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Intel® oneAPI Data Analytics
Library (oneDAL) 1
Intel® oneAPI Data Analytics Library (oneDAL) is a library that helps speed up big data analysis by providing
highly optimized algorithmic building blocks for all stages of data analytics (preprocessing, transformation,
analysis, modeling, validation, and decision making) in batch, online, and distributed processing modes of
computation. The library provides two different sets of C++ interfaces: oneAPI and DAAL.

For general information, refer to Intel® oneAPI Data Analytics Library official page.

oneAPI vs. DAAL Interfaces
• oneAPI Interfaces are based on open oneDAL specification and are currently under an active development.

They work on various hardware but only a limited set of algorithms is available at the moment.
• DAAL Interfaces are CPU-only interfaces that provide implementations for a wide range of algorithms.
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Introduction

Data Analytics Pipeline
Intel® oneAPI Data Analytics Library (oneDAL) is a library that provides building blocks covering all stages of
data analytics: data acquisition from a data source, preprocessing, transformation, data mining, modeling,
validation, and decision making.
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oneDAL supports the concept of the end-to-end analytics when some of data analytics stages are performed
on the edge devices (close to where the data is generated and where it is finally consumed). Specifically,
oneDAL Application Programming Interfaces (APIs) are agnostic about a particular cross-device
communication technology and, therefore, can be used within different end-to-end analytics frameworks.
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Installation
You can obtain the latest version of oneDAL from oneDAL home page as a part of Intel® oneAPI Base Toolkit.

System Requirements
Refer to sysem requirements page.

oneAPI Interfaces
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• Mathematical Notations

Build applications with oneDAL

This section contains instructions for building applications with oneDAL for SYCL*.

• Applications on Linux* OS
• Applications on Windows* OS

Applications on Linux* OS
1. Install oneDAL.
2. Set environment variables by calling <install dir>/setvars.sh.
3. Build the application using icpx (Linux* OS) and icx-cl (Windows* OS) commands:

• Add oneDAL includes folder:

-I<install dir>/dal/latest/include
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• Add oneDAL libraries. Choose the appropriate oneDAL libraries based on oneDAL threading mode
and linking method:

oneDAL libraries for Linux

Single-threaded (non-threaded) Multi-threaded (internally
threaded)

Static linking libonedal_core.a,
libonedal_dpc.a,

libonedal_core.a,
libonedal_dpc.a,
libonedal_thread.a

Dynamic linking libonedal_core.so,
libonedal_dpc.so,

libonedal_core.so,
libonedal_dpc.so,
libonedal_thread.so

• Add an additional oneDAL library:

<install dir>/dal/latest/libintel64/libonedal_sycl.a

Applications on Windows* OS
1. Install oneDAL.
2. In Microsoft Visual Studio* Integrated Development Environment (IDE), open or create a C++ project

for your oneDAL application to build.
3. In project properties:

• Set Intel® oneAPI DPC++/C++ Compiler platform toolset:

• Add oneDAL includes folder to Additional Include Directories.
• Add folders with oneDAL and oneTBB libraries to Library Directories:
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• Add oneDAL and OpenCL libraries to Additional Dependencies:

4. Add the appropriate libraries to your project based on oneDAL threading mode and linking method:

oneDAL libraries for Windows

Single-threaded (non-threaded) Multi-threaded (internally
threaded)

Static linking onedal_core.lib, onedal_core.lib,
onedal_thread.lib

Dynamic linking onedal_core_dll.lib onedal_core_dll.lib

You may also add debug versions of the libraries based on the threading mode and linking method:

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference
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oneDAL debug libraries for Windows

Single-threaded (non-threaded) Multi-threaded (internally
threaded)

Static linking onedal_cored.lib,
onedald.lib,
onedal_dpcd.lib,
onedal_sycld.lib,

onedal_cored.lib,
onedald.lib,
onedal_dpcd.lib,
onedal_sycld.lib,
onedal_threadd.lib

Dynamic linking onedal_cored_dll.lib
(onedal_cored_dll.1.lib),
onedald_dll.lib (onedald_dll.1.lib),
onedal_dpcd_dll.lib
(onedal_dpcd_dll.1.lib),
onedald.1.dll,
onedal_cored.1.dll,
onedal_dpcd.1.dll,

onedal_cored_dll.lib
(onedal_cored_dll.1.lib),
onedald_dll.lib (onedald_dll.1.lib),
onedal_dpcd_dll.lib
(onedal_dpcd_dll.1.lib),
onedald.1.dll,
onedal_cored.1.dll,
onedal_dpcd.1.dll,
onedal_threadd.1.dll

Examples

Dynamic linking, Multi-threaded oneDAL:

• Linux* OS:

icpx -fsycl my_first_dal_program.cpp -Wl,
--start-group -L<install dir>/dal/latest/lib/intel64 -lonedal_core -
lonedal_dpc -lonedal_thread -lpthread -ldl -lOpenCL -L<install dir>/tbb/
latest/lib/intel64/gcc4.8 -ltbb -ltbbmalloc <install dir>/dal/latest/lib/
intel64/libonedal_sycl.a -Wl,--end-group

• Windows* OS:

icx-cl -fsycl my_first_dal_program.cpp -Wl,
--start-group -L<install dir>/dal/latest/lib/intel64 -lonedal_core -
lonedal_dpc -lonedal_thread -lpthread -ldl -lOpenCL -L<install dir>/tbb/
latest/lib/intel64/gcc4.8 -ltbb -ltbbmalloc <install dir>/dal/latest/lib/
intel64/libonedal_sycl.a -Wl,--end-group

Static linking, Single-threaded oneDAL:

• Linux* OS:

icpx -fsycl my_first_dal_program.cpp -Wl,
--start-group <install dir>/dal/latest/lib/intel64/libonedal_core.a <install 
dir>/dal/latest/lib/intel64/libonedal_dpc.a -lpthread -ldl -lOpenCL <install 
dir>/dal/latest/lib/intel64/libonedal_sycl.a -Wl,--end-group

• Windows* OS:

icx-cl -fsycl my_first_dal_program.cpp -Wl,
--start-group <install dir>/dal/latest/lib/intel64/libonedal_core.a <install 
dir>/dal/latest/lib/intel64/libonedal_dpc.a -lpthread -ldl -lOpenCL <install 
dir>/dal/latest/lib/intel64/libonedal_sycl.a -Wl,--end-group

Intel® oneAPI Data Analytics Library (oneDAL)  1  
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Glossary

Machine learning terms

Categorical feature A feature with a discrete domain. Can be nominal or ordinal.

Synonyms: discrete feature, qualitative feature

Classification A supervised machine learning problem of assigning labels to feature vectors.

Examples: predict what type of object is on the picture (a dog or a cat?), predict
whether or not an email is spam

Clustering An unsupervised machine learning problem of grouping feature vectors into
bunches, which are usually encoded as nominal values.

Example: find big star clusters in the space images

Continuous feature A feature with values in a domain of real numbers. Can be interval or ratio

Synonyms: quantitative feature, numerical feature

Examples: a person’s height, the price of the house

CSV file A comma-separated values file (csv) is a type of a text file. Each line in a CSV file
is a record containing fields that are separated by the delimiter. Fields can be of a
numerical or a text format. Text usually refers to categorical values. By default,
the delimiter is a comma, but, generally, it can be any character. For more
details, see.

Dimensionality reduction A problem of transforming a set of feature vectors from a high-dimensional space
into a low-dimensional space while retaining meaningful properties of the original
feature vectors.

Feature A particular property or quality of a real object or an event. Has a defined type
and domain. In machine learning problems, features are considered as input
variable that are independent from each other.

Synonyms: attribute, variable, input variable

Feature vector A vector that encodes information about real object, an event or a group of
objects or events. Contains at least one feature.

Example: A rectangle can be described by two features: its width and height

Inference A process of applying a trainedmodel to the dataset in order to predict response
values based on input feature vectors.

Synonym: prediction

Inference set A dataset used at the inference stage. Usually without responses.

Interval feature A continuous feature with values that can be compared, added or subtracted, but
cannot be multiplied or divided.

Examples: a time frame scale, a temperature in Celsius or Fahrenheit

Label A response with categorical or ordinal values. This is an output in classification
and clustering problems.

Example: the spam-detection problem has a binary label indicating whether the
email is spam or not

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference
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Model An entity that stores information necessary to run inference on a new dataset.
Typically a result of a training process.

Example: in linear regression algorithm, the model contains weight values for
each input feature and a single bias value

Nominal feature A categorical feature without ordering between values. Only equality operation is
defined for nominal features.

Examples: a person’s gender, color of a car

Nu-classification An SVM-specific classification problem where  parameter is used instead of C. 
is an upper bound on the fraction of training errors and a lower bound of the
fraction of the support vector.

Nu-regression An SVM-specific regression problem where  parameter is used instead of .  is
an upper bound on the fraction of training errors and a lower bound of the
fraction of the support vector.

Observation A feature vector and zero or more responses.

Synonyms: instance, sample

Ordinal feature A categorical feature with defined operations of equality and ordering between
values.

Example: student’s grade

Outlier Observation which is significantly different from the other observations.

Ratio feature A continuous feature with defined operations of equality, comparison, addition,
subtraction, multiplication, and division. Zero value element means the absence
of any value.

Example: the height of a tower

Regression A supervised machine learning problem of assigning continuousresponses for 
feature vectors.

Example: predict temperature based on weather conditions

Response A property of some real object or event which dependency from feature vector
need to be defined in supervised learning problem. While a feature is an input in
the machine learning problem, the response is one of the outputs can be made
by the model on the inference stage.

Synonym: dependent variable

Result options: Result options are entities that mimic C++ enums. They are used to specify
which results of an algorithm should be computed. The use of result options may
alter the default algorithm flow and result in performance differences. In general,
fewer results to compute means faster performance. An error is thrown when you
use an invalid set of result options or try to access the results that are not yet
computed.

Example: k-NN Classification algorithm can perform classification and also
return indices and distances to the nearest observations as a result option.

Search A kNN-specific optimization problem of finding the point in a given set that is the
closest to the given points.

Intel® oneAPI Data Analytics Library (oneDAL)  1  
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Supervised learning Training process that uses a dataset with information about dependencies
between features and responses. The goal is to get a model of dependencies
between input feature vector and responses.

Training A process of creating a model based on information extracted from a training set.
Resulting model is selected in accordance with some quality criteria.

Training set A dataset used at the training stage to create a model.

Unsupervised learning Training process that uses a training set with no responses. The goal is to find
hidden patters inside feature vectors and dependencies between them.

Graph analytics terms

Adjacency A vertex u is adjacent to vertex v if they are joined by an edge.

Adjacency matrix An  matrix  for a graph G whose vertices are explicitly ordered

,

Attribute A value assigned to graph, vertex or edge. Can be numerical (weight), string or
any other custom data type.

Component A connectedsubgraphH of graph G such that no subgraph of G that properly
contains H is connected [Gross2014].

Connected graph A graph is connected if there is a walk between every pair of its vertices 
[Gross2014].

Directed graph A graph where each edge is an ordered pair  of vertices. v is designated as
the tail, and u is designated as the head.

Edge index The index i of an edge  in an edge set  of graphG. Can
be an integer value.

Graph An object  that consists of two sets, V and E, where V is a finite
nonempty set, E is a finite set that may be empty, and the elements of E are
two-element subsets of V. V is called a set of vertices, E is called a set of edges 
[Gross2014].

Induced subgraph on the
edge set

Each subset  defines a unique subgraph  of graph

, where  consists of only those vertices that are the endpoints
of the edges in . The subgraph H is called an induced subgraph of G on the
edge set [Gross2014].

Induced subgraph on the
vertex set

Each subset  defines a unique subgraph  of graph

, where  consists of those edges whose endpoints are in .
The subgraph H is called an induced subgraph of G on the vertex set 
[Gross2014].
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Self-loop An edge that joins a vertex to itself.

Subgraph A graph  is called a subgraph of graph  if

 and  contains all the endpoints of all the edges in 
[Gross2014].

Topology A graph without attributes.

Undirected graph A graph where each edge is an unordered pair  of vertices.

Unweighted graph A graph where all vertices and all edges has no weights.

Vertex index The index i of a vertex  in a vertex set  of graphG. Can
be an integer value.

Walk An alternating sequence of vertices and edges such that for each edge, one
endpoint precedes and the other succeeds that edge in the sequence 
[Gross2014].

Weight A numerical value assigned to vertex, edge or graph.

Weighted graph A graph where all vertices or all edges have weights

oneDAL terms

Accessor A oneDAL concept for an object that provides access to the data of another
object in the special data format. It abstracts data access from interface of an
object and provides uniform access to the data stored in objects of different
types.

Batch mode The computation mode for an algorithm in oneDAL, where all the data needed for
computation is available at the start and fits the memory of the device on which
the computations are performed.

Builder A oneDAL concept for an object that encapsulates the creation process of another
object and enables its iterative creation.

Contiguous data Data that are stored as one contiguous memory block. One of the characteristics
of a data format.

CSR data A compressed sparse row (csr) data is the sparse matrix representation. Data
with values of a single data type and the same set of available operations defined
on them. One of the characteristics of a data format.

Data format Representation of the internal structure of the data.

Examples: data can be stored in array-of-structures or compressed-sparse-row
format

Data layout A characteristic of data format which describes the order of elements in a 
contiguous data block.

Example: row-major format, where elements are stored row by row

Data type An attribute of data used by a compiler to store and access them. Includes size in
bytes, encoding principles, and available operations (in terms of a programming
language).
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Examples:int32_t, float, double

Dataset A collection of data in a specific data format.

Examples: a collection of observations, a graph

Flat data A block of contiguoushomogeneous data.

Getter A method that returns the value of the private member variable.

Example:

std::int64_t get_row_count() const;

Heterogeneous data Data which contain values either of different data types or different sets of
operations defined on them. One of the characteristics of a data format.

Example: A dataset with 100 observations of three interval features. The first
two features are of float32 data type, while the third one is of float64 data type.

Homogeneous data Data with values of single data type and the same set of available operations
defined on them. One of the characteristics of a data format.

Example: A dataset with 100 observations of three interval features, each of
type float32

Immutability The object is immutable if it is not possible to change its state after creation.

Metadata Information about logical and physical structure of an object. All possible
combinations of metadata values present the full set of possible objects of a
given type. Metadata do not expose information that is not a part of a type
definition, e.g. implementation details.

Example:table object can contain three nominal features with 100 observations
(logical part of metadata). This object can store data as sparse csr array and
provides direct access to them (physical part)

Online mode The computation mode for an algorithm in oneDAL, where the data needed for
computation becomes available in parts over time.

Reference-counted object A copy-constructible and copy-assignable oneDAL object which stores the
number of references to the unique implementation. Both copy operations
defined for this object are lightweight, which means that each time a new object
is created, only the number of references is increased. An implementation is
automatically freed when the number of references becomes equal to zero.

Setter A method that accepts the only parameter and assigns its value to the private
member variable.

Example:

void set_row_count(std::int64_t row_count);

Table A oneDAL concept for a dataset that contains only numerical data, categorical or 
continuous. Serves as a transfer of data between user’s application and
computations inside oneDAL. Hides details of data format and generalizes access
to the data.

Workload A problem of applying a oneDAL algorithm to a dataset.
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Common oneAPI terms

API Application Programming Interface

DPC++ Data Parallel C++ (DPC++) is a high-level language designed for data parallel
programming productivity. DPC++ is based on SYCL* from the Khronos* Group
to support data parallelism and heterogeneous programming.

Host/Device OpenCL [OpenCLSpec] refers to CPU that controls the connected GPU executing
kernels.

JIT Just in Time Compilation — compilation during execution of a program.

Kernel Code written in OpenCL [OpenCLSpec] or SYCL and executed on a GPU device.

SPIR-V Standard Portable Intermediate Representation - V is a language for intermediate
representation of compute kernels.

SYCL SYCL(TM) [SYCLSpec] — high-level programming model for OpenCL(TM) that
enables code for heterogeneous processors to be written in a “single-source”
style using completely standard C++.

Distributed computational mode terms

Communicator A oneDAL concept for an object that is used to perform inter-process collective
operations

Communicator backend A particular library providing collective operations.

Examples: oneCCL, oneMPI

SPMD Single Program, Multiple Data (SPMD) is a technique employed to achieve
parallelism. In SPMD model, multiple autonomous processors simultaneously
execute the same program at independent points.

Mathematical Notations

Notation Definition

n or m The number of observations in a tabular dataset. Typically n is used, but sometimes m is
required to distinguish two datasets, e.g., the training set and the inference set.

p or r The number of features in a tabular dataset. Typically p is used, but sometimes r is
required to distinguish two datasets.

The dimensionality of a matrix (dataset) has a rows (observations) and b columns
(features).

V The vertex set in a graph.

E The edge set in a graph.

u, v or w The vertex in a graph.

The edge in a graph.

Depending on the context may be interpreted as follows:
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Notation Definition

• If A is a set, this denotes its cardinality, i.e., the
number of elements in the set A.

• If A is a real number, this denotes the absolute
value of A.

The -norm of a vector ,

Sign function for ,

In the description of an algorithm, this typically denotes the i-th feature vector in the
training set.

In the description of an algorithm, this typically denotes the i-th feature vector in the
inference set.

In the description of an algorithm, this typically denotes the i-th response in the training
set.

In the description of an algorithm, this typically denotes the i-th response that needs to

be predicted by the inference algorithm given the feature vector  from the inference
set.

Computational Modes

Batch
In the batch processing mode, the algorithm works with the entire data set to produce the final result. A
more complex scenario occurs when the entire data set is not available at the moment or the data set does
not fit into the device memory.

Online
In the online processing mode, the algorithm processes a data set in blocks streamed into the device’s
memory. Partial results are updated incrementally and finalized when the last data block is processed.

Distributed
In the distributed processing mode, the algorithm operates on a data set distributed across several devices
(compute nodes). On each node, the algorithm produces partial results that are later merged into the final
result on the main node.
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Data Management

This section includes concepts and objects that operate on data. For oneDAL, such set of operations, or data
management, is distributed between different stages of the data analytics pipeline. From a perspective of
data management, this pipeline contains three main steps of data acquisition, preparation, and computation
(see the picture below):

1. Raw data acquisition

• Transfer out-of-memory data from various sources (databases, files, remote storage) into an in-
memory representation.

2. Data preparation

• Support different in-memory data formats.
• Compress and decompress the data.
• Convert the data into numeric representation.
• Recover missing values.
• Filter the data and perform data normalization.
• Compute various statistical metrics for numerical data, such as mean, variance, and covariance.

3. Algorithm computation

• Stream in-memory numerical data to the algorithm.

In complex usage scenarios, data flow goes through these three stages back and forth. For example, when
the data are not fully available at the start of the computation, it can be done step-by-step using blocks of
data. After the computation on the current block is completed, the next block should be obtained and
prepared.

Data Management Flow in oneDAL

Key concepts
oneDAL provides a set of concepts to operate on out-of-memory and in-memory data during different stages
of the data analytics pipeline.

Dataset
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The main data-related concept that oneDAL works with is a dataset. It is a collection of data in a specific data
format.
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The dataset is used across all stages of the data analytics pipeline. For example:

1. At the acquisition stage, it is downloaded into the local memory.
2. At the preparation stage, it is converted into a numerical representation.
3. At the computation stage, it is used as one of the inputs or results of an algorithm or a descriptor

properties.

Data source

Data source is a concept of an out-of-memory storage for a dataset. It is used at the data acquisition and
data preparation stages to:

• Extract datasets from external sources such as databases, files, remote storage.
• Load datasets into the device’s local memory. Data do not always fit the local memory, especially when

processing with accelerators. A data source provides the ability to load data by batches and extracts it
directly into the device’s local memory. Therefore, a data source enables complex data analytics
scenarios, such as online computations.

• Transform datasets into their numerical representation. Data source automatically transforms non-
numeric categorical and continuous data values into one of the numeric data formats.

For details, see dm data sources section.

Table

Table is a concept of in-memory numerical data that are organized in a tabular view with several rows and
columns. It is used at the data preparation and data processing stages to:

• Be an in-memory representation of a dataset or another tabular data (for example, matrices, vectors, and
scalars).

• Store heterogeneous data in various data formats, such as dense, sparse, chunked, contiguous.
• Avoid unnecessary data copies during conversion from external data representations.
• Transfer memory ownership of the data from user application to the table, or share it between them.
• Connect with the data source to convert data from an out-of-memory into an in-memory representation.
• Support streaming of the data to the algorithm.
• Access the underlying data on a device in a required data format, e.g. by blocks with the defined data

layout.

NOTE For thread-safety reasons and better integration with external entities, a table provides a read-
only access to the data within it, thus, table object is immutable.

This concept has different logical organization and physical format of the data:

• Logically, a table contains n rows and p columns. Every column may have its own type of data values and
a set of allowed operations.

• Physically, a table can be organized in different ways: as a homogeneous, contiguous array of bytes, as a 
heterogeneous list of arrays of different data types, in a compressed-sparse-row format. The number of

bytes needed to store the data differs from the number of elements  within a table.

For details, see dm tables section.

Table metadata

Table metadata concept provides an additional information about data in the table:

1. The data types of the columns.
2. The logical types of data in the columns: nominal, ordinal, interval, or ratio.

Only the properties of data that do not affect table concept definition is a part of metadata concept.
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Accessor

Accessor is a concept that defines a single way to extract the data from a table. It allows to:

• Have unified access to the data from table objects of different types, without exposing their
implementation details.

• Provide a flat view on the data blocks of a table for better data locality. For example, the accessor returns
a column of the table stored in row-major format as a contiguous array.

• Acquire data in a desired data format for which a specific set of operations is defined.
• Have read-only access to the data.

For details, see dm accessors section.

Example of interaction between table and accessor objects

This section provides a basic usage scenario of the table and accessor concepts and demonstrates the
relations between them. The following diagram shows objects of these concepts, which are highlighted by
colors:

• table object is dark blue
• accessor is orange
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• table metadata is light blue

Sequence diagram of accessor-builder-table relations

To perform computations on a dataset, you have to create a table object first. It can be done either using a 
data source or directly from user-defined memory. The diagram shows the creation of a table object t from
the data provided by user (not shown on the diagram). During a table creation, an object tm of table
metadata is constructed and initialized using the data.

Once a table object is created, it can be used as an input in computations or as a parameter of some
algorithm. The data in the table can be accessed via its own interface or via read-only accessor as shown on
the diagram.
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Graph

A graph is a concept of in-memory structured data that is organized as a graph with several vertices and
edges. Graphs can be directed, undirected, weighted and attributed. Graphs are used at the data preparation
and data processing stages to:

• Be an in-memory representation of a dataset.
• Store graph data in sparse data formats.
• Avoid unnecessary data copies during conversion from external data representations.
• Connect with the data source to convert data from an out-of-memory representation into an in-memory

representation.

NOTE For thread-safety reasons and better integration with external entities, a graph provides a read-
only access to the data within it, thus, a graph object is immutable.

The logical organization of a graph and the physical format of the data are different:

•
Logically, a graph contains  vertices and  edges. All vertices of the graph are described with the
same data type and respective operations on it. Similarly, the same is true for edges and attributes of the 
graph. The data types of vertices, edges, and attributes can be different.

• Physically, the topology of a graph can be organized in CSR and others data formats.

For details, see dm graphs section.

Details
This section includes the detailed descriptions of all data management objects in oneDAL.

• Array

• Usage example
• Data ownership requirements
• Programming interface

• Accessors

• Requirements
• Accessor Types
• Details

• Column accessor

• Usage example
• Programming interface

• Row accessor

• Usage example
• Programming interface

• Data Sources

• Read

• Read operation definition
• Read operation shortcuts
• Args
• Result

• Data Source Types
• Details

• CSV data source
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• Usage example
• Programming Interface

• Graphs

• Requirements on graph types
• Graph types

• Tables

• Requirements on table types
• Table types
• Programming interface

Array

The array is a simple concept over the data in oneDAL. It represents a storage that:

1. Holds the data allocated inside it or references to the external data. The data are organized as one 
homogeneous and contiguous memory block.

2. Contains information about the memory block’s size.
3. Supports both immutable and mutable data.
4. Provides an ability to change the data state from immutable to mutable one.
5. Holds ownership information on the data (see the data ownership requirements section).
6. Ownership information on the data can be shared between several arrays. It is possible to create a new

array from another one without any data copies.

Usage example
The following listing provides a brief introduction to the array API and an example of basic usage scenario:

#include <sycl/sycl.hpp>
#include <iostream>
#include <string>
#include "oneapi/dal/array.hpp"

using namespace oneapi;

void print_property(const std::string& description, const auto& property) {
   std::cout << description << ": " << property << std::endl;
}

int main() {
   sycl::queue queue { sycl::default_selector() };

   constexpr std::int64_t data_count = 4;
   const float data[] = { 1.0f, 2.0f, 3.0f, 4.0f };

   // Creating an array from immutable user-defined memory
   auto arr_data = dal::array<float>::wrap(data, data_count);

   // Creating an array from internally allocated memory filled by ones
   auto arr_ones = dal::array<float>::full(queue, data_count, 1.0f);

   print_property("Is arr_data mutable", arr_data.has_mutable_data()); // false
   print_property("Is arr_ones mutable", arr_ones.has_mutable_data()); // true

   // Creating new array from arr_data without data copy - they share ownership information.
   dal::array<float> arr_mdata = arr_data;

   print_property("arr_mdata elements count", arr_mdata.get_count()); // equal to data_count
   print_property("Is arr_mdata mutable", arr_mdata.has_mutable_data()); // false
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   /// Copying data inside arr_mdata to new mutable memory block.
   /// arr_data still refers to the original data pointer.
   arr_mdata.need_mutable_data(queue);

   print_property("Is arr_data mutable", arr_data.has_mutable_data()); // false
   print_property("Is arr_mdata mutable", arr_mdata.has_mutable_data()); // true

   queue.submit([&](sycl::handler& cgh){
      auto mdata = arr_mdata.get_mutable_data();
      auto cones = arr_ones.get_data();
      cgh.parallel_for<class array_addition>(sycl::range<1>(data_count), [=](sycl::id<1> idx) {
         mdata[idx[0]] += cones[idx[0]];
      });
   }).wait();

   std::cout << "arr_mdata values: ";
   for(std::int64_t i = 0; i < arr_mdata.get_count(); i++) {
      std::cout << arr_mdata[i] << ", ";
   }
   std::cout << std::endl;

   return 0;
}

Data ownership requirements
The array supports the following requirements on the internal data management:

1. An array owns two properties representing raw pointers to the data:

• data for a pointer to immutable data block
• mutable_data for a pointer to mutable data block (see the api array)

2. If an array owns mutable data, both properties point to the same memory block.
3. If an array owns immutable data, mutable_data is nullptr.
4. An array stores the number of elements in the block it owns and updates the count property when a

new memory block is assigned to the array.
5. An array stores a pointer to the ownership structure of the data:

• The reference count indicating how many array objects refer to the same memory block.
• The deleter object used to free the memory block when reference count is zero.

6. An array creates the ownership structure for a new memory block not associated with such structure.
7. An array decrements the number of references to the memory block when the array goes out of the

scope. If the number of references is zero, the array calls the deleter on this memory block and free the
ownership structure.

8. An array stores the pointer to the ownership structure created by another array when they share the
data. An array increments the reference count for it to be equal to the number of array objects sharing
the same data.

Programming interface
Refer to API Reference: Array.

Accessors

This section defines requirements to an accessor implementation and introduces several accessor types.
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Requirements
Each accessor implementation:

1. Defines a single format of the data for the access. Every accessor type returns and use only one data
format.

2. Provides read-only access to the data in the table types.
3. Provides the pull() method for obtaining the values from the table.
4. Is lightweight. Its constructors do not have computationally intensive operations such data copy,

reading, or conversion. These operations are performed by method pull().
5. The pull() method avoids data copy and conversion when it is possible to return the pointer to the

memory block in the table. This is applicable for cases such as when the data format and data types of
the data within the table are the same as the data format and data type for the access.

Accessor Types
oneDAL defines a set of accessor classes. Each class supports one specific way of obtaining data from the 
table.

All accessor classes in oneDAL are listed below:

Accessor Types

Accessor type Description List of supported
types

row accessor Provides access to the range of rows as one 
contiguoushomogeneous block of memory.

homogen table

column accessor Provides access to the range of values within a
single column as one contiguoushomogeneous block
of memory.

homogen table

Details
• Column accessor

• Usage example
• Programming interface

• Row accessor

• Usage example
• Programming interface

Column accessor

The column_accessor class provides a read-only access to the column values of the table as 
contiguoushomogeneous array.

Usage example

#include <sycl/sycl.hpp>
#include <iostream>

#include "oneapi/dal/table/homogen.hpp"
#include "oneapi/dal/table/column_accessor.hpp"

using namespace oneapi;
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int main() {
   sycl::queue queue { sycl::default_selector() };

   constexpr float host_data[] = {
      1.0f, 1.5f, 2.0f,
      2.1f, 3.2f, 3.7f,
      4.0f, 4.9f, 5.0f,
      5.2f, 6.1f, 6.2f
   };

   constexpr std::int64_t row_count = 4;
   constexpr std::int64_t column_count = 3;

   auto shared_data = sycl::malloc_shared<float>(row_count * column_count, queue);
   auto event = queue.memcpy(shared_data, host_data, sizeof(float) * row_count * column_count);
   auto t = dal::homogen_table::wrap(queue, data, row_count, column_count, { event });

   // Accessing whole elements in a first column
   dal::column_accessor<const float> acc { t };

   auto block = acc.pull(queue, 0);
   for(std::int64_t i = 0; i < block.get_count(); i++) {
      std::cout << block[i] << ", ";
   }
   std::cout << std::endl;

   sycl::free(shared_data, queue);
   return 0;
}

Programming interface
Refer to API Reference: Column accessor.

Row accessor

The row_accessor class provides a read-only access to the rows of the table as contiguoushomogeneous
array.

Usage example

#include <sycl/sycl.hpp>
#include <iostream>

#include "oneapi/dal/table/homogen.hpp"
#include "oneapi/dal/table/row_accessor.hpp"

using namespace oneapi;

int main() {
   sycl::queue queue { sycl::default_selector() };

   constexpr float host_data[] = {
      1.0f, 1.5f, 2.0f,
      2.1f, 3.2f, 3.7f,
      4.0f, 4.9f, 5.0f,
      5.2f, 6.1f, 6.2f
   };
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   constexpr std::int64_t row_count = 4;
   constexpr std::int64_t column_count = 3;

   auto shared_data = sycl::malloc_shared<float>(row_count * column_count, queue);
   auto event = queue.memcpy(shared_data, host_data, sizeof(float) * row_count * column_count);
   auto t = dal::homogen_table::wrap(queue, data, row_count, column_count, { event });

   // Accessing second and third rows of the table
   dal::row_accessor<const float> acc { t };

   auto block = acc.pull(queue, {1, 3});
   for(std::int64_t i = 0; i < block.get_count(); i++) {
      std::cout << block[i] << ", ";
   }
   std::cout << std::endl;

   sycl::free(shared_data, queue);
   return 0;
}

Programming interface
Refer to API Reference: Row accessor.

Data Sources

This section describes the types related to the data source concept.

Read
Read operation is a function that transforms a data source and other arguments represented via an args
object to a result object. The operation is responsible for:

• Executing all of the data retrieval and transformation routines of the data source.
• Passing a SYCL* queue to the data retrieval and transformation routines.

Read operation definition

The following code sample shows the declaration for a read operation.

namespace oneapi::dal {

template <typename Object, typename DataSource>
using read_args_t = /* implementation defined */;

template <typename Object, typename DataSource>
using read_result_t = Object;

template <typename Object, typename DataSource>
read_result_t<Object, DataSource> read(
   sycl::queue& queue,
   const DataSource& data_source,
   const read_args_t<Object, DataSource>& args);

} // namespace oneapi::dal
Each operation satisfies the following requirements:
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• An operation accepts three parameters in the following order:

• The SYCL* queue object.
• The data source.
• The args object.

• An operation returns the result object.
• The read_args_t and read_result_t alias templates is used for inference of the args and return types.

Read operation shortcuts

In order to make the code on user side less verbose, oneDAL defines the following overloaded functions
called shortcuts for a read operation in addition to the general one described in section Read operation
definition.

• A shortcut for execution on host. Performs the same operation as the general function on host, but does
not require passing the queue explicitly.

template <typename Object, typename DataSource>
read_result_t<Object, DataSource> read(
   const DataSource& data_source,
   const read_args_t<Object, DataSource>& args);

• A shortcut that allows omitting explicit args creation.

template <typename Object, typename DataSource, typename... Args>
read_result_t<Object, DataSource> read(
   sycl::queue& queue,
   const DataSource& data_source,
   Args&&... args);

• A shortcut that allows omitting explicit queue and args creation. This is a combination of two previous
shortcuts.

template <typename Object, typename DataSource, typename... Args>
read_result_t<Object, DataSource> read(
   const DataSource& data_source,
   Args&&... args);

Args

• The string %DATA_SOURCE% should be substituted with the name of the data source, for example, csv.
• %PROPERTY_NAME% and %PROPERTY_TYPE% should be substituted with the name and the type of one of

the data source args properties.

namespace oneapi::dal::%DATA_SOURCE% {

template <typename Object, typename DataSource>
class read_args {
public:
   read_args(
      const %PROPERTY_TYPE_1%& property_name_1,
      const %PROPERTY_TYPE_2%& property_name_2,
      /* more properties */
   )
   /* Getter & Setter for the property called `%PROPERTY_NAME_1%` */
   descriptor& set_%PROPERTY_NAME_1%(%PROPERTY_TYPE_1% value);
   %PROPERTY_TYPE_1% get_%PROPERTY_NAME_1%() const;
   /* Getter & Setter for the property called `%PROPERTY_NAME_2%` */
   descriptor& set_%PROPERTY_NAME_2%(%PROPERTY_TYPE_2% value);
   %PROPERTY_TYPE_2% get_%PROPERTY_NAME_2%() const;
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   /* more properties */
};
} // namespace oneapi::dal::%DATA_SOURCE%

Result

The result of a read operation is an instance of an in-memory object with Object type.

Data Source Types
oneDAL defines a set of classes.

Data Source Types

Data
source
type

Description

CSV data
source

Data source that allows reading data from a text file into a table.

Details
• CSV data source

• Usage example
• Programming Interface

CSV data source

Class csv::data_source is an API for accessing the data source represented as a csv file. CSV data source
is used with read operation to extract data in text format from the given input file, process it using provided
parameters (such as delimiter and read options), transform it into numerical representation, and store it as
an in-memory dataset of a chosen type.

Supported type of in-memory object for read operation with CSV data source is oneapi::dal::table.

CSV data source requires input file name to be set in the constructor, while the other parameters of the
constructor such as delimiter and read options rely on default values.

Usage example

using namespace oneapi;

const auto data_source = dal::csv::data_source("data.csv", ',');

const auto table = dal::read<dal::table>(data_source);

Programming Interface
Refer to API Reference: CSV data source.

Graphs

This section describes the types and functions related to the graph concept.
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Type Description

Undirected adjacency vector graph An implementation of the undirected graph concept.

Directed adjacency vector graph An implementation of the directed graph concept.

Graph traits A standartized way to access various properties of the graph.

Requirements on graph types
Each implementation of graph concept:

1. Follows the definition of the graph concept and its restrictions (for example, immutability)
2. Is reference-counted
3. Defines graph_traits data type.

Graph types

Graph type Description

undirected adjacency vector graph A sparse undirectedweighted or unweighted graph that
contains graph in CSR data format.

directed adjacency vector graph A sparse directedweighted or unweighted graph that contains 
graph in CSR data format.

Undirected adjacency vector graph

Class undirected_adjacency_vector_graph is the implementation of undirectedweighted sparse graph
concept with adjacency matrix underneath for which the following is true:

• The data within the graph is sparse and stored in CSR.
• The specific graph traits are defined for this class.

Programming interface
Refer to API Reference: Undirected Adjacency Vector Graph.

Directed adjacency vector graph

Class directed_adjacency_vector_graph is the implementation of directedweighted sparse graph concept
with adjacency matrix underneath for which the following is true:

• The data within the graph is sparse and stored in CSR format.
• The specific graph traits are defined for this class.

Programming interface
Refer to API Reference: Directed Adjacency Vector Graph.

Tables

This section describes the types related to the table concept.
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Table Types

Type Description

table A common implementation of the table concept. Base class for other table types.

table_met
adata

An implementation of table metadata concept.

Data
layout

An enumeration of data layouts used to store contiguous data blocks inside the table.

Feature
type

An enumeration of feature types used in oneDAL to define set of available operations onto
the data.

Requirements on table types
Each implementation of table concept:

1. Follows the definition of the table concept and its restrictions (e.g., immutability).
2. Is derived from the oneapi::dal::table class. The behavior of this class can be extended, but cannot

be weaken.
3. Is reference-counted.
4. Defines a unique id number: the “kind” that represents objects of that type in runtime.

The following listing provides an example of table API to illustrate table kinds and copy-assignment
operation:

using namespace onedal;

// Creating homogen_table sub-type.
dal::homogen_table table1 = homogen_table::wrap(queue, data_ptr, row_count, column_count);

// table1 and table2 share the same data (no data copy is performed)
dal::table table2 = table1;

// Creating an empty table
dal::table table3;

std::cout << table1.get_kind()     == table2.get_kind() << std::endl; // true
std::cout << homogen_table::kind() == table2.get_kind() << std::endl; // true
std::cout << table2.get_kind()     == table3.get_kind() << std::endl; // false

// Referring table3 to the table2.
table3 = table2;
std::cout << table2.get_kind() == table3.get_kind() << std::endl; // true

Table types
oneDAL defines a set of classes that implement the table concept for a specific data format:

Table Types for specific data formats

Table type Description

homogen table A dense table that contains contiguoushomogeneous data.

Programming interface
Refer to API: Tables.
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Homogeneous table

Class homogen_table is a subtype of a table type for which the following is true:

• The data within the table are dense and stored as one contiguous memory block.
• All the columns have the same data type.

Programming interface
Refer to API Reference: Homogeneous table.

Algorithms

The Algorithms component consists of classes that implement algorithms for data analysis (data mining) and
data modeling (training and prediction). These algorithms include matrix decompositions, clustering,
classification, and regression algorithms, as well as association rules discovery.

• Clustering

• DBSCAN
• K-Means
• K-Means initialization

• Covariance

• Covariance
• Decomposition

• Principal Components Analysis (PCA)
• Ensembles

• Decision Forest Classification and Regression (DF)
• Graph

• Subgraph Isomorphism
• Connected Components

• Kernel Functions

• Linear kernel
• Polynomial kernel
• Radial Basis Function (RBF) kernel
• Sigmoid kernel

• Nearest Neighbors (kNN)

• k-Nearest Neighbors Classification and Search (k-NN)
• Pairwise Distances

• Minkowski distance
• Chebyshev distance
• Cosine distance

• Statistics

• Basic Statistics
• Support Vector Machines

• Support Vector Machine Classifier and Regression (SVM)

Clustering

This chapter describes clustering algorithms implemented in oneDAL:

• DBSCAN
• K-Means
• K-Means initialization
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Examples: DBSCAN

oneAPI DPC++

Batch Processing:

• dpc_dbscan_brute_force_batch.cpp

oneAPI C++

Batch Processing:

• cpp_dbscan_brute_force_batch.cpp

Python* with DPC++ support

Batch Processing:

• dbscan_batch.py

Examples: K-Means

oneAPI DPC++

Batch Processing:

• dpc_kmeans_lloyd_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_kmeans_lloyd_dense_batch.cpp

Python* with DPC++ support

Batch Processing:

• kmeans_batch.py

Examples: K-Means Initialization

oneAPI DPC++

Batch Processing:

• dpc_kmeans_init_dense.cpp

oneAPI C++

Batch Processing:

• cpp_kmeans_init_dense.cpp

DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed
in [Ester96]. It is a density-based clustering non-parametric algorithm: given a set of observations in some
space, it groups together observations that are closely packed together (observations with many nearby
neighbors), marking as outliers observations that lie alone in low-density regions (whose nearest neighbors
are too far away).

Operation Computational methods Progra
mming
Interfac
e

Compute Default method comput
e(…)

compute_inp
ut

compute_resul
t

Mathematical formulation
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Computation

Given the set  of np-dimensional feature
vectors (further referred as observations), a positive floating-point number epsilon and a positive integer
minObservations, the problem is to get clustering assignments for each input observation, based on the
definitions below [Ester96]: two observations x and y are considered to be in the same cluster if there is a 
core observationz, and x and y are both reachable from z.

Each cluster gets a unique identifier, an integer number from 0 to . Each
observation is assigned an identifier of the cluster it belongs to, or -1 if the observation considered to be a 
noise observation.

Programming Interface
Refer to API Reference: DBSCAN.

Distributed mode
The algorithm supports distributed execution in SMPD mode (only on GPU).

Usage example

Compute

void run_compute(const table& data,
                           const table& weights) {
   double epsilon = 1.0;
   std::int64_t max_observations = 5;
   const auto dbscan_desc = kmeans::descriptor<float>{epsilon, max_observations}
      .set_result_options(dal::dbscan::result_options::responses);

   const auto result = compute(dbscan_desc, data, weights);

   print_table("responses", result.get_responses());
}

Examples
oneAPI DPC++

Batch Processing:

• dpc_dbscan_brute_force_batch.cpp

oneAPI C++

Batch Processing:

• cpp_dbscan_brute_force_batch.cpp

Python* with DPC++ support

Batch Processing:

• dbscan_batch.py

K-Means

The K-Means algorithm solves clustering problem by partitioning n feature vectors into k clusters minimizing
some criterion. Each cluster is characterized by a representative point, called a centroid.
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Operation Computational methods Progra
mming
Interfac
e

Training Lloyd’s train(…) train_input train_result

Inference Lloyd’s infer(…) infer_input infer_result

Mathematical formulation

Training

Given the training set  of p-dimensional feature vectors and a positive integer k, the

problem is to find a set  of p-dimensional centroids that minimize the objective function

where  is the squared Euclidean distance from  to the closest centroid in C,

Expression  denotes norm.

NOTE In the general case, d may be an arbitrary distance function. Current version of the oneDAL
spec defines only Euclidean distance case.

Training method: Lloyd’s

The Lloyd’s method [Lloyd82] consists in iterative updates of centroids by applying the alternating
Assignment and Update steps, where t denotes a index of the current iteration, e.g.,

 is the set of centroids at the t-th iteration. The method requires the initial

centroids  to be specified at the beginning of the algorithm ( ).

(1) Assignment step: Assign each feature vector  to the nearest centroid.  denotes the assigned
label (cluster index) to the feature vector .

Each feature vector from the training set X is assigned to exactly one centroid so that X is partitioned to k
disjoint sets (clusters)

(2) Update step: Recalculate centroids by averaging feature vectors assigned to each cluster.
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The steps (1) and (2) are performed until the following stop condition,

is satisfied or number of iterations exceeds the maximal value T defined by the user.

Inference

Given the inference set  of p-dimensional feature vectors and the set

 of centroids produced at the training stage, the problem is to predict the index

, , of the centroid in accordance with a method-defined rule.

Inference method: Lloyd’s

Lloyd’s inference method computes the  as an index of the centroid closest to the feature vector ,

Programming Interface
Refer to API Reference: K-Means.

Usage example

Training

kmeans::model<> run_training(const table& data,
                           const table& initial_centroids) {
   const auto kmeans_desc = kmeans::descriptor<float>{}
      .set_cluster_count(10)
      .set_max_iteration_count(50)
      .set_accuracy_threshold(1e-4);

   const auto result = train(kmeans_desc, data, initial_centroids);

   print_table("labels", result.get_labels());
   print_table("centroids", result.get_model().get_centroids());
   print_value("objective", result.get_objective_function_value());

   return result.get_model();
}

Inference

table run_inference(const kmeans::model<>& model,
                  const table& new_data) {
   const auto kmeans_desc = kmeans::descriptor<float>{}
      .set_cluster_count(model.get_cluster_count());
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   const auto result = infer(kmeans_desc, model, new_data);

   print_table("labels", result.get_labels());
}

Examples
oneAPI DPC++

Batch Processing:

• dpc_kmeans_lloyd_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_kmeans_lloyd_dense_batch.cpp

Python* with DPC++ support

Batch Processing:

• kmeans_batch.py

K-Means initialization

The K-Means initialization algorithm receives n feature vectors as input and chooses k initial centroids. After
initialization, K-Means algorithm uses the initialization result to partition input data into k clusters.

Operation Computational methods Progra
mming
Interfac
e

Computing Dense comput
e(…)

compute_inp
ut

compute_resul
t

Mathematical formulation

Computing

Given the training set  of p-dimensional feature vectors and a positive integer k, the

problem is to find a set  of p-dimensional initial centroids.

Computing method: dense

The method chooses first k feature vectors from the training set X.

Programming Interface
Refer to API Reference: K-Means initialization.

Usage example
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Computing

table run_compute(const table& data) {
   const auto kmeans_desc = kmeans_init::descriptor<float,
                                                   kmeans_init::method::dense>{}
      .set_cluster_count(10)

   const auto result = compute(kmeans_desc, data);

   print_table("centroids", result.get_centroids());

   return result.get_centroids();
}

Examples
oneAPI DPC++

Batch Processing:

• dpc_kmeans_init_dense.cpp

oneAPI C++

Batch Processing:

• cpp_kmeans_init_dense.cpp

Covariance

• Covariance

Examples: Covariance

oneAPI DPC++

Batch Processing:

• dpc_cor_dense_batch.cpp
• dpc_cov_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_cor_dense_batch.cpp
• cpp_cov_dense_batch.cpp

Covariance

Covariance algorithm computes the following set of quantitative dataset characteristics:

• means
• covariance
• correlation

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation
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Computing

Given a set X of np-dimensional feature vectors , the
problem is to compute the sample means or the covariance matrix or the correlation matrix:

Statistic Definition

Means
, where 

Covariance
matrix , where , ,

Correlation
matrix , where , , 

Computation method: dense

The method computes the means or the variance-covariance matrix or the correlation matrix

Programming Interface
Refer to API Reference: Covariance.

