Path Tracing Workshop
Part 2: Path Tracing

Christoph Peters
Intel Graphics Research Organization
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ShaderToy

To recompile/run, click play
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H Il 4549 6.1fps 630 x 358, i
PT workshop 75: Path tracing <> %0

Vitm: 5. Unlitad Tge: adications, pathercing, axerciscs Crvatsaty
b

el
e o ety e e e pat ot

// TODO

Feturn radisnce.

void maintaage gt vecd aut cafor, in vec? pix

Vec3 “camara.postt 5. 2%,
vecs it £ conero position - vec3io'o
3 Up = vac3 00 170 056

[
nm Sapect = iResalution.x) ( flon

et
xS

s
aut cotor rgh 1= get T

,n .
oot | R
o SIS le




ShaderToy

// TODO

To recompile/run, click play
To save, copy your code to a text file

Or create an account and a fork
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Proper WebGL config
By default, ANGLE makes big WebGL shaders run slowly on Windows

2 % » 0O & :

« C O & Chiome || chromey/flags |
Q [Angee| Resetall
83 Advanced Preferences x | + O x
103.0.5060.134 <« (¢} @ Firefox |about:config % © 9 =

Show only modified preferences

Experiments

Available Unavailable
webgl.
® Choose ANGLE graphics backend webgl.disable-angle true = ©
S
s ©

Choose the graphics backend for ANGLE. D3D11 is used on most Windows computers by
default, Using the OpenGL driver as the graphics backend may result in higher performance -
OpenGL webgl.force-enabled true

partict n NVIDIA GPUs. It can increase battery
Default

in some graphics-heavy appli

and memory usage of video playback. - Windows

fuse-angle )
D3D9 webgl. O Boolean ) Number ) String  +
D3D110n12 -

Then restart Chrome Then reload ShaderToy tabs
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Ray-mesh intersection test

What do we see along aray?
The closest intersected triangle!
Ray tracing finds this closest hit

Foundation of path tracing

Implemented in hardware

But we do it in software
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Our goals

Learn rendering basics
Write a path tracer

In GLSL on ShaderToy
Have fun

Part 1: Ray tracing

Part 2: Path tracing
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Learn rendering basics
Write a path tracer
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Global illumination
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Global illumination
Top of the box is an area light

Surfaces can be lit directly
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Global illumination N Path length < 2
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length
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Global illumination Path length < 3
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intel.



Global illumination Path length < 4
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Global illumination Path length < 5
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Via paths of arbitrary length
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Global illumination Path length < 7
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length
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Global illumination Path length < 8
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Global illumination Path length < 9
Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length

intel.



intel.

Global illumination

Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length
Path tracing starts at camera

Finds a light when it is lucky




Global illumination

Top of the box is an area light
Surfaces can be lit directly
But also indirectly

Via paths of arbitrary length
Path tracing starts at camera
Finds a light when it is lucky

The colors are called "radiance"
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Radiance
L(x,w) = color for ray x + tw
Pixel = radiance for camera ray

Plenoptic function/radiance field
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Radiance

L(x,w) = color for ray x + tw
Pixel = radiance for camera ray
Plenoptic function/radiance field
Constant along rays in vacuum
L(y,w) = L(x,w)

Ray tracing transports radiance

Light transport (&
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Irradiance

Beam of cross-sectional area A hits surface area A’
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__ adjacent 4
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Irradiance

Beam of cross-sectional area A hits surface area A’

adjacent 4
hypotenuse A’

Because we ensure ||n|| = ||w|| =1
Irradiance gathers all light at point x

Weighted integral over radiance:

E(x,n) = / L(x,w)n-wdw
Q(x)
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Irradiance

Beam of cross-sectional area A hits surface area A’

__ adjacent 4
hypotenuse A’

Because we ensure ||n|| = ||w|| =1

Irradiance gathers all light at point x

Weighted integral over radiance:

/ anwdw
Q(x

Where Q(x) C R? is a hemisphere: we€ Q(x) < |lw||=1,n-w>0
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The rendering equation

L,(x)|= L. (x) +$/Q( )L(x, w)n(x) - wdw

Result: Outgoing radiance L, (x) for diffuse surface at x
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The rendering equation
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Compute incoming irradiance E(x,n(x)), i.e. total light reaching x

intel



The rendering equation
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Multiply by the surface color a(x) (component-wise)

intel



intel

The rendering equation

L,(x) = L.(x) +$/Q( )L(x, w)n(x) - wdw

Result: Outgoing radiance L, (x) for diffuse surface at x
Compute incoming irradiance E(x,n(x)), i.e. total light reaching x
Multiply by the surface color a(x) (component-wise)

Divide by 7 to ensure energy conservation
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The rendering equation

