Path Tracing Workshop Part 2: Path Tracing

Christoph Peters Intel Graphics Research Organization

Recap

ShaderToy

Runs a full-viewport fragment shader in WebGL

Program that runs once per pixel to compute its color

In each exercise you complete 1 function in a ShaderToy (// TODO)

Exercise N+1 has a reference solution for exercise N (no peeking)

To change the code, just type

To recompile/run, click play

To save, copy your code to a text file

ShaderToy

Runs a full-viewport fragment shader in WebGL

Program that runs once per pixel to compute its color

In each exercise you complete 1 function in a ShaderToy (// TODO)

Exercise N+1 has a reference solution for exercise N (no peeking)

To change the code, just type

To recompile/run, click play

To save, copy your code to a text file

Or create an account and a fork

Proper WebGL config

By default, ANGLE makes big WebGL shaders run slowly on Windows

Experiments × + ← → C △ ④ Chrome Chrome//flags Angle		✓ - □ ★ ★ □ ▲ Reset all		
	©	Reset an	Advanced Preferences × +	- 0
Experiments		103.0.5060.134	$\leftarrow \rightarrow$ C Sirefox about:config	☆ ♡ (
Available	Unavailable		Q webgl.	Show only modified pret
Choose ANGLE graphics backend Choose the graphics backend for ANGLE. D3D11 is used on	most Windows computers by		webgl.disable-angle true	÷
default. Using the OpenGL driver as the graphics backend m in some graphics-heavy applications, particularly on NVIDIA and memory usage of video playback. – Windows	ay result in higher performance GPUs. It can increase battery		webgl.force-enabled true	, -
<u>#use-angle</u>	Ope D3D D3D D3D D3D	011	webgl. O Boolean	Number OString +

Then restart Chrome

Then reload ShaderToy tabs

Ray-mesh intersection test

What do we see along a ray?

The closest intersected triangle!

Ray tracing finds this closest hit

Foundation of path tracing

Implemented in hardware

But we do it in software

Our goals

Learn rendering basics

Write a path tracer

In GLSL on ShaderToy

Have fun

Part 1: Ray tracing

Part 2: Path tracing

Our goals

Learn rendering basics

Write a path tracer

In GLSL on ShaderToy

Have fun

Part 1: Ray tracing

Part 2: Path tracing

Top of the box is an area light

Surfaces can be lit directly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

Path tracing starts at camera

Finds a light when it is lucky

Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

Path tracing starts at camera

Finds a light when it is lucky

The colors are called "radiance"

 $L(\mathbf{x}, \omega) =$ color for ray $\mathbf{x} + t\omega$

Pixel = radiance for camera ray

Plenoptic function/radiance field

 $L(\mathbf{x},\omega) = \operatorname{color} \operatorname{for} \operatorname{ray} \mathbf{x} + t\omega$

Pixel = radiance for camera ray

Plenoptic function/radiance field

Constant along rays in vacuum

 $L(\mathbf{x},\omega) = \operatorname{color} \operatorname{for} \operatorname{ray} \mathbf{x} + t\omega$

Pixel = radiance for camera ray

Plenoptic function/radiance field

Constant along rays in vacuum

$$L(\mathbf{y},\omega) = L(\mathbf{x},\omega)$$

 $L(\mathbf{x},\omega) = \text{color for ray } \mathbf{x} + t \omega$

Pixel = radiance for camera ray

Plenoptic function/radiance field

Constant along rays in vacuum

 $L(\mathbf{y},\omega) = L(\mathbf{x},\omega)$

Ray tracing transports radiance

Beam of cross-sectional area A hits surface area A'

Beam of cross-sectional area A hits surface area A'

$$\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{A}{A'}$$

Beam of cross-sectional area A hits surface area A'

$$\cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} = \frac{A}{A'} = \mathbf{n} \cdot \omega$$

Because we ensure $\|\mathbf{n}\| = \|\omega\| = 1$

Beam of cross-sectional area A hits surface area A'

$$\cos(heta) = rac{ ext{adjacent}}{ ext{hypotenuse}} = rac{A}{A'} = \mathbf{n} \cdot \omega$$

