Path Tracing Workshop
Part 2: Path Tracing

Christoph Peters
Intel Graphics Research Organization

intel.

Recap

intel

intel

ShaderToy

To recompile/run, click play

To save, copy your code to a text file

H Il 4549 6.1fps 630 x 358, i
PT workshop 75: Path tracing <> %0

Vitm: 5. Unlitad Tge: adications, pathercing, axerciscs Crvatsaty
b

el
e o ety e e e pat ot

// TODO

Feturn radisnce.

void maintaage gt vecd aut cafor, in vec? pix

Vec3 “camara.postt 5. 2%,
vecs it £ conero position - vec3io'o
3 Up = vac3 00 170 056

[
nm Sapect = iResalution.x) (flon

et
xS

s
aut cotor rgh 1= get T

,n .
oot | R
o SIS le

ShaderToy

// TODO

To recompile/run, click play
To save, copy your code to a text file

Or create an account and a fork

intel

Proper WebGL config
By default, ANGLE makes big WebGL shaders run slowly on Windows

2 % » 0O & :

« C O & Chiome || chromey/flags |
Q [Angee| Resetall
83 Advanced Preferences x | + O x
103.0.5060.134 <« (¢} @ Firefox |about:config % © 9 =

Show only modified preferences

Experiments

Available Unavailable
webgl.
® Choose ANGLE graphics backend webgl.disable-angle true = ©
S
s ©

Choose the graphics backend for ANGLE. D3D11 is used on most Windows computers by
default, Using the OpenGL driver as the graphics backend may result in higher performance -
OpenGL webgl.force-enabled true

partict n NVIDIA GPUs. It can increase battery
Default

in some graphics-heavy appli

and memory usage of video playback. - Windows

fuse-angle)
D3D9 webgl. O Boolean) Number) String +
D3D110n12 -

Then restart Chrome Then reload ShaderToy tabs

intel.

Ray-mesh intersection test

What do we see along aray?
The closest intersected triangle!
Ray tracing finds this closest hit

Foundation of path tracing

Implemented in hardware

But we do it in software

intel.

intel.

Our goals

Learn rendering basics
Write a path tracer

In GLSL on ShaderToy
Have fun

Part 1: Ray tracing

Part 2: Path tracing

intel.

Our goals

Learn rendering basics
Write a path tracer

In GLSL on ShaderToy
Have fun

Part 1: Ray tracing

Part 2: Path tracing

Global illumination

intel

Global illumination
Top of the box is an area light

Surfaces can be lit directly

intel.

Global illumination
Top of the box is an area light
Surfaces can be lit directly

But also indirectly

intel.

Global illumination

Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

intel.

intel

Global illumination

Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

Path length <1

Global illumination N Path length < 2
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

intel.

Global illumination Path length < 3
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

intel.

Global illumination Path length < 4
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

intel.

Global illumination Path length < 5
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

intel.

Global illumination Path length < 6
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

intel.

Global illumination Path length < 7
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

intel.

Global illumination Path length < 8
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

intel.

Global illumination Path length < 9
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

intel.

intel.

Global illumination

Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length
Path tracing starts at camera

Finds a light when it is lucky

Global illumination

Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length
Path tracing starts at camera
Finds a light when it is lucky

The colors are called "radiance"

intel.

Radiance
L(x,w) = color for ray x + tw
Pixel = radiance for camera ray

Plenoptic function/radiance field

intel.

Radiance

L(x,w) = color for ray x + tw
Pixel = radiance for camera ray
Plenoptic function/radiance field

Constant along rays in vacuum

intel.

Radiance

L(x,w) = color for ray x + tw
Pixel = radiance for camera ray
Plenoptic function/radiance field

Constant along rays in vacuum

L(y,w) = L(x,w)

intel.

