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CHAPTER 1 
  INTRODUCTION 

 
1.1 AUDIENCE 

This document is for system administrators and application engineers running and optimizing 
applications on the Intel® Xeon® CPU Max Series. 

 
 

1.2 GLOSSARY 

 
 

Table 1. Acronym Definition 

Acronym Term Definition 

BIOS Basic Input Output Service  

HBM High Bandwidth Memory 
 

1LM 
1-Level Memory Mode 
or FLAT Mode 

Mode where HBM and DDR are exposed to 
the software as separate address spaces. 

 
2LM 

 
2-Level Memory (2LM) mode 
or Cache Mode 

Mode where HBM is used as a memory side cache 
for DDR. In this mode, only DDR address space is 

visible to software and HBM functions as a 
transparent memory-side cache for DDR.  

 
 

 
“fake” NUMA Node 

This feature is enabled using a Linux kernel boot 
option (numa=fake). It allows the physical memory 
of a system to be divided into "fake" NUMA nodes. 
In other words, with fake-NUMA, a physical NUMA 
node, which is a uniform physical memory region, 
can be exposed as multiple NUMA nodes to 

applications. 

1.3 REFERENCES 

Table 2. References 

Description URL 

Intel® Architecture Instruction Set Extensions 

Programming Reference 

https://software.intel.com/content/www/us/en/develop/down- 

load/intel-architecture-instruction-set 

extensions-programming-reference.html 

memkind library 
http://memkind.github.io/memkind/ 

libnuma API 
https://man7.org/linux/man-pages/man3/numa.3.html 

hbwmalloc API 
http://memkind.github.io/memkind/man_pages/hbwmalloc.html 

Intel® MLC 
https://www.intel.com/content/www/us/en/develop
er/articles/tool/intelr-memory-latency-checker.html 

https://software.intel.com/content/www/us/en/develop/download/intel-architecture-instruction-setextensions-programming-reference.html
http://memkind.github.io/memkind/
http://memkind.github.io/memkind/man_pages/hbwmalloc.html
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STREAM benchmark 
https://www.cs.virginia.edu/stream/ 

Intel® oneAPI Math Kernel Library (oneMKL) 
https://www.intel.com/content/www/us/en/developer/tools/o
neapi/onemkl-download.html  

Developer Guide for Intel® oneAPI Math Kernel Library for 

Linux* 

https://www.intel.com/content/www/us/en/develop/documentation/on

emkl-linux-developer-guide/top/intel-oneapi-math-kernel-library-
benchmarks/intel-distribution-for-linpack-benchmark-1/overview-intel-
distribution-for-linpack-benchmark.html 

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
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CHAPTER 2 
  Intel® Xeon® CPU Max Series 

 
2.1 Processor block diagram 
 

 
Figure 1. Processor Block Diagram 

 

The processors contain four HBM2e stacks totaling 64 GB of High Bandwidth Memory (HBM) capacity per 

processor in addition to eight channels of DDR memory 

 

Two processors are connected by up to four Intel® Ultra Path Interconnect (Intel® UPI) links in a two-

socket system. A two-socket system has a total of 128 GB of HBM capacity. 

 

2.1.1 HBM stacks and their specifications 

 

 
Figure 2. Memory Stacks Within HBM 

 

 

HBM memory is composed of multiple DRAM memory stacks with a wide bus. Each stack contains eight 
DRAMs stacked on a logic die at the bottom. An Intel® Xeon® CPU Max Series processor has four stacks 
totaling 64 GB of HBM capacity. 
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CHAPTER 3 
  HARDWARE CONFIGURATION 

 
 

 

3.1 CPU CONFIGURATION 
 
The HBM and DDR memory in an Intel® Xeon® CPU Max Series (Package or Socket) can be configured 
in three memory modes and two clustering modes.  
 

This section describes each of these modes from a hardware point of view. How these modes are 
configured with the OS is described in Section 5 below and how applications can use them is described 
in Section 6 below. 

 

3.1.1 Memory Modes 
 

 
Figure 3. HBM Memory Modes 

 
 
The processor exposes HBM to software (OS and applications) using three memory modes. 

 

 

3.1.1.1 HBM-only 
 
When no DDR is installed, HBM-only mode is selected. The only memory available to the OS and 
applications in this mode is HBM. The OS may see all the installed HBM in this mode, while applications 
will see what the OS exposes.  Hence the OS and the applications can readily utilize HBM. However, the 

OS, background services, and applications must share the available HBM capacity (64GB per 

processor). 

 
 

3.1.1.2 Flat or 1-Level Memory (1LM) mode 
 
When DDR memory is installed, it is possible to expose both HBM and DDR to software by selecting flat 
(also known as 1LM) mode from the BIOS menu at boot. HBM and DDR are exposed to software as 
separate address spaces in this mode. DDR is exposed as a separate address space (NUMA node) and 

HBM as another address space (NUMA node). Users need to use NUMA-aware tools (e.g., numactl) or 
libraries to utilize HBM in this mode, as described in Section 6.2 below. Additional OS configuration is 
necessary before HBM can be accessed as part of the regular memory pool (See section 5.2). 
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3.1.1.3 Cache or 2-Level Memory (2LM) mode 
 
When DDR is installed, it is possible to use HBM as a memory side cache for DDR by selecting Cache 
(also known as 2LM) mode from the BIOS menu at boot. In this mode, only DDR address space is visible 
to software and HBM functions as a transparent memory-side cache for DDR. Therefore, applications and 
command lines do not need modifications to use the cache mode. The HBM is a direct-mapped cache and 

may require additional configuration steps to minimize conflict misses (see Section 5.2.1). 

 

3.1.2 Cluster (partitioning) modes 
 

 
Figure 4. Cluster Modes 

 
 

Cluster modes determine how the processor is partitioned into different address spaces (NUMA nodes). 
 

