out a warning if an unknown environment variable is set.

Syntax

I_MPI_VAR_CHECK_SPELLING=<arg>
Arguments

Argument Binary Indicator

enable | yes | on | 1 Print out the warning. This is the default value

disable | no | off | 0 Do not print the warning

Description

Use this environment variable to print out a warning if an unsupported environment variable is set. Warnings
are printed in case of removed or misprinted environment variables.

I_MPI_LIBRARY_KIND
Specify the Intel® MPI Library configuration.

Syntax

I_MPI_LIBRARY_KIND=<value>
Arguments

Value Description

release Multi-threaded optimized library (with the global lock).
This is the default value

debug Multi-threaded debug library (with the global lock)

Description

Use this variable to set an argument for the vars.[c]shscript. This script establishes the Intel® MPI Library
environment and enables you to specify the appropriate library configuration. To ensure that the desired
configuration is set, check the LD_LIBRARY_PATH variable.

Example

$ export I_MPI_LIBRARY_KIND=debug
Setting this variable is equivalent to passing an argument directly to the vars.[c]sh script:

Example

$. <installdir>/bin/vars.sh release

Environment Variable Reference 2

95

I_MPI_PLATFORM
Select the intended optimization platform.

Syntax

I_MPI_PLATFORM=<platform>
Arguments

<platform> Intended optimization platform (string value)

auto Use only with heterogeneous runs to determine the appropriate platform
across all nodes. May slow down MPI initialization time due to collective
operation across all nodes.

ivb Optimize for the Intel® Xeon® Processors E3, E5, and E7 V2 series and other
Intel® Architecture processors formerly code named Ivy Bridge.

hsw Optimize for the Intel Xeon Processors E3, E5, and E7 V3 series and other
Intel® Architecture processors formerly code named Haswell.

bdw Optimize for the Intel Xeon Processors E3, E5, and E7 V4 series and other
Intel Architecture processors formerly code named Broadwell.

knl Optimize for the Intel® Xeon Phi™ processor and coprocessor formerly code
named Knights Landing.

skx Optimize for the Intel Xeon Processors E3 V5 and Intel Xeon Scalable Family
series, and other Intel Architecture processors formerly code named Skylake.

clx Optimize for the 2nd Generation Intel Xeon Scalable Processors, and other
Intel® Architecture processors formerly code named Cascade Lake.

clx-ap Optimize for the 2nd Generation Intel Xeon Scalable Processors, and other
Intel Architecture processors formerly code named Cascade Lake AP Note: The
explicit clx-ap setting is ignored if the actual platform is not Intel.

Description

Set this environment variable to use the predefined platform settings. The default value is a local platform for
each node.

The variable is available for both Intel and non-Intel microprocessors, but it may utilize additional
optimizations for Intel microprocessors than it utilizes for non-Intel microprocessors.

NOTE The values auto[:min], auto:max, and auto:most may increase the MPI job startup time.

I_MPI_MALLOC
Control the Intel® MPI Library custom allocator of private memory.

Syntax

I_MPI_MALLOC=<arg>
Argument

Argument Binary Indicator

1 Enable the Intel MPI Library custom allocator of private memory.

Use the Intel MPI custom allocator of private memory for
MPI_Alloc_mem/MPI_Free_mem.

0 Disable the Intel MPI Library custom allocator of private memory.

 2 Intel® MPI Library Developer Reference for Linux* OS

96

Use the system-provided memory allocator for MPI_Alloc_mem/
MPI_Free_mem.

Description

Use this environment variable to enable or disable the Intel MPI Library custom allocator of private memory
for MPI_Alloc_mem/MPI_Free_mem.

By default, I_MPI_MALLOC is enabled if I_MPI_ASYNC_PROGRESS and I_MPI_THREAD_SPLIT are disabled.

NOTE If the platform is not supported by the Intel MPI Library custom allocator of private memory, a
system-provided memory allocator is used and the I_MPI_MALLOC variable is ignored.

I_MPI_SHM_HEAP
Control the Intel® MPI Library custom allocator of shared memory.