Radiance

L(x,w) = color for ray x + tw
Pixel = radiance for camera ray
Plenoptic function/radiance field
Constant along rays in vacuum
L(y,w) = L(x,w)

Ray tracing transports radiance

Light transport (&

intel.

intel

Irradiance

Beam of cross-sectional area A hits surface area A’

A/

Irradiance

Beam of cross-sectional area A hits surface area A’

__ adjacent 4
COS(Q) " hypotenuse Al

~

Nl

intel

intel

Irradiance

Beam of cross-sectional area A hits surface area A’

adjacent 4
hypotenuse A’

Because we ensure ||n|| = ||w|| =1

intel

Irradiance

Beam of cross-sectional area A hits surface area A’

adjacent 4
hypotenuse A’

Because we ensure ||n|| = ||w|| =1
Irradiance gathers all light at point x

Weighted integral over radiance:

E(x,n) = / L(x,w)n-wdw
Q(x)

~

Nl

Irradiance

Beam of cross-sectional area A hits surface area A’

__ adjacent 4
hypotenuse A’

Because we ensure ||n|| = ||w|| =1

Irradiance gathers all light at point x

Weighted integral over radiance:

/ anwdw
Q(x

Where Q(x) C R? is a hemisphere: we€ Q(x) < |lw||=1,n-w>0

intel

The rendering equation

L,(x)|= L. (x) +$/Q()L(x, w)n(x) - wdw

Result: Outgoing radiance L, (x) for diffuse surface at x

intel

The rendering equation

L,(x) = L.(x) +$/Q()L(x, w)n(x) - wdw

Result: Outgoing radiance L, (x) for diffuse surface at x

Compute incoming irradiance E(x,n(x)), i.e. total light reaching x

intel

The rendering equation

L,(x) = L.(x) +$/Q()L(x, w)n(x) - wdw

Result: Outgoing radiance L, (x) for diffuse surface at x
Compute incoming irradiance E(x,n(x)), i.e. total light reaching x

Multiply by the surface color a(x) (component-wise)

intel

intel

The rendering equation

L,(x) = L.(x) +$/Q()L(x, w)n(x) - wdw

Result: Outgoing radiance L, (x) for diffuse surface at x
Compute incoming irradiance E(x,n(x)), i.e. total light reaching x
Multiply by the surface color a(x) (component-wise)

Divide by 7 to ensure energy conservation

intel

The rendering equation

L,(x) =L.(x) +$/Q()L(x, w)n(x) - wdw

Result: Outgoing radiance L, (x) for diffuse surface at x

Compute incoming irradiance E(x,n(x)), i.e. total light reaching x
Multiply by the surface color a(x) (component-wise)

Divide by 7 to ensure energy conservation

Add light emitted at x (0 if there is no light source at x)

Mesh representation

// A triangle along with some shading parameters
struct triangle t {
// The positions of the three vertices (v_0, v_1, v_2)
X vec3 positions[3];
// A vector of length 1, orthogonal to the triangle (n)
) vec3 normal;
// The albedo of the triangle (i.e. the fraction of
// red/green/blue light that gets reflected) (a)
CL(X) vec3 color;
// The radiance emitted by the triangle (for light sources) (L e)
) vec3 emission;

intel.

The rendering equation: Challenges

L,(x) = L.(x) +$/Q()L(x, w)n(x) - wdw

We have to integrate over €(x)

intel

The rendering equation: Challenges

L,(x) —|——/ (x,w) ~wdw

We have to integrate over 2(x)

We need L(x,w)

intel.

The rendering equation: Challenges

L,(x)= —|——/ (x,w) cwdw

We have to integrate over 2(x)

We need L(x,w)
y =ray_intersection(x, w) =x + tw

L(x,w) = Lo(y)

intel.

intel.

The rendering equation: Challenges

Lo(x) =L, (x) + 2% /Q ()L(x, w)n(x) - wdw

(¥)

We have to integrate over 2(x)

We need L(x,w)
y =ray_intersection(x, w) =x + tw

L(x,w) = L,(y)
So we need L,(y) to compute L,(x)

Monte Carlo integration

intel

intel

Monte Carlo integration
We cannot integrate over co many w € €)(x) exactly

Instead, pick w; € Q(x) at random
/ L(x,w)n(x) - wdw

Q(x) 3

1

~ 21 L(x, wy) n(x) - wy

Monte Carlo integration

We cannot integrate over co many w € €)(x) exactly

Instead, pick wq, ..., wy € Q(x) at random o .
ST .
PO SN AN X
¥ f
L d 24 DR DY o e,
X,w)n(x) - wdw [O e el T
s o @ o o oo
S o o . . ™
Q(x) "...,.0' o .:. . . o.. 3 :‘o“.o,
N bl R w d
’0. LI o Q b 4
j : X w.) w L. c, e 5 K
- . oo, . = L)
N .] .] :‘.: . 0o o0 & 0’ ° ."o.'
e oo 800 . % %,
> oo ‘,‘ oo s
. © .

