

Intel® Xeon® CPU Max Series
Configuration and Tuning Guide

Ref#: 354227-001US

February 2023

 Ref#:354227.001US

Notices & Disclaimers

Intel technologies may require enabled hardware, software or service activation.

No product or component can be absolutely secure.

Your costs and results may vary.

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis

concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free license to any

patent claim thereafter drafted which includes subject matter disclosed herein.

All product plans and roadmaps are subject to change without notice.

The products described may contain design defects or errors known as errata which may cause the product to

deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from

course of performance, course of dealing, or usage in trade.

Code names are used by Intel to identify products, technologies, or services that are in development and not

publicly available. These are not “commercial” names and not intended to function as trademarks.

No license (express or implied, by estoppal or otherwise) to any intellectual property rights is granted by this

document, with the sole exception that a) you may publish an unmodified copy and b) code included in this

document is licensed subject to the Zero-Clause BSD open source license (0BSD),

https://opensource.org/licenses/0BSD. You may create software implementations based on this document and in

compliance with the foregoing that are intended to execute on the Intel product(s) referenced in this document. No

rights are granted to create modifications or derivatives of this document.

© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its subsid-

iaries. Other names and brands may be claimed as the property of others.

https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD
https://opensource.org/licenses/0BSD

 Ref#:354227.001US

REVISION HISTORY
Date Revision Description

February 2023 001 Initial release of document

Ref#:354227.001US

Contents

REVISION HISTORY ... 3

TABLES .. 5

FIGURES ... 1

CHAPTER 1 .. 1

1.1 AUDIENCE ... 1
1.2 GLOSSARY... 1
1.3 REFERENCES .. 1

CHAPTER 2 .. 3

INTEL® XEON® CPU MAX SERIES .. 3

2.1 PROCESSOR BLOCK DIAGRAM ... 3
2.1.1 HBM stacks and their specifications ... 3

CHAPTER 3 .. 4

HARDWARE CONFIGURATION .. 4

3.1 CPU CONFIGURATION ... 4
3.1.1 Memory Modes ... 4
3.1.1.1 HBM-only .. 4
3.1.1.2 Flat or 1-Level Memory (1LM) mode .. 4
3.1.1.3 Cache or 2-Level Memory (2LM) mode .. 5
3.1.2 Cluster (partitioning) modes .. 5
3.1.2.1 Quadrant .. 5
3.1.2.2 SNC4 (Sub-NUMA Clustering-4) the default clustering mode ... 5

3.2 MULTI-SOCKET CONFIGURATION .. 6
3.3 DIMM CONFIGURATION ... 6

3.3.1 HBM-only mode... 6
3.3.2 Flat mode ... 6
3.3.3 Cache mode ... 7

3.4 BIOS SETTINGS ... 7
3.4.1 Selecting memory mode ... 7
3.4.2 Selecting cluster mode ... 8

CHAPTER 4 .. 9

LINUX SYSTEM CONFIGURATION ... 9

4.1 COMMON CONFIGURATION OPTIONS ... 9
4.2 USEFUL LINUX TOOLS .. 9

4.2.1 numactl ... 9
4.2.2 numastat .. 10
4.2.3 turbostat ... 11
 ... 11
4.2.4 lscpu .. 12
4.2.5 dmidecode and lshw ... 12
4.2.6 htop ... 12
4.2.7 lstopo .. 12

CHAPTER 5 .. 13

MEMORY MODE SPECIFIC CONFIGURATIONS .. 13

5.1 HBM-ONLY MEMORY MODE .. 13

Ref#:354227.001US

5.1.1 NUMA Node Enumeration ... 13
5.2 FLAT MEMORY MODE ... 13

5.2.1 Flat Mode NUMA Node Enumeration .. 15
5.3 CACHE MEMORY MODE .. 16

5.3.1 Using Fake-NUMA with cache memory mode .. 16
5.3.2 Page Shuffling (Page Randomization) .. 17
5.3.3 Cache memory mode NUMA node enumeration ... 18

CHAPTER 6 .. 19

USING MEMORY MODES AND CLUSTER MODES .. 19

6.1 HBM-ONLY MEMORY MODE .. 19
6.2 FLAT MEMORY MODE .. 19

6.2.1 Using numactl For HBM Placement of Entire Application ... 21
6.2.1.1 Special Considerations with SNC4 ... 21
6.2.2 Using Intel MPI for HBM Placement of Entire Application .. 22
6.2.3 Placing of Individual Data Structures in HBM (In FLAT-Mode) ... 22

6.3 CACHE MEMORY MODE .. 25

CHAPTER 7 .. 26

APPLICATION CONFIGURATION .. 26

7.1 SOFTWARE ENVIRONMENT .. 26
7.2 SMOKE TESTS.. 26

7.2.1 Intel® Memory Latency Checker (Intel® MLC) ... 26
7.2.2 STREAM .. 26
7.2.3 HPL .. 26
7.2.4 HPCG ... 27

7.3 FINDING OUT MEMORY USAGE OF AN APPLICATION .. 28
7.4 OPTIMIZING APPLICATIONS FOR MEMORY BANDWIDTH .. 29

TABLES
Table 1. Acronym Definition .. 1
Table 2. References... 1

 Ref#:354227.001US

FIGURES
Figure 1. Processor Block Diagram ... 3
Figure 2. Memory Stacks Within HBM ... 3
Figure 3. HBM Memory Modes ... 4
Figure 4. Cluster Modes ... 5
Figure 5. Memory Mode Configurations ... 6
Figure 6. DIMM Configuration Options .. 7
Figure 7. Selecting Memory Mode .. 8
Figure 8. Selecting Cluster Mode ... 8
Figure 9. numactl -H Example ... 10
Figure 10. numastat -p Example ... 10
Figure 11. numastat -m Example .. 11
Figure 12. turbostat Example .. 12
Figure 13. NUMA Node Configuration for HBM-Only Mode 13
Figure 14. NUMA Node Configurations in Flat Mode ... 15
Figure 15. Fake-NUMA Node Example... 16
Figure 16. NUMA Node Configuration in Cache Mode ... 18
Figure 17. numactl -H Example ... 20

INTRODUCTION

Ref#:354227.001US

CHAPTER 1
 INTRODUCTION

1.1 AUDIENCE

This document is for system administrators and application engineers running and optimizing
applications on the Intel® Xeon® CPU Max Series.

