
Path Tracing Workshop
Part 2: Path Tracing
Christoph Peters
Intel Graphics Research Organization

Recap

1

ShaderToy
Runs a full-viewport fragment shader in WebGL

Program that runs once per pixel to compute its color

In each exercise you complete 1 function in a ShaderToy ()

Exercise N+1 has a reference solution for exercise N (no peeking)

To change the code, just type

To recompile/run, click play

To save, copy your code to a text file

 // TODO

2

ShaderToy
Runs a full-viewport fragment shader in WebGL

Program that runs once per pixel to compute its color

In each exercise you complete 1 function in a ShaderToy ()

Exercise N+1 has a reference solution for exercise N (no peeking)

To change the code, just type

To recompile/run, click play

To save, copy your code to a text file

Or create an account and a fork

 // TODO

2

Proper WebGL config
By default, ANGLE makes big WebGL shaders run slowly on Windows

Then restart Chrome Then reload ShaderToy tabs

3

What do we see along a ray?

The closest intersected triangle!

Ray tracing finds this closest hit

Foundation of path tracing

Implemented in hardware

But we do it in software

Ray-mesh intersection test

4

Our goals
Learn rendering basics

Write a path tracer

In GLSL on ShaderToy

Have fun

Part 1: Ray tracing

Part 2: Path tracing

5

Our goals
Learn rendering basics

Write a path tracer

In GLSL on ShaderToy

Have fun

Part 1: Ray tracing

Part 2: Path tracing

5

Global illumination

6

Global illumination
Top of the box is an area light

Surfaces can be lit directly

7

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

7

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

7

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

7

Path length 1

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

7

Path length 2

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

7

Path length 3

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

7

Path length 4

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

7

Path length 5

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

7

Path length 6

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

7

Path length 7

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

7

Path length 8

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

7

Path length 9

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

Path tracing starts at camera

Finds a light when it is lucky

7

Global illumination
Top of the box is an area light

Surfaces can be lit directly

But also indirectly

Via paths of arbitrary length

Path tracing starts at camera

Finds a light when it is lucky

The colors are called "radiance"

7

Radiance
L(x, ω) = color for ray x + tω

Pixel = radiance for camera ray

Plenoptic function/radiance field

8

xω

Radiance
L(x, ω) = color for ray x + tω

Pixel = radiance for camera ray

Plenoptic function/radiance field

Constant along rays in vacuum

8

xω

Radiance
L(x, ω) = color for ray x + tω

Pixel = radiance for camera ray

Plenoptic function/radiance field

Constant along rays in vacuum

L(y, ω) =L(x, ω)

8

xω
−ωy

Radiance
L(x, ω) = color for ray x + tω

Pixel = radiance for camera ray

Plenoptic function/radiance field

Constant along rays in vacuum

L(y, ω) =L(x, ω)

Ray tracing transports radiance

Light transport

8

xω
−ωy

Irradiance
Beam of cross-sectional area A hits surface area A ′

A ′

A

θ

9

Irradiance
Beam of cross-sectional area A hits surface area A ′

cos(θ) =
adjacent

hypotenuse
= A

A ′

A ′

A θ
θ

9

Irradiance
Beam of cross-sectional area A hits surface area A ′

cos(θ) =
adjacent

hypotenuse
= A

A ′ = n ·ω

Because we ensure ‖n‖= ‖ω‖= 1

A ′

A
ω

n

θ
θ

9

Irradiance
Beam of cross-sectional area A hits surface area A ′

cos(θ) =
adjacent

hypotenuse
= A

A ′ = n ·ω

Because we ensure ‖n‖= ‖ω‖= 1

Irradiance gathers all light at point x

Weighted integral over radiance:

E(x, n) =

∫
Ω(x)