Syntax

I_MPI_SHM_HEAP=<arg>
Argument

Argument Binary Indicator

1 Use the Intel MPI custom allocator of shared memory for MPI_Alloc_mem/
MPI_Free_mem.

0 Do not use the Intel MPI custom allocator of shared memory for
MPI_Alloc_mem/MPI_Free_mem.

Description

Use this environment variable to enable or disable the Intel MPI Library custom allocator of shared memory
for MPI_Alloc_mem/MPI_Free_mem.
By default, I_MPI_SHM_HEAP is disabled. If enabled, it can improve performance of the shared memory
transport because in that case it is possible to make only one memory copy operation instead of two copy-in/
copy-out memory copy operations. If both I_MPI_SHM_HEAP and I_MPI_MALLOC are enabled, the shared
memory allocator is used first. The private memory allocator is used only when required volume of shared
memory is not available.

Details

By default, the shared memory segment is allocated on tmpfs file system on the /dev/shm/ mount point.
Starting from Linux kernel 4.7, it is possible to enable transparent huge pages on the shared memory. If
Intel MPI Library shared memory heap is used, it is recommended to enable transparent huge pages on your
system. To enable transparent huge pages on /dev/shm, please contact your system administrator or
execute the following command:

sudo mount -o remount,huge=advise /dev/shm
In order to use another tmpfs mount point instead of /dev/shm/, use I_MPI_SHM_FILE_PREFIX_4K,
I_MPI_SH M_FILE_PREFIX_2M, and I_MPI_SHM_FILE_PREFIX_1G.

Environment Variable Reference 2

97

NOTE If your application does not use MPI_Alloc_mem/MPI_Free_mem directly, you can override
standard malloc/calloc/realloc/free procedures by preloading the libmpi_shm_heap_proxy.so
library:

export LD_PRELOAD=$I_MPI_ROOT/lib/libmpi_shm_heap_proxy.so
export I_MPI_SHM_HEAP=1

In this case, the malloc/calloc/realloc is a proxy for MPI_Alloc_mem and free is a proxy for
MPI_Free_mem.

NOTE
If the platform is not supported by the Intel MPI Library custom allocator of shared memory, the
I_MPI_SHM_HEAP variable is ignored.

I_MPI_SHM_HEAP_VSIZE
Change the size (per rank) of virtual shared memory available for the Intel MPI Library custom allocator of
shared memory.

Syntax

I_MPI_SHM_HEAP_VSIZE=<size>
Argument

<size> The size (per rank) of shared memory used in shared memory heap (in
megabytes).

>0 If shared memory heap is enabled for MPI_Alloc_mem/MPI_Free_mem,
the default value is 4096.

Description

Intel MPI Library custom allocator of shared memory works with fixed size virtual shared memory. The
shared memory segment is allocated on MPI_Init and cannot be enlarged later.

The I_MPI_SHM_HEAP_VSIZE=0 completely disables the Intel MPI Library shared memory allocator.

I_MPI_SHM_HEAP_CSIZE
Change the size (per rank) of shared memory cached in the Intel MPI Library custom allocator of shared
memory.

Syntax

I_MPI_SHM_HEAP_CSIZE=<size>
Argument

<size> The size (per rank) of shared memory used in Intel MPI Library shared
memory allocator (in megabytes).

>0 It depends on the available shared memory size and number of ranks.
Normally, the size is less than 256.

Description

Small values of I_MPI_SHM_HEAP_CSIZE may reduce overall shared memory consumption. Larger
values of this variable may speed up MPI_Alloc_mem/MPI_Free_mem.

 2 Intel® MPI Library Developer Reference for Linux* OS

98

I_MPI_SHM_HEAP_OPT
Change the optimization mode of Intel MPI Library custom allocator of shared memory.

Syntax

I_MPI_SHM_HEAP_OPT=<mode>
Argument

Mode Optimization Mode

rank In this mode, each rank has its own dedicated amount of shared memory. This
is the default value when I_MPI_SHM_HEAP=1

numa In this mode, all ranks from NUMA-node use the same amount of shared
memory.

Description

It is recommended to use I_MPI_SHM_HEAP_OPT=rank when each rank uses the same amount of memory,
and I_MPI_SHM_HEAP_OPT=numa when ranks use significantly different amounts of memory.