Clustering (partitioning) allows cores to have higher bandwidth and lower latency to memory (both HBM 
and DDR) in the same partition.  Cluster modes are orthogonal to memory modes.  Intel® Xeon® CPU 
Max Series processors have two clustering modes. 

 

 

3.1.2.1 Quadrant 
 
This mode presents a single address space (NUMA node) to software. Therefore, applications do not have 

to take additional steps to be NUMA aware in this mode. This mode is preferable for applications that 
share large data structures among all cores of a processor (e.g., an OpenMP application running on all 
cores and sharing a large data structure). 
 
 

3.1.2.2 SNC4 (Sub-NUMA Clustering-4) the default clustering mode 
 
This mode partitions each CPU into four sub-NUMA cluster partitions. Each partition is exposed to 

software as one or more NUMA nodes. Therefore, there are at least four NUMA nodes for each processor. 
Applications should be NUMA-aware to use this mode, but this mode provides higher bandwidth and 
lower latencies compared to Quadrant mode. This mode is preferable for NUMA-aware applications (e.g., 
MPI or MPI+OpenMP applications).  
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Figure 5. Memory Mode Configurations 

 
 
Combining six memory modes with two clustering modes, Intel® Xeon® CPU Max Series processors 
have six configuration options, as summarized in Figure 5. 

 

3.2 Multi-Socket configuration 
 
Intel® Xeon® CPU Max Series is available in two-socket configurations connected by up to four Intel® 
UPI links. Each socket (processor) is a separate address space (NUMA node). Therefore, a two-socket 

system in Quadrant mode has at least two NUMA nodes while a two-socket system in SNC4 has at least 
eight NUMA nodes. 

 

3.3 DIMM configuration 
 

Each processor has four DDR memory controllers, and each memory controller supports two channels for 
a total of 8-channels per processor. 

 

3.3.1 HBM-only mode 
 
To obtain the HBM-only mode, no DIMM must be installed. In some debug BIOS versions, it may be 

possible to disable the DIMMs via the BIOS options instead of physically removing them. 

 

3.3.2 Flat mode  
 
Figure 6 summarizes all DIMM configuration options for flat mode for a single CPU and whether each 
DIMM configuration supports SNC4 (for HBM, DDR, and HBM+DDR). 
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Figure 6. DIMM Configuration Options 

 
All modes support Quadrant or SNC4 for HBM. However, only the last three modes, which have 
symmetric DIMM configurations, support SNC4 for both HBM and DDR. In modes with asymmetric DIMM 

configurations, the DDR space is configured in a special cluster mode called "All-to-All," which produces 
lower, asymmetric bandwidths and higher, asymmetric latencies.  
 
Populating both DDR slots of a channel (last row) results in lower bandwidth and higher latency than 
populating only one slot per channel (second to the last row). 
 

3.3.3 Cache mode  
 
Cache mode requires a symmetric DIMM configuration across all four memory controllers. Therefore, only 
the last three rows of the above figure support cache mode.  
 

For best performance dual-rank DIMMs must be used because dual-rank DDR DIMMs provide more 
bandwidth than single-rank DIMMs. 
 

 

3.4 BIOS settings 
 
This section describes BIOS options for selecting the memory mode and the cluster mode. The menu 
options shown in this section are for Intel Software Development Platform and the specific menu options 

could be different on your system, depending on the BIOS provider.   
 
Please upgrade to the latest BIOS version if your system has an older BIOS version as the latest BIOS 
may contain features and performance enhancements. 

 

3.4.1 Selecting memory mode  
 

Memory mode is selected in BIOS using the following menu selection: 
 
EDKII Menu -> Socket Configuration -> Memory Configurations -> Memory Map -> Volatile Memory 
Mode -> 1LM/2LM  
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Figure 7. Selecting Memory Mode 

 

3.4.2 Selecting cluster mode 
 
Cluster mode is selected in BIOS using the following menu selection: 
 
EDKII → Socket configuration → Uncore configuration → Uncore General Configuration → SNC (Sub 

Numa) 
 

 
Figure 8. Selecting Cluster Mode 

 

Note: Intel SYSCFG utility can be used to save/restore and examine BIOS configuration on Intel server 
platforms. 

https://www.intel.com/content/www/us/en/download/16684/save-and-restore-system-configuration-utility-syscfg.html
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CHAPTER 4 
  LINUX System Configuration 

 

 

4.1 Common Configuration Options 
 

Consider the following configuration options for all memory modes: 

 
 

• Disable swapping. This is especially useful in HBM-only mode, where the capacity is limited. 
Swapping can severely degrade performance. If an application leads to swapping, consider 
freeing up memory (e.g., by clearing file system caches) or scaling to more nodes. 

 
• Enable zone-reclaim mode to reduce NUMA misses. This mode is beneficial in situations where 

the size of a NUMA node is small (e.g., SNC4 clustering mode). This will make the Linux page 
allocator reclaim easily reusable pages on the requested NUMA node before allocating them on 
a different NUMA node. This reduces unnecessary NUMA crossings that will degrade 
performance. However, reclaim activity could introduce small performance variability. Zone-

reclaim option can be enabled using the following command. Since it must be done after each 
reboot, it is recommended that this be automated using initialization scripts.  

 

 
 

• Before each run, consider flushing out file system caches (if cached content from previous runs 

is not useful) and compacting memory using the following commands. Since these commands 
need root privileges, system administrators should consider making them part of job prologues 
of batch systems or providing them as setuid binaries.  

 

 

• Consider enabling Transparent Huge Pages (THP). Most HPC applications benefit from THP. 

Although THP may cause overhead if memory compaction is needed to create large pages, 
administrators can reduce the overhead by compacting memory before each run as described 
above. 
 