Distributed mode
The algorithm supports distributed execution in SMPD mode (only on GPU).

Decomposition

• Principal Components Analysis (PCA)

Examples: PCA

oneAPI DPC++

Batch Processing:

• dpc_pca_cor_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_pca_dense_batch.cpp

Python* with DPC++ support

Batch Processing:

• pca_batch.py

Principal Components Analysis (PCA)

Principal Component Analysis (PCA) is an algorithm for exploratory data analysis and dimensionality
reduction. PCA transforms a set of feature vectors of possibly correlated features to a new set of
uncorrelated features, called principal components. Principal components are the directions of the largest
variance, that is, the directions where the data is mostly spread out.
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Operation Computational
methods

Programming
Interface

Training Covariance SVD train(…) train_input train_result

Inference Covariance SVD infer(…) infer_input infer_result

Mathematical formulation

Training

Given the training set  of p-dimensional feature vectors and the number of principal
components r, the problem is to compute r principal directions (p-dimensional eigenvectors [Lang87]) for the
training set. The eigenvectors can be grouped into the  matrix T that contains one eigenvector in each
row.

Training method: Covariance

This method uses eigenvalue decomposition of the covariance matrix to compute the principal components of
the datasets. The method relies on the following steps:

1. Computation of the covariance matrix
2. Computation of the eigenvectors and eigenvalues
3. Formation of the matrices storing the results

Covariance matrix computation is performed in the following way:

1.
Compute the vector-column of sums .

2. Compute the cross-product .
3.

Compute the covariance matrix .

To compute eigenvalues  and eigenvectors , the implementer can choose an arbitrary method such as 
[Ping14].

The final step is to sort the set of pairs  in the descending order by  and form the resulting matrix

. Additionally, the means and variances of the initial dataset are
returned.

Training method: SVD

This method uses singular value decomposition of the dataset to compute its principal components. The
method relies on the following steps:

1. Computation of the singular values and singular vectors
2. Formation of the matrices storing the results

To compute singular values  and singular vectors  and , the implementer can choose an arbitrary
method such as [Demmel90].

The final step is to sort the set of pairs  in the descending order by  and form the resulting matrix

. Additionally, the means and variances of the initial dataset are
returned.

Sign-flip technique
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Eigenvectors computed by some eigenvalue solvers are not uniquely defined due to sign ambiguity. To get
the deterministic result, a sign-flip technique should be applied. One of the sign-flip techniques proposed in 
[Bro07] requires the following modification of matrix T:

where  is i-th row,  is the element in the i-th row and j-th column,  is the signum function,

Inference

Given the inference set  of p-dimensional feature vectors and the  matrix T

produced at the training stage, the problem is to transform  to the set , where 

is an r-dimensional feature vector, .

The feature vector  is computed through applying linear transformation [Lang87] defined by the matrix T

to the feature vector ,

Inference methods: Covariance and SVD

Covariance and SVD inference methods compute  according to (1).

Programming Interface
Refer to API Reference: Principal Components Analysis.

Distributed mode
The algorithm supports distributed execution in SMPD mode (only on GPU).

Usage example

Training

pca::model<> run_training(const table& data) {
   const auto pca_desc = pca::descriptor<float>{}
      .set_component_count(5)
      .set_deterministic(true);

   const auto result = train(pca_desc, data);

   print_table("means", result.get_means());
   print_table("variances", result.get_variances());
   print_table("eigenvalues", result.get_eigenvalues());
   print_table("eigenvectors", result.get_eigenvectors());
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   return result.get_model();
}

Inference

table run_inference(const pca::model<>& model,
                  const table& new_data) {
   const auto pca_desc = pca::descriptor<float>{}
      .set_component_count(model.get_component_count());

   const auto result = infer(pca_desc, model, new_data);

   print_table("labels", result.get_transformed_data());
}

Examples
oneAPI DPC++

Batch Processing:

• dpc_pca_cor_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_pca_dense_batch.cpp

Python* with DPC++ support

Batch Processing:

• pca_batch.py

Ensembles

• Decision Forest Classification and Regression (DF)

Examples: Decifion Forest Classification

oneAPI DPC++

Batch Processing:

• dpc_df_cls_hist_batch.cpp

oneAPI C++

Batch Processing:

• cpp_df_cls_dense_batch.cpp

Examples: Decifion Forest Regression

oneAPI DPC++

Batch Processing:

• dpc_df_reg_hist_batch.cpp

oneAPI C++

Batch Processing:

• cpp_df_reg_dense_batch.cpp
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Decision Forest Classification and Regression (DF)

Decision Forest (DF) classification and regression algorithms are based on an ensemble of tree-structured
classifiers, which are known as decision trees. Decision forest is built using the general technique of bagging,
a bootstrap aggregation, and a random choice of features. For more details, see [Breiman84] and 
[Breiman2001].

Operation Computational
methods

Programming
Interface

Training Dense Hist train(…) train_input train_result

Inference Dense Hist infer(…) infer_input infer_result

Mathematical formulation

Training

Given n feature vectors  of size p, their non-

negative observation weights  and n responses ,

Classification

•
, where C is the number of classes

Regression

•

the problem is to build a decision forest classification or regression model.

The library uses the following algorithmic framework for the training stage. Let  be the set of
observations. Given positive integer parameters, such as the number of trees B, the bootstrap parameter

, where f is a fraction of observations used for a training of each tree in the forest, and the

number of features per node m, the algorithm does the following for :

• Selects randomly with replacement the set  of N vectors from the set S. The set  is called a
bootstrap set.

• Trains a decision tree classifier  on  using parameter m for each tree.

Decision treeT is trained using the training set D of size N. Each node t in the tree corresponds to the subset

 of the training set D, with the root node being D itself. Each internal node t represents a binary test

(split) that divides the subset  in two subsets,  and , corresponding to their children,  and .

Training method: Dense

In dense training method, all possible splits for each feature are taken from the subset of selected features
for the current node and evaluated for best split computation.

Training method: Hist

In hist training method, only a selected subset of splits is considered for best split computation. This subset
of splits is computed for each feature at the initialization stage of the algorithm. After computing the subset
of splits, each value from the initially provided data is substituted with the value of the corresponding bin.
Bins are continuous intervals between selected splits.
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Split Criteria

The metric for measuring the best split is called impurity, i(t). It generally reflects the homogeneity of

responses within the subset  in the node t.

Classification

Gini index is an impurity metric for classification, calculated as follows:

where

• D is a set of observations that reach the node;
•  is specified in the table below:

Decision Forest Split Criteria Calculation

Without sample weights With sample weights

 is the observed fraction of observations that
belong to class i in D

 is the observed weighted fraction of observations
that belong to class i in D:

Regression

MSE is an impurity metric for regression, calculated as follows:

MSE Impurity Metric

Without sample weights With sample weights

, which is equivalent to the
number of elements in S

Let the impurity decrease in the node t be

Termination Criteria

The library supports the following termination criteria of decision forest training:

Minimal number of
observations in a leaf node

Node t is not processed if  is smaller than the predefined value. Splits that
produce nodes with the number of observations smaller than that value are not
allowed.

Minimal number of
observations in a split
node

Node t is not processed if  is smaller than the predefined value. Splits that
produce nodes with the number of observations smaller than that value are not
allowed.
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Minimum weighted
fraction of the sum total of
weights of all the input
observations required to
be at a leaf node

Node t is not processed if  is smaller than the predefined value. Splits that
produce nodes with the number of observations smaller than that value are not
allowed.

Maximal tree depth Node t is not processed if its depth in the tree reached the predefined value.

Impurity threshold Node t is not processed if its impurity is smaller than the predefined threshold.

Maximal number of leaf
nodes

Grow trees with positive maximal number of leaf nodes in a best-first fashion.
Best nodes are defined by relative reduction in impurity. If maximal number of
leaf nodes equals zero, then this criterion does not limit the number of leaf
nodes, and trees grow in a depth-first fashion.

Tree Building Strategies

Maximal number of leaf nodes defines the strategy of tree building: depth-first or best-first.

Depth-first Strategy

If maximal number of leaf nodes equals zero, a decision tree is built using depth-first strategy. In each
terminal node t, the following recursive procedure is applied:

• Stop if the termination criteria are met.
•

Choose randomly without replacement m feature indices .
• For each , find the best split  that partitions subset  and maximizes impurity decrease

.
• A node is a split if this split induces a decrease of the impurity greater than or equal to the predefined

value. Get the best split  that maximizes impurity decrease  in all  splits.
• Apply this procedure recursively to  and .

Best-first Strategy

If maximal number of leaf nodes is positive, a decision tree is built using best-first strategy. In each terminal
node t, the following steps are applied:

• Stop if the termination criteria are met.
•

Choose randomly without replacement m feature indices .
• For each , find the best split  that partitions subset  and maximizes impurity decrease

.
• A node is a split if this split induces a decrease of the impurity greater than or equal to the predefined

value and the number of split nodes is less or equal to . Get the best split  that

maximizes impurity decrease  in all  splits.
•

Put a node into a sorted array, where sort criterion is the improvement in impurity . The node
with maximal improvement is the first in the array. For a leaf node, the improvement in impurity is zero.

• Apply this procedure to  and  and grow a tree one by one getting the first element from the array
until the array is empty.

Inference
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Given decision forest classification or regression model and vectors , the problem is to calculate
the responses for those vectors.

Inference methods: Dense and Hist

Dense and hist inference methods perform prediction in the same way. To solve the problem for each given
query vector , the algorithm does the following:

Classification

For each tree in the forest, it finds the leaf node that gives  its label. The label y that the majority of trees
in the forest vote for is chosen as the predicted label for the query vector .

Regression

For each tree in the forest, it finds the leaf node that gives  the response as the mean of dependent
variables. The mean of responses from all trees in the forest is the predicted response for the query vector

.

Additional Characteristics Calculated by the Decision Forest

Decision forests can produce additional characteristics, such as an estimate of generalization error and an
importance measure (relative decisive power) of each of p features (variables).

Out-of-bag Error

The estimate of the generalization error based on the training data can be obtained and calculated as
follows:

Classification

• For each vector  in the dataset X, predict its label  by having the majority of votes from the trees that
contain  in their OOB set, and vote for that label.

• Calculate the OOB error of the decision forest T as the average of misclassifications:

• If OOB error value per each observation is required, then calculate the prediction error for :

Regression

• For each vector  in the dataset X, predict its response  as the mean of prediction from the trees that
contain  in their OOB set:

, where  and  is the result of prediction  by .
• Calculate the OOB error of the decision forest T as the Mean-Square Error (MSE):

• If OOB error value per each observation is required, then calculate the prediction error for :

Variable Importance
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There are two main types of variable importance measures:

• Mean Decrease Impurity importance (MDI)

Importance of the j-th variable for predicting Y is the sum of weighted impurity decreases 

for all nodes t that use , averaged over all B trees in the forest:

where  is the fraction of observations reaching node t in the tree , and  is the index
of the variable used in split .

• Mean Decrease Accuracy (MDA)

Importance of the j-th variable for predicting Y is the average increase in the OOB error over all trees in
the forest when the values of the j-th variable are randomly permuted in the OOB set. For that reason,
this latter measure is also known as permutation importance.

In more details, the library calculates MDA importance as follows:

•
Let  be the set of feature vectors where the j-th variable is randomly permuted over all
vectors in the set.

•
Let  be the OOB error calculated for  on its out-of-bag dataset .

•
Let  be the OOB error calculated for  using , and its out-of-bag dataset  is
permuted on the j-th variable. Then

•
 is the OOB error increase for the tree .

•
 is MDA importance.

•

, where  is the variance of 

Programming Interface
Refer to API Reference: Decision Forest Classification and Regression.

Distributed mode
The algorithm supports distributed execution in SMPD mode (only on GPU).

Graph

This chapter describes graph algorithms implemented in oneDAL:

• Subgraph Isomorphism
• Connected Components

Examples: Subgraph Isomorphism

oneAPI C++

Batch Processing:

• cpp_subgraph_isomorphism_batch.cpp

Examples: Connected Components

oneAPI C++
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Batch Processing:

• cpp_connected_components_batch.cpp

Subgraph Isomorphism

Subgraph Isomorphism algorithm receives a target graph G and a pattern graph H as input and searches the
target graph for subgraphs that are isomorphic to the pattern graph. The algorithm returns the mappings of
the pattern graph vertices onto the target graph vertices.

Operation Computational methods Programm
ing
Interface

Computing fast graph_matc
hing(…)

graph_matching_i
nput

graph_matching_
result

Mathematical formulation

Subgraphs definition

A graph  is called a subgraph of graph  if  and  contains
all the endpoints of all the edges in [Gross2014].

Further we denote the induced subgraph on the vertex set as induced subgraph, the induced subgraph on
the edge set as non-induced subgraph.

Computing

Given two graphs G and H, the problem is to determine whether graph G contains a subgraph isomorphic to
graph H and find the exact mapping of subgraph H in graph G.

G is called target graph, H is called pattern graph.

Mapping is a bijection or one-to-one correspondence between vertices of H and a subgraph of graph G. Two
vertices are adjacent if there is an existing edge between them, and non-adjacent otherwise. Induced
subgraph isomorphism preserves both adjacency and non-adjacency relationships between vertices, while
non-induced subgraph isomorphism preserves only adjacency relationship.

Example
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For the example above, the mappings for subgraph H in graph G are:

• Induced: [3, 0, 1, 4, 2, 5]
• Non-induced: [3, 0, 1, 4, 2, 5], [3, 6, 1, 4, 2, 5], [6, 0, 1, 2, 4, 5], and [4, 0, 1, 5, 6, 2]

The notation [3, 0, 1, 4, 2, 5] means that:

• pattern vertex with id 0 is mapped on vertex in target graph with id 3
• pattern vertex with id 1 is mapped on vertex in target graph with id 0
• pattern vertex with id 2 is mapped on vertex in target graph with id 1
• pattern vertex with id 3 is mapped on vertex in target graph with id 4
• pattern vertex with id 4 is mapped on vertex in target graph with id 2
• pattern vertex with id 5 is mapped on vertex in target graph with id 5

Computation method: fast

The method defines VF3-light algorithms with Global State Stack parallelization method and supports induced
and non-induced cases.

For more details, see [Carletti2021].
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Programming Interface
Refer to API Reference: Subgraph Isomorphism.

Examples
oneAPI C++

Batch Processing:

• cpp_subgraph_isomorphism_batch.cpp

Connected Components

Connected components algorithm receives an undirected graph G as an input and searches for connected
components in G. For each vertex in G, the algorithm returns the label of the component this vertex belongs
to. The result of the algorithm is a set of labels for all vertices in G.

Operation Computational methods Programm
ing
Interface

Computing afforest vertex_part
itioning(…)

vertex_partitionin
g_input

vertex_partitionin
g_result

Mathematical formulation

Computing

Given an undirected graphG, the problem is to find connected components in G, determine their quantity,
and label vertices so that vertices from the same component have the same label.

Example
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Сomponents are labeled from 0 to k-1, where k is the number of components. For the example above, the
labels for vertices are [0, 1, 1, 1, 2, 0, 1, 3, 4, 4, 4, 4, 4].

This notation means that:

• vertices with ids 0 and 5 belong to the connected component with id 0
• vertices with ids 1, 2, 3, and 6 belong to the connected component with id 1
• vertex with id 4 belongs to the connected component with id 2
• vertex with id 7 belongs to the connected component with id 3
• vertices with ids 8, 9, 10, 11, and 12 belong to the connected component with id 4

Computation method: afforest

The method defines Afforest algorithm and solves the problem of сonnected components identification in an
undirected graph.
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This algorithm expands the Shiloach-Vishkin connected components algorithm and uses component
approximation to decrease redundant edge processing. The method consists of the following steps:

1. Process a fixed number of edges for each vertex (Vertex Neighbor Sampling optimization).
2. Identify the largest intermediate component using probabilistic method.
3. Process the rest of the neighborhoods only for the vertices that do not belong to the largest component

(Large Component Skipping optimization).

For more details, see [Sutton2018].

Programming Interface
Refer to API Reference: Connected Components.

Examples
oneAPI C++

Batch Processing:

• cpp_connected_components_batch.cpp

Kernel Functions

• Linear kernel
• Polynomial kernel
• Radial Basis Function (RBF) kernel
• Sigmoid kernel

Examples: Linear Kernel

oneAPI DPC++

Batch Processing:

• dpc_linear_kernel_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_linear_kernel_dense_batch.cpp

Examples: Polynomial Kernel

oneAPI C++

Batch Processing:

• cpp_polynomial_kernel_dense_batch.cpp

Examples: RBF Kernel

oneAPI DPC++

Batch Processing:

• dpc_rbf_kernel_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_rbf_kernel_dense_batch.cpp

Examples: Sigmoid Kernel

oneAPI C++

Batch Processing:

• cpp_sigmoid_kernel_dense_batch.cpp
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Linear kernel

The linear kernel is the simplest kernel function for pattern analysis.

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation

Computing

Given a set X of n feature vectors  of dimension p and

a set Y of m feature vectors , the problem is to

compute the linear kernel function  for any pair of input vectors:

Computation method: dense

The method computes the linear kernel function  for X and Y matrices.

Programming Interface
Refer to API Reference: Linear kernel.

Polynomial kernel

The Polynomial kernel is a popular kernel function used in kernelized learning algorithms. It represents the
similarity of training samples in a feature space of polynomials of the original data and allows to fit non-linear
models.

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation

Computing

Given a set X of n feature vectors  of dimension p and

a set Y of m feature vectors , the problem is to

compute the polynomial kernel function  for any pair of input vectors:

where .
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Computation method: dense

The method computes the polynomial kernel function  for X and Y matrices.

Programming Interface
Refer to API Reference: Polynomial kernel.

Radial Basis Function (RBF) kernel

The Radial Basis Function (RBF) kernel is a popular kernel function used in kernelized learning algorithms.

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation

Computing

Given a set X of n feature vectors  of dimension p and

a set Y of m feature vectors , the problem is to

compute the RBF kernel function  for any pair of input vectors:

Computation method: dense

The method computes the rbf kernel function  for X and Y matrices.

Programming Interface
Refer to API Reference: Radial Basis Function (RBF) kernel.

Sigmoid kernel

The Sigmoid kernel is a popular kernel function used in kernelized learning algorithms.

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation

Computing
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Given a set X of n feature vectors  of dimension p and

a set Y of m feature vectors , the problem is to

compute the sigmoid kernel function  for any pair of input vectors:

where .

Computation method: dense

The method computes the sigmoid kernel function  for X and Y matrices.

Programming Interface
Refer to API Reference: Sigmoid kernel.

Nearest Neighbors (kNN)

• k-Nearest Neighbors Classification and Search (k-NN)

Examples: k-Nearest Neighbors

oneAPI DPC++

Batch Processing:

• dpc_knn_cls_brute_force_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_knn_cls_brute_force_dense_batch.cpp
• cpp_knn_cls_kd_tree_dense_batch.cpp
• cpp_knn_search_brute_force_dense_batch.cpp

Python* with DPC++ support

Batch Processing:

• bf_knn_classification_batch.py

k-Nearest Neighbors Classification and Search (k-NN)

k-NN classification and search algorithms are based on finding the k nearest observations to the training set.
For classification, the problem is to infer the class of a new feature vector by computing the majority vote of
its k nearest observations from the training set. For search, the problem is to infer k nearest observations
from the training set to a new feature vector. The nearest observations are computed based on the chosen
distance metric.

Operation Computational
methods

Programming
Interface

Training Brute-force k-d tree train(…) train_input train_result

Inference Brute-force k-d tree infer(…) infer_input infer_result

Mathematical formulation

Training
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Classification

Let  be the training set of p-dimensional feature vectors, let  be

the set of class labels, where , , and C is the number of classes. Given X,
Y, and the number of nearest neighbors k, the problem is to build a model that allows distance computation
between the feature vectors in training and inference sets at the inference stage.

Search

Let  be the training set of p-dimensional feature vectors. Given X and the number of
nearest neighbors k, the problem is to build a model that allows distance computation between the feature
vectors in training and inference sets at the inference stage.

Training method: brute-force

The training operation produces the model that stores all the feature vectors from the initial training set X.

Training method: k-d tree

The training operation builds a k-d tree that partitions the training set X (for more details, see k-d Tree).

Inference

Classification

Let  be the inference set of p-dimensional feature vectors. Given , the model

produced at the training stage, and the number of nearest neighbors k, the problem is to predict the label 

from the Y set for each , , by performing the following steps:

1.
Identify the set  of k feature vectors in the training set that are nearest to  with
respect to the Euclidean distance, which is chosen by default. The distance can be customized with the
predefined set of pairwise distances: Minkowski distances with fractional degree (including Euclidean
distance), Chebyshev distance, and Cosine distance.

2.
Estimate the conditional probability for the l-th class as the fraction of vectors in  whose labels

 are equal to l:

3.
Predict the class that has the highest probability for the feature vector :

Search

Let  be the inference set of p-dimensional feature vectors. Given , the model
produced at the training stage, and the number of nearest neighbors k:

1.
Identify the set  of k feature vectors in the training set that are nearest to  with
respect to the Euclidean distance, which is chosen by default. The distance can be customized with the
predefined set of pairwise distances: Minkowski distances with fractional degree (including Euclidean
distance), Chebyshev distance, and Cosine distance.
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Inference method: brute-force

Brute-force inference method determines the set  of the nearest feature vectors by iterating over all

the pairs  in the implementation defined order, , .

Inference method: k-d tree

K-d tree inference method traverses the k-d tree to find feature vectors associated with a leaf node that are

closest to , . The set  of the currently known nearest k neighbors is progressively
updated during the tree traversal. The search algorithm limits exploration of the nodes for which the distance

between the  and respective part of the feature space is not less than the distance between  and the

most distant feature vector from . Once tree traversal is finished, .

Programming Interface
Refer to API Reference: k-Nearest Neighbors Classification and Search.

Usage example

Training

knn::model<> run_training(const table& data,
                        const table& labels) {
   const std::int64_t class_count = 10;
   const std::int64_t neighbor_count = 5;
   const auto knn_desc = knn::descriptor<float>{class_count, neighbor_count};

   const auto result = train(knn_desc, data, labels);

   return result.get_model();
}

Inference

table run_inference(const knn::model<>& model,
                  const table& new_data) {
   const std::int64_t class_count = 10;
   const std::int64_t neighbor_count = 5;
   const auto knn_desc = knn::descriptor<float>{class_count, neighbor_count};

   const auto result = infer(knn_desc, model, new_data);

   print_table("labels", result.get_labels());
}

Examples
oneAPI DPC++

Batch Processing:

• dpc_knn_cls_brute_force_dense_batch.cpp

oneAPI C++

Batch Processing:
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• cpp_knn_cls_brute_force_dense_batch.cpp
• cpp_knn_cls_kd_tree_dense_batch.cpp
• cpp_knn_search_brute_force_dense_batch.cpp

Python* with DPC++ support

Batch Processing:

• bf_knn_classification_batch.py

Pairwise Distances

• Minkowski distance
• Chebyshev distance
• Cosine distance

Minkowski distance

The Minkowski distances are the set of distance metrics with different degree  and are widely used
for distance computation in different algorithms. The most commonly used distance metric, Euclidean

distance, is also a Minkowski distance with .

Operation Computational methods

dense dense

Mathematical formulation

Computing

Given a set U of n feature vectors  of dimension k and

a set V of m feature vectors  of dimension k, the

problem is to compute the Minkowski distance  for any pair of input vectors:

where .

Computation method: dense

The method defines Minkowski distance metric, which is used in other algorithms for the distance
computation. There are no separate computation mode to compute distance manually.

Programming Interface
Refer to API Reference: Minkowski distance.

Chebyshev distance

The Chebyshev distance equals the limit of Minkowski distance metric with .
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Operation Computational methods

dense dense

Mathematical formulation

Computing

Given a set U of n feature vectors  of dimension k and

a set V of m feature vectors  of dimension k, the

problem is to compute the Chebyshev distance  for any pair of input vectors:

where .

Computation method: dense

The method defines Chebyshev distance metric, which is used in other algorithms for the distance
computation. There are no separate computation mode to compute distance manually.

Programming Interface
Refer to API Reference: Chebyshev distance.

Cosine distance

The Cosine distance is a measure of distance between two non-zero vectors of an inner product space.

Operation Computational methods

dense dense

Mathematical formulation

Computing

Given a set U of n feature vectors  of dimension k and

a set V of m feature vectors  of dimension k, the

problem is to compute the Cosine distance  for any pair of input vectors:

where .

Computation method: dense

The method defines Cosine distance metric, which is used in other algorithms for the distance computation.
There is no separate computation mode to compute the distance manually.
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Programming Interface
Refer to API Reference: Cosine distance.

Statistics

• Basic Statistics

Examples: Basic statistics

oneAPI DPC++

Batch Processing:

• dpc_basic_statistics_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_basic_statistics_dense_batch.cpp

Basic Statistics

Basic statistics algorithm computes the following set of quantitative dataset characteristics:

• minimums/maximums
• sums
• means
• sums of squares
• sums of squared differences from the means
• second order raw moments
• variances
• standard deviations
• variations

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation

Computing

Given a set X of np-dimensional feature vectors , the
problem is to compute the following sample characteristics for each feature in the data set:

Statistic Definition

Minimum

Maximum

Sum
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Statistic Definition

Sum of squares

Means

Second order raw
moment

Sum of squared
difference from the
means

Variance

Standard deviation

Variation coefficient

Computation method: dense

The method computes the basic statistics for each feature in the data set.

Programming Interface
Refer to API Reference: Basic statistics.

Distributed mode
The algorithm supports distributed execution in SMPD mode (only on GPU).

Support Vector Machines

• Support Vector Machine Classifier and Regression (SVM)

Examples: SVM

oneAPI DPC++

Batch Processing:

• dpc_svm_two_class_thunder_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_svm_two_class_smo_dense_batch.cpp
• cpp_svm_two_class_thunder_dense_batch.cpp
• cpp_svm_reg_thunder_dense_batch.cpp
• cpp_svm_multi_class_thunder_dense_batch.cpp
• cpp_svm_nu_cls_thunder_dense_batch.cpp
• cpp_svm_nu_reg_thunder_dense_batch.cpp

Python* with DPC++ support

Batch Processing:
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• svm_batch.py

Support Vector Machine Classifier and Regression (SVM)

Support Vector Machine (SVM) classification and regression are among popular algorithms. It belongs to a
family of generalized linear classification problems.

Operation Computational
methods

Programming
Interface

Training SMO Thunder train(…) train_input train_result

Inference SMO Thunder infer(…) infer_input infer_result

Mathematical formulation

Training

Given n feature vectors  of size p, their non-

negative observation weights , and n responses ,

Classification

•
, where M is the number of classes

Regression

•

Nu-classification

•
, where M is the number of classes

Nu-regression

•

the problem is to build a Support Vector Machine (SVM) classification, regression, nu-classification, or nu-
regression model.

The SVM model is trained using the Sequential minimal optimization (SMO) method [Boser92] for reduced to
the solution of the quadratic optimization problem

Classification

with , , , where e is the vector of ones, C is the upper bound of the

coordinates of the vector , Q is a symmetric matrix of size  with , and

 is a kernel function.

Regression
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with , , , where C is the upper bound of the coordinates of the

vector , Q is a symmetric matrix of size  with , and  is a kernel
function. Vectors s and z for the regression problem are formulated according to the following rule:

Where  is the error tolerance parameter.

Nu-classification

with , , , , where e is the vector of ones,  is an upper
bound on the fraction of training errors and a lower bound of the fraction of the support vector, Q is a

symmetric matrix of size  with , and  is a kernel function.

Nu-regression

with , , , , where C is the
upper bound of the coordinates of the vector ,  is an upper bound on the fraction of training errors and a
lower bound of the fraction of the support vector, Q is a symmetric matrix of size  with

, and  is a kernel function. Vector z for the regression problem are
formulated according to the following rule:

Working subset of α updated on each iteration of the algorithm is based on the Working Set Selection (WSS)
3 scheme [Fan05]. The scheme can be optimized using one of these techniques or both:

• Cache: the implementation can allocate a predefined amount of memory to store intermediate results of
the kernel computation.

• Shrinking: the implementation can try to decrease the amount of kernel related computations (see 
[Joachims99]).

The solution of the problem defines the separating hyperplane and corresponding decision function

, where only those  that correspond to non-zero  appear in the
sum, and b is a bias. Each non-zero  is called a dual coefficient and the corresponding  is called a
support vector.

Training method: smo

In smo training method, all vectors from the training dataset are used for each iteration.

Training method: thunder
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In thunder training method, the algorithm iteratively solves the convex optimization problem with the linear
constraints by selecting the fixed set of active constrains (working set) and applying Sequential Minimal
Optimization (SMO) solver to the selected subproblem. The description of this method is given in Algorithm 
[Wen2018].

Inference methods: smo and thunder

smo and thunder inference methods perform prediction in the same way:

Given the SVM classification or regression model and r feature vectors , the problem is to

calculate the signed value of the decision function , . The sign of the value defines the
class of the feature vector, and the absolute value of the function is a multiple of the distance between the
feature vector and the separating hyperplane.

Programming Interface
Refer to API Reference: Support Vector Machine Classifier and Regression.

Examples
oneAPI DPC++

Batch Processing:

• dpc_svm_two_class_thunder_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_svm_two_class_smo_dense_batch.cpp
• cpp_svm_two_class_thunder_dense_batch.cpp
• cpp_svm_reg_thunder_dense_batch.cpp
• cpp_svm_multi_class_thunder_dense_batch.cpp
• cpp_svm_nu_cls_thunder_dense_batch.cpp
• cpp_svm_nu_reg_thunder_dense_batch.cpp

Python* with DPC++ support

Batch Processing:

• svm_batch.py

Single Program Multiple Data

This section includes concepts and descriptions of objects that support distributed computations using SPMD
model.

Distributed computation using SPMD model
In a typical usage scenario, a user provides a communicator object as a first parameter of a free function to
indicate that the algorithm can process data simultaneously. All internal inter-process communications at
sync points are hidden from the user.
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General expectation is that input dataset is distributed among processes. Results are distributed in
accordance with the input.

Example of SPMD Flow in oneDAL
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Supported Collective Operations
The following collective operations are supported:

• bcast Broadcasts data from specified process.
• allreduce Reduces data among all processes.
• allgatherv Gathers data from all processes and shares the result among all processes.
• sendrecv_replace Sends and receives data using a single buffer.

Backend-specific restrictions
• oneCCL: Allgetherv does not support arbitrary displacements. The result is expected to be closely packed

without gaps.
• oneMPI: Collective operations in oneMPI do not support asynchronous executions. They block the process

till completion.

oneAPI Examples

• DPC++

• basic_statistics_dense_batch.cpp
• column_accessor_homogen.cpp
• cor_dense_batch.cpp
• cov_dense_batch.cpp
• dbscan_brute_force_batch.cpp
• df_cls_hist_batch.cpp
• df_cls_traverse_model.cpp
• df_reg_hist_batch.cpp
• df_reg_traverse_model.cpp
• kmeans_init_dense.cpp
• kmeans_lloyd_dense_batch.cpp
• knn_cls_brute_force_dense_batch.cpp
• knn_reg_brute_force_dense_batch.cpp
• knn_search_brute_force_dense_batch.cpp
• linear_kernel_dense_batch.cpp
• linear_regression_dense_batch.cpp
• pca_cor_dense_batch.cpp
• pca_precomputed_cor_dense_batch.cpp
• pca_precomputed_cov_dense_batch.cpp
• rbf_kernel_dense_batch.cpp
• svm_two_class_thunder_dense_batch.cpp

• C++

• basic_statistics_dense_batch.cpp
• column_accessor_homogen.cpp
• connected_components_batch.cpp
• cor_dense_batch.cpp
• cov_dense_batch.cpp
• dbscan_brute_force_batch.cpp
• df_cls_dense_batch.cpp
• df_reg_dense_batch.cpp
• directed_graph.cpp
• graph_service_functions.cpp
• jaccard_batch.cpp
• jaccard_batch_app.cpp
• kmeans_init_dense.cpp
• kmeans_lloyd_dense_batch.cpp
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• knn_cls_brute_force_dense_batch.cpp
• knn_cls_kd_tree_dense_batch.cpp
• knn_search_brute_force_dense_batch.cpp
• linear_kernel_dense_batch.cpp
• linear_regression_dense_batch.cpp
• louvain_batch.cpp
• pca_dense_batch.cpp
• pca_precomputed_dense_batch.cpp
• polynomial_kernel_dense_batch.cpp
• rbf_kernel_dense_batch.cpp
• shortest_paths_batch.cpp
• sigmoid_kernel_dense_batch.cpp
• subgraph_isomorphism_batch.cpp
• svm_multi_class_thunder_dense_batch.cpp
• svm_nu_cls_thunder_dense_batch.cpp
• svm_nu_reg_thunder_dense_batch.cpp
• svm_reg_thunder_dense_batch.cpp
• svm_two_class_smo_dense_batch.cpp
• svm_two_class_thunder_dense_batch.cpp
• triangle_counting_batch.cpp

oneAPI DPC++ examples

• basic_statistics_dense_batch.cpp
• column_accessor_homogen.cpp
• cor_dense_batch.cpp
• cov_dense_batch.cpp
• dbscan_brute_force_batch.cpp
• df_cls_hist_batch.cpp
• df_cls_traverse_model.cpp
• df_reg_hist_batch.cpp
• df_reg_traverse_model.cpp
• kmeans_init_dense.cpp
• kmeans_lloyd_dense_batch.cpp
• knn_cls_brute_force_dense_batch.cpp
• knn_reg_brute_force_dense_batch.cpp
• knn_search_brute_force_dense_batch.cpp
• linear_kernel_dense_batch.cpp
• linear_regression_dense_batch.cpp
• pca_cor_dense_batch.cpp
• pca_precomputed_cor_dense_batch.cpp
• pca_precomputed_cov_dense_batch.cpp
• rbf_kernel_dense_batch.cpp
• svm_two_class_thunder_dense_batch.cpp

basic_statistics_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
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* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <CL/sycl.hpp>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/basic_statistics.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue &q) {
    const auto data_file_name = get_data_path("covcormoments_dense.csv");

    const auto data = dal::read<dal::table>(q, dal::csv::data_source{ data_file_name });

    const auto bs_desc = dal::basic_statistics::descriptor{};

    const auto result = dal::compute(q, bs_desc, data);

    std::cout << "Minimum:\n" << result.get_min() << std::endl;
    std::cout << "Maximum:\n" << result.get_max() << std::endl;
    std::cout << "Sum:\n" << result.get_sum() << std::endl;
    std::cout << "Sum of squares:\n" << result.get_sum_squares() << std::endl;
    std::cout << "Sum of squared difference from the means:\n"
              << result.get_sum_squares_centered() << std::endl;
    std::cout << "Mean:\n" << result.get_mean() << std::endl;
    std::cout << "Second order raw moment:\n" << result.get_second_order_raw_moment() << 
std::endl;
    std::cout << "Variance:\n" << result.get_variance() << std::endl;
    std::cout << "Standard deviation:\n" << result.get_standard_deviation() << std::endl;
    std::cout << "Variation:\n" << result.get_variation() << std::endl;
}

int main(int argc, char const *argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

column_accessor_homogen.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
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* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <CL/sycl.hpp>
#include <iostream>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/table/column_accessor.hpp"
#include "oneapi/dal/table/homogen.hpp"

#include "example_util/dpc_helpers.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue &q) {
    constexpr std::int64_t row_count = 6;
    constexpr std::int64_t column_count = 2;
    const float data_host[] = {
        0.f, 6.f, 1.f, 7.f, 2.f, 8.f, 3.f, 9.f, 4.f, 10.f, 5.f, 11.f,
    };

    auto data = sycl::malloc_shared<float>(row_count * column_count, q);
    q.memcpy(data, data_host, sizeof(float) * row_count * column_count).wait();

    auto table = dal::homogen_table{ q,
                                     data,
                                     row_count,
                                     column_count,
                                     dal::detail::make_default_delete<const float>(q) };
    dal::column_accessor<const float> acc{ table };

    for (std::int64_t col = 0; col < table.get_column_count(); col++) {
        std::cout << "column " << col << " values: ";

        const auto col_values = acc.pull(q, col);
        for (std::int64_t i = 0; i < col_values.get_count(); i++) {
            std::cout << col_values[i] << ", ";
        }
        std::cout << std::endl;
    }
}

int main(int argc, char const *argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
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                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

cor_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <CL/sycl.hpp>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/covariance.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue &q) {
    const auto input_file_name = get_data_path("covcormoments_dense.csv");

    const auto input = dal::read<dal::table>(q, dal::csv::data_source{ input_file_name });
    const auto cov_desc = dal::covariance::descriptor{}.set_result_options(
        dal::covariance::result_options::cor_matrix | dal::covariance::result_options::means);

    const auto result = dal::compute(q, cov_desc, input);

    std::cout << "Means:\n" << result.get_means() << std::endl;
    std::cout << "Cor:\n" << result.get_cor_matrix() << std::endl;
}

int main(int argc, char const *argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
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        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

cov_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <CL/sycl.hpp>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/covariance.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue &q) {
    const auto input_file_name = get_data_path("covcormoments_dense.csv");

    const auto input = dal::read<dal::table>(q, dal::csv::data_source{ input_file_name });
    auto cov_desc = dal::covariance::descriptor{}.set_result_options(
        dal::covariance::result_options::cov_matrix);

    auto result = dal::compute(q, cov_desc, input);

    std::cout << "Cov:\n" << result.get_cov_matrix() << std::endl;
}

int main(int argc, char const *argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
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    }
    return 0;
}

dbscan_brute_force_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <CL/sycl.hpp>
#include <iomanip>
#include <iostream>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/dbscan.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue &q) {
    const auto data_file_name = get_data_path("dbscan_dense.csv");

    const auto x_data = dal::read<dal::table>(q, dal::csv::data_source{ data_file_name });

    double epsilon = 0.04;
    std::int64_t min_observations = 45;

    auto dbscan_desc = dal::dbscan::descriptor<>(epsilon, min_observations);
    dbscan_desc.set_result_options(dal::dbscan::result_options::responses);

    const auto result_compute = dal::compute(q, dbscan_desc, x_data);

    std::cout << "Cluster count: " << result_compute.get_cluster_count() << std::endl;
    std::cout << "Responses:\n" << result_compute.get_responses() << std::endl;
}

int main(int argc, char const *argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
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                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

df_cls_hist_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/decision_forest.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"
#include "oneapi/dal/exceptions.hpp"

namespace dal = oneapi::dal;
namespace df = dal::decision_forest;

void run(sycl::queue& q) {
    const auto train_data_file_name = get_data_path("df_classification_train_data.csv");
    const auto train_response_file_name = get_data_path("df_classification_train_label.csv");
    const auto test_data_file_name = get_data_path("df_classification_test_data.csv");
    const auto test_response_file_name = get_data_path("df_classification_test_label.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    const auto y_train =
        dal::read<dal::table>(q, dal::csv::data_source{ train_response_file_name });

    const auto x_test = dal::read<dal::table>(q, dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(q, 
dal::csv::data_source{ test_response_file_name });

    const auto df_desc =
        df::descriptor<float, df::method::hist, df::task::classification>{}
            .set_class_count(5)
            .set_tree_count(10)
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            .set_features_per_node(x_train.get_column_count())
            .set_min_observations_in_leaf_node(8)
            .set_min_observations_in_split_node(16)
            .set_min_weight_fraction_in_leaf_node(0.0)
            .set_min_impurity_decrease_in_split_node(0.0)
            .set_error_metric_mode(df::error_metric_mode::out_of_bag_error)
            .set_variable_importance_mode(df::variable_importance_mode::mdi)
            .set_infer_mode(df::infer_mode::class_responses | 
df::infer_mode::class_probabilities)
            .set_voting_mode(df::voting_mode::weighted);

    try {
        const auto result_train = dal::train(q, df_desc, x_train, y_train);

        std::cout << "Variable importance results:\n"
                  << result_train.get_var_importance() << std::endl;

        std::cout << "OOB error: " << result_train.get_oob_err() << std::endl;

        const auto result_infer = dal::infer(q, df_desc, result_train.get_model(), x_test);

        std::cout << "Prediction results:\n" << result_infer.get_responses() << std::endl;
        std::cout << "Probabilities results:\n" << result_infer.get_probabilities() << std::endl;

        std::cout << "Ground truth:\n" << y_test << std::endl;
    }
    catch (dal::unimplemented& e) {
        std::cout << "  " << e.what() << std::endl;
        return;
    }
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

df_cls_traverse_model.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
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* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/decision_forest.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"
#include "oneapi/dal/exceptions.hpp"

namespace dal = oneapi::dal;
namespace df = dal::decision_forest;

/* Decision forest parameters */
const std::int64_t class_count = 5; /* Number of classes */

/** Visitor class, prints out tree nodes of the model when it is called back by model traversal 
method */
struct print_node_visitor {
    bool operator()(const df::leaf_node_info<df::task::classification>& info) {
        std::cout << std::string(info.get_level() * 2, ' ');
        std::cout << "Level " << info.get_level()
                  << ", leaf node. Response value = " << info.get_response()
                  << ", Impurity = " << info.get_impurity()
                  << ", Number of samples = " << info.get_sample_count() << ", Probabilities = 
{ ";
        for (std::int64_t index_class = 0; index_class < class_count; ++index_class) {
            std::cout << info.get_probability(index_class) << ' ';
        }
        std::cout << "}" << std::endl;
        return true;
    }

    bool operator()(const df::split_node_info<df::task::classification>& info) {
        std::cout << std::string(info.get_level() * 2, ' ');
        std::cout << "Level " << info.get_level()
                  << ", split node. Feature index = " << info.get_feature_index()
                  << ", feature value = " << info.get_feature_value()
                  << ", Impurity = " << info.get_impurity()
                  << ", Number of samples = " << info.get_sample_count() << std::endl;
        return true;
    }
};

template <typename Task>
void print_model(const df::model<Task>& m) {
    std::cout << "Number of trees: " << m.get_tree_count() << std::endl;
    for (std::int64_t i = 0, n = m.get_tree_count(); i < n; ++i) {
        std::cout << "Tree #" << i << std::endl;
        m.traverse_depth_first(i, print_node_visitor{});
    }
}

void run(sycl::queue& q) {
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    const auto train_data_file_name = get_data_path("df_classification_train_data.csv");
    const auto train_response_file_name = get_data_path("df_classification_train_label.csv");
    const auto test_data_file_name = get_data_path("df_classification_test_data.csv");
    const auto test_response_file_name = get_data_path("df_classification_test_label.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    const auto y_train =
        dal::read<dal::table>(q, dal::csv::data_source{ train_response_file_name });

    const auto x_test = dal::read<dal::table>(q, dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(q, 
dal::csv::data_source{ test_response_file_name });

    const auto df_desc = df::descriptor<float, df::method::hist, df::task::classification>{}
                             .set_class_count(class_count)
                             .set_tree_count(2)
                             .set_features_per_node(1)
                             .set_min_observations_in_leaf_node(8)
                             .set_min_observations_in_split_node(16)
                             .set_min_weight_fraction_in_leaf_node(0.0)
                             .set_min_impurity_decrease_in_split_node(0.0)
                             .set_max_tree_depth(15);

    try {
        const auto result_train = dal::train(q, df_desc, x_train, y_train);
        print_model(result_train.get_model());
    }
    catch (dal::unimplemented& e) {
        std::cout << "  " << e.what() << std::endl;
        return;
    }
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

df_reg_hist_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
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* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/decision_forest.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"
#include "oneapi/dal/exceptions.hpp"

namespace dal = oneapi::dal;
namespace df = dal::decision_forest;

void run(sycl::queue& q) {
    const auto train_data_file_name = get_data_path("df_regression_train_data.csv");
    const auto train_response_file_name = get_data_path("df_regression_train_label.csv");
    const auto test_data_file_name = get_data_path("df_regression_test_data.csv");
    const auto test_response_file_name = get_data_path("df_regression_test_label.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    const auto y_train =
        dal::read<dal::table>(q, dal::csv::data_source{ train_response_file_name });

    const auto x_test = dal::read<dal::table>(q, dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(q, 
dal::csv::data_source{ test_response_file_name });

    const auto df_desc =
        df::descriptor<float, df::method::hist, df::task::regression>{}
            .set_tree_count(100)
            .set_features_per_node(0)
            .set_min_observations_in_leaf_node(1)
            .set_error_metric_mode(df::error_metric_mode::out_of_bag_error |
                                   df::error_metric_mode::out_of_bag_error_per_observation)
            .set_variable_importance_mode(df::variable_importance_mode::mdi);

    try {
        const auto result_train = dal::train(q, df_desc, x_train, y_train);

        std::cout << "Variable importance results:\n"
                  << result_train.get_var_importance() << std::endl;

        std::cout << "OOB error: " << result_train.get_oob_err() << std::endl;
        std::cout << "OOB error per observation:\n"
                  << result_train.get_oob_err_per_observation() << std::endl;

        const auto result_infer = dal::infer(q, df_desc, result_train.get_model(), x_test);

        std::cout << "Prediction results:\n" << result_infer.get_responses() << std::endl;

        std::cout << "Ground truth:\n" << y_test << std::endl;
    }
    catch (dal::unimplemented& e) {
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        std::cout << "  " << e.what() << std::endl;
        return;
    }
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << std::endl
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

df_reg_traverse_model.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/decision_forest.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"
#include "oneapi/dal/exceptions.hpp"

namespace dal = oneapi::dal;
namespace df = dal::decision_forest;

