Path Tracing Workshop Part 2: Path Tracing

Christoph Peters Intel Graphics Research Organization

intel.

Recap

ShaderToy

Runs a full-viewport fragment shader in WebGL

Program that runs once per pixel to compute its color
In each exercise you complete 1 function in a ShaderToy (// TODO)
Exercise $\mathrm{N}+1$ has a reference solution for exercise N (no peeking)
To change the code, just type
To recompile/run, click play
To save, copy your code to a text file

ShaderToy

Runs a full-viewport fragment shader in WebGL

Program that runs once per pixel to compute its color

In each exercise you complete 1 function in a ShaderToy (// TODO)
Exercise N+1 has a reference solution for exercise N (no peeking)
To change the code, just type
To recompile/run, click play
To save, copy your code to a text file
Or create an account and a fork

Proper WebGL config

By default, ANGLE makes big WebGL shaders run slowly on Windows

Then restart Chrome

Then reload ShaderToy tabs

Ray-mesh intersection test

What do we see along a ray?
The closest intersected triangle!
Ray tracing finds this closest hit
Foundation of path tracing

Implemented in hardware
But we do it in software

Our goals

Learn rendering basics
Write a path tracer
In GLSL on ShaderToy
Have fun
Part 1: Ray tracing
Part 2: Path tracing

Our goals

Learn rendering basics
Write a path tracer
In GLSL on ShaderToy
Have fun
Part 1: Ray tracing
Part 2: Path tracing

Global illumination

Global illumination

Top of the box is an area light Surfaces can be lit directly

Global illumination

Top of the box is an area light Surfaces can be lit directly But also indirectly

Global illumination

Top of the box is an area light Surfaces can be lit directly

But also indirectly
Via paths of arbitrary length

Global illumination

Top of the box is an area light Surfaces can be lit directly

But also indirectly
Via paths of arbitrary length

Global illumination

Top of the box is an area light Surfaces can be lit directly

But also indirectly
Via paths of arbitrary length

Global illumination

Top of the box is an area light Surfaces can be lit directly

But also indirectly
Via paths of arbitrary length

Global illumination

Top of the box is an area light Surfaces can be lit directly

But also indirectly
Via paths of arbitrary length

Global illumination

Top of the box is an area light Surfaces can be lit directly

But also indirectly
Via paths of arbitrary length

Global illumination

Top of the box is an area light Surfaces can be lit directly

But also indirectly
Via paths of arbitrary length

Global illumination

Top of the box is an area light Surfaces can be lit directly

But also indirectly
Via paths of arbitrary length

Global illumination

Top of the box is an area light Surfaces can be lit directly

But also indirectly
Via paths of arbitrary length

Global illumination

Top of the box is an area light Surfaces can be lit directly

But also indirectly
Via paths of arbitrary length

Global illumination

Top of the box is an area light
Surfaces can be lit directly
But also indirectly
Via paths of arbitrary length
Path tracing starts at camera
Finds a light when it is lucky

Global illumination

Top of the box is an area light
Surfaces can be lit directly
But also indirectly
Via paths of arbitrary length
Path tracing starts at camera
Finds a light when it is lucky
The colors are called "radiance"

Radiance

$L(\mathbf{x}, \omega)=$ color for ray $\mathbf{x}+t \omega$
Pixel = radiance for camera ray

Radiance

$L(\mathbf{x}, \omega)=$ color for ray $\mathbf{x}+t \omega$
Pixel = radiance for camera ray
Plenoptic function/radiance field
Constant along rays in vacuum

Radiance

$L(\mathbf{x}, \omega)=$ color for ray $\mathbf{x}+t \omega$
Pixel = radiance for camera ray
Plenoptic function/radiance field
Constant along rays in vacuum

$$
L(\mathbf{y}, \omega)=L(\mathbf{x}, \omega)
$$

Radiance

$L(\mathbf{x}, \omega)=$ color for ray $\mathbf{x}+t \omega$
Pixel = radiance for camera ray
Plenoptic function/radiance field
Constant along rays in vacuum
$L(\mathbf{y}, \omega)=L(\mathbf{x}, \omega)$
Ray tracing transports radiance
Light transport

Irradiance

Beam of cross-sectional area A hits surface area A^{\prime}

Irradiance

Beam of cross-sectional area A hits surface area A^{\prime}

$$
\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{A}{A^{\prime}}
$$

Irradiance

Beam of cross-sectional area A hits surface area A^{\prime}
$\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{A}{A^{\prime}}=\mathbf{n} \cdot \omega$
Because we ensure $\|\mathbf{n}\|=\|\omega\|=1$