L,(x) =L.(x) +$/Q( )L(x, w)n(x) - wdw

Result: Outgoing radiance L, (x) for diffuse surface at x

Compute incoming irradiance E(x,n(x)), i.e. total light reaching x
Multiply by the surface color a(x) (component-wise)

Divide by 7 to ensure energy conservation

Add light emitted at x (0 if there is no light source at x)



Mesh representation

// A triangle along with some shading parameters
struct triangle t {
// The positions of the three vertices (v_0, v_1, v_2)
X vec3 positions[3];
// A vector of length 1, orthogonal to the triangle (n)
) vec3 normal;
// The albedo of the triangle (i.e. the fraction of
// red/green/blue light that gets reflected) (a)
CL(X) vec3 color;
// The radiance emitted by the triangle (for light sources) (L e)
) vec3 emission;
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The rendering equation: Challenges

L,(x) = L.(x) +$/Q( )L(x, w)n(x) - wdw

We have to integrate over €(x)
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The rendering equation: Challenges

L,(x)= —|——/ (x,w) cwdw

We have to integrate over 2(x)

We need L(x,w)
y =ray_intersection(x, w) =x + tw

L(x,w) = Lo(y)
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The rendering equation: Challenges

Lo(x) =L, (x) + 2% /Q ( )L(x, w)n(x) - wdw

(¥)

We have to integrate over 2(x)

We need L(x,w)
y =ray_intersection(x, w) =x + tw

L(x,w) = L,(y)
So we need L,(y) to compute L,(x)




Monte Carlo integration
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Monte Carlo integration
We cannot integrate over co many w € €)(x) exactly

Instead, pick w; € Q(x) at random
/ L(x,w)n(x) - wdw

Q(x) 3

1

~ 21 L(x, wy) n(x) - wy



Monte Carlo integration

We cannot integrate over co many w € €)(x) exactly

Instead, pick wq, ..., wy € Q(x) at random o .
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Monte Carlo integration

We cannot integrate over oo many w € Q(x) exactly

Instead, pick wq, ..., wy € Q(x) at random

/ L(x,w)n(x) - wdw
Q(x)

N
_Z (%, wj) n(x) - w;

Equal for N — oo (with 100% probability)

ZZ

2

Error is zero-mean noise
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Monte Carlo integration

We cannot integrate over co many w € €)(x) exactly

Instead, pick wq, ..., wy € Q(x) at random

/ L(x,w)n(x) - wdw
Q(x)

N
_Z (%, wj) n(x) - w;

Equal for N — oo (with 100% probability)

ZZ

2

Error is zero-mean noise

N=2048
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Non-uniform sphere sampling
Random generator gives uniform ug, u; € [0, 1)

Map to sphere with spherical coordinates:
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wy = sin(yp) sin(0)

0 I
w, = cos(h) 0 " 1

Problem: Too many samples at the top
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Uniform sphere sampling
Pick w, € [—1, 1) uniformly:

w, =2u; — 1
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Looks right 0
Derivation in chapter 13.6.1 of pbr-book.org
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Uniform hemisphere sampling

Directions with n - w < 0 contribute nothing

Start with w on the sphere n
Mirrorifn-w < 0:

Ww=w—-2n-w)n




Uniform hemisphere sampling

Directions with n - w < 0 contribute nothing

Start with w on the sphere n
Mirrorifn-w < 0:

Ww=w—-2n-w)n

i.e. subtract n-component twice
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Uniform hemisphere sampling

Directions with n - w < 0 contribute nothing

Start with w on the sphere n

Mirrorifn-w < 0:

Ww=w—-2n-w)n w

i.e. subtract n-component twice
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Exercise 4: Uniform sphere sampling

Complete sample sphere()

Inputs: Uniform ug, u; € [0, 1)
Output: Uniform random direction w
The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use cos(), sin(), sqrt(), vec3() Correct result

intel shadertoy.com/view/ssKBD3



Exercise 4: Uniform sphere sampling

Complete sample sphere()

Inputs: Uniform ug, u; € [0, 1)
Output: Uniform random direction w
The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use cos(), sin(), sqrt(), vec3() Correct result I I

intel shadertoy.com/view/ssKBD3



Exercise 5: Uniform hemisphere sampling

Complete sample hemisphere()

Inputs: Uniform ug, u; € [0, 1), normal n(x)
Output: Uniform random direction w € Q(x)
The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use if, dot(), *, - Correct result

intel shadertoy.com/view/7sKBD3



Exercise 5: Uniform hemisphere sampling

Complete sample hemisphere()

Inputs: Uniform ug, u; € [0, 1), normal n(x)
Output: Uniform random direction w € Q(x)
The framework displays 512 samples