/** Visitor class, prints out tree nodes of the model when it is called back by model traversal 
method */
struct print_node_visitor {
    bool operator()(const df::leaf_node_info<df::task::regression>& info) {
        std::cout << std::string(info.get_level() * 2, ' ');
        std::cout << "Level " << info.get_level()
                  << ", leaf node. Response value = " << info.get_response()
                  << ", Impurity = " << info.get_impurity()
                  << ", Number of samples = " << info.get_sample_count() << std::endl;
        return true;
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    }

    bool operator()(const df::split_node_info<df::task::regression>& info) {
        std::cout << std::string(info.get_level() * 2, ' ');
        std::cout << "Level " << info.get_level()
                  << ", split node. Feature index = " << info.get_feature_index()
                  << ", feature value = " << info.get_feature_value()
                  << ", Impurity = " << info.get_impurity()
                  << ", Number of samples = " << info.get_sample_count() << std::endl;
        return true;
    }
};

template <typename Task>
void print_model(const df::model<Task>& m) {
    std::cout << "Number of trees: " << m.get_tree_count() << std::endl;
    for (std::int64_t i = 0, n = m.get_tree_count(); i < n; ++i) {
        std::cout << "Tree #" << i << std::endl;
        m.traverse_depth_first(i, print_node_visitor{});
    }
}

void run(sycl::queue& q) {
    const auto train_data_file_name = get_data_path("df_regression_train_data.csv");
    const auto train_response_file_name = get_data_path("df_regression_train_label.csv");
    const auto test_data_file_name = get_data_path("df_regression_test_data.csv");
    const auto test_response_file_name = get_data_path("df_regression_test_label.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    const auto y_train =
        dal::read<dal::table>(q, dal::csv::data_source{ train_response_file_name });

    const auto x_test = dal::read<dal::table>(q, dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(q, 
dal::csv::data_source{ test_response_file_name });

    const auto df_desc = df::descriptor<float, df::method::hist, df::task::regression>{}
                             .set_tree_count(2)
                             .set_features_per_node(0)
                             .set_min_observations_in_leaf_node(1);

    try {
        const auto result_train = dal::train(q, df_desc, x_train, y_train);
        print_model(result_train.get_model());
    }
    catch (dal::unimplemented& e) {
        std::cout << "  " << e.what() << std::endl;
        return;
    }
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
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    }
    return 0;
}

kmeans_init_dense.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <CL/sycl.hpp>
#include <iomanip>
#include <iostream>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "example_util/utils.hpp"
#include "oneapi/dal/algo/kmeans.hpp"
#include "oneapi/dal/algo/kmeans_init.hpp"
#include "oneapi/dal/io/csv.hpp"

namespace dal = oneapi::dal;

template <typename Method>
void run(sycl::queue& q, const dal::table& x_train, const std::string& method_name) {
    constexpr std::int64_t cluster_count = 20;
    constexpr std::int64_t max_iteration_count = 1000;
    constexpr double accuracy_threshold = 0.01;

    const auto kmeans_init_desc =
        dal::kmeans_init::descriptor<float, Method>().set_cluster_count(cluster_count);

    const auto result_init = dal::compute(q, kmeans_init_desc, x_train);

    const auto kmeans_desc = dal::kmeans::descriptor<>()
                                 .set_cluster_count(cluster_count)
                                 .set_max_iteration_count(max_iteration_count)
                                 .set_accuracy_threshold(accuracy_threshold);

    const auto result_train = dal::train(q, kmeans_desc, x_train, result_init.get_centroids());

    std::cout << "Method: " << method_name << std::endl;
    std::cout << "Max iteration count: " << max_iteration_count
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              << ", Accuracy threshold: " << accuracy_threshold << std::endl;
    std::cout << "Iteration count: " << result_train.get_iteration_count()
              << ", Objective function value: " << result_train.get_objective_function_value()
              << '\n'
              << std::endl;
}

int main(int argc, char const* argv[]) {
    const auto train_data_file_name = get_data_path("kmeans_init_dense.csv");

    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << '\n'
                  << std::endl;
        auto q = sycl::queue{ d };

        const auto x_train =
            dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });

        run<dal::kmeans_init::method::dense>(q, x_train, "dense");
        run<dal::kmeans_init::method::random_dense>(q, x_train, "random_dense");
    }
    return 0;
}

kmeans_lloyd_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <CL/sycl.hpp>
#include <iomanip>
#include <iostream>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/kmeans.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;
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void run(sycl::queue &q) {
    const auto train_data_file_name = get_data_path("kmeans_dense_train_data.csv");
    const auto initial_centroids_file_name = get_data_path("kmeans_dense_train_centroids.csv");
    const auto test_data_file_name = get_data_path("kmeans_dense_test_data.csv");
    const auto test_response_file_name = get_data_path("kmeans_dense_test_label.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    const auto initial_centroids =
        dal::read<dal::table>(q, dal::csv::data_source{ initial_centroids_file_name });

    const auto x_test = dal::read<dal::table>(q, dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(q, 
dal::csv::data_source{ test_response_file_name });

    const auto kmeans_desc = dal::kmeans::descriptor<>()
                                 .set_cluster_count(20)
                                 .set_max_iteration_count(5)
                                 .set_accuracy_threshold(0.001);

    const auto result_train = dal::train(q, kmeans_desc, x_train, initial_centroids);

    std::cout << "Iteration count: " << result_train.get_iteration_count() << std::endl;
    std::cout << "Objective function value: " << result_train.get_objective_function_value()
              << std::endl;
    std::cout << "Responses:\n" << result_train.get_responses() << std::endl;
    std::cout << "Centroids:\n" << result_train.get_model().get_centroids() << std::endl;

    const auto result_test = dal::infer(q, kmeans_desc, result_train.get_model(), x_test);

    std::cout << "Infer result:\n" << result_test.get_responses() << std::endl;

    std::cout << "Ground truth:\n" << y_test << std::endl;
}

int main(int argc, char const *argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

knn_cls_brute_force_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
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* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/knn.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "oneapi/dal/exceptions.hpp"
#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue& q) {
    const auto train_data_file_name = get_data_path("k_nearest_neighbors_train_data.csv");
    const auto train_response_file_name = get_data_path("k_nearest_neighbors_train_label.csv");
    const auto test_data_file_name = get_data_path("k_nearest_neighbors_test_data.csv");
    const auto test_response_file_name = get_data_path("k_nearest_neighbors_test_label.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    const auto y_train =
        dal::read<dal::table>(q, dal::csv::data_source{ train_response_file_name });

    const auto knn_desc_uniform = dal::knn::descriptor(5, 1);
    const auto knn_desc_distance =
        dal::knn::descriptor(5, 1).set_voting_mode(dal::knn::voting_mode::distance);

    const auto x_test = dal::read<dal::table>(q, dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(q, 
dal::csv::data_source{ test_response_file_name });

    const auto train_result_uniform = dal::train(q, knn_desc_uniform, x_train, y_train);
    const auto train_result_distance = dal::train(q, knn_desc_distance, x_train, y_train);

    const auto test_result_uniform =
        dal::infer(q, knn_desc_uniform, x_test, train_result_uniform.get_model());
    const auto test_result_distance =
        dal::infer(q, knn_desc_distance, x_test, train_result_distance.get_model());

    std::cout << "Test results (uniform voting):\n"
              << test_result_uniform.get_responses() << std::endl;
    std::cout << "Test results (distance voting):\n"
              << test_result_distance.get_responses() << std::endl;
    std::cout << "True responses:\n" << y_test << std::endl;
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
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        run(q);
    }
    return 0;
}

knn_reg_brute_force_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/knn.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "oneapi/dal/exceptions.hpp"
#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue& q) {
    const auto train_data_file_name = get_data_path("knn_regression_train_data.csv");
    const auto train_response_file_name = get_data_path("knn_regression_train_responses.csv");
    const auto test_data_file_name = get_data_path("knn_regression_test_data.csv");
    const auto test_response_file_name = get_data_path("knn_regression_test_responses.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    const auto y_train =
        dal::read<dal::table>(q, dal::csv::data_source{ train_response_file_name });

    using float_t = float;
    using method_t = dal::knn::method::by_default;
    using task_t = dal::knn::task::regression;
    using descriptor_t = dal::knn::descriptor<float_t, method_t, task_t>;

    const auto knn_desc_uniform = descriptor_t(5);
    const auto knn_desc_distance = 
descriptor_t(5).set_voting_mode(dal::knn::voting_mode::distance);

    const auto x_test = dal::read<dal::table>(q, dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(q, 
dal::csv::data_source{ test_response_file_name });
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    const auto train_result_uniform = dal::train(q, knn_desc_uniform, x_train, y_train);
    const auto train_result_distance = dal::train(q, knn_desc_distance, x_train, y_train);

    const auto test_result_uniform =
        dal::infer(q, knn_desc_uniform, x_test, train_result_uniform.get_model());
    const auto test_result_distance =
        dal::infer(q, knn_desc_distance, x_test, train_result_distance.get_model());

    std::cout << "Test results (uniform regression):\n"
              << test_result_uniform.get_responses() << std::endl;
    std::cout << "Test results (distance regression):\n"
              << test_result_distance.get_responses() << std::endl;
    std::cout << "True responses:\n" << y_test << std::endl;
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        // TODO: Should be deleted after regression algorithm introduction on CPU
        try {
            run(q);
        }
        catch (const dal::unimplemented& e) {
            std::cout << e.what() << std::endl;
        }
    }
    return 0;
}

knn_search_brute_force_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/knn.hpp"
#include "oneapi/dal/io/csv.hpp"
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#include "example_util/utils.hpp"

namespace dal = oneapi::dal;
namespace knn = dal::knn;

void run(sycl::queue& q) {
    const auto train_data_file_name = get_data_path("k_nearest_neighbors_train_data.csv");
    const auto query_data_file_name = get_data_path("k_nearest_neighbors_test_data.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    const auto x_query = dal::read<dal::table>(q, dal::csv::data_source{ query_data_file_name });

    const std::size_t neighbors_count = 6;

    const auto knn_desc =
        knn::descriptor<float, knn::method::brute_force, knn::task::search>(neighbors_count)
            .set_result_options(knn::result_options::indices);

    const auto train_result = dal::train(q, knn_desc, x_train);
    const auto test_result = dal::infer(q, knn_desc, x_query, train_result.get_model());

    std::cout << "Indices result:\n" << test_result.get_indices() << std::endl;
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

linear_kernel_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <CL/sycl.hpp>

#ifndef ONEDAL_DATA_PARALLEL
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#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/linear_kernel.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue &q) {
    std::cout << "Running on " << q.get_device().get_info<sycl::info::device::name>() << "\n"
              << std::endl;

    const auto data_file_name = get_data_path("kernel_function.csv");

    const auto x = dal::read<dal::table>(q, dal::csv::data_source{ data_file_name });
    const auto y = dal::read<dal::table>(q, dal::csv::data_source{ data_file_name });

    const auto kernel_desc = dal::linear_kernel::descriptor{}.set_scale(1.0).set_shift(0.0);

    const auto result = dal::compute(q, kernel_desc, x, y);

    std::cout << "Values:\n" << result.get_values() << std::endl;
}

int main(int argc, char const *argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

linear_regression_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
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#endif

#include "oneapi/dal/algo/linear_regression.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "oneapi/dal/exceptions.hpp"
#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue& q) {
    const auto train_data_file_name = get_data_path("linear_regression_train_data.csv");
    const auto train_response_file_name = get_data_path("linear_regression_train_responses.csv");
    const auto test_data_file_name = get_data_path("linear_regression_test_data.csv");
    const auto test_response_file_name = get_data_path("linear_regression_test_responses.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });
    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto lr_desc = dal::linear_regression::descriptor<>();

    const auto train_result = dal::train(q, lr_desc, x_train, y_train);
    const auto lr_model = train_result.get_model();

    const auto test_result_uniform = dal::infer(lr_desc, x_test, lr_model);

    std::cout << "Test results:\n" << test_result_uniform.get_responses() << std::endl;
    std::cout << "True responses:\n" << y_test << std::endl;
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

pca_cor_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
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* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iomanip>
#include <iostream>
#include <CL/sycl.hpp>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/pca.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue& q) {
    const auto train_data_file_name = get_data_path("pca_normalized.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });

    const auto pca_desc = 
dal::pca::descriptor<>().set_component_count(5).set_deterministic(true);

    const auto result_train = dal::train(q, pca_desc, x_train);

    std::cout << "Eigenvectors:\n" << result_train.get_eigenvectors() << std::endl;

    std::cout << "Eigenvalues:\n" << result_train.get_eigenvalues() << std::endl;

    const auto result_infer = dal::infer(q, pca_desc, result_train.get_model(), x_train);

    std::cout << "Transformed data:\n" << result_infer.get_transformed_data() << std::endl;
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

pca_precomputed_cor_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
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* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iomanip>
#include <iostream>
#include <CL/sycl.hpp>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/pca.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue& q) {
    const auto train_data_file_name = get_data_path("precomputed_correlation.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    using float_t = float;
    using method_t = dal::pca::method::precomputed;
    using task_t = dal::pca::task::dim_reduction;
    using descriptor_t = dal::pca::descriptor<float_t, method_t, task_t>;
    const auto pca_desc = descriptor_t().set_component_count(5).set_deterministic(true);

    const auto result_train = dal::train(q, pca_desc, x_train);

    std::cout << "Eigenvectors:\n" << result_train.get_eigenvectors() << std::endl;

    std::cout << "Eigenvalues:\n" << result_train.get_eigenvalues() << std::endl;

    const auto result_infer = dal::infer(q, pca_desc, result_train.get_model(), x_train);

    std::cout << "Transformed data:\n" << result_infer.get_transformed_data() << std::endl;
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}
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pca_precomputed_cov_dense_batch.cpp

/*******************************************************************************
* Copyright 2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iomanip>
#include <iostream>
#include <CL/sycl.hpp>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/pca.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue& q) {
    const auto train_data_file_name = get_data_path("precomputed_covariance.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    using float_t = float;
    using method_t = dal::pca::method::precomputed;
    using task_t = dal::pca::task::dim_reduction;
    using descriptor_t = dal::pca::descriptor<float_t, method_t, task_t>;
    const auto pca_desc = descriptor_t().set_component_count(5).set_deterministic(true);

    const auto result_train = dal::train(q, pca_desc, x_train);

    std::cout << "Eigenvectors:\n" << result_train.get_eigenvectors() << std::endl;

    std::cout << "Eigenvalues:\n" << result_train.get_eigenvalues() << std::endl;

    const auto result_infer = dal::infer(q, pca_desc, result_train.get_model(), x_train);

    std::cout << "Transformed data:\n" << result_infer.get_transformed_data() << std::endl;
}

int main(int argc, char const* argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
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                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

rbf_kernel_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <CL/sycl.hpp>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/rbf_kernel.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue &q) {
    const auto data_file_name = get_data_path("kernel_function.csv");

    const auto x = dal::read<dal::table>(q, dal::csv::data_source{ data_file_name });
    const auto y = dal::read<dal::table>(q, dal::csv::data_source{ data_file_name });

    const auto kernel_desc = dal::rbf_kernel::descriptor{}.set_sigma(1.0);
    const auto result = dal::compute(q, kernel_desc, x, y);

    std::cout << "Values:\n" << result.get_values() << std::endl;
}

int main(int argc, char const *argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
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    }
    return 0;
}

svm_two_class_thunder_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <CL/sycl.hpp>

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/svm.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run(sycl::queue &q) {
    const auto train_data_file_name = get_data_path("svm_two_class_train_dense_data.csv");
    const auto train_response_file_name = get_data_path("svm_two_class_train_dense_label.csv");
    const auto test_data_file_name = get_data_path("svm_two_class_test_dense_data.csv");
    const auto test_response_file_name = get_data_path("svm_two_class_test_dense_label.csv");

    const auto x_train = dal::read<dal::table>(q, dal::csv::data_source{ train_data_file_name });
    const auto y_train =
        dal::read<dal::table>(q, dal::csv::data_source{ train_response_file_name });

    const auto kernel_desc = dal::linear_kernel::descriptor{}.set_scale(1.0).set_shift(0.0);
    const auto svm_desc = dal::svm::descriptor{ kernel_desc }
                              .set_c(1.0)
                              .set_accuracy_threshold(0.001)
                              .set_max_iteration_count(100)
                              .set_cache_size(200.0)
                              .set_tau(1e-6);

    const auto result_train = dal::train(q, svm_desc, x_train, y_train);

    std::cout << "Biases:\n" << result_train.get_biases() << std::endl;
    std::cout << "Support indices:\n" << result_train.get_support_indices() << std::endl;
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    const auto x_test = dal::read<dal::table>(q, dal::csv::data_source{ test_data_file_name });
    const auto y_true = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto result_test = dal::infer(q, svm_desc, result_train.get_model(), x_test);

    std::cout << "Decision function result:\n" << result_test.get_decision_function() << 
std::endl;
    std::cout << "Responses result:\n" << result_test.get_responses() << std::endl;
    std::cout << "Responses true:\n" << y_true << std::endl;
}

int main(int argc, char const *argv[]) {
    for (auto d : list_devices()) {
        std::cout << "Running on " << d.get_platform().get_info<sycl::info::platform::name>()
                  << ", " << d.get_info<sycl::info::device::name>() << "\n"
                  << std::endl;
        auto q = sycl::queue{ d };
        run(q);
    }
    return 0;
}

oneAPI C++ Examples

• basic_statistics_dense_batch.cpp
• column_accessor_homogen.cpp
• connected_components_batch.cpp
• cor_dense_batch.cpp
• cov_dense_batch.cpp
• dbscan_brute_force_batch.cpp
• df_cls_dense_batch.cpp
• df_reg_dense_batch.cpp
• directed_graph.cpp
• graph_service_functions.cpp
• jaccard_batch.cpp
• jaccard_batch_app.cpp
• kmeans_init_dense.cpp
• kmeans_lloyd_dense_batch.cpp
• knn_cls_brute_force_dense_batch.cpp
• knn_cls_kd_tree_dense_batch.cpp
• knn_search_brute_force_dense_batch.cpp
• linear_kernel_dense_batch.cpp
• linear_regression_dense_batch.cpp
• louvain_batch.cpp
• pca_dense_batch.cpp
• pca_precomputed_dense_batch.cpp
• polynomial_kernel_dense_batch.cpp
• rbf_kernel_dense_batch.cpp
• shortest_paths_batch.cpp
• sigmoid_kernel_dense_batch.cpp
• subgraph_isomorphism_batch.cpp
• svm_multi_class_thunder_dense_batch.cpp
• svm_nu_cls_thunder_dense_batch.cpp
• svm_nu_reg_thunder_dense_batch.cpp
• svm_reg_thunder_dense_batch.cpp
• svm_two_class_smo_dense_batch.cpp
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• svm_two_class_thunder_dense_batch.cpp
• triangle_counting_batch.cpp

basic_statistics_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/basic_statistics.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto data_file_name = get_data_path("covcormoments_dense.csv");

    const auto data = dal::read<dal::table>(dal::csv::data_source{ data_file_name });

    const auto bs_desc = dal::basic_statistics::descriptor{};

    const auto result = dal::compute(bs_desc, data);

    std::cout << "Minimum:\n" << result.get_min() << std::endl;
    std::cout << "Maximum:\n" << result.get_max() << std::endl;
    std::cout << "Sum:\n" << result.get_sum() << std::endl;
    std::cout << "Sum of squares:\n" << result.get_sum_squares() << std::endl;
    std::cout << "Sum of squared difference from the means:\n"
              << result.get_sum_squares_centered() << std::endl;
    std::cout << "Mean:\n" << result.get_mean() << std::endl;
    std::cout << "Second order raw moment:\n" << result.get_second_order_raw_moment() << 
std::endl;
    std::cout << "Variance:\n" << result.get_variance() << std::endl;
    std::cout << "Standard deviation:\n" << result.get_standard_deviation() << std::endl;
    std::cout << "Variation:\n" << result.get_variation() << std::endl;

    return 0;
}

column_accessor_homogen.cpp
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/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iostream>

#include "oneapi/dal/table/column_accessor.hpp"
#include "oneapi/dal/table/homogen.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    constexpr std::int64_t row_count = 6;
    constexpr std::int64_t column_count = 2;
    const float data[] = {
        0.f, 6.f, 1.f, 7.f, 2.f, 8.f, 3.f, 9.f, 4.f, 10.f, 5.f, 11.f,
    };

    auto table = dal::homogen_table::wrap(data, row_count, column_count);
    dal::column_accessor<const float> acc{ table };

    for (std::int64_t col = 0; col < table.get_column_count(); col++) {
        std::cout << "column " << col << " values: ";

        const auto col_values = acc.pull(col);
        for (std::int64_t i = 0; i < col_values.get_count(); i++) {
            std::cout << col_values[i] << ", ";
        }
        std::cout << std::endl;
    }

    return 0;
}

connected_components_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
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* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "example_util/utils.hpp"
#include "oneapi/dal/algo/connected_components.hpp"
#include "oneapi/dal/graph/undirected_adjacency_vector_graph.hpp"
#include "oneapi/dal/io/csv.hpp"

namespace dal = oneapi::dal;

int main(int argc, char** argv) {
    const auto filename = get_data_path("graph.csv");

    // read the graph
    using graph_t = dal::preview::undirected_adjacency_vector_graph<>;
    const auto graph = dal::read<graph_t>(dal::csv::data_source{ filename });

    // set algorithm parameters
    const auto cc_desc = dal::preview::connected_components::descriptor<>();

    // compute connected components
    const auto result_connected_components = dal::preview::vertex_partitioning(cc_desc, graph);

    // extract the result
    std::cout << "Components' labels:\n" << result_connected_components.get_labels() << 
std::endl;
    std::cout << "Number of connected components: "
              << result_connected_components.get_component_count() << std::endl;
    return 0;
}

cor_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/covariance.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"
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namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto input_file_name = get_data_path("covcormoments_dense.csv");

    const auto input = dal::read<dal::table>(dal::csv::data_source{ input_file_name });
    const auto cov_desc = dal::covariance::descriptor{}.set_result_options(
        dal::covariance::result_options::cor_matrix | dal::covariance::result_options::means);

    const auto result = dal::compute(cov_desc, input);

    std::cout << "Means:\n" << result.get_means() << std::endl;
    std::cout << "Cor:\n" << result.get_cor_matrix() << std::endl;

    return 0;
}

cov_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/covariance.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto input_file_name = get_data_path("covcormoments_dense.csv");

    const auto input = dal::read<dal::table>(dal::csv::data_source{ input_file_name });
    auto cov_desc = dal::covariance::descriptor{}.set_result_options(
        dal::covariance::result_options::cov_matrix);

   auto result = dal::compute(cov_desc, input);

std::cout << "Cov:\n" << result.get_cov_matrix() << std::endl;

return 0;
}
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dbscan_brute_force_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/dbscan.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto data_file_name = get_data_path("dbscan_dense.csv");

    const auto x_data = dal::read<dal::table>(dal::csv::data_source{ data_file_name });

    double epsilon = 0.04;
    std::int64_t min_observations = 45;
    auto dbscan_desc = dal::dbscan::descriptor<>(epsilon, min_observations);
    dbscan_desc.set_result_options(dal::dbscan::result_options::responses);

    const auto result_compute = dal::compute(dbscan_desc, x_data);

    std::cout << "Cluster count: " << result_compute.get_cluster_count() << std::endl;
    std::cout << "Responses:\n" << result_compute.get_responses() << std::endl;
    return 0;
}

df_cls_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
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* limitations under the License.
*******************************************************************************/

#include "example_util/utils.hpp"
#include "oneapi/dal/algo/decision_forest.hpp"
#include "oneapi/dal/io/csv.hpp"

namespace dal = oneapi::dal;
namespace df = dal::decision_forest;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("df_classification_train_data.csv");
    const auto train_response_file_name = get_data_path("df_classification_train_label.csv");
    const auto test_data_file_name = get_data_path("df_classification_test_data.csv");
    const auto test_response_file_name = get_data_path("df_classification_test_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto df_desc =
        df::descriptor<>{}
            .set_class_count(5)
            .set_tree_count(10)
            .set_features_per_node(1)
            .set_min_observations_in_leaf_node(8)
            .set_min_observations_in_split_node(16)
            .set_min_weight_fraction_in_leaf_node(0.0)
            .set_min_impurity_decrease_in_split_node(0.0)
            .set_variable_importance_mode(df::variable_importance_mode::mdi)
            .set_error_metric_mode(df::error_metric_mode::out_of_bag_error)
            .set_infer_mode(df::infer_mode::class_responses | 
df::infer_mode::class_probabilities)
            .set_voting_mode(df::voting_mode::weighted);

    const auto result_train = dal::train(df_desc, x_train, y_train);

    std::cout << "Variable importance results:\n" << result_train.get_var_importance() << 
std::endl;

    std::cout << "OOB error: " << result_train.get_oob_err() << std::endl;

    const auto result_infer = dal::infer(df_desc, result_train.get_model(), x_test);

    std::cout << "Prediction results:\n" << result_infer.get_responses() << std::endl;
    std::cout << "Probabilities results:\n" << result_infer.get_probabilities() << std::endl;

    std::cout << "Ground truth:\n" << y_test << std::endl;

    return 0;
}

df_reg_dense_batch.cpp
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/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "example_util/utils.hpp"
#include "oneapi/dal/algo/decision_forest.hpp"
#include "oneapi/dal/io/csv.hpp"

namespace dal = oneapi::dal;
namespace df = dal::decision_forest;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("df_regression_train_data.csv");
    const auto train_response_file_name = get_data_path("df_regression_train_label.csv");
    const auto test_data_file_name = get_data_path("df_regression_test_data.csv");
    const auto test_response_file_name = get_data_path("df_regression_test_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto df_desc =
        df::descriptor<float, df::method::dense, df::task::regression>{}
            .set_tree_count(100)
            .set_features_per_node(0)
            .set_min_observations_in_leaf_node(1)
            .set_error_metric_mode(df::error_metric_mode::out_of_bag_error |
                                   df::error_metric_mode::out_of_bag_error_per_observation)
            .set_variable_importance_mode(df::variable_importance_mode::mda_raw);

    const auto result_train = dal::train(df_desc, x_train, y_train);

    std::cout << "Variable importance results:\n" << result_train.get_var_importance() << 
std::endl;

    std::cout << "OOB error: " << result_train.get_oob_err() << std::endl;
    std::cout << "OOB error per observation:\n"
              << result_train.get_oob_err_per_observation() << std::endl;

    const auto result_infer = dal::infer(df_desc, result_train.get_model(), x_test);

    std::cout << "Prediction results:\n" << result_infer.get_responses() << std::endl;
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    std::cout << "Ground truth:\n" << y_test << std::endl;

    return 0;
}

directed_graph.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iostream>

#include "example_util/utils.hpp"
#include "oneapi/dal/graph/service_functions.hpp"
#include "oneapi/dal/graph/directed_adjacency_vector_graph.hpp"
#include "oneapi/dal/io/csv.hpp"

using namespace std;

namespace dal = oneapi::dal;

int main(int argc, char** argv) {
    const auto filename = get_data_path("weighted_edge_list.csv");

    using vertex_type = int32_t;
    using weight_type = double;
    using graph_t = dal::preview::directed_adjacency_vector_graph<vertex_type, weight_type>;

    const auto graph = dal::read<graph_t>(dal::csv::data_source{ filename },
                                          dal::preview::read_mode::weighted_edge_list);

    std::cout << "Number of vertices: " << dal::preview::get_vertex_count(graph) << std::endl;
    std::cout << "Number of edges: " << dal::preview::get_edge_count(graph) << std::endl;

    dal::preview::vertex_outward_edge_size_type<graph_t> vertex_id = 0;
    std::cout << "Degree of " << vertex_id << ": "
              << dal::preview::get_vertex_outward_degree(graph, vertex_id) << std::endl;

    for (dal::preview::vertex_outward_edge_size_type<graph_t> j = 0;
         j < dal::preview::get_vertex_count(graph);
         ++j) {
        std::cout << "Neighbors of " << j << ": ";
        const auto neigh = dal::preview::get_vertex_outward_neighbors(graph, j);
        for (auto i = neigh.first; i != neigh.second; ++i) {
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            std::cout << *i << "-" << dal::preview::get_edge_value(graph, j, *i) << " ";
        }
        std::cout << std::endl;
    }
    return 0;
}

graph_service_functions.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iostream>

#include "example_util/utils.hpp"
#include "oneapi/dal/graph/service_functions.hpp"
#include "oneapi/dal/io/csv.hpp"

namespace dal = oneapi::dal;

int main(int argc, char **argv) {
    const auto filename = get_data_path("graph.csv");

    using graph_t = dal::preview::undirected_adjacency_vector_graph<>;
    const auto graph = dal::read<graph_t>(dal::csv::data_source{ filename });
    std::cout << "Number of vertices: " << dal::preview::get_vertex_count(graph) << std::endl;
    std::cout << "Number of edges: " << dal::preview::get_edge_count(graph) << std::endl;

    dal::preview::vertex_edge_size_type<graph_t> vertex_id = 0;
    std::cout << "Degree of " << vertex_id << ": "
              << dal::preview::get_vertex_degree(graph, vertex_id) << std::endl;

    for (dal::preview::vertex_edge_size_type<graph_t> j = 0;
         j < dal::preview::get_vertex_count(graph);
         ++j) {
        std::cout << "Neighbors of " << j << ": ";
        const auto neigh = dal::preview::get_vertex_neighbors(graph, j);
        for (auto i = neigh.first; i != neigh.second; ++i) {
            std::cout << *i << " ";
        }
        std::cout << std::endl;
    }
    return 0;
}
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jaccard_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iostream>

#include "example_util/output_helpers_graph.hpp"
#include "example_util/utils.hpp"
#include "oneapi/dal/algo/jaccard.hpp"
#include "oneapi/dal/graph/undirected_adjacency_vector_graph.hpp"
#include "oneapi/dal/io/csv.hpp"
#include "oneapi/dal/table/common.hpp"

namespace dal = oneapi::dal;

int main(int argc, char **argv) {
    const auto filename = get_data_path("graph.csv");

    // read the graph
    using graph_t = dal::preview::undirected_adjacency_vector_graph<>;
    const auto graph = dal::read<graph_t>(dal::csv::data_source{ filename });

    // set blocks ranges
    const std::int64_t row_range_begin = 0;
    const std::int64_t row_range_end = 2;
    const std::int64_t column_range_begin = 0;
    const std::int64_t column_range_end = 3;

    // set algorithm parameters
    const auto jaccard_desc =
        dal::preview::jaccard::descriptor<>().set_block({ row_range_begin, row_range_end },
                                                        { column_range_begin, 
column_range_end });

    // create caching builder for jaccard result
    dal::preview::jaccard::caching_builder builder;

    // compute Jaccard similarity coefficients
    const auto result_vertex_similarity =
        dal::preview::vertex_similarity(jaccard_desc, graph, builder);

    // extract the result
    const auto jaccard_coeffs = result_vertex_similarity.get_coeffs();
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    const auto vertex_pairs = result_vertex_similarity.get_vertex_pairs();
    const std::int64_t nonzero_coeff_count = result_vertex_similarity.get_nonzero_coeff_count();

    std::cout << "The number of nonzero Jaccard coeffs in the block: " << nonzero_coeff_count
              << std::endl;

    print_vertex_similarity_result(result_vertex_similarity);
}

jaccard_batch_app.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iostream>

#include "tbb/global_control.h"
#include "tbb/parallel_for.h"

#include "example_util/utils.hpp"
#include "oneapi/dal/algo/jaccard.hpp"
#include "oneapi/dal/graph/service_functions.hpp"
#include "oneapi/dal/graph/undirected_adjacency_vector_graph.hpp"
#include "oneapi/dal/io/csv.hpp"
#include "oneapi/dal/table/homogen.hpp"

namespace dal = oneapi::dal;

/// Computes Jaccard similarity coefficients for the graph. The upper triangular
/// matrix is processed only as it is symmetic for undirected graph.
///
/// @param [in]   g  The input graph
/// @param [in]   block_row_count    The size of block by rows
/// @param [in]   block_column_count The size of block by columns
template <class Graph>
void vertex_similarity_block_processing(const Graph &g,
                                        std::int32_t block_row_count,
                                        std::int32_t block_column_count);

int main(int argc, char **argv) {
    // load the graph
    const auto filename = get_data_path("graph.csv");

    using graph_t = dal::preview::undirected_adjacency_vector_graph<>;

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

110



    const auto graph = dal::read<graph_t>(dal::csv::data_source{ filename });

    // set the block sizes for Jaccard similarity block processing
    const std::int32_t block_row_count = 2;
    const std::int32_t block_column_count = 5;

    // set the number of threads
    const std::int32_t tbb_threads_number = 4;
    tbb::global_control c(tbb::global_control::max_allowed_parallelism, tbb_threads_number);

    // compute Jaccard similarity coefficients for the graph
    vertex_similarity_block_processing(graph, block_row_count, block_column_count);

    return 0;
}

template <class Graph>
void vertex_similarity_block_processing(const Graph &g,
                                        std::int32_t block_row_count,
                                        std::int32_t block_column_count) {
    // create caching builders for all threads
    std::vector<dal::preview::jaccard::caching_builder> processing_blocks(
        tbb::this_task_arena::max_concurrency());

    // compute the number of vertices in graph
    const std::int32_t vertex_count = dal::preview::get_vertex_count(g);

    // compute the number of rows
    std::int32_t row_count = vertex_count / block_row_count;
    if (vertex_count % block_row_count) {
        row_count++;
    }

    // parallel processing by rows
    tbb::parallel_for(
        tbb::blocked_range<std::int32_t>(0, row_count),
        [&](const tbb::blocked_range<std::int32_t> &r) {
            for (std::int32_t i = r.begin(); i != r.end(); ++i) {
                // compute the range of rows
                const std::int32_t row_range_begin = i * block_row_count;
                const std::int32_t row_range_end = (i + 1) * block_row_count;

                // start column ranges from diagonal
                const std::int32_t column_begin = 1 + row_range_begin;

                // compute the number of columns
                std::int32_t column_count = (vertex_count - column_begin) / block_column_count;
                if ((vertex_count - column_begin) % block_column_count) {
                    column_count++;
                }

                // parallel processing by columns
                tbb::parallel_for(
                    tbb::blocked_range<std::int32_t>(0, column_count),
                    [&](const tbb::blocked_range<std::int32_t> &inner_r) {
                        for (std::int32_t j = inner_r.begin(); j != inner_r.end(); ++j) {
                            // compute the range of columns
                            const std::int32_t column_range_begin =

Intel® oneAPI Data Analytics Library (oneDAL)  1  

111



                                column_begin + j * block_column_count;
                            const std::int32_t column_range_end =
                                column_begin + (j + 1) * block_column_count;

                            // set block ranges for the vertex similarity algorithm
                            const auto jaccard_desc =
                                dal::preview::jaccard::descriptor<>().set_block(
                                    { row_range_begin, std::min(row_range_end, vertex_count) },
                                    { column_range_begin,
                                      std::min(column_range_end, vertex_count) });

                            // compute Jaccard coefficients for the block
                            dal::preview::vertex_similarity(
                                jaccard_desc,
                                g,
                                processing_blocks[tbb::this_task_arena::current_thread_index()]);

                            // do application specific postprocessing of the result here
                        }
                    },
                    tbb::simple_partitioner{});
            }
        },
        tbb::simple_partitioner{});
}

kmeans_init_dense.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iomanip>
#include <iostream>

#include "example_util/utils.hpp"
#include "oneapi/dal/algo/kmeans.hpp"
#include "oneapi/dal/algo/kmeans_init.hpp"
#include "oneapi/dal/io/csv.hpp"

namespace dal = oneapi::dal;

template <typename Method>
void run(const dal::table& x_train, const std::string& method_name) {
    constexpr std::int64_t cluster_count = 20;
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    constexpr std::int64_t max_iteration_count = 1000;
    constexpr double accuracy_threshold = 0.01;

    const auto kmeans_init_desc =
        dal::kmeans_init::descriptor<float, Method>().set_cluster_count(cluster_count);

    const auto result_init = dal::compute(kmeans_init_desc, x_train);

    const auto kmeans_desc = dal::kmeans::descriptor<>()
                                 .set_cluster_count(cluster_count)
                                 .set_max_iteration_count(max_iteration_count)
                                 .set_accuracy_threshold(accuracy_threshold);

    const auto result_train = dal::train(kmeans_desc, x_train, result_init.get_centroids());

    std::cout << "Method: " << method_name << std::endl;
    std::cout << "Max iteration count: " << max_iteration_count
              << ", Accuracy threshold: " << accuracy_threshold << std::endl;
    std::cout << "Iteration count: " << result_train.get_iteration_count()
              << ", Objective function value: " << result_train.get_objective_function_value()
              << '\n'
              << std::endl;
}

int main(int argc, char const* argv[]) {
    const auto train_data_file_name = get_data_path("kmeans_init_dense.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });

    run<dal::kmeans_init::method::dense>(x_train, "dense");
    run<dal::kmeans_init::method::random_dense>(x_train, "random_dense");
    run<dal::kmeans_init::method::plus_plus_dense>(x_train, "plus_plus_dense");
    run<dal::kmeans_init::method::parallel_plus_dense>(x_train, "parallel_plus_dense");

    return 0;
}

kmeans_lloyd_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "example_util/utils.hpp"
#include "oneapi/dal/algo/kmeans.hpp"
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#include "oneapi/dal/io/csv.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("kmeans_dense_train_data.csv");
    const auto initial_centroids_file_name = get_data_path("kmeans_dense_train_centroids.csv");
    const auto test_data_file_name = get_data_path("kmeans_dense_test_data.csv");
    const auto test_response_file_name = get_data_path("kmeans_dense_test_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto initial_centroids =
        dal::read<dal::table>(dal::csv::data_source{ initial_centroids_file_name });

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto kmeans_desc = dal::kmeans::descriptor<>()
                                 .set_cluster_count(20)
                                 .set_max_iteration_count(5)
                                 .set_accuracy_threshold(0.001);

    const auto result_train = dal::train(kmeans_desc, x_train, initial_centroids);

    std::cout << "Iteration count: " << result_train.get_iteration_count() << std::endl;
    std::cout << "Objective function value: " << result_train.get_objective_function_value()
              << std::endl;
    std::cout << "Responses:\n" << result_train.get_responses() << std::endl;
    std::cout << "Centroids:\n" << result_train.get_model().get_centroids() << std::endl;

    const auto result_test = dal::infer(kmeans_desc, result_train.get_model(), x_test);

    std::cout << "Infer result:\n" << result_test.get_responses() << std::endl;

    std::cout << "Ground truth:\n" << y_test << std::endl;

    return 0;
}

knn_cls_brute_force_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/
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#include <iomanip>
#include <iostream>

#include "oneapi/dal/algo/knn.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("k_nearest_neighbors_train_data.csv");
    const auto train_response_file_name = get_data_path("k_nearest_neighbors_train_label.csv");
    const auto test_data_file_name = get_data_path("k_nearest_neighbors_test_data.csv");
    const auto test_response_file_name = get_data_path("k_nearest_neighbors_test_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto knn_desc = dal::knn::descriptor(5, 1);

    const auto train_result = dal::train(knn_desc, x_train, y_train);

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_true = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto test_result = dal::infer(knn_desc, x_test, train_result.get_model());

    std::cout << "Test results:\n" << test_result.get_responses() << std::endl;
    std::cout << "True responses:\n" << y_true << std::endl;

    return 0;
}

knn_cls_kd_tree_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iomanip>
#include <iostream>

#include "oneapi/dal/algo/knn.hpp"
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#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("k_nearest_neighbors_train_data.csv");
    const auto train_response_file_name = get_data_path("k_nearest_neighbors_train_label.csv");
    const auto test_data_file_name = get_data_path("k_nearest_neighbors_test_data.csv");
    const auto test_response_file_name = get_data_path("k_nearest_neighbors_test_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto knn_desc =
        dal::knn::descriptor<float, dal::knn::method::kd_tree, dal::knn::task::classification>(5,
                                                                                           1);

    const auto train_result = dal::train(knn_desc, x_train, y_train);

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_true = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto test_result = dal::infer(knn_desc, x_test, train_result.get_model());

    std::cout << "Test results:\n" << test_result.get_responses() << std::endl;
    std::cout << "True responses:\n" << y_true << std::endl;

    return 0;
}

knn_search_brute_force_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/knn.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;
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namespace knn = dal::knn;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("k_nearest_neighbors_train_data.csv");
    const auto query_data_file_name = get_data_path("k_nearest_neighbors_test_data.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto x_query = dal::read<dal::table>(dal::csv::data_source{ query_data_file_name });

    using cosine_desc_t = dal::cosine_distance::descriptor<float>;
    const auto cosine_desc = cosine_desc_t{};

    const std::size_t neighbors_count = 6;
    const auto knn_desc =
        knn::descriptor<float, knn::method::brute_force, knn::task::search, cosine_desc_t>(
            neighbors_count,
            cosine_desc);

    const auto train_result = dal::train(knn_desc, x_train);
    const auto test_result = dal::infer(knn_desc, x_query, train_result.get_model());

    std::cout << "Indices result:\n" << test_result.get_indices() << std::endl;
    std::cout << "Distance result:\n" << test_result.get_distances() << std::endl;
    return 0;
}

linear_kernel_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/linear_kernel.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto data_file_name = get_data_path("kernel_function.csv");

    const auto x = dal::read<dal::table>(dal::csv::data_source{ data_file_name });
    const auto y = dal::read<dal::table>(dal::csv::data_source{ data_file_name });
    const auto kernel_desc = dal::linear_kernel::descriptor{}.set_scale(1.0).set_shift(0.0);
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    const auto result = dal::compute(kernel_desc, x, y);

    std::cout << "Values:\n" << result.get_values() << std::endl;

    return 0;
}

linear_regression_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/linear_regression.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "oneapi/dal/exceptions.hpp"
#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

void run() {
    const auto train_data_file_name = get_data_path("linear_regression_train_data.csv");
    const auto train_response_file_name = get_data_path("linear_regression_train_responses.csv");
    const auto test_data_file_name = get_data_path("linear_regression_test_data.csv");
    const auto test_response_file_name = get_data_path("linear_regression_test_responses.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto lr_desc = dal::linear_regression::descriptor<>();

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_test = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto train_result = dal::train(lr_desc, x_train, y_train);
    const auto lr_model = train_result.get_model();

    const auto test_result_uniform = dal::infer(lr_desc, x_test, lr_model);

    std::cout << "Test results:\n" << test_result_uniform.get_responses() << std::endl;
    std::cout << "True responses:\n" << y_test << std::endl;
}
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int main(int argc, char const* argv[]) {
    run();
    return 0;
}

louvain_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <memory>

#include "example_util/utils.hpp"
#include "oneapi/dal/algo/louvain.hpp"
#include "oneapi/dal/graph/undirected_adjacency_vector_graph.hpp"
#include "oneapi/dal/io/csv.hpp"

namespace dal = oneapi::dal;

int main(int argc, char** argv) {
    const auto filename = get_data_path("weighted_edge_list.csv");

    using vertex_type = int32_t;
    using weight_type = double;
    using graph_t = dal::preview::undirected_adjacency_vector_graph<vertex_type, weight_type>;
    const auto graph = dal::read<graph_t>(dal::csv::data_source{ filename },
                                          dal::preview::read_mode::weighted_edge_list);