Usually, the I_MPI_SHM_HEAP_OPT=rank works faster than I_MPI_SHM_HEAP_OPT=numa but the numa
optimization mode may consume smaller volume of shared memory.

I_MPI_WAIT_MODE
Control the Intel® MPI Library optimization for oversubscription mode.

Syntax

I_MPI_WAIT_MODE=<arg>
Arguments

Argument Binary Indicator

0 Optimize MPI application to work in the normal mode (1 rank on 1 CPU). This
is the default value if the number of processes on a computation node is less
than or equal to the number of CPUs on the node.

1 Optimize MPI application to work in the oversubscription mode (multiple ranks
on 1 CPU). This is the default value if the number of processes on a
computation node is greater than the number of CPUs on the node.

Description

It is recommended to use this variable in the oversubscription mode.

I_MPI_THREAD_YIELD
Control the Intel® MPI Library thread yield customization during MPI busy wait time.

Syntax

I_MPI_THREAD_YIELD=<arg>
Arguments

Argument Description

0 Do nothing for thread yield during the busy wait (spin wait). This is the default
value when I_MPI_WAIT_MODE=0

1 Do the pause processor instruction for I_MPI_PAUSE_COUNT during the
busy wait.

2 Do the shied_yield() system call for thread yield during the busy
wait.

Environment Variable Reference 2

99

This is the default value when I_MPI_WAIT_MODE=1
3 Do the usleep() system call for I_MPI_THREAD_SLEEP number of

microseconds for thread yield during the busy wait.

Description

I_MPI_THREAD_YIELD=0 or I_MPI_THREAD_YIELD=1 in the normal mode and I_MPI_THREAD_YIELD=2 or
I_MPI_THREAD_YIELD=3 in the oversubscription mode.

I_MPI_PAUSE_COUNT
Control the Intel® MPI Library pause count for the thread yield customization during MPI busy wait time.

Syntax

I_MPI_PAUSE_COUNT=<arg>
Argument

Argument Description

>=0 Pause count for thread yield customization during
MPI busy wait time.

The default value is 0. Normally, the value is less
than 100.

Description

This variable is applicable when I_MPI_THREAD_YIELD=1. Small values of I_MPI_PAUSE_COUNT may
increase performance, while larger values may reduce energy consumption.

I_MPI_SPIN_COUNT
Control the spin count value.

Syntax

I_MPI_SPIN_COUNT=<scount>
Argument

<scount> Define the loop spin count when polling fabric(s).

>=0 The default <scount> value is equal to 1 when more than
one process runs per processor/core. Otherwise the value
equals 2000. The maximum value is equal to
2147483647.

Description

Set the spin count limit. The loop for polling the fabric(s) spins <scount> times before the library releases
the processes if no incoming messages are received for processing. Smaller values for <scount> cause the
Intel® MPI Library to release the processor more frequently.

Use the I_MPI_SPIN_COUNT environment variable for tuning application performance. The best value for
<scount> can be chosen on an experimental basis. It depends on the particular computational environment
and application.

I_MPI_THREAD_SLEEP
Control the Intel® MPI Library thread sleep microseconds timeout for thread yield customization while MPI
busy wait progress.

 2 Intel® MPI Library Developer Reference for Linux* OS

100

Syntax

I_MPI_THREAD_SLEEP=<arg>
Argument

Argument Description

>=0 Thread sleep microseconds timeout. The default value is 0. Normally, the value
is less than 100.

Description

This variable is applicable when I_MPI_THREAD_YIELD=3. Small values of I_MPI_PAUSE_COUNT may
increase performance in the normal mode, while larger values may increase performance in the
oversubscription mode

I_MPI_EXTRA_FILESYSTEM
Control native support for parallel file systems.

Syntax

I_MPI_EXTRA_FILESYSTEM=<arg>
Argument

Argument Binary Indicator

enable | yes | on | 1 Enable native support for parallel file systems.

disable | no | off | 0 Disable native support for parallel file systems. This is the default value.

Description

Use this environment variable to enable or disable native support for parallel file systems.

I_MPI_EXTRA_FILESYSTEM_FORCE
Syntax

I_MPI_EXTRA_FILESYSTEM_FORCE=<ufs|nfs|gpfs|panfs|lustre|daos>
Description

Force filesystem recognition logic. Setting this variable is equivalent to prefixing all paths in MPI-IO calls with
the selected filesystem plus colon.