Use the formulas discussed 2 slides ago

Use if, dot(), *, - Correct result I I
intel shadertoy.com/view/7sKBD3




Pseudorandom number generator

// A pseudo-random number generator
// \param seed Numbers that are different for each invocation. Gets updated so
// that it can be reused.
// \return Two independent, uniform, pseudo-random numbers in [0,1) (u 0, u 1)
vec2 get random numbers(inout uvec2 seed) {

// This is PCG2D: https://jcgt.org/published/0009/03/02/

seed = 1664525u * seed + 1013904223u;

seed.x += 1664525u * seed.y;

seed.y += 16645250 * seed.Xx;

seed "= (seed >> 16u);

seed.x += 16645250 * seed.y;

seed.y += 16645250 * seed.X;

seed "= (seed >> 16u);

// Convert to float. The constant here is 27-32.

return vec2(seed) * 2.32830643654e-10;

intel.



Pseudorandom number generator

// A pseudo-random number generator
// \param seed Numbers that are different for each invocation. Gets updated so
// that it can be reused.
// \return Two independent, uniform, pseudo-random numbers in [0,1) (u 0, u 1)
vec2 getirandomfnumbersIinoutluvec2 seed) {

// ...

}

// Use a different seed for each pixel and each frame

uvec2 seed = uvec2(pixel coord) ~ uvec2(iFrame << 16);

// This gives us 2 uniform random numbers in [0,1)

vec2 rands 0 = get random numbers(seed);

// These are different random numbers because seed has changed
vec2 rands 1 = get random numbers(seed);
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Exercise 6: Direct illumination

Complete compute direct illumination()

Inputs: A triangle and a point x on it
Output: Radiance (emission + direct illum.)
Use N =1random samples w € )(x)
Trace ray x, w to find L.(y) at hity
Compute: L.(x) + 29 o L.(y) n(x) w

™

Use sample hemisphere(), ray mesh intersection() Correct resu|t
SAMPLE COUNT=1

intel shadertoy.com/view/sdVBD3
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Complete compute direct illumination()

Inputs: A triangle and a point x on it
Output: Radiance (emission + direct illum.)
Use N =1random samples w € )(x)

Trace ray x, w to find L.(y) at hity

Compute: L.(x) + 29 o L.(y) n(x) w

™

Use sample hemisphere(), ray mesh intersection() Correct result

SAMPLE_COUNT=8
shadertoy.com/view/sdVBD3




Exercise 6: Direct illumination

Complete compute direct illumination()

Inputs: A triangle and a point x on it
Output: Radiance (emission + direct illum.)
Use N =1random samples w € )(x)

Trace ray x, w to find L.(y) at hity

Compute: L.(x) + 29 o L.(y) n(x) w

™

Use sample hemisphere(), ray mesh intersection() Correct result
SAMPLE COUNT=8

intel. shadertoy.com/view/sdVBD3



Path tracing
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Path tracing

Given camera ray x, wy
Want to approximate L(xg, wy)
x; =ray_intersection(xg, wy)

Monte Carlo estimate with N =1:

w € Q(x;) random sample

L(Xo, wo) = Lo(xl) ~ Le(Xl) + a(:l)Qﬂ'L(Xl, wl) n(xl) * W1
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Path tracing

Given camera ray x, wy
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Path tracing

Givenray x, w
Want to approximate L(x;,w;)
X9 =ray_intersection(x1, w;)

Monte Carlo estimate with N =1:

wy € Q(xy) random sample

L(x1,w;) = Ly(x2) &~ L.(x2) —|—a(:2)27rL(x2,w2)n(x2) - Wy
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Path tracing

Givenray x, w
Want to approximate L(x;,w;)
X9 =ray_intersection(x1, w;)

Monte Carlo estimate with N =1:

wy € Q(xy) random sample

L(x1,w1) = Ly(x3) =~ L.(x3) —|—a(:2)27rL(x2,w2)n(x2) - Wy
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Path tracing

Given ray xs, wo
Want to approximate L(x5, ws)
x3 =ray_intersection(xs, ws)

Monte Carlo estimate with N =1:

w3 € Q(x3) random sample

L(x,wz) = Lo(x3) & Le(x3) + 22227 L (x5, w3) n(x3) - w3
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Path tracing

Given ray xs, wo
Want to approximate L(x5, ws)
x3 =ray_intersection(xs, ws)

Monte Carlo estimate with N =1:

w3 € Q(x3) random sample

L(x,wz) = Lo(x3) & Le(x3) + 22227 L (x5, w3) n(x3) - w3
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Path tracing

Given ray x3, ws
Want to approximate L(x3, ws)
x4 =ray_intersection(x3, ws3)

Monte Carlo estimate with N =1:

wy € Q(x4) random sample

L(Xg, w3) = LO(X4) ~ Le(X4) + a(;q) 27TL(X4, w4) II<X4) * Wy
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Path tracing recursion