Irradiance

Beam of cross-sectional area A hits surface area A^{\prime}
$\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{A}{A^{\prime}}=\mathbf{n} \cdot \omega$
Because we ensure $\|\mathbf{n}\|=\|\omega\|=1$
Irradiance gathers all light at point \mathbf{x}
Weighted integral over radiance:

$$
E(\mathbf{x}, \mathbf{n})=\int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n} \cdot \omega \mathrm{d} \omega
$$

Irradiance

Beam of cross-sectional area A hits surface area A^{\prime}
$\cos (\theta)=\frac{\text { adjacent }}{\text { hypotenuse }}=\frac{A}{A^{\prime}}=\mathbf{n} \cdot \omega$
Because we ensure $\|\mathbf{n}\|=\|\omega\|=1$
Irradiance gathers all light at point \mathbf{x}
Weighted integral over radiance:

$E(\mathbf{x}, \mathbf{n})=\int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n} \cdot \omega \mathrm{d} \omega$
Where $\Omega(\mathbf{x}) \subseteq \mathbb{R}^{3}$ is a hemisphere: $\omega \in \Omega(\mathbf{x}) \Leftrightarrow\|\omega\|=1, \mathbf{n} \cdot \omega \geq 0$

The rendering equation

$$
L_{o}(\mathbf{x})=L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega
$$

Result: Outgoing radiance $L_{o}(\mathbf{x})$ for diffuse surface at \mathbf{x}

The rendering equation

$$
L_{o}(\mathbf{x})=L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega
$$

Result: Outgoing radiance $L_{o}(\mathbf{x})$ for diffuse surface at \mathbf{x}
Compute incoming irradiance $E(\mathbf{x}, \mathbf{n}(\mathbf{x}))$, i.e. total light reaching \mathbf{x}

The rendering equation

$L_{o}(\mathbf{x})=L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega$
Result: Outgoing radiance $L_{o}(\mathbf{x})$ for diffuse surface at \mathbf{x}
Compute incoming irradiance $E(\mathbf{x}, \mathbf{n}(\mathbf{x}))$, i.e. total light reaching \mathbf{x} Multiply by the surface color $a(\mathbf{x})$ (component-wise)

The rendering equation

$L_{o}(\mathbf{x})=L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega$
Result: Outgoing radiance $L_{o}(\mathbf{x})$ for diffuse surface at \mathbf{x}
Compute incoming irradiance $E(\mathbf{x}, \mathbf{n}(\mathbf{x}))$, i.e. total light reaching \mathbf{x}
Multiply by the surface color $a(\mathbf{x})$ (component-wise)
Divide by π to ensure energy conservation

The rendering equation

$L_{o}(\mathbf{x})=L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega$
Result: Outgoing radiance $L_{o}(\mathbf{x})$ for diffuse surface at \mathbf{x}
Compute incoming irradiance $E(\mathbf{x}, \mathbf{n}(\mathbf{x}))$, i.e. total light reaching \mathbf{x}
Multiply by the surface color $a(\mathbf{x})$ (component-wise)
Divide by π to ensure energy conservation
Add light emitted at \mathbf{x} (0 if there is no light source at \mathbf{x})

Mesh representation

```
    // A triangle along with some shading parameters
    struct triangle_t {
        // The positions of the three vertices (v_0, v_1, v_2)
    X vec3 positions[3];
    // A vector of length 1, orthogonal to the triangle (n)
    vec3 normal;
    // The albedo of the triangle (i.e. the fraction of
    a(\mathbf{x}) // red/green/blue light that gets reflected) (a)
    a(\mathbf{X) vec3 color;}
        // The radiance emitted by the triangle (for light sources) (L_e)
L
    };
```


The rendering equation: Challenges

$$
L_{o}(\mathbf{x})=L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega
$$

We have to integrate over $\Omega(\mathbf{x})$

The rendering equation: Challenges

$L_{o}(\mathbf{x})=L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega$
We have to integrate over $\Omega(\mathbf{x})$

We need $L(\mathbf{x}, \omega)$

The rendering equation: Challenges

$L_{o}(\mathbf{x})=L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega$
We have to integrate over $\Omega(\mathbf{x})$

We need $L(\mathbf{x}, \omega)$

$$
\mathbf{y}=\text { ray_intersection }(\mathbf{x}, \omega)=\mathbf{x}+t \omega
$$

$$
L(\mathbf{x}, \omega)=L_{o}(\mathbf{y})
$$

The rendering equation: Challenges

$L_{o}(\mathbf{x})=L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega$
We have to integrate over $\Omega(\mathbf{x})$

We need $L(\mathbf{x}, \omega)$
$\mathbf{y}=$ ray_intersection $(\mathbf{x}, \omega)=\mathbf{x}+t \omega$
$L(\mathbf{x}, \omega)=L_{o}(\mathbf{y})$