1.2 GLOSSARY

Table 1. Acronym Definition

Acronym Term Definition

BIOS Basic Input Output Service

HBM High Bandwidth Memory

1LM
1-Level Memory Mode
or FLAT Mode

Mode where HBM and DDR are exposed to
the software as separate address spaces.

2LM

2-Level Memory (2LM) mode
or Cache Mode

Mode where HBM is used as a memory side cache
for DDR. In this mode, only DDR address space is

visible to software and HBM functions as a
transparent memory-side cache for DDR.

“fake” NUMA Node

This feature is enabled using a Linux kernel boot
option (numa=fake). It allows the physical memory
of a system to be divided into "fake" NUMA nodes.
In other words, with fake-NUMA, a physical NUMA
node, which is a uniform physical memory region,
can be exposed as multiple NUMA nodes to

applications.

1.3 REFERENCES

Table 2. References

Description URL

Intel® Architecture Instruction Set Extensions

Programming Reference

https://software.intel.com/content/www/us/en/develop/down-

load/intel-architecture-instruction-set

extensions-programming-reference.html

memkind library
http://memkind.github.io/memkind/

libnuma API
https://man7.org/linux/man-pages/man3/numa.3.html

hbwmalloc API
http://memkind.github.io/memkind/man_pages/hbwmalloc.html

Intel® MLC
https://www.intel.com/content/www/us/en/develop
er/articles/tool/intelr-memory-latency-checker.html

https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-setextensions-programming-reference.html
http://memkind.github.io/memkind/
http://memkind.github.io/memkind/man_pages/hbwmalloc.html

INTRODUCTION

Ref#:354227.001US

STREAM benchmark
https://www.cs.virginia.edu/stream/

Intel® oneAPI Math Kernel Library (oneMKL)
https://www.intel.com/content/www/us/en/developer/tools/o
neapi/onemkl-download.html

Developer Guide for Intel® oneAPI Math Kernel Library for

Linux*

https://www.intel.com/content/www/us/en/develop/documentation/on

emkl-linux-developer-guide/top/intel-oneapi-math-kernel-library-
benchmarks/intel-distribution-for-linpack-benchmark-1/overview-intel-
distribution-for-linpack-benchmark.html

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html

Ref#:354227-001US

INTRODUCTION

CHAPTER 2
 Intel® Xeon® CPU Max Series

2.1 Processor block diagram

Figure 1. Processor Block Diagram

The processors contain four HBM2e stacks totaling 64 GB of High Bandwidth Memory (HBM) capacity per

processor in addition to eight channels of DDR memory

Two processors are connected by up to four Intel® Ultra Path Interconnect (Intel® UPI) links in a two-

socket system. A two-socket system has a total of 128 GB of HBM capacity.

2.1.1 HBM stacks and their specifications

Figure 2. Memory Stacks Within HBM

HBM memory is composed of multiple DRAM memory stacks with a wide bus. Each stack contains eight
DRAMs stacked on a logic die at the bottom. An Intel® Xeon® CPU Max Series processor has four stacks
totaling 64 GB of HBM capacity.

HARDWARE CONFIGURATION

Ref#:354227-001US

CHAPTER 3
 HARDWARE CONFIGURATION

3.1 CPU CONFIGURATION

The HBM and DDR memory in an Intel® Xeon® CPU Max Series (Package or Socket) can be configured
in three memory modes and two clustering modes.

This section describes each of these modes from a hardware point of view. How these modes are
configured with the OS is described in Section 5 below and how applications can use them is described
in Section 6 below.

3.1.1 Memory Modes

Figure 3. HBM Memory Modes

The processor exposes HBM to software (OS and applications) using three memory modes.

3.1.1.1 HBM-only

When no DDR is installed, HBM-only mode is selected. The only memory available to the OS and
applications in this mode is HBM. The OS may see all the installed HBM in this mode, while applications
will see what the OS exposes. Hence the OS and the applications can readily utilize HBM. However, the

OS, background services, and applications must share the available HBM capacity (64GB per

processor).

3.1.1.2 Flat or 1-Level Memory (1LM) mode

When DDR memory is installed, it is possible to expose both HBM and DDR to software by selecting flat
(also known as 1LM) mode from the BIOS menu at boot. HBM and DDR are exposed to software as
separate address spaces in this mode. DDR is exposed as a separate address space (NUMA node) and

HBM as another address space (NUMA node). Users need to use NUMA-aware tools (e.g., numactl) or
libraries to utilize HBM in this mode, as described in Section 6.2 below. Additional OS configuration is
necessary before HBM can be accessed as part of the regular memory pool (See section 5.2).

HARDWARE CONFIGURATION

Ref#:354227-001US

3.1.1.3 Cache or 2-Level Memory (2LM) mode

When DDR is installed, it is possible to use HBM as a memory side cache for DDR by selecting Cache
(also known as 2LM) mode from the BIOS menu at boot. In this mode, only DDR address space is visible
to software and HBM functions as a transparent memory-side cache for DDR. Therefore, applications and
command lines do not need modifications to use the cache mode. The HBM is a direct-mapped cache and

may require additional configuration steps to minimize conflict misses (see Section 5.2.1).

3.1.2 Cluster (partitioning) modes

Figure 4. Cluster Modes

Cluster modes determine how the processor is partitioned into different address spaces (NUMA nodes).

Clustering (partitioning) allows cores to have higher bandwidth and lower latency to memory (both HBM
and DDR) in the same partition. Cluster modes are orthogonal to memory modes. Intel® Xeon® CPU
Max Series processors have two clustering modes.

3.1.2.1 Quadrant

This mode presents a single address space (NUMA node) to software. Therefore, applications do not have

to take additional steps to be NUMA aware in this mode. This mode is preferable for applications that
share large data structures among all cores of a processor (e.g., an OpenMP application running on all
cores and sharing a large data structure).