Because we ensure $\|\mathbf{n}\| = \|\omega\| = 1$

Irradiance gathers all light at point ${\bf x}$

Weighted integral over radiance: $E(\mathbf{x}, \mathbf{n}) = \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n} \cdot \omega \, \mathrm{d}\omega$

Beam of cross-sectional area A hits surface area A'

$$\cos(\theta) = rac{ ext{adjacent}}{ ext{hypotenuse}} = rac{A}{A'} = \mathbf{n} \cdot \omega$$

Because we ensure $\|\mathbf{n}\|=\|\boldsymbol{\omega}\|=1$

Irradiance gathers all light at point ${\bf x}$

Weighted integral over radiance:

$$E(\mathbf{x}, \mathbf{n}) = \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n} \cdot \omega \, \mathrm{d}\omega$$

Where $\Omega(\mathbf{x}) \subseteq \mathbb{R}^3$ is a hemisphere: $\omega \in \Omega(\mathbf{x}) \Leftrightarrow ||\omega|| = 1, \, \mathbf{n} \cdot \omega \ge 0$

$$L_o(\mathbf{x}) = L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

Result: Outgoing radiance $L_o(\mathbf{x})$ for diffuse surface at \mathbf{x}

$$L_o(\mathbf{x}) = L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

Result: Outgoing radiance $L_o(\mathbf{x})$ for diffuse surface at \mathbf{x}

Compute incoming irradiance $E(\mathbf{x}, \mathbf{n}(\mathbf{x}))$, i.e. total light reaching \mathbf{x}

$$L_o(\mathbf{x}) = L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

Result: Outgoing radiance $L_o(\mathbf{x})$ for diffuse surface at \mathbf{x}

Compute incoming irradiance $E(\mathbf{x}, \mathbf{n}(\mathbf{x}))$, i.e. total light reaching \mathbf{x}

Multiply by the surface color $a(\mathbf{x})$ (component-wise)

$$L_o(\mathbf{x}) = L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

Result: Outgoing radiance $L_o(\mathbf{x})$ for diffuse surface at \mathbf{x}

Compute incoming irradiance $E(\mathbf{x}, \mathbf{n}(\mathbf{x}))$, i.e. total light reaching \mathbf{x}

Multiply by the surface color $a(\mathbf{x})$ (component-wise)

Divide by π to ensure energy conservation

The rendering equation

$$L_o(\mathbf{x}) = L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

Result: Outgoing radiance $L_o(\mathbf{x})$ for diffuse surface at \mathbf{x}

Compute incoming irradiance $E(\mathbf{x}, \mathbf{n}(\mathbf{x}))$, i.e. total light reaching \mathbf{x}

Multiply by the surface color $a(\mathbf{x})$ (component-wise)

Divide by π to ensure energy conservation

Add light emitted at x (0 if there is no light source at x)

Mesh representation

```
// A triangle along with some shading parameters

struct triangle_t {

    // The positions of the three vertices (v_0, v_1, v_2)

    X vec3 positions[3];

    // A vector of length 1, orthogonal to the triangle (n)

    vec3 normal;

    // The albedo of the triangle (i.e. the fraction of

    // red/green/blue light that gets reflected) (a)

    vec3 color;

    // The radiance emitted by the triangle (for light sources) (L_e)

    vec3 emission;
```

$$L_o(\mathbf{x}) = L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

We have to integrate over $\Omega(\mathbf{x})$

$$L_o(\mathbf{x}) = L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

We have to integrate over $\Omega(\mathbf{x})$

We need $L(\mathbf{x}, \omega)$

$$L_o(\mathbf{x}) = L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

We have to integrate over $\Omega(\mathbf{x})$

We need $L(\mathbf{x}, \omega)$

$$\mathbf{y} = \text{ray_intersection}(\mathbf{x}, \omega) = \mathbf{x} + t\omega$$

 $L(\mathbf{x}, \omega) = L_o(\mathbf{y})$

$$L_o(\mathbf{x}) = L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

We have to integrate over $\Omega(\mathbf{x})$

We need $L(\mathbf{x}, \omega)$

$$\mathbf{y} = \text{ray_intersection}(\mathbf{x}, \omega) = \mathbf{x} + t\omega$$

 $L(\mathbf{x}, \omega) = L_o(\mathbf{y})$

So we need $L_o(\mathbf{y})$ to compute $L_o(\mathbf{x})$

intel.

