
White Paper
Open FPGA Stack

Intel® FPGA Linux Community Out-of-Tree
Device Driver

Abstract
This white paper is intended for kernel developers who need to quickly develop an
installable driver for Intel’s family of FPGA programmable acceleration cards (PACs),
Acceleration Development Platforms (ADPs), SmartNICs, and third-party Intel-FPGA
based acceleration solutions. Development will leverage a community supported out
of tree backport driver. Instructions are provided on how to add the minimum amount
of code to create a testable rpm.

Background
Upstreaming source code is the process of submitting changes to existing open-source
projects to become integrated in the overall mainline (or upstreamed) codebase. The
upstreaming initiative offers a wide range of benefits for new products in
development—from community code reviews and contributions to lifetime
maintenance and reusability with API changes. Upstreaming to the Linux kernel also
ensures that your source code can be reused by every Linux distribution, a vital proof
point for selling your hardware to existing Linux users.

Integrating source code in the mainline Linux kernel is a formal process that takes
time and persistence. The process of upstreaming requires multiple rounds of vetting
and inspection to ensure the code being merged is the highest quality for the
maintainers. While upstreaming drivers to the Linux kernel is often an ideal solution
for developers and customers, their product timelines, resources, or bandwidth may
require an intermediate solution that avoids the longer upstreaming cycle. In such
instances where customers don’t need immediate native support from their operating
system (OS) vendor or to bring-up/test new hardware on a production Linux
distribution, backporting drivers is a viable early enablement solution.

Open FPGA Stack (OFS)
One such case study is with Open FPGA
Stack, or OFS, a new hardware and
software technology from Intel enabling
users to customize unique, FPGA-based
acceleration platform solutions. OFS
provides the infrastructure, design, and
software components needed to reduce
development time by delivering open
source code that can be used as-is or
modified to meet specific product
requirements..

Table of Contents

Abstract . . 1

Background. . 1

OFS . . 1

Development Considerations. 2

Linux DFL. . 2

Linux DFL Backport. 2

Conclusion. . 4

For More Information 4

Authors
Tom Rix

Hardware Accelerators Product Owner
Red Hat

Rony Schutz
Product Marketing Specialist

Intel Programmable Solutions Group

Tamara Lin
Product Marketing Specialist

Intel Programmable Solutions Group

1

White Paper | Intel FPGA Linux Community Out-of-Tree Device Driver

Abstract
OFS delivers open source hardware and software source code
and technical documentation through the OFS GitHub
Repository. Hardware source code provided through git
repositories instantiates the core FPGA infrastructure and
interfaces, static and dynamic partial reconfiguration regions,
and a board management controller. Software source code
managing the FPGA is also provided through git repositories,
including a lightweight user-space library, user-space software
tools, and kernel space Linux drivers. OFS also uses a Device
Feature List (DFL) structure to abstract the FPGA contents to
software.

Intel has been working to upstream their OFS Linux kernel
drivers to the mainline kernel with the goal of developing a
completely open-source project sustained by the developer
community. By upstreaming Intel’s board kernel drivers, the
goal is for software vendors like Red Hat to provide native
support for OFS reference platforms utilizing Intel® Stratix®
10 and Intel® Agilex™ FPGAs. In the interim of upstreaming
kernel drivers, Intel has developed a community backport
driver in collaboration with Red Hat.

Linux DFL
Repository location:

Linux DFL (device feature list) is the linux kernel development
repository for Intel FPGA acceleration boards that use the
device feature list to discover and enumerate a board’s
intellectual property (IP) blocks. The DFL contains the new
features and boards that are in the process of being
upstreamed to the mainline kernel.

There are several development branches, however the out of
tree driver is based on stable branches. The Linux DFL stable
branches follow the main Linux kernel long-term branches at
git.kernel.org (Linux stable kernel). At the time of writing this,
the latest long-term branch is 5.10.y.

5.10.y branch location: https://github.com/OPAE/linux-dfl/
tree/fpga-ofs-dev-5.10-lts

These branches all have a -lts (Long Term Support) prefix.
They are kept current by regular merging with their upstream.
For example, this is a merge from 5.10.78 to 5.10.81
https://github.com/OPAE/linux-dfl/commit/30bf5bb27262f7
06321353e0e6361d71802ecd24

The supported *-lts branch is always the latest long-term
branch. When a new long-term branch is released, a new *-lts
branch is created to follow it. This translates into a lifetime of
about a year.