I_MPI_MULTIRAIL
Syntax

I_MPI_MULTIRAIL=<arg>
Argument

Argument Binary Indicator

1 Enable multi-rail capability.

0 Disable multi-rail capability. This is the default value.

Description

Set this variable to enable multi-rail capability and identify NICs serviced by the provider. Pick this variable
on the same NUMA.

Environment Variable Reference 2

101

Miscellaneous 3
This topic provides the following information:

• Java* Bindings for MPI-2 Routines describes the Java language support by Intel® MPI Library.

Java* Bindings for MPI-2 Routines
Intel® MPI Library provides an experimental feature to enable support for Java* MPI applications. Intel MPI
Library provides Java bindings for a subset of MPI-2 routines.

You can find all supported MPI routines in the table below. All the classes below belong to the mpi package.

NOTE

• For static methods, parameters fully correspond to the ones of C routines.
• For non-static methods, the object that calls the method corresponds to the OUT parameter of the

original C routine.

Java* Bindings for MPI-2 Routines
Java Class Public Fields and Methods Original C Routine

MPI static int Init(String[]
args)

MPI_Init

static void Finalize() MPI_Finalize
static double wTime() MPI_Wtime
static void abort(Comm
comm, int errorCode)

MPI_Abort

String getProcessorName() MPI_Get_processor_name
Aint static void

getExtent(Datatype dt, Aint
lb, Aint extent)

MPI_Type_get_extent

static void
getTrueExtent(Datatype dt,
Aint true_lb, Aint
true_extent)

MPI_Type_get_true_extent

static void getAddress(long
location, Aint address)

MPI_Get_address

static void
getContents(Datatype dt,
int maxIntegers, int
maxAddresses, int
maxDatatypes, int[]
integers, Aint[] addresses,
Datatype[] datatypes)

MPI_Type_get_contents

Collective static void allToAll(Object
sendbuf, int sendcount,
Datatype sendtype, Object
recvbuf, int recvcount,
Datatype recvtype, Comm
comm)

MPI_Alltoall

 3 Intel® MPI Library Developer Reference for Linux* OS

102

Java Class Public Fields and Methods Original C Routine

static void reduce(Object
sendbuf, Object recvbuf,
int count, Datatype type,
Op op, int root, Comm comm)

MPI_Reduce

static void bcast(Object
buffer, int count, Datatype
type, int root, Comm comm)

MPI_Bcast

static void gather(Object
sendBuffer, int sendCount,
Datatype sendType, Object
recvBuffer, int recvCount,
Datatype recvType, int
root, Comm comm)

MPI_Gather

static void gatherv(Object
sendBuffer, int sendCount,
Datatype sendType, Object
recvBuffer, Object
recvCount, Object displs,
Datatype recvType, int
root, Comm comm)

MPI_Gatherv

static void
allGather(Object
sendBuffer, int sendCount,
Datatype sendType, Object
recvBuffer, int recvCount,
Datatype recvType, Comm
comm)

MPI_Allgather

static void
allGatherv(Object
sendBuffer, int sendCount,
Datatype sendType, Object
recvBuffer, Object
recvCount, Object displs,
Datatype recvType, Comm
comm)

MPI_Allgatherv

static void
allReduce(Object sendbuf,
Object recvbuf, int count,
Datatype type, Op op, Comm
comm)

MPI_Allreduce

static void
allToAllv(Object sendbuf,
Object sendCount, Object
sdispls, Datatype sendType,
Object recvbuf, Object
recvCount, Object rdispls,
Datatype recvType, Comm
comm)

MPI_Alltoallv

static void
reduceScatter(Object
sendbuf, Object recvbuf,
Object recvcounts, Datatype
type, Op op, Comm comm)

MPI_Reduce_scatter

static void scatter(Object
sendBuffer, int sendCount,
Datatype sendType, Object

MPI_Scatter

Miscellaneous 3

103

Java Class Public Fields and Methods Original C Routine

recvBuffer, int recvCount,
Datatype recvType, int
root, Comm comm)
static void scatterv(Object
sendBuffer, Object
sendCount, Object displs,
Datatype sendType, Object
recvBuffer, int recvCount,
Datatype recvType, int
root, Comm comm)