So we need $L_{o}(\mathbf{y})$ to compute $L_{o}(\mathbf{x})$

Monte Carlo integration

Monte Carlo integration

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly
Instead, pick $\omega_{1} \in \Omega(\mathbf{x})$ at random

$$
\begin{aligned}
& \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega \\
\approx & 2 \pi L\left(\mathbf{x}, \omega_{1}\right) \mathbf{n}(\mathbf{x}) \cdot \omega_{1}
\end{aligned}
$$

Monte Carlo integration

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly
Instead, pick $\omega_{1}, \ldots, \omega_{N} \in \Omega(\mathbf{x})$ at random

$$
\begin{aligned}
& \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega \\
\approx & 2 \pi \frac{1}{N} \sum_{j=1}^{N} L\left(\mathbf{x}, \omega_{j}\right) \mathbf{n}(\mathbf{x}) \cdot \omega_{j}
\end{aligned}
$$

Equal for $N \rightarrow \infty$ (with 100\% probability)

Monte Carlo integration

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly
Instead, pick $\omega_{1}, \ldots, \omega_{N} \in \Omega(\mathbf{x})$ at random

$$
\begin{aligned}
& \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega \\
\approx & 2 \pi \frac{1}{N} \sum_{j=1}^{N} L\left(\mathbf{x}, \omega_{j}\right) \mathbf{n}(\mathbf{x}) \cdot \omega_{j}
\end{aligned}
$$

Equal for $N \rightarrow \infty$ (with 100\% probability)
Error is zero-mean noise

Monte Carlo integration

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly
Instead, pick $\omega_{1}, \ldots, \omega_{N} \in \Omega(\mathbf{x})$ at random

$$
\begin{aligned}
& \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega \\
\approx & 2 \pi \frac{1}{N} \sum_{j=1}^{N} L\left(\mathbf{x}, \omega_{j}\right) \mathbf{n}(\mathbf{x}) \cdot \omega_{j}
\end{aligned}
$$

Equal for $N \rightarrow \infty$ (with 100\% probability)
Error is zero-mean noise

Monte Carlo integration

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly
Instead, pick $\omega_{1}, \ldots, \omega_{N} \in \Omega(\mathbf{x})$ at random

$$
\begin{aligned}
& \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega \\
\approx & 2 \pi \frac{1}{N} \sum_{j=1}^{N} L\left(\mathbf{x}, \omega_{j}\right) \mathbf{n}(\mathbf{x}) \cdot \omega_{j}
\end{aligned}
$$

Equal for $N \rightarrow \infty$ (with 100\% probability)
Error is zero-mean noise

Monte Carlo integration

We cannot integrate over ∞ many $\omega \in \Omega(\mathrm{x})$ exactly
Instead, pick $\omega_{1}, \ldots, \omega_{N} \in \Omega(\mathbf{x})$ at random

$$
\begin{aligned}
& \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega \\
\approx & 2 \pi \frac{1}{N} \sum_{j=1}^{N} L\left(\mathbf{x}, \omega_{j}\right) \mathbf{n}(\mathbf{x}) \cdot \omega_{j}
\end{aligned}
$$

Equal for $N \rightarrow \infty$ (with 100\% probability)
Error is zero-mean noise

$$
N=8
$$

Monte Carlo integration

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly
Instead, pick $\omega_{1}, \ldots, \omega_{N} \in \Omega(\mathbf{x})$ at random
$\int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega$
$\approx 2 \pi \frac{1}{N} \sum_{j=1}^{N} L\left(\mathbf{x}, \omega_{j}\right) \mathbf{n}(\mathbf{x}) \cdot \omega_{j}$
Equal for $N \rightarrow \infty$ (with 100\% probability)
Error is zero-mean noise

Monte Carlo integration

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly
Instead, pick $\omega_{1}, \ldots, \omega_{N} \in \Omega(\mathbf{x})$ at random

$$
\begin{aligned}
& \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega \\
\approx & 2 \pi \frac{1}{N} \sum_{j=1}^{N} L\left(\mathbf{x}, \omega_{j}\right) \mathbf{n}(\mathbf{x}) \cdot \omega_{j}
\end{aligned}
$$

Equal for $N \rightarrow \infty$ (with 100\% probability)
Error is zero-mean noise

Non-uniform sphere sampling

Random generator gives uniform $u_{0}, u_{1} \in[0,1)$
Map to sphere with spherical coordinates:
$\varphi=2 \pi u_{0}, \theta=\pi u_{1}$
$\omega_{\mathrm{x}}=\cos (\varphi) \sin (\theta)$
$\omega_{\mathrm{y}}=\sin (\varphi) \sin (\theta)$
$\omega_{\mathrm{z}}=\cos (\theta)$