L(x, ω)n ·ωdω
A ′

A
ω

n

θ
θ

9

Irradiance
Beam of cross-sectional area A hits surface area A ′

cos(θ) =
adjacent

hypotenuse
= A

A ′ = n ·ω

Because we ensure ‖n‖= ‖ω‖= 1

Irradiance gathers all light at point x

Weighted integral over radiance:

E(x, n) =

∫
Ω(x)

L(x, ω)n ·ωdω

Where Ω(x)⊆ 3 is a hemisphere: ω∈Ω(x) ⇔ ‖ω‖= 1, n ·ω≥ 0

ω
nΩ(x)

9

The rendering equation

Lo(x) =Le(x) +
a(x)
π

∫
Ω(x)

L(x, ω)n(x) ·ωdω

Result: Outgoing radiance Lo(x) for diffuse surface at x

10

The rendering equation

Lo(x) =Le(x) +
a(x)
π

∫
Ω(x)

L(x, ω)n(x) ·ωdω

Result: Outgoing radiance Lo(x) for diffuse surface at x

Compute incoming irradiance E(x, n(x)), i.e. total light reaching x

10

The rendering equation

Lo(x) =Le(x) +
a(x)
π

∫
Ω(x)

L(x, ω)n(x) ·ωdω

Result: Outgoing radiance Lo(x) for diffuse surface at x

Compute incoming irradiance E(x, n(x)), i.e. total light reaching x

Multiply by the surface color a(x) (component-wise)

10

The rendering equation

Lo(x) =Le(x) +
a(x)
π

∫
Ω(x)

L(x, ω)n(x) ·ωdω

Result: Outgoing radiance Lo(x) for diffuse surface at x

Compute incoming irradiance E(x, n(x)), i.e. total light reaching x

Multiply by the surface color a(x) (component-wise)

Divide by π to ensure energy conservation

10

The rendering equation

Lo(x) =Le(x) +
a(x)
π

∫
Ω(x)

L(x, ω)n(x) ·ωdω

Result: Outgoing radiance Lo(x) for diffuse surface at x

Compute incoming irradiance E(x, n(x)), i.e. total light reaching x

Multiply by the surface color a(x) (component-wise)

Divide by π to ensure energy conservation

Add light emitted at x (0 if there is no light source at x)

10

Mesh representation

 triangle_t {

 positions[];

 normal;

 color;

 emission;
};

 3

 vec3

 vec3

 vec3

 vec3

struct

// A triangle along with some shading parameters

 // The positions of the three vertices (v_0, v_1, v_2)

 // A vector of length 1, orthogonal to the triangle (n)

 // The albedo of the triangle (i.e. the fraction of
 // red/green/blue light that gets reflected) (a)

 // The radiance emitted by the triangle (for light sources) (L_e)

x

n(x)

a(x)

Le(x)

11

The rendering equation: Challenges

Lo(x) =Le(x) +
a(x)
π

∫
Ω(x)

L(x, ω)n(x) ·ωdω

We have to integrate over Ω(x) Ω(x)
ω

12

The rendering equation: Challenges

Lo(x) =Le(x) +
a(x)
π

∫
Ω(x)

L(x, ω)n(x) ·ωdω

We have to integrate over Ω(x)

We need L(x, ω)

12

 x
ω

The rendering equation: Challenges

Lo(x) =Le(x) +
a(x)
π

∫
Ω(x)

L(x, ω)n(x) ·ωdω

We have to integrate over Ω(x)

We need L(x, ω)

y = ray_intersection(x, ω) = x + tω

L(x, ω) =Lo(y)

12

 x

y

ω

Lo(y)

The rendering equation: Challenges

Lo(x) =Le(x) +
a(x)
π

∫
Ω(x)

L(x, ω)n(x) ·ωdω

We have to integrate over Ω(x)

We need L(x, ω)

y = ray_intersection(x, ω) = x + tω

L(x, ω) =Lo(y)

So we need Lo(y) to compute Lo(x)

12

 x

y

ω

Lo(y)