3.1.2.2 SNC4 (Sub-NUMA Clustering-4) the default clustering mode

This mode partitions each CPU into four sub-NUMA cluster partitions. Each partition is exposed to

software as one or more NUMA nodes. Therefore, there are at least four NUMA nodes for each processor.
Applications should be NUMA-aware to use this mode, but this mode provides higher bandwidth and
lower latencies compared to Quadrant mode. This mode is preferable for NUMA-aware applications (e.g.,
MPI or MPI+OpenMP applications).

HARDWARE CONFIGURATION

Ref#:354227-001US

Figure 5. Memory Mode Configurations

Combining six memory modes with two clustering modes, Intel® Xeon® CPU Max Series processors
have six configuration options, as summarized in Figure 5.

3.2 Multi-Socket configuration

Intel® Xeon® CPU Max Series is available in two-socket configurations connected by up to four Intel®
UPI links. Each socket (processor) is a separate address space (NUMA node). Therefore, a two-socket

system in Quadrant mode has at least two NUMA nodes while a two-socket system in SNC4 has at least
eight NUMA nodes.

3.3 DIMM configuration

Each processor has four DDR memory controllers, and each memory controller supports two channels for
a total of 8-channels per processor.

3.3.1 HBM-only mode

To obtain the HBM-only mode, no DIMM must be installed. In some debug BIOS versions, it may be

possible to disable the DIMMs via the BIOS options instead of physically removing them.

3.3.2 Flat mode

Figure 6 summarizes all DIMM configuration options for flat mode for a single CPU and whether each
DIMM configuration supports SNC4 (for HBM, DDR, and HBM+DDR).

HARDWARE CONFIGURATION

Ref#:354227-001US

Figure 6. DIMM Configuration Options

All modes support Quadrant or SNC4 for HBM. However, only the last three modes, which have
symmetric DIMM configurations, support SNC4 for both HBM and DDR. In modes with asymmetric DIMM

configurations, the DDR space is configured in a special cluster mode called "All-to-All," which produces
lower, asymmetric bandwidths and higher, asymmetric latencies.

Populating both DDR slots of a channel (last row) results in lower bandwidth and higher latency than
populating only one slot per channel (second to the last row).

3.3.3 Cache mode

Cache mode requires a symmetric DIMM configuration across all four memory controllers. Therefore, only
the last three rows of the above figure support cache mode.

For best performance dual-rank DIMMs must be used because dual-rank DDR DIMMs provide more
bandwidth than single-rank DIMMs.

3.4 BIOS settings

This section describes BIOS options for selecting the memory mode and the cluster mode. The menu
options shown in this section are for Intel Software Development Platform and the specific menu options

could be different on your system, depending on the BIOS provider.

Please upgrade to the latest BIOS version if your system has an older BIOS version as the latest BIOS
may contain features and performance enhancements.

3.4.1 Selecting memory mode

Memory mode is selected in BIOS using the following menu selection:

EDKII Menu -> Socket Configuration -> Memory Configurations -> Memory Map -> Volatile Memory
Mode -> 1LM/2LM

HARDWARE CONFIGURATION

Ref#:354227-001US

Figure 7. Selecting Memory Mode

3.4.2 Selecting cluster mode

Cluster mode is selected in BIOS using the following menu selection:

EDKII → Socket configuration → Uncore configuration → Uncore General Configuration → SNC (Sub

Numa)

Figure 8. Selecting Cluster Mode

Note: Intel SYSCFG utility can be used to save/restore and examine BIOS configuration on Intel server
platforms.

https://www.intel.com/content/www/us/en/download/16684/save-and-restore-system-configuration-utility-syscfg.html

LINUX System Configuration

 Ref#:354227-001US

CHAPTER 4
 LINUX System Configuration

4.1 Common Configuration Options

Consider the following configuration options for all memory modes:

• Disable swapping. This is especially useful in HBM-only mode, where the capacity is limited.
Swapping can severely degrade performance. If an application leads to swapping, consider
freeing up memory (e.g., by clearing file system caches) or scaling to more nodes.

• Enable zone-reclaim mode to reduce NUMA misses. This mode is beneficial in situations where

the size of a NUMA node is small (e.g., SNC4 clustering mode). This will make the Linux page
allocator reclaim easily reusable pages on the requested NUMA node before allocating them on
a different NUMA node. This reduces unnecessary NUMA crossings that will degrade
performance. However, reclaim activity could introduce small performance variability. Zone-

reclaim option can be enabled using the following command. Since it must be done after each
reboot, it is recommended that this be automated using initialization scripts.

• Before each run, consider flushing out file system caches (if cached content from previous runs

is not useful) and compacting memory using the following commands. Since these commands
need root privileges, system administrators should consider making them part of job prologues
of batch systems or providing them as setuid binaries.

• Consider enabling Transparent Huge Pages (THP). Most HPC applications benefit from THP.

Although THP may cause overhead if memory compaction is needed to create large pages,
administrators can reduce the overhead by compacting memory before each run as described
above.

• Avoid using /dev/shm (tmpfs) to store files since it reduces available memory. System

administrators should consider clearing /dev/shm as part of job prologue to reduce interference

between jobs.

• Consider using the latest stable Linux kernel (currently 5.15)

4.2 Useful LINUX Tools

4.2.1 numactl

echo 2 > /proc/sys/vm/zone_reclaim_mode

sync; echo 3 > /proc/sys/vm/drop_caches;

echo 1 > /proc/sys/vm/compact_memory

LINUX System Configuration

Ref#:354227-001US

Figure 9. numactl -H Example

The Linux utility numactl is often used for both observing the NUMA configuration of the system and
executing applications on specific NUMA nodes. For observing the NUMA configuration of a system, use
numactl -H. The following figure shows the output of numactl -H showing the number of NUMA nodes,
CPU cores, and memory capacity on each NUMA node, followed by a matrix describing the distance of
each node from any other node. See man numactl for more information.

4.2.2 numastat

The Linux utility numastat provides various statistics about NUMA memory usage. In particular, the
following commands are useful (see man numastat for more details).