Equal for N — oo (with 100% probability)

intel

Monte Carlo integration

We cannot integrate over oo many w € Q(x) exactly

Instead, pick wq, ..., wy € Q(x) at random

/ L(x,w)n(x) - wdw
Q(x)

N
_Z (%, wj) n(x) - w;

Equal for N — oo (with 100% probability)

ZZ

2

Error is zero-mean noise

intel

Monte Carlo integration

We cannot integrate over co many w € €)(x) exactly

Instead, pick wq, ..., wy € Q(x) at random

/ L(x,w)n(x) - wdw
Q(x)

N
—Z (x,w;)n(x) - wj

Equal for N — oo (with 100% probability)

2

Error is zero-mean noise

intel

Monte Carlo integration

We cannot integrate over co many w € €)(x) exactly

Instead, pick wq, ..., wy € Q(x) at random

/ L(x,w)n(x) - wdw
Q(x)

—Z (x,w;)n(x) - wj

Equal for N — oo (with 100% probability)

2

Error is zero-mean noise

intel

Monte Carlo integration

We cannot integrate over co many w € €)(x) exactly

Instead, pick wq, ..., wy € Q(x) at random

/ L(x,w)n(x) - wdw
Q(x)

N
—Z (x,w;)n(x) - wj

Equal for N — oo (with 100% probability)

2

Error is zero-mean noise

intel

Monte Carlo integration

We cannot integrate over co many w € €)(x) exactly

Instead, pick wq, ..., wy € Q(x) at random

/ L(x,w)n(x) - wdw
Q(x)

N
—Z (x,w;)n(x) - wj

Equal for N — oo (with 100% probability)

2

Error is zero-mean noise

intel

Monte Carlo integration

We cannot integrate over co many w € €)(x) exactly

Instead, pick wq, ..., wy € Q(x) at random

/ L(x,w)n(x) - wdw
Q(x)

N
_Z (%, wj) n(x) - w;

Equal for N — oo (with 100% probability)

ZZ

2

Error is zero-mean noise

N=2048

intel.

Non-uniform sphere sampling
Random generator gives uniform ug, u; € [0, 1)

Map to sphere with spherical coordinates:

© =2mugy, 0="uy 1 KRN0 AR
o

Dee

b

.. ..g'.
*2,
84X
Sola

oL o

wy = cos(¢y) sin(h)

Ly -~
..L.-. ¢
v,

N
AR AN
-
we

]
.
Y
welsd Yoz,
’. -2
Y P
oS

3

DR ¥}
)
'S
)

o

e o

-%v;*.,_' S deer
-~

wy = sin(yp) sin(0)

0 I
w, = cos(h) 0 " 1

Problem: Too many samples at the top

intel

Uniform sphere sampling
Pick w, € [—1, 1) uniformly:

w, =2u; — 1

Y = 21Uy

o e

o ot

wy =cos(p) V1 —w;

N
3
i L] .:’;.

LA RV
N d

. o3® e
. :'-!-.-R-:_' P

wy =sin(p) \/ 1 —w;

I
Pe s
RN

Looks right 0
Derivation in chapter 13.6.1 of pbr-book.org

intel

intel

Uniform hemisphere sampling

Directions with n - w < 0 contribute nothing

Start with w on the sphere n
Mirrorifn-w < 0:

Ww=w—-2n-w)n

Uniform hemisphere sampling

Directions with n - w < 0 contribute nothing

Start with w on the sphere n
Mirrorifn-w < 0:

Ww=w—-2n-w)n

i.e. subtract n-component twice

intel

Uniform hemisphere sampling

Directions with n - w < 0 contribute nothing

Start with w on the sphere n

Mirrorifn-w < 0:

Ww=w—-2n-w)n w

i.e. subtract n-component twice

intel

Exercise 4: Uniform sphere sampling

Complete sample sphere()

Inputs: Uniform ug, u; € [0, 1)
Output: Uniform random direction w
The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use cos(), sin(), sqrt(), vec3() Correct result

intel shadertoy.com/view/ssKBD3

Exercise 4: Uniform sphere sampling

Complete sample sphere()

Inputs: Uniform ug, u; € [0, 1)
Output: Uniform random direction w
The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use cos(), sin(), sqrt(), vec3() Correct result I I

intel shadertoy.com/view/ssKBD3

Exercise 5: Uniform hemisphere sampling

Complete sample hemisphere()

Inputs: Uniform ug, u; € [0, 1), normal n(x)
Output: Uniform random direction w € Q(x)
The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use if, dot(), *, - Correct result

intel shadertoy.com/view/7sKBD3

Exercise 5: Uniform hemisphere sampling

Complete sample hemisphere()

Inputs: Uniform ug, u; € [0, 1), normal n(x)
Output: Uniform random direction w € Q(x)
The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use if, dot(), *, - Correct result I I
intel shadertoy.com/view/7sKBD3

Pseudorandom number generator

// A pseudo-random number generator
// \param seed Numbers that are different for each invocation. Gets updated so
// that it can be reused.
// \return Two independent, uniform, pseudo-random numbers in [0,1) (u 0, u 1)
vec2 get random numbers(inout uvec2 seed) {

// This is PCG2D: https://jcgt.org/published/0009/03/02/

seed = 1664525u * seed + 1013904223u;

seed.x += 1664525u * seed.y;

seed.y += 16645250 * seed.Xx;

seed "= (seed >> 16u);

seed.x += 16645250 * seed.y;

seed.y += 16645250 * seed.X;

seed "= (seed >> 16u);

// Convert to float. The constant here is 27-32.

return vec2(seed) * 2.32830643654e-10;

intel.

Pseudorandom number generator

// A pseudo-random number generator
// \param seed Numbers that are different for each invocation. Gets updated so
// that it can be reused.
// \return Two independent, uniform, pseudo-random numbers in [0,1) (u 0, u 1)
vec2 getirandomfnumbersIinoutluvec2 seed) {

// ...

}

// Use a different seed for each pixel and each frame

uvec2 seed = uvec2(pixel coord) ~ uvec2(iFrame << 16);

// This gives us 2 uniform random numbers in [0,1)

vec2 rands 0 = get random numbers(seed);

// These are different random numbers because seed has changed
vec2 rands 1 = get random numbers(seed);

intel.

Exercise 6: Direct illumination

Complete compute direct illumination()

Inputs: A triangle and a point x on it
Output: Radiance (emission + direct illum.)
Use N =1random samples w €)(x)
Trace ray x, w to find L.(y) at hity
Compute: L.(x) + 29 o L.(y) n(x) w

™

Use sample hemisphere(), ray mesh intersection() Correct resu|t
SAMPLE COUNT=1

intel shadertoy.com/view/sdVBD3

intel

Exercise 6: Direct illumination

Complete compute direct illumination()

Inputs: A triangle and a point x on it
Output: Radiance (emission + direct illum.)
Use N =1random samples w €)(x)

Trace ray x, w to find L.(y) at hity

Compute: L.(x) + 29 o L.(y) n(x) w

™

Use sample hemisphere(), ray mesh intersection() Correct result

SAMPLE_COUNT=8
shadertoy.com/view/sdVBD3

Exercise 6: Direct illumination

Complete compute direct illumination()

Inputs: A triangle and a point x on it
Output: Radiance (emission + direct illum.)
Use N =1random samples w €)(x)

Trace ray x, w to find L.(y) at hity

Compute: L.(x) + 29 o L.(y) n(x) w

™

Use sample hemisphere(), ray mesh intersection() Correct result
SAMPLE COUNT=8

intel. shadertoy.com/view/sdVBD3

Path tracing

intel

Path tracing

Given camera ray x, wy
Want to approximate L(xg, wy)
x; =ray_intersection(xg, wy)

Monte Carlo estimate with N =1:

w € Q(x;) random sample

L(Xo, wo) = Lo(xl) ~ Le(Xl) + a(:l)Qﬂ'L(Xl, wl) n(xl) * W1

intel.