Problem: Too many samples at the top

Uniform sphere sampling

Pick $\omega_{z} \in[-1,1)$ uniformly:
$\omega_{\mathrm{z}}=2 u_{1}-1$
$\varphi=2 \pi u_{0}$
$\omega_{\mathrm{x}}=\cos (\varphi) \sqrt{1-\omega_{\mathrm{z}}^{2}}$
$\omega_{\mathrm{y}}=\sin (\varphi) \sqrt{1-\omega_{\mathrm{z}}^{2}}$
Looks right

Derivation in chapter 13.6.1 of pbr-book.org

Uniform hemisphere sampling

Directions with $\mathbf{n} \cdot \omega<0$ contribute nothing

Start with ω on the sphere Mirror if $\mathbf{n} \cdot \omega<0$:
$\omega^{\prime}=\omega-2(\mathbf{n} \cdot \omega) \mathbf{n}$

Uniform hemisphere sampling

Directions with $\mathbf{n} \cdot \omega<0$ contribute nothing

Start with ω on the sphere
Mirror if $\mathbf{n} \cdot \omega<0$:
$\omega^{\prime}=\omega-2(\mathbf{n} \cdot \omega) \mathbf{n}$
i.e. subtract \mathbf{n}-component twice

$-(\mathbf{n} \cdot \omega) \mathbf{n}$
都

Uniform hemisphere sampling

Directions with $\mathbf{n} \cdot \omega<0$ contribute nothing

Start with ω on the sphere Mirror if $\mathbf{n} \cdot \omega<0$:
$\omega^{\prime}=\omega-2(\mathbf{n} \cdot \omega) \mathbf{n}$
i.e. subtract \mathbf{n}-component twice

Exercise 4: Uniform sphere sampling

Complete sample_sphere()
Inputs: Uniform $u_{0}, u_{1} \in[0,1)$
Output: Uniform random direction ω
The framework displays 512 samples
Use the formulas discussed 2 slides ago
Use $\cos (), \sin (), \operatorname{sqrt}(), \operatorname{vec} 3()$

Correct result

Exercise 4: Uniform sphere sampling

Complete sample_sphere()
Inputs: Uniform $u_{0}, u_{1} \in[0,1)$
Output: Uniform random direction ω
The framework displays 512 samples
Use the formulas discussed 2 slides ago
Use $\cos (), \sin (), \operatorname{sqrt}(), \operatorname{vec} 3()$

Correct result

Exercise 5: Uniform hemisphere sampling

Complete sample_hemisphere()
Inputs: Uniform $u_{0}, u_{1} \in[0,1)$, normal $\mathbf{n}(\mathbf{x})$
Output: Uniform random direction $\omega \in \Omega(\mathbf{x})$
The framework displays 512 samples
Use the formulas discussed 2 slides ago
Use if, dot(), *, -

Correct result

Exercise 5: Uniform hemisphere sampling

Complete sample_hemisphere()
Inputs: Uniform $u_{0}, u_{1} \in[0,1)$, normal $\mathbf{n}(\mathbf{x})$
Output: Uniform random direction $\omega \in \Omega(\mathbf{x})$
The framework displays 512 samples
Use the formulas discussed 2 slides ago
Use if, $\operatorname{dot}(), *$,

Pseudorandom number generator

```
// A pseudo-random number generator
// \param seed Numbers that are different for each invocation. Gets updated so
// that it can be reused.
// \return Two independent, uniform, pseudo-random numbers in [0,1) (u_0, u_1)
vec2 get_random_numbers(inout uvec2 seed) {
    // This is PCG2D: https://jcgt.org/published/0009/03/02/
    seed = 1664525u * seed + 1013904223u;
    seed.x += 1664525u * seed.y;
    seed.y += 1664525u * seed.x;
    seed ^= (seed >> 16u);
    seed.x += 1664525u * seed.y;
    seed.y += 1664525u * seed.x;
    seed ^= (seed >> 16u);
    // Convert to float. The constant here is 2^-32.
    return vec2(seed) * 2.32830643654e-10;
}
```


Pseudorandom number generator

```
// A pseudo-random number generator
// \param seed Numbers that are different for each invocation. Gets updated so
// that it can be reused.
// \return Two independent, uniform, pseudo-random numbers in [0,1) (u_0, u_1)
vec2 get_random_numbers(inout uvec2 seed) {
    // ...
}
```

```
// Use a different seed for each pixel and each frame
uvec2 seed = uvec2(pixel_coord) ^ uvec2(iFrame << 16);
// This gives us 2 uniform random numbers in [0,1)
vec2 rands_0 = get_random_numbers(seed);
// These are different random numbers because seed has changed
vec2 rands_1 = get_random_numbers(seed);
```