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly

```
Instead, pick \omega_1 \in \Omega(\mathbf{x}) at random \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega
```

```
\approx 2\pi L(\mathbf{x},\omega_1) \mathbf{n}(\mathbf{x}) \cdot \omega_1
```


We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly

Instead, pick
$$\omega_1, ..., \omega_N \in \Omega(\mathbf{x})$$
 at random

$$\int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

$$\approx 2\pi \, \frac{1}{N} \sum_{j=1}^N L(\mathbf{x}, \omega_j) \, \mathbf{n}(\mathbf{x}) \cdot \omega_j$$

Equal for $N\!
ightarrow\!\infty$ (with 100% probability)

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly

Instead, pick
$$\omega_1, ..., \omega_N \in \Omega(\mathbf{x})$$
 at random

$$\int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

$$\approx 2\pi \, \frac{1}{N} \sum_{j=1}^N L(\mathbf{x}, \omega_j) \, \mathbf{n}(\mathbf{x}) \cdot \omega_j$$

Equal for $N\!
ightarrow\!\infty$ (with 100% probability)

Error is zero-mean noise

intel

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly

Instead, pick
$$\omega_1, ..., \omega_N \in \Omega(\mathbf{x})$$
 at random

$$\int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

$$\approx 2\pi \, \frac{1}{N} \sum_{j=1}^N L(\mathbf{x}, \omega_j) \, \mathbf{n}(\mathbf{x}) \cdot \omega_j$$

Equal for $N\!
ightarrow\!\infty$ (with 100% probability)

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly

Instead, pick
$$\omega_1, ..., \omega_N \in \Omega(\mathbf{x})$$
 at random

$$\int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

$$\approx 2\pi \, \frac{1}{N} \sum_{j=1}^N L(\mathbf{x}, \omega_j) \, \mathbf{n}(\mathbf{x}) \cdot \omega_j$$

Equal for $N\!
ightarrow\!\infty$ (with 100% probability)

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly

Instead, pick
$$\omega_1, ..., \omega_N \in \Omega(\mathbf{x})$$
 at random

$$\int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

$$\approx 2\pi \, \frac{1}{N} \sum_{j=1}^N L(\mathbf{x}, \omega_j) \, \mathbf{n}(\mathbf{x}) \cdot \omega_j$$

Equal for $N\!
ightarrow\!\infty$ (with 100% probability)

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly

Instead, pick
$$\omega_1, ..., \omega_N \in \Omega(\mathbf{x})$$
 at random

$$\int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

$$\approx 2\pi \, \frac{1}{N} \sum_{j=1}^N L(\mathbf{x}, \omega_j) \, \mathbf{n}(\mathbf{x}) \cdot \omega_j$$

Equal for $N\!
ightarrow\!\infty$ (with 100% probability)

We cannot integrate over ∞ many $\omega \in \Omega(\mathbf{x})$ exactly

Instead, pick
$$\omega_1, ..., \omega_N \in \Omega(\mathbf{x})$$
 at random

$$\int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

$$\approx 2\pi \, \frac{1}{N} \sum_{j=1}^N L(\mathbf{x}, \omega_j) \, \mathbf{n}(\mathbf{x}) \cdot \omega_j$$

Equal for $N\!
ightarrow\!\infty$ (with 100% probability)

N = 2048

Non-uniform sphere sampling

Random generator gives uniform $u_0, u_1 \in [0, 1)$

Map to sphere with spherical coordinates:

Problem: Too many samples at the top

intel.