MPI_Scatterv

static void barrier(Comm
comm)

MPI_Barrier

Comm Static field: Comm WORLD MPI_COMM_WORLD
Static field: Comm SELF MPI_COMM_SELF
int getSize() MPI_Comm_size
int getRank() MPI_Comm_rank
Comm create(Group group) MPI_Comm_create
static Comm create(Comm
comm, Group group)

MPI_Comm_create

Comm dup() MPI_Comm_dup
Comm split(int color, int
key)

MPI_Comm_split

Group Static field: int MPI_PROC_NULL MPI_PROC_NULL
Static field: int MPI_IDENT MPI_IDENT
Static field: int MPI_CONGRUENT MPI_CONGRUENT
Static field: int MPI_SIMILAR MPI_SIMILAR
Static field: int MPI_UNEQUAL MPI_UNEQUAL
Static field: Group WORLD MPI_GROUP_WORLD
void group(Comm comm) MPI_Comm_group
int getSize() MPI_Group_size
int getRank() MPI_Group_rank
int
MPI_Group_translate_ranks(i
nt[] ranks1, Group group2,
int[] ranks2)

MPI_Group_translate_ranks

static int
MPI_Group_translate_ranks(G
roup group1, int[] ranks1,
Group group2, int[] ranks2)

MPI_Group_translate_ranks

int MPI_Group_compare(Group
group2)

MPI_Group_compare

int MPI_Group_union(Group
group1, Group group2)

MPI_Group_union

int
MPI_Group_intersection(Grou
p group1, Group group2)

MPI_Group_intersection

int
MPI_Group_difference(Group
group1, Group group2)

MPI_Group_difference

int MPI_Group_incl(Group
group, int n, int[] ranks)

MPI_Group_incl

int MPI_Group_excl(Group
group, int n, int[] ranks)

MPI_Group_excl

 3 Intel® MPI Library Developer Reference for Linux* OS

104

Java Class Public Fields and Methods Original C Routine

Datatype Static field: Datatype NULL MPI_DATATYPE_NULL
Static field: Datatype BYTE MPI_UINT8_T
Static field: Datatype CHAR MPI_CHAR
Static field: Datatype SHORT MPI_INT16_T
Static field: Datatype BOOLEAN MPI_UINT8_T
Static field: Datatype INT MPI_INT32_T
Static field: Datatype LONG MPI_INT64_T
Static field: Datatype FLOAT MPI_FLOAT
Static field: Datatype DOUBLE MPI_DOUBLE
Static field: Datatype PACKED MPI_PACKED
Static field: Datatype INT2 MPI_2INT
Static field: Datatype SHORT_INT MPI_SHORT_INT
Static field: Datatype LONG_INT MPI_LONG_INT
Static field: Datatype FLOAT_INT MPI_FLOAT_INT
Static field: Datatype
DOUBLE_INT

MPI_DOUBLE_INT

Static field: Datatype
FLOAT_COMPLEX

MPI_C_FLOAT_COMPLEX

Static field: Datatype
DOUBLE_COMPLEX

MPI_C_DOUBLE_COMPLEX

void contiguous(int count,
Datatype type)

MPI_Type_contiguous

void commit() MPI_Type_commit
int getTypeSize() MPI_Type_size
void free() MPI_Type_free
void vector(int count, int
blockLength, int stride,
Datatype baseType)

MPI_Type_vector

void hvector(int count, int
blockLength, int stride,
Datatype oldType)

MPI_Type_create_hvector

void indexed(int count,
int[] blockLength, int[]
displacement, Datatype
oldType)

MPI_Type_indexed

void hindexed(int count,
int[] blockLength, Aint[]
displacement, Datatype
oldType)

MPI_Type_create_hindexed

void struct(int count,
int[] blockLength, Aint[]
displacement, Datatype[]
oldTypes)