    // set algorithm parameters
    const auto louvain_desc = dal::preview::louvain::descriptor<>()
                                  .set_resolution(1)
                                  .set_accuracy_threshold(0.0001)
                                  .set_max_iteration_count(3);
    // compute louvain
    const std::int64_t row_count = 7;
    const std::int64_t col_count = 1;
    const std::int64_t data[] = { 0, 1, 2, 3, 4, 5, 6 };
    const auto initial_labels = dal::homogen_table::wrap(data, row_count, col_count);

    const auto result = dal::preview::vertex_partitioning(louvain_desc, graph, initial_labels);

    std::cout << "Modularity: " << result.get_modularity() << std::endl;
    std::cout << "Number of communities: " << result.get_community_count() << std::endl;
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    std::cout << "Labels of communities:" << std::endl << result.get_labels() << std::endl;

    return 0;
}

pca_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/pca.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

template <typename Method>
void run(const dal::table& x_train, const std::string& method_name) {
    const auto pca_desc =
        dal::pca::descriptor<float, Method>().set_component_count(5).set_deterministic(true);

    const auto result_train = dal::train(pca_desc, x_train);

    std::cout << method_name << "\n" << std::endl;

    std::cout << "Eigenvectors:\n" << result_train.get_eigenvectors() << std::endl;

    std::cout << "Eigenvalues:\n" << result_train.get_eigenvalues() << std::endl;

    const auto result_infer = dal::infer(pca_desc, result_train.get_model(), x_train);

    std::cout << "Transformed data:\n" << result_infer.get_transformed_data() << std::endl;
}

int main(int argc, char const* argv[]) {
    const auto train_data_file_name = get_data_path("pca_normalized.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });

    run<dal::pca::method::cov>(x_train, "Training method: Covariance");
    run<dal::pca::method::svd>(x_train, "Training method: SVD");
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    return 0;
}

pca_precomputed_dense_batch.cpp

/*******************************************************************************
* Copyright 2022 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/pca.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

template <typename Method>
void run(const dal::table& x_train, const std::string& method_name) {
    const auto pca_desc =
        dal::pca::descriptor<float, Method>().set_component_count(5).set_deterministic(true);

    const auto result_train = dal::train(pca_desc, x_train);

    std::cout << method_name << "\n" << std::endl;

    std::cout << "Eigenvectors:\n" << result_train.get_eigenvectors() << std::endl;

    std::cout << "Eigenvalues:\n" << result_train.get_eigenvalues() << std::endl;

    const auto result_infer = dal::infer(pca_desc, result_train.get_model(), x_train);

    std::cout << "Transformed data:\n" << result_infer.get_transformed_data() << std::endl;
}

int main(int argc, char const* argv[]) {
    const auto cov_data_file_name = get_data_path("precomputed_covariance.csv");
    const auto cor_data_file_name = get_data_path("precomputed_correlation.csv");

    const auto cov_train = dal::read<dal::table>(dal::csv::data_source{ cov_data_file_name });
    const auto cor_train = dal::read<dal::table>(dal::csv::data_source{ cor_data_file_name });

    run<dal::pca::method::precomputed>(cov_train, "PCA precomputed method with covariance 
matrix");
    run<dal::pca::method::precomputed>(cor_train, "PCA precomputed method with correlation 
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matrix");

    return 0;
}

polynomial_kernel_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/polynomial_kernel.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto data_file_name = get_data_path("kernel_function.csv");

    const auto x = dal::read<dal::table>(dal::csv::data_source{ data_file_name });
    const auto y = dal::read<dal::table>(dal::csv::data_source{ data_file_name });
    const auto kernel_desc =
        dal::polynomial_kernel::descriptor{}.set_scale(1.0).set_shift(0.0).set_degree(2);

    const auto result = dal::compute(kernel_desc, x, y);

    std::cout << "Values:\n" << result.get_values() << std::endl;

    return 0;
}

rbf_kernel_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
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* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/rbf_kernel.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto data_file_name = get_data_path("kernel_function.csv");

    const auto x = dal::read<dal::table>(dal::csv::data_source{ data_file_name });
    const auto y = dal::read<dal::table>(dal::csv::data_source{ data_file_name });
    const auto kernel_desc = dal::rbf_kernel::descriptor{}.set_sigma(1.0);

    const auto result = dal::compute(kernel_desc, x, y);

    std::cout << "Values:\n" << result.get_values() << std::endl;

    return 0;
}

shortest_paths_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <memory>

#include "example_util/utils.hpp"
#include "oneapi/dal/algo/shortest_paths.hpp"
#include "oneapi/dal/graph/directed_adjacency_vector_graph.hpp"
#include "oneapi/dal/io/csv.hpp"

namespace dal = oneapi::dal;

int main(int argc, char** argv) {
    const auto filename = get_data_path("weighted_edge_list.csv");
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    using vertex_type = int32_t;
    using weight_type = double;
    using graph_t = dal::preview::directed_adjacency_vector_graph<vertex_type, weight_type>;

    const auto graph = dal::read<graph_t>(dal::csv::data_source{ filename },
                                          dal::preview::read_mode::weighted_edge_list);

    // set algorithm parameters
    const auto shortest_paths_desc = dal::preview::shortest_paths::descriptor<
        float,
        dal::preview::shortest_paths::method::delta_stepping,
        dal::preview::shortest_paths::task::one_to_all>(
        0,
        0.85,
        dal::preview::shortest_paths::optional_results::distances |
            dal::preview::shortest_paths::optional_results::predecessors);
    // compute shortest paths
    const auto result_shortest_paths = dal::preview::traverse(shortest_paths_desc, graph);

    // extract the result
    std::cout << "Distances: " << std::endl;
    std::cout << result_shortest_paths.get_distances() << std::endl;
    std::cout << "Predecessors: " << std::endl;
    std::cout << result_shortest_paths.get_predecessors() << std::endl;

    return 0;
}

sigmoid_kernel_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/sigmoid_kernel.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto data_file_name = get_data_path("kernel_function.csv");
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    const auto x = dal::read<dal::table>(dal::csv::data_source{ data_file_name });
    const auto y = dal::read<dal::table>(dal::csv::data_source{ data_file_name });
    const auto kernel_desc = dal::sigmoid_kernel::descriptor{}.set_scale(1.0).set_shift(0.0);

    const auto result = dal::compute(kernel_desc, x, y);

    std::cout << "Values:\n" << result.get_values() << std::endl;

    return 0;
}

subgraph_isomorphism_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <iostream>

#include "example_util/utils.hpp"
#include "oneapi/dal/algo/subgraph_isomorphism.hpp"
#include "oneapi/dal/exceptions.hpp"
#include "oneapi/dal/graph/undirected_adjacency_vector_graph.hpp"
#include "oneapi/dal/io/csv.hpp"
#include "oneapi/dal/table/common.hpp"

namespace dal = oneapi::dal;

int main(int argc, char **argv) {
    auto target_filename = get_data_path("si_target_graph.csv");
    auto pattern_filename = get_data_path("si_pattern_graph.csv");

    using graph_t = dal::preview::undirected_adjacency_vector_graph<>;

    const auto target_graph = dal::read<graph_t>(dal::csv::data_source{ target_filename });
    const auto pattern_graph = dal::read<graph_t>(dal::csv::data_source{ pattern_filename });

    // set algorithm parameters
    const auto subgraph_isomorphism_desc =
        dal::preview::subgraph_isomorphism::descriptor<>()
            .set_kind(dal::preview::subgraph_isomorphism::kind::non_induced)
            .set_semantic_match(false)
            .set_max_match_count(10);

    const auto result =
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        dal::preview::graph_matching(subgraph_isomorphism_desc, target_graph, pattern_graph);

    // extract the result
    std::cout << "Number of matchings: " << result.get_match_count() << std::endl;
    std::cout << "Matchings:" << std::endl << result.get_vertex_match() << std::endl;

    return 0;
}

svm_multi_class_thunder_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/svm.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("svm_multi_class_train_dense_data.csv");
    const auto train_response_file_name = get_data_path("svm_multi_class_train_dense_label.csv");
    const auto test_data_file_name = get_data_path("svm_multi_class_test_dense_data.csv");
    const auto test_response_file_name = get_data_path("svm_multi_class_test_dense_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto kernel_desc = dal::linear_kernel::descriptor{}.set_scale(1.0).set_shift(0.0);
    const auto svm_desc = dal::svm::descriptor{ kernel_desc }.set_class_count(5).set_c(1.0);
    const auto result_train = dal::train(svm_desc, x_train, y_train);

    std::cout << "Biases:\n" << result_train.get_biases() << std::endl;
    std::cout << "Coeffs indices:\n" << result_train.get_coeffs() << std::endl;

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_true = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto result_test = dal::infer(svm_desc, result_train.get_model(), x_test);

    std::cout << "Decision function result:\n" << result_test.get_decision_function() << 
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std::endl;
    std::cout << "Responses result:\n" << result_test.get_responses() << std::endl;
    std::cout << "Responses true:\n" << y_true << std::endl;

    return 0;
}

svm_nu_cls_thunder_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/svm.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;
namespace svm = dal::svm;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("svm_two_class_train_dense_data.csv");
    const auto train_response_file_name = get_data_path("svm_two_class_train_dense_label.csv");
    const auto test_data_file_name = get_data_path("svm_two_class_test_dense_data.csv");
    const auto test_response_file_name = get_data_path("svm_two_class_test_dense_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto kernel_desc = dal::linear_kernel::descriptor{}.set_scale(1.0).set_shift(0.0);

    const auto svm_desc =
        svm::descriptor<float, svm::method::thunder, svm::task::nu_classification>{ kernel_desc }
            .set_nu(0.5)
            .set_accuracy_threshold(0.001)
            .set_max_iteration_count(100)
            .set_cache_size(200.0)
            .set_tau(1e-6);

    const auto result_train = dal::train(svm_desc, x_train, y_train);

    std::cout << "Biases:\n" << result_train.get_biases() << std::endl;
    std::cout << "Support indices:\n" << result_train.get_support_indices() << std::endl;
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    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_true = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto result_infer = dal::infer(svm_desc, result_train.get_model(), x_test);

    std::cout << "Decision function result:\n" << result_infer.get_decision_function() << 
std::endl;
    std::cout << "Responses result:\n" << result_infer.get_responses() << std::endl;
    std::cout << "Responses true:\n" << y_true << std::endl;

    return 0;
}

svm_nu_reg_thunder_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/svm.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;
namespace svm = dal::svm;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("svm_reg_train_dense_data.csv");
    const auto train_response_file_name = get_data_path("svm_reg_train_dense_label.csv");
    const auto test_data_file_name = get_data_path("svm_reg_test_dense_data.csv");
    const auto test_response_file_name = get_data_path("svm_reg_test_dense_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto kernel_desc = dal::linear_kernel::descriptor{}.set_scale(1.0).set_shift(0.0);

    const auto svm_desc =
        svm::descriptor<float, svm::method::thunder, svm::task::nu_regression>{ kernel_desc }
            .set_nu(0.5)
            .set_c(100.0)
            .set_accuracy_threshold(0.001)
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            .set_cache_size(200.0)
            .set_tau(1e-6);

    const auto result_train = dal::train(svm_desc, x_train, y_train);

    std::cout << "Biases:\n" << result_train.get_biases() << std::endl;
    std::cout << "Support indices:\n" << result_train.get_support_indices() << std::endl;

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_true = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto result_infer = dal::infer(svm_desc, result_train.get_model(), x_test);

    std::cout << "Responses result:\n" << result_infer.get_responses() << std::endl;
    std::cout << "Responses true:\n" << y_true << std::endl;

    return 0;
}

svm_reg_thunder_dense_batch.cpp

/*******************************************************************************
* Copyright 2021 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/svm.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;
namespace svm = dal::svm;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("svm_reg_train_dense_data.csv");
    const auto train_response_file_name = get_data_path("svm_reg_train_dense_label.csv");
    const auto test_data_file_name = get_data_path("svm_reg_test_dense_data.csv");
    const auto test_response_file_name = get_data_path("svm_reg_test_dense_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto kernel_desc = dal::linear_kernel::descriptor{}.set_scale(1.0).set_shift(0.0);
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    const auto svm_desc =
        svm::descriptor<float, svm::method::thunder, svm::task::regression>{ kernel_desc }
            .set_c(100.0)
            .set_epsilon(0.3)
            .set_accuracy_threshold(0.001)
            .set_cache_size(200.0)
            .set_tau(1e-6);

    const auto result_train = dal::train(svm_desc, x_train, y_train);

    std::cout << "Biases:\n" << result_train.get_biases() << std::endl;
    std::cout << "Support indices:\n" << result_train.get_support_indices() << std::endl;

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_true = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto result_infer = dal::infer(svm_desc, result_train.get_model(), x_test);

    std::cout << "Responses result:\n" << result_infer.get_responses() << std::endl;
    std::cout << "Responses true:\n" << y_true << std::endl;

    return 0;
}

svm_two_class_smo_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/svm.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;
namespace svm = dal::svm;

int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("svm_two_class_train_dense_data.csv");
    const auto train_response_file_name = get_data_path("svm_two_class_train_dense_label.csv");
    const auto test_data_file_name = get_data_path("svm_two_class_test_dense_data.csv");
    const auto test_response_file_name = get_data_path("svm_two_class_test_dense_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
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dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto kernel_desc = dal::linear_kernel::descriptor{}.set_scale(1.0).set_shift(0.0);

    const auto svm_desc =
        svm::descriptor<float, svm::method::smo, svm::task::classification>{ kernel_desc }
            .set_c(1.0)
            .set_accuracy_threshold(0.001)
            .set_max_iteration_count(1000)
            .set_cache_size(200.0)
            .set_shrinking(true)
            .set_tau(1e-6);

    const auto result_train = dal::train(svm_desc, x_train, y_train);

    std::cout << "Biases:\n" << result_train.get_biases() << std::endl;
    std::cout << "Support indices:\n" << result_train.get_support_indices() << std::endl;

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_true = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto result_infer = dal::infer(svm_desc, result_train.get_model(), x_test);

    std::cout << "Decision function result:\n" << result_infer.get_decision_function() << 
std::endl;
    std::cout << "Responses result:\n" << result_infer.get_responses() << std::endl;
    std::cout << "Responses true:\n" << y_true << std::endl;

    return 0;
}

svm_two_class_thunder_dense_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include "oneapi/dal/algo/svm.hpp"
#include "oneapi/dal/io/csv.hpp"

#include "example_util/utils.hpp"

namespace dal = oneapi::dal;
namespace svm = dal::svm;
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int main(int argc, char const *argv[]) {
    const auto train_data_file_name = get_data_path("svm_two_class_train_dense_data.csv");
    const auto train_response_file_name = get_data_path("svm_two_class_train_dense_label.csv");
    const auto test_data_file_name = get_data_path("svm_two_class_test_dense_data.csv");
    const auto test_response_file_name = get_data_path("svm_two_class_test_dense_label.csv");

    const auto x_train = dal::read<dal::table>(dal::csv::data_source{ train_data_file_name });
    const auto y_train = 
dal::read<dal::table>(dal::csv::data_source{ train_response_file_name });

    const auto kernel_desc = dal::linear_kernel::descriptor{}.set_scale(1.0).set_shift(0.0);

    const auto svm_desc = svm::descriptor{ kernel_desc }
                              .set_c(1.0)
                              .set_accuracy_threshold(0.001)
                              .set_max_iteration_count(100)
                              .set_cache_size(200.0)
                              .set_tau(1e-6);

    const auto result_train = dal::train(svm_desc, x_train, y_train);

    std::cout << "Biases:\n" << result_train.get_biases() << std::endl;
    std::cout << "Support indices:\n" << result_train.get_support_indices() << std::endl;

    const auto x_test = dal::read<dal::table>(dal::csv::data_source{ test_data_file_name });
    const auto y_true = dal::read<dal::table>(dal::csv::data_source{ test_response_file_name });

    const auto result_infer = dal::infer(svm_desc, result_train.get_model(), x_test);

    std::cout << "Decision function result:\n" << result_infer.get_decision_function() << 
std::endl;
    std::cout << "Responses result:\n" << result_infer.get_responses() << std::endl;
    std::cout << "Responses true:\n" << y_true << std::endl;

    return 0;
}

triangle_counting_batch.cpp

/*******************************************************************************
* Copyright 2020 Intel Corporation
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
*     http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*******************************************************************************/

#include <memory>

#include "example_util/utils.hpp"
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#include "oneapi/dal/algo/triangle_counting.hpp"
#include "oneapi/dal/graph/undirected_adjacency_vector_graph.hpp"
#include "oneapi/dal/io/csv.hpp"

namespace dal = oneapi::dal;
using namespace dal::preview::triangle_counting;

int main(int argc, char** argv) {
    const auto filename = get_data_path("graph.csv");

    // read the graph
    using graph_t = dal::preview::undirected_adjacency_vector_graph<>;
    const auto graph = dal::read<graph_t>(dal::csv::data_source{ filename });
    // set algorithm parameters
    const auto tc_desc = descriptor<float, method::ordered_count, task::local_and_global>();

    // compute local and global triangles
    const auto result_vertex_ranking = dal::preview::vertex_ranking(tc_desc, graph);

    // extract the result
    std::cout << "Global triangles: " << result_vertex_ranking.get_global_rank() << std::endl;
    std::cout << "Local triangles: " << std::endl;

    auto local_triangles_table = result_vertex_ranking.get_ranks();
    const auto& local_triangles = static_cast<const dal::homogen_table&>(local_triangles_table);
    const auto local_triangles_data = local_triangles.get_data<std::int64_t>();
    for (auto i = 0; i < local_triangles_table.get_row_count(); i++) {
        std::cout << i << ":\t" << local_triangles_data[i] << std::endl;
    }

    return 0;
}

Appendix

• Decision Tree
• k-d Tree

Decision Tree

Decision trees partition the feature space into a set of hypercubes, and then fit a simple model in each
hypercube. The simple model can be a prediction model, which ignores all predictors and predicts the
majority (most frequent) class (or the mean of a dependent variable for regression), also known as 0-R or
constant classifier.

Decision tree induction forms a tree-like graph structure as shown in the figure below, where:

• Each internal (non-leaf) node denotes a test on one of the features
• Each branch descending from a non-leaf node corresponds to an outcome of the test
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• Each external node (leaf) denotes the mentioned simple model

Decision Tree Structure

A test is a rule for partitioning the feature space. A test depends on feature values. Each outcome of a test
represents an appropriate hypercube associated with both the test and one of the descending branches.

If a test is a Boolean expression (for example,  or , where f is a feature and c is a constant
fitted during decision tree induction), the inducted decision tree is a binary tree, so its non-leaf nodes have
exactly two branches, ‘true’ and ‘false’, each corresponding to the result of the Boolean expression.

Prediction is performed by starting at the root node of the tree, testing features by the test specified in this
node, then moving down the tree branch corresponding to the outcome of the test for the given sample. This
process is then repeated for the subtree rooted at the node, discovered at the selected branch. The final
result is the prediction of the simple model at the leaf node.

Decision trees are often used in ensemble algorithms, such as boosting, bagging, or decision forest.

k-d Tree

k-d tree is a space-partitioning binary tree [Bentley80], where
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• Each non-leaf node induces the hyperplane that splits the feature space into two parts. To define the
splitting hyperplane explicitly, a non-leaf node stores the identifier of the feature (that defines axis in the
feature space) and a cut-point

• Each leaf node of the tree has an associated subset (a bucket) of elements of the training data set.
Feature vectors from a bucket belong to the region of the space defined by tree nodes on the path from
the root node to the respective leaf.

Related terms

A cut-point A feature value that corresponds to a non-leaf node of a k-d tree and defines the
splitting hyperplane orthogonal to the axis specified by the given feature.

DAAL Interfaces

This chapter documents algorithms implemented in DAAL interfaces. See oneAPI Interfaces to find
documentation on oneAPI interfaces. Refer to oneAPI vs. DAAL Interfaces to learn the difference between
them.

• CPU and GPU Support

• Computation modes
• Methods
• Parameters

• Library Usage

• Algorithms
• Computation Modes
• Training and Prediction

• Data Management
• Analysis

• K-Means Clustering
• Density-Based Spatial Clustering of Applications with Noise
• Correlation and Variance-Covariance Matrices
• Principal Component Analysis
• Principal Components Analysis Transform
• Singular Value Decomposition
• Association Rules
• Kernel Functions
• Expectation-Maximization
• Cholesky Decomposition
• QR Decomposition
• Outlier Detection
• Distance Matrix
• Distributions
• Engines
• Moments of Low Order
• Quantile
• Quality Metrics
• Sorting
• Normalization
• Optimization Solvers

• Training and Prediction

• Decision Forest
• Decision Trees
• Gradient Boosted Trees
• Stump
• Linear and Ridge Regressions
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• LASSO and Elastic Net Regressions
• k-Nearest Neighbors (kNN) Classifier
• Implicit Alternating Least Squares
• Logistic Regression
• Naïve Bayes Classifier
• Support Vector Machine Classifier
• Multi-class Classifier
• Boosting
• Training Alternative

• Services

• Extracting Version Information
• Handling Errors
• Managing Memory
• Managing the Computational Environment
• Providing a Callback for the Host Application

Examples
You can find examples on Github*:

• C++ (CPU)
• Java* (not supported on GPU)
• Python*

CPU and GPU Support

Not all computation modes, methods, and parameters are supported on both CPU and GPU. Differences in
CPU and GPU support are listed below.

Computation modes
For the following algorithms, only listed computation modes are supported on GPU:

GPU Support: Computaion Modes

Algorithm Supported on GPU

Density-Based Spatial Clustering of Applications
with Noise

batch

Linear Regression batch, online

Logistic Regression batch, online

Methods
For the following algorithms, only listed methods are supported on GPU:

GPU Support: Methods

Algortihm Supported on GPU

K-Means Clustering defaultDense

Initialization defaultDense, randomDense

Linear Regression defaultDense

Moments of Low Order defaultDense
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Algortihm Supported on GPU

Stochastic Gradient Descent Algorithm miniBatch

Covariance defaultDense

Principal Component Analysis defaultDense

k-Nearest Neighbors (kNN) Classifier Brute Force

Support Vector Machine Classifier thunder

Decision Forest hist

Parameters
GPU Support: Algorithm Parameters

Algortihm Notes

Support Vector Machine Classifier doShrinking is only supported for defaultDense
method.

Density-Based Spatial Clustering of Applications
with Noise

• On GPU, the memorySavingMode flag can only
be set to true.

• On GPU, the weights parameter is not
supported.

Kernel Functions On GPU, the only supported computation mode
(ComputationMode) is matrixMatrix.

Objective Function • On GPU, only Logistic Loss and Cross-entropy
Loss are supported, Mean Squared Error
Algorithm is not supported.

• On GPU, resultsToCompute only computes
value, gradient, and hessian.

Logistic Regression penaltyL1 is not supported on GPU

Library Usage

• Algorithms

• Algorithm Input
• Algorithm Output
• Algorithm Parameters

• Computation Modes

• Batch processing
• Online processing
• Distributed processing

• Training and Prediction

• Classification Usage Model
• Regression Usage Model
• Recommendation Systems Usage Model
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Algorithms

All Algorithms classes are derived from the base class AlgorithmIface. It provides interfaces for
computations covering a variety of usage scenarios. Basic methods that you typically call are compute() and
finalizeCompute(). In a very generic form algorithms accept one or several numeric tables or models as
an input and return one or several numeric tables and models as an output. Algorithms may also require
algorithm-specific parameters that you can modify by accessing the parameter field of the algorithm.
Because most of algorithm parameters are preset with default values, you can often omit initialization of the
parameter.

Algorithm Input
An algorithm can accept one or several numeric tables or models as an input. In computation modes that
permit multiple calls to the compute() method, ensure that the structure of the input data, that is, the
number of features, their order, and type, is the same for all the calls. The following methods are available to
provide input to an algorithm:

Algorithm Input

input.set(
Input ID,
InputData)

Use to set a pointer to the input argument with the Input ID identifier. This method
overwrites the previous input pointer stored in the algorithm.

input.add(
Input ID,
InputData)

Use in the distributed computation mode to add the pointers with the Input ID identifier.
Unlike the input.set() method, input.add() does not overwrite the previously set
input pointers, but stores all the input pointers until the compute() method is called.

input.get(
Input ID)

Use to get a reference to the pointer to the input data with the Input ID identifier.

For the input that each specific algorithm accepts, refer to the description of this algorithm.

Algorithm Output
Output of an algorithm can be one or several models or numeric tables. To retrieve the results of the
algorithm computation, call the getResult() method. To access specific results, use the get(Result ID)
method with the appropriate Result ID identifier. In the distributed processing mode, to get access to
partial results of the algorithm computation, call the getPartialResult() method on each computation
node. For a full list of algorithm computation results available, refer to the description of an appropriate
algorithm.

By default, all algorithms allocate required memory to store partial and final results. Follow these steps to
provide user allocated memory for partial or final results to the algorithm:

1. Create an object of an appropriate class for the results. For the classes supported, refer to the
description of a specific algorithm.

2. Provide a pointer to that object to the algorithm by calling the setPartialResult() or setResult()
method as appropriate.

3. Call the compute() method. After the call, the object created contains partial or final results.

Algorithm Parameters
Most of algorithms in oneDAL have a set of algorithm-specific parameters. Because most of the parameters
are optional and preset with default values, you can often omit parameter modification. Provide required
parameters to the algorithm using the constructor during algorithm initialization. If you need to change the
parameters, you can do it by accessing the public field parameter of the algorithm. Some algorithms have an
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initialization procedure that sets or precomputes specific parameters needed to compute the algorithm. You
can use the InitializationProcedureIface interface class to implement your own initialization procedure when
the default implementation does not meet your specific needs.

Each algorithm also has generic parameters, such as the floating-point type, computation method, and
computation step for the distributed processing mode.

• In C++, these parameters are defined as template parameters, and in most cases they are preset with
default values. You can change the template parameters while declaring the algorithm.

• In Java, the generic parameters have no default values, and you need to define them in the constructor
during algorithm initialization.

For a list of algorithm parameters, refer to the description of an appropriate algorithm.

Computation Modes

The library algorithms support the following computation modes:

• Batch processing
• Online processing
• Distributed processing

You can select the computation mode during initialization of the Algorithm.

For a list of computation parameters of a specific algorithm in each computation mode, possible input types,
and output results, refer to the description of an appropriate algorithm.

Batch processing
All oneDAL algorithms support at least the batch processing computation mode. In the batch processing
mode, the only compute method of a particular algorithm class is used.

Online processing
Some oneDAL algorithms enable processing of data sets in blocks. In the online processing mode, the
compute(), and finalizeCompute() methods of a particular algorithm class are used. This computation

mode assumes that the data arrives in blocks . Call the compute() method each
time a new input becomes available. When the last block of data arrives, call the finalizeCompute()
method to produce final results. If the input data arrives in an asynchronous mode, you can use the
getStatus() method for a given data source to check whether a new block of data is available for loading.

The following diagram illustrates the computation schema for online processing:
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NOTE While different data blocks may have different numbers of observations , they must have the
same number of feature vectors p.
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Distributed processing
Some oneDAL algorithms enable processing of data sets distributed across several devices. In distributed
processing mode, the compute() and the finalizeCompute() methods of a particular algorithm class are
used. This computation mode assumes that the data set is split in nblocks blocks across computation nodes.

Computation is done in several steps. You need to define the computation step for an algorithm by providing
the computeStep value to the constructor during initialization of the algorithm. Use the compute() method
on each computation node to compute partial results. Use the input.add() method on the master node to
add pointers to partial results processed on each computation node. When the last partial result arrives, call
the compute() method followed by finalizeCompute() to produce final results. If the input data arrives in
an asynchronous mode, you can use the getStatus() method for a given data source to check whether a
new block of data is available for loading.

The computation schema is algorithm-specific. The following diagram illustrates a typical computation
schema for distribute processing:
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For the algorithm-specific computation schema, refer to the Distributed Processing section in the description
of an appropriate algorithm.

Distributed algorithms in oneDAL are abstracted from underlying cross-device communication technology,
which enables use of the library in a variety of multi-device computing and data transfer scenarios. They
include but are not limited to MPI* based cluster environments, Hadoop* or Spark* based cluster
environments, low-level data exchange protocols, and more.

Usage Model: Training and Prediction

Typical workflows:

• Classification Usage Model
• Regression Usage Model
• Recommendation Systems Usage Model

Classification Usage Model

A typical workflow for classification methods includes training and prediction, as explained below.
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Algorithm-Specific Parameters
The parameters used by classification algorithms at each stage depend on a specific algorithm. For a list of
these parameters, refer to the description of an appropriate classification algorithm.
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Training Stage

Classification Usage Model: Training Stage
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At the training stage, classification algorithms accept the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Training Input for Classification Algorithms

Input ID Input

data Pointer to the  numeric table with the training data set. This table can be an
object of any class derived from NumericTable.

weights Weights of the observations in the training data set. Argument is optional, but it is
required by the selected algorithms.

labels Pointer to the  numeric table with class labels.

This table can be an object of any class derived from NumericTable except
PackedSymmetricMatrix and PackedTriangularMatrix.

At the training stage, classification algorithms calculate the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Training Output for Classification Algorithms

Result ID Result

model Pointer to the classification model being trained. The result can only be an object of the
Model class.
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Prediction Stage

Classification Usage Model: Prediction Stage

At the prediction stage, classification algorithms accept the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.
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Prediction Input for Classification Algorithms

Input ID Input

data Pointer to the  numeric table with the working data set. This table can be an
object of any class derived from NumericTable.

model Pointer to the trained classification model. This input can only be an object of the Model
class.

At the prediction stage, classification algorithms calculate the result described below. Pass the Result ID as
a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Prediction Output for Classification Algorithms

Result ID Result

prediction Pointer to the  numeric table with classification results (class labels or confidence
levels).

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix and PackedTriangularMatrix.

probabilit
ies

A numeric table of size , containing probabilities of classes computed when
the computeClassProbabilities option is enabled. This result table is available for
selected algorithms, see corresponding algorithm documentation for details.

logProbabi
lities

A numeric table of size , containing logarithms of classes’ probabilities
computed when the computeClassLogProbabilities option is enabled. This result table
is available for selected algorithms, see corresponding algorithm documentation for details.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, CSRNumericTable.

Regression Usage Model

A typical workflow for regression methods includes training and prediction, as explained below.

Algorithm-Specific Parameters
The parameters used by regression algorithms at each stage depend on a specific algorithm. For a list of
these parameters, refer to the description of an appropriate regression algorithm.
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Training Stage

Regression Usage Model: Training Stage
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At the training stage, regression algorithms accept the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Training Input for Regression Algorithms

Input ID Input

data Pointer to the  numeric table with the training data set. This table can be an
object of any class derived from NumericTable.

weights Weights of the observations in the training data set. Optional argument.

dependentV
ariables

Pointer to the  numeric table with responses (k dependent variables). This table
can be an object of any class derived from NumericTable except
PackedSymmetricMatrix and PackedTriangularMatrix.

At the training stage, regression algorithms calculate the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Training Output for Regression Algorithms

Result ID Result

model Pointer to the regression model being trained. The result can only be an object of the
Model class.
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Prediction Stage

Regression Usage Model: Prediction Stage

At the prediction stage, regression algorithms accept the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.
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Prediction Input for Regression Algorithms

Input ID Input

data Pointer to the  numeric table with the working data set. This table can be an
object of any class derived from NumericTable.

model Pointer to the trained regression model. This input can only be an object of the Model
class.

At the prediction stage, regression algorithms calculate the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Prediction Output for Regression Algorithms

Result ID Result

prediction Pointer to the  numeric table with responses (k dependent variables).

By default, this table is an object of the HomogenNumericTable class, but you can define
it as an object of any class derived from NumericTable except PackedSymmetricMatrix
and PackedTriangularMatrix.

Recommendation Systems Usage Model

A typical workflow for methods of recommendation systems includes training and prediction, as explained
below.

Algorithm-Specific Parameters
The parameters used by recommender algorithms at each stage depend on a specific algorithm. For a list of
these parameters, refer to the description of an appropriate recommender algorithm.

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

154



Training Stage

Recommendation Systems Usage Model: Training Stage
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At the training stage, recommender algorithms accept the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Training Input for Recommender Algorithms

Input ID Input

data Pointer to the  numeric table with the mining data.

NOTE This table can be an object of any class derived from NumericTable except
PackedTriangularMatrix and PackedSymmetricMatrix.

At the training stage, recommender algorithms calculate the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Training Output for Recommender Algorithms

Result ID Result

model Model with initialized item factors.

NOTE The result can only be an object of the Model class.
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Prediction Stage

Recommendation Systems Usage Model: Prediction Stage

At the prediction stage, recommender algorithms accept the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.
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Prediction Input for Recommender Algorithms

Input ID Input

model Model with initialized item factors.

NOTE This input can only be an object of the Model class.

At the prediction stage, recommender algorithms calculate the result described below. Pass the Result ID
as a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Prediction Output for Recommender Algorithms

Result ID Result

prediction Pointer to the  numeric table with predicted ratings.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Data Management

Effective data management is among key constituents of the performance of a data analytics application. For
Intel® oneAPI Data Analytics Library, effective data management requires effectively performing the following
operations:

1. Raw data acquisition, filtering, and normalization with data source interfaces.
2. Data conversion to a numeric representation for numeric tables.
3. Data streaming from a numeric table to an algorithm.

Depending on the usage model, you may also want to apply compression and decompression to the data you
operate on. You can either use compression and decompression embedded into data source interfaces or
apply data serialization and deserialization interfaces.

oneDAL provides a set of customizable interfaces to operate on your out-of-memory and in-memory data in
different usage scenarios, which include batch processing, online processing, and distributed processing, as
well as more complex scenarios, such as a combination of online and distributed processing.

One of key concepts of Data Management in oneDAL is a data set. A data set is a collection of data of a
defined structure that characterizes an analyzed and modeled object. Specifically, the object is characterized
by a set of attributes (Features), which form a Feature Vector of dimension p. Multiple feature vectors form a
set of Observations of size n. oneDAL defines a tabular view of a data set where table rows represent
observations and columns represent features.
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An observation corresponds to a particular measurement of an observed object, and therefore when
measurements are done, at distinct moments in time, the set of observations characterizes how the object
evolves in time.

It is not a rare situation when only a subset of features can be measured at a given moment. In this case,
the non-measured features in the feature vector become blank, or missing. Special statistical techniques
enable recovery (emulation) of missing values.

You normally start working with oneDAL by selecting an appropriate data source, which provides an interface
for your raw data set. oneDAL data sources support categorical, ordinal, and continuous features. It means
that data sources can automatically transform non-numeric categorical and ordinary data into a numeric
representation. When the structure of your raw data is more complex or when the default transformation
mechanism does not fit your needs, you may customize the data source by implementing a custom derivative
class.

Because a data source is typically associated with out-of-memory data, such as files, databases, and so on,
streaming out-of-memory data into memory and back is among major functions of a data source. However
you can also use a data source to implement an in-memory non-numeric data transformation into a numeric
form.

A numeric table is a key interface to operate on numeric in-memory data. oneDAL supports several important
cases of a numeric data layout: homogeneous tables, arrays of structures, and structures of arrays, as well
as Compressed Sparse Row (CSR) encoding for sparse data.

oneDAL algorithms operate with in-memory numeric data accessed through Numeric table interfaces.

Numeric Tables

• Generic Interfaces
• Essential Interfaces for Algorithms
• Types of Numeric Tables

Effective data management is one of the key components for achieving good performance in data analytics
applications. oneDAL defines the NumericTable class that is responsible for storage of and access to the
datasets represented in numeric format on the computational node:

• NumericTable does not track data available on other nodes. The logic that controls synchronization of
data between nodes should be implemented on the application level.

• NumericTable does not accumulate information about data coming in streaming way. All necessary
computations are done on the level of the oneDAL algorithm and/or application software.

The library supports the following data layouts:

• Heterogeneous, Array Of Structures (AOS)
• Heterogeneous, Structure Of Arrays (SOA)
• Homogeneous, dense
• Homogeneous matrix, dense
• Homogeneous symmetric matrix, packed
• Homogeneous triangular matrix, packed
• Homogeneous, sparse CSR

The optimal data layout for homogeneous and heterogeneous numeric tables highly depends on a particular
algorithm. You can find algorithm-specific guidance in the Performance Considerations section for the
appropriate algorithm.

Generic Interfaces

Numeric tables provide interfaces for data management, such as memory allocation and deallocation, and
respective memory access methods, dictionary management, and table size management.

The life cycle of a numeric table consists of the following major steps:

1. Initialize
2. Operate
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3. Deinitialize

The following diagram shows possible flows and transitions between the states of the numeric table for each
step. The description of these steps applies to different types of numeric tables supported in the library, such
as CSR, with appropriate changes in the method names and respective arguments.

Numeric Table Lifecycle

Initialize
A data dictionary is associated with numeric table over its whole life cycle. If the dictionary is not explicitly
provided by the user during initialization, it is automatically constructed using the parameters provided to the
constructor of the numeric table.
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If you need to modify the numeric table dictionary by changing, for example, the number of attributes (that
equals to the number of columns in the table), create another instance of the numeric table to work with the
data. Modification of the dictionary via respective methods for the existing and initialized numeric table does
not imply re-allocation of the internal data structures of the numeric table and can result in unpredicted
behavior of the application.

oneDAL provides several constructors for numeric tables to cover a variety of table initialization scenarios.
The constructors require the numbers of rows and columns for the table or a dictionary. If you do not have
the dictionary or sizes of the numeric table at the time of construction, you can use the constructor with
default values and sizes. The following scenarios are available for use of constructors:

• If the table size is unknown at the time of object construction, you can construct an empty table and
change the size and allocate the memory later. You can also use the constructor to specify the sizes, but
provide a pointer to the memory later:

HomogenNumericTable<float> table(nColumns, nRows, NumericTable::doNotAllocate);
float data[nColumns * nRows];
table.setArray(data, nRows);

• If the table size is known but the data is not yet in memory, oneDAL can allocate the memory
automatically at the time of object construction and even initialize the memory, that is, allocate the matrix
with zero elements:

HomogenNumericTable<float> table(nColumns, nRows, NumericTable::doAllocate, 0.0);
• If the data is already available in memory by the time of object construction, you can provide a pointer to

this data through the appropriate constructor:

float data[nColumns * nRows];
HomogenNumericTable<float> table(data, nColumns, nRows);

To allocate or reallocate the memory after construction of the numeric table, use service methods:

• resize()
This method modifies the number of rows in the table according to the provided parameter and operates
according to the description below:

• If a memory buffer for the numeric table is not allocated, this method allocates memory of the
respective size for the table.

• If a memory buffer for the numeric table is allocated by the library and the number of rows passed to
the function requires a larger memory buffer, the method deallocates it and allocates a new buffer of
the respective size.

• If a memory buffer for the numeric table is provided by the user and the number of rows passed to the
function requires a larger memory buffer, the method internally allocates a new buffer of the respective
size. The memory buffer provided by the user is not deallocated by the library in this case.

• Otherwise, the method modifies the respective number of rows in the internal data structures.

Operate
After initialization or re-initialization of a numeric table, you can use the following methods for the numeric
table to access the data:

• getBlockOfRows() and releaseBlockOfRows()
The getBlockOfRows() method provides access to a data block stored in the numeric table. The rwflag
argument specifies read or write access. Provide the object of the BlockDescriptor type to the method to
interface the requested block of rows. This object, the block descriptor, represents the data in the
contiguous raw-major layout with the number of rows specified in the method and number of columns
specified in the numeric table.
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In oneDAL you can represent the data in the block descriptor with the data type different from the data
type of the numeric table. For example: you can represent a homogeneous data with the float data type,
while the block descriptor represents the requested data in double. You can specify the required data type
during the construction of the block descriptor object. Make sure to call the releaseBlockOfRows()
method after a call to getBlockOfRows(). The data types of the numeric table and block descriptor, as
well as the rwflag argument of the getBlockOfRows() method, define the behavior of
releaseBlockOfRows():

• If rwflag is set to writeOnly or readWrite, releaseBlockOfRows() writes the data from the block
descriptor back to the numeric table.

• If the numeric table and block descriptor use different data types or memory layouts,
releaseBlockOfRows() deallocates the allocated buffers regardless of the value of rwflag.

HomogenNumericTable<double> table(data, nColumns, nRows);
BlockDescriptor<float> block;
table.getBlockOfRows(firstReadRow, nReadRows, readOnly, block);
float *array = block.getBlockPtr();
for (size_t row = 0; row < nReadRows; row++)
{
  for (size_t col = 0; col < nColumns; col++)
  {
    std::cout << array[row * nColumns + col] << "   ";
  }
  std::cout << std::endl;
}
table.releaseBlockOfRows(block);

• getBlockOfColumnValues() and releaseBlockOfColumnValues()
These methods provide access to values in the specific column of a numeric table, similarly to
getBlockOfRows() and releaseBlockOfRows().

• getNumberOfRows() and getNumberOfColumns()
Call these methods to determine the number of rows and columns, respectively, associated with a
given numeric table.

• getDictionary() and resetDictionary(), as well as getFeatureType() and
getNumberOfCategories().

These methods provide access to the data dictionary associated with a given numeric table. See Data
Dictionaries for more details.

• getDataMemoryStatus()
Call this method to determine whether the memory is allocated by the allocateDataMemory()
method, a user provided a pointer to the allocated data, or no data is currently associated with the
numeric table. Additionally, the getArray() method is complimentary to setArray() and provides
access to the data associated with a given table of a given layout.

• serialize() and deserialize()
The serialize() method enables you to serialize the numeric table. Call the deserialization method
deserialize() after each call to serialize(), but before a call to other data access methods.

Deinitialize
After you complete your work with a data resource, the appropriate memory is deallocated implicitly in the
destructor of the numeric table.

Intel® oneAPI Data Analytics Library (oneDAL)  1  

163



NOTE

• If the library internally allocates or reallocates the memory buffers for the data inside the numeric
table, do not use the pointer returned by the getArray() method of the numeric table after its
destruction.

• The default data type for a homogeneous numeric table is float.
• Python*: When creating a numpy array from a numeric table, make sure that a reference to the

numeric table exists as long as a reference to the derived numpy array is being used.

Examples
C++:

• datasource/datastructures_merged.cpp
• datasource/datastructures_homogen.cpp

Java*:

• datasource/DataStructuresMerged.java
• datasource/DataStructuresHomogen.java

Essential Interfaces for Algorithms

In addition to Generic Interfaces, more methods enable interfacing numeric tables with algorithms.

The getDataLayout method provides information about the data layout:

Data Layout Description

soa Structure-Of-Arrays (SOA). Values of individual
data features are stored in contiguous memory
blocks.

aos Array-Of-Structures (AOS). Feature vectors are
stored in contiguous memory block.

csr_Array Condensed-Sparse-Row (CSR).

lowerPackedSymetricMatrix Lower packed symmetric matrix

lowerPackedTriangularMatrix Lower packed triangular matrix

upperPackedSymetricMatrix Upper packed symmetric matrix

upperPackedTriangularMatrix Upper packed triangular matrix

unknown No information about data layout or unsupported
layout.

Rather than access the entire in-memory data set, it is often more efficient to process it by blocks. The key
methods that oneDAL algorithms use for per-block data access are getBlockOfRows() and
getBlockOfColumnValues(). The getBlockOfRows() method accesses a block of feature vectors, while
the getBlockOfColumnValues() method accesses a block of values for a given feature. A particular
algorithm uses getBlockOfRows(), getBlockOfColumnValues(), or both methods to access the data. The
efficiency of data access highly depends on the data layout and on whether the data type of the feature is
natively supported by the algorithm without type conversions. Refer to the Performance Considerations
section in the description of a particular algorithm for a discussion of the optimal data layout and natively
supported data types.
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When the data layout fits the per-block data access pattern and the algorithm requests the data type that
corresponds to the actual data type, the getBlockOfRows() and getBlockOfColumnValues() methods
avoid data copying and type conversion. However, when the layout does not fit the data access pattern or
when type conversion is required, both methods automatically re-pack and convert data as required.

When dealing with custom or unsupported data layouts, you must implement NumericTableIface,
DenseNumericTableIface interfaces, and optionally CSRNumericTableIface or PackedNumericTableIface
interfaces.

Some algorithms, such as Moments of Low Order, compute basic statistics (minimums, maximums, and so
on). The other algorithms, such as Correlation and Variance-Covariance Matrices or Principal Component
Analysis, require some basic statistics on input. To avoid duplicated computation of basic statistics, oneDAL
provides methods to store and retrieve basic statistics associated with a given numeric table:
basicStatistics.set() and basicStatistics.get(). The following basic statistics are computed for
each numeric table:

• minimum - minimum
• maximum - maximum
• sum - sum
• sumSquares - sum of squares

NOTE The default data type of basic statistics is float.

Special Interfaces for the HomogenNumericTable and Matrix Classes

• Use the assign method to initialize elements of a dense homogeneous numeric table with a certain value,
that is, to set all elements of the matrix to zero.

• Use the operator [] method to access rows of a homogeneous dense numeric table.

Special Interfaces for the PackedTriangularMatrix and PackedSymmetricMatrix Classes

• While you can use generic getArray() and setArray() methods to access the data in a packed format,
in algorithms that have specific implementations for a packed data layout, you can use more specific
getPackedValues() and releasePackedValues() methods.

Special Interfaces for the CSRNumericTable Class

• To access three CSR arrays (values , columns, and rowIndex), use getArrays() and setArrays()
methods instead of generic getArray() and setArray() methods. For details of the arrays, see CSR
data layout.

• Similarly, in algorithms that have specific implementations for the CSR data layout, you can use more
specific getBlockOfCSRValues() and releaseBlockOfCSRValues() methods.

Special Interfaces for the MergedNumericTable Class

• To add a new array to the object of the MergedNumericTable class, use the addNumericTable() method.

Types of Numeric Tables

Heterogeneous Numeric Tables
Heterogeneous numeric tables enable you to deal with data structures that are of different data types by
nature. oneDAL provides two ways to represent non-homogeneous numeric tables: AOS and SOA.

AOS Numeric Table
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AOS Numeric Table provides access to observations (feature vectors) that are laid out in a contiguous
memory block:

Array-Of-Structures (AOS) Memory Layout

Examples

C++: datasource/datastructures_aos.cpp

Java*: datasource/DataStructuresAOS.java

SOA Numeric Table

SOA Numeric Table provides access to data sets where observations for each feature are laid out
contiguously in memory:

Structure-Of-Arrays (SOA) Memory Layout

Examples
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C++: datasource/datastructures_soa.cpp

Java*: datasource/DataStructuresSOA.java

Homogeneous Numeric Tables
Use homogeneous numeric tables, that is, objects of the HomogenNumericTable class, and matrices, that is,
objects of the Matrix, PackedTriangularMatrix, and PackedSymmetricMatrix classes, when all the
features are of the same basic data type. Values of the features are laid out in memory as one contiguous
block in the row-major order, that is, Observation 1, Observation 2, and so on. In oneDAL, Matrix is a
homogeneous numeric table most suitable for matrix algebra operations.