Uniform sphere sampling

Pick $\omega_z \in [-1, 1)$ uniformly:

 $\omega_z = 2u_1 - 1$ $\varphi = 2\pi u_0$ $\omega_{\rm x} = \cos(\varphi) \sqrt{1 - \omega_z^2}$ u_1 $\omega_{\mathrm{y}} = \sin(\varphi) \sqrt{1 - \omega_{\mathrm{z}}^2}$ Looks right u_0

Derivation in chapter 13.6.1 of pbr-book.org

Uniform hemisphere sampling

Directions with $\mathbf{n}\cdot\boldsymbol{\omega}<0$ contribute nothing

Start with ω on the sphere

```
Mirror if \mathbf{n} \cdot \boldsymbol{\omega} < 0:
```

$$\omega' = \omega - 2\left(\mathbf{n}\cdot\boldsymbol{\omega}\right)\mathbf{n}$$

Uniform hemisphere sampling

Directions with $\mathbf{n}\cdot\boldsymbol{\omega}<0$ contribute nothing

Start with ω on the sphere

```
Mirror if \mathbf{n} \cdot \boldsymbol{\omega} < 0:
```

$$\omega' = \omega - 2\left(\mathbf{n} \cdot \boldsymbol{\omega}\right) \mathbf{n}$$

i.e. subtract \mathbf{n} -component twice

Uniform hemisphere sampling

Directions with $\mathbf{n}\cdot\boldsymbol{\omega}<0$ contribute nothing


```
Mirror if \mathbf{n} \cdot \boldsymbol{\omega} < 0:
```

$$\omega' = \omega - 2\left(\mathbf{n} \cdot \boldsymbol{\omega}\right) \mathbf{n}$$

i.e. subtract n-component twice

Exercise 4: Uniform sphere sampling

Complete sample_sphere()

Inputs: Uniform $u_0, u_1 \in [0, 1)$

Output: Uniform random direction $\boldsymbol{\omega}$

The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use cos(), sin(), sqrt(), vec3()

intel

Correct result

shadertoy.com/view/ssKBD3

Exercise 4: Uniform sphere sampling

Complete sample_sphere()

Inputs: Uniform $u_0, u_1 \in [0, 1)$

Output: Uniform random direction $\boldsymbol{\omega}$

The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use cos(), sin(), sqrt(), vec3()

Correct result

shadertoy.com/view/ssKBD3

Exercise 5: Uniform hemisphere sampling

Complete sample_hemisphere()

Inputs: Uniform $u_0, u_1 \in [0, 1)$, normal $\mathbf{n}(\mathbf{x})$

Output: Uniform random direction $\omega \in \Omega(\mathbf{x})$

The framework displays 512 samples

Use the formulas discussed 2 slides ago

Correct result

Use if, dot(), *, -

intel

shadertoy.com/view/7sKBD3

Exercise 5: Uniform hemisphere sampling

Complete sample_hemisphere()

Inputs: Uniform $u_0, u_1 \in [0, 1)$, normal $\mathbf{n}(\mathbf{x})$

Output: Uniform random direction $\omega \in \Omega(\mathbf{x})$

The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use if, dot(), *, -

intel

Correct result

shadertoy.com/view/7sKBD3

Pseudorandom number generator

```
// A pseudo-random number generator
// \param seed Numbers that are different for each invocation. Gets updated so
11
               that it can be reused.
// \return Two independent, uniform, pseudo-random numbers in [0,1) (u 0, u 1)
vec2 get random numbers(inout uvec2 seed) {
    // This is PCG2D: https://jcgt.org/published/0009/03/02/
    seed = 1664525u * seed + 1013904223u;
    seed.x += 1664525u * seed.v:
    seed.y += 1664525u * seed.x;
    seed ^= (seed >> 16u):
    seed.x += 1664525u * seed.v:
    seed.y += 1664525u * seed.x;
    seed ^{=} (seed >> 16u):
    // Convert to float. The constant here is 2^-32.
    return vec2(seed) * 2.32830643654e-10;
}
```

Pseudorandom number generator

```
// A pseudo-random number generator
// \param seed Numbers that are different for each invocation. Gets updated so
// that it can be reused.
// \return Two independent, uniform, pseudo-random numbers in [0,1) (u_0, u_1)
vec2 get_random_numbers inout uvec2 seed) {
    // ...
}
```

```
// Use a different seed for each pixel and each frame
uvec2 seed = uvec2(pixel_coord) ^ uvec2(iFrame << 16);
// This gives us 2 uniform random numbers in [0,1)
vec2 rands_0 = get_random_numbers(seed);
// These are different random numbers because seed has changed
vec2 rands_1 = get_random_numbers(seed);
```

Exercise 6: Direct illumination

Complete compute_direct_illumination()

Inputs: A triangle and a point ${\bf x}$ on it

Output: Radiance (emission + direct illum.)