Monte Carlo integration

13

Monte Carlo integration
We cannot integrate over ∞ many ω∈Ω(x) exactly

Instead, pick ω1 ∈ (x) at random

∫

Ω(x)

L(x, ω)n(x) ·ωdω

≈ 2πL(x, ω1)n(x) ·ω1

ω1

14

Monte Carlo integration
We cannot integrate over ∞ many ω∈Ω(x) exactly

Instead, pick ω1, , ωN ∈ (x) at random

∫

Ω(x)

L(x, ω)n(x) ·ωdω

Equal for N→∞ (with 100% probability)

≈ 2π 1
N

N∑
j= 1

L(x, ωj)n(x) ·ωj

14

Monte Carlo integration
We cannot integrate over ∞ many ω∈Ω(x) exactly

Instead, pick ω1, , ωN ∈ (x) at random

∫

Ω(x)

L(x, ω)n(x) ·ωdω

Equal for N→∞ (with 100% probability)

Error is zero-mean noise

≈ 2π 1
N

N∑
j= 1

L(x, ωj)n(x) ·ωj

N= 1
14

Monte Carlo integration
We cannot integrate over ∞ many ω∈Ω(x) exactly

Instead, pick ω1, , ωN ∈ (x) at random

∫

Ω(x)

L(x, ω)n(x) ·ωdω

Equal for N→∞ (with 100% probability)

Error is zero-mean noise

≈ 2π 1
N

N∑
j= 1

L(x, ωj)n(x) ·ωj

N= 2
14

Monte Carlo integration
We cannot integrate over ∞ many ω∈Ω(x) exactly

Instead, pick ω1, , ωN ∈ (x) at random

∫

Ω(x)

L(x, ω)n(x) ·ωdω

Equal for N→∞ (with 100% probability)

Error is zero-mean noise

≈ 2π 1
N

N∑
j= 1

L(x, ωj)n(x) ·ωj

N= 4
14

Monte Carlo integration
We cannot integrate over ∞ many ω∈Ω(x) exactly

Instead, pick ω1, , ωN ∈ (x) at random

∫

Ω(x)

L(x, ω)n(x) ·ωdω

Equal for N→∞ (with 100% probability)

Error is zero-mean noise

≈ 2π 1
N

N∑
j= 1

L(x, ωj)n(x) ·ωj

N= 8
14

Monte Carlo integration
We cannot integrate over ∞ many ω∈Ω(x) exactly

Instead, pick ω1, , ωN ∈ (x) at random

∫

Ω(x)

L(x, ω)n(x) ·ωdω

Equal for N→∞ (with 100% probability)

Error is zero-mean noise

≈ 2π 1
N

N∑
j= 1

L(x, ωj)n(x) ·ωj

N= 16
14

Monte Carlo integration
We cannot integrate over ∞ many ω∈Ω(x) exactly

Instead, pick ω1, , ωN ∈ (x) at random

∫

Ω(x)

L(x, ω)n(x) ·ωdω

Equal for N→∞ (with 100% probability)

Error is zero-mean noise

≈ 2π 1
N

N∑
j= 1

L(x, ωj)n(x) ·ωj

N= 2048
14

Non-uniform sphere sampling
Random generator gives uniform u0, u1 ∈ [0, 1)

Map to sphere with spherical coordinates:

ϕ= 2πu0, θ= πu1

ωx = cos(ϕ) sin(θ)

ωy = sin(ϕ) sin(θ)

ωz = cos(θ)

Problem: Too many samples at the top

15

0 1u0

0

1

u
1

Uniform sphere sampling
Pick ωz ∈ [−1, 1) uniformly:

ωz = 2u1 − 1

ϕ= 2πu0

ωx = cos(ϕ)
√

1−ω2
z

ωy = sin(ϕ)
√

1−ω2
z

Looks right

Derivation in chapter 13.6.1 of pbr-book.org

16

0 1u0

0

1

u
1

Uniform hemisphere sampling
Directions with n ·ω< 0 contribute nothing

Start with ω on the sphere

Mirror if n ·ω< 0:

ω ′ = ω− 2 (n ·ω)n ω

n

17

Uniform hemisphere sampling
Directions with n ·ω< 0 contribute nothing

Start with ω on the sphere

Mirror if n ·ω< 0:

ω ′ = ω− 2 (n ·ω)n

i.e. subtract n-component twice

ω

n

 −(n ·ω)n

17

Uniform hemisphere sampling
Directions with n ·ω< 0 contribute nothing

Start with ω on the sphere

Mirror if n ·ω< 0:

ω ′ = ω− 2 (n ·ω)n

i.e. subtract n-component twice

ω

n

 −(n ·ω)n

 −(n ·ω)nω ′

17

Exercise 4: Uniform sphere sampling

Use (), (), (), () cos sin sqrt vec3

shadertoy.com/view/ssKBD3
Correct result

Complete

Inputs: Uniform u0, u1 ∈ [0, 1)

Output: Uniform random direction ω

The framework displays 512 samples

Use the formulas discussed 2 slides ago

 () sample_sphere

18

Exercise 4: Uniform sphere sampling

Use (), (), (), () cos sin sqrt vec3

shadertoy.com/view/ssKBD3
Correct result

Complete

Inputs: Uniform u0, u1 ∈ [0, 1)

Output: Uniform random direction ω

The framework displays 512 samples

Use the formulas discussed 2 slides ago

 () sample_sphere

18

Exercise 5: Uniform hemisphere sampling

Use if, (), *, - dot

shadertoy.com/view/7sKBD3
Correct result

Complete

Inputs: Uniform u0, u1 ∈ [0, 1), normal n(x)

Output: Uniform random direction ω∈Ω(x)

The framework displays 512 samples

Use the formulas discussed 2 slides ago

 () sample_hemisphere

19

Exercise 5: Uniform hemisphere sampling

Use if, (), *, - dot

shadertoy.com/view/7sKBD3
Correct result

Complete

Inputs: Uniform u0, u1 ∈ [0, 1), normal n(x)

Output: Uniform random direction ω∈Ω(x)

The framework displays 512 samples

Use the formulas discussed 2 slides ago

 () sample_hemisphere

19

Pseudorandom number generator

 (seed) {

 seed = * seed + ;
 seed.x += * seed.y;
 seed.y += * seed.x;
 seed ^= (seed >>);
 seed.x += * seed.y;
 seed.y += * seed.x;
 seed ^= (seed >>);

 (seed) * .32830643654e- ;
}

 inout

 1664525u 1013904223u
 1664525u
 1664525u
 16u
 1664525u
 1664525u
 16u

 2 10

 get_random_numbers

vec2 uvec2

 vec2

 return

// A pseudo-random number generator
// \param seed Numbers that are different for each invocation. Gets updated so
// that it can be reused.
// \return Two independent, uniform, pseudo-random numbers in [0,1) (u_0, u_1)

 // This is PCG2D: https://jcgt.org/published/0009/03/02/

 // Convert to float. The constant here is 2^-32.

20

Pseudorandom number generator

 (seed) {

}

 seed = (pixel_coord) ^ (iFrame <<);

 rands_0 = (seed);

 rands_1 = (seed);

 inout

 16

 get_random_numbers

 get_random_numbers

 get_random_numbers

vec2 uvec2

uvec2 uvec2 uvec2

vec2

vec2

// A pseudo-random number generator
// \param seed Numbers that are different for each invocation. Gets updated so
// that it can be reused.
// \return Two independent, uniform, pseudo-random numbers in [0,1) (u_0, u_1)

 // ...