Because the out-of-tree driver cherry picks commits from Linux
DFL, all the real changes should be in Linux DFL. Changes are
accepted in the usual GitHub manner, through pull requests.

Linux DFL Backport
Repository location: https://github.com/OFS/linux-dfl-
backport

The linux-dfl-backport driver is an evolution of the earlier
opae-intel-fpga-driver that was packaged with some versions
of the OPAE releases. To learn more about OPAE, visit
https://opae.github.io/.

Development Considerations
While the kernel driver can be developed on any kernel
repository, register transfer level (RTL) tools and software
acceleration stacks depend on not just specific kernel versions,
but also specific linux distribution versions. To upstream the
driver, it must be developed against the unstable linux-next
branch. Linux-next becomes the mainline linux kernel
approximately every 3 months, and a linux distribution will
synchronize with the mainline every 3-12 months. RTL tools
and acceleration stacks require an additional 3-12 months
after that. The lag generated by this process prevents
developers from immediately getting started with new
hardware and means they lose a competitive edge in time to
market. The interim solution would be for the hardware vendor
to release an out-of-tree kernel driver to cover this initial
development period. However, that may prove to be too
daunting of a task from individual vendors or developers.
Instead, developers should simply join a community supported
driver project so they only need to add their new, unique
hardware or features to an existing project. The next sections
will demonstrate how to port a development kernel to a
deliverable out-of-tree kernel driver package.

OFS Features Board
Developer

Software
Developer

Application
Developer

Inherit an ecosystem of OFS based boards, workloads, and OS
distributions   

Accelerate workload development with industry-standard Arm
AMBA AXI and Avalon® compliant bus interfaces  

Accelerate your verification and validation with automated
build scripts, a Unified Verification Methodology (UVM)
environment and a suite of unit test cases



Customize your FPGA design (AFU) with modular and
composable source code 

Leverage best practices through reference board schematics,
schematic layouts, board management and security  

2

https://github.com/OFS
https://github.com/OFS
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
https://github.com/OPAE/linux-dfl/tree/fpga-ofs-dev-5.10-lts
https://github.com/OPAE/linux-dfl/tree/fpga-ofs-dev-5.10-lts
https://github.com/OPAE/linux-dfl/commit/30bf5bb27262f706321353e0e6361d71802ecd24
https://github.com/OPAE/linux-dfl/commit/30bf5bb27262f706321353e0e6361d71802ecd24
https://github.com/OFS/linux-dfl-backport
https://github.com/OFS/linux-dfl-backport
https://opae.github.io/

White Paper | Intel FPGA Linux Community Out-of-Tree Device Driver

For example, the dfl backport driver was packaged with the
1.3.7 release https://github.com/OPAE/opae-sdk/releases/
download/1.3.7-4/opae-intel-fpga-driver-2.0.1-8.x86_64.rpm.
Like the earlier version, the linux-dfl-backport driver is
packaged as an rpm that uses the Dynamic Kernel Module
System (DKMS) framework to dynamically rebuild the driver
whenever the kernel is updated. For more information on
DKMS, see the GitHub project https://github.com/dell/dkms/
blob/master/README.md

The linux-dfl-backport branch name is the same as the linux-
dfl *-lts branch names. For example, there are a couple for
fpga-ofs-dev-5.10-lts maintained by different groups in the
community.

Red Hat branches
For RHEL 8 https://github.com/OPAE/linux-dfl-backport/
tree/rhel8/fpga-ofs-dev-5.10-lts

For RHEL 9 https://github.com/OPAE/linux-dfl-backport/
tree/rhel9/fpga-ofs-dev-5.10-lts

Silicom branch
For n5010, n6010 https://github.com/OPAE/linux-dfl-
backport/tree/n5010/fpga-ofs-dev-5.10-lts

The branches are differentiated by the prefixes rhel8/, rhel9/
and n5010/.

The content for the linux-dfl-backport driver is stored in an
abbreviated tree in a special base branch. This base branch is
created by copying files and the linux long-term branch and
cherry picking the linux-dfl changes using the scripts/
generate_backport.sh script. Once the group branch is
created, the branch maintainer can do normal cherry picking
from linux-dfl to keep their branch up to date.