Use N = 1 random samples $\omega \in \Omega(\mathbf{x})$

Trace ray \mathbf{x}, ω to find $L_e(\mathbf{y})$ at hit \mathbf{y}

Compute:
$$L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} 2\pi L_e(\mathbf{y}) \mathbf{n}(\mathbf{x}) \cdot \omega$$

Use sample_hemisphere(), ray_mesh_intersection()

shadertoy.com/view/sdVBD3

 $\underset{\text{SAMPLE}_\text{COUNT=1}}{\text{Count}}$

intel.

Exercise 6: Direct illumination

Complete compute_direct_illumination()

Inputs: A triangle and a point \mathbf{x} on it

Output: Radiance (emission + direct illum.)

Use $N\!=\!1$ random samples $\omega\!\in\!\Omega(\mathbf{x})$

Trace ray \mathbf{x}, ω to find $L_e(\mathbf{y})$ at hit \mathbf{y}

Compute:
$$L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} 2\pi L_e(\mathbf{y}) \mathbf{n}(\mathbf{x}) \cdot \omega$$

Use sample_hemisphere(), ray_mesh_intersection()

Correct result SAMPLE_COUNT=8

intel.

shadertoy.com/view/sdVBD3

Exercise 6: Direct illumination

Complete compute_direct_illumination()

Inputs: A triangle and a point \mathbf{x} on it

Output: Radiance (emission + direct illum.)

Use $N\!=\!1$ random samples $\omega\!\in\!\Omega(\mathbf{x})$

Trace ray \mathbf{x}, ω to find $L_e(\mathbf{y})$ at hit \mathbf{y}

Compute:
$$L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} 2\pi L_e(\mathbf{y}) \mathbf{n}(\mathbf{x}) \cdot \omega$$

Use sample_hemisphere(), ray_mesh_intersection()

shadertoy.com/view/sdVBD3

Correct result SAMPLE_COUNT=8

Given camera ray \mathbf{x}_0, ω_0

Want to approximate $L(\mathbf{x}_0, \omega_0)$

 $\mathbf{x}_1 = \operatorname{ray_intersection}(\mathbf{x}_0, \omega_0)$

Monte Carlo estimate with N = 1:

 $\omega_1 \in \Omega(\mathbf{x}_1)$ random sample

 $L(\mathbf{x}_0,\omega_0) = L_o(\mathbf{x}_1) \approx L_e(\mathbf{x}_1) + \frac{a(\mathbf{x}_1)}{\pi} 2\pi L(\mathbf{x}_1,\omega_1) \mathbf{n}(\mathbf{x}_1) \cdot \omega_1$

Given camera ray \mathbf{x}_0, ω_0

Want to approximate $L(\mathbf{x}_0, \omega_0)$

 $\mathbf{x}_1 = \operatorname{ray_intersection}(\mathbf{x}_0, \omega_0)$

Monte Carlo estimate with N = 1:

 $\omega_1 \in \Omega(\mathbf{x}_1)$ random sample

 $L(\mathbf{x}_0,\omega_0) = L_o(\mathbf{x}_1) \approx L_e(\mathbf{x}_1) + \frac{a(\mathbf{x}_1)}{\pi} 2\pi L(\mathbf{x}_1,\omega_1) \mathbf{n}(\mathbf{x}_1) \cdot \omega_1$

Given ray \mathbf{x}_1, ω_1

Want to approximate $L(\mathbf{x}_1, \omega_1)$

 $\mathbf{x}_2 = \operatorname{ray_intersection}(\mathbf{x}_1, \omega_1)$

Monte Carlo estimate with N = 1:

 $\omega_2 \in \Omega(\mathbf{x}_2)$ random sample

 $L(\mathbf{x}_1, \omega_1) = L_o(\mathbf{x}_2) \approx L_e(\mathbf{x}_2) + rac{a(\mathbf{x}_2)}{\pi} 2\pi L(\mathbf{x}_2, \omega_2) \mathbf{n}(\mathbf{x}_2) \cdot \omega_2$