• Avoid using /dev/shm (tmpfs) to store files since it reduces available memory. System 

administrators should consider clearing /dev/shm as part of job prologue to reduce interference 

between jobs.  
 

• Consider using the latest stable Linux kernel (currently 5.15)  
 

 

4.2 Useful LINUX Tools 
 

4.2.1 numactl 

echo 2 > /proc/sys/vm/zone_reclaim_mode 

 

sync; echo 3 > /proc/sys/vm/drop_caches;  

echo 1 > /proc/sys/vm/compact_memory 
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Figure 9. numactl -H Example 

 

The Linux utility numactl is often used for both observing the NUMA configuration of the system and 
executing applications on specific NUMA nodes. For observing the NUMA configuration of a system, use 
numactl -H.  The following figure shows the output of numactl -H showing the number of NUMA nodes, 
CPU cores, and memory capacity on each NUMA node, followed by a matrix describing the distance of 
each node from any other node. See man numactl for more information. 

 

4.2.2 numastat 
 

The Linux utility numastat provides various statistics about NUMA memory usage. In particular, the 
following commands are useful (see man numastat for more details). 

 

 
Figure 10. numastat -p Example 

 
• numastat -p <process_name gives memory usage of a given process as shown in Figure 11: 

 

• numastat -m shows the memory usage information of an entire system 
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Figure 11. numastat -m Example 

 
 

• numastat (without arguments) shows NUMA hits and misses (cumulative from boot). This is 

useful in identifying NUMA node crossings (numa_miss) that can lead to unexpected 
performance degradations. Since these statistics are cumulative from boot, it is necessary to 

run numastat before and after each run to see whether a given run encountered NUMA misses. 
 

4.2.3 turbostat 

 

Turbostat can be used to examine the power, frequency, and temperature of x86 architecture 
processors when executed as root (or as a setuid binary). Turbostat can be useful in identifying system 
cooling issues. For instance, the following shows the system's power, frequency, and temperature: 

 
 

 

• turbostat -qS    # average for both CPUs 

• turbostat -qS --cpu package     # separately for each CPU 
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Figure 12. turbostat Example 

 

 

4.2.4 lscpu 
 
This standard Linux utility shows high-level system configuration details, including the NUMA nodes, 
core counts, base frequency, cache sizes, and CPU flags (features). 

 
4.2.5 dmidecode and lshw 

 
These Linux utilities can be used (with root privileges) to inspect hardware components installed, 
including HBM and DDR modules. 
 

4.2.6 htop 
 
The htop utility is a tool like standard Linux top utility; however, it shows individual CPU 

core/thread usage using a visual format. This is usually helpful in identifying NUMA usage and MPI rank 
or OpenMP thread placement. In addition, it shows the memory usage of the system. 
 

4.2.7 lstopo 
 
The lstopo utility is part of the hwloc library, which can be installed as a package using a standard 

package manager (e.g., dnf install hwloc). The lstopo utility (or lstopo-no-graphics) shows 

the hardware topology of a system. 
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CHAPTER 5 
MEMORY MODE SPECIFIC CONFIGURATIONS 

 

 
This section describes OS configuration options for each memory mode. 

 
5.1 HBM-Only Memory Mode 
No additional configuration steps are necessary to use HBM in HBM-only mode. However, since HBM 
capacity is limited, administrators can take additional steps to reduce memory capacity overheads. 
Consider performing the following steps: 

 

• Consider reducing unnecessary services (daemons), and drivers started at boot (e.g., VNC 
servers, print/mail/etc. daemons, performance profiling drivers) 

 

• Consider minimizing the size of the OS file caches and MPI buffers 
 

• Before each run, consider clearing out the file system cache and compacting memory (see 
Section 4.1 above) 

 

5.1.1 NUMA Node Enumeration 

For a two-Socket system in HBM-only mode, Figure 13 summarizes the NUMA node configuration in 
Quadrant and SNC4. The Quadrant mode results in two NUMA nodes (one node for each socket), 
while the SNC4 mode results in eight NUMA nodes (four per socket). Each NUMA node contains both 

cores and HBM memory. 
 

 
Figure 13. NUMA Node Configuration for HBM-Only Mode 

 

Use numactl -H to verify the NUMA node configuration and amount of total/free memory on each NUMA 

node. 

 

5.2 Flat Memory Mode 
 

Flat mode is enabled by selecting 1LM in BIOS when DDR is installed as described in Section 3.4.1. 
However, this alone does not expose HBM to OS and applications via the default memory pool. 
Additional steps are necessary to enable HBM into the default memory pool.  
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After selecting 1LM in BIOS, the system boots up with only DDR exposed to the OS and applications. 
The HBM is still not visible in the default memory pool since HBM is marked as special-purpose 
memory. This design choice was made to prevent the OS from allocating and reserving valuable HBM 

memory during the boot process. Since the HBM is "hidden" from the OS during the boot process, the 

OS cannot allocate or reserve HBM memory. 

 

Here are the steps for booting up and exposing HBM in flat mode: 

 

1. Select 1LM in the BIOS menu (see Section 3.4.1) and let the OS boot. After the system boots, 
only DDR is visible in the default memory pool. You can observe that fact using 'numactl -H' 

 

2. Install the following Linux packages: 
 

 

 

3. Execute the following daxctl commands for two-socket systems (only the top two commands are 
required in Quadrant mode, but all are required in SNC4). These commands need root privileges. 

 

 

Step 3 needs to be carried out each time the system boots. Therefore, it would be convenient to put the 
above commands in a script that executes when the OS boots.  

Use 'numactl -H' to verify that the HBM nodes are visible and the entire HBM capacity is free.  