Base branch
https://github.com/OPAE/linux-dfl-backport/tree/base/
fpga-ofs-dev-5.10-lts

After the linux-dfl content is imported into the backport driver,
there are three more normal tasks to do. First, if there is a new
file, the file needs to be added to the top level Makefile.

For example, see commit https://github.com/OPAE/linux-dfl-
backport/commit/550bb3fa3d4dc8355b20ce5dbb732d7f37
25cc4f

A new file fpga-image-load.c needs to be built. So it is
added to the list of ‘obj-m’’s with
obj-m += fpga-image-load.o

And then where the source is located
fpga-image-load-y := drivers/fpga-image-load.o

Then building the driver. The makefile has a help option to
see the usage

> make help

A good target to use is ‘reload’ as this builds and reinstalls
the kernel module.

> make reload

If all goes well, then use

> make rpm

to make the rpm.

If this does not work, then the last step of backporting a change
is necessary. Although the linux kernel is usually stable,
sometimes new changes will depend on features that do not
exist or are slightly different from the target kernel version.
For example, RHEL 8 is based on the 4.18 kernel whereas the
linux-dfl changes are based on the 5.10.y or newer LTS kernel.
Steps on backporting are very dependent on the target linux
distribution and should be verified against the specific version
of the distribution that is needed.

For backporting to mainline kernel ex/ v5.6, the parameters
VERSION, PATCHLEVEL, SUBLEVEL are used in the KERNEL_
VERSION macro defined in the version header and compared
against the LINUX_VERSION_CODE. ex/ For v5.11

#define LINUX _ VERSION _ CODE 330496
#define KERNEL _ VERSION(a,b,c) (((a) << 16) +
((b) << 8) + (c))

To make a change, add the version header
#include <linux/version.h>
…

And then isolate your change with an if-def like this check
for running on v5.6 or newer
#if LINUX _ VERSION _ CODE >= KERNEL _ VERSION
(5, 6, 0)
…
#endif

RHEL backporting is complicated because upstream kernel
features are backported into RHEL as part of its normal
lifecycle. RHEL adds its own version macro to the linux/
version.h header.

To make a change, add the version header
#include <linux/version.h>

ex/ For RHEL 8.3 this is
#define LINUX _ VERSION _ CODE 266752
#define KERNEL _ VERSION(a,b,c) (((a) << 16) +
((b) << 8) + (c))
#define RHEL _ MAJOR 8
#define RHEL _ MINOR 3
#define RHEL _ RELEASE _ VERSION(a,b) (((a) << 8)
+ (b))
#define RHEL _ RELEASE _ CODE 2051
#define RHEL _ RELEASE “193.8”
#define KERNEL _ HEADERS _ CHECKSUM
“372410cede0d6cd3b11a85e518dd73a5317f2d58”
Because there are no major changes within a specific release
of RHEL, it is usually sufficient to check the RHEL_RELEASE_
VERSION like this

#if RHEL _ RELEASE _ CODE < RHEL _ RELEASE _
VERSION(8,4)
/* Add the backport code here */
#else
/* Unchanged original code */
#endif

3

https://github.com/OPAE/opae-sdk/releases/download/1.3.7-4/opae-intel-fpga-driver-2.0.1-8.x86_64.rpm
https://github.com/OPAE/opae-sdk/releases/download/1.3.7-4/opae-intel-fpga-driver-2.0.1-8.x86_64.rpm
https://github.com/dell/dkms/blob/master/README.md
https://github.com/dell/dkms/blob/master/README.md
https://github.com/OPAE/linux-dfl-backport/tree/rhel8/fpga-ofs-dev-5.10-lts
https://github.com/OPAE/linux-dfl-backport/tree/rhel8/fpga-ofs-dev-5.10-lts
https://github.com/OPAE/linux-dfl-backport/tree/rhel9/fpga-ofs-dev-5.10-lts
https://github.com/OPAE/linux-dfl-backport/tree/rhel9/fpga-ofs-dev-5.10-lts
https://github.com/OPAE/linux-dfl-backport/tree/n5010/fpga-ofs-dev-5.10-lts
https://github.com/OPAE/linux-dfl-backport/tree/n5010/fpga-ofs-dev-5.10-lts
https://github.com/OPAE/linux-dfl-backport/commit/550bb3fa3d4dc8355b20ce5dbb732d7f3725cc4f
https://github.com/OPAE/linux-dfl-backport/commit/550bb3fa3d4dc8355b20ce5dbb732d7f3725cc4f
https://github.com/OPAE/linux-dfl-backport/commit/550bb3fa3d4dc8355b20ce5dbb732d7f3725cc4f
https://github.com/OPAE/linux-dfl-backport/commit/550bb3fa3d4dc8355b20ce5dbb732d7f3725cc4f
https://github.com/OPAE/linux-dfl-backport/commit/550bb3fa3d4dc8355b20ce5dbb732d7f3725cc4f