Exercise 6: Direct illumination

Complete compute_direct_illumination()
Inputs: A triangle and a point \mathbf{x} on it
Output: Radiance (emission + direct illum.)
Use $N=1$ random samples $\omega \in \Omega(\mathbf{x})$
Trace ray \mathbf{x}, ω to find $L_{e}(\mathbf{y})$ at hit \mathbf{y}
Compute: $L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} 2 \pi L_{e}(\mathbf{y}) \mathbf{n}(\mathbf{x}) \cdot \omega$

Use sample_hemisphere(), ray_mesh_intersection()

Correct result SAMPLE_COUNT=1

Exercise 6: Direct illumination

Complete compute_direct_illumination()
Inputs: A triangle and a point x on it
Output: Radiance (emission + direct illum.)
Use $N=1$ random samples $\omega \in \Omega(\mathbf{x})$
Trace ray \mathbf{x}, ω to find $L_{e}(\mathbf{y})$ at hit \mathbf{y}
Compute: $L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} 2 \pi L_{e}(\mathbf{y}) \mathbf{n}(\mathbf{x}) \cdot \omega$
Use sample_hemisphere(), ray_mesh_intersection()

Correct result SAMPLE_COUNT=8

Exercise 6: Direct illumination

Complete compute_direct_illumination()
Inputs: A triangle and a point x on it
Output: Radiance (emission + direct illum.)
Use $N=1$ random samples $\omega \in \Omega(\mathbf{x})$
Trace ray \mathbf{x}, ω to find $L_{e}(\mathbf{y})$ at hit \mathbf{y}
Compute: $L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} 2 \pi L_{e}(\mathbf{y}) \mathbf{n}(\mathbf{x}) \cdot \omega$
Use sample_hemisphere(), ray_mesh_intersection()

Correct result SAMPLE_COUNT=8

Path tracing

Path tracing

Given camera ray $\mathbf{x}_{0}, \omega_{0}$
Want to approximate $L\left(\mathbf{x}_{0}, \omega_{0}\right)$
$\mathbf{x}_{1}=$ ray_intersection $\left(\mathbf{x}_{0}, \omega_{0}\right)$
Monte Carlo estimate with $N=1$:
$\omega_{1} \in \Omega\left(\mathbf{x}_{1}\right)$ random sample

$$
L\left(\mathbf{x}_{0}, \omega_{0}\right)=L_{o}\left(\mathbf{x}_{1}\right) \approx L_{e}\left(\mathbf{x}_{1}\right)+\frac{a\left(\mathbf{x}_{1}\right)}{\pi} 2 \pi L\left(\mathbf{x}_{1}, \omega_{1}\right) \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}
$$

Path tracing

Given camera ray $\mathbf{x}_{0}, \omega_{0}$
Want to approximate $L\left(\mathbf{x}_{0}, \omega_{0}\right)$
$\mathbf{x}_{1}=$ ray_intersection $\left(\mathbf{x}_{0}, \omega_{0}\right)$
Monte Carlo estimate with $N=1$:
$\omega_{1} \in \Omega\left(\mathbf{x}_{1}\right)$ random sample

$$
L\left(\mathbf{x}_{0}, \omega_{0}\right)=L_{o}\left(\mathbf{x}_{1}\right) \approx L_{e}\left(\mathbf{x}_{1}\right)+\frac{a\left(\mathbf{x}_{1}\right)}{\pi} 2 \pi L\left(\mathbf{x}_{1}, \omega_{1}\right) \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}
$$

Path tracing

Given ray $\mathbf{x}_{1}, \omega_{1}$
Want to approximate $L\left(\mathbf{x}_{1}, \omega_{1}\right)$
$\mathbf{x}_{2}=$ ray_intersection $\left(\mathbf{x}_{1}, \omega_{1}\right)$
Monte Carlo estimate with $N=1$:
$\omega_{2} \in \Omega\left(\mathbf{x}_{2}\right)$ random sample

$$
L\left(\mathbf{x}_{1}, \omega_{1}\right)=L_{o}\left(\mathbf{x}_{2}\right) \approx L_{e}\left(\mathbf{x}_{2}\right)+\frac{a\left(\mathbf{x}_{2}\right)}{\pi} 2 \pi L\left(\mathbf{x}_{2}, \omega_{2}\right) \mathbf{n}\left(\mathbf{x}_{2}\right) \cdot \omega_{2}
$$