 

 

dnf install daxctl ndctl 

 

 

 ## Base commands for both Quadrant andSNC4 cluster modes 

 

 ## 

 

 daxctl reconfigure-device -m system-ram dax0.0 

 

 daxctl reconfigure-device -m system-ram dax1.0 

 

 

 

 ## For SNC4 cluster mode, use the following additional commands:  

 

 ## 

 

 daxctl reconfigure-device -m system-ram dax2.0 

 

 daxctl reconfigure-device -m system-ram dax3.0  

 

 daxctl reconfigure-device -m system-ram dax4.0  

 

 daxctl reconfigure-device -m system-ram dax5.0  

 

 daxctl reconfigure-device -m system-ram dax6.0  

 

 daxctl reconfigure-device -m system-ram dax7.0 
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5.2.1 Flat Mode NUMA Node Enumeration 

 

For a two-Socket system in Flat mode, Figure 14 summarizes the NUMA node configuration in 
Quadrant and SNC4 modes. 

 

• Quadrant mode results in four NUMA nodes (two DDR nodes with cores and two HBM nodes 
without cores attached) 

• SNC4 mode results in 16 NUMA nodes (8 DDR nodes with cores and 8 HBM nodes without cores 
attached).  

 

 
Figure 14. NUMA Node Configurations in Flat Mode 

 

Use numactl -H to verify the NUMA node configuration and amount of total/free memory on each NUMA 

node. 
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5.3 Cache Memory Mode 
 

No additional configuration is necessary to use Cache mode. However, since the HBM cache is a 
direct-mapped memory-side cache, additional OS configuration with fake-NUMA is strongly 
recommended to mitigate the effects of conflict misses on applications. 

 
5.3.1 Using Fake-NUMA with cache memory mode 

 

This feature is enabled using a Linux kernel boot option (numa=fake). It allows the physical memory 
of a system to be divided into "fake" NUMA nodes. In other words, with fake-NUMA, a physical NUMA 

node, which is a uniform physical memory region, can be exposed as multiple NUMA nodes to 
applications. 

 

For example, consider 64 GB of HBM configured in cache mode with 128GB of DDR memory. The 

following figure (on the left) shows how two lines in the 128GB DDR address space map to the same 
location of HBM, creating a conflict in the 64GB HBM cache. In other words, because the HBM cache 
is direct-mapped, only one of the two lines can exist in the cache. 

 

Figure 15 on the right shows the effect of creating two fake-NUMA nodes. If an application can fit 
within a fake-NUMA node (say node zero), it is guaranteed not to encounter any conflict misses in 
the HBM cache. 

 

 

Figure 15. Fake-NUMA Node Example 

 

 

 

 

 

To create two fake-NUMA nodes, each with 64GB capacity, on a system with 128GB of DDR, use 
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kernel boot option numa=fake=2U. This creates two fake-NUMA nodes for each physical NUMA node.  

 

Without fake-NUMA, even applications with footprints smaller than HBM capacity can cause conflict 

misses in HBM cache due to physical memory fragmentation. When fake-NUMA is enabled, the Linux 
kernel fills fake-NUMA nodes sequentially. That is, memory is first allocated on NUMA node zero, then 
on fake-NUMA node one, and so on. This insures conflict-free allocations in the HBM cache for 
applications that can fit within a fake-NUMA node. Therefore, such applications will see the best 
possible performance and lower variability. 

 

After the kernel is booted up with the fake-NUMA boot option, verify proper node division using 
'numactl -H'. If fake-NUMA nodes are not visible, ensure that the kernel is built with the kernel 

config option 'CONFIG_NUMA_EMU=y'. 

 

In Quadrant cluster mode, the size of a fake-NUMA node should be approximately 64 GB. In SNC4 
mode, the size of a fake-NUMA node should be about 16GB.  

 

All fake-NUMA nodes that belong to a physical NUMA node share the same CPU cores. As such, fake-

NUMA does not affect application launch commands, although the number of NUMA nodes increases 
by the ratio between total DDR capacity and total HBM capacity.  

 

It is strongly recommended that swapping be disabled when fake-NUMA is used since fake-NUMA 
could lead to swapping when a fake-NUMA node fills up. 

 

Since fake-NUMA introduces smaller capacity nodes, enabling zone_reclaim with fake-NUMA could 
cause more frequent reclaim activity when a fake-NUMA node fills up, leading to a small performance 
variability.  

 

All standard NUMA tools can be used on fake-NUMA nodes. For instance, 'numactl -m 2 ./a.out' 

launches an application using the memory of fake-NUMA node two. Similarly, numastat will show the 

properties of fake-NUMA nodes. 

 

5.3.2 Page Shuffling (Page Randomization) 

 

Linux provides a feature to randomize page allocations. When fake-NUMA is not used, page shuffling 
could be useful for achieving more consistent performance results (e.g., between a freshly booted 
system and a system that has been running for a long time). When page allocations are randomized, 
pages are allocated at random page addresses in physical memory, changing which pages conflict 

with each other in the HBM cache, each time an application is launched. 

 

This feature can be enabled in Linux kernel v5.4 or later using kernel boot option 

page_alloc.shuffle=y. Its presence can be checked with file 

/sys/module/page_alloc/parameters/shuffle. 
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5.3.3 Cache memory mode NUMA node enumeration 

 

 

Figure 16. NUMA Node Configuration in Cache Mode 

For a two-Socket system in Cache mode, the Figure 16 summarizes NUMA node configuration in 

Quadrant and SNC4. The Quadrant mode results in at least two NUMA nodes (one node for each socket), 

while the SNC4 mode results in at least eight NUMA nodes (four per socket). Each NUMA node contains 
both cores and memory.  

Use numactl -H to verify the NUMA node configuration and amount of total/free memory on each NUMA 

node. 
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CHAPTER 6 
  USING MEMORY MODES AND CLUSTER MODES 

 
This section describes how end users can use memory modes and cluster modes. 