Figure 10. numastat -p Example

• numastat -p <process_name gives memory usage of a given process as shown in Figure 11:

• numastat -m shows the memory usage information of an entire system

LINUX System Configuration

Ref#:354227-001US

Figure 11. numastat -m Example

• numastat (without arguments) shows NUMA hits and misses (cumulative from boot). This is

useful in identifying NUMA node crossings (numa_miss) that can lead to unexpected
performance degradations. Since these statistics are cumulative from boot, it is necessary to

run numastat before and after each run to see whether a given run encountered NUMA misses.

4.2.3 turbostat

Turbostat can be used to examine the power, frequency, and temperature of x86 architecture
processors when executed as root (or as a setuid binary). Turbostat can be useful in identifying system
cooling issues. For instance, the following shows the system's power, frequency, and temperature:

• turbostat -qS # average for both CPUs

• turbostat -qS --cpu package # separately for each CPU

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

Figure 12. turbostat Example

4.2.4 lscpu

This standard Linux utility shows high-level system configuration details, including the NUMA nodes,
core counts, base frequency, cache sizes, and CPU flags (features).

4.2.5 dmidecode and lshw

These Linux utilities can be used (with root privileges) to inspect hardware components installed,
including HBM and DDR modules.

4.2.6 htop

The htop utility is a tool like standard Linux top utility; however, it shows individual CPU

core/thread usage using a visual format. This is usually helpful in identifying NUMA usage and MPI rank
or OpenMP thread placement. In addition, it shows the memory usage of the system.

4.2.7 lstopo

The lstopo utility is part of the hwloc library, which can be installed as a package using a standard

package manager (e.g., dnf install hwloc). The lstopo utility (or lstopo-no-graphics) shows

the hardware topology of a system.

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

CHAPTER 5
MEMORY MODE SPECIFIC CONFIGURATIONS

This section describes OS configuration options for each memory mode.

5.1 HBM-Only Memory Mode
No additional configuration steps are necessary to use HBM in HBM-only mode. However, since HBM
capacity is limited, administrators can take additional steps to reduce memory capacity overheads.
Consider performing the following steps:

• Consider reducing unnecessary services (daemons), and drivers started at boot (e.g., VNC
servers, print/mail/etc. daemons, performance profiling drivers)

• Consider minimizing the size of the OS file caches and MPI buffers

• Before each run, consider clearing out the file system cache and compacting memory (see
Section 4.1 above)

5.1.1 NUMA Node Enumeration

For a two-Socket system in HBM-only mode, Figure 13 summarizes the NUMA node configuration in
Quadrant and SNC4. The Quadrant mode results in two NUMA nodes (one node for each socket),
while the SNC4 mode results in eight NUMA nodes (four per socket). Each NUMA node contains both

cores and HBM memory.

Figure 13. NUMA Node Configuration for HBM-Only Mode

Use numactl -H to verify the NUMA node configuration and amount of total/free memory on each NUMA

node.

5.2 Flat Memory Mode

Flat mode is enabled by selecting 1LM in BIOS when DDR is installed as described in Section 3.4.1.
However, this alone does not expose HBM to OS and applications via the default memory pool.
Additional steps are necessary to enable HBM into the default memory pool.

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

After selecting 1LM in BIOS, the system boots up with only DDR exposed to the OS and applications.
The HBM is still not visible in the default memory pool since HBM is marked as special-purpose
memory. This design choice was made to prevent the OS from allocating and reserving valuable HBM

memory during the boot process. Since the HBM is "hidden" from the OS during the boot process, the

OS cannot allocate or reserve HBM memory.

Here are the steps for booting up and exposing HBM in flat mode:

1. Select 1LM in the BIOS menu (see Section 3.4.1) and let the OS boot. After the system boots,
only DDR is visible in the default memory pool. You can observe that fact using 'numactl -H'

2. Install the following Linux packages:

3. Execute the following daxctl commands for two-socket systems (only the top two commands are
required in Quadrant mode, but all are required in SNC4). These commands need root privileges.

Step 3 needs to be carried out each time the system boots. Therefore, it would be convenient to put the
above commands in a script that executes when the OS boots.

Use 'numactl -H' to verify that the HBM nodes are visible and the entire HBM capacity is free.

dnf install daxctl ndctl

 ## Base commands for both Quadrant andSNC4 cluster modes

 ##

 daxctl reconfigure-device -m system-ram dax0.0

 daxctl reconfigure-device -m system-ram dax1.0

 ## For SNC4 cluster mode, use the following additional commands:

 ##

 daxctl reconfigure-device -m system-ram dax2.0

 daxctl reconfigure-device -m system-ram dax3.0

 daxctl reconfigure-device -m system-ram dax4.0

 daxctl reconfigure-device -m system-ram dax5.0

 daxctl reconfigure-device -m system-ram dax6.0

 daxctl reconfigure-device -m system-ram dax7.0

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

5.2.1 Flat Mode NUMA Node Enumeration

For a two-Socket system in Flat mode, Figure 14 summarizes the NUMA node configuration in
Quadrant and SNC4 modes.

• Quadrant mode results in four NUMA nodes (two DDR nodes with cores and two HBM nodes
without cores attached)

• SNC4 mode results in 16 NUMA nodes (8 DDR nodes with cores and 8 HBM nodes without cores
attached).

Figure 14. NUMA Node Configurations in Flat Mode

Use numactl -H to verify the NUMA node configuration and amount of total/free memory on each NUMA

node.

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

5.3 Cache Memory Mode

No additional configuration is necessary to use Cache mode. However, since the HBM cache is a
direct-mapped memory-side cache, additional OS configuration with fake-NUMA is strongly
recommended to mitigate the effects of conflict misses on applications.

5.3.1 Using Fake-NUMA with cache memory mode

This feature is enabled using a Linux kernel boot option (numa=fake). It allows the physical memory
of a system to be divided into "fake" NUMA nodes. In other words, with fake-NUMA, a physical NUMA

node, which is a uniform physical memory region, can be exposed as multiple NUMA nodes to
applications.

For example, consider 64 GB of HBM configured in cache mode with 128GB of DDR memory. The

following figure (on the left) shows how two lines in the 128GB DDR address space map to the same
location of HBM, creating a conflict in the 64GB HBM cache. In other words, because the HBM cache
is direct-mapped, only one of the two lines can exist in the cache.