MPI_Type_struct

Op Static field: Op MPI_OP_NULL MPI_OP_NULL
Static field: Op MPI_MAX MPI_MAX
Static field: Op MPI_MIN MPI_MIN
Static field: Op MPI_SUM MPI_SUM
Static field: Op MPI_PROD MPI_PROD
Static field: Op MPI_LAND MPI_LAND
Static field: Op MPI_BAND MPI_BAND
Static field: Op MPI_LOR MPI_LOR

Miscellaneous 3

105

Java Class Public Fields and Methods Original C Routine

Static field: Op MPI_BOR MPI_BOR
Static field: Op MPI_LXOR MPI_LXOR
Static field: Op MPI_BXOR MPI_BXOR
Static field: Op MPI_MINLOC MPI_MINLOC
Static field: Op MPI_MAXLOC MPI_MAXLOC
Op(UserFunction uf) -

void
setUserFunction(UserFunctio
n userFunction)

-

void createOP(boolean
commute)

MPI_Op_Create

UserFunction (abstract) UserFunction(Datatype type,
int length)

-

void setInoutvec(ByteBuffer
inoutvec)

-

void setInvec(ByteBuffer
invec)

-

abstract void call(int
type, int length)

-

PTP static void send(Buffer
buffer, int count, Datatype
type, int dest, int tag,
Comm comm)

MPI_Send

static void send(<java
array> buffer, int count,
Datatype type, int dest,
int tag, Comm comm)

MPI_Send

static Status recv(Buffer
buf, int count, Datatype
type, int source, int tag,
Comm comm)

MPI_Recv

static Status recv(<java
array> buf, int count,
Datatype type, int source,
int tag, Comm comm)

MPI_Recv

static Request isend(Buffer
buffer, int count, Datatype
type, int dest, int tag,
Comm comm)

MPI_Isend

static Request isend(<java
array> buffer, int count,
Datatype type, int dest,
int tag, Comm comm)

MPI_Isend

static Request irecv(Buffer
buf, int count, Datatype
type, int source, int tag,
Comm comm)

MPI_Irecv

static Request irecv(<java
array> buf, int count,
Datatype type, int source,
int tag, Comm comm)

MPI_Irecv

static Status
sendRecv(Buffer sendbuf,
int sendcount, Datatype

MPI_Sendrecv

 3 Intel® MPI Library Developer Reference for Linux* OS

106

Java Class Public Fields and Methods Original C Routine

sendtype, int senddest, int
sendtag, Buffer recvbuf,
int recvcount, Datatype
recvtype, int recvsource,
int recvtag, Comm comm)

Request Status Wait() MPI_Wait
static Status[] waitAll(int
count, Request[] reqs)

MPI_Waitall

static Status waitAny(int
count, Request[] reqs,
int[] index)

MPI_Waitany

static Status[]
waitSome(int count,
Request[] reqs, int[]
outcount, int[] indexes)

MPI_Waitsome

boolean test(Status status) MPI_Test

Miscellaneous 3

107

Notices and Disclaimers 4
Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.

 4 Intel® MPI Library Developer Reference for Linux* OS

108

https://www.intel.com/PerformanceIndex

	Contents
	Intel® MPI Library Developer Reference for Linux* OS
	Introduction
	Introducing Intel® MPI Library
	What's New
	Notational Conventions
	Related Information

	Command Reference
	Compiler Commands
	Compilation Command Options

	mpirun
	mpiexec.hydra
	Global Hydra Options
	Local Hydra Options
	gtool Options

	cpuinfo
	impi_info
	mpitune
	mpitune Configuration Options

	mpitune_fast

	Environment Variable Reference
	Compilation Environment Variables
	Hydra Environment Variables
	I_MPI_ADJUST Family Environment Variables
	Tuning Environment Variables
	Autotuning
	I_MPI_TUNING_AUTO Family Environment Variables

	Process Pinning
	Environment Variables for Process Pinning
	Interoperability with OpenMP* API

	GPU Support
	Environment Variables for Fabrics Control
	Communication Fabrics Control
	Shared Memory Control
	OFI*-capable Network Fabrics Control

	Environment Variables for Memory Policy Control
	Environment Variables for Asynchronous Progress Control
	Environment Variables for Multi-EP
	Other Environment Variables

	Miscellaneous
	Java* Bindings for MPI-2 Routines

	Notices and Disclaimers