Path tracing

Given ray $\mathbf{x}_{1}, \omega_{1}$
Want to approximate $L\left(\mathbf{x}_{1}, \omega_{1}\right)$
$\mathbf{x}_{2}=$ ray_intersection $\left(\mathbf{x}_{1}, \omega_{1}\right)$
Monte Carlo estimate with $N=1$:
$\omega_{2} \in \Omega\left(\mathbf{x}_{2}\right)$ random sample

$$
L\left(\mathbf{x}_{1}, \omega_{1}\right)=L_{o}\left(\mathbf{x}_{2}\right) \approx L_{e}\left(\mathbf{x}_{2}\right)+\frac{a\left(\mathbf{x}_{2}\right)}{\pi} 2 \pi L\left(\mathbf{x}_{2}, \omega_{2}\right) \mathbf{n}\left(\mathbf{x}_{2}\right) \cdot \omega_{2}
$$

Path tracing

Given ray $\mathbf{x}_{2}, \omega_{2}$
Want to approximate $L\left(\mathbf{x}_{2}, \omega_{2}\right)$
$\mathbf{x}_{3}=$ ray_intersection $\left(\mathbf{x}_{2}, \omega_{2}\right)$
Monte Carlo estimate with $N=1$:
$\omega_{3} \in \Omega\left(\mathbf{x}_{3}\right)$ random sample

$$
L\left(\mathbf{x}_{2}, \omega_{2}\right)=L_{o}\left(\mathbf{x}_{3}\right) \approx L_{e}\left(\mathbf{x}_{3}\right)+\frac{a\left(\mathbf{x}_{3}\right)}{\pi} 2 \pi L\left(\mathbf{x}_{3}, \omega_{3}\right) \mathbf{n}\left(\mathbf{x}_{3}\right) \cdot \omega_{3}
$$

Path tracing

Given ray $\mathbf{x}_{2}, \omega_{2}$
Want to approximate $L\left(\mathbf{x}_{2}, \omega_{2}\right)$
$\mathbf{x}_{3}=$ ray_intersection $\left(\mathbf{x}_{2}, \omega_{2}\right)$
Monte Carlo estimate with $N=1$:
$\omega_{3} \in \Omega\left(\mathbf{x}_{3}\right)$ random sample

$L\left(\mathbf{x}_{2}, \omega_{2}\right)=L_{o}\left(\mathbf{x}_{3}\right) \approx L_{e}\left(\mathbf{x}_{3}\right)+\frac{a\left(\mathbf{x}_{3}\right)}{\pi} 2 \pi L\left(\mathbf{x}_{3}, \omega_{3}\right) \mathbf{n}\left(\mathbf{x}_{3}\right) \cdot \omega_{3}$

Path tracing

Given ray $\mathbf{x}_{3}, \omega_{3}$
Want to approximate $L\left(\mathbf{x}_{3}, \omega_{3}\right)$
$\mathbf{x}_{4}=$ ray_intersection $\left(\mathbf{x}_{3}, \omega_{3}\right)$
Monte Carlo estimate with $N=1$:
$\omega_{4} \in \Omega\left(\mathbf{x}_{4}\right)$ random sample

$$
L\left(\mathbf{x}_{3}, \omega_{3}\right)=L_{o}\left(\mathbf{x}_{4}\right) \approx L_{e}\left(\mathbf{x}_{4}\right)+\frac{a\left(\mathbf{x}_{4}\right)}{\pi} 2 \pi L\left(\mathbf{x}_{4}, \omega_{4}\right) \mathbf{n}\left(\mathbf{x}_{4}\right) \cdot \omega_{4}
$$

Path tracing recursion

GLSL spec: "Static and dynamic recursion is not allowed."

Path tracing recursion loop

GLSL spec: "Static and dynamic recursion is not allowed."

Path tracing recursion loop

GLSL spec: "Static and dynamic recursion is not allowed."

$$
L\left(\mathbf{x}_{0}, \omega_{0}\right) \approx L_{e}\left(\mathbf{x}_{1}\right)
$$

Path tracing recursion loop

GLSL spec: "Static and dynamic recursion is not allowed."

$$
\begin{aligned}
L\left(\mathbf{x}_{0}, \omega_{0}\right) & \approx L_{e}\left(\mathbf{x}_{1}\right) \\
& +\left(a\left(\mathbf{x}_{1}\right) 2 \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}\right) L_{e}\left(\mathbf{x}_{2}\right)
\end{aligned}
$$

Path tracing recursion loop

GLSL spec: "Static and dynamic recursion is not allowed."