Figure 15 on the right shows the effect of creating two fake-NUMA nodes. If an application can fit
within a fake-NUMA node (say node zero), it is guaranteed not to encounter any conflict misses in
the HBM cache.

Figure 15. Fake-NUMA Node Example

To create two fake-NUMA nodes, each with 64GB capacity, on a system with 128GB of DDR, use

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

kernel boot option numa=fake=2U. This creates two fake-NUMA nodes for each physical NUMA node.

Without fake-NUMA, even applications with footprints smaller than HBM capacity can cause conflict

misses in HBM cache due to physical memory fragmentation. When fake-NUMA is enabled, the Linux
kernel fills fake-NUMA nodes sequentially. That is, memory is first allocated on NUMA node zero, then
on fake-NUMA node one, and so on. This insures conflict-free allocations in the HBM cache for
applications that can fit within a fake-NUMA node. Therefore, such applications will see the best
possible performance and lower variability.

After the kernel is booted up with the fake-NUMA boot option, verify proper node division using
'numactl -H'. If fake-NUMA nodes are not visible, ensure that the kernel is built with the kernel

config option 'CONFIG_NUMA_EMU=y'.

In Quadrant cluster mode, the size of a fake-NUMA node should be approximately 64 GB. In SNC4
mode, the size of a fake-NUMA node should be about 16GB.

All fake-NUMA nodes that belong to a physical NUMA node share the same CPU cores. As such, fake-

NUMA does not affect application launch commands, although the number of NUMA nodes increases
by the ratio between total DDR capacity and total HBM capacity.

It is strongly recommended that swapping be disabled when fake-NUMA is used since fake-NUMA
could lead to swapping when a fake-NUMA node fills up.

Since fake-NUMA introduces smaller capacity nodes, enabling zone_reclaim with fake-NUMA could
cause more frequent reclaim activity when a fake-NUMA node fills up, leading to a small performance
variability.

All standard NUMA tools can be used on fake-NUMA nodes. For instance, 'numactl -m 2 ./a.out'

launches an application using the memory of fake-NUMA node two. Similarly, numastat will show the

properties of fake-NUMA nodes.

5.3.2 Page Shuffling (Page Randomization)

Linux provides a feature to randomize page allocations. When fake-NUMA is not used, page shuffling
could be useful for achieving more consistent performance results (e.g., between a freshly booted
system and a system that has been running for a long time). When page allocations are randomized,
pages are allocated at random page addresses in physical memory, changing which pages conflict

with each other in the HBM cache, each time an application is launched.

This feature can be enabled in Linux kernel v5.4 or later using kernel boot option

page_alloc.shuffle=y. Its presence can be checked with file

/sys/module/page_alloc/parameters/shuffle.

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

5.3.3 Cache memory mode NUMA node enumeration

Figure 16. NUMA Node Configuration in Cache Mode

For a two-Socket system in Cache mode, the Figure 16 summarizes NUMA node configuration in

Quadrant and SNC4. The Quadrant mode results in at least two NUMA nodes (one node for each socket),

while the SNC4 mode results in at least eight NUMA nodes (four per socket). Each NUMA node contains
both cores and memory.

Use numactl -H to verify the NUMA node configuration and amount of total/free memory on each NUMA

node.

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

CHAPTER 6
 USING MEMORY MODES AND CLUSTER MODES

This section describes how end users can use memory modes and cluster modes.

6.1 HBM-Only Memory Mode
No changes to source code or command-line syntax are necessary to use the HBM-only mode. Both the
OS and applications use HBM memory, the only available option. However, to fit applications to
available memory, applications may have to take some extra steps given below. These are in addition
to OS configuration steps given in Section 5.1.

• Balance the number of OpenMP threads with MPI ranks. Since OpenMP threads share memory,
utilizing more OpenMP threads can lower the overall memory footprint

• Properly size the OpenMP stack size and MPI communication buffer sizes if an application
cannot fit within the HBM capacity

• Free file system cache and compact memory before each run as described in Section 4.1.

• Avoid using /dev/shm (tmpfs) to store files since it reduces available memory. Clear files in

/dev/shm if there are already files from previous jobs.

• Make sure there are no NUMA misses (by running numastat before and after a run)

• If an application still fails to fit within HBM capacity after taking the above steps, consider
scaling out to more nodes

6.2 FLAT Memory Mode
Flat mode exposes DDR and HBM to the user as separate address spaces (NUMA nodes) as described
above. The Figure 17 shows the output of 'numactl -H' of a flat memory mode system in SNC4

clustering mode.

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

Figure 17. numactl -H Example

As shown in the ‘numactl -H’ output, here are two types of nodes for each socket:

• DDR nodes with CPUs attached (nodes 0-7)

• HBM nodes without any CPUs attached (nodes 8-15)

When an application is launched on CPU cores, memory allocations go to the NUMA nodes that are
closest to them, as determined by the 'node distances'. For instance, in the above figure, for CPUs in
node zero, the closest memory (distance ten) is in node zero, which is DDR attached to node zero. To
use a different kind of memory, users need to use the features of libnuma, made available in the
following four ways:

• numactl utility

• Intel® MPI Library

• OpenMP library

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

• libnuma API

• memkind library

The first two methods are used to place the entire application (program code, static data, heap, stack)
in HBM, whereas the last two methods can be used to place dynamically allocated (heap-allocated)
individual data structures in HBM.

6.2.1 Using numactl For HBM Placement of Entire Application

The standard Linux utility numactl can be used to place an application's memory in a NUMA node. There
are several policies to consider:

• membind (numactl --membind hbm_node1, hbm_node2,/a.out): This forces all

memory for the application to be allocated from the specified nodes. If the application exceeds
the capacity of the specified nodes, the application will terminate. As such, the user must
guarantee that the application will not exceed the available HBM capacity, which could be less
than the maximum HBM capacity.