Given ray \mathbf{x}_1, ω_1

Want to approximate $L(\mathbf{x}_1, \omega_1)$

 $\mathbf{x}_2 = \operatorname{ray_intersection}(\mathbf{x}_1, \omega_1)$

Monte Carlo estimate with N = 1:

 $\omega_2 \in \Omega(\mathbf{x}_2)$ random sample

 $L(\mathbf{x}_1, \omega_1) = L_o(\mathbf{x}_2) \approx L_e(\mathbf{x}_2) + rac{a(\mathbf{x}_2)}{\pi} 2\pi L(\mathbf{x}_2, \omega_2) \mathbf{n}(\mathbf{x}_2) \cdot \omega_2$

Given ray \mathbf{x}_2, ω_2

Want to approximate $L(\mathbf{x}_2, \omega_2)$

 $\mathbf{x}_3 = \operatorname{ray_intersection}(\mathbf{x}_2, \omega_2)$

Monte Carlo estimate with N = 1:

 $\omega_3 \in \Omega(\mathbf{x}_3)$ random sample

 $L(\mathbf{x}_2,\omega_2) = L_o(\mathbf{x}_3) \approx L_e(\mathbf{x}_3) + \frac{a(\mathbf{x}_3)}{\pi} 2\pi L(\mathbf{x}_3,\omega_3) \mathbf{n}(\mathbf{x}_3) \cdot \omega_3$

Given ray \mathbf{x}_2, ω_2

Want to approximate $L(\mathbf{x}_2, \omega_2)$

 $\mathbf{x}_3 = \operatorname{ray_intersection}(\mathbf{x}_2, \omega_2)$

Monte Carlo estimate with N = 1:

 $\omega_3 \in \Omega(\mathbf{x}_3)$ random sample

 $L(\mathbf{x}_2,\omega_2) = L_o(\mathbf{x}_3) \approx L_e(\mathbf{x}_3) + \frac{a(\mathbf{x}_3)}{\pi} 2\pi L(\mathbf{x}_3,\omega_3) \mathbf{n}(\mathbf{x}_3) \cdot \omega_3$

Path tracing

Given ray \mathbf{x}_3, ω_3

Want to approximate $L(\mathbf{x}_3, \omega_3)$

 $\mathbf{x}_4 = \operatorname{ray_intersection}(\mathbf{x}_3, \omega_3)$

Monte Carlo estimate with N = 1:

 $\omega_4 \in \Omega(\mathbf{x}_4)$ random sample

 $L(\mathbf{x}_3, \omega_3) = L_o(\mathbf{x}_4) \approx L_e(\mathbf{x}_4) + rac{a(\mathbf{x}_4)}{\pi} 2\pi L(\mathbf{x}_4, \omega_4) \, \mathbf{n}(\mathbf{x}_4) \cdot \omega_4$

Path tracing recursion

GLSL spec: "Static and dynamic recursion is not allowed."

GLSL spec: "Static and dynamic recursion is not allowed."

GLSL spec: "Static and dynamic recursion is not allowed."

 $L(\mathbf{x}_0,\omega_0) \approx L_e(\mathbf{x}_1)$

GLSL spec: "Static and dynamic recursion is not allowed."

 $egin{aligned} L(\mathbf{x}_0, \omega_0) &pprox L_e(\mathbf{x}_1) \ &+ \left(a(\mathbf{x}_1) 2 \, \mathbf{n}(\mathbf{x}_1) \cdot \omega_1
ight) L_e(\mathbf{x}_2) \end{aligned}$

GLSL spec: "Static and dynamic recursion is not allowed." $L(\mathbf{x}_0, \omega_0) \approx L_e(\mathbf{x}_1) + (a(\mathbf{x}_1)2\mathbf{n}(\mathbf{x}_1) \cdot \omega_1) L_e(\mathbf{x}_2) + (a(\mathbf{x}_1)2\mathbf{n}(\mathbf{x}_1) \cdot \omega_1) (a(\mathbf{x}_2)2\mathbf{n}(\mathbf{x}_2) \cdot \omega_2) L_e(\mathbf{x}_3)$