$$
\begin{aligned}
L\left(\mathbf{x}_{0}, \omega_{0}\right) & \approx L_{e}\left(\mathbf{x}_{1}\right) \\
& +\left(a\left(\mathbf{x}_{1}\right) 2 \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}\right) L_{e}\left(\mathbf{x}_{2}\right) \\
& +\left(a\left(\mathbf{x}_{1}\right) 2 \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}\right)\left(a\left(\mathbf{x}_{2}\right) 2 \mathbf{n}\left(\mathbf{x}_{2}\right) \cdot \omega_{2}\right) L_{e}\left(\mathbf{x}_{3}\right)
\end{aligned}
$$

Path tracing recursion loop

GLSL spec: "Static and dynamic recursion is not allowed."

$$
L\left(\mathbf{x}_{0}, \omega_{0}\right) \approx L_{e}\left(\mathbf{x}_{1}\right)
$$

$$
\begin{aligned}
& +\left(a\left(\mathbf{x}_{1}\right) 2 \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}\right) L_{e}\left(\mathbf{x}_{2}\right) \\
& +\left(a\left(\mathbf{x}_{1}\right) 2 \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}\right)\left(a\left(\mathbf{x}_{2}\right) 2 \mathbf{n}\left(\mathbf{x}_{2}\right) \cdot \omega_{2}\right) L_{e}\left(\mathbf{x}_{3}\right)
\end{aligned}
$$

Path tracing recursion loop

GLSL spec: "Static and dynamic recursion is not allowed."

$$
L\left(\mathbf{x}_{0}, \omega_{0}\right) \approx L_{e}\left(\mathbf{x}_{1}\right)
$$

$$
\begin{aligned}
& +\left(a\left(\mathbf{x}_{1}\right) 2 \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}\right) L_{e}\left(\mathbf{x}_{2}\right) \\
& +\underbrace{\left(a\left(\mathbf{x}_{1}\right) 2 \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}\right)\left(a\left(\mathbf{x}_{2}\right) 2 \mathbf{n}\left(\mathbf{x}_{2}\right) \cdot \omega_{2}\right)}_{T_{2}} L_{e}\left(\mathbf{x}_{3}\right) \\
& \vdots
\end{aligned}
$$

Path tracing recursion loop

GLSL spec: "Static and dynamic recursion is not allowed."

$$
L\left(\mathbf{x}_{0}, \omega_{0}\right) \approx L_{e}\left(\mathbf{x}_{1}\right)
$$

$$
\begin{aligned}
& +\left(a\left(\mathbf{x}_{1}\right) 2 \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}\right) L_{e}\left(\mathbf{x}_{2}\right) \\
& +\underbrace{\left(a\left(\mathbf{x}_{1}\right) 2 \mathbf{n}\left(\mathbf{x}_{1}\right) \cdot \omega_{1}\right)\left(a\left(\mathbf{x}_{2}\right) 2 \mathbf{n}\left(\mathbf{x}_{2}\right) \cdot \omega_{2}\right)}_{T_{2}} L_{e}\left(\mathbf{x}_{3}\right) \\
& \vdots
\end{aligned}
$$

Add emission and update throughput weight T_{j} in each iteration:

$$
\begin{array}{ll}
L_{j+1}=L_{j}+T_{j} L_{e}\left(\mathbf{x}_{j+1}\right), & L_{0}=0 \\
T_{j+1}=T_{j} a\left(\mathbf{x}_{j+1}\right) 2 \mathbf{n}\left(\mathbf{x}_{j+1}\right) \cdot \omega_{j+1}, & T_{0}=1
\end{array} \quad j=0, \ldots
$$

Exercise 7: Path tracing

Complete get_ray_radiance()
Input: A ray $\mathbf{x}_{0}, \omega_{0}$
Output: $L\left(\mathbf{x}_{0}, \omega_{0}\right)$ (Monte Carlo estimate)
Use a for-loop with max_Path_Length iterations
Trace ray $\mathbf{x}_{j}, \omega_{j}$, break if it hits nothing Update the ray origin: $\mathbf{x}_{j+1}=\mathbf{x}_{j}+t_{j} \omega_{j}$ Add $T_{j} L_{e}\left(\mathbf{x}_{j+1}\right)$ to the radiance
Sample a direction $\omega_{j+1} \in \Omega\left(\mathbf{x}_{j+1}\right)$
Mul. throughput by $a\left(\mathbf{x}_{j+1}\right) 2 \mathbf{n}\left(\mathbf{x}_{j+1}\right) \cdot \omega_{j+1}$