// Use a different seed for each pixel and each frame

// This gives us 2 uniform random numbers in [0,1)

// These are different random numbers because seed has changed

20

Exercise 6: Direct illumination

Use (), () sample_hemisphere ray_mesh_intersection

shadertoy.com/view/sdVBD3
Correct result

Complete

Inputs: A triangle and a point x on it

Output: Radiance (emission + direct illum.)

Use N= 1 random samples ω∈Ω(x)

Trace ray x, ω to find Le(y) at hit y

Compute: Le(x) +
a(x)
π 2π Le(y) n(x) ·ω

 () compute_direct_illumination

SAMPLE_COUNT=1
21

 x

y

ω

Le(y)

Exercise 6: Direct illumination

Use (), () sample_hemisphere ray_mesh_intersection

shadertoy.com/view/sdVBD3
Correct result

Complete

Inputs: A triangle and a point x on it

Output: Radiance (emission + direct illum.)

Use N= 1 random samples ω∈Ω(x)

Trace ray x, ω to find Le(y) at hit y

Compute: Le(x) +
a(x)
π 2π Le(y) n(x) ·ω

 () compute_direct_illumination

SAMPLE_COUNT=8
21

Exercise 6: Direct illumination

Use (), () sample_hemisphere ray_mesh_intersection

shadertoy.com/view/sdVBD3
Correct result

Complete

Inputs: A triangle and a point x on it

Output: Radiance (emission + direct illum.)

Use N= 1 random samples ω∈Ω(x)

Trace ray x, ω to find Le(y) at hit y

Compute: Le(x) +
a(x)
π 2π Le(y) n(x) ·ω

 () compute_direct_illumination

SAMPLE_COUNT=8
21

Path tracing

22

Path tracing

Given camera ray x0, ω0

Want to approximate L(x0, ω0)

x1 = ray_intersection(x0, ω0)

Monte Carlo estimate with N= 1:

ω1 ∈Ω(x1) random sample

L(x0, ω0) =Lo(x1) ≈ Le(x1) +
a(x1)
π 2πL(x1, ω1)n(x1) ·ω1

23

x1

Path tracing

Given camera ray x0, ω0

Want to approximate L(x0, ω0)

x1 = ray_intersection(x0, ω0)

Monte Carlo estimate with N= 1:

ω1 ∈Ω(x1) random sample

L(x0, ω0) =Lo(x1) ≈ Le(x1) +
a(x1)
π 2πL(x1, ω1)n(x1) ·ω1

23

x1ω1

Path tracing

Given ray x1, ω1

Want to approximate L(x1, ω1)

x2 = ray_intersection(x1, ω1)

Monte Carlo estimate with N= 1:

ω2 ∈Ω(x2) random sample

L(x1, ω1) =Lo(x2) ≈ Le(x2) +
a(x2)
π 2πL(x2, ω2)n(x2) ·ω2

23

x1ω1

x2

Path tracing

Given ray x1, ω1

Want to approximate L(x1, ω1)

x2 = ray_intersection(x1, ω1)

Monte Carlo estimate with N= 1:

ω2 ∈Ω(x2) random sample

L(x1, ω1) =Lo(x2) ≈ Le(x2) +
a(x2)
π 2πL(x2, ω2)n(x2) ·ω2

23

x1ω1

x2 ω2

Path tracing

Given ray x2, ω2

Want to approximate L(x2, ω2)

x3 = ray_intersection(x2, ω2)

Monte Carlo estimate with N= 1:

ω3 ∈Ω(x3) random sample

L(x2, ω2) =Lo(x3) ≈ Le(x3) +
a(x3)
π 2πL(x3, ω3)n(x3) ·ω3

23

x1ω1

x2 ω2

x3

Path tracing

Given ray x2, ω2

Want to approximate L(x2, ω2)

x3 = ray_intersection(x2, ω2)

Monte Carlo estimate with N= 1:

ω3 ∈Ω(x3) random sample

L(x2, ω2) =Lo(x3) ≈ Le(x3) +
a(x3)
π 2πL(x3, ω3)n(x3) ·ω3

23

x1ω1

x2 ω2

x3

ω3

Path tracing

Given ray x3, ω3

Want to approximate L(x3, ω3)

x4 = ray_intersection(x3, ω3)

Monte Carlo estimate with N= 1:

ω4 ∈Ω(x4) random sample

L(x3, ω3) =Lo(x4) ≈ Le(x4) +
a(x4)
π 2πL(x4, ω4)n(x4) ·ω4

23

x1ω1

x2 ω2

x3

ω3

x4

Path tracing recursion
GLSL spec: "Static and dynamic recursion is not allowed."

24

Path tracing recursion loop
GLSL spec: "Static and dynamic recursion is not allowed."

24

Path tracing recursion loop
GLSL spec: "Static and dynamic recursion is not allowed."

L(x0, ω0) ≈ Le(x1)

24

Path tracing recursion loop
GLSL spec: "Static and dynamic recursion is not allowed."

L(x0, ω0) ≈ Le(x1)

 +(a(x1)2n(x1) ·ω1)Le(x2)

24

Path tracing recursion loop
GLSL spec: "Static and dynamic recursion is not allowed."

L(x0, ω0) ≈ Le(x1)

 +(a(x1)2n(x1) ·ω1)Le(x2)

 +(a(x1)2n(x1) ·ω1) (a(x2)2n(x2) ·ω2)Le(x3)

24

Path tracing recursion loop
GLSL spec: "Static and dynamic recursion is not allowed."

L(x0, ω0) ≈ Le(x1)

 +(a(x1)2n(x1) ·ω1)Le(x2)

 +(a(x1)2n(x1) ·ω1) (a(x2)2n(x2) ·ω2)Le(x3)

24

Path tracing recursion loop
GLSL spec: "Static and dynamic recursion is not allowed."

L(x0, ω0) ≈ Le(x1)

 +(a(x1)2n(x1) ·ω1)Le(x2)

 +(a(x1)2n(x1) ·ω1) (a(x2)2n(x2) ·ω2)Le(x3)

 T2

24

Path tracing recursion loop
GLSL spec: "Static and dynamic recursion is not allowed."

L(x0, ω0) ≈ Le(x1)

 +(a(x1)2n(x1) ·ω1)Le(x2)

 +(a(x1)2n(x1) ·ω1) (a(x2)2n(x2) ·ω2)Le(x3)

Add emission and update throughput weight Tj in each iteration:

Lj+ 1 =Lj + TjLe(xj+ 1),

Tj+ 1 = Tj a(xj+ 1)2n(xj+ 1) ·ωj+ 1,

T2

L0 = 0

T0 = 1
j= 0,

24

Exercise 7: Path tracing

shadertoy.com/view/flcczr
Correct result

Complete

Input: A ray x0, ω0

Output: L(x0, ω0) (Monte Carlo estimate)

Use a for-loop with iterations

 Trace ray xj, ωj, break if it hits nothing

 Update the ray origin: xj+ 1 = xj + tjωj

 Add TjLe(xj+ 1) to the radiance

 Sample a direction ωj+ 1 ∈Ω(xj+ 1)

 Mul. throughput by a(xj+ 1)2n(xj+ 1) ·ωj+ 1

 () get_ray_radiance

MAX_PATH_LENGTH

SAMPLE_COUNT=1
25

Exercise 7: Path tracing

shadertoy.com/view/flcczr
Correct result

Complete

Input: A ray x0, ω0

Output: L(x0, ω0) (Monte Carlo estimate)

Use a for-loop with iterations

 Trace ray xj, ωj, break if it hits nothing

 Update the ray origin: xj+ 1 = xj + tjωj

 Add TjLe(xj+ 1) to the radiance

 Sample a direction ωj+ 1 ∈Ω(xj+ 1)