 
6.1 HBM-Only Memory Mode 
No changes to source code or command-line syntax are necessary to use the HBM-only mode. Both the 
OS and applications use HBM memory, the only available option. However, to fit applications to 
available memory, applications may have to take some extra steps given below. These are in addition 
to OS configuration steps given in Section 5.1. 

 

• Balance the number of OpenMP threads with MPI ranks. Since OpenMP threads share memory, 
utilizing more OpenMP threads can lower the overall memory footprint 

 

• Properly size the OpenMP stack size and MPI communication buffer sizes if an application 
cannot fit within the HBM capacity 

 

• Free file system cache and compact memory before each run as described in Section 4.1. 

 

• Avoid using /dev/shm (tmpfs) to store files since it reduces available memory. Clear files in 

/dev/shm if there are already files from previous jobs.  

 

• Make sure there are no NUMA misses (by running numastat before and after a run) 

 

• If an application still fails to fit within HBM capacity after taking the above steps, consider 
scaling out to more nodes 

 

 

6.2 FLAT Memory Mode 
Flat mode exposes DDR and HBM to the user as separate address spaces (NUMA nodes) as described 
above. The Figure 17 shows the output of 'numactl -H' of a flat memory mode system in SNC4 

clustering mode. 
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Figure 17. numactl -H Example 

 

As shown in the ‘numactl -H’ output, here are two types of nodes for each socket: 

 

• DDR nodes with CPUs attached (nodes 0-7) 

• HBM nodes without any CPUs attached (nodes 8-15) 

 

When an application is launched on CPU cores, memory allocations go to the NUMA nodes that are 
closest to them, as determined by the 'node distances'. For instance, in the above figure, for CPUs in 
node zero, the closest memory (distance ten) is in node zero, which is DDR attached to node zero. To 
use a different kind of memory, users need to use the features of libnuma, made available in the 
following four ways: 

 

• numactl utility 

• Intel® MPI Library 

• OpenMP library 
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• libnuma API  

• memkind library 

The first two methods are used to place the entire application (program code, static data, heap, stack) 
in HBM, whereas the last two methods can be used to place dynamically allocated (heap-allocated) 
individual data structures in HBM. 

 

6.2.1 Using numactl For HBM Placement of Entire Application 
 

The standard Linux utility numactl can be used to place an application's memory in a NUMA node. There 
are several policies to consider: 

 

• membind (numactl --membind hbm_node1, hbm_node2, ... ./a.out): This forces all 

memory for the application to be allocated from the specified nodes. If the application exceeds 
the capacity of the specified nodes, the application will terminate. As such, the user must 
guarantee that the application will not exceed the available HBM capacity, which could be less 
than the maximum HBM capacity. 
 

• preferred (numactl --preferred hbm_node ./a.out): This will make an application allocate 

memory first from the specified preferred node, until it fills up. After a node fills up, the 
subsequent allocations will go to the default node, which is always a DDR node in flat memory 
mode. Notice that only one preferred node can be specified. Since Linux uses a first-touch 

policy, the application needs to allocate and touch (e.g., initialize) pages for them to be placed 
in the preferred node. As an example, on a two-socket system in Quadrant clustering mode, the 
user can specify a different HBM node for different ranks in mpiexec command using MPI colon 
syntax: 

 

 

• preferred-many (numactl --preferred-many hbm_node1, hbm_node2, ... ./a.out): Similar 

to --preferred option but allows multiple preferred nodes. Therefore, this option is especially 

useful for SNC4 and multiple sockets. However, this requires Linux kernel 5.15+ and numactl 
2.0.15+. 
 

• interleaved (numactl --interleave hbm_node,DDR_node): This allows interleaving memory 

between any two NUMA nodes, and is especially useful when the memory footprint is roughly 
twice as large as the size of HBM. If we interleave between DDR and HBM, the maximum 
bandwidth we can expect is twice the bandwidth of DDR.  

 

 

The best approach is usually using the membind policy to place the entire application within HBM when it 
can fit within the HBM capacity. When that is not possible, scaling out to more nodes should be 
considered before using preferred or interleaved policies. 

 

 

6.2.1.1 Special Considerations with SNC4 
 
Special attention should be paid when using numactl in SNC4 to accommodate multiple NUMA nodes, 
based on whether membind or preferred is used: 

 

mpiexec -n 1 numactl –--preferred hbm_node1 ./a.out : -n 1 numactl --

preferred hbm_node2 ./a.out 

 

https://man7.org/linux/man-pages/man3/numa.3.html
http://memkind.github.io/memkind/
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• membind: When running an MPI application in SNC4 mode, the user can specify all HBM nodes 

as an argument to numactl (e.g., mpiexec -np 8 numactl -m 4-7 ./a.out), and HBM 

memory will be allocated from the closest node to each rank (process). 

 
• Preferred or interleaved: When using SNC4 in flat mode, if we want to place part of an 

application in HBM either with preferred or interleaved methods discussed above, we have to 
resort to MPI's colon syntax, because preferred accepts only 1 NUMA node (unless --

preferred-many is available) and interleaving should be done with corresponding HBM and DDR 

node. As an example, to use preferred on a single socket with SNC4, when running 56 MPI 
ranks, we can use:  
 

 
Similarly, to interleave, on the same system, we can use:  

 

 

6.2.2 Using Intel MPI for HBM Placement of Entire Application 

 

For MPI applications, environment variable I_MPI_HBW_POLICY can allocate HBM for MPI ranks (instead 

of numactl). More information about this environment variable can be found in the reference page for 

I_MPI_HBW_POLICY. 

 

 

I_MPI_HBW_POLICY environment variable also accepts an allocation policy for memory allocated by MPI 

itself (e.g., MPI buffers). For instance, the following uses hbw_bind policy for both user and MPI library 
allocations. 