For triangular and symmetric matrices with reduced memory footprint, special classes are available:
PackedTriangularMatrix and PackedSymmetricMatrix. Use the DataLayout enumeration to choose
between representations of triangular and symmetric matrices:

• Lower packed: lowerPackedSymetricMatrix or lowerPackedTriangularMatrix
• Upper packed: upperPackedTriangularMatrix or upperPackedSymetricMatrix

Packed Storage Format for Symmetric and Triangular Matrices

Intel® oneAPI Data Analytics Library (oneDAL)  1  

167

https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/cpp/source/datasource/datastructures_soa.cpp
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/java/com/intel/daal/examples/datasource/DataStructuresSOA.java


CSR Numeric Table
oneDAL offers the CSRNumericTable class for a special version of a homogeneous numeric table that
encodes sparse data, that is, the data with a significant number of zero elements. The library uses the
Condensed Sparse Row (CSR) format for encoding:

Condensed Sparse Row (CSR) 0-Based Encoding

Condensed Sparse Row (CSR) 1-Based Encoding

Three arrays describe the sparse matrix M as follows:
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• The array values contains non-zero elements of the matrix row-by-row.
• The j-th element of the array columns encodes the column index in the matrix M for the j-th element of

the array values.
• The i-th element of the array rowIndex encodes the index in the array values corresponding to the first

non-zero element in rows indexed i or greater. The last element in the array rowIndex encodes the
number of non-zero elements in the matrix M.

The library supports 1-based CSR encoding only. In C++ you can specify it by providingoneBased value
through the indexing parameter of type CSRIndexing in the constructor of CSRNumericTable.

Examples

C++: datasource/datastructures_csr.cpp

Java*: datasource/DataStructuresCSR.java

Merged Numeric Table
oneDAL offers the MergedNumericTable class for tables that provides access to data sets comprising several
logical components, such as a set of feature vectors and corresponding labels. This type of tables enables
you to read those data components from one data source. This special type of numeric tables can hold
several numeric tables of any type but CSRNumericTable. In a merged numeric table, arrays are joined by
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columns and therefore can have different numbers of columns. In the case of different numbers of rows in

input matrices, the number of rows in a merged table equals , where  is the

number of rows in the i-th matrix, .

Merged Numeric Table
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Examples

C++: datasource/datastructures_merged.cpp

Java*: datasource/DataStructuresMerged.java

Data Sources

Data sources define interfaces for access and management of data in raw format and out-of-memory data. A
data source is closely coupled with the data dictionary that describes the structure of the data associated
with the data source. To create the associated data dictionary, you can do one of the following:

• While constructing a data source object, specify whether it should automatically create and initialize the
associated data dictionary.

• Call the createDictionaryFromContext() method.

The getDictionary() method returns the dictionary associated with the data source.

Data sources stream and transform raw out-of-memory data into numeric in-memory data accessible
through numeric table interfaces. A data source is associated with the corresponding numeric table. To
allocate the associated numeric table, you can do one of the following:

• While constructing a data source object, specify whether it should automatically allocate the numeric
table.

• Call the allocateNumericTable() method.

The getNumericTable() method returns the numeric table associated with the data source.

To retrieve the number of columns (features) in a raw data set, use the getNumberOfColumns() method. To
retrieve the number of rows (observations) available in a raw data set, use the getNumberOfAvailableRows()
method. The getStatus() method returns the current status of the data source:

• readyForLoad - the data is available for the load operation.
• waitingForData - the data source is waiting for new data to arrive later; designated for data sources that

deal with asynchronous data streaming, that is, the data arriving in blocks at different points in time.
• endOfData- all the data is already loaded.

Because the entire out-of-memory data set may fail to fit into memory, as well as for performance reasons,
oneDAL implements data loading in blocks. Use the loadDataBlock() method to load the next block of data
into the numeric table. This method enables you to load a data block into an internally allocated numeric
table or into the provided numeric table. In both cases, you can specify the number of rows or not. The
method also recalculates basic statistics associated with this numeric table.

oneDAL maintains the list of possible values associated with categorical features to convert them into a
numeric form. In this list, a new index is assigned to each new value found in the raw data set. You can get
the list of possible values from the possibleValues collection associated with the corresponding feature in the
data source. In the case you have several data sets with same data structure and you want to use
continuous indexing, do the following:

1. Retrieve the data dictionary from the last data source using the getDictionary() method.
2. Assign this dictionary to the next data source using the setDictionary() method.
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3. Repeat these steps for each next data source.

Reading from a Data Source

oneDAL implements classes for some popular types of data sources. Each of these classes takes a feature
manager class as the class template parameter. The feature manager parses, filters, and normalizes the data
and converts it into a numeric format. The following are the data sources and the corresponding feature
manager classes:

• Text file (FileDataSource class), to be used with the CSVFeatureManager class
• ODBC (ODBCDataSource class), to be used with the MySQLFeatureManager class
• In-memory text (StringDataSource class), to be used with the CSVFeatureManager class
• KDB relational database (KDBDataSource class), to be used with the KDBFeatureManager class

CSVFeatureManager provides additional capabilities for features modification. Use addModifier() to enable
specific modification when loading data to a numeric table:

• Add the ColumnFilter object if you need to have a predefined subset of features loaded
• Add the OneHotEncoder object if you need a categorical feature to be encoded using the one-hot scheme

Feature managers provide additional capabilities for the modification of the input data during its loading. Use
the Feature modifier entity to define desired modification. Feature modifiers enables you to implement a wide
range of feature extraction or transformation techniques, for instance, feature binarization, one-hot-
encoding, or polynomial features generation. To enable specific modification, use the addModifier() method
that accepts two parameters:

• featureIds - a subset of feature identifiers for which you want to apply modification.
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• featureModifier - an implementation of the Feature modifier, an object that implements the
FeatureModifierIface interface and specifies the way how features of the input data set should be modified
and written to the output numeric table.

Typical feature modifiers usage scenario is the following:

1. Create the data source object and specify a feature manager and its parameters.
2. Define a subset of features for modification and proper feature modifier.
3. Add modifier to the feature manager of the data source object.
4. Call loadDataBlock(), it causes data set loading and applying specified modification procedure to the

features of the data set.

The code block bellow demonstrates feature modifiers usage scenario in case of FileDataSource and
CSVFeatureManager.

// Crate DataSource object (for example FileDataSource)
FileDataSource<CSVFeatureManager> ds("file.csv", options);

// Specify features subset and modifier
auto featureIds = features::list("f1", "f2");
auto featureModifier = modifiers::csv::continuous();

// Add modifier to feature manager
ds.getFeatureManager().addModifier(featureIds, modifier);

// Cause data loading
ds.loadDataBlock();

A feature subset may be defined with the functions list(…) , range(…), all(), or allReverse() located in the
namespace data_management::features. For example, you can use numerical or string identifiers to refer to
the particular feature in the data set. A string identifier may correspond to a feature name (for instance,
name in CSV header or in SQL table column name) and numerical one to the index of a feature. The
following code block shows several ways to define a feature subset. f1 , f2, and f4 are the names of the
respective columns in CSV file or SQL table, and the numbers 0, 2 - 4 are the indices of columns starting
from the left one.

features::list("f1", "f2")   // String identifiers
features::list(0, 3);        // Numerical identifiers
features::list("f1", 2);     // Mixed identifiers
features::range(0, 4);       // Range of features, the same as list(0,…,4)
features::range("f1", "f4"); // Range with string identifiers
features::all();             // Refer to all features in the data set
features::allReverse()       // Like features::all() but in reverse order

// With STL vector
std::vector<features::IdFactory> fv;
fv.push_back("f2"); fv.push_back(3);
features::list(fv);

// With C++ 11 initializer list
features::list({ "f2", 3, "f1" });

We will use the term input features to refer to the columns of raw out-of-memory data and the term output
features for the columns of numeric in-memory data. A feature modifier transforms specified input features
subset to the output features. The number of output features is determined by the modifier. A feature
modifier is expected to read the values corresponding to specified input features from the i-th row and write
modified values to the i-th row of the output numeric table. In general case, feature modifier is able to
process arbitrary number of input features to arbitrary number of output features. Let’s assume that we

added m modifiers along with the features subsets  and the j-th modifier has the  output

columns, where  are specified input features of interest, ,
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 are all possible features, p is the number of features in the input data. The output numeric table

will contain  columns. The j-th feature modifier writes result to the columns starting

with the index , in particular the first feature modifier writes to the first  columns, and the last to the

last  columns of the output table. The following picture demonstrates the case of two modifiers. Feature

Modifier 1 reads the features  from an input data set, performs data transformation and writes the
result to the columns 1, 2 in the output numeric table. Feature Modifier 2 behaves similarly, but processes

features  and has 3 output features.

Feature Modifiers

The oneDAL has several predefined feature modifiers available for CSV and SQL feature managers.

• continuous - parses input values as real numbers, the number of output features is equal to the number
of input features.

• categorical - parses input values as categorical features (described above), the number of output features
is equal to the number of input features.

• automatic - automatically selects appropriate parsing scheme (continuous or categorical)
• oneHotEncoder - apply one-hot-encoding scheme for input features, the number of output features is

equal to the sum of unique values for features in the input data set.

NOTE The current version of the library does not provide predefined feature modifiers for handling
ordinal features.
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You can implement you own feature modifier by inheriting from FeatureModifierBase and overriding its
methods. An example interface of user-defined feature modifier is shown in the code block bellow:

class MyFeatureModifier : public modifiers::csv::FeatureModifierBase
{
public:
   virtual void initialize(modifiers::csv::Config &config);
   virtual void apply(modifiers::csv::Context &context);
   virtual void finalize(modifiers::csv::Config &config);
};

Use the addModifier(…) method to add the user-defined modifier to the feature manager:

ds.getFeatureManager().addModifier(
   features::list(0, 3), modifiers::custom<MyFeatureModifier>()
);

Feature modifier’s lifetime consists of three stages:

1. Initialization. Feature manager performs modifier initialization by calling the initialize method. The
Config class provides methods to change configuration of the modifier. For example use the
Config::setNumberOfOutputFeatures(…) to adjust numbers of output features produced by the modifier.
By default, the number of output feature is equal to the number of input features.

2. Applying loop. Feature manager calls the apply method for every row in the input data set, information
about the current row is provided via context object. To implement this method, you need to get the
input data from the context, carry out desired transformation and write result back to the context
output buffer. You can get the output buffer by calling the Context::getOutputBuffer() method, the
buffer’s size must be equal to the number of output features you specified at the initialization stage.

3. Finalization. Finalization happens when feature manager calls the finalize method with the same config
object passed at the initialization stage. For example, you may use this method to release intermediate
buffers when the data transformation is done.

Note that exact set of methods available for Config and Context depends on the data source type. Please
refer to Developer Reference to get detailed information about supported methods.

Samples
• mysql/sources/datasource_mysql.cpp
• kdb/sources/datasource_kdb.cpp

Examples
• datasource/simple_csv_feature_modifiers.cpp
• datasource/custom_csv_feature_modifiers.cpp

Data Dictionaries

A data dictionary is the metadata that describes features of a data set. The NumericTableFeature and
DataSourceFeature structures describe a particular feature within a dictionary of the associated numeric table
and data source respectively. These structures specify:

• Whether the feature is continuous, categorical, or ordinal
• Underlying data types (double, integer, and so on) used to represent feature values

The DataSourceFeature structure also specifies:

• Possible values for a categorical feature
• The feature name

The DataSourceDictionary class is a data dictionary that describes raw data associated with the
corresponding data source. The NumericTableDictionary class is a data dictionary that describes in-memory
numeric data associated with the corresponding numeric table. Both classes provide generic methods for
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dictionary manipulation, such as accessing a particular data feature, setting and retrieving the number of
features, and adding a new feature. Respective DataSource and NumericTable classes have generic dictionary
manipulation methods, such as getDictionary() and setDictionary().

To create a dictionary from the data source context, you can do one of the following:

• Set the doDictionaryFromContext flag in the DataSource constructor.
• Call to the createDictionaryFromContext() method.

Examples
C++:

• datasource/datastructures_aos.cpp
• datasource/datastructures_soa.cpp
• datasource/datastructures_homogen.cpp

Java*:

• datasource/DataStructuresAOS.java
• datasource/DataStructuresSOA.java
• datasource/DataStructuresHomogen.java

Data Serialization and Deserialization

oneDAL provides interfaces for serialization and deserialization of data objects, which are an essential
technique for data exchange between devices and for implementing data recovery mechanisms on a device
failure.

The InputDataArchive class provides interfaces for creation of a serialized object archive. The
OutputDataArchive class provides interfaces for deserialization of an object from the archive. To reduce
network traffic, memory, or persistent storage footprint, you can compress data objects during serialization
and decompress them back during deserialization. To this end, provide Compressor and Decompressor
objects as arguments for InputDataArchive and OutputDataArchive constructors respectively. For details of
compression and decompression, see Data Compression.

A general structure of an archive is as follows:

Data Archive Structure
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Headers and footers contain information required to reconstruct the archived object.

All serializable objects, such as numeric tables, a data dictionary, and models, have serialization and
deserialization methods. These methods take input archive and output archive, respectively, as method
parameters.

Examples
C++: serialization/serialization.cpp

Java: serialization/SerializationExample.java

Data Compression

When large amounts of data are sent across devices or need to be stored in memory or in a persistent
storage, data compression enables you to reduce network traffic, memory, and persistent storage footprint.
oneDAL implements several most popular generic compression and decompression methods, which include
ZLIB, LZO, RLE, and BZIP2.

General API for Data Compression and Decompression
The CompressionStream and DecompressionStream classes provide general methods for data compression
and decompression. The following diagram illustrates the compression and decompression flow at a high
level:

Data Compression and Decompression Flow

To define compression or decompression methods and related parameters, provide Compressor or
Decompressor objects as arguments to CompressionStream or DecompressionStream constructors
respectively. For more details on Compressor and Decompressor, refer to Compression and Decompression
Interfaces.

Use operator << of CompressionStream or DecompressionStream to provide input data for compression or
decompression stream. By default, all compression and decompression stream methods allocate the memory
required to store results of compression and decompression. For details of controlling memory allocation,
refer to Compression and Decompression Interfaces.
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The following methods are available to retrieve compressed data stored in CompressionStream:

• Copy compressed data blocks into a contiguous array using the copyCompressedArray() method.

You can define the data blocks to copy by specifying the number of bytes to copy. The method copies the
data from the beginning of the stream and removes the copied data from CompressionStream, so next
time you call the copyCompressedArray() method, it copies the next block of data. To copy all the data,
before a call to copyCompressedArray(), call the getCompressedBlocksSize() method to get the total size
of compressed data in the stream.

• Call the getCompressedBlocksCollection() method.

Unlike the copyCompressedArray() method, getCompressedBlocksCollection() does not copy compressed
blocks but provides a reference to the collection of compressed data blocks. The collection is available
until you call the getCompressedBlocksCollection() method next time.

The following methods are available to retrieve decompressed data stored in DecompressionStream:

• Copy decompressed data blocks into a contiguous array using the copyDecompressedArray() method.

You can define the data blocks to copy by specifying the number of bytes to copy. The method copies the
data from the beginning of the stream and removes the copied data from DecompressionStream, so next
time you call the copyDecompressedArray() method, it copies the next block of data. To copy all the data,
before a call to copyDecompressedArray(), call the getDecompressedBlocksSize() method to get the total
size of decompressed data in the stream.

• Call the getDecompressedBlocksCollection() method.

Unlike the copyDecompressedArray() method, getDecompressedBlocksCollection() does not copy
decompressed blocks but provides a reference to the collection of decompressed data blocks. The
collection is available until you call the getDecompressedBlocksCollection() method next time.

Compression and Decompression Interfaces
CompressionStream and DecompressionStream classes cover most typical usage scenarios. Therefore, you
need to work directly with Compressor and Decompressor objects only in the cases as follows:

• CompressionStream and DecompressionStream classes do not cover your specific usage model.
• You want to control memory allocation and deallocation for results of compression and decompression.
• You need to modify compression and decompression default parameters.

The Compressor and Decompressor classes provide interfaces to supported compression and decompression
methods (ZLIB, LZO, RLE, and BZIP2).

Compression and decompression objects are initialized with a set of default parameters. You can modify
parameters of a specific compression method by accessing the parameter field of the Compressor or
Decompressor object.

To perform compression or decompression using the Compressor or Decompressor classes, respectively,
provide input data using the setInputDataBlock() method and call the run() method. This approach requires
that you allocate and control the memory to store the results of compression or decompression. In general, it
is impossible to accurately estimate the required size of the output data block, and the memory you provide
may be insufficient to store results of compression or decompression. However, you can check whether you
need to allocate additional memory to continue the run() operation. To do this, use the
isOutputDataBlockFull() method. You can also use the getUsedOutputDataBlockSize() method to obtain the
size of compressed or decompressed data actually written to the output data block.

You can use your own compression and decompression methods in CompressionStream and
DecompressionStream. In this case, you need to override Compressor and Decompressor objects.

Examples
C++:
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• compression/compressor.cpp
• compression/compression_batch.cpp
• compression/compression_online.cpp

Java*:

• compression/CompressorExample.java
• compression/CompressionBatch.java
• compression/CompressionOnline.java

Data Model

The Data Model component of the Intel® oneAPI Data Analytics Library (oneDAL) provides classes for model
representation. The model mimics the actual data and represents it in a compact way so that you can use the
library when the actual data is missing, incomplete, noisy or unavailable.

There are two categories of models in the library: Regression models and Classification models. Regression
models are used to predict the values of dependent variables (responses) by observing independent
variables. Classification models are used to predict to which sub-population (class) a given observation
belongs.

A set of parameters characterizes each model. oneDAL model classes provide interfaces to access these
parameters. It also provides the corresponding classes to train models, that is, to estimate model parameters
using training data sets. As soon as a model is trained, it can be used for prediction and cross-validation. For
this purpose, the library provides the corresponding prediction classes.

Analysis

• K-Means Clustering
• Density-Based Spatial Clustering of Applications with Noise
• Correlation and Variance-Covariance Matrices
• Principal Component Analysis
• Principal Components Analysis Transform
• Singular Value Decomposition
• Association Rules
• Kernel Functions
• Expectation-Maximization
• Cholesky Decomposition
• QR Decomposition
• Outlier Detection
• Distance Matrix
• Distributions
• Engines
• Moments of Low Order
• Quantile
• Quality Metrics
• Sorting
• Normalization

Optimization Solvers

• Optimization Solvers

• Objective Function

• Computation
• Sum of Functions
• Mean Squared Error Algorithm
• Objective Function with Precomputed Characteristics Algorithm
• Logistic Loss
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• Cross-entropy Loss
• Iterative Solver

• Computation
• Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm
• Stochastic Gradient Descent Algorithm
• Adaptive Subgradient Method
• Coordinate Descent Algorithm
• Stochastic Average Gradient Accelerated Method

K-Means Clustering

NOTE K-Means ans K-Means initialization are also available with oneAPI interfaces:

• K-Means
• K-Means initialization

K-Means is among the most popular and simplest clustering methods. It is intended to partition a data set
into a small number of clusters such that feature vectors within a cluster have greater similarity with one
another than with feature vectors from other clusters. Each cluster is characterized by a representative point,
called a centroid, and a cluster radius.

In other words, the clustering methods enable reducing the problem of analysis of the entire data set to the
analysis of clusters.

There are numerous ways to define the measure of similarity and centroids. For K-Means, the centroid is
defined as the mean of feature vectors within the cluster.

Details

Given the set  of np-dimensional feature

vectors and a positive integer k, the problem is to find a set  of kp-dimensional vectors
that minimize the objective function (overall error)

where  is the distance from  to the closest center in C, such as the Euclidean distance. The
vectors  are called centroids. To start computations, the algorithm requires initial values of
centroids.

Centroid Initialization

Centroids initialization can be done using these methods:

• Choice of first k feature vectors from the data set X.
• Random choice of k feature vectors from the data set using the following simple random sampling draw-

by-draw algorithm. The algorithm does the following:

1.Chooses one of the feature vectors  from X with equal probability.
2.Excludes  from X and adds it to the current set of centers.
3.Resumes from step 1 until the set of centers reaches the desired size k.

• K-Means++ algorithm [Arthur2007], which selects centers with the probability proportional to their

contribution to the overall error  according to the following scheme:

1.Chooses one of the feature vectors  from X with equal probability.
2.Excludes  from X and adds it to the current set of centers C.
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3.
For each feature vector  in X calculates its minimal distance  from the current set of centers
C.

4.Chooses one of the feature vectors  from X with the probability .
5.Resumes from step 2 until the set of centers C reaches the desired size k.

• Parallel K-Means++ algorithm [Bahmani2012] that does the following:

1.Chooses one of the feature vectors  from X with equal probability.
2.Excludes  from X and adds it to the current set of centers C.
3.Repeats nRounds times:

a.
For each feature vector  from X calculates its minimal distance  from the current set
of centers C.

b. Chooses  feature vectors  from X with the probability

.
c. Excludes  vectors chosen in the previous step from X and adds them to the current set of

centers C.
4.For  sets  to the ratings, the number of points in X closer to  than to any other point in C.
5.Applies K-Means++ algorithm with weights  to the points in C, which means that the following

probability is used in step:

The algorithm parameters define the number of candidates L selected in each round and number of
rounds:

•
Choose oversamplingFactor to make .

• Choose nRounds as , where  is the
estimation of the goal function when the first center is chosen. [Bahmani2012] recommends to set
nRounds to a constant value not greater than 8.

Computation

Computation of the goal function includes computation of the Euclidean distance between vectors

. The algorithm uses the following modification of the Euclidean distance between feature

vectors a and b: , where  is computed for continuous features as

and  is computed for binary categorical features as

In these equations,  γ weighs the impact of binary categorical features on the clustering,  is the number
of continuous features, and  is the number of binary categorical features. Note that the algorithm does not
support non-binary categorical features.

The K-Means clustering algorithm computes centroids using Lloyd’s method [Lloyd82]. For each feature
vector , you can also compute the index of the cluster that contains the feature vector.
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In some cases, if no vectors are assigned to some clusters on a particular iteration, the iteration produces an
empty cluster. It may occur due to bad initialization of centroids or the dataset structure. In this case, the
algorithm uses the following strategy to replace the empty cluster centers and decrease the value of the
overall goal function:

• Feature vectors, most distant from their assigned centroids, are selected as the new cluster centers.
Information about these vectors is gathered automatically during the algorithm execution.

• In the distributed processing mode, most distant vectors from the local nodes are computed (Step 1),
stored in PartialResult, and collected on the master node (Step 2). For more details, see the PartialResult
description at Step 1 [Tan2005].

Initialization
The K-Means clustering algorithm requires initialization of centroids as an explicit step. Initialization flow
depends on the computation mode. Skip this step if you already calculated initial centroids.

For initialization, the following computation modes are available:

• Batch Processing
• Distributed Processing

Computation
The following computation modes are available:

• Batch Processing
• Distributed Processing

NOTE Distributed mode is not available for oneAPI interfaces and for Python* with DPC++ support.

Examples
oneAPI DPC++

Batch Processing:

• dpc_kmeans_init_dense.cpp
• dpc_kmeans_lloyd_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_kmeans_lloyd_dense_batch.cpp
• cpp_kmeans_init_dense.cpp

C++ (CPU)

Batch Processing:

• kmeans_dense_batch.cpp
• kmeans_csr_batch.cpp

Distributed Processing:

• kmeans_dense_distr.cpp
• kmeans_csr_distr.cpp

Java*
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NOTE There is no support for Java on GPU.

Batch Processing:

• KMeansDenseBatch.java
• KMeansCSRBatch.java

Distributed Processing

• KMeansDenseDistr.java
• KMeansCSRDistr.java

Python* with DPC++ support

Batch Processing:

• kmeans_batch.py

Python*

Batch Processing:

• kmeans_batch.py

Distributed Processing

• kmeans_spmd.py

Performance Considerations
To get the best overall performance of the K-Means algorithm:

• If input data is homogeneous, provide the input data and store results in homogeneous numeric tables of
the same type as specified in the algorithmFPType class template parameter.

• If input data is non-homogeneous, use AOS layout rather than SOA layout.
• For the output assignments table, use a homogeneous numeric table of the int type.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Batch Processing

Input
Centroid initialization for K-Means clustering accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm.

Algorithm Input for K-Means Initialization (Batch Processing)

Input ID Input

data Pointer to the  numeric table with the data to be clustered.

NOTE The input can be an object of any class derived from NumericTable.
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Parameters
The following table lists parameters of centroid initialization for K-Means clustering, which depend on the
initialization method parameter method.

Algorithm Parameters for K-Means Initialization (Batch Processing)

Parameter method Default Value Description

algorithmFPT
ype

any float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method Not applicable defaultDense Available initialization methods for K-Means
clustering:

For CPU:

• defaultDense - uses first nClusters points as
initial centroids

• deterministicCSR - uses first nClusters points
as initial centroids for data in a CSR numeric
table

• randomDense - uses random nClusters points as
initial centroids

• randomCSR - uses random nClusters points as
initial centroids for data in a CSR numeric table

• plusPlusDense - uses K-Means++ algorithm 
[Arthur2007]

• plusPlusCSR - uses K-Means++ algorithm for
data in a CSR numeric table

• parallelPlusDense - uses parallel K-Means++
algorithm [Bahmani2012]

• parallelPlusCSR - uses parallel K-Means++
algorithm for data in a CSR numeric table

For GPU:

• defaultDense - uses first nClusters points as
initial centroids

• randomDense - uses random nClusters points as
initial centroids

nClusters any Not applicable The number of clusters. Required.

nTrials • parallelP
lusDense

• parallelP
lusCSR

1 The number of trails to generate all clusters but the
first initial cluster. For details, see [Arthur2007],
section 5

oversampling
Factor

• parallelP
lusDense

• parallelP
lusCSR

0.5 A fraction of nClusters in each of nRounds of
parallel K-Means++.
L=nClusters*oversamplingFactor points are
sampled in a round. For details, see 
[Bahmani2012], section 3.3.

nRounds • parallelP
lusDense

5 The number of rounds for parallel K-Means++.
(L*nRounds) must be greater than nClusters. For
details, see [Bahmani2012], section 3.3.
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Parameter method Default Value Description

• parallelP
lusCSR

engine any SharePtr<
engines::
mt19937::
Batch>()

Pointer to the random number generator engine
that is used internally for random numbers
generation.

Output
Centroid initialization for K-Means clustering calculates the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm.

Algorithm Output for K-Means Initialization (Batch Processing)

Result ID Result

centroids Pointer to the  numeric table with the cluster centroids.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can define the
result as an object of any class derived from NumericTable except for PackedTriangularMatrix,
PackedSymmetricMatrix, and CSRNumericTable.

Distributed Processing

This mode assumes that the data set is split into nblocks blocks across computation nodes.

Parameters
Centroid initialization for K-Means clustering in the distributed processing mode has the following
parameters:

Algorithm Parameters for K-Means Initialization (Distributed Processing)

Parameter Method Default
Valude

Description

computeStep any Not applicable The parameter required to initialize the algorithm.
Can be:

• step1Local - the first step, performed on local
nodes. Applicable for all methods.

• step2Master - the second step, performed on a
master node. Applicable for deterministic and
random methods only.

• step2Local - the second step, performed on
local nodes. Applicable for plusPlus and
parallelPlus methods only.

• step3Master - the third step, performed on a
master node. Applicable for plusPlus and
ParallelPlus methods only.

Intel® oneAPI Data Analytics Library (oneDAL)  1  

185



Parameter Method Default
Valude

Description

• step4Local - the forth step, performed on local
nodes. Applicable for plusPlus and
parallelPlus methods only.

• step5Master - the fifth step, performed on a
master node. Applicable for plusPlus and
parallelPlus methods only.

algorithmFPT
ype

any float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method Not applicable defaultDense Available initialization methods for K-Means
clustering:

• defaultDense - uses first nClusters feature
vectors as initial centroids

• deterministicCSR - uses first nClusters
feature vectors as initial centroids for data in a
CSR numeric table

• randomDense - uses random nClusters feature
vectors as initial centroids

• randomCSR - uses random nClusters feature
vectors as initial centroids for data in a CSR
numeric table

• plusPlusDense - uses K-Means++ algorithm 
[Arthur2007]

• plusPlusCSR - uses K-Means++ algorithm for
data in a CSR numeric table

• parallelPlusDense - uses parallel K-Means++
algorithm [Bahmani2012]

• parallelPlusCSR - uses parallel K-Means++
algorithm for data in a CSR numeric table

For more details, see the algorithm description.

nClusters any Not applicable The number of centroids. Required.

nRowsTotal any 0 The total number of rows in all input data sets on
all nodes. Required in the distributed processing
mode in the first step.

offset any Not applicable Offset in the total data set specifying the start of a
block stored on a given local node. Required.

oversampling
Factor

• parallelP
lusDense

• parallelP
lusCSR

0.5 A fraction of nClusters in each of nRounds of
parallel K-Means++.

points are sampled in a round. For details, see 
[Bahmani2012], section 3.3.
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Parameter Method Default
Valude

Description

nRounds • parallelP
lusDense

• parallelP
lusCSR

5 The number of rounds for parallel K-Means++.
 must be greater than nClusters.

For details, see [Bahmani2012], section 3.3.

firstIterati
on

• parallelP
lusDense

• parallelP
lusCSR

• plusPlusD
ense

• plusPlusC
SR

false Set to true if step2Local is called for the first
time.

outputForSte
p5Required

• parallelP
lusDense

• parallelP
lusCSR

false Set to true if step4Local is called on the last
iteration of the Step 2 - Step 4 loop.

Centroid initialization for K-Means clustering follows the general schema described in Algorithms.
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plusPlus methods
K-Means Centroid Initialization with plusPlus methods: Distributed Processing
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parrallelPlus methods
K-Means Centroid Initialization with parrallelPlus methods: Distributed Processing
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Step 1 - on Local Nodes (deterministic, random, plusPlus, and parallelPlus methods)
plusPlus methods
K-Means Centroid Initialization with plusPlus methods: Distributed Processing, Step 1 - on Local
Nodes
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parrallelPlus methods
K-Means Centroid Initialization with parrallelPlus methods: Distributed Processing, Step 1 - on
Local Nodes
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In this step, centroid initialization for K-Means clustering accepts the input described below. Pass the Input
ID as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Input for K-Means Initialization (Distributed Processing, Step 1)

Input ID Input

data Pointer to the  numeric table that represents the i-th data block on the local node.

NOTE While the input for defaultDense, randomDense, plusPlusDense, and
parallelPlusDense methods can be an object of any class derived from NumericTable,
the input for deterministicCSR, randomCSR, plusPlusCSR, and parallelPlusCSR
methods can only be an object of the CSRNumericTable class.

In this step, centroid initialization for K-Means clustering calculates the results described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.

Output for K-Means Initialization (Distributed Processing, Step 1)

Result ID Result

partialCen
troids Pointer to the  numeric table with the centroids computed on the local

node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Step 2 - on Master Node (deterministic and random methods)
This step is applicable for deterministic and random methods only. Centroid initialization for K-Means
clustering accepts the input from each local node described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Input for K-Means Initialization (Distributed Processing, Step 2 on Master Node)

Input ID Input

partialRes
uts

A collection that contains results computed in Step 1 on local nodes (two numeric tables
from each local node).

In this step, centroid initialization for K-Means clustering calculates the results described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.

Output for K-Means Initialization (Distributed Processing, Step 2 on Master Node)

Result ID Result

centroids Pointer to the  numeric table with centroids.
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Result ID Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.
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Step 2 - on Local Nodes (plusPlus and parallelPlus methods)
plusPlus methods
K-Means Centroid Initialization with plusPlus methods: Distributed Processing, Step 2 - on Local
Nodes
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parrallelPlus methods
K-Means Centroid Initialization with parrallelPlus methods: Distributed Processing, Step 2 - on
Local Nodes
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This step is applicable for plusPlus and parallelPlus methods only. Centroid initialization for K-Means
clustering accepts the input from each local node described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Input for K-Means Initialization (Distributed Processing, Step 1 on Local Nodes)

Input ID Input

data Pointer to the  numeric table that represents the i-th data block on the local node.

NOTE While the input for defaultDense, randomDense, plusPlusDense, and
parallelPlusDense methods can be an object of any class derived from NumericTable,
the input for deterministicCSR, randomCSR, plusPlusCSR, and parallelPlusCSR
methods can only be an object of the CSRNumericTable class.

inputOfSte
p2

Pointer to the  numeric table with the centroids calculated in the previous steps
(Step 1 or Step 4).

The value of m is defined by the method and iteration of the algorithm:

• plusPlus method: 
• parallelPlus method:

•  for the first iteration of the Step 2 - Step 4 loop
•  for other iterations

This input can be an object of any class derived from NumericTable, except
CSRNumericTable, PackedTriangularMatrix, and PackedSymmetricMatrix.

internalIn
put

Pointer to the DataCollection object with the internal data of the distributed algorithm
used by its local nodes in Step 2 and Step 4. The DataCollection is created in Step 2
when firstIteration is set to true, and then the DataCollection should be set from
the partial result as an input for next local steps (Step 2 and Step 4).

In this step, centroid initialization for K-Means clustering calculates the results described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.

Output for K-Means Initialization (Distributed Processing, Step 2 on Local Nodes)

Result ID Result

outputOfSt
ep2ForStep
3

Pointer to the  numeric table that contains the overall error accumulated on the
node. For a description of the overall error, see K-Means Clustering Details.

outputOfSt
ep2ForStep
5

Applicable for parallelPlus methods only and calculated when
outputForStep5Required is set to true. Pointer to the  numeric table with the
ratings of centroid candidates computed on the previous steps and

. For a description of
ratings, see K-Means Clustering Details.
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NOTE By default, these results are objects of the HomogenNumericTable class, but you can define
the result as an object of any class derived from NumericTable except PackedTriangularMatrix,
PackedSymmetricMatrix, and CSRNumericTable.
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Step 3 - on Master Node (plusPlus and parallelPlus methods)
plusPlus methods
K-Means Centroid Initialization with plusPlus methods: Distributed Processing, Step 3 - on Master
Node
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parrallelPlus methods

K-Means Centroid Initialization with parrallelPlus methods: Distributed Processing, Step 3 - on
Master Node

This step is applicable for plusPlus and parallelPlus methods only. Centroid initialization for K-Means
clustering accepts the input from each local node described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.
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Input for K-Means Initialization (Distributed Processing, Step 3)

Input ID Input

inputOfSte
p3FromStep
2

A key-value data collection that maps parts of the accumulated error to the local nodes: i-
th element of this collection is a numeric table that contains overall error accumulated on
the i-th node.

In this step, centroid initialization for K-Means clustering calculates the results described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.

Output for K-Means Initialization (Distributed Processing, Step 3)

Result ID Result

outputOfSt
ep3ForStep
4

A key-value data collection that maps the input from Step 4 to local nodes: i-th element of
this collection is a numeric table that contains the input from Step 4 on the i-th node.

Note that Step 3 may produce no input for Step 4 on some local nodes, which means the
collection may not contain the i-th node entry. The single element of this numeric table

, where the overall error  calculated on the node. For a description
of the overall error, see K-Means Clustering Details.

This value defines the probability to sample a new centroid on the i-th node.

outputOfSt
ep3ForStep
5

Applicable for parallelPlus methods only. Pointer to the service data to be used in Step 5.
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Step 4 - on Local Nodes (plusPlus and parallelPlus methods)
plusPlus methods
K-Means Centroid Initialization with plusPlus methods: Distributed Processing, Step 4 - on Local
Nodes
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parrallelPlus methods
K-Means Centroid Initialization with parrallelPlus methods: Distributed Processing, Step 4 - on
Local Nodes
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This step is applicable for plusPlus and parallelPlus methods only. Centroid initialization for K-Means
clustering accepts the input from each local node described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Input for K-Means Initialization (Distributed Processing, Step 4)

Input ID Input

data Pointer to the  numeric table that represents the i-th data block on the local node.

NOTE While the input for defaultDense, randomDense, plusPlusDense, and
parallelPlusDense methods can be an object of any class derived from NumericTable,
the input for deterministicCSR, randomCSR, plusPlusCSR, and parallelPlusCSR
methods can only be an object of the CSRNumericTable class.

inputOfSte
p4FromStep
3

Pointer to the  numeric table with the values calculated in Step 3.

The value of m is defined by the method of the algorithm:

• plusPlus method: 
• parallelPlus method: , 

This input can be an object of any class derived from NumericTable, except
CSRNumericTable, PackedTriangularMatrix, and PackedSymmetricMatrix.

internalIn
put

Pointer to the DataCollection object with the internal data of the distributed algorithm
used by its local nodes in Step 2 and Step 4. The DataCollection is created in Step 2
when firstIteration is set to true, and then the DataCollection should be set from
the partial result as the input for next local steps (Step 2 and Step 4).

In this step, centroid initialization for K-Means clustering calculates the results described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.

Output for K-Means Initialization (Distributed Processing, Step 4)

Result ID Result

outputOfSt
ep4

Pointer to the  numeric table that contains centroids computed on this local node,
where m equals to the one in inputOfStep4FromStep3.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
CSRNumericTable, PackedTriangularMatrix, and PackedSymmetricMatrix.
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Step 5 - on Master Node (parallelPlus methods)
K-Means Centroid Initialization with parrallelPlus methods: Distributed Processing, Step 5 - on
Master Node
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This step is applicable for parallelPlus methods only. Centroid initialization for K-Means clustering accepts the
input from each local node described below. Pass the Input ID as a parameter to the methods that provide
input for your algorithm. For more details, see Algorithms.

Input for K-Means Initialization (Distributed Processing, Step 5)

Input ID Input

inputCentroi
ds

A data collection with the centroids calculated in Step 1 or Step 4. Each item in the
collection is the pointer to  numeric table, where the value of m is defined by the
method and the iteration of the algorithm:

parallelPlus method:

•  for the data added as the output of Step 1
• ,  for the data added as the

output of Step 4

Each numeric table can be an object of any class derived from NumericTable, except
CSRNumericTable, PackedTriangularMatrix, and PackedSymmetricMatrix.

inputOfSte
p5FromStep
2

A data collection with the items calculated in Step 2 on local nodes. For a detailed
definition, see outputOfStep2ForStep5 above.

inputOfSte
p5FromStep
3

Pointer to the service data generated as the output of Step 3 on master node. For a
detailed definition, see outputOfStep3ForStep5 above.

In this step, centroid initialization for K-Means clustering calculates the results described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.

Output for K-Means Initialization (Distributed Processing, Step 5)

Result ID Result

centroids Pointer to the  numeric table with centroids.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Batch Processing

Algorithm Input
The K-Means clustering algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm.

Algorithm Input for K-Means Computaion (Batch Processing)

Input ID Input

data Pointer to the  numeric table with the data to be clustered.
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Input ID Input

inputCentr
oids Pointer to the  numeric table with the initial centroids.

NOTE The input for data and inputCentroids can be an object of any class derived from
NumericTable.

Algorithm Parameters
The K-Means clustering algorithm has the following parameters:

Algorithm Parameters for K-Means Computaion (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available computation methods for K-Means clustering:

For CPU:

• defaultDense - implementation of Lloyd’s algorithm
• lloydCSR - implementation of Lloyd’s algorithm for CSR numeric tables

For GPU:

• defaultDense - implementation of Lloyd’s algorithm

nCluster
s

Not
applicable

The number of clusters. Required to initialize the algorithm.

maxItera
tions

Not
applicable

The number of iterations. Required to initialize the algorithm.

accuracy
Threshol
d

0.0 The threshold for termination of the algorithm.

gamma 1.0 The weight to be used in distance calculation for binary categorical features.

distance
Type

euclidea
n

The measure of closeness between points (observations) being clustered. The
only distance type supported so far is the Euclidian distance.

DEPRECA
TED:assi
gnFlag
USE
INSTEAD:
resultsT
oEvaluat
e

true A flag that enables computation of assignments, that is, assigning cluster
indices to respective observations.
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Paramete
r

Default
Value

Description

resultsT
oEvaluat
e

computeC
entroids
|
computeA
ssignmen
ts |
computeE
xactObje
ctiveFun
ction

The 64-bit integer flag that specifies which extra characteristics of the K-Means
algorithm to compute.

Provide one of the following values to request a single characteristic or use
bitwise OR to request a combination of the characteristics:

• computeCentroids for computation centroids.
• computeAssignments for computation of assignments, that is, assigning

cluster indices to respective observations.
• computeExactObjectiveFunction for computation of exact

ObjectiveFunction.

Algorithm Output
The K-Means clustering algorithm calculates the result described below. Pass the Result ID as a parameter
to the methods that access the results of your algorithm.

Algorithm Output for K-Means Computaion (Batch Processing)

Result ID Result

centroids Pointer to the  numeric table with the cluster centroids, computed when
computeCentroids option is enabled.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

assignment
s

Pointer to the  numeric table with assignments of cluster indices to feature
vectors in the input data, computed when computeAssignments option is enabled.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

objectiveF
unction

Pointer to the  numeric table with the minimum value of the objective function
obtained at the last iteration of the algorithm, might be inexact. When
computeExactObjectiveFunction option is enabled, exact objective function is
computed.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

nIteration
s

Pointer to the  numeric table with the actual number of iterations done by the
algorithm.
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Result ID Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

NOTE You can skip update of centroids and objectiveFunction in the result and compute assignments
using original inputCentroids. To do this, set resultsToEvaluate flag only to computeAssignments
and maxIterations to zero.

Distributed Processing

This mode assumes that the data set is split into nblocks blocks across computation nodes.

Algorithm Parameters
The K-Means clustering algorithm in the distributed processing mode has the following parameters:

Algorithm Parameters for K-Means Computaion (Distributed Processing)

Paramete
r

Default
Value

Description

computeS
tep

Not
applicable

The parameter required to initialize the algorithm. Can be:

• step1Local - the first step, performed on local nodes
• step2Master - the second step, performed on a master node

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available computation methods for K-Means clustering:

• defaultDense - implementation of Lloyd’s algorithm
• lloydCSR - implementation of Lloyd’s algorithm for CSR numeric tables

nCluster
s

Not
applicable

The number of clusters. Required to initialize the algorithm.

gamma 1.0 The weight to be used in distance calculation for binary categorical features.

distance
Type

euclidea
n

The measure of closeness between points (observations) being clustered. The
only distance type supported so far is the Euclidian distance.

assignFl
ag

false A flag that enables computation of assignments, that is, assigning cluster
indices to respective observations.

To compute K-Means clustering in the distributed processing mode, use the general schema described in
Algorithms as follows:
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Step 1 - on Local Nodes
K-Means Computaion: Distributed Processing, Step 1 - on Local Nodes
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In this step, the K-Means clustering algorithm accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Input for K-Means Computaion (Distributed Processing, Step 1)

Input ID Input

data Pointer to the  numeric table that represents the i-th data block on the local node.
The input can be an object of any class derived from NumericTable.

inputCentr
oids Pointer to the  numeric table with the initial cluster centroids. This input

can be an object of any class derived from NumericTable.

In this step, the K-Means clustering algorithm calculates the partial results and results described below. Pass
the Partial Result ID or Result ID as a parameter to the methods that access the results of your
algorithm. For more details, see Algorithms.

Partial Results for K-Means Computaion (Distributed Processing, Step 1)

Partial
Result ID

Result

nObservati
ons

Pointer to the  numeric table that contains the number of observations
assigned to the clusters on local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define this result as an object of any class derived from NumericTable except
CSRNumericTable.

partialSum
s Pointer to the  numeric table with partial sums of observations assigned

to the clusters on the local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

partialObj
ectiveFunc
tion

Pointer to the  numeric table that contains the value of the partial objective
function for observations processed on the local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define this result as an object of any class derived from NumericTable except
CSRNumericTable.

partialCan
didatesDis
tances

Pointer to the  numeric table that contains the value of the nClusters
largest objective function for the observations processed on the local node and stored in
descending order.
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Partial
Result ID

Result

NOTE By default, this result if an object of the HomogenNumericTable class, but you can
define this result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, CSRNumericTable.

partialCan
didatesCen
troids

Pointer to the  numeric table that contains the observations of the
nClusters largest objective function value processed on the local node and stored in
descending order of the objective function.

NOTE By default, this result if an object of the HomogenNumericTable class, but you can
define this result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, CSRNumericTable.

Output for K-Means Computaion (Distributed Processing, Step 1)

Result ID Result

assignment
s

Use when assignFlag = true. Pointer to the  numeric table with 32-bit integer
assignments of cluster indices to feature vectors in the input data on the local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define this result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.
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Step 2 - on Master Node
K-Means Computaion: Distributed Processing, Step 2 - on Master Node

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

212



In this step, the K-Means clustering algorithm accepts the input from each local node described below. Pass
the Input ID as a parameter to the methods that provide input for your algorithm. For more details, see 
Algorithms.

Input for K-Means Computaion (Distributed Processing, Step 2)

Input ID Input

partialRes
uts

A collection that contains results computed in Step 1 on local nodes.

In this step, the K-Means clustering algorithm calculates the results described below. Pass the Result ID as
a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Output for K-Means Computaion (Distributed Processing, Step 2)

Result ID Result

centroids Pointer to the  numeric table with centroids.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

objectiveF
unction

Pointer to the  numeric table that contains the value of the objective function.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define this result as an object of any class derived from NumericTable except
CSRNumericTable.

Important The algorithm computes assignments using input centroids. Therefore, to compute
assignments using final computed centroids, after the last call to Step2compute() method on the
master node, on each local node set assignFlag to true and do one additional call to Step1compute()
and finalizeCompute() methods. Always set assignFlag to true and call finalizeCompute() to
obtain assignments in each step.

NOTE To compute assignments using original inputCentroids on the given node, you can use K-
Means clustering algorithm in the batch processing mode with the subset of the data available on this
node. See Batch Processing for more details.