White Paper | Intel FPGA Linux Community Out-of-Tree Device Driver

When using mainline and RHEL version if-defs, the mainline
if-def has precedence and the checkers joined with ‘&&’ for
example the above check of running on less than mainline v5.6
or rhel 8.4 would be

#if LINUX _ VERSION _ CODE < KERNEL _
VERSION(5.6,0) && RHEL _ RELEASE _ CODE < RHEL _
RELEASE _ VERSION(8,4)
/* Add the backport code here */
#else
/* Unchanged original code */
#endif

See how this was done on for RHEL 8.2 to work around the
lack of dev_groups in the commit
https://github.com/OPAE/linux-dfl-backport/commit/
dbb1584db17032ec35148653b7bf62c5f6e89b70

Conclusion
Utilizing this backport driver enables developers to quickly
develop an installable driver for new Intel and third-party FPGA
based boards and platforms based on OFS technology. This
backport driver is a community project to enable hardware for
immediate development and testing, leveraging OFS
capabilities. Before proceeding with using the backport driver,
you should consider that this is not a Red Hat supported driver
and it should only be used as an interim solution before the
driver is accepted in the upstream kernel. This solution should
primarily be used to enable your board today with OFS.

Silicom, an Intel and Red Hat partner, have co-developed the
community backport driver on their new N5010 and N6010
FPGA SmartNICs enabled with OFS.

“Making the Community Backport Driver enabled Silicom to
give customers early access to the new Silicom N5010 and
N6010 FPGA SmartNICs using systems with available Red Hat
Enterprise Linux 8 releases. The Community Backport Driver
provided the required additional handling of the new card in
the needed Linux kernels” - Roger Christensen (Silicom, Senior
Software Developer)

For More Information
To learn more, visit the following websites:

•	 Backport driver: https://github.com/OFS/linux-dfl-backport

•	 OFS: www.intel.com/OFS

•	 SIlicom N5010 FPGA SmartNIC: https://www.silicom-usa.
com/pr/fpga-based-cards/100-gigabit-fpga-cards/silicom-
fpga-smartnic-n5010_series/

•	 N6010: https://www.silicom-usa.com/pr/fpga-based-
cards/100-gigabit-fpga-cards/fpga-smartnic-n6010-intel-
based/

Intel technologies may require enabled hardware, software, or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsidiaries. Other names and brands may be claimed as the property of others.

WP-01316-1.2

4

https://github.com/OPAE/linux-dfl-backport/commit/dbb1584db17032ec35148653b7bf62c5f6e89b70
https://github.com/OPAE/linux-dfl-backport/commit/dbb1584db17032ec35148653b7bf62c5f6e89b70
https://github.com/OFS/linux-dfl-backport
http://www.intel.com/OFS
https://www.silicom-usa.com/pr/fpga-based-cards/100-gigabit-fpga-cards/silicom-fpga-smartnic-n5010_series/
https://www.silicom-usa.com/pr/fpga-based-cards/100-gigabit-fpga-cards/silicom-fpga-smartnic-n5010_series/
https://www.silicom-usa.com/pr/fpga-based-cards/100-gigabit-fpga-cards/silicom-fpga-smartnic-n5010_series/
https://www.silicom-usa.com/pr/fpga-based-cards/100-gigabit-fpga-cards/fpga-smartnic-n6010-intel-based/
https://www.silicom-usa.com/pr/fpga-based-cards/100-gigabit-fpga-cards/fpga-smartnic-n6010-intel-based/
https://www.silicom-usa.com/pr/fpga-based-cards/100-gigabit-fpga-cards/fpga-smartnic-n6010-intel-based/