• preferred (numactl --preferred hbm_node ./a.out): This will make an application allocate

memory first from the specified preferred node, until it fills up. After a node fills up, the
subsequent allocations will go to the default node, which is always a DDR node in flat memory
mode. Notice that only one preferred node can be specified. Since Linux uses a first-touch

policy, the application needs to allocate and touch (e.g., initialize) pages for them to be placed
in the preferred node. As an example, on a two-socket system in Quadrant clustering mode, the
user can specify a different HBM node for different ranks in mpiexec command using MPI colon
syntax:

• preferred-many (numactl --preferred-many hbm_node1, hbm_node2,/a.out): Similar

to --preferred option but allows multiple preferred nodes. Therefore, this option is especially

useful for SNC4 and multiple sockets. However, this requires Linux kernel 5.15+ and numactl
2.0.15+.

• interleaved (numactl --interleave hbm_node,DDR_node): This allows interleaving memory

between any two NUMA nodes, and is especially useful when the memory footprint is roughly
twice as large as the size of HBM. If we interleave between DDR and HBM, the maximum
bandwidth we can expect is twice the bandwidth of DDR.

The best approach is usually using the membind policy to place the entire application within HBM when it
can fit within the HBM capacity. When that is not possible, scaling out to more nodes should be
considered before using preferred or interleaved policies.

6.2.1.1 Special Considerations with SNC4

Special attention should be paid when using numactl in SNC4 to accommodate multiple NUMA nodes,
based on whether membind or preferred is used:

mpiexec -n 1 numactl –--preferred hbm_node1 ./a.out : -n 1 numactl --

preferred hbm_node2 ./a.out

https://man7.org/linux/man-pages/man3/numa.3.html
http://memkind.github.io/memkind/

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

• membind: When running an MPI application in SNC4 mode, the user can specify all HBM nodes

as an argument to numactl (e.g., mpiexec -np 8 numactl -m 4-7 ./a.out), and HBM

memory will be allocated from the closest node to each rank (process).

• Preferred or interleaved: When using SNC4 in flat mode, if we want to place part of an

application in HBM either with preferred or interleaved methods discussed above, we have to
resort to MPI's colon syntax, because preferred accepts only 1 NUMA node (unless --

preferred-many is available) and interleaving should be done with corresponding HBM and DDR

node. As an example, to use preferred on a single socket with SNC4, when running 56 MPI
ranks, we can use:

Similarly, to interleave, on the same system, we can use:

6.2.2 Using Intel MPI for HBM Placement of Entire Application

For MPI applications, environment variable I_MPI_HBW_POLICY can allocate HBM for MPI ranks (instead

of numactl). More information about this environment variable can be found in the reference page for

I_MPI_HBW_POLICY.

I_MPI_HBW_POLICY environment variable also accepts an allocation policy for memory allocated by MPI

itself (e.g., MPI buffers). For instance, the following uses hbw_bind policy for both user and MPI library
allocations.

6.2.3 Placing of Individual Data Structures in HBM (In FLAT-Mode)

For finer control, it is possible to place dynamically allocated individual data structures in HBM using the
following methods. These methods should be used only when the user needs fine-grained control and

 mpirun -n 14 numactl -N 0 -p 4 ./a.out : -n 14 numactl -N 1 -p 5 ./a.out : -n 14

numactl -N 2 -p 6 ./a.out : -n 14 numactl -N 3 -p 7 ./a.out

 mpirun -n 14 numactl -N 0 -i 0,4 ./a.out : -n 14 numactl -N 1 -i 1,5 ./a.out :

-n 14 numactl -N 2 -i 2,6 ./a.out : -n 14 numactl -N 3 -i 3,7 ./a.out

mpirun -genv I_MPI_HBW_POLICY hbw_bind -n 2 ./a.out

mpirun –genv I_MPI_HBW_POLICY hbw_preferred -n 2 ./a.out

mpirun –genv I_MPI_HBW_POLICY hbw_interleave -n 2 ./a.out

mpirun -genv I_MPI_HBW_POLICY hbw_bind,hbw_bind -n 2 ./a.out

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

placing the entire application memory in HBM is not possible using numactl or MPI environment

variables (for instance, when the application exceeds the total amount of HBM capacity).

These methods require source code modifications. Only dynamically allocated data structures (i.e.,
allocated on the heap) can be placed in HBM. Stack, static data, and code cannot be placed in HBM
using these methods.

6.2.3.1 Using OpenMP for HBM Placement

This is available in Intel classic compilers (any recent version) and Intel® oneAPI compilers starting with
version 2021.3. The compiler’s OpenMP pragmas and directives depend on the memkind library as an
interface to libnuma.

This OpenMP feature is also available in gcc version 11 or higher.

C/C++

To get “membind” behavior, set fallback to null_fb or abort_fb

#include <omp.h>

float *x = (float *)omp_aligned_alloc(64, N*sizeof(float), omp_high_bw_mem_alloc);

omp_free(x, omp_high_bw_mem_alloc);

omp_alloctrait_t traits[2] = { {omp_atk_alignment, 64}, {omp_atk_fallback,

omp_atv_null_fb} };

omp_allocator_handle_t my_high_bw_mem_alloc = omp_init_allocator(omp_high_bw_mem_space,

2, traits);

float *x = (float *)omp_alloc(N*sizeof(float), my_high_bw_mem_alloc);

omp_free(x, my_high_bw_mem_alloc);

omp_destroy_allocator(my_high_bw_mem_alloc);

http://memkind.github.io/memkind/

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

FORTRAN

6.2.3.2 Using hbwmalloc from memkind Library for HBM Placement

You can use hbwmalloc API provided by the memkind library for allocating individual data structures in
HBM.

Link with -lmemkind

There is also hbw_posix_mem_align,

and an allocator,

Two FORTRAN examples,

 real, allocatable ::x(:)

 !dir$ omp allocate(x) allocator(omp_high_bw_mem_alloc) align(64)

 allocate(x(N))

 #include <hbwmalloc.h>

 float* x = (float *)hbwmalloc(N * sizeof(float));

 hbw_free(x);

#include <hbwmalloc.h>

float* x; hbw_posix_memalign((void**) &x, 64, N * sizeof(float));

hbw_free(x);

 #include <hbw_allocator.h>

 std::vector<float, hbw::allocator<float>> x;

http://memkind.github.io/memkind/man_pages/hbwmalloc.html
http://memkind.github.io/memkind/

 MEMORY MODE SPECIFIC CONFIGURATIONS

Ref#:354227-001US

6.3 Cache Memory Mode
No changes to source code or command-line syntax are necessary to use the cache mode. Since HBM
cache is transparent to software, applications see only DDR memory space. Therefore, users can run
their applications as if they are using a DDR-only machine.