Density-Based Spatial Clustering of Applications with Noise

Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed
in [Ester96]. It is a density-based clustering non-parametric algorithm: given a set of observations in some
space, it groups together observations that are closely packed together (observations with many nearby
neighbors), marking as outliers observations that lie alone in low-density regions (whose nearest neighbors
are too far away).
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Details

Given the set  of np-dimensional feature
vectors (further referred as observations), a positive floating-point number epsilon and a positive integer
minObservations, the problem is to get clustering assignments for each input observation, based on the
definitions below [Ester96]:

core observation An observation x is called core observation if at least minObservations input
observations (including x) are within distance epsilon from observation x;

directly reachable An observation y is directly reachable from x if y is within distance epsilon from 
core observationx. Observations are only said to be directly reachable from core
observations.

reachable An observation y is reachable from an observation x if there is a path
 with  and , where each  is directly reachable

from . This implies that all observations on the path must be core
observations, with the possible exception of y.

noise observation Noise observations are observations that are not reachable from any other
observation.

cluster Two observations x and y are considered to be in the same cluster if there is a 
core observationz, and x and y are both reachable from z.

Each cluster gets a unique identifier, an integer number from 0 to . Each
observation is assigned an identifier of the cluster it belongs to, or -1 if the observation considered to be a 
noise observation.

Computation
The following computation modes are available:

• Batch Processing
• Distributed Processing

Examples
C++ (CPU)

Batch Processing:

• dbscan_dense_batch.cpp

Distributed Processing:

• dbscan_dense_distr.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• DBSCANDenseBatch.java

Distributed Processing:

• DBSCANDenseDistr.java

Python* with DPC++ support
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Batch Processing:

• dbscan_batch.py

Python*

Batch Processing:

• dbscan_batch.py

Distributed Processing:

• dbscan_spmd.py

Batch Processing

Algorithm Parameters
The DBSCAN clustering algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Batch Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

epsilon Not
applicable

The maximum distance between observations lying in the same neighborhood.

minObser
vations

Not
applicable

The number of observations in a neighborhood for an observation to be
considered as a core one.

memorySa
vingMode

false If flag is set to false, all neighborhoods will be computed and stored prior to
clustering. It will require up to

 of additional

memory, which in worst case can be .
However, in general, performance may be better.

NOTE On GPU, the memorySavingMode flag can only be set to true. You will
get an error if the flag is set to false.

resultsT
oCompute

0 The 64-bit integer flag that specifies which extra characteristics of the DBSCAN
algorithm to compute.

Provide one of the following values to request a single characteristic or use
bitwise OR to request a combination of the characteristics:

• computeCoreIndices for indices of core observations
• computeCoreObservations for core observations
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Algorithm Input
The DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to the methods
that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for DBSCAN (Batch Processing)

Input ID Input

data Pointer to the  numeric table with the data to be clustered.

NOTE The input can be an object of any class derived from NumericTable.

weights Optional input. Pointer to the  numeric table with weights of observations.

NOTE The input can be an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix.
By default all weights are equal to 1.

NOTE This parameter is ignored on GPU.

Algorithm Output
The DBSCAN algorithms calculates the results described below. Pass the Result ID as a parameter to the
methods that access the result of your algorithm. For more details, see Algorithms.

Algorithm Output for DBSCAN (Batch Processing)

Result ID Result

assignment
s

Pointer to the  numeric table with assignments of cluster indices to observations
in the input data.

Noise observations have the assignment equal to -1.

nClusters Pointer to the  numeric table with the total number of clusters found by the
algorithm.

coreIndice
s

Pointer to the numeric table with 1 column and arbitrary number of rows, containing
indices of core observations.

coreObserv
ations

Pointer to the numeric table with p columns and arbitrary number of rows, containing core
observations.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can define the
result as an object of any class derived from NumericTable except PackedTriangularMatrix,
PackedSymmetricMatrix, and CSRNumericTable.

Distributed Processing

This mode assumes that the data set is split into nBlocks blocks across computation nodes.
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To compute DBSCAN algorithm in the distributed processing mode, use the general schema described in 
Algorithms with the following steps:

Step 1 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

blockInd
ex

Not
applicable

Unique identifier of block initially passed for computation on the local node.

nBlocks Not
applicable

The number of blocks initially passed for computation on all nodes.

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 1)

Input ID Input

step1Data Pointer to the  numeric table with the observations to be clustered.

NOTE The input can be an object of any class derived from NumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the partial results described below. Pass the Partial Result
ID as a parameter to the methods that access the partial result of your algorithm. For more details, 
Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 1)

Partial
Result ID

Result

partialOrd
er

Pointer to the  numeric table containing information about observations: identifier
of initial block and index in initial block. This information will be required to reconstruct
initial blocks after transferring observations among nodes.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.
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Step 2 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

blockInd
ex

Not
applicable

Unique identifier of block initially passed for computation on the local node.

nBlocks Not
applicable

The number of blocks initially passed for computation on all nodes.

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 2)

Input ID Input

partialDat
a

Pointer to the collection of numeric tables with p columns and arbitrary number of rows,
containing observations to be clustered.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the partial results described below. Pass the Partial Result
ID as a parameter to the methods that access the partial result of your algorithm. For more details, 
Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 2)

Partial
Result ID

Result

boundingBo
x

Pointer to the  numeric table containing bounding box of input observations: first
row contains minimum value of each feature, second row contains maximum value of each
feature.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.
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Step 3 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

leftBloc
ks

Not
applicable

The number of blocks that will process observations with value of selected split
feature smaller than selected split value.

rightBlo
cks

Not
applicable

The number of blocks that will process observations with value of selected split
feature greater than selected split value.

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 3)

Input ID Input

partialDat
a

Pointer to the collection of numeric tables with p columns and arbitrary number of rows,
containing observations to be clustered.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable.

step3Parti
alBounding
Boxes

Pointer to the collection of the  numeric tables containing bounding boxes computed
on step 2 and collected from all nodes participating in current iteration of geometric
repartitioning process.

NOTE The numeric tables in collection can be an object of any class derived from
NumericTable except for PackedTriangularMatrix, PackedSymmetricMatrix, and
CSRNumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the partial results described below. Pass the Partial Result
ID as a parameter to the methods that access the partial result of your algorithm. For more details, 
Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 3)

Partial
Result ID

Result

split Pointer to the  numeric table containing information about split for current iteration
of geometric repartitioning.

Intel® oneAPI Data Analytics Library (oneDAL)  1  

219



Partial
Result ID

Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Step 4 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

leftBloc
ks

Not
applicable

The number of blocks that will process observations with value of selected split
feature smaller than selected split value.

rightBlo
cks

Not
applicable

The number of blocks that will process observations with value of selected split
feature greater than selected split value.

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 4)

Input ID Input

partialDat
a

Pointer to the collection of numeric tables with p columns and arbitrary number of rows,
containing observations to be clustered.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable.

step4Parti
alOrders

Pointer to the collection of numeric table with 2 columns and arbitrary number of rows
containing information about observations: identifier of initial block and index in initial
block.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.
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Input ID Input

step4Parti
alSplits

Pointer to the collection of the  numeric table containing information about split
computed on step 3 and collected from all nodes participating in current iteration of
geometric repartitioning process.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the partial results described below. Pass the Partial Result
ID as a parameter to the methods that access the partial result of your algorithm. For more details, 
Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 4)

Partial
Result ID

Result

partitione
dData

Pointer to the collection of (leftBlocks + rightBlocks) numeric tables with p columns
and arbitrary number of rows containing observations for processing on nodes participating
in current iteration of geometric repartitioning.

• First leftBlocks numeric tables in collection have the value of selected split feature
smaller than selected split value.

• Next rightBlocks numeric tables in collection have the value of selected split feature
larger than selected split value.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Step 5 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing, Step 5)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

blockInd
ex

Not
applicable

Unique identifier of block initially passed for computation on the local node.
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Paramete
r

Default
Valude

Description

nBlocks Not
applicable

The number of blocks initially passed for computation on all nodes.

epsilon Not
applicable

The maximum distance between observations lying in the same neighborhood.

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 5)

Input ID Input

partialDat
a

Pointer to the collection of numeric tables with p columns and arbitrary number of rows,
containing observations to be clustered.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable.

step5Parti
alBounding
Boxes

Pointer to the collection of  numeric table containing bounding boxes computed on 
step 2 and collected from all nodes. Numeric tables in collection should be ordered by the
identifiers of initial block of nodes.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the partial results described below. Pass the Partial Result
ID as a parameter to the methods that access the partial result of your algorithm. For more details, 
Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 5)

Partial
Result ID

Result

partitione
dHaloData

Pointer to the collection of nBlocks numeric tables with p columns and arbitrary number
of rows containing observations from current node that should be used as halo
observations on each node.

Numeric tables in the collection are ordered by the identifiers of initial block of nodes.

partitione
dHaloDataI
ndices

Pointer to the collection of nBlocks numeric tables with 1 column and arbitrary number of
rows containing indices of observations from current node that should be used as halo
observations on each node.

Numeric tables in the collection are ordered by the identifiers of initial block of nodes.
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NOTE By default, this result is an object of the DataCollection class. The numeric tables in the
collection can be an object of any class derived from NumericTable` except for
``PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Step 6 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing, Step 6)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

blockInd
ex

Not
applicable

Unique identifier of block initially passed for computation on the local node.

nBlocks Not
applicable

The number of blocks initially passed for computation on all nodes.

epsilon Not
applicable

The maximum distance between observations lying in the same neighborhood.

minObser
vations

Not
applicable

The number of observations in a neighborhood for an observation to be
considered as a core.

memorySa
vingMode

false If flag is set to false, all neighborhoods will be computed and stored prior to

clustering. It will require up to  of
additional memory, which in worst case can be

. However, in general, performance may
be better.

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 6)

Input ID Input

partialDat
a

Pointer to the collection of numeric tables with p columns and arbitrary number of rows,
containing observations to be clustered.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable.

haloData Pointer to the collection of numeric tables with p columns and arbitrary number of rows,
containing halo observations for current node computed on step 5.
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Input ID Input

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable.

haloDataIn
dices

Pointer to the collection of numeric tables with 1 column and arbitrary number of rows,
containing indices for halo observations for current node computed on step 5.

Size of this collection should be equal to the size of collection for haloData’s Input ID.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

haloDataBl
ocks

Pointer to the collection of  numeric tables containing identifiers of initial block for
halo observations for current node computed on step 5.

Size of this collection should be equal to the size of collection for haloData’s Input ID.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the partial results described below. Pass the Partial Result
ID as a parameter to the methods that access the partial result of your algorithm. For more details, 
Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 6)

Partial
Result ID

Result

step6Clust
erStructur
e

Pointer to the numeric table with 4 columns and arbitrary number of rows containing
information about current clustering state of observations processed on the local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step6Finis
hedFlag

Pointer to  numeric table containing the flag indicating that the clustering process
is finished for current node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.
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Partial
Result ID

Result

step6NClus
ters

Pointer to  numeric table containing the current number of clusters found on the
local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step6Queri
es

Pointer to the collection of nBlocks numeric tables with 3 columns and arbitrary number
of rows containing clustering queries that should be processed on each node. Numeric
tables in collection ordered by the identifiers of initial block of nodes.

NOTE By default, this result is an object of the DataCollection class. The numeric tables in
the collection can be an object of any class derived from NumericTable` except for
``PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Step 7 - on Master Node
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing, Step 5)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 7)

Input ID Input

partialFin
ishedFlags

Pointer to the collection of  numeric table containing the flag indicating that the
clustering process is finished collected from all nodes.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Algorithm Output
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In this step, the DBSCAN algorithms calculates the results and partial results described below. Pass the
Result ID as a parameter to the methods that access the result and partial result of your algorithm. For
more details, Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 7)

Partial
Result ID

Result

finishedFl
ag

Pointer to  numeric table containing the flag indicating that the clustering process
is finished on all nodes.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Step 8 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

blockInd
ex

Not
applicable

Unique identifier of block initially passed for computation on the local node.

nBlocks Not
applicable

The number of blocks initially passed for computation on all nodes.

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 8)

Input ID Input

step8Input
ClusterStr
ucture

Pointer to the numeric table with 4 columns and arbitrary number of rows containing
information about current clustering state of observations processed on the local node.

NOTE The input can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step8Input
NClusters

Pointer to  numeric tables containing the current number of clusters found on the
local node.
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Input ID Input

NOTE The input can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step8Parti
alQueries

Pointer to the collection of numeric tables with 3 columns and arbitrary number of rows
containing clustering queries that should be processed on the local node collected from all
nodes.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the partial results described below. Pass the Partial Result
ID as a parameter to the methods that access the partial result of your algorithm. For more details, 
Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 8)

Partial
Result ID

Result

step8Clust
erStructur
e

Pointer to the numeric table with 4 columns and arbitrary number of rows containing
information about current clustering state of observations processed on the local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step8Finis
hedFlag

Pointer to  numeric table containing the flag indicating that the clustering process
is finished for current node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step8NClus
ters

Pointer to  numeric table containing the current number of clusters found on the
local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Intel® oneAPI Data Analytics Library (oneDAL)  1  

227



Partial
Result ID

Result

step8Queri
es

Pointer to the collection of nBlocks numeric tables with 3 columns and arbitrary number
of rows containing clustering queries that should be processed on each node. Numeric
tables in collection ordered by the identifiers of initial block of nodes.

NOTE By default, this result is an object of the DataCollection class. The numeric tables in
the collection can be an object of any class derived from NumericTable` except for
``PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Step 9 - on Master Node
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing, Step 5)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 9)

Input ID Input

partialNCl
usters

Pointer to the collection of  numeric table containing the number of clusters found
on each node.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the results and partial results described below. Pass the
Result ID as a parameter to the methods that access the result and partial result of your algorithm. For
more details, Algorithms.

Algorithm Output for DBSCAN (Distributed Processing, Step 9)

Result ID Result

step9NClus
ters

Pointer to  numeric table containing the number of clusters found on all nodes.
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Result ID Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Partial Results for DBSCAN (Distributed Processing, Step 9)

Partial
Result ID

Result

clusterOff
sets

Pointer to the collection of  numeric tables containing offsets for cluster
numeration for each node. Numeric tables with offsets are given in the same order as in
the collection for partialNClustersInput ID.

NOTE By default, this result is an object of the DataCollection class. The numeric tables in
the collection can be an object of any class derived from NumericTable` except for
``PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Step 10 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

blockInd
ex

Not
applicable

Unique identifier of block initially passed for computation on the local node.

nBlocks Not
applicable

The number of blocks initially passed for computation on all nodes.

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 10)

Input ID Input

step10Inpu
tClusterSt
ructure

Pointer to the numeric table with 4 columns and arbitrary number of rows containing
information about current clustering state of observations processed on the local node.
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Input ID Input

NOTE The input can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step10Clus
terOffset

Pointer to  numeric table containing the offset for cluster numeration on the local
node computed on step 9.

NOTE The input can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the partial results described below. Pass the Partial Result
ID as a parameter to the methods that access the partial result of your algorithm. For more details, 
Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 10)

Partial
Result ID

Result

step10Clus
terStructu
re

Pointer to the numeric table with 4 columns and arbitrary number of rows containing
information about current clustering state of observations processed on the local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step10Fini
shedFlag

Pointer to  numeric table containing the flag indicating that the clusters
numeration process is finished for current node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step10Quer
ies

Pointer to the collection of nBlocks numeric tables with 4 columns and arbitrary number
of rows containing clusters numeration queries that should be processed on each node.
Numeric tables in collection ordered by the identifiers of initial block of nodes.

NOTE By default, this result is an object of the DataCollection class. The numeric tables in
the collection can be an object of any class derived from NumericTable` except for
``PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.
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Step 11 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

blockInd
ex

Not
applicable

Unique identifier of block initially passed for computation on the local node.

nBlocks Not
applicable

The number of blocks initially passed for computation on all nodes.

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 11)

Input ID Input

step11Inpu
tClusterSt
ructure

Pointer to the numeric table with 4 columns and arbitrary number of rows containing
information about current clustering state of observations processed on the local node.

NOTE The input can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step11Part
ialQueries

Pointer to the collection of numeric tables with 4 columns and arbitrary number of rows
containing clusters numeration queries that should be processed on the local node
collected from all nodes.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the partial results described below. Pass the Partial Result
ID as a parameter to the methods that access the partial result of your algorithm. For more details, 
Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 11)

Partial
Result ID

Result

step11Clus
terStructu
re

Pointer to the numeric table with 4 columns and arbitrary number of rows containing
information about current clustering state of observations processed on the local node.
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Partial
Result ID

Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step11Fini
shedFlag

Pointer to  numeric table containing the flag indicating that the clusters
numeration process is finished for current node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step11Quer
ies

Pointer to the collection of nBlocks numeric tables with 4 columns and arbitrary number
of rows containing clusters numeration queries that should be processed on each node.

Numeric tables in the collection are ordered by the identifiers of initial block of nodes.

NOTE By default, this result is an object of the DataCollection class. The numeric tables in
the collection can be an object of any class derived from NumericTable` except for
``PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Step 12 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation

blockInd
ex

Not
applicable

Unique identifier of block initially passed for computation on the local node.

nBlocks Not
applicable

The number of blocks initially passed for computation on all nodes.

In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.
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Algorithm Input for DBSCAN (Distributed Processing, Step 12)

Input ID Input

step12Inpu
tClusterSt
ructure

Pointer to the numeric table with 4 columns and arbitrary number of rows containing
information about current clustering state of observations processed on the local node.

NOTE The input can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

step12Part
ialOrders

Pointer to the collection of  numeric tables containing information about
observations: identifier of initial block and index in initial block. This information will be
required to reconstruct initial blocks after transferring observations among nodes.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the partial results described below. Pass the Partial Result
ID as a parameter to the methods that access the partial result of your algorithm. For more details, 
Algorithms.

Partial Results for DBSCAN (Distributed Processing, Step 12)

Partial
Result ID

Result

assignment
Queries

Pointer to the collection of nBlocks numeric tables with 2 columns and arbitrary number
of rows containing clusters assigning queries that should be processed on each node.

Numeric tables in the collection are ordered by the identifiers of initial block of nodes.

NOTE By default, this result is an object of the DataCollection class. The numeric tables in the
collection can be an object of any class derived from NumericTable` except for
``PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Step 13 - on Local Nodes
In this step, the DBSCAN algorithm has the following parameters:

Algorithm Parameters for DBSCAN (Distributed Processing, Step 5)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of DBSCAN algorithm:

• defaultDense – uses brute-force for neighborhood computation
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In this step, the DBSCAN algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, Algorithms.

Algorithm Input for DBSCAN (Distributed Processing, Step 13)

Input ID Input

partialAss
ignmentQue
ries

Pointer to the collection of numeric tables with 2 columns and arbitrary number of rows
containing clusters assigning queries that should be processed on the local node collected
from all nodes.

NOTE The input can be an object of any class derived from DataCollection. The numeric
tables in the collection can be an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Algorithm Output

In this step, the DBSCAN algorithms calculates the results and partial results described below. Pass the
Result ID as a parameter to the methods that access the result and partial result of your algorithm. For
more details, Algorithms.

Algorithm Output for DBSCAN (Distributed Processing, Step 13)

Result ID Result

step13Assi
gnments

Pointer to the  numeric table with assignments of cluster indices to observations
processed on step 1 on the local node. Noise observations have the assignment equal to
-1.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Partial Results for DBSCAN (Distributed Processing, Step 13)

Partial
Result ID

Result

step13Assi
gnmentsQue
ries

Pointer to the numeric table with 2 columns and arbitrary number of rows containing
clusters assigning queries that should be processed on the local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Correlation and Variance-Covariance Matrices

Variance-covariance and correlation matrices are among the most important quantitative measures of a data
set that characterize statistical relationships involving dependence.
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Specifically, the covariance measures the extent to which variables “fluctuate together” (that is, co-vary).
The correlation is the covariance normalized to be between -1 and +1. A positive correlation indicates the
extent to which variables increase or decrease simultaneously. A negative correlation indicates the extent to
which one variable increases while the other one decreases. Values close to +1 and -1 indicate a high degree
of linear dependence between variables.

Details

Given a set X of n feature vectors  of dimension p, the
problem is to compute the sample means and variance-covariance matrix or correlation matrix:

Correlation and Variance-Covariance Matrices

Statistic Definition

Means
, where 

Variance-
covariance
matrix

, where , ,

Correlation
matrix , where , , 

Computation
The following computation modes are available:

• Batch Processing
• Online Processing
• Distributed Processing

Examples
C++ (CPU)

Batch Processing:

• cov_dense_batch.cpp
• cov_csr_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• CovDenseBatch.java
• CovCSRBatch.java

Python* with DPC++ support

Batch Processing:

• covariance_batch.py

Online Processing:

• covariance_streaming.py

Python*
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Batch Processing:

• covariance_batch.py

Online Processing:

• covariance_streaming.py

Distributed Processing:

• covariance_spmd.py

Performance Considerations
To get the best overall performance when computing correlation or variance-covariance matrices:

• If input data is homogeneous, provide the input data and store results in homogeneous numeric tables of
the same type as specified in the algorithmFPType class template parameter.

• If input data is non-homogeneous, use AOS layout rather than SOA layout.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Batch Processing

Algorithm Input
The correlation and variance-covariance matrices algorithm accepts the input described below. Pass the
Input ID as a parameter to the methods that provide input for your algorithm.

Algorithm Input for Correlation and Variance-Covariance Matrices Algorithm (Batch Processing)

Input ID Input

data Pointer to the  numeric table for which the variance-covariance or correlation
matrix C is computed. While the input for defaultDense, singlePassDense, or
sumDense method can be an object of any class derived from NumericTable, the input for
fastCSR, singlePassCSR, or sumCSR method can only be an object of the
CSRNumericTable class.

Algorithm Parameters
The correlation and variance-covariance matrices algorithm has the following parameters:

Algorithm Parameters for Correlation and Variance-Covariance Matrices Algorithm (Batch
Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Available methods for computation of correlation
and variance-covariance matrices:

For CPU:
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Parameter Default Value Description

• defaultDense - default performance-oriented
method

• singlePassDense - implementation of the
single-pass algorithm proposed by D.H.D. West

• sumDense - implementation of the algorithm in
the cases where the basic statistics associated
with the numeric table are pre-computed sums;
returns an error if pre-computed sums are not
defined

• fastCSR - performance-oriented method for
CSR numeric tables

• singlePassCSR - implementation of the single-
pass algorithm proposed by D.H.D. West;
optimized for CSR numeric tables

• sumCSR - implementation of the algorithm in the
cases where the basic statistics associated with
the numeric table are pre-computed sums;
optimized for CSR numeric tables; returns an
error if pre-computed sums are not defined

For GPU:

• defaultDense - default performance-oriented
method

outputMatrix
Type

covarianceMatrix The type of the output matrix. Can be:

• covarianceMatrix - variance-covariance
matrix

• correlationMatrix - correlation matrix

Algorithm Output
The correlation and variance-covariance matrices algorithm calculates the result described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm.

Algorithm Output for Correlation and Variance-Covariance Matrices Algorithm (Batch Processing)

Result ID Result

covariance Use when outputMatrixType=covarianceMatrix. Pointer to the numeric table with the

 variance-covariance matrix.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix and CSRNumericTable.

correlatio
n

Use when outputMatrixType=correlationMatrix. Pointer to the numeric table with the

 correlation matrix.
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Result ID Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix and CSRNumericTable.

mean Pointer to the  numeric table with means.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Online Processing

Online processing computation mode assumes that data arrives in blocks .

Computation of correlation and variance-covariance matrices in the online processing mode follows the
general computation schema for online processing described in Algorithms.

Algorithm Input
The correlation and variance-covariance matrices algorithm in the online processing mode accepts the input
described below. Pass the Input ID as a parameter to the methods that provide input for your algorithm.
For more details, see Algorithms.

Algorithm Input for Correlation and Variance-Covariance Matrices Algorithm (Online Processing)

Input ID Input

data Pointer to the numeric table of size  that represents the current data block.

While the input for defaultDense, singlePassDense, or sumDense method can be an
object of any class derived from NumericTable, the input for fastCSR, singlePassCSR,
or sumCSR method can only be an object of the CSRNumericTable class.

Algorithm Parameters
The correlation and variance-covariance matrices algorithm has the following parameters in the online
processing mode:
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Algorithm Parameters for for Correlation and Variance-Covariance Matrices Algorithm (Online
Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of correlation and variance-covariance
matrices:

defaultDense default performance-oriented method

singlePassDense implementation of the single-pass algorithm proposed by
D.H.D. West

sumDense implementation of the algorithm in the cases where the
basic statistics associated with the numeric table are pre-
computed sums; returns an error if pre-computed sums
are not defined

fastCSR performance-oriented method for CSR numeric tables

singlePassCSR implementation of the single-pass algorithm proposed by
D.H.D. West; optimized for CSR numeric tables

sumCSR implementation of the algorithm in the cases where the
basic statistics associated with the numeric table are pre-
computed sums; optimized for CSR numeric tables;
returns an error if pre-computed sums are not defined

outputMa
trixType

covarian
ceMatrix

The type of the output matrix. Can be:

• covarianceMatrix - variance-covariance matrix
• correlationMatrix - correlation matrix

initiali
zationPr
ocedure

Not
applicable

The procedure for setting initial parameters of the algorithm in the online
processing mode. By default, the algorithm sets the nObservations, sum, and
crossProduct parameters to zero.

Partial Results
The correlation and variance-covariance matrices algorithm in the online processing mode calculates partial
results described below. Pass the Result ID as a parameter to the methods that access the results of your
algorithm. For more details, see Algorithms.

Partial Results for Correlation and Variance-Covariance Matrices Algorithm (Online Processing)

Result ID Result

nObservati
ons

Pointer to the  numeric table that contains the number of observations processed
so far.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
CSRNumericTable.
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Result ID Result

crossProdu
ct

Pointer to  numeric table with the cross-product matrix computed so far.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

sum Pointer to  numeric table with partial sums computed so far.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Algorithm Output
The correlation and variance-covariance matrices algorithm calculates the result described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.

Algorithm Output for Correlation and Variance-Covariance Matrices Algorithm (Online Processing)

Result ID Result

covariance Use when outputMatrixType``=``covarianceMatrix. Pointer to the numeric table with

the  variance-covariance matrix.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix and CSRNumericTable.

correlatio
n

Use when outputMatrixType``=``correlationMatrix. Pointer to the numeric table

with the  correlation matrix.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix and CSRNumericTable.

mean Pointer to the  numeric table with means.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.
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Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Distributed Processing

This mode assumes that the data set is split into nblocks blocks across computation nodes.

Algorithm Parameters
The correlation and variance-covariance matrices algorithm in the distributed processing mode has the
following parameters:

Algorithm Parameters for Correlation and Variance-Covariance Matrices Algorithm (Distributed
Processing)

Paramete
r

Default
Valude

Description

computeS
tep

Not
applicable

The parameter required to initialize the algorithm. Can be:

• step1Local - the first step, performed on local nodes
• step2Master - the second step, performed on a master node

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of low order moments:

defaultDense default performance-oriented method

singlePassDense implementation of the single-pass algorithm proposed by
D.H.D. West

sumDense implementation of the algorithm in the cases where the
basic statistics associated with the numeric table are pre-
computed sums; returns an error if pre-computed sums
are not defined

fastCSR performance-oriented method for CSR numeric tables

singlePassCSR implementation of the single-pass algorithm proposed by
D.H.D. West; optimized for CSR numeric tables

sumCSR implementation of the algorithm in the cases where the
basic statistics associated with the numeric table are pre-
computed sums; optimized for CSR numeric tables;
returns an error if pre-computed sums are not defined

outputMa
trixType

covarian
ceMatrix

The type of the output matrix. Can be:

• covarianceMatrix - variance-covariance matrix
• correlationMatrix - correlation matrix

Computation of correlation and variance-covariance matrices follows the general schema described in 
Algorithms:
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Step 1 - on Local Nodes
In this step, the correlation and variance-covariance matrices algorithm accepts the input described below.
Pass the Input ID as a parameter to the methods that provide input for your algorithm. For more details,
see Algorithms.

Step 1: Algorithm Input for Correlation and Variance-Covariance Matrices Algorithm (Distributed
Processing)

Input ID Input

data Pointer to the numeric table of size  that represents the i-th data block on the local
node.

While the input for defaultDense, singlePassDense, or sumDense method can be an
object of any class derived from NumericTable, the input for fastCSR, singlePassCSR,
or sumCSR method can only be an object of the CSRNumericTable class.

In this step, the correlation and variance-covariance matrices algorithm calculates the results described
below. Pass the Result ID as a parameter to the methods that access the results of your algorithm. For
more details, see Algorithms.

Step 1: Algorithm Output for Correlation and Variance-Covariance Matrices Algorithm (Distributed
Processing)

Result ID Result

nObservati
ons

Pointer to the  numeric table that contains the number of observations processed
so far on the local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
CSRNumericTable.

crossProdu
ct

Pointer to  numeric table with the cross-product matrix computed so far on the
local node.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

sum Pointer to  numeric table with partial sums computed so far on the local node.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.
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Step 2 - on Master Node
In this step, the correlation and variance-covariance matrices algorithm accepts the input described below.
Pass the Input ID as a parameter to the methods that provide input for your algorithm. For more details,
see Algorithms.

Step 2: Algorithm Input for Correlation and Variance-Covariance Matrices Algorithm (Distributed
Processing)

Input ID Input

partialRes
ults

A collection that contains results computed in Step 1 on local nodes (nObservations,
crossProduct, and sum).

NOTE The collection can contain objects of any class derived from the NumericTable class
except PackedSymmetricMatrix and PackedTriangularMatrix.

In this step, the correlation and variance-covariance matrices algorithm calculates the results described in
the following table. Pass the Result ID as a parameter to the methods that access the results of your
algorithm. For more details, see Algorithms.

Step 2: Algorithm Output for for Correlation and Variance-Covariance Matrices Algorithm
(Distributed Processing)

Result ID Result

covariance Use when outputMatrixType``=``covarianceMatrix. Pointer to the numeric table with

the  variance-covariance matrix.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix and CSRNumericTable.

correlatio
n

Use when outputMatrixType``=``correlationMatrix. Pointer to the numeric table

with the  correlation matrix.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix and CSRNumericTable.

mean Pointer to the  numeric table with means.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.
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Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Principal Component Analysis

NOTE Principal Component Analysis is also available with oneAPI interfaces:

• Principal Components Analysis (PCA)

Principal Component Analysis (PCA) is a method for exploratory data analysis. PCA transforms a set of
observations of possibly correlated variables to a new set of uncorrelated variables, called principal
components. Principal components are the directions of the largest variance, that is, the directions where the
data is mostly spread out.

Because all principal components are orthogonal to each other, there is no redundant information. This is a
way of replacing a group of variables with a smaller set of new variables. PCA is one of powerful techniques
for dimension reduction.

Details

Given a set  of p-dimensional feature vectors

or a  correlation matrix and the number of principal components , the problem is to compute 
principal directions (eigenvectors) for the data set. The library returns the transformation matrix T of size

, which contains eigenvectors in the row-major order and a vector of respective eigenvalues in
descending order.

oneDAL provides two methods for running PCA:

• SVD
• Correlation

Eigenvectors computed by PCA are not uniquely defined due to sign ambiguity. PCA supports fast ad-hoc
“sign flip” technique described in the paper [Bro07]. It modifies the signs of eigenvectors shown below:

where T-transformation matrix is computed by PCA,  - i-th row in the matrix, j - column number, sgn -
signum function:

You can provide these types of input data to the PCA algorithms of the library:

• Original, non-normalized data set
• Normalized data set, where each feature has the zero mean and unit variance
• Correlation matrix
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Computation
The following computation modes are available:

• Batch Processing
• Online Processing
• Distributed Processing

Examples
oneAPI DPC++

Batch Processing:

• dpc_pca_cor_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_pca_dense_batch.cpp

C++ (CPU)

Batch Processing:

• pca_cor_dense_batch.cpp
• pca_cor_csr_batch.cpp
• pca_svd_dense_batch.cpp

Online Processing:

• pca_cor_dense_online.cpp
• pca_cor_csr_online.cpp
• pca_svd_dense_online.cpp

Distributed Processing:

• pca_cor_dense_distr.cpp
• pca_cor_csr_distr.cpp
• pca_svd_dense_distr.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• PCACorDenseBatch.java
• PCACorCSRBatch.java
• PCASVDDenseBatch.java

Online Processing:

• PCACorDenseOnline.java
• PCACorCSROnline.java
• PCASVDDenseOnline.java

Distributed Processing:

• PCACorDenseDistr.java
• PCACorCSRDistr.java
• PCASVDDenseDistr.java

Python* with DPC++ support
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Batch Processing:

• pca_batch.py

Python*

Batch Processing:

• pca_batch.py

Distributed Processing:

• pca_spmd.py

Performance Considerations
To get the best overall performance of the PCA algorithm:

• If input data is homogeneous, provide the input data and store results in homogeneous numeric tables of
the same type as specified in the algorithmFPType class template parameter.

• If input data is non-homogeneous, use AOS layout rather than SOA layout.

PCA computation using the correlation method involves the correlation and variance-covariance matrices
algorithm. Depending on the method of this algorithm, the performance of PCA computations may vary. For
sparse data sets, use the methods of this algorithm for sparse data.

Batch Processing

Because the PCA in the batch processing mode performs normalization for data passed as Input ID, to
achieve the best performance, normalize the input data set. To inform the algorithm that the data is
normalized, set the normalization flag for the input numeric table that represents your data set by calling the
setNormalizationFlag() method of the NumericTableIface class.

Because the PCA with the correlation method (defaultDense) in the batch processing mode is based on the
computation of the correlation matrix, to achieve the best performance, precompute the correlation matrix.
To pass the precomputed correlation matrix to the algorithm, use correlation as Input ID.

Online Processing

PCA with the SVD method (svdDense) in the online processing mode is at least as computationally complex
as in the batch processing mode and has high memory requirements for storing auxiliary data between calls
to compute(). On the other hand, the online version of the PCA with the SVD method may enable you to hide
the latency of reading data from a slow data source. To do this, implement load prefetching of the next data
block in parallel with the compute() method for the current block.

Distributed Processing

PCA with the SVD method (svdDense) in the distributed processing mode requires gathering local-node

 numeric tables on the master node. When the amount of local-node work is small, that is, when
the local-node data set is small, the network data transfer may become a bottleneck. To avoid this situation,
ensure that local nodes have a sufficient amount of work. For example, distribute the input data set across a
smaller number of nodes.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Batch Processing
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Algorithm Input
The PCA algorithm accepts the input described below. Pass the Input ID as a parameter to the methods
that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Principal Component Analysis (Batch Processing)

Input ID Input

data Use when the input data is a normalized or non-normalized data set. Pointer to the

 numeric table that contains the input data set.

NOTE This input can be an object of any class derived from NumericTable.

correlatio
n

Use when the input data is a correlation matrix. Pointer to the  numeric table that
contains the correlation matrix.

NOTE This input can be an object of any class derived from NumericTable except
PackedTriangularMatrix.

Algorithm Parameters
The PCA algorithm has the following parameters, depending on the computation method parameter method:

Algorithm Parameters for Principal Component Analysis (Batch Processing)

Parameter method Default Value Description

algorithmFPT
ype

defaultDense
or svdDense

float The floating-point type that the algorithm
uses for intermediate computations. Can
be float or double.

method Not applicable defaultDense Available methods for PCA computation:

For CPU:

• defaultDense - the correlation
method

• svdDense - the SVD method

For GPU:

• defaultDense - the correlation
method

covariance defaultDense SharedPtr<covarianc
e::Batch<algorithmFP
Type,
covariance::defaultDe
nse> >

The correlation and variance-covariance
matrices algorithm to be used for PCA
computations with the correlation method.

normalizatio
n

svdDense SharedPtr<normaliza
tion::zscore::Batch<al
gorithmFPType,
normalization::zscore
::defaultDense>>

The data normalization algorithm to be
used for PCA computations with the SVD
method.
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Parameter method Default Value Description

nComponents defaultDense
, svdDense

0 The number of principal components . If
it is zero, the algorithm will compute the
result for .

isDeterminis
tic

defaultDense
, svdDense

false If true, the algorithm applies the “sign
flip” technique to the results.

resultsToCom
pute

defaultDense
, svdDense

none The 64-bit integer flag that specifies which
optional result to compute.

Provide one of the following values to
request a single characteristic or use
bitwise OR to request a combination of the
characteristics:

• mean
• variance
• eigenvalue

Algorithm Output
The PCA algorithm calculates the results described below. Pass the Result ID as a parameter to the
methods that access the results of your algorithm.

Algorithm Output for Principal Component Analysis (Batch Processing)

Result ID Result

eigenvalue
s

Pointer to the  numeric table that contains eigenvalues in the descending order.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

eigenvecto
rs

Pointer to the  numeric table that contains eigenvectors in the row-major order.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

means Pointer to the  numeric table that contains mean values for each feature. Optional.
If correlation is provided then the vector is filed with zeroes.

variances Pointer to the  numeric table that contains mean values for each feature. Optional.
If correlation is provided then the vector is filed with zeroes.

dataForTra
nsform

Pointer to key value data collection containing the aggregated data for normalization and
whitening with the following key value pairs:

• mean - mean
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Result ID Result

• variance - variance
• eigenvalue - eigenvalue

If resultsToCompute does not contain mean, the dataForTransform means table is NULL.
If resultsToCompute does not contain variances, the dataForTransform variances table
is NULL. If resultsToCompute does not contain eigenvalues, the dataForTransform
eigenvalues table is NULL.

Please note the following:

NOTE

• If the function result is not requested through the resultsToCompute parameter, the respective
element of the result contains a NULL pointer.

• By default, each numeric table specified by the collection elements is an object of the
HomogenNumericTable class, but you can define the result as an object of any class derived from
NumericTable, except for PackedSymmetricMatrix, PackedTriangularMatrix, and
CSRNumericTable.

• For the svdDense method n should not be less than p. If , svdDense returns an error.

Online Processing

NOTE Online processing mode for Principal Component Analysis is not available on GPU.

Online processing computation mode assumes that data arrives in blocks .

PCA computation in the online processing mode follows the general computation schema for online
processing described in Algorithms.

Algorithm Input
The PCA algorithm in the online processing mode accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Principal Component Analysis (Online Processing)

Input ID Input

data Pointer to the  numeric table that represents the current data block. The input can
be an object of any class derived from NumericTable.

Algorithm Parameters
The PCA algorithm in the online processing mode has the following parameters, depending on the
computation method parameter method:
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Algorithm Parameters for Principal Component Analysis (Online Processing)

Parameter Method Default Value Description

algorithmFPT
ype

defaultDense
or svdDense

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method Not applicable defaultDense Available computation methods for PCA
computation:

• defaultDense - the correlation method
• svdDense - the SVD method

initializati
onProcedure

defaultDense
or svdDense

Not applicable The procedure for setting initial parameters of the
algorithm in the online processing mode.

• By default, the algorithm with the
defaultDense method initializes
nObservationsCorrelation,
sumCorrelation, and
crossProductCorrelation with zeros.

• By default, the algorithm with the svdDense
method initializes nObservationsSVD, sumSVD,
and sumSquaresSVD with zeros.

covariance defaultDense SharedPtr<co
variance::Onli
ne<algorithm
FPType,
covariance::d
efaultDense>
>

The correlation and variance-covariance matrices
algorithm to be used for PCA computations with the
correlation method. For details, see Correlation and
Variance-covariance Matrices. Online Processing.

Partial Results
The PCA algorithm in the online processing mode calculates partial results described below. They depend on
the computation method. Pass the Result ID as a parameter to the methods that access the results of your
algorithm. For more details, see Algorithms.

Correlation method (defaultDense)

Partial Results for Principal Component Analysis using Correlation method (Online Processing)

Result ID Result

nObservati
onsCorrela
tion

Pointer to the  numeric table with the number of observations processed so far.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except CSRNumericTable.

crossProdu
ctCorrelat
ion

Pointer to the  numeric table with the partial cross-product matrix computed so
far.
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Result ID Result

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

sumCorrela
tion

Pointer to the  numeric table with partial sums computed so far.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

SVD method (svdDense)

Partial Results for Principal Component Analysis using SVD method (Online Processing)

Result ID Result

nObservati
onsCorrela
tion

Pointer to the  numeric table with the number of observations processed so far.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except CSRNumericTable.

sumSVD Pointer to the  numeric table with partial sums computed so far.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

sumSquares
SVD

Pointer to the  numeric table with partial sums of squares computed so far.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Algorithm Output
The PCA algorithm in the online processing mode calculates the results described below. Pass the Result ID
as a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Principal Component Analysis (Online Processing)

Result ID Result

eigenvalue
s

Pointer to the  numeric table that contains eigenvalues in the descending order.
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Result ID Result

eigenvecto
rs

Pointer to the  numeric table that contains eigenvectors in the row-major order.

NOTE By default, these results are objects of the HomogenNumericTable class, but you can define
the result as an object of any class derived from NumericTable except PackedSymmetricMatrix,
PackedTriangularMatrix, and CSRNumericTable.

Distributed Processing

NOTE Distributed processing mode for Principal Component Analysis is not available on GPU.

This mode assumes that data set is split in nblocks blocks across computation nodes.

PCA computation in the distributed processing mode follows the general schema described in Algorithms.

Algorithm Parameters
The PCA algorithm in the distributed processing mode has the following parameters, depending on the
computation method parameter method:

Algorithm Parameters for Principal Component Analysis (Distributed Processing)

Parameter Method Default Value Description

computeStep defaultDense
or svdDense

Not applicable The parameter required to initialize the algorithm.
Can be:

• step1Local - the first step, performed on local
nodes

• step2Master - the second step, performed on a
master node

algorithmFPT
ype

defaultDense
or svdDense

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method Not applicable defaultDense Available computation methods for PCA
computation:

• defaultDense - the correlation method
• svdDense - the SVD method

covariance defaultDense SharedPtr<co
variance::Dist
ributed
<computeSte
p,
algorithmFPT
ype,

The correlation and variance-covariance matrices
algorithm to be used for PCA computations with the
correlation method. For details, see Correlation and
Variance-covariance Matrices. Distributed
Processing.
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Parameter Method Default Value Description

covariance::d
efaultDense>
>

Use the following two-step schema:

Step 1 - on Local Nodes
Correlation method (defaultDense)

In this step, the PCA algorithm accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Input for Principal Component Analysis using Correlation method (Distributed Processing, Step 1)

Input ID Input

data Pointer to the  numeric table that represents the Lmath:i-th data block on the local
node. The input can be an object of any class derived from NumericTable.

In this step, PCA calculates the results described below. Pass the Result ID as a parameter to the methods
that access the results of your algorithm. For more details, see Algorithms.

Output for Principal Component Analysis using Correlation method (Distributed Processing, Step
1)

Result ID Result

nObservati
onsCorrela
tion

Pointer to the  numeric table with the number of observations processed so far on
the local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except CSRNumericTable.

crossProdu
ctCorrelat
ion

Pointer to the  numeric table with the cross-product matrix computed so far on
the local node.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

sumCorrela
tion

Pointer to the  numeric table with partial sums computed so far on the local node.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

SVD method (svdDense)
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In this step, the PCA algorithm accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Input for Principal Component Analysis using SVD method (Distributed Processing, Step 1)

Input ID Input

data Pointer to the  numeric table that represents the Lmath:i-th data block on the local
node. The input can be an object of any class derived from NumericTable.

In this step, PCA calculates the results described below. Pass the Result ID as a parameter to the methods
that access the results of your algorithm. For more details, see Algorithms.

Output for Principal Component Analysis using SVD method (Distributed Processing, Step 1)

Result ID Result

nObservati
onsCorrela
tion

Pointer to the  numeric table with the number of observations processed so far on
the local node.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except CSRNumericTable.

sumSVD Pointer to the  numeric table with partial sums computed so far on the local node.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

sumSquares
SVD

Pointer to the  numeric table with partial sums of squares computed so far on the
local node.

NOTE By default, this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

auxiliaryD
ataSVD

A collection of numeric tables each with the partial result to transmit to the master node
for Step 2.

NOTE The collection can contain objects of any class derived from NumericTable except the
PackedSymmetricMatrix and PackedTriangularMatrix.

Step 2 - on Master Node
Correlation method (defaultDense)

In this step, the PCA algorithm accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.
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Input for Principal Component Analysis using Correlation method (Distributed Processing, Step 2)

Input ID Input

partialRes
ults

A collection that contains results computed in Step 1 on local nodes
(nObservationsCorrelation, crossProductCorrelation, and sumCorrelation).

NOTE The collection can contain objects of any class derived from NumericTable except the
PackedSymmetricMatrix and PackedTriangularMatrix.

In this step, PCA calculates the results described below. Pass the Result ID as a parameter to the methods
that access the results of your algorithm. For more details, see Algorithms.

Output for Principal Component Analysis using Correlation method (Distributed Processing, Step
2)

Result ID Result

eigenvalue
s

Pointer to the  numeric table that contains eigenvalues in the descending order.

eigenvecto
rs

Pointer to the  numeric table that contains eigenvectors in the row-major order.

NOTE By default, these results are object of the HomogenNumericTable class, but you can define the
result as an object of any class derived from NumericTable except PackedSymmetricMatrix,
PackedTriangularMatrix, and CSRNumericTable.

SVD method (svdDense)

In this step, the PCA algorithm accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Input for Principal Component Analysis using SVD method (Distributed Processing, Step 2)

Input ID Input

partialRes
ults

A collection that contains results computed in Step 1 on local nodes (nObservationsSVD,
sumSVD, sumSquaresSVD, and auxiliaryDataSVD).

NOTE The collection can contain objects of any class derived from NumericTable except the
PackedSymmetricMatrix and PackedTriangularMatrix.

In this step, PCA calculates the results described below. Pass the Result ID as a parameter to the methods
that access the results of your algorithm. For more details, see Algorithms.