 Mul. throughput by a(xj+ 1)2n(xj+ 1) ·ωj+ 1

 () get_ray_radiance

MAX_PATH_LENGTH

SAMPLE_COUNT=8
25

Exercise 7: Path tracing

shadertoy.com/view/flcczr
Correct result

Complete

Input: A ray x0, ω0

Output: L(x0, ω0) (Monte Carlo estimate)

Use a for-loop with iterations

 Trace ray xj, ωj, break if it hits nothing

 Update the ray origin: xj+ 1 = xj + tjωj

 Add TjLe(xj+ 1) to the radiance

 Sample a direction ωj+ 1 ∈Ω(xj+ 1)

 Mul. throughput by a(xj+ 1)2n(xj+ 1) ·ωj+ 1

 () get_ray_radiance

MAX_PATH_LENGTH

SAMPLE_COUNT=8
25

Progressive rendering
Taking more samples is the outer-most loop:

A large sample count hangs/crashes your browser

Instead, distribute work over frames

ShaderToy technicalities, not an exercise

Keep it running for better images

out_color.rgb = ();
 (i = ; i != SAMPLE_COUNT; ++i)
 out_color.rgb += (camera_position, ray_direction, seed);
out_color.rgb /= (SAMPLE_COUNT);

 0.0
 0

for
 get_ray_radiance

 vec3
 int

 float

shadertoy.com/view/Nlcczr 26

Path tracing is
General

Predictable

Scalable

Parallelizable

Extendable

Efficient

27

Path tracing is
General

Predictable

Scalable

Parallelizable

Extendable

Efficient

1 framework for all light transport

27

Path tracing is
General

Predictable

Scalable

Parallelizable

Extendable

Efficient

1 framework for all light transport

Physically correct image + noise

27

Path tracing is
General

Predictable

Scalable

Parallelizable

Extendable

Efficient

1 framework for all light transport

Physically correct image + noise

Sample count allows tradeoffs

27

Path tracing is
General

Predictable

Scalable

Parallelizable

Extendable

Efficient

1 framework for all light transport

Physically correct image + noise

Sample count allows tradeoffs

Across samples or pixels

27

Path tracing is
General

Predictable

Scalable

Parallelizable

Extendable

Efficient

1 framework for all light transport

Physically correct image + noise

Sample count allows tradeoffs

Across samples or pixels

To spectral/volumetric/differentiable rendering

27

Path tracing is
General

Predictable

Scalable

Parallelizable

Extendable

Efficient

1 framework for all light transport

Physically correct image + noise

Sample count allows tradeoffs

Across samples or pixels

To spectral/volumetric/differentiable rendering

When effort is focused on important work

27

Path tracing is
General

Predictable

Scalable

Parallelizable

Extendable

Efficient

The default in offline rendering, the future in real-time rendering

1 framework for all light transport

Physically correct image + noise

Sample count allows tradeoffs

Across samples or pixels

To spectral/volumetric/differentiable rendering

When effort is focused on important work

27

Faster path tracers
Acceleration structures and traversal

Stratification: Quasi-random numbers that improve convergence

Importance sampling:

 Light sampling, a.k.a. next event estimation

 (Specular) BRDF importance sampling

 Path guiding

 Multiple importance sampling

Spatiotemporal (neural) denoising
28

Faster path tracers
Acceleration structures and traversal

Stratification: Quasi-random numbers that improve convergence

Importance sampling:

 Light sampling, a.k.a. next event estimation

 (Specular) BRDF importance sampling

 Path guiding

 Multiple importance sampling

Spatiotemporal (neural) denoising

Part 3?

28

Thanks!

29

Backup

30

The rendering equation

Lo(x) =Le(x) +
a(x)
π

∫
Ω(x)

L(x, ω)n(x) ·ωdω

n(x) is the normal vector at x

a(x) is the albedo at x

L(x, ω) is incoming radiance at x from ω

Lo(x) is the outgoing radiance at x

Le(x) is emitted radiance at x

31