However, to get the best possible performance, the user should be aware that the HBM acts as a cache
for DDR and this HBM cache is direct-mapped. As a result, applications may see conflict misses in the
HBM cache. A conflict miss occurs when two DDR addresses map to the same location (set) in the HBM
cache. Since the HBM is a direct –mapped memory-side cache, only one of those addresses can be
cached at a given time. This can lead to frequent cache misses (not finding the required line in the
cache). Cache misses increase memory latency and reduce effective bandwidth.

Since HBM capacity is 64 GB per socket, an application that can fit within this capacity ideally should
not incur any conflict misses. However, in practice, this is not the case due to physical memory
fragmentation. Operating systems can allocate physical memory from anywhere in the physical address
range. Physical memory is not always allocated contiguously starting from address zero. Frequent
allocations and deallocations lead to allocated memory not being contiguous. This is called memory
fragmentation. When physical memory is fragmented, an application can end up with memory
addresses that conflict with each other in the HBM direct-mapped cache (i.e., addresses map to the
same location in the cache), even though the total memory footprint of the application is less than the
size of HBM.

For applications with memory footprints smaller than 64 GB, we can use a Linux kernel feature called
fake-NUMA to avoid these unnecessary conflicts occurring due to physical memory fragmentation, as
described in Section 5.3.1. Using fake-NUMA, we can divide the physical memory address space into
contiguous 64 GB regions (fake-NUMA nodes). Addresses within a given 64 GB NUMA node are
guaranteed to be conflict-free (i.e., they cannot map to the same location in the HBM cache).
Therefore, if an application can run within a single fake-NUMA node, it can avoid conflict misses.

If the system is configured with fake-NUMA, no additional steps are necessary to avoid conflict misses
for applications with footprints that can fit within the size of HBM. When an application is launched, it
will automatically start allocating memory from fake-NUMA node zero, before allocations go to other
fake-NUMA nodes. However, the user may place an application in any fake-NUMA node using numactl.

In some rare cases, where the application uses almost 64 GB of memory, placing it in fake-NUMA node
one, for instance, (instead of zero) can marginally improve performance. This is because the fake-
NUMA node zero usually has a little bit less free memory than other fake-NUMA nodes because the OS
reserves some memory from the very first fake-NUMA node on each socket. You can see all fake-NUMA
nodes using numactl -H.

SNC4 increases the number of fake-NUMA nodes. However, the user does not have to take any extra
steps to use fake-NUMA as default behavior guarantees conflict-free placement for applications that
can fit within HBM capacity.

If the application's memory footprint exceeds that of the HBM capacity, fake-NUMA continues to
allocate memory from fake-NUMA nodes sequentially. This leads to more predictable behavior.

!dir$ attributes memkind:hbw :: x

real, allocatable :: x(:)

allocate(x(N))

real, allocatable :: x(:)

!dir$ memkind : hbw, align:64

allocate(x(N))

DEBUG AIDS FOR CONFIGURATION ERRORS

Ref#:354227-001US

CHAPTER 7
 APPLICATION CONFIGURATION

This section describes how to configure common benchmarks and tools for Intel® Xeon® CPU Max
Series.

7.1 Software Environment

Intel® oneAPI toolkits such as Intel® oneAPI Base Toolkit (Base Kit) and Intel® oneAPI HPC Toolkit (HPC
Kit) provide compilers, profilers (e.g., Intel® VTune™, Intel® Advisor), and libraries (e.g., Intel® Math
Kernel Library (Intel® MKL), Intel® MPI Library) supporting the Intel® Xeon® CPU Max Series.

7.2 Smoke Tests

The following benchmarks can be used as smoke tests to verify the proper performance of a system.
They should be run after a system is booted to verify performance. In addition, they are fast enough to
be run before or after each batch job to verify the expected performance of each system.

The first two tests (Intel® Memory Latency Checker (Intel® MLC) and STREAM measure the memory
system performance (bandwidth and latency), whereas HPL measures the floating-point compute
performance (GFLOPs). HPCG is mostly sensitive to the memory bandwidth.

7.2.1 Intel® Memory Latency Checker (Intel® MLC)

Intel® MLC, provides detailed latency and bandwidth measurements of a single system. The following
commands are useful in testing a system:

Peak bandwidth: mlc --peak_injection_bandwidth -Z -X -t60

Bandwidth matrix and latency: mlc

7.2.2 STREAM

The STREAM benchmark provides bandwidth measurements for different routines such as Copy, Scale,
Add, and Triad on a single node.

For best performance on Intel® Xeon® CPU Max Series processors, enable software prefetching with the
following command line:

icc -O3 -xCORE-AVX512 -qopt-zmm-usage=high -mcmodel=large -qopenmp -qopt-

streaming-stores=always -fno-builtin -qopt-prefetch-distance=128,16 -

DSTREAM_ARRAY_SIZE=500000000 -DNTIMES=500 stream.c -o stream

Execute the resulting binary using the following command:

KMP_HW_SUBSET=1t KMP_AFFINITY=balanced,granularity=core,verbose ./stream

7.2.3 HPL

The Intel® Distribution for LINPACK* Benchmark is based on modifications and additions to High-
Performance LINPACK (HPL). It is available with Intel® oneAPI Math Kernel Library (oneMKL) public
library release (or as a part of Intel® oneAPI Base Toolkit (Base Kit)) with instructions. It measures the

https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#gs.30vfys
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.cs.virginia.edu/stream/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top/intel-oneapi-math-kernel-library-benchmarks/intel-distribution-for-linpack-benchmark-1/overview-intel-distribution-for-linpack-benchmark.html

DEBUG AIDS FOR CONFIGURATION ERRORS

Ref#:354227-001US

amount of time it takes to factor and solve a random dense system of linear equations in double
precision, converts that time into a performance rate (GFLOPS), and tests the results for accuracy.