Output for Principal Component Analysis using SVD method (Distributed Processing, Step 2)

Result ID Result

eigenvalue
s

Pointer to the  numeric table that contains eigenvalues in the descending order.
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Result ID Result

eigenvecto
rs

Pointer to the  numeric table that contains eigenvectors in the row-major order.

NOTE By default, these results are object of the HomogenNumericTable class, but you can define the
result as an object of any class derived from NumericTable except PackedSymmetricMatrix,
PackedTriangularMatrix, and CSRNumericTable.

Principal Components Analysis Transform

The PCA transform algorithm transforms the data set to principal components.

Details
Given a transformation matrix T computed by PCA (eigenvectors in row-major order) and data set X as input,

the PCA Transform algorithm transforms input data set X of size  to the data set Y of size ,

.

Batch Processing

Algorithm Input

The PCA Transform algorithm accepts the input described below. Pass the `Input ID` as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Principal Components Analysis Transform (Batch Processing)

Input ID Input

data Use when the input data is a normalized or non-normalized data set.

Pointer to the  numeric table that contains the input data set. This input can be
an object of any class derived from NumericTable.

eigenvecto
rs

Principal components computed using the PCA algorithm.

Pointer to the  numeric table . You can define it as an object of any class
derived from NumericTable, except for PackedSymmetricMatrix,
PackedTriangularMatrix, and CSRNumericTable.

dataForTra
nsform

Optional. Pointer to the key value-data collection containing the following data for PCA.
The collection contains the following key-value pairs:

mean means

variance variances

eigenvalue eigenvalues
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Input ID Input

NOTE

• If you do not provide the collection, the library will not apply the corresponding
centering, normalization or whitening operation.

• If one of the numeric tables in collection is NULL, the corresponding operation will
not be applied: centering for means, normalization for variances, whitening for
eigenvalues.

• If mean or variance tables exist, it should be a pointer to the  numeric
table.

• If eigenvalue table is not NULL, it is the pointer to ( ) numeric
table, where the number of the columns is greater than or equal to nComponents.

Algorithm Parameters

The PCA Transform algorithm has the following parameters:

Algorithm Parameters for Principal Components Analysis Transform (Batch Processing)

Paramet
er

method Default
Value

Description

algorit
hmFPTyp
e

default
Dense or
svdDens
e

float The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

nCompon
ents

default
Dense

0
The number of principal components . If zero, the algorithm

will compute the result for .

Algorithm Output

The PCA Transform algorithm calculates the results described below. Pass the Result ID as a parameter to
the methods that access the results of your algorithm.

Algorithm Output for Principal Components Analysis Transform (Batch Processing)

Result ID Result

transforme
dData

Pointer to the  numeric table that contains data projected to the principal
components basis.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:
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• pca_transform_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• PCATransformDenseBatch.java

Python* with DPC++ support

Batch Processing:

• pca_transform_batch.py

Python*

Batch Processing:

• pca_transform_batch.py

Singular Value Decomposition

Singular Value Decomposition (SVD) is one of matrix factorization techniques. It has a broad range of
applications including dimensionality reduction, solving linear inverse problems, and data fitting.

Details

Given the matrix X of size , the problem is to compute the Singular Value Decomposition (SVD)

, where:

• U is an orthogonal matrix of size 
•  is a rectangular diagonal matrix of size  with non-negative values on the diagonal, called

singular values
•  is an orthogonal matrix of size 

Columns of the matrices U and V are called left and right singular vectors, respectively.

Computation
The following computation modes are available:

• Batch and Online Processing
• Distributed Processing

Examples
C++ (CPU)

Batch Processing:

• svd_dense_batch.cpp

Online Processing:

• svd_dense_online.cpp

Distributed Processing:

• svd_dense_distr.cpp

Java*

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

258

https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/cpp/source/pca_transform/pca_transform_dense_batch.cpp
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/java/com/intel/daal/examples/pca_transform/PCATransformDenseBatch.java
https://github.com/intel/scikit-learn-intelex/tree/master/examples/daal4py/sycl/pca_transform_batch.py
https://github.com/intel/scikit-learn-intelex/tree/master/examples/daal4py/pca_transform_batch.py
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/cpp/source/svd/svd_dense_batch.cpp
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/cpp/source/svd/svd_dense_online.cpp
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/cpp/source/svd/svd_dense_distr.cpp


NOTE There is no support for Java on GPU.

Batch Processing:

• SVDDenseBatch.java

Online Processing:

• SVDDenseOnline.java

Distributed Processing:

• SVDDenseDistr.java

Python*

Batch Processing:

• svd_batch.py

Online Processing:

• svd_streaming.py

Distributed Processing:

• svd_spmd.py

Performance Considerations
To get the best overall performance of singular value decomposition (SVD), for input, output, and auxiliary
data, use homogeneous numeric tables of the same type as specified in the algorithmFPType class template
parameter.

Online Processing

SVD in the online processing mode is at least as computationally complex as in the batch processing mode
and has high memory requirements for storing auxiliary data between calls to the compute() method. On the
other hand, the online version of SVD may enable you to hide the latency of reading data from a slow data
source. To do this, implement load prefetching of the next data block in parallel with the compute() method
for the current block.

Online processing mostly benefits SVD when the matrix of left singular vectors is not required. In this case,

memory requirements for storing auxiliary data goes down from  to .

Distributed Processing

Using SVD in the distributed processing mode requires gathering local-node  numeric tables on the
master node. When the amount of local-node work is small, that is, when the local-node data set is small,
the network data transfer may become a bottleneck. To avoid this situation, ensure that local nodes have a
sufficient amount of work. For example, distribute input data set across a smaller number of nodes.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Batch and Online Processing

Online processing computation mode assumes that the data arrives in blocks .

Intel® oneAPI Data Analytics Library (oneDAL)  1  

259

https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/java/com/intel/daal/examples/svd/SVDDenseBatch.java
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/java/com/intel/daal/examples/svd/SVDDenseOnline.java
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/java/com/intel/daal/examples/svd/SVDDenseDistr.java
https://github.com/intel/scikit-learn-intelex/tree/master/examples/daal4py/svd_batch.py
https://github.com/intel/scikit-learn-intelex/tree/master/examples/daal4py/svd_streaming.py
https://github.com/intel/scikit-learn-intelex/tree/master/examples/daal4py/svd_spmd.py


Algorithm Input
The SVD algorithm accepts the input described below. Pass the Input ID as a parameter to the methods
that provide input for your algorithm.

Algorithm Input for Singular Value Decomposition (Batch and Online Processing)

Input ID Input

data Pointer to the numeric table that represents:

• For batch processing, the entire  matrix X to be factorized.
• For online processing, the  submatrix of X that represents the current data

block in the online processing mode.

The input can be an object of any class derived from NumericTable.

Algorithm Parameters
The SVD algorithm has the following parameters:

Algorithm Parameters for Singular Value Decomposition (Batch and Online Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Performance-oriented computation method, the
only method supported by the algorithm.

leftSingular
Matrix

requiredInPackedForm Specifies whether the matrix of left singular vectors
is required. Can be:

• notRequired - the matrix is not required
• requiredInPackedForm - the matrix in the

packed format is required

rightSingula
rMatrix

requiredInPackedForm Specifies whether the matrix of left singular vectors
is required. Can be:

• notRequired - the matrix is not required
• requiredInPackedForm - the matrix in the

packed format is required

Algorithm Output
The SVD algorithm calculates the results described below. Pass the Result ID as a parameter to the
methods that access the results of your algorithm.

Algorithm Output for Singular Value Decomposition (Batch and Online Processing)

Result ID Result

singularVa
lues

Pointer to the  numeric table with singular values (the diagonal of the matrix ).

leftSingul
arMatrix

Pointer to the  numeric table with left singular vectors (matrix U). Pass NULL if
left singular vectors are not required.
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Result ID Result

rightSingu
larMatrix

Pointer to the  numeric table with right singular vectors (matrix V). Pass NULL if
right singular vectors are not required.

NOTE By default, these results are objects of the HomogenNumericTable class, but you can define
the result as an object of any class derived from NumericTable except PackedSymmetricMatrix,
PackedTriangularMatrix, and CSRNumericTable.

Distributed Processing

This mode assumes that data set is split in nblocks blocks across computation nodes.

Algorithm Parameters
The SVD algorithm in the distributed processing mode has the following parameters:

Algorithm Parameters for Singular Value Decomposition (Distributed Processing)

Paramete
r

Default
Valude

Description

computeS
tep

Not
applicable

The parameter required to initialize the algorithm. Can be:

• step1Local - the first step, performed on local nodes
• step2Master - the second step, performed on a master node
• step3Local - the final step, performed on local nodes

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

leftSing
ularMatr
ix

required
InPacked
Form

Specifies whether the matrix of left singular vectors is required. Can be:

• notRequired - the matrix is not required
• requiredInPackedForm - the matrix in the packed format is required

rightSin
gularMat
rix

required
InPacked
Form

Specifies whether the matrix of right singular vectors is required. Can be:

• notRequired - the matrix is not required
• requiredInPackedForm - the matrix in the packed format is required

Use the three-step computation schema to compute SVD:
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Step 1 - on Local Nodes
Singular Value Decomposition: Distributed Processing, Step 1 - on Local Nodes

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

262



In this step, SVD accepts the input described below. Pass the Input ID as a parameter to the methods that
provide input for your algorithm. For more details, see Algorithms.

Input for Singular Value Decomposition (Distributed Processing, Step 1)

Input ID Input

data Pointer to the  numeric table that represents the i-th data block on the local node.

NOTE The input can be an object of any class derived from NumericTable.

In this step, SVD calculates the results described below. Pass the Partial Result ID as a parameter to the
methods that access the results of your algorithm. For more details, see Algorithms.

Partial Results for Singular Value Decomposition (Distributed Processing, Step 1)

Partial
Result ID

Result

outputOfSt
ep1ForStep
2

A collection that contains numeric tables each with the partial result to transmit to the
master node for Step 2.

outputOfSt
ep1ForStep
3

A collection that contains numeric tables each with the partial result to keep on the local
node for Step 3.

NOTE By default, the tables in these collections are objects of the HomogenNumericTable class, but
you can define them as objects of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.
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Step 2 - on Master Node
Singular Value Decomposition: Distributed Processing, Step 2 - on Master Node
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In this step, SVD accepts the input from each local node described below. Pass the `Input ID` as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Input for Singular Value Decomposition (Distributed Processing, Step 2)

Input ID Input

inputOfSte
p2FromStep
1

A collection that contains results computed in Step 1 on local nodes
(outputOfStep1ForStep2).

NOTE The collection can contain objects of any class derived from NumericTable except the
PackedSymmetricMatrix class and PackedTriangularMatrix class with the
lowerPackedTriangularMatrix layout.

key A key, a number of type int.

Keys enable tracking the order in which partial results from Step 1
(inputOfStep2FromStep1) come to the master node, so that the partial results computed
in Step 2 (outputOfStep2ForStep3) can be delivered back to local nodes in exactly the
same order.

In this step, SVD calculates the results described below. Pass the Partial Result ID or Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Partial Results for Singular Value Decomposition (Distributed Processing, Step 2)

Partial
Result ID

Result

outputOfSt
ep2ForStep
3

A collection that contains numeric tables to be split across local nodes to compute left
singular vectors. Set to NULL if you do not need left singular vectors.

NOTE By default, these tables are objects of the HomogenNumericTable class, but you can
define them as objects of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Output for Singular Value Decomposition (Distributed Processing, Step 2)

Result ID Result

singularVa
lues

Pointer to the  numeric table with singular values (the diagonal of the matrix ).

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

rightSingu
larMatrix

Pointer to the  numeric table with right singular vectors (matrix V). Pass NULL if
right singular vectors are not required.
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Result ID Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.
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Step 3 - on Local Nodes
Singular Value Decomposition: Distributed Processing, Step 3 - on Local Nodes
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In this step, SVD accepts the input described below. Pass the Input ID as a parameter to the methods that
provide input for your algorithm. For more details, see Algorithms.

Input for Singular Value Decomposition (Distributed Processing, Step 3)

Input ID Input

inputOfSte
p3FromStep
1

A collection that contains results computed in Step 1 on local nodes
(outputOfStep1ForStep3).

NOTE The collection can contain objects of any class derived from NumericTable except
PackedSymmetricMatrix and PackedTriangularMatrix.

inputOfSte
p3FromStep
2

A collection that contains results computed in Step 2 on local nodes
(outputOfStep2ForStep3).

NOTE The collection can contain objects of any class derived from NumericTable except
PackedSymmetricMatrix and PackedTriangularMatrix.

In this step, SVD calculates the results described below. Pass the Result ID as a parameter to the methods
that access the results of your algorithm. For more details, see Algorithms.

Output for Singular Value Decomposition (Distributed Processing, Step 3)

Result ID Result

leftSingul
arMatrix

Pointer to the  numeric table with left singular vectors (matrix U). Pass NULL if
left singular vectors are not required.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Association Rules

Association rules mining is the method for uncovering the most important relationships between variables.
Its main application is a store basket analysis, which aims at discovery of a relationship between groups of
products with some level of confidence.

Details
The library provides Apriori algorithm for association rule mining [Agrawal94].

Let  be a set of items (products) and subset  is a transaction associated with

item set I. The association rule has the form: , where , , and intersection of X and

Y is empty: . The left-hand-side set of items (itemset) X is called antecedent, while the right-
hand-side itemset Y is called consequent of the rule.

Let  be a set of transactions, each associated with item set I. Item subset 
has support s in the transaction set D if s percent of transactions in D contains X.
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The association rule  in the transaction set D holds with confidence c if c percent of transactions in
D that contain X also contains Y. Confidence of the rule can be represented as conditional probability:

For a given set of transactions , the minimum support s and minimum confidence c

discover all item sets X with support greater than s and generate all association rules  with
confidence greater than c.

Therefore, the association rule discovery is decomposed into two stages: mining (training) and discovery
(prediction). The mining stage involves generation of large item sets, that is, the sets that have support
greater than the given parameters. At the discovery stage, the algorithm generates association rules using
the large item sets identified at the mining stage.

Batch Processing

Algorithm Input

The association rules algorithm accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm.

Algorithm Input for Association Rules (Batch Processing)

Input ID Input

data Pointer to the  numeric table t with the mining data. Each row consists of two
integers:

• Transaction ID, the number between 0 and nTransactions - 1.
• Item ID, the number between 0 and nUniqueItems - 1.

The input can be an object of any class derived from NumericTable except
PackedTriangularMatrix and PackedSymmetricMatrix.

Algorithm Parameters

The association rules algorithm has the following parameters:

Algorithm Parameters for Association Rules (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the algorithm. The only method supported so
far is Apriori.

minSuppo
rt

0.01 Minimal support, a number in the [0,1) interval.

minConfi
dence

0.6 Minimal confidence, a number in the [0,1) interval.

nUniqueI
tems

0 The total number of unique items. If set to zero, the library automatically
determines the number of unique items from the input data.
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Paramete
r

Default
Value

Description

nTransac
tions

0 The total number of transactions. If set to zero, the library automatically
determines the number transactions from the input data.

discover
Rules

true A flag that enables generation of the rules from large item sets.

itemsets
Order

itemsets
Unsorted

The sort order of returned item sets:

• itemsetsUnsorted - not sorted
• itemsetsSortedBySupport - sorted by support in a descending order

rulesOrd
er

rulesUns
orted

The sort order of returned rules:

• rulesUnsorted - not sorted
• rulesSortedByConfidence - sorted by support in a descending order

minItems
etSize

0 A parameter that defines the minimal size of item sets to be included into the
array of results. The value of zero imposes no limitations on the minimal size
of item sets.

maxItems
etSize

0 A parameter that defines the maximal size of item sets to be included into the
array of results. The value of zero imposes no limitations on the maximal size
of item sets.

Algorithm Output

The association rules algorithm calculates the result described below. Pass the Result ID as a parameter to
the methods that access the results of your algorithm.

Algorithm Output for Association Rules (Batch Processing)

Result ID Result

largeItems
ets

Pointer to the numeric table with large item sets. The number of rows in the table equals
the number of items in the large item sets. Each row contains two integers:

• ID of the large item set, the number between 0 and nLargeItemsets -1.
• ID of the item, the number between 0 and nUniqueItems-1.

largeItems
etsSupport Pointer to the  numeric table of support values. Each row

contains two integers:

• ID of the large item set, the number between 0 and nLargeItemsets-1.
• The support value, the number of times the item set is met in the array of transactions.

antecedent
Itemsets

Pointer to the  numeric table that contains the left-hand-side
(X) part of the association rules. Each row contains two integers:

• Rule ID, the number between 0 and nAntecedentItems-1.
• Item ID, the number between 0 and nUniqueItems-1.

conseqentI
temsets Pointer to the  numeric table that contains the right-hand-

side (Y) part of the association rules. Each row contains two integers:

• Rule ID, the number between 0 and nConsequentItems-1.
• Item ID, the number between 0 and nUniqueItems-1.
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Result ID Result

confidence Pointer to the  numeric table that contains confidence values of rules,
floating-point numbers between 0 and 1. Confidence value in the i-th position corresponds
to the rule with the index i.

By default, the result is an object of the HomogenNumericTable class, but you can define the result as an
object of any class derived from NumericTable except PackedSymmetricMatrix, PackedTriangularMatrix, and
СSRNumericTable.

NOTE

• The library requires transactions and items for each transaction to be passed in the ascending
order.

• Numbering of rules starts at 0.
• The library calculates the sizes of numeric tables intended for results in a call to the algorithm.

Avoid allocating the memory in numeric tables intended for results because, in general, it is
impossible to accurately estimate the required memory size. If the memory interfaced by the
numeric tables is allocated and its amount is insufficient to store the results, the algorithm returns
an error.

Examples

C++ (CPU)

Batch Processing:

• assoc_rules_apriori_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• AssocRulesAprioriBatch.java

Python*

Batch Processing:

• association_rules_batch.py

Performance Considerations
To get the best overall performance of the association rules algorithm, whenever possible use the following
numeric tables and data types:

• A SOA numeric table of type int to store features.
• A homogenous numeric table of type int to store large item sets, support values, and left-hand-side and

right-hand-side parts of association rules.
• A numeric table with the confidence values of the same data type as specified in the algorithmFPType

template parameter of the class.
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Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Kernel Functions

NOTE Kernel functions are also available with oneAPI interfaces:

• Linear kernel
• Radial Basis Function (RBF) kernel

Kernel functions form a class of algorithms for pattern analysis. The main characteristic of kernel functions is
a distinct approach to this problem. Instead of reducing the dimension of the original data, kernel functions
map the data into higher-dimensional spaces in order to make the data more easily separable there.

Linear Kernel
A linear kernel is the simplest kernel function.

Problem Statement

Given a set X of n feature vectors  of dimension p and

a set Y of m feature vectors , the problem is to

compute the linear kernel function  for any pair of input vectors: .

Batch Processing

Algorithm Input

The linear kernel function accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm.

Algorithm Input for Linear Kernel (Batch Processing)

Input ID Input

X Pointer to the  numeric table that represents the matrix X. This table can be an
object of any class derived from NumericTable.

Y Pointer to the  numeric table that represents the matrix Y. This table can be an
object of any class derived from NumericTable.

Algorithm Parameters

The linear kernel function has the following parameters:
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Algorithm Parameters for Linear Kernel (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available computation methods:

• defaultDense - default performance-oriented method
• fastCSR - performance-oriented method for CSR numeric tables

computat
ionMode

matrixMa
trix

Computation mode for the kernel function. Can be:

For CPU:

• vectorVector - compute the kernel function for given feature vectors 

and 
• matrixVector - compute the kernel function for all vectors in the set X and

a given feature vector 
• matrixMatrix - compute the kernel function for all vectors in the sets X

and Y. In oneDAL, this mode requires equal numbers of observations in
both input tables: .

For GPU:

• matrixMatrix - compute the kernel function for all vectors in the sets X
and Y. In oneDAL, this mode requires equal numbers of observations in
both input tables: .

rowIndex
X

0 Index i of the vector in the set X for the vectorVector computation mode.

rowIndex
Y

0 Index j of the vector in the set Y for the vectorVector or matrixVector
computation mode.

rowIndex
Result

0 Row index in the values numeric table to locate the result of the computation
for the vectorVector computation mode.

k 1.0 The coefficient k of the linear kernel.

b 0.0 The coefficient b of the linear kernel.

Algorithm Output

The linear kernel function calculates the results described below. Pass the Result ID as a parameter to the
methods that access the results of your algorithm.

Algorithm Output for Linear Kernel (Batch Processing)

Result ID Result

values Pointer to the  numeric table with the values of the kernel function.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.
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Examples

oneAPI DPC++

Batch Processing:

• dpc_linear_kernel_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_linear_kernel_dense_batch.cpp

C++ (CPU)

Batch Processing:

• kernel_func_lin_dense_batch.cpp
• kernel_func_lin_csr_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• KernelFuncLinDenseBatch.java
• KernelFuncLinCSRBatch.java

Radial Basis Function Kernel
The Radial Basis Function (RBF) kernel is a popular kernel function used in kernelized learning algorithms.

Problem Statement

Given a set X of n feature vectors  of dimension p and

a set Y of m feature vectors , the problem is to

compute the RBF kernel function  for any pair of input vectors:

Batch Processing

Algorithm Input

The RBF kernel accepts the input described below. Pass the Input ID as a parameter to the methods that
provide input for your algorithm.

Algorithm Input for Radial Basis Function Kernel (Batch Processing)

Input ID Input

X Pointer to the  numeric table that represents the matrix X. This table can be an
object of any class derived from NumericTable.
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Input ID Input

Y Pointer to the  numeric table that represents the matrix Y. This table can be an
object of any class derived from NumericTable.

Algorithm Parameters

The RBF kernel has the following parameters:

Algorithm Parameters for Radial Basis Function Kernel (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available computation methods:

• defaultDense - default performance-oriented method
• fastCSR - performance-oriented method for CSR numeric tables

computat
ionMode

matrixMa
trix

Computation mode for the kernel function. Can be:

For CPU:

• vectorVector - compute the kernel function for given feature vectors 

and 
• matrixVector - compute the kernel function for all vectors in the set X and

a given feature vector 
• matrixMatrix - compute the kernel function for all vectors in the sets X

and Y. In oneDAL, this mode requires equal numbers of observations in
both input tables: .

For GPU:

• matrixMatrix - compute the kernel function for all vectors in the sets X
and Y. In oneDAL, this mode requires equal numbers of observations in
both input tables: .

rowIndex
X

0 Index i of the vector in the set X for the vectorVector computation mode.

rowIndex
Y

0 Index j of the vector in the set Y for the vectorVector or matrixVector
computation mode.

rowIndex
Result

0 Row index in the values numeric table to locate the result of the computation
for the vectorVector computation mode.

sigma 1.0 The coefficient  of the RBF kernel.

Algorithm Output

The RBF kernel calculates the results described below. Pass the Result ID as a parameter to the methods that
access the results of your algorithm.
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Algorithm Output for Radial Basis Function Kernel (Batch Processing)

Result ID Result

values Pointer to the  numeric table with the values of the kernel function.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Examples

oneAPI DPC++

Batch Processing:

• dpc_rbf_kernel_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_rbf_kernel_dense_batch.cpp

C++ (CPU)

Batch Processing:

• kernel_func_rbf_dense_batch.cpp
• kernel_func_rbf_csr_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• KernelFuncRbfDenseBatch.java
• KernelFuncRbfCSRBatch.java

Expectation-Maximization

Expectation-Maximization (EM) algorithm is an iterative method for finding the maximum likelihood and
maximum a posteriori estimates of parameters in models that typically depend on hidden variables.

While serving as a clustering technique, EM is also used in non-linear dimensionality reduction, missing value
problems, and other areas.

Details

Given a set X of n feature vectors  of dimension p, the
problem is to find a maximum-likelihood estimate of the parameters of the underlying distribution when the
data is incomplete or has missing values.

Expectation-Maximization (EM) Algorithm in the General Form
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Let X be the observed data which has log-likelihood  depending on the parameters . Let  be

the latent or missing data, so that  is the complete data with log-likelihood . The
algorithm for solving the problem in its general form is the following EM algorithm ([Dempster77], 
[Hastie2009]):

1. Choose initial values of the parameters .
2.

Expectation step: in the j-th step, compute  as a function of the
dummy argument .

3.
Maximization step: in the j-th step, calculate the new estimate  by maximizing  over

.
4. Repeat steps 2 and 3 until convergence.

EM algorithm for the Gaussian Mixture Model

Gaussian Mixture Model (GMM) is a mixture of k p-dimensional multivariate Gaussian distributions
represented as

where  and .

The  is the probability density function with parameters , where  the vector of

means, and  is the variance-covariance matrix. The probability density function for a p-dimensional
multivariate Gaussian distribution is defined as follows:

Let  be the indicator function and

.

Computation

The EM algorithm for GMM includes the following steps:

Define the weights as follows:

for  and .

1.

Choose initial values of the parameters: 
2.

Expectation step: in the j-th step, compute the matrix  with the weights 
3. Maximization step: in the j-th step, for all  compute:
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a.
The mixture weights , where  is the “amount” of the feature
vectors that are assigned to the r-th mixture component

b.
Mean estimates 

c.
Covariance estimate  of size  with

4. Repeat steps 2 and 3 until any of these conditions is met:

•
, where the likelihood function is:

• The number of iterations exceeds the predefined level.

Initialization

The EM algorithm for GMM requires initialized vector of weights, vectors of means, and variance-covariance
[Biernacki2003, Maitra2009].

The EM initialization algorithm for GMM includes the following steps:

1. Perform nTrials starts of the EM algorithm with nIterations iterations and start values:

• Initial means - k different random observations from the input data set
•

Initial weights - the values of 
• Initial covariance matrices - the covariance of the input data

2. Regard the result of the best EM algorithm in terms of the likelihood function values as the result of
initialization

Initialization
The EM algorithm for GMM requires initialized vector of weights, vectors of means, and variance-covariance.
Skip the initialization step if you already calculated initial weights, means, and covariance matrices.

Batch Processing

Algorithm Input

The EM for GMM initialization algorithm accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm.

Algorithm Input for Expectation-Maximization Initialization (Batch Processing)

Input ID Input

data Pointer to the  numeric table with the data to which the EM initialization
algorithm is applied. The input can be an object of any class derived from NumericTable.

Algorithm Parameters

The EM for GMM initialization algorithm has the following parameters:
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Algorithm Parameters for Expectation-Maximization Initialization (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Performance-oriented computation method, the
only method supported by the algorithm.

nComponents Not applicable The number of components in the Gaussian Mixture
Model, a required parameter.

nTrials 20 The number of starts of the EM algorithm.

nIterations 10 The maximal number of iterations in each start of
the EM algorithm.

accuracyThre
shold

1.0e-04 The threshold for termination of the algorithm.

covarianceSt
orage

full Covariance matrix storage scheme in the Gaussian
Mixture Model:

• full - covariance matrices are stored as

numeric tables of size . All elements of
the matrix are updated during the processing.

• diagonal - covariance matrices are stored as

numeric tables of size . Only diagonal
elements of the matrix are updated during the
processing, and the rest are assumed to be
zero.

engine SharePtr< engines::
mt19937:: Batch>()

Pointer to the random number generator engine
that is used internally to get the initial means in
each EM start.

Algorithm Output

The EM for GMM initialization algorithm calculates the results described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm.

Algorithm Output for Expectation-Maximization Initialization (Batch Processing)

Result ID Result

weights Pointer to the  numeric table with mixture weights.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

means Pointer to the  numeric table with each row containing the estimate of the means for

the i-th mixture component, where .
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Result ID Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

covariance
s

Pointer to the DataCollection object that contains k numeric tables, each with the

 variance-covariance matrix for the i-th mixture component of size:

•  - for the full covariance matrix storage scheme
•  - for the diagonal covariance matrix storage scheme

NOTE By default, the collection contains objects of the HomogenNumericTable class, but
you can define them as objects of any class derived from NumericTable except
PackedTriangularMatrix and CSRNumericTable.

Computation

Batch Processing

Algorithm Input

The EM for GMM algorithm accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm.

Algorithm Input for Expectation-Maximization Computaion (Batch Processing)

Input ID Input

data Pointer to the  numeric table with the data to which the EM algorithm is applied.
The input can be an object of any class derived from NumericTable.

inputWeigh
ts

Pointer to the  numeric table with initial mixture weights. This input can be an
object of any class derived from NumericTable.

inputMeans Pointer to a  numeric table. Each row in this table contains the initial value of the

means for the i-th mixture component, where . This input can be an
object of any class derived from NumericTable.

inputCovar
iances

Pointer to the DataCollection object that contains k numeric tables, each with the

 variance-covariance matrix for the i-th mixture component of size:

•  - for the full covariance matrix storage scheme
•  - for the diagonal covariance matrix storage scheme

The collection can contain objects of any class derived from NumericTable.
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Input ID Input

inputValue
s

Pointer to the result of the EM for GMM initialization algorithm. The result of initialization
contains weights, means, and a collection of covariances. You can use this input to set the
initial values for the EM for GMM algorithm instead of explicitly specifying the weights,
means, and covariance collection.

Algorithm Parameters

The EM for GMM algorithm has the following parameters:

Algorithm Parameters for Expectation-Maximization Computaion (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Performance-oriented computation method, the
only method supported by the algorithm.

nComponents Not applicable The number of components in the Gaussian Mixture
Model, a required parameter.

maxIteration
s

10 The maximal number of iterations in the algorithm.

accuracyThre
shold

1.0e-04 The threshold for termination of the algorithm.

covariance Pointer to an object of the
BatchIface class

Pointer to the algorithm that computes the
covariance matrix.

NOTE By default, the respective oneDAL algorithm is
used, implemented in the class derived from
BatchIface.

regularizati
onFactor

0.01 Factor for covariance regularization in the case of
ill-conditional data.

covarianceSt
orage

full Covariance matrix storage scheme in the Gaussian
Mixture Model:

• full - covariance matrices are stored as

numeric tables of size . All elements of
the matrix are updated during the processing.

• diagonal - covariance matrices are stored as

numeric tables of size . Only diagonal
elements of the matrix are updated during the
processing, and the rest are assumed to be
zero.

Algorithm Output
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The EM for GMM algorithm calculates the results described below. Pass the Result ID as a parameter to the
methods that access the results of your algorithm.

Algorithm Output for Expectation-Maximization Computaion (Batch Processing)

Result ID Result

weights Pointer to the  numeric table with mixture weights.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

means Pointer to the  numeric table with each row containing the estimate of the means for

the i-th mixture component, where .

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

covariance
s

Pointer to the DataCollection object that contains k numeric tables, each with the 
variance-covariance matrix for the i-th mixture component of size:

•  - for the full covariance matrix storage scheme
•  - for the diagonal covariance matrix storage scheme

NOTE By default, the collection contains objects of the HomogenNumericTable class, but
you can define them as objects of any class derived from NumericTable except
PackedTriangularMatrix and CSRNumericTable.

goalFuncti
on

Pointer to the  numeric table with the value of the logarithm of the likelihood
function after the last iteration.

NOTE By default, this result is an object of the HomogenNumericTable class.

nIteration
s

Pointer to the  numeric table with the number of iterations computed after
completion of the algorithm.

NOTE By default, this result is an object of the HomogenNumericTable class.

Examples

C++ (CPU)

Batch Processing:

• em_gmm_dense_batch.cpp
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Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• EmGmmDenseBatch.java

Python*

Batch Processing:

• em_gmm_batch.py

Performance Considerations
To get the best overall performance of the expectation-maximization algorithm at the initialization and
computation stages:

• If input data is homogeneous, provide the input data and store results in homogeneous numeric tables of
the same type as specified in the algorithmFPType class template parameter.

• If input data is non-homogeneous, use AOS layout rather than SOA layout.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Cholesky Decomposition

Cholesky decomposition is a matrix factorization technique that decomposes a symmetric positive-definite
matrix into a product of a lower triangular matrix and its conjugate transpose.

Because of numerical stability and superior efficiency in comparison with other methods, Cholesky
decomposition is widely used in numerical methods for solving symmetric linear systems. It is also used in
non-linear optimization problems, Monte Carlo simulation, and Kalman filtration.

Details

Given a symmetric positive-definite matrix X of size , the problem is to compute the Cholesky

decomposition , where L is a lower triangular matrix.

Batch Processing

Algorithm Input

Cholesky decomposition accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Cholesky Decomposition (Batch Processing)

Input ID Input

data Pointer to the  numeric table that represents the symmetric positive-definite
matrix X for which the Cholesky decomposition is computed.
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Input ID Input

The input can be an object of any class derived from NumericTable that can represent
symmetric matrices. For example, the PackedTriangularMatrix class cannot represent
a symmetric matrix.

Algorithm Parameters

Cholesky decomposition has the following parameters:

Algorithm Parameters for Cholesky Decomposition (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

Algorithm Output

Cholesky decomposition calculates the result described below. Pass the Result ID as a parameter to the
methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Cholesky Decomposition (Batch Processing)

Result ID Result

choleskyFa
ctor

Pointer to the  numeric table that represents the lower triangular matrix L
(Cholesky factor).

By default, the result is an object of the HomogenNumericTable class, but you can define
the result as an object of any class derived from NumericTable except the
PackedSymmetricMatrix class, СSRNumericTable class, and PackedTriangularMatrix
class with the upperPackedTriangularMatrix layout.

Examples
C++ (CPU)

Batch Processing:

• cholesky_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• CholeskyDenseBatch.java

Python*

Batch Processing:

• cholesky_batch.py
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Performance Considerations
To get the best overall performance when Cholesky decomposition:

• If input data is homogeneous, for input matrix X and output matrix L use homogeneous numeric tables of
the same type as specified in the algorithmFPType class template parameter.

• If input data is non-homogeneous, use AOS layout rather than SOA layout.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

QR Decomposition

QR decomposition is a matrix factorization technique that decomposes a matrix into a product of an
orthogonal matrix Q and an upper triangular matrix R.

QR decomposition is used in solving linear inverse and least squares problems. It also serves as a basis for
algorithms that find eigenvalues and eigenvectors.

• QR Decomposition without Pivoting
• Pivoted QR Decomposition

Performance Considerations
To get the best overall performance of the QR decomposition, for input, output, and auxiliary data, use
homogeneous numeric tables of the same type as specified in the algorithmFPType class template
parameter.

Online Processing

QR decomposition in the online processing mode is at least as computationally complex as in the batch
processing mode and has high memory requirements for storing auxiliary data between calls to the
compute()s method. On the other hand, the online version of QR decomposition may enable you to hide the
latency of reading data from a slow data source. To do this, implement load prefetching of the next data
block in parallel with the compute() method for the current block.

Online processing mostly benefits QR decomposition when the matrix Q is not required. In this case, memory

requirements for storing auxiliary data goes down from  to .

Distributed Processing

Using QR decomposition in the distributed processing mode requires gathering local-node  numeric
tables on the master node. When the amount of local-node work is small, that is, when the local-node data
set is small, the network data transfer may become a bottleneck. To avoid this situation, ensure that local
nodes have a sufficient amount of work. For example, distribute the input data set across a smaller number
of nodes.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201
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QR Decomposition without Pivoting

Given the matrix X of size , the problem is to compute the QR decomposition , where

• Q is an orthogonal matrix of size 
• R is a rectangular upper triangular matrix of size 

The library requires . In this case:

where the matrix  has the size  and  has the size .

Computation
The following computation modes are available:

• Batch and Online Processing
• Distributed Processing

Examples
C++ (CPU)

Batch Processing:

• qr_dense_batch.cpp

Online Processing:

• qr_dense_online.cpp

Distributed Processing:

• qr_dense_distr.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• QRDenseBatch.java

Online Processing:

• QRDenseOnline.java

Distributed Processing:

• QRDenseDistr.java

Python*

Batch Processing:

• qr_batch.py

Online Processing:

• qr_streaming.py

Distributed Processing:
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• qr_spmd.py

Batch and Online Processing

Online processing computation mode assumes that the data arrives in blocks .

Algorithm Input
QR decomposition accepts the input described below. Pass the Input ID as a parameter to the methods that
provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for QR Decomposition without Pivoting (Batch and Online Processing)

Input ID Input

data Pointer to the numeric table that represents:

• For batch processing: the entire  matrix X to be factorized.
• For online processing: the  submatrix of X that represents the current data

block in the online processing mode. Note that each current data block must have

sufficient size: .

The input can be an object of any class derived from NumericTable.

Algorithm Parameters
QR decomposition has the following parameters:

Algorithm Parameters for QR Decomposition without Pivoting (Batch and Online Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

Algorithm Output
QR decomposition calculates the results described below. Pass the Result ID as a parameter to the
methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for QR Decomposition without Pivoting (Batch and Online Processing)

Result ID Result

matrixQ Pointer to the numeric table with the  matrix .

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

matrixR Pointer to the numeric table with the  upper triangular matrix .
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Result ID Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except the
PackedSymmetricMatrix class, CSRNumericTable class, and
PackedTriangularMatrix class with the lowerPackedTriangularMatrix layout.

Distributed Processing

This mode assumes that the data set is split into nblocks blocks across computation nodes.

Algorithm Parameters
QR decomposition in the distributed processing mode has the following parameters:

Algorithm Parameters for QR Decomposition without Pivoting (Distributed Processing)

Paramete
r

Default
Valude

Description

computeS
tep

Not
applicable

The parameter required to initialize the algorithm. Can be:

• step1Local - the first step, performed on local nodes
• step2Master - the second step, performed on a master node
• step3Local - the final step, performed on local nodes

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

Use the three-step computation schema to compute QR decomposition:
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Step 1 - on Local Nodes
QR Decomposition without Pivoting: Distributed Processing, Step 1 - on Local Nodes
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In this step, QR decomposition accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Input for QR Decomposition without Pivoting (Distributed Processing, Step 1)

Input ID Input

data Pointer to the  numeric table that represents the i-th data block on the local node.

Note that each data block must have sufficient size: .

NOTE The input can be an object of any class derived from NumericTable.

In this step, QR decomposition calculates the results described below. Pass the Partial Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Partial Results for QR Decomposition without Pivoting (Distributed Processing, Step 1)

Partial
Result ID

Result

outputOfSt
ep1ForStep
2

A collection that contains numeric tables each with the partial result to transmit to the
master node for Step 2.

NOTE By default, these tables are objects of the HomogenNumericTable class, but you can
define them as objects of any class derived from NumericTable except the
PackedSymmetricMatrix class, CSRNumericTable class, and
PackedTriangularMatrix class with the lowerPackedTriangularMatrix layout.

outputOfSt
ep1ForStep
3

A collection that contains numeric tables each with the partial result to keep on the local
node for Step 3.

NOTE By default, these tables are objects of the HomogenNumericTable class, but you can
define them as objects of any class derived from NumericTable except the
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.
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Step 2 - on Master Node
QR Decomposition without Pivoting: Distributed Processing, Step 2 - on Master Node
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In this step, QR decomposition accepts the input from each local node described below. Pass the Input ID
as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Input for QR Decomposition without Pivoting (Distributed Processing, Step 2)

Input ID Input

inputOfSte
p2FromStep
1

A collection that contains results computed in Step 1 on local nodes
(outputOfStep1ForStep2).

NOTE This collection can contain objects of any class derived from NumericTable except the
PackedSymmetricMatrix class and PackedTriangularMatrix class with the
lowerPackedTriangularMatrix layout.

key A key, a number of type int. Keys enable tracking the order in which partial results from 
Step 1 (inputOfStep2FromStep1) come to the master node, so that the partial results
computed in Step 2 (outputOfStep2ForStep3) can be delivered back to local nodes in
exactly the same order.

In this step, QR decomposition calculates the results described below. Pass the Result ID or Partial
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.

Partial Results for QR Decomposition without Pivoting (Distributed Processing, Step 2)

Partial
Result ID

Result

outputOfSt
ep2ForStep
3

A collection that contains numeric tables to be split across local nodes to compute .

NOTE By default, these tables are objects of the HomogenNumericTable class, but you can
define them as objects of any class derived from NumericTable except the
PackedSymmetricMatrix class, CSRNumericTable class, and
PackedTriangularMatrix class with the lowerPackedTriangularMatrix layout.

Output for QR Decomposition without Pivoting (Distributed Processing, Step 2)

Result ID Result

matrixR Pointer to the numeric table with the  upper triangular matrix .

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except the
PackedSymmetricMatrix class, CSRNumericTable class, and
PackedTriangularMatrix class with the lowerPackedTriangularMatrix layout.
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Step 3 - on Local Nodes
QR Decomposition without Pivoting: Distributed Processing, Step 3 - on Local Nodes
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In this step, QR decomposition accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Input for QR Decomposition without Pivoting (Distributed Processing, Step 3)

Input ID Input

inputOfSte
p3FromStep
1

A collection that contains results computed in Step 1 on local nodes
(outputOfStep1ForStep3).

NOTE The collection can contain objects of any class derived from NumericTable except the
PackedSymmetricMatrix and PackedTriangularMatrix.

inputOfSte
p3FromStep
2

A collection that contains results computed in Step 2 on local nodes
(outputOfStep2ForStep3).

NOTE The collection can contain objects of any class derived from NumericTable except the
PackedSymmetricMatrix class and PackedTriangularMatrix class with the
lowerPackedTriangularMatrix layout.

In this step, QR decomposition calculates the results described below. Pass the Result ID as a parameter to
the methods that access the results of your algorithm. For more details, see Algorithms.

Output for QR Decomposition without Pivoting (Distributed Processing, Step 3)

Result ID Result

matrixQ Pointer to the numeric table with the  matrix .

NOTE By default, the result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Pivoted QR Decomposition

Given the matrix X of size , the problem is to compute the QR decomposition with column pivoting

, where

• Q is an orthogonal matrix of size 
• R is a rectangular upper triangular matrix of size 
• P is a permutation matrix of size 

The library requires . In this case:

where the matrix  has the size  and  has the size .

Batch Processing
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Algorithm Input

Pivoted QR decomposition accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Pivoted QR Decomposition (Batch Processing)

Input ID Input

data Pointer to the numeric table that represents the  matrix X to be factorized. The
input can be an object of any class derived from NumericTable.

Algorithm Parameters

Pivoted QR decomposition has the following parameters:

Algorithm Parameters for Pivoted QR Decomposition (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

permuted
Columns

Not
applicable

Pointer to the numeric table with the  matrix with the information for
the permutation:

• If the i-th element is zero, the i-th column of the input matrix is a free
column and may be permuted with any other free column during the
computation.

• If the i-th element is non-zero, the i-th column of the input matrix is moved
to the beginning of XP before the computation and remains in its place
during the computation.

NOTE By default, this parameter is an object of the HomogenNumericTable
class, filled by zeros. However, you can define this parameter as an object of any
class derived from NumericTable except the PackedSymmetricMatrix class,
CSRNumericTable class, and PackedTriangularMatrix class with the
lowerPackedTriangularMatrix layout.

Algorithm Output

Pivoted QR decomposition calculates the results described below. Pass the Result ID as a parameter to the
methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Pivoted QR Decomposition (Batch Processing)

Result ID Result

matrixQ Pointer to the numeric table with the  matrix .
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Result ID Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

matrixR Pointer to the numeric table with the  upper triangular matrix .

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except the
PackedSymmetricMatrix class, CSRNumericTable class, and
PackedTriangularMatrix class with the lowerPackedTriangularMatrix layout.

permutatio
nMatrix

Pointer to the numeric table with the  matrix such that

 if the column k of the full matrix X is permuted into the
position i in XP.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except the
PackedSymmetricMatrix class, CSRNumericTable class, and
PackedTriangularMatrix class with the lowerPackedTriangularMatrix layout.

Examples
C++ (CPU)

Batch Processing:

• pivoted_qr_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• PivotedQRDenseBatch.java

Python*

Batch Processing:

• pivoted_qr_batch.py

Outlier Detection

Outlier detection methods aim to identify observation points that are abnormally distant from other
observation points. In oneDAL, the following outlier detection methods are implemented:

• Multivariate Outlier Detection

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

296

https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/cpp/source/pivoted_qr/pivoted_qr_dense_batch.cpp
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/java/com/intel/daal/examples/pivoted_qr/PivotedQRDenseBatch.java
https://github.com/intel/scikit-learn-intelex/tree/master/examples/daal4py/pivoted_qr_batch.py


• Multivariate BACON Outlier Detection
• Univariate Outlier Detection

Multivariate Outlier Detection

In multivariate outlier detection methods, the observation point is the entire feature vector.

Details

Given a set X of n feature vectors  of dimension p, the
problem is to identify the vectors that do not belong to the underlying distribution (see [Ben2005] for exact
definitions of an outlier).

The multivariate outlier detection method takes into account dependencies between features. This method
can be parametric, assumes a known underlying distribution for the data set, and defines an outlier region
such that if an observation belongs to the region, it is marked as an outlier. Definition of the outlier region is
connected to the assumed underlying data distribution.

The following is an example of an outlier region for multivariate outlier detection:

where  and Sigma_n are (robust) estimates of the vector of means and variance-covariance matrix

computed for a given data set,  is the confidence coefficient, and  defines the limit of the region.

Batch Processing

Algorithm Input

The multivariate outlier detection algorithm accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Multivariate Outlier Detection (Batch Processing)

Input ID Input

data Pointer to the  numeric table with the data for outlier detection. The input can be
an object of any class derived from the NumericTable class.

location Pointer to the  numeric table with the vector of means. The input can be an object
of any class derived from NumericTable except PackedSymmetricMatrix and
PackedTriangularMatrix.

scatter Pointer to the  numeric table that contains the variance-covariance matrix. The
input can be an object of any class derived from NumericTable except
PackedTriangularMatrix.

threshold Pointer to the  numeric table with the non-negative number that defines the
outlier region. The input can be an object of any class derived from NumericTable except
PackedSymmetricMatrix and PackedTriangularMatrix.