Path tracing

Given camera ray x, wy
Want to approximate L(xg, wy)
x; =ray_intersection(xg, wy)

Monte Carlo estimate with N =1:

w € Q(x;) random sample

L(Xo, wo) = Lo(xl) ~ Le(Xl) + a(:l)Qﬂ'L(Xl, wl) n(xl) * W1

intel.

Path tracing

Givenray x, w
Want to approximate L(x;,w;)
X9 =ray_intersection(x1, w;)

Monte Carlo estimate with N =1:

wy € Q(xy) random sample

L(x1,w;) = Ly(x2) &~ L.(x2) —|—a(:2)27rL(x2,w2)n(x2) - Wy

intel.

Path tracing

Givenray x, w
Want to approximate L(x;,w;)
X9 =ray_intersection(x1, w;)

Monte Carlo estimate with N =1:

wy € Q(xy) random sample

L(x1,w1) = Ly(x3) =~ L.(x3) —|—a(:2)27rL(x2,w2)n(x2) - Wy

intel.

Path tracing

Given ray xs, wo
Want to approximate L(x5, ws)
x3 =ray_intersection(xs, ws)

Monte Carlo estimate with N =1:

w3 € Q(x3) random sample

L(x,wz) = Lo(x3) & Le(x3) + 22227 L (x5, w3) n(x3) - w3

intel.

Path tracing

Given ray xs, wo
Want to approximate L(x5, ws)
x3 =ray_intersection(xs, ws)

Monte Carlo estimate with N =1:

w3 € Q(x3) random sample

L(x,wz) = Lo(x3) & Le(x3) + 22227 L (x5, w3) n(x3) - w3

intel.

Path tracing

Given ray x3, ws
Want to approximate L(x3, ws)
x4 =ray_intersection(x3, ws3)

Monte Carlo estimate with N =1:

wy € Q(x4) random sample

L(Xg, w3) = LO(X4) ~ Le(X4) + a(;q) 27TL(X4, w4) II<X4) * Wy

intel.

Path tracing recursion

GLSL spec: "Static and dynamic recursion is not allowed." (=)

intel

Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)

intel

Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)

L(Xo, wo) ~ Le (Xl)

intel

Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)
L(X07w0) ~ Le(xl)
+(a(x1)2n(x1) - wi) Le(x2)

intel

Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)
L(xg,wy) ~ L.(x1)

+ (a(x1)2n(x1) - wi) Le(x2)

+ (a(x1)2n(x1) - wr) (a(x2)2n(xs) - wy) Le(x3)

intel

Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)
L(xg,wy) ~ L.(x1)

+ (a(x1)2n(x1) - wi) Le(x2)

+ (a(x1)2n(x1) - wr) (a(x2)2n(xs) - wy) Le(x3)

intel

Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)
L(xg,wp) ~ Le(x1)

+(a(x1)2n(x1) - wi) Le(x2)

+ (a(x1)2n(x1) - wr) (a(x2)2n(xs) - wy) Le(x3)

[J
Y

T,

intel

intel

Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)
L(xg,wy) ~ L.(x1)

+ (a(x1)2n(x1) - w1) Le(x2)

+(a(x1)2n(x,) - wi) (a(x2)2n(xz) - w;) Le(x3)

J

Ty
Add emission and update throughput weight T; in each iteration:
Lji1=Lj+T;L.(x41), Ly=0 —0
7=0,...
I}'—i—l :T}a(xj+1)2n(xj+1)-wj+1, T():].