Correct result SAMPLE_COUNT=1

Exercise 7: Path tracing

Complete get_ray_radiance()
Input: A ray $\mathbf{x}_{0}, \omega_{0}$
Output: $L\left(\mathbf{x}_{0}, \omega_{0}\right)$ (Monte Carlo estimate)
Use a for-loop with max_Path_Length iterations
Trace ray $\mathbf{x}_{j}, \omega_{j}$, break if it hits nothing Update the ray origin: $\mathbf{x}_{j+1}=\mathbf{x}_{j}+t_{j} \omega_{j}$ Add $T_{j} L_{e}\left(\mathbf{x}_{j+1}\right)$ to the radiance
Sample a direction $\omega_{j+1} \in \Omega\left(\mathbf{x}_{j+1}\right)$

Mul. throughput by $a\left(\mathbf{x}_{j+1}\right) 2 \mathbf{n}\left(\mathbf{x}_{j+1}\right) \cdot \omega_{j+1}$

Exercise 7: Path tracing

Complete get_ray_radiance()
Input: A ray $\mathbf{x}_{0}, \omega_{0}$
Output: $L\left(\mathbf{x}_{0}, \omega_{0}\right)$ (Monte Carlo estimate)
Use a for-loop with max_path_length iterations
Trace ray $\mathbf{x}_{j}, \omega_{j}$, break if it hits nothing Update the ray origin: $\mathbf{x}_{j+1}=\mathbf{x}_{j}+t_{j} \omega_{j}$ Add $T_{j} L_{e}\left(\mathbf{x}_{j+1}\right)$ to the radiance
Sample a direction $\omega_{j+1} \in \Omega\left(\mathbf{x}_{j+1}\right)$

Mul. throughput by $a\left(\mathbf{x}_{j+1}\right) 2 \mathbf{n}\left(\mathbf{x}_{j+1}\right) \cdot \omega_{j+1}$

Progressive rendering

Taking more samples is the outer-most loop:

```
out_color.rgb = vec3(0.0);
for (int i = 0; i != SAMPLE_COUNT; ++i)
    out_color.rgb += get_ray_radiance(camera_position, ray_direction, seed);
out_color.rgb /= float(SAMPLE_COUNT);
```

A large sample count hangs/crashes your browser
Instead, distribute work over frames
ShaderToy technicalities, not an exercise
Keep it running for better images

Path tracing is

General

Predictable
Scalable
Parallelizable
Extendable
Efficient

Path tracing is

General $\quad 1$ framework for all light transport
Predictable
Scalable
Parallelizable
Extendable
Efficient

Path tracing is

General
Predictable
Scalable
Parallelizable
Extendable
Efficient

Path tracing is

General
Predictable
Scalable Sample count allows tradeoffs
Parallelizable
Extendable
Efficient

Path tracing is

General
Predictable
Scalable Sample count allows tradeoffs
Parallelizable
Extendable
Efficient

1 framework for all light transport
Physically correct image + noise

Across samples or pixels

Path tracing is

General $\quad 1$ framework for all light transport
Predictable Physically correct image + noise
Scalable Sample count allows tradeoffs
Parallelizable
Extendable
Across samples or pixels
To spectral/volumetric/differentiable rendering
Efficient

Path tracing is

General	1 framework for all light transport
Predictable	Physically correct image + noise
Scalable	Sample count allows tradeoffs
Parallelizable	Across samples or pixels
Extendable	To spectral/volumetric/differentiable rendering
Efficient	When effort is focused on important work

Path tracing is

General

1 framework for all light transport

Scalable Sample count allows tradeoffs
Parallelizable
Extendable
Efficient

Predictable Physically correct image + noise

Across samples or pixels
To spectral/volumetric/differentiable rendering
When effort is focused on important work

The default in offline rendering, the future in real-time rendering

Faster path tracers

Acceleration structures and traversal
Stratification: Quasi-random numbers that improve convergence Importance sampling:

Light sampling, a.k.a. next event estimation
(Specular) BRDF importance sampling
Path guiding
Multiple importance sampling
Spatiotemporal (neural) denoising

Faster path tracers

Acceleration structures and traversal

Stratification: Quasi-random numbers that improve convergence Importance sampling:

Light sampling, a.k.a. next event estimation
(Specular) BRDF importance sampling
Part 3?
Path guiding
Multiple importance sampling
Spatiotemporal (neural) denoising

Thanks!

Backup

The rendering equation

$L_{o}(\mathbf{x})=L_{e}(\mathbf{x})+\frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \mathbf{n}(\mathbf{x}) \cdot \omega \mathrm{d} \omega$
$\mathbf{n}(\mathbf{x})$ is the normal vector at \mathbf{x}
$a(\mathbf{x})$ is the albedo at \mathbf{x}
$L(\mathbf{x}, \omega)$ is incoming radiance at \mathbf{x} from ω
$L_{o}(\mathbf{x})$ is the outgoing radiance at \mathbf{x}
$L_{e}(\mathbf{x})$ is emitted radiance at \mathbf{x}