•••

GLSL spec: "Static and dynamic recursion is not allowed." $L(\mathbf{x}_{0}, \omega_{0}) \approx L_{e}(\mathbf{x}_{1})$ $+ (a(\mathbf{x}_{1})2\mathbf{n}(\mathbf{x}_{1}) \cdot \omega_{1}) L_{e}(\mathbf{x}_{2})$ $+ (a(\mathbf{x}_{1})2\mathbf{n}(\mathbf{x}_{1}) \cdot \omega_{1}) (a(\mathbf{x}_{2})2\mathbf{n}(\mathbf{x}_{2}) \cdot \omega_{2}) L_{e}(\mathbf{x}_{3})$ \vdots

•••

GLSL spec: "Static and dynamic recursion is not allowed."

$$L(\mathbf{x}_{0}, \omega_{0}) \approx L_{e}(\mathbf{x}_{1}) + (a(\mathbf{x}_{1})2\mathbf{n}(\mathbf{x}_{1}) \cdot \omega_{1}) L_{e}(\mathbf{x}_{2}) + \underbrace{(a(\mathbf{x}_{1})2\mathbf{n}(\mathbf{x}_{1}) \cdot \omega_{1}) (a(\mathbf{x}_{2})2\mathbf{n}(\mathbf{x}_{2}) \cdot \omega_{2})}_{\vdots \qquad T_{2}} L_{e}(\mathbf{x}_{3})$$

intel

GLSL spec: "Static and dynamic recursion is not allowed."

$$L(\mathbf{x}_{0}, \omega_{0}) \approx L_{e}(\mathbf{x}_{1}) + (a(\mathbf{x}_{1})2\mathbf{n}(\mathbf{x}_{1}) \cdot \omega_{1}) L_{e}(\mathbf{x}_{2}) + \underbrace{(a(\mathbf{x}_{1})2\mathbf{n}(\mathbf{x}_{1}) \cdot \omega_{1}) (a(\mathbf{x}_{2})2\mathbf{n}(\mathbf{x}_{2}) \cdot \omega_{2})}_{\vdots \qquad T_{2}} L_{e}(\mathbf{x}_{3})$$

Add emission and update throughput weight T_j in each iteration:

$$L_{j+1} = L_j + T_j L_e(\mathbf{x}_{j+1}), \qquad L_0 = 0$$

$$T_{j+1} = T_j \ a(\mathbf{x}_{j+1}) 2 \mathbf{n}(\mathbf{x}_{j+1}) \cdot \omega_{j+1}, \qquad T_0 = 1$$
 $j = 0, \dots$

24

Exercise 7: Path tracing

Complete get_ray_radiance()

Input: A ray \mathbf{x}_0, ω_0

Output: $L(\mathbf{x}_0, \omega_0)$ (Monte Carlo estimate)

Use a for-loop with MAX_PATH_LENGTH iterations

Trace ray \mathbf{x}_j , ω_j , break if it hits nothing Update the ray origin: $\mathbf{x}_{j+1} = \mathbf{x}_j + t_j \omega_j$ Add $T_j L_e(\mathbf{x}_{j+1})$ to the radiance Sample a direction $\omega_{j+1} \in \Omega(\mathbf{x}_{j+1})$ Mul. throughput by $a(\mathbf{x}_{j+1}) 2 \mathbf{n}(\mathbf{x}_{j+1}) \cdot \omega_{j+1}$

shadertoy.com/view/flcczr

Correct result SAMPLE_COUNT=1

Exercise 7: Path tracing

Complete get_ray_radiance()

Input: A ray \mathbf{x}_0, ω_0

Output: $L(\mathbf{x}_0, \omega_0)$ (Monte Carlo estimate)

Use a for-loop with MAX_PATH_LENGTH iterations

Trace ray \mathbf{x}_j , ω_j , break if it hits nothing Update the ray origin: $\mathbf{x}_{j+1} = \mathbf{x}_j + t_j \omega_j$ Add $T_j L_e(\mathbf{x}_{j+1})$ to the radiance Sample a direction $\omega_{j+1} \in \Omega(\mathbf{x}_{j+1})$ Mul. throughput by $a(\mathbf{x}_{j+1}) 2 \mathbf{n}(\mathbf{x}_{j+1}) \cdot \omega_{j+1}$

shadertoy.com/view/flcczr

Correct result SAMPLE_COUNT=8

Exercise 7: Path tracing

Complete get_ray_radiance()