 

 

6.2.3 Placing of Individual Data Structures in HBM (In FLAT-Mode) 

 

For finer control, it is possible to place dynamically allocated individual data structures in HBM using the 
following methods. These methods should be used only when the user needs fine-grained control and 

 

  mpirun -n 14 numactl -N 0 -p 4 ./a.out : -n 14 numactl -N 1 -p 5 ./a.out : -n 14 

numactl -N 2 -p 6 ./a.out : -n 14 numactl -N 3 -p 7 ./a.out 

 

  mpirun -n 14 numactl -N 0 -i 0,4 ./a.out : -n 14 numactl -N 1 -i 1,5 ./a.out : 

-n 14 numactl -N 2 -i 2,6 ./a.out : -n 14 numactl -N 3 -i 3,7 ./a.out   

 

 

mpirun -genv I_MPI_HBW_POLICY hbw_bind -n 2 ./a.out 

mpirun –genv I_MPI_HBW_POLICY hbw_preferred -n 2 ./a.out 

mpirun –genv I_MPI_HBW_POLICY hbw_interleave -n 2 ./a.out 

 

 

mpirun -genv I_MPI_HBW_POLICY hbw_bind,hbw_bind -n 2 ./a.out 
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placing the entire application memory in HBM is not possible using numactl or MPI environment 

variables (for instance, when the application exceeds the total amount of HBM capacity). 

These methods require source code modifications. Only dynamically allocated data structures (i.e., 
allocated on the heap) can be placed in HBM.  Stack, static data, and code cannot be placed in HBM 
using these methods. 

 

6.2.3.1 Using OpenMP for HBM Placement 

 

This is available in Intel classic compilers (any recent version) and Intel® oneAPI compilers starting with 
version 2021.3.  The compiler’s OpenMP pragmas and directives depend on the memkind library as an 
interface to libnuma. 

This OpenMP feature is also available in gcc version 11 or higher. 

 

C/C++ 

 

 

To get “membind” behavior, set fallback to null_fb or abort_fb 

 

 

 

 

 

 

 

 

 

 

 

 

 

#include <omp.h> 

 

float *x = (float *)omp_aligned_alloc(64, N*sizeof(float), omp_high_bw_mem_alloc); 

 

omp_free(x, omp_high_bw_mem_alloc); 

 

omp_alloctrait_t traits[2] = { {omp_atk_alignment, 64}, {omp_atk_fallback, 

omp_atv_null_fb} }; 

 

omp_allocator_handle_t my_high_bw_mem_alloc = omp_init_allocator(omp_high_bw_mem_space, 

2, traits); 

 

float *x = (float *)omp_alloc(N*sizeof(float), my_high_bw_mem_alloc); 

 

omp_free(x, my_high_bw_mem_alloc); 

 

omp_destroy_allocator(my_high_bw_mem_alloc); 

http://memkind.github.io/memkind/
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FORTRAN 

 

 

 

6.2.3.2 Using hbwmalloc from memkind Library for HBM Placement 

 

You can use hbwmalloc API  provided by the  memkind library for allocating individual data structures in 
HBM.  

Link with -lmemkind 

 

There is also hbw_posix_mem_align,  

 

and an allocator, 

 

 

Two FORTRAN examples, 

 

 real, allocatable ::x(:) 

 

 !dir$ omp allocate(x) allocator(omp_high_bw_mem_alloc) align(64) 

 

 allocate(x(N)) 

 

 

 #include <hbwmalloc.h> 

 

 float* x = (float *)hbwmalloc(N * sizeof(float)); 

 

 hbw_free(x); 

 

 

#include <hbwmalloc.h> 

 

float* x; hbw_posix_memalign((void**) &x, 64, N * sizeof(float)); 

 

hbw_free(x); 

 

 #include <hbw_allocator.h> 

 

 std::vector<float, hbw::allocator<float>> x; 

 

http://memkind.github.io/memkind/man_pages/hbwmalloc.html
http://memkind.github.io/memkind/
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6.3 Cache Memory Mode 
No changes to source code or command-line syntax are necessary to use the cache mode. Since HBM 
cache is transparent to software, applications see only DDR memory space. Therefore, users can run 
their applications as if they are using a DDR-only machine.  

However, to get the best possible performance, the user should be aware that the HBM acts as a cache 
for DDR and this HBM cache is direct-mapped. As a result, applications may see conflict misses in the 
HBM cache. A conflict miss occurs when two DDR addresses map to the same location (set) in the HBM 
cache. Since the HBM is a direct –mapped memory-side cache, only one of those addresses can be 
cached at a given time. This can lead to frequent cache misses (not finding the required line in the 
cache). Cache misses increase memory latency and reduce effective bandwidth.  

Since HBM capacity is 64 GB per socket, an application that can fit within this capacity ideally should 
not incur any conflict misses. However, in practice, this is not the case due to physical memory 
fragmentation. Operating systems can allocate physical memory from anywhere in the physical address 
range. Physical memory is not always allocated contiguously starting from address zero. Frequent 
allocations and deallocations lead to allocated memory not being contiguous. This is called memory 
fragmentation. When physical memory is fragmented, an application can end up with memory 
addresses that conflict with each other in the HBM direct-mapped cache (i.e., addresses map to the 
same location in the cache), even though the total memory footprint of the application is less than the 
size of HBM.  

For applications with memory footprints smaller than 64 GB, we can use a Linux kernel feature called 
fake-NUMA to avoid these unnecessary conflicts occurring due to physical memory fragmentation, as 
described in Section 5.3.1. Using fake-NUMA, we can divide the physical memory address space into 
contiguous 64 GB regions (fake-NUMA nodes). Addresses within a given 64 GB NUMA node are 
guaranteed to be conflict-free (i.e., they cannot map to the same location in the HBM cache). 
Therefore, if an application can run within a single fake-NUMA node, it can avoid conflict misses.  