Exercise 7: Path tracing
Complete get ray radiance()

Input: A ray xg, wy

Output: L(xy,wy) (Monte Carlo estimate)
Use a for-loop with max patH LENGTH iterations
Trace ray x;, wj, break if it hits nothing
Update the ray origin: x; | =x; + t,w;

Add T;L.(x;. 1) to the radiance

Sample a direction w; ;1 € Q(x;41)

Mul. throughput by a(x;41)2n(x; 1) - w;4+1 Cg\prqgs;’ccgﬁﬁgllt
intel. shadertoy.com/view/flcczr

Exercise 7: Path tracing
Comp|ete get ray radiance()

Input: A ray xg, wy

Output: L(xy,wy) (Monte Carlo estimate)
Use a for-loop with max patH LENGTH iterations
Trace ray x;, wj, break if it hits nothing
Update the ray origin: x; | =x; + t,w;

Add T;L.(x;. 1) to the radiance

Sample a direction w; ;1 € Q(x;41)

Mul. throughput by a(x;41)2n(x; 1) - w;4+1 Cﬁﬂﬁfﬂ{ﬁﬁfgt
intel. shadertoy.com/view/flcczr

intel.

Exercise 7: Path tracing
Complete get ray radiance()

Input: A ray xg, wy

Output: L(xy,wy) (Monte Carlo estimate)
Use a for-loop with max patH LENGTH iterations
Trace ray x;, wj, break if it hits nothing
Update the ray origin: x; | =x; + t,w;

Add T;L.(x;. 1) to the radiance

Sample a direction w; ;1 € Q(x;41)

Mul. throughput by a(x;41)2n(x; 1) - w;4+1 Cscﬁ)“r“rfEc’ccor&iQt
shadertoy.com/view/flcczr -

Progressive rendering

Taking more samples is the outer-most loop:
out_color.rgb = vec3();

for (int i = 0; 1 !'= SAMPLE COUNT; ++1i)

out _color.rgb += get ray radiance(camera position, ray direction, seed);
out color.rgb /= float(SAMPLE COUNT);

A large sample count hangs/crashes your browser
Instead, distribute work over frames
ShaderToy technicalities, not an exercise

Keep it running for better images

intel shadertoy.com/view/Nlcczr

intel

Path tracing is
General
Predictable
Scalable
Parallelizable
Extendable

Efficient

Path tracing is

General 1 framework for all light transport
Predictable

Scalable

Parallelizable

Extendable

Efficient

intel

Path tracing is

General 1 framework for all light transport
Predictable Physically correct image + noise
Scalable

Parallelizable
Extendable

Efficient

intel

Path tracing is

General 1 framework for all light transport
Predictable Physically correct image + noise
Scalable Sample count allows tradeoffs

Parallelizable
Extendable

Efficient

intel

Path tracing is

General 1 framework for all light transport
Predictable Physically correct image + noise
Scalable Sample count allows tradeoffs
Parallelizable Across samples or pixels
Extendable

Efficient

intel

intel

Path tracing is

General 1 framework for all light transport

Predictable Physically correct image + noise

Scalable Sample count allows tradeoffs

Parallelizable Across samples or pixels

Extendable To spectral/volumetric/differentiable rendering
Efficient

intel

Path tracing is

General 1 framework for all light transport

Predictable Physically correct image + noise

Scalable Sample count allows tradeoffs

Parallelizable Across samples or pixels

Extendable To spectral/volumetric/differentiable rendering
Efficient When effort is focused on important work

intel

Path tracing is

General 1 framework for all light transport

Predictable Physically correct image + noise

Scalable Sample count allows tradeoffs

Parallelizable Across samples or pixels

Extendable To spectral/volumetric/differentiable rendering
Efficient When effort is focused on important work

The default in offline rendering, the future in real-time rendering

Faster path tracers

Acceleration structures and traversal
Stratification: Quasi-random numbers that improve convergence
Importance sampling:

Light sampling, a.k.a. next event estimation

(Specular) BRDF importance sampling

Path guiding

Multiple importance sampling

Spatiotemporal (neural) denoising

intel

Faster path tracers

Importance sampling:
Light sampling, a.k.a. next event estimation

(Specular) BRDF importance sampling

Multiple importance sampling

intel

Part 3?

Thanks!

intel

Backup

intel

intel

The rendering equation

L,(x) = L.(x) +$/Q()L(x, w)n(x) - wdw

n(x) is the normal vector at x

a(x) is the albedo at x

L(x,w) is incoming radiance at x from w
L,(x) is the outgoing radiance at x

L.(x) is emitted radiance at x