Input: A ray \mathbf{x}_0, ω_0

intel

Output: $L(\mathbf{x}_0, \omega_0)$ (Monte Carlo estimate)

Use a for-loop with <code>max_path_length</code> iterations

Trace ray \mathbf{x}_j , ω_j , break if it hits nothing Update the ray origin: $\mathbf{x}_{j+1} = \mathbf{x}_j + t_j \omega_j$ Add $T_j L_e(\mathbf{x}_{j+1})$ to the radiance Sample a direction $\omega_{j+1} \in \Omega(\mathbf{x}_{j+1})$

Mul. throughput by $a(\mathbf{x}_{j+1}) 2 \mathbf{n}(\mathbf{x}_{j+1}) \cdot \omega_{j+1}$ shadertoy.com/view/flcczr Correct result SAMPLE_COUNT=8

Progressive rendering

Taking more samples is the outer-most loop:

```
out_color.rgb = vec3(0.0);
for (int i = 0; i != SAMPLE_COUNT; ++i)
    out_color.rgb += get_ray_radiance(camera_position, ray_direction, seed);
out_color.rgb /= float(SAMPLE_COUNT);
```

A large sample count hangs/crashes your browser

Instead, distribute work over frames

ShaderToy technicalities, not an exercise

Keep it running for better images

shadertoy.com/view/Nlcczr

General

Predictable

Scalable

Parallelizable

Extendable

General 1 framework for all light transport

Predictable

Scalable

Parallelizable

Extendable

General 1 framework for all light transport

Predictable Physically correct image + noise

Scalable

Parallelizable

Extendable

General 1 framework for all light transport

Predictable Physically correct image + noise

Scalable Sample count allows tradeoffs

Parallelizable

Extendable

General 1 framework for all light transport

Predictable Physically correct image + noise

Scalable Sample count allows tradeoffs

Parallelizable Across samples or pixels

Extendable

General 1 framework for all light transport

Predictable Physically correct image + noise

Scalable Sample count allows tradeoffs

Parallelizable Across samples or pixels

Extendable To spectral/volumetric/differentiable rendering

General 1 framework for all light transport

Predictable Physically correct image + noise

Scalable Sample count allows tradeoffs

Parallelizable Across samples or pixels

Extendable To spectral/volumetric/differentiable rendering

Efficient When effort is focused on important work

General 1 framework for all light transport

Predictable Physically correct image + noise

Scalable Sample count allows tradeoffs

Parallelizable Across samples or pixels

Extendable To spectral/volumetric/differentiable rendering

Efficient When effort is focused on important work

The default in offline rendering, the future in real-time rendering

Faster path tracers

Acceleration structures and traversal

Stratification: Quasi-random numbers that improve convergence

Importance sampling:

Light sampling, a.k.a. next event estimation

(Specular) BRDF importance sampling

Path guiding

Multiple importance sampling

Spatiotemporal (neural) denoising

Faster path tracers

Acceleration structures and traversal

Stratification: Quasi-random numbers that improve convergence

Importance sampling:

Light sampling, a.k.a. next event estimation

(Specular) BRDF importance sampling

Part 3?

Path guiding

Multiple importance sampling

Spatiotemporal (neural) denoising

Thanks!

Backup

The rendering equation

$$L_o(\mathbf{x}) = L_e(\mathbf{x}) + \frac{a(\mathbf{x})}{\pi} \int_{\Omega(\mathbf{x})} L(\mathbf{x}, \omega) \, \mathbf{n}(\mathbf{x}) \cdot \omega \, \mathrm{d}\omega$$

 $\mathbf{n}(\mathbf{x})$ is the normal vector at \mathbf{x}

 $a(\mathbf{x})$ is the albedo at \mathbf{x}

 $L(\mathbf{x},\omega)$ is incoming radiance at \mathbf{x} from ω

 $L_o(\mathbf{x})$ is the outgoing radiance at \mathbf{x}

 $L_e(\mathbf{x})$ is emitted radiance at \mathbf{x}