If the system is configured with fake-NUMA, no additional steps are necessary to avoid conflict misses 
for applications with footprints that can fit within the size of HBM. When an application is launched, it 
will automatically start allocating memory from fake-NUMA node zero, before allocations go to other 
fake-NUMA nodes. However, the user may place an application in any fake-NUMA node using numactl. 

In some rare cases, where the application uses almost 64 GB of memory, placing it in fake-NUMA node 
one, for instance, (instead of zero) can marginally improve performance. This is because the fake-
NUMA node zero usually has a little bit less free memory than other fake-NUMA nodes because the OS 
reserves some memory from the very first fake-NUMA node on each socket. You can see all fake-NUMA 
nodes using numactl -H. 

SNC4 increases the number of fake-NUMA nodes. However, the user does not have to take any extra 
steps to use fake-NUMA as default behavior guarantees conflict-free placement for applications that 
can fit within HBM capacity. 

If the application's memory footprint exceeds that of the HBM capacity, fake-NUMA continues to 
allocate memory from fake-NUMA nodes sequentially. This leads to more predictable behavior. 
 

 

!dir$ attributes memkind:hbw :: x 

 

real, allocatable :: x(:) 

 

allocate(x(N)) 

 

 

 

real, allocatable :: x(:) 

 

!dir$ memkind : hbw, align:64 

 

allocate(x(N)) 
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CHAPTER 7 
                           APPLICATION CONFIGURATION 

 
This section describes how to configure common benchmarks and tools for Intel® Xeon® CPU Max 
Series. 

 
7.1 Software Environment 

Intel® oneAPI toolkits such as Intel® oneAPI Base Toolkit (Base Kit) and Intel® oneAPI HPC Toolkit (HPC 
Kit) provide compilers, profilers (e.g., Intel® VTune™, Intel® Advisor), and libraries (e.g., Intel® Math 
Kernel Library (Intel® MKL), Intel® MPI Library) supporting the Intel® Xeon® CPU Max Series. 
 

7.2 Smoke Tests 
 

The following benchmarks can be used as smoke tests to verify the proper performance of a system. 
They should be run after a system is booted to verify performance. In addition, they are fast enough to 
be run before or after each batch job to verify the expected performance of each system. 

The first two tests (Intel® Memory Latency Checker (Intel® MLC) and STREAM measure the memory 
system performance (bandwidth and latency), whereas HPL measures the floating-point compute 
performance (GFLOPs). HPCG is mostly sensitive to the memory bandwidth. 

 

7.2.1 Intel® Memory Latency Checker (Intel® MLC) 
 

Intel® MLC, provides detailed latency and bandwidth measurements of a single system. The following 
commands are useful in testing a system: 

 
Peak bandwidth: mlc --peak_injection_bandwidth -Z -X -t60 

 
Bandwidth matrix and latency: mlc    

 

7.2.2 STREAM 
 
The STREAM benchmark provides bandwidth measurements for different routines such as Copy, Scale, 
Add, and Triad on a single node.  
 
For best performance on Intel® Xeon® CPU Max Series processors, enable software prefetching with the 
following command line: 

icc -O3 -xCORE-AVX512 -qopt-zmm-usage=high -mcmodel=large -qopenmp -qopt-

streaming-stores=always -fno-builtin -qopt-prefetch-distance=128,16 -

DSTREAM_ARRAY_SIZE=500000000 -DNTIMES=500 stream.c -o stream 

 
Execute the resulting binary using the following command: 
 

KMP_HW_SUBSET=1t KMP_AFFINITY=balanced,granularity=core,verbose ./stream 

 
7.2.3 HPL 

 

The Intel® Distribution for LINPACK* Benchmark is based on modifications and additions to High-
Performance LINPACK (HPL).  It is available with Intel® oneAPI Math Kernel Library (oneMKL) public 
library release (or as a part of Intel® oneAPI Base Toolkit (Base Kit)) with instructions. It measures the 

https://www.intel.com/content/www/us/en/developer/tools/oneapi/toolkits.html#gs.30vfys
https://www.intel.com/content/www/us/en/developer/articles/tool/intelr-memory-latency-checker.html
https://www.cs.virginia.edu/stream/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top/intel-oneapi-math-kernel-library-benchmarks/intel-distribution-for-linpack-benchmark-1/overview-intel-distribution-for-linpack-benchmark.html


DEBUG AIDS FOR CONFIGURATION ERRORS 

Ref#:354227-001US 

 

 

 

amount of time it takes to factor and solve a random dense system of linear equations in double 
precision, converts that time into a performance rate (GFLOPS), and tests the results for accuracy.  
 

The benchmark can be run on a single node or a cluster of nodes. Instructions for running the benchmark 

are available at the above link. As an example, to run in HBM-only mode in SNC4 cluster mode on a 

single node with two sockets, change the following definitions in runme_intel64_dynamic file: 

 

 

and then run: 
 

 

Note: In Cache memory mode with fake-NUMA, NUMA_PER_MPI should be equal to the number of fake-

NUMA nodes on a socket. 

 
7.2.4 HPCG 

 
HPCG benchmark optimized for Intel CPUs (source code and prebuilt binaries) can be downloaded with 

the latest Intel® oneAPI Math Kernel Library (oneMKL) public library release (or as a part of Intel® 
oneAPI Base Toolkit (Base Kit), with the developer guide. 
 