GLSL spec: "Static and dynamic recursion is not allowed." (=)
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Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)

L(Xo, wo) ~ Le (Xl)
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Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)
L(X07w0) ~ Le(xl)
+(a(x1)2n(x1) - wi) Le(x2)
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Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)
L(xg,wy) ~ L.(x1)

+ (a(x1)2n(x1) - wi) Le(x2)

+ (a(x1)2n(x1) - wr) (a(x2)2n(xs) - wy) Le(x3)
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Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)
L(xg,wy) ~ L.(x1)

+ (a(x1)2n(x1) - wi) Le(x2)

+ (a(x1)2n(x1) - wr) (a(x2)2n(xs) - wy) Le(x3)
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Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)
L(xg,wp) ~ Le(x1)

+(a(x1)2n(x1) - wi) Le(x2)

+ (a(x1)2n(x1) - wr) (a(x2)2n(xs) - wy) Le(x3)

[ J
Y

T,
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Path tracing reeursien loop

GLSL spec: "Static and dynamic recursion is not allowed." (=)
L(xg,wy) ~ L.(x1)

+ (a(x1)2n(x1) - w1) Le(x2)

+(a(x1)2n(x,) - wi) (a(x2)2n(xz) - w;) Le(x3)

J

Ty
Add emission and update throughput weight T; in each iteration:
Lji1=Lj+T;L.(x41), Ly=0 —0
7=0,...
I}'—i—l :T}a(xj+1)2n(xj+1)-wj+1, T():].



Exercise 7: Path tracing
Complete get ray radiance()

Input: A ray xg, wy

Output: L(xy,wy) (Monte Carlo estimate)
Use a for-loop with max patH LENGTH iterations
Trace ray x;, wj, break if it hits nothing
Update the ray origin: x; | =x; + t,w;

Add T;L.(x;. 1) to the radiance

Sample a direction w; ;1 € Q(x;41)

Mul. throughput by a(x;41)2n(x; 1) - w;4+1 Cg\prqgs;’ccgﬁﬁgllt
intel. shadertoy.com/view/flcczr




Exercise 7: Path tracing
Comp|ete get ray radiance()

Input: A ray xg, wy

Output: L(xy,wy) (Monte Carlo estimate)
Use a for-loop with max patH LENGTH iterations
Trace ray x;, wj, break if it hits nothing
Update the ray origin: x; | =x; + t,w;

Add T;L.(x;. 1) to the radiance

Sample a direction w; ;1 € Q(x;41)
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Exercise 7: Path tracing
Complete get ray radiance()

Input: A ray xg, wy

Output: L(xy,wy) (Monte Carlo estimate)
Use a for-loop with max patH LENGTH iterations
Trace ray x;, wj, break if it hits nothing
Update the ray origin: x; | =x; + t,w;

Add T;L.(x;. 1) to the radiance

Sample a direction w; ;1 € Q(x;41)

Mul. throughput by a(x;41)2n(x; 1) - w;4+1 Cscﬁ)“r“rfEc’ccor&iQt
shadertoy.com/view/flcczr -




Progressive rendering

Taking more samples is the outer-most loop:
out_color.rgb = vec3( );

for (int i = 0; 1 !'= SAMPLE COUNT; ++1i)

out _color.rgb += get ray radiance(camera position, ray direction, seed);
out color.rgb /= float(SAMPLE COUNT);

A large sample count hangs/crashes your browser
Instead, distribute work over frames
ShaderToy technicalities, not an exercise

Keep it running for better images

intel shadertoy.com/view/Nlcczr



intel

Path tracing is
General
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Scalable
Parallelizable
Extendable

Efficient
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Path tracing is

General 1 framework for all light transport

Predictable Physically correct image + noise

Scalable Sample count allows tradeoffs

Parallelizable Across samples or pixels

Extendable To spectral/volumetric/differentiable rendering
Efficient When effort is focused on important work

The default in offline rendering, the future in real-time rendering



Faster path tracers

Acceleration structures and traversal
Stratification: Quasi-random numbers that improve convergence
Importance sampling:

Light sampling, a.k.a. next event estimation

(Specular) BRDF importance sampling

Path guiding

Multiple importance sampling

Spatiotemporal (neural) denoising
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Faster path tracers

Importance sampling:
Light sampling, a.k.a. next event estimation

(Specular) BRDF importance sampling

Multiple importance sampling

intel

Part 3?



Thanks!
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Backup
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The rendering equation

L,(x) = L.(x) +$/Q( )L(x, w)n(x) - wdw

n(x) is the normal vector at x

a(x) is the albedo at x

L(x,w) is incoming radiance at x from w
L,(x) is the outgoing radiance at x

L.(x) is emitted radiance at x