The benchmark can be run on a single node or a cluster of nodes. Instructions for running the benchmark

are available at the above link. As an example, to run in HBM-only mode in SNC4 cluster mode on a

single node with two sockets, change the following definitions in runme_intel64_dynamic file:

and then run:

Note: In Cache memory mode with fake-NUMA, NUMA_PER_MPI should be equal to the number of fake-

NUMA nodes on a socket.

7.2.4 HPCG

HPCG benchmark optimized for Intel CPUs (source code and prebuilt binaries) can be downloaded with

the latest Intel® oneAPI Math Kernel Library (oneMKL) public library release (or as a part of Intel®
oneAPI Base Toolkit (Base Kit), with the developer guide.

To build from source, use:

To run on a 2-socket system with Intel® Xeon® CPU Max Series processors (each with 56 cores) in

HBM-only memory mode and SNC4 cluster mode, you can use the command-line:

export MPI_PROC_NUM=2

export MPI_PER_NODE=2

export NUMA_PER_MPI=4

./runme_intel64_dynamic -p 2 -q 1 -b 384 -n 120000

source C/C++ compiler, MPI compiler, and MKL library

export MKLROOT=/path/to/mkl

export LD_LIBRARY_PATH=${MKLROOT}/lib/intel64:${LD_LIBRARY_PATH}

build binary for Intel AVX-512 -- bin/xhpcg_skx will be created

./configure IMPI_IOMP_SKX

make -j4 MKLROOT=${MKLROOT} MKL_INCLUDE=${MKLROOT}/include

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top/intel-oneapi-math-kernel-library-benchmarks/intel-opt-high-perf-conjugate-gradient-benchmark/overview-of-the-intel-optimized-hpcg.html

DEBUG AIDS FOR CONFIGURATION ERRORS

Ref#:354227-001US

7.3 Finding Out Memory Usage Of An Application

For the best possible performance, it is usually necessary to fit applications within the HBM capacity. To
do that, it is important to find the memory footprint of the applications and workloads. The following

tools are available for this purpose:

• top and htop (provides total used/free memory of a system at a given time)

• numastat -m (provides total memory on each NUMA node at a given time)

• numastat -p <binary_name> (provides memory consumption of a given process at a

given time)

• /usr/bin/time -v <app_cmd_line> (provides various stats about the application

including maximum resident set size). This is different from bash built-in ‘time’ command so
path must be specified.

If the application footprint exceeds the available HBM capacity, consider scaling out to more nodes or
using the Cache mode.

Note: Select the best MPI x OMP decomposition for your case

Following assumes SNC4 (8 NUMA nodes on 2S),

and 14 cores (28 threads) on a NUMA node

export MKL_NUM_THREADS=28

export OMP_NUM_THREADS=28

nprocs_per_node=8

nnodes=1

nprocs=$((nnodes*nprocs_per_node))

problem_size=168 # options: 168, 192, 256

run_time_in_seconds=100 # 100 used as smoke test.

 # 1800 is min for official HPCG submission

export I_MPI_SHM=spr-hbm

export I_MPI_FABRICS=shm:ofi

export I_MPI_PIN_DOMAIN=numa

export I_MPI_DEBUG=10 # print out mpi configuration mapping data

for 1 hyper-thread, use 'compact,1,0' instead of 'compact'

export KMP_AFFINITY=granularity=fine,compact

echo " === nnodes: ${nnodes}"

echo " === ppn: ${nprocs_per_node}"

echo " === nprocs: ${nprocs}"

echo " === n_omp_per_proc: ${MKL_NUM_THREADS}"

echo " === prob_size: ${problem_size}"

echo " === run_time: ${run_time_in_seconds}"

run bin/xhpcg_skx binary (either prebuilt or built by user)

mpiexec.hydra -genvall -n ${nprocs} -ppn ${nprocs_per_node} bin/xhpcg_skx -

n$problem_size -t$run_time_in_seconds

DEBUG AIDS FOR CONFIGURATION ERRORS

Ref#:354227-001US

7.4 Optimizing Applications For Memory Bandwidth

Because Intel® Xeon® CPU Max Series processors offer a much higher memory bandwidth compared to

previous Intel® Xeon® processors, applications (or routines) that were memory bandwidth bound on
previous processors may not be memory bandwidth bound on Intel® Xeon® CPU Max Series processors.

The best way to identify the actual bandwidth utilization of an application is to use memory access
analysis of Intel® VTuneTM Profiler. If that analysis shows underutilization of memory bandwidth for a
given phase or routine of an application, following options could be considered to optimize for memory
bandwidth:

Optimize compute: the routine may not be doing computations fast enough to generate sufficient
memory bandwidth. Consider optimizing computations such as address calculations and consider
vectorization to improve compute throughput. Intel® Advisor can be used to identify vectorization
opportunity and improve vectorization.

Optimize memory latency: if the routine produces many memory accesses that miss the last-level (L3)

cache but still fails to saturate the HBM bandwidth, the routine is likely to be memory latency bound.
Irregular access patterns (e.g., indirect accesses, gathers, scatters) that reduce the effectiveness of
hardware prefetchers often lead to high memory latency. Consider using software prefetches for such
access patterns. Intel® oneAPI compilers provide compiler flags such as -qopt-prefetch and support
explicit prefetch directives and intrinsics (_mm_prefetch in C and mm_prefetch in FORTRAN) that can be
used within source code.

Overall architecture and optimization details for Intel® Xeon® processors and Intel® Xeon® CPU Max
Series processors can be found in the Intel Software Developer’s Manuals and Software Optimization and
Reference Manuals and from GitHub.

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/microarchitecture-analysis-group/memory-access-analysis/memory-usage-view.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/microarchitecture-analysis-group/memory-access-analysis/memory-usage-view.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/advanced-optimization-options/qopt-prefetch-qopt-prefetch.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/prefetch-noprefetch.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=prefetch
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/m-to-n/mm-prefetch.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/intel/optimization-manual