To build from source, use: 

 

 

 
To run on a 2-socket system with Intel® Xeon® CPU Max Series processors (each with 56 cores) in 

HBM-only memory mode and SNC4 cluster mode, you can use the command-line: 

 

 

 

 

export MPI_PROC_NUM=2 

export MPI_PER_NODE=2 

export NUMA_PER_MPI=4 

 

 

./runme_intel64_dynamic -p 2 -q 1 -b 384 -n 120000 

 

 

# source C/C++ compiler, MPI compiler, and MKL library 

# 

 

export MKLROOT=/path/to/mkl 

 

export LD_LIBRARY_PATH=${MKLROOT}/lib/intel64:${LD_LIBRARY_PATH} 

 

# build binary for Intel AVX-512 -- bin/xhpcg_skx will be created 

# 

 

./configure IMPI_IOMP_SKX   

make -j4 MKLROOT=${MKLROOT} MKL_INCLUDE=${MKLROOT}/include 

https://www.intel.com/content/www/us/en/developer/tools/oneapi/onemkl-download.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top/intel-oneapi-math-kernel-library-benchmarks/intel-opt-high-perf-conjugate-gradient-benchmark/overview-of-the-intel-optimized-hpcg.html
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7.3 Finding Out Memory Usage Of An Application 
 

For the best possible performance, it is usually necessary to fit applications within the HBM capacity. To 
do that, it is important to find the memory footprint of the applications and workloads. The following 

tools are available for this purpose: 
 

• top and htop (provides total used/free memory of a system at a given time) 

 

• numastat -m (provides total memory on each NUMA node at a given time) 

 
 

• numastat -p <binary_name> (provides memory consumption of a given process at a 

given time) 
 

• /usr/bin/time -v <app_cmd_line> (provides various stats about the application 

including  maximum resident set size). This is different from bash built-in ‘time’ command so 
path must be specified.  

 
If the application footprint exceeds the available HBM capacity, consider scaling out to more nodes or 
using the Cache mode.  

 

# Note: Select the best MPI x OMP decomposition for your case 

#       Following assumes SNC4 (8 NUMA nodes on 2S), 

#       and 14 cores (28 threads) on a NUMA node 

# 

 

export MKL_NUM_THREADS=28 

export OMP_NUM_THREADS=28 

 

nprocs_per_node=8 

nnodes=1 

nprocs=$((nnodes*nprocs_per_node)) 

 

problem_size=168         # options: 168, 192, 256 

run_time_in_seconds=100  # 100 used as smoke test.  

                         # 1800 is min for official HPCG submission 

 

export I_MPI_SHM=spr-hbm 

export I_MPI_FABRICS=shm:ofi 

export I_MPI_PIN_DOMAIN=numa 

export I_MPI_DEBUG=10    # print out mpi configuration mapping data 

 

# for 1 hyper-thread, use 'compact,1,0' instead of 'compact' 

# 

export KMP_AFFINITY=granularity=fine,compact 

 

echo " ===         nnodes: ${nnodes}" 

echo " ===            ppn: ${nprocs_per_node}" 

echo " ===         nprocs: ${nprocs}" 

echo " === n_omp_per_proc: ${MKL_NUM_THREADS}" 

echo " ===      prob_size: ${problem_size}" 

echo " ===       run_time: ${run_time_in_seconds}" 

 

# run bin/xhpcg_skx binary (either prebuilt or built by user) 

# 

mpiexec.hydra -genvall -n ${nprocs} -ppn ${nprocs_per_node}  bin/xhpcg_skx - 

n$problem_size -t$run_time_in_seconds 
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7.4 Optimizing Applications For Memory Bandwidth 
 

Because Intel® Xeon® CPU Max Series processors offer a much higher memory bandwidth compared to 

previous Intel® Xeon® processors, applications (or routines) that were memory bandwidth bound on 
previous processors may not be memory bandwidth bound on Intel® Xeon® CPU Max Series processors. 

 
The best way to identify the actual bandwidth utilization of an application is to use memory access 
analysis of Intel® VTuneTM Profiler. If that analysis shows underutilization of memory bandwidth for a 
given phase or routine of an application, following options could be considered to optimize for memory 
bandwidth: 

 
Optimize compute: the routine may not be doing computations fast enough to generate sufficient 
memory bandwidth. Consider optimizing computations such as address calculations and consider 
vectorization to improve compute throughput. Intel® Advisor can be used to identify vectorization 
opportunity and improve vectorization.  

 
Optimize memory latency: if the routine produces many memory accesses that miss the last-level (L3) 

cache but still fails to saturate the HBM bandwidth, the routine is likely to be memory latency bound. 
Irregular access patterns (e.g., indirect accesses, gathers, scatters) that reduce the effectiveness of 
hardware prefetchers often lead to high memory latency. Consider using software prefetches for such 
access patterns. Intel® oneAPI compilers provide compiler flags such as -qopt-prefetch and support 
explicit prefetch directives and intrinsics (_mm_prefetch in C and mm_prefetch in FORTRAN) that can be 
used within source code.    
 

Overall architecture and optimization details for Intel® Xeon® processors and Intel® Xeon® CPU Max 
Series processors can be found in the Intel Software Developer’s Manuals and Software Optimization and 
Reference Manuals and from GitHub.  

 
 

https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/microarchitecture-analysis-group/memory-access-analysis/memory-usage-view.html
https://www.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/microarchitecture-analysis-group/memory-access-analysis/memory-usage-view.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/compiler-options/advanced-optimization-options/qopt-prefetch-qopt-prefetch.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/pragmas/intel-specific-pragma-reference/prefetch-noprefetch.html
https://www.intel.com/content/www/us/en/docs/intrinsics-guide/index.html#text=prefetch
https://www.intel.com/content/www/us/en/develop/documentation/fortran-compiler-oneapi-dev-guide-and-reference/top/language-reference/a-to-z-reference/m-to-n/mm-prefetch.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://www.intel.com/content/www/us/en/developer/articles/technical/intel-sdm.html
https://github.com/intel/optimization-manual