If you do not provide at least one of the location, scatter, threshold inputs, the library will initialize all
of them with the following default values:
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Default Values for Algorithm Input of Multivariate Outlier Detection (Batch Processing)

location A set of 0.0

scatter A numeric table with diagonal elements equal to 1.0 and non-
diagonal elements equal to 0.0

threshold 3.0

Algorithm Parameters

The multivariate outlier detection algorithm has the following parameters:

Algorithm Parameters for Multivariate Outlier Detection (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method.

Algorithm Output

The multivariate outlier detection algorithm calculates the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Multivariate Outlier Detection (Batch Processing)

Result ID Result

weights Pointer to the  numeric table of zeros and ones. Zero in the i-th position indicates
that the i-th feature vector is an outlier.

NOTE By default, the result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except the
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• out_detect_mult_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• OutDetectMultDenseBatch.java

Python*

Batch Processing:
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• multivariate_outlier_batch.py

Performance Considerations
To get the best overall performance of multivariate outlier detection:

• If input data is homogeneous, provide input data and store results in homogeneous numeric tables of the
same type as specified in the algorithmFPType class template parameter.

• If input data is non-homogeneous, use AOS layout rather than SOA layout.
• For the default outlier detection method (defaultDense), you can benefit from splitting the input data set

into blocks for parallel processing.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Multivariate BACON Outlier Detection

In multivariate outlier detection methods, the observation point is the entire feature vector.

Details

Given a set X of n feature vectors  of dimension p, the
problem is to identify the vectors that do not belong to the underlying distribution using the BACON method
(see [Billor2000]).

In the iterative method, each iteration involves several steps:

1. Identify an initial basic subset of  feature vectors that can be assumed as not containing

outliers. The constant m is set to . The library supports two approaches to selecting the initial
subset:

•
Based on distances from the medians , where:

• med is the vector of coordinate-wise medians
•

 is the vector norm
•

•
Based on the Mahalanobis distance ,
where:

• mean and S are the mean and the covariance matrix, respectively, of n feature vectors
•

Each method chooses m feature vectors with the smallest values of distances.
2. Compute the discrepancies using the Mahalanobis distance above, where mean and S are the mean and

the covariance matrix, respectively, computed for the feature vectors contained in the basic subset.
3.

Set the new basic subset to all feature vectors with the discrepancy less than , where:

•
 is the  percentile of the Chi-square distribution with p degrees of freedom

• , where:
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• r is the size of the current basic subset
•

, where  and  is the integer part of a number
•

4. Iterate steps 2 and 3 until the size of the basic subset no longer changes.
5. Nominate the feature vectors that are not part of the final basic subset as outliers.

Batch Processing

Algorithm Input

The multivariate BACON outlier detection algorithm accepts the input described below. Pass the Input ID as
a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Multivariate BACON Outlier Detection (Batch Processing)

Input ID Input

data Pointer to the  numeric table with the data for outlier detection.

NOTE The input can be an object of any class derived from the NumericTable class.

Algorithm Parameters

The multivariate BACON outlier detection algorithm has the following parameters:

Algorithm Parameters for Multivariate BACON Outlier Detection (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

initiali
zationMe
thod

baconMed
ian

The initialization method, can be:

• baconMedian - median-based method
• defaultDense - Mahalanobis distance-based method

alpha 0.05
One-tailed probability that defines the  quantile of the  distribution
with p degrees of freedom.

Recommended value: , where n is the number of observations.

toleranc
eToConve
rge

0.005 The stopping criterion. The algorithm is terminated if the size of the basic
subset is changed by less than the threshold.

Algorithm Output

The multivariate BACON outlier detection algorithm calculates the result described below. Pass the Result
ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.
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Algorithm Output for Multivariate BACON Outlier Detection (Batch Processing)

Result ID Result

weights Pointer to the  numeric table of zeros and ones. Zero in the i-th position indicates
that the i-th feature vector is an outlier.

NOTE By default, the result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except the
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• out_detect_bacon_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• OutDetectBaconDenseBatch.java

Python*

Batch Processing:

• bacon_outlier_batch.py

Univariate Outlier Detection

A univariate outlier is an occurrence of an abnormal value within a single observation point.

Details

Given a set X of n feature vectors  of dimension p, the
problem is to identify the vectors that do not belong to the underlying distribution (see [Ben2005] for exact
definitions of an outlier).

The algorithm for univariate outlier detection considers each feature independently. The univariate outlier
detection method can be parametric, assumes a known underlying distribution for the data set, and defines
an outlier region such that if an observation belongs to the region, it is marked as an outlier. Definition of the
outlier region is connected to the assumed underlying data distribution.

The following is an example of an outlier region for the univariate outlier detection:

where  and  are (robust) estimates of the mean and standard deviation computed for a given data set,

 is the confidence coefficient, and  defines the limits of the region and should be adjusted to the
number of observations.
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Batch Processing

Algorithm Input

The univariate outlier detection algorithm accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Univariate Outlier Detection (Batch Processing)

Input ID Input

data Pointer to the  numeric table with the data for outlier detection.

NOTE The input can be an object of any class derived from the NumericTable class.

location Pointer to the  numeric table with the vector of means.

NOTE The input can be an object of any class derived from NumericTable except
PackedSymmetricMatrix and PackedTriangularMatrix.

scatter Pointer to the  numeric table with the vector of standard deviations.

NOTE The input can be an object of any class derived from NumericTable except
PackedSymmetricMatrix and PackedTriangularMatrix.

threshold Pointer to the  numeric table with non-negative numbers that define the outlier
region.

NOTE The input can be an object of any class derived from NumericTable except
PackedSymmetricMatrix and PackedTriangularMatrix.

If you do not provide at least one of the location, scatter, threshold inputs, the library will initialize all
of them with the following default values:

Default Values for Algorithm Input of Univariate Outlier Detection (Batch Processing)

location A set of 0.0

scatter A set of 1.0

threshold A set of 3.0

Algorithm Parameters

The univariate outlier detection algorithm has the following parameters:
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Algorithm Parameters for Univariate Outlier Detection (Batch Processing)

Parameter Default Value Description

algorithmFPType float The floating-point type that the
algorithm uses for intermediate
computations. Can be float or
double.

method defaultDense Performance-oriented
computation method, the only
method supported by the
algorithm.

Algorithm Output

The univariate outlier detection algorithm calculates the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Univariate Outlier Detection (Batch Processing)

Result ID Result

weights
Pointer to the  numeric table of zeros and ones. Zero in the position 
indicates an outlier in the i-th observation of the j-th feature.

NOTE By default, the result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and СSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• out_detect_uni_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• OutDetectUniDenseBatch.java

Python*

Batch Processing:

• univariate_outlier_batch.py

Distance Matrix

Useful measures of similarity between feature vectors.

• Correlation Distance Matrix
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• Cosine Distance Matrix

Correlation Distance Matrix

Given n feature vectors  of dimension p, the problem is

to compute the symmetric  matrix  of distances between feature vectors, where

Batch Processing

Algorithm Input

The correlation distance matrix algorithm accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Correlation Distance Matrix (Batch Processing)

Input ID Input

data Pointer to the  numeric table for which the distance is computed.

The input can be an object of any class derived from NumericTable.

Algorithm Parameters

The correlation distance matrix algorithm has the following parameters:

Algorithm Parameters for Correlation Distance Matrix (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

Algorithm Output

The correlation distance matrix algorithm calculates the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.
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Algorithm Output for Correlation Distance Matrix (Batch Processing)

Result ID Result

correlatio
nDistance

Pointer to the numeric table that represents the  symmetric distance matrix

.

By default, the result is an object of the PackedSymmetricMatrix class with the
lowerPackedSymmetricMatrix layout. However, you can define the result as an object of
any class derived from NumericTable except PackedTriangularMatrix and
CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• cor_dist_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• CorDistDenseBatch.java

Python*

Batch Processing:

• correlation_distance_batch.py

Performance Considerations
To get the best overall performance when computing the correlation distance matrix:

• If input data is homogeneous, provide the input data and store results in homogeneous numeric tables of
the same type as specified in the algorithmFPType class template parameter.

• If input data is non-homogeneous, use AOS layout rather than SOA layout.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Cosine Distance Matrix

Given n feature vectors  of dimension Lmath:p, the

problem is to compute the symmetric  matrix  of distances between feature vectors,
where
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Batch Processing

Algorithm Input

The cosine distance matrix algorithm accepts the input described below. Pass the Input ID as a parameter
to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Cosine Distance Matrix (Batch Processing)

Input ID Input

data Pointer to the  numeric table for which the distance is computed.

The input can be an object of any class derived from NumericTable.

Algorithm Parameters

The cosine distance matrix algorithm has the following parameters:

Algorithm Parameters for Cosine Distance Matrix (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

Algorithm Output

The cosine distance matrix algorithm calculates the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Cosine Distance Matrix (Batch Processing)

Result ID Result

cosineDist
ance

Pointer to the numeric table that represents the  symmetric distance matrix

.

By default, the result is an object of the PackedSymmetricMatrix class with the
lowerPackedSymmetricMatrix layout. However, you can define the result as an object of
any class derived from NumericTable except PackedTriangularMatrix and
CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• cos_dist_dense_batch.cpp

Java*
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NOTE There is no support for Java on GPU.

Batch Processing:

• CosDistDenseBatch.java

Python*

Batch Processing:

• cosine_distance_batch.py

Performance Considerations
To get the best overall performance when computing the cosine distance matrix:

• If input data is homogeneous, provide the input data and store results in homogeneous numeric tables of
the same type as specified in the algorithmFPType class template parameter.

• If input data is non-homogeneous, use AOS layout rather than SOA layout.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Distributions

Random number distribution generators are used to generate random numbers with different types of the
discrete and continuous distributions. The numbers are generated by transforming uniformly distributed
variates in accordance with the required cumulative distribution function (CDF).

In oneDAL, distribution represents an algorithm interface that runs in-place initialization of memory
according to the required CDF.

• Uniform Distribution
• Normal Distribution
• Bernoulli Distribution

Algorithm Input

Distribution algorithms accept the input described below. Pass the Input ID as a parameter to the methods
that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Distributions

Input ID Input

tableToFil
l Pointer to the numeric table of size .

NOTE This input can be an object of any class derived from NumericTable except
CSRNumericTable, PackedSymmetricMatrix, PackedTriangularMatrix, and
MergedNumericTable when it holds one of the above table types.

Algorithm Parameters

Distribution algorithms have the following common parameter:
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Algorithm Parameters for Distributions

Parameter Default Value Description

engine SharePtr< engines:: mt19937::
Batch>()

Pointer to the random number engine.

Algorithm Output

Distribution algorithms calculate the result described below. Pass the Result ID as a parameter to the
methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Distributions

Result ID Result

randomNumb
ers Pointer to the  numeric table with algorithm results.

In oneDAL, distribution algorithms are in-place, which means that the algorithm does not
allocate memory for the distribution result, but returns pointer to the filled input.

Uniform Distribution

Generates random numbers uniformly distributed on the interval .

Details

Uniform random number generator fills the input  numeric table with values that are uniformly

distributed on the interval , where  and .

The probability density is given by:

The cumulative distribution function is as follows:

Batch Processing
Algorithm Parameters

Uniform distribution algorithm has the following parameters in addition to the common parameters specified
in Distributions:

Algorithm Parameters for Uniform Distribution (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.
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Paramete
r

Default
Value

Description

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

a 0.0 The left bound a.

b 1.0 The right bound b.

Examples
Python*

Batch Processing:

• distributions_uniform_batch.py

Normal Distribution

Generates normally distributed random numbers.

Details
Normal (Gaussian) random number generator fills the input n x p numeric table with Gaussian random
numbers with mean α and standard deviation σ, where α, σ∈R and σ > 0. The probability density function is
given by:

The cumulative distribution function is as follows:

Batch Processing
Algorithm Parameters

Normal distribution algorithm has the following parameters in addition to the common parameters specified
in Distributions:

Algorithm Parameters for Normal Distribution (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm. The only method supported so far is the Inverse Cumulative
Distribution Function (ICDF) method.

a 0 The mean 

sigma 1 The standard deviation 
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Examples
Python*

Batch Processing:

• distributions_normal_batch.py

Bernoulli Distribution

Generates Bernoulli distributed random numbers.

Details

Bernoulli random number generator fills the  numeric table with Bernoulli distributed values with

the p probability of success on a single trial, where , .

A variate is called Bernoulli distributed if after a trial it is equal to 1 with the probability of success p and to 0

with the probability . The probability distribution is given by:

The cumulative distribution function is as follows:

Batch Processing
Algorithm Parameters

Bernoulli distribution algorithm has the following parameters in addition to the common parameters specified
in Distributions:

Algorithm Parameters for Bernoulli Distribution (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

p Not
applicable

Success probability of a trial, required parameter.

Examples
Python*

Batch Processing:

• distributions_bernoulli_batch.py
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Performance Considerations
To get the best overall performance when using the Bernoulli distribution random number generator, provide
the 32-bit signed integer homogeneous numeric table constructed with enabled equal features.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Engines

Random number engines are used for uniformly distributed random numbers generation by using a seed -
the initial value that allows to select a particular random number sequence. Initialization is an engine-specific
procedure.

Algorithm Input

Engines accept the input described below. Pass the Input ID as a parameter to the methods that provide
input for your algorithm. For more details, see Algorithms.

Algorithm Input for Engines

Input ID Input

tableToFil
l Pointer to the numeric table of size .

This input can be an object of any class derived from NumericTable except
CSRNumericTable, PackedSymmetricMatrix, PackedTriangularMatrix, and
MergedNumericTable when it holds one of the above table types.

Algorithm Output

Engines calculate the result described below. Pass the Result ID as a parameter to the methods that access
the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Engines

Result ID Result

randomNumb
ers Pointer to the  numeric table with generated random floating-point values of

single or double precision.

In oneDAL, engines are in-place, which means that the algorithm does not allocate
memory for the distribution result, but returns pointer to the filled input.

NOTE In the current version of the library, engines are used for random number generation only as a
parameter of another algorithm.

Parallel Random Number Generation

The following methods that support generation of sequences of random numbers in parallel are supported in
library:

Family Engines follow the same algorithmic scheme with different algorithmic
parameters. The set of the parameters guarantee independence of random
number sequences produced by the engines.
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The example below demonstrates the idea for the case when 2 engines from the
same family are used to generate 2 random sequences:

Family method of random sequence generation

SkipAhead This method skips nskip elements of the original random sequence. This method
allows to produce nThreads non-overlapping subsequences.

The example below demonstrates the idea for the case when 2 subsequences are
used from the random sequence:

SkipAhead method of random sequence generation

LeapFrog This method generates random numbers with a stride of nThreads. threadIdx
is an index of the current thread.

The example below demonstrates the idea for the case when 2 subsequences are
used from the random sequence:

LeapFrog method of random sequence generation

These methods are represented with member functions of classes that represent functionality described in
the Engines section. See API References for details.

NOTE Support of these methods is engine-specific.
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• mt19937
• mcg59
• mt2203

mt19937

Mersenne Twister engine is a random number engine based on Mersenne Twister algorithm. More specifically,
it is a Mersenne Twister pseudorandom number generator with period [Matsumoto98].

Subsequence selection methods support

skipAhead (nskip) Supported

leapfrog (threadIdx,
nThreads)

Not supported

Batch Processing
Mersenne Twister engine needs the initial condition (seed) for state initialization. The seed can be either an
integer scalar or a vector of p integer elements, the inputs to the respective engine constructors.

Algorithm Parameters

Mersenne Twister engine has the following parameters:

Algorithm Parameters for mt19937 engine (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Performance-oriented computation method; the
only method supported by the algorithm.

seed • 777 for a scalar seed
• NA for a vector seed

Initial condition for state initialization, scalar or
vector:

• Scalar, value of size_t type
• Vector, pointer to HomogenNumericTable of size

mcg59

The engine is based on the 59-bit multiplicative congruential generator.

Subsequence selection methods support

skipAhead (nskip) Supported

leapfrog (threadIdx,
nThreads)

Supported

Batch Processing
MCG59 engine needs the initial condition (seed) for state initialization. The seed can be either an integer
scalar or a vector of p integer elements, the inputs to the respective engine constructors.

Algorithm Parameters

MCG59 engine has the following parameters:

Intel® oneAPI Data Analytics Library (oneDAL)  1  

313



Algorithm Parameters for mcg58 engine (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Performance-oriented computation method; the
only method supported by the algorithm.

seed • 777 for a scalar seed
• NA for a vector seed

Initial condition for state initialization, scalar or
vector:

• Scalar, value of size_t type
• Vector, pointer to HomogenNumericTable of size

mt2203

The engine is based on a set of 6024 Mersenne Twister pseudorandom number generators with period 22203.

MT2203 generators are intended for use in large scale Monte Carlo simulations performed on multi-processor
computer systems [Matsumoto2000].

Subsequence selection methods support

skipAhead (nskip) Not supported

leapfrog (threadIdx,
nThreads)

Not supported

Batch Processing
Mersenne Twister engine needs the initial condition (seed) for state initialization. The seed can be either an
integer scalar or a vector of p integer elements, the inputs to the respective engine constructors.

Algorithm Parameters

MT2203 engine has the following parameters:

Algorithm Parameters for mt2203 engine (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Performance-oriented computation method; the
only method supported by the algorithm.

seed • 777 for a scalar seed
• NA for a vector seed

Initial condition for state initialization, scalar or
vector:

• Scalar, value of size_t type
• Vector, pointer to HomogenNumericTable of size
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Moments of Low Order

Moments are basic quantitative measures of data set characteristics such as location and dispersion. oneDAL
computes the following low order characteristics:

• minimums/maximums
• sums
• means
• sums of squares
• sums of squared differences from the means
• second order raw moments
• variances
• standard deviations
• variations

Details

Given a set X of n feature vectors  of dimension p, the
problem is to compute the following sample characteristics for each feature in the data set:

Moments of Low Order

Statistic Definition

Minimum

Maximum

Sum

Sum of squares

Means

Second order raw
moment

Sum of squared
difference from the
means

Variance

Standard deviation

Variation coefficient

Computation
The following computation modes are available:

• Batch Processing
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• Online Processing
• Distributed Processing

Examples
C++ (CPU)

Batch Processing:

• low_order_moms_dense_batch.cpp
• low_order_moms_csr_batch.cpp

Online Processing:

• low_order_moms_dense_online.cpp
• low_order_moms_csr_online.cpp

Distributed Processing:

• low_order_moms_dense_distr.cpp
• low_order_moms_csr_distr.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• LowOrderMomsDenseBatch.java
• LowOrderMomsCSRBatch.java

Online Processing:

• LowOrderMomsDenseOnline.java
• LowOrderMomsCSROnline.java

Distributed Processing:

• LowOrderMomsDenseDistr.java
• LowOrderMomsCSRDistr.java

Python* with DPC++ support

Batch Processing:

• low_order_moms_dense_batch.py

Online Processing:

• low_order_moms_streaming.py

Python*

Batch Processing:

• low_order_moms_dense_batch.py

Online Processing:

• low_order_moms_streaming.py

Distributed Processing:

• low_order_moms_spmd.py

Batch Processing
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Algorithm Input
The low order moments algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Low Order Moments (Batch Processing)

Input ID Input

data Pointer to the numeric table of size  to compute moments for.

While the input for defaultDense, singlePassDense, or sumDense method can be an
object of any class derived from NumericTable, the input for fastCSR, singlePassCSR,
or sumCSR method can only be an object of the CSRNumericTable class.

Algorithm Parameters
The low order moments algorithm has the following parameters:

Algorithm Parameters for Low Order Moments (Batch Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of low order moments:

For CPU:

• defaultDense - default performance-oriented method
• singlePassDense - implementation of the single-pass algorithm proposed

by D.H.D. West
• sumDense - implementation of the algorithm in the cases where the basic

statistics associated with the numeric table are pre-computed sums; returns
an error if pre-computed sums are not defined

• fastCSR - performance-oriented method for CSR numeric tables
• singlePassCSR - implementation of the single-pass algorithm proposed by

D.H.D. West; optimized for CSR numeric tables
• sumCSR - implementation of the algorithm in the cases where the basic

statistics associated with the numeric table are pre-computed sums;
optimized for CSR numeric tables; returns an error if pre-computed sums
are not defined

For GPU:

• defaultDense - default performance-oriented method

estimate
sToCompu
te

estimate
sAll

Estimates to be computed by the algorithm:

• estimatesAll - all supported moments
• estimatesMinMax - minimum and maximum
• estimatesMeanVariance - mean and variance

Algorithm Output
The low order moments algorithm calculates the results described in the following table. Pass the Result ID
as a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.
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NOTE Each result is a pointer to the  numeric table that contains characteristics for each
feature in the data set. By default, the tables are objects of the HomogenNumericTable class, but you
can define each table as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Algorithm Output for Low Order Moments (Batch Processing)

Result ID Characteristic

minimum Minimums

maximum Maximums

sum Sums

sumSquares Sums of squares

sumSquares
Centered

Sums of squared differences from the means

mean Estimates for the means

secondOrde
rRawMoment

Estimates for the second order raw moments

variance Estimates for the variances

standardDe
viation

Estimates for the standard deviations

variation Estimates for the variations

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Online Processing

Online processing computation mode assumes that data arrives in blocks .

Computation of low order moments in the online processing mode follows the general computation schema
for online processing described in Algorithms.

Algorithm Input
The low order moments algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Low Order Moments (Online Processing)

Input ID Input

data Pointer to the numeric table of size  that represents the current data block.
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Input ID Input

While the input for defaultDense, singlePassDense, or sumDense method can be an
object of any class derived from NumericTable, the input for fastCSR, singlePassCSR,
or sumCSR method can only be an object of the CSRNumericTable class.

Algorithm Parameters
The low order moments algorithm has the following parameters:

Algorithm Parameters for Low Order Moments (Online Processing)

Paramete
r

Default
Valude

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of low order moments:

defaultDense default performance-oriented method

singlePassDense implementation of the single-pass algorithm proposed by
D.H.D. West

sumDense implementation of the algorithm in the cases where the
basic statistics associated with the numeric table are pre-
computed sums; returns an error if pre-computed sums
are not defined

fastCSR performance-oriented method for CSR numeric tables

singlePassCSR implementation of the single-pass algorithm proposed by
D.H.D. West; optimized for CSR numeric tables

sumCSR implementation of the algorithm in the cases where the
basic statistics associated with the numeric table are pre-
computed sums; optimized for CSR numeric tables;
returns an error if pre-computed sums are not defined

initiali
zationPr
ocedure

Not
applicable

The procedure for setting initial parameters of the algorithm in the online
processing mode.

By default, the algorithm does the following initialization:

• Sets nObservations, partialSum, and partialSumSquares to zero.
• Sets partialMinimum and partialMaximum to the first row of the input

table.

estimate
sToCompu
te

estimate
sAll

Estimates to be computed by the algorithm:

• estimatesAll - all supported moments
• estimatesMinMax - minimum and maximum
• estimatesMeanVariance - mean and variance
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Partial Results
The low order moments algorithm in the online processing mode calculates partial results described below.
Pass the Result ID as a parameter to the methods that access the results of your algorithm. For more
details, see Algorithms.

Partial Results for Low Order Moments (Online Processing)

Result ID Result

nObservati
ons

Pointer to the  numeric table that contains the number of rows processed so far.

By default, this result is an object of the HomogenNumericTable class, but you can define
the result as an object of any class derived from NumericTable except
CSRNumericTable.

Partial characteristics computed so far, each in a  numeric table. By default, each table is an object
of the HomogenNumericTable class, but you can define the tables as objects of any class derived from
NumericTable except PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Partial Characteristics for Low Order Moments (Online Processing)

Result ID Result

partialMin
imum

Partial minimums

partialMax
imum

Partial maximums

partialSum Partial sums

partialSum
Squares

Partial sums of squares

partialSum
SquaresCen
tered

Partial sums of squared differences from the means

Algorithm Output
The low order moments algorithm calculates the results described in the following table. Pass the Result ID
as a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

NOTE Each result is a pointer to the  numeric table that contains characteristics for each
feature in the data set. By default, the tables are objects of the HomogenNumericTable class, but you
can define each table as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Algorithm Output for Low Order Moments (Online Processing)

Result ID Characteristic

minimum Minimums

maximum Maximums
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Result ID Characteristic

sum Sums

sumSquares Sums of squares

sumSquares
Centered

Sums of squared differences from the means

mean Estimates for the means

secondOrde
rRawMoment

Estimates for the second order raw moments

variance Estimates for the variances

standardDe
viation

Estimates for the standard deviations

variation Estimates for the variations

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Distributed Processing

This mode assumes that the data set is split into nblocks blocks across computation nodes.

Algorithm Parameters
The low order moments algorithm in the distributed processing mode has the following parameters:

Algorithm Parameters for Low Order Moments (Distributed Processing)

Paramete
r

Default
Valude

Description

computeS
tep

Not
applicable

The parameter required to initialize the algorithm. Can be:

• step1Local - the first step, performed on local nodes
• step2Master - the second step, performed on a master node

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for computation of low order moments:

defaultDense default performance-oriented method

singlePassDense implementation of the single-pass algorithm proposed by
D.H.D. West
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Paramete
r

Default
Valude

Description

sumDense implementation of the algorithm in the cases where the
basic statistics associated with the numeric table are pre-
computed sums; returns an error if pre-computed sums
are not defined

fastCSR performance-oriented method for CSR numeric tables

singlePassCSR implementation of the single-pass algorithm proposed by
D.H.D. West; optimized for CSR numeric tables

sumCSR implementation of the algorithm in the cases where the
basic statistics associated with the numeric table are pre-
computed sums; optimized for CSR numeric tables;
returns an error if pre-computed sums are not defined

estimate
sToCompu
te

estimate
sAll

Estimates to be computed by the algorithm:

• estimatesAll - all supported moments
• estimatesMinMax - minimum and maximum
• estimatesMeanVariance - mean and variance

Computation of low order moments follows the general schema described in Algorithms:

Step 1 - on Local Nodes
In this step, the low order moments algorithm accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Low Order Moments (Distributed Processing, Step 1)

Input ID Input

data Pointer to the numeric table of size  that represents the i-th data block on the local
node.

While the input for defaultDense, singlePassDense, or sumDense method can be an
object of any class derived from NumericTable, the input for fastCSR, singlePassCSR,
or sumCSR method can only be an object of the CSRNumericTable class.

In this step, the low order moments algorithm calculates the results described below. Pass the Result ID as
a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Low Order Moments (Distributed Processing, Step 1)

Result ID Result

nObservati
ons

Pointer to the  numeric table that contains the number of observations processed
so far on the local node.

By default, this result is an object of the HomogenNumericTable class, but you can define
the result as an object of any class derived from NumericTable except
CSRNumericTable.
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Partial characteristics computed so far on the local node, each in a  numeric table. By default, each
table is an object of the HomogenNumericTable class, but you can define the tables as objects of any class
derived from NumericTable except PackedSymmetricMatrix, PackedTriangularMatrix, and
CSRNumericTable.

Partial Characteristics for Low Order Moments (Distributed Processing, Step 1)

Result ID Result

partialMin
imum

Partial minimums

partialMax
imum

Partial maximums

partialSum Partial sums

partialSum
Squares

Partial sums of squares

partialSum
SquaresCen
tered

Partial sums of squared differences from the means

Step 2 - on Master Node
In this step, the low order moments algorithm accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Low Order Moments (Distributed Processing, Step 2)

Input ID Input

partialRes
ults

A collection that contains numeric tables with partial results computed in Step 1 on local
nodes (six numeric tables from each local node). These numeric tables can be objects of
any class derived from the NumericTable class except PackedSymmetricMatrix and
PackedTriangularMatrix.

In this step, the low order moments algorithm calculates the results described in the following table. Pass the
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.

NOTE Each result is a pointer to the  numeric table that contains characteristics for each
feature in the data set. By default, the tables are objects of the HomogenNumericTable class, but you
can define each table as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Algorithm Output for Low Order Moments (Distributed Processing, Step 2)

Result ID Characteristic

minimum Minimums

maximum Maximums

sum Sums
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Result ID Characteristic

sumSquares Sums of squares

sumSquares
Centered

Sums of squared differences from the means

mean Estimates for the means

secondOrde
rRawMoment

Estimates for the second order raw moments

variance Estimates for the variances

standardDe
viation

Estimates for the standard deviations

variation Estimates for the variations

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Quantile

Quantile is an algorithm to analyze the distribution of observations. Quantiles are the values that divide the
distribution so that a given portion of observations is below the quantile.

Details

Given a set X of p features  and the quantile orders

, the problem is to compute  that meets the following conditions:

In the equations above:

•
 are observations of a random variable  that represents the i-th feature

• P is the probability measure
•

•

Batch Processing

Algorithm Input

The quantile algorithm accepts the input described below. Pass the Input ID as a parameter to the methods
that provide input for your algorithm. For more details, see Algorithms.
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Algorithm Input for Quantile (Batch Processing)

Input ID Input

data Pointer to the  numeric table that contains the input data set. This table can be
an object of any class derived from NumericTable.

Algorithm Parameters

The quantile algorithm has the following parameters:

Algorithm Parameters for Quantile (Batch Processing)

Parameter Default Value Description

algorithmFPType float The floating-point type that the
algorithm uses for intermediate
computations. Can be float or
double.

method defaultDense Performance-oriented
computation method, the only
method supported by the
algorithm.

quantileOrders 0.5 The  numeric table with
quantile orders.

Algorithm Output

The quantile algorithm calculates the result described below. Pass the Result ID as a parameter to the
methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Quantile (Batch Processing)

Result ID Result

quantiles Pointer to the  numeric table with the quantiles.

By default, this result is an object of the HomogenNumericTable class, but you can define
the result as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• quantiles_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• QuantilesDenseBatch.java

Python*
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Batch Processing:

• quantiles_batch.py

Quality Metrics

In oneDAL, a quality metric is a numerical characteristic or a set of connected numerical characteristics that
represents the qualitative aspect of the result returned by an algorithm: a computed statistical estimate,
model, or result of decision making.

A common set of quality metrics can be defined for some training and prediction algorithms.

A typical workflow with quality metric set is the following:

1. Create a quality metric set object to compute quality metrics.

• Set specific parameters for the algorithms.
• Use the useDefaultMetrics flag to specify whether the default or user-defined quality metrics

should be computed.
2. Get an input collection object using QualityMetricsId of a specific algorithm.
3. Set data to the input collection using the algorithm’s InputId.
4. Perform computation.
5. Get the resulting collection of quality metrics using the algorithm’s ResultId.

NOTE For values of InputId, Parameters, QualityMetricsId, ResultId, refer to the description of
a specific algorithm.

Quality metrics are optional. They are computed when the computation is explicitly requested.

• Working with the Default Metric Set

• Quality Metrics for Binary Classification Algorithms
• Quality Metrics for Multi-class Classification Algorithms
• Quality Metrics for Linear Regression
• Quality Metrics for Principal Components Analysis

• Working with User-defined Quality Metrics

Working with the Default Metric Set

For your convenience, oneDAL provides a set of quality metrics for some algorithms.

• Quality Metrics for Binary Classification Algorithms
• Quality Metrics for Multi-class Classification Algorithms
• Quality Metrics for Linear Regression
• Quality Metrics for Principal Components Analysis

Quality Metrics for Binary Classification Algorithms

For two classes  and , given a vector  of class labels computed at the prediction

stage of the classification algorithm and a vector  of expected class labels, the problem
is to evaluate the classifier by computing the confusion matrix and connected quality metrics: precision,
recall, and so on.

QualityMetricsId for binary classification is confusionMatrix.

Details
Further definitions use the following notations:
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Notations for Quality Metrics for Binary Classification Algorithms

true positive the number of correctly recognized observations for class 

true negative the number of correctly recognized observations that do not

belong to the class 

false positive the number of observations that were incorrectly assigned to

the class 

false negative the number of observations that were not recognized as

belonging to the class 

The library uses the following quality metrics for binary classifiers:

Definitions of Quality Metrics for Binary Classification Algorithms

Quality Metric Definition

Accuracy

Precision

Recall

F-score

Specificity

Area under curve (AUC)

For more details of these metrics, including the evaluation focus, refer to [Sokolova09].

The confusion matrix is defined as follows:

Confusion Matrix for Binary Classification Algorithms

Classified as Class Classified as Class 

Actual Class tp fn

Actual Class fp tn

Batch Processing

Algorithm Input

The quality metric algorithm for binary classifiers accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.
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Algorithm Input for Quality Metrics for Binary Classification (Batch Processing)

Input ID Input

predictedL
abels

Pointer to the  numeric table that contains labels computed at the prediction
stage of the classification algorithm.

This input can be an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

groundTrut
hLabels

Pointer to the  numeric table that contains expected labels.

This input can be an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Algorithm Parameters

The quality metric algorithm has the following parameters:

Algorithm Parameters for Quality Metrics for Binary Classification (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

beta 1 The  parameter of the F-score quality metric provided by the library.

Algorithm Output

The quality metric algorithm calculates the result described below. Pass the Result ID as a parameter to
the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Quality Metrics for Binary Classification (Batch Processing)

Result ID Result

confusionM
atrix

Pointer to the  numeric table with the confusion matrix.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

binaryMetr
ics

Pointer to the  numeric table that contains quality metrics, which you can access by
an appropriate Binary Metrics ID:

• accuracy - accuracy
• precision - precision
• recall - recall
• fscore - F-score
• specificity - specificity
• AUC - area under the curve
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Result ID Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• svm_two_class_metrics_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• SVMTwoClassMetricsDenseBatch.java

Quality Metrics for Multi-class Classification Algorithms

For l classes , given a vector  of class labels computed at the prediction

stage of the classification algorithm and a vector  of expected class labels, the problem
is to evaluate the classifier by computing the confusion matrix and connected quality metrics: precision, error
rate, and so on.

QualityMetricsId for multi-class classification is confusionMatrix.

Details
Further definitions use the following notations:

Notations for Quality Metrics for Multi-class Classification Algorithms

true positive the number of correctly recognized observations for class 

true negative the number of correctly recognized observations that do not

belong to the class 

false positive the number of observations that were incorrectly assigned to

the class 

false negative the number of observations that were not recognized as

belonging to the class 

The library uses the following quality metrics for multi-class classifiers:
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Definitions of Quality Metrics for Multi-class Classification Algorithms

Quality Metric Definition

Average accuracy

Error rate

Micro precision ( )

Micro recall ( )

Micro F-score ( )

Macro precision ( )

Macro recall ( )

Macro F-score ( )

For more details of these metrics, including the evaluation focus, refer to [Sokolova09].

The following is the confusion matrix:

Confusion Matrix for Multi-class Classification Algorithms

Classified as

Class 

Classified as

Class 

Classified as

Class 

Actual Class

Actual Class 

Actual Class 

The positives and negatives are defined through elements of the confusion matrix as follows:
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Batch Processing

Algorithm Input

The quality metric algorithm for multi-class classifiers accepts the input described below. Pass the Input ID
as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Quality Metrics for Multi-class Classification Algorithms (Batch Processing)

Input ID Input

predictedL
abels

Pointer to the  numeric table that contains labels computed at the prediction
stage of the classification algorithm.

This input can be an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

groundTrut
hLabels

Pointer to the  numeric table that contains expected labels.

This input can be an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Algorithm Parameters

The quality metric algorithm has the following parameters:

Algorithm Parameters for Quality Metrics for Multi-class Classification Algorithms (Batch
Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

nClasses 0 The number of classes (l).

useDefau
ltMetric
s

true A flag that defines a need to compute the default metrics provided by the
library.

beta 1 The  parameter of the F-score quality metric provided by the library.

Algorithm Output

The quality metric algorithm calculates the result described below. Pass the Result ID as a parameter to
the methods that access the results of your algorithm. For more details, see Algorithms.
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Algorithm Output for Quality Metrics for Multi-class Classification Algorithms (Batch Processing)

Result ID Result

confusionM
atrix

Pointer to the  numeric table with the confusion matrix.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

multiClass
Metrics

Pointer to the  numeric table that contains quality metrics, which you can access by
an appropriate Multi-class Metrics ID:

• averageAccuracy - average accuracy
• errorRate - error rate
• microPrecision - micro precision
• microRecall - micro recall
• microFscore - micro F-score
• macroPrecision - macro precision
• macroRecall - macro recall
• macroFscore - macro F-score

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• svm_multi_class_metrics_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• SVMMultiClassMetricsDenseBatch.java

Quality Metrics for Linear Regression

Given a data set  that contains vectors of input variables , respective

responses  computed at the prediction stage of the linear regression model defined by

its coefficients , , , and expected responses ,

, the problem is to evaluate the linear regression model by computing the root mean square
error, variance-covariance matrix of beta coefficients, various statistics functions, and so on. See Linear
Regression for additional details and notations.
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For linear regressions, the library computes statistics listed in tables below for testing insignificance of beta
coefficients and one of the following values of QualityMetricsId:

• singleBeta for a single coefficient
• groupOfBetas for a group of coefficients

For more details, see [Hastie2009].

Details
The statistics are computed given the following assumptions about the data distribution:

•
Responses , , are independent and have a constant variance , 

• Conditional expectation of responses , , is linear in input variables

•
Deviations of , , around the mean of expected responses , , are
additive and Gaussian.

Testing Insignificance of a Single Beta

The library uses the following quality metrics:

Quality Metrics for Testing Insignificance of a Single Beta

Quality Metric Definition

Root Mean Square (RMS) Error

, 

Vector of variances , 

A set of variance-covariance matrices

 for vectors of betas , , 

Z-score statistics used in testing of insignificance of

a single coefficient , ,  is the j-th

element of the vector of variance  and

 is the t-th diagonal

element of the matrix 

Confidence interval for ,

,  is the  percentile

of the Gaussian distribution,  is the j-th element

of the vector of variance ,

 is the t-th diagonal

element of the matrix 

Testing Insignificance of a Group of Betas
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The library uses the following quality metrics:

Quality Metrics for Testing Insignificance of a Group of Betas

Quality Metric Definition

Mean of expected responses,
, 

Variance of expected responses,
,

Regression Sum of Squares
,

Sum of Squares of Residuals
, 

Total Sum of Squares
,

Determination Coefficient 
, 

F-statistics used in testing insignificance of a group

of betas , ,

where  are computed for a model with

 betas and  are computed for a

reduced model with  betas (  betas
are set to zero)

Batch Processing
• Testing Insignificance of a Single Beta
• Testing Insignificance of a Group of Betas

Testing Insignificance of a Single Beta

Algorithm Input

The quality metric algorithm for linear regression accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Testing Insignificance of a Single Beta in Linear Regression (Batch
Processing)

Input ID Input

expectedRe
sponses

Pointer to the  numeric table with responses (k dependent variables) used for
training the linear regression model.

This table can be an object of any class derived from NumericTable.
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Input ID Input

model Pointer to the model computed at the training stage of the linear regression algorithm.

The model can only be an object of the linear_regression::Model class.

predictedR
esponses

Pointer to the  numeric table with responses (k dependent variables) computed
at the prediction stage of the linear regression algorithm.

This table can be an object of any class derived from NumericTable.

Algorithm Parameters

The quality metric algorithm for linear regression has the following parameters:

Algorithm Parameters for Testing Insignificance of a Single Beta in Linear Regression (Batch
Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

alpha 0.05 Significance level used in the computation of confidence intervals for
coefficients of the linear regression model.

accuracy
Threshol
d

0.001 Values below this threshold are considered equal to it.

Algorithm Output

The quality metric algorithm for linear regression calculates the result described below. Pass the Result ID
as a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Testing Insignificance of a Single Beta in Linear Regression (Batch
Processing)

Result ID Result

rms Pointer to the  numeric table that contains root mean square errors computed for
each response (dependent variable)

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable, except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

variance
Pointer to the  numeric table that contains variances , 
computed for each response (dependent variable).
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Result ID Result

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable, except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

betaCovari
ances

Pointer to the DataCollection object that contains k numeric tables, each with the 
variance-covariance matrix for betas of the j-th response (dependent variable), where m is
the number of betas in the model (m is equal to p when interceptFlag is set to false at the
training stage of the linear regression algorithm; otherwise, m is equal to p + 1 ).

The collection can contain objects of any class derived from NumericTable.

zScore Pointer to the  numeric table that contains the Z-score statistics used in the testing
of insignificance of individual linear regression coefficients, where m is the number of betas
in the model (m is equal to p when interceptFlag is set to false at the training stage of

the linear regression algorithm; otherwise, m is equal to ).

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable, except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

confidence
Intervals

Pointer to the  numeric table that contains limits of the confidence intervals
for linear regression coefficients:

•
 is the left limit of the confidence interval computed

for the j-th beta of the t-th response (dependent variable)
•

 is the right limit of the confidence interval
computed for the j-th beta of the t-th response (dependent variable),

where m is the number of betas in the model (m is equal to p when interceptFlag is set
to false at the training stage of the linear regression algorithm; otherwise, m is equal to

).

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable, except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

inverseOfX
tX Pointer to the  numeric table that contains the  matrix, where m is the

number of betas in the model (m is equal to p when interceptFlag is set to false at the

training stage of the linear regression algorithm; otherwise, m is equal to ).

Testing Insignificance of a Group of Betas

Algorithm Input
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The quality metric algorithm for linear regression accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Testing Insignificance of a Group of Betas in Linear Regression (Batch
Processing)

Input ID Input

expectedRe
sponses

Pointer to the  numeric table with responses (k dependent variables) used for
training the linear regression model.

This table can be an object of any class derived from NumericTable.

predictedR
esponses

Pointer to the  numeric table with responses (k dependent variables) computed
at the prediction stage of the linear regression algorithm.

This table can be an object of any class derived from NumericTable.

predictedR
educedMode
lResponses

Pointer to the  numeric table with responses (k dependent variables) computed
at the prediction stage of the linear regression algorithm using the reduced linear
regression model, where  out of p beta coefficients are set to zero.

This table can be an object of any class derived from NumericTable.

Algorithm Parameters

The quality metric algorithm for linear regression has the following parameters:

Algorithm Parameters for Testing Insignificance of a Group of Betas in Linear Regression (Batch
Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

numBeta 0 Number of beta coefficients used for prediction.

numBetaR
educedMo
del

0 Number of beta coefficients ( ) used for prediction with the reduced linear
regression model, where  out of p beta coefficients are set to zero.

Algorithm Output

The quality metric algorithm for linear regression calculates the result described below. Pass the Result ID
as a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Testing Insignificance of a Group of Betas in Linear Regression (Batch
Processing)

Result ID Result

expectedMe
ans

Pointer to the  numeric table that contains the mean of expected responses
computed for each dependent variable.

expectedVa
riance

Pointer to the  numeric table that contains the variance of expected responses
computed for each dependent variable.
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Result ID Result

regSS Pointer to the  numeric table that contains the regression sum of squares
computed for each dependent variable.

resSS Pointer to the  numeric table that contains the sum of squares of residuals
computed for each dependent variable.

tSS Pointer to the  numeric table that contains the total sum of squares computed for
each dependent variable.

determinat
ionCoeff

Pointer to the  numeric table that contains the determination coefficient
computed for each dependent variable.

fStatistic
s

Pointer to the  numeric table that contains the F-statistics computed for each
dependent variable.

NOTE By default, these results are objects of the HomogenNumericTable class, but you can define
the result as an object of any class derived from NumericTable, except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• lin_reg_metrics_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• LinRegMetricsDenseBatch.java

Quality Metrics for Principal Components Analysis

Given the results of the PCA algorithm, data set ,  of eigenvalues in decreasing order, full

number of principal components p and reduced number of components , the problem is to evaluate
the explained variances radio and noise variance.

QualityMetricsId for the PCA algorithm is explainedVarianceMetrics.

Details
The metrics are computed given the input data meets the following requirements:

• At least the largest eigenvalue  is non-zero. Returns an error otherwise.
• The number of eigenvalues p must be equal to the number of features provided. Returns an error if p is

less than the number of features.
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The PCA algorithm receives input argument eigenvalues , . It represents the following quality
metrics:

• Explained variance ratio
• Noise variance

The library uses the following quality metrics:

Quality Metrics for Principal Components Analysis

Quality Metric Definition

Explained variance
, 

Explained variance ratios
, 

Noise variance

NOTE Quality metrics for PCA are correctly calculated only if the eigenvalues vector obtained from the
PCA algorithm has not been reduced. That is, the nComponents parameter of the PCA algorithm must
be zero or equal to the number of features. The formulas rely on a full set of the principal components.
If the set is reduced, the result is considered incorrect.

Batch Processing

Algorithm Input

The Quality Metrics for PCA algorithm accepts the input described below. Pass the Input ID as a parameter
to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Quality Metrics for Principal Components Analysis (Batch Processing)

Input ID Input

eigenvalue
s

p eigenvalues (explained variances), numeric table of size .

You can define it as an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Algorithm Parameters

The quality metric algorithm has the following parameters:

Algorithm Parameters for Quality Metrics for Principal Components Analysis (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

nCompone
nts

0 The number of principal components  to compute metrics for. If it is
zero, the algorithm will compute the result for p.
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Paramete
r

Default
Value

Description

nFeature
s

0 The number of features in the data set used as input in PCA algorithm. If it is
zero, the algorithm will compute the result for p.

NOTE if , the algorithm will return non-relevant results.

Algorithm Output

The quality metric for PCA algorithm calculates the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm.

Algorithm Output for Quality Metrics for Principal Components Analysis (Batch Processing)

Result ID Result

explainedV
ariances

Pointer to the  numeric table that contains a reduced eigenvalues array.

explainedV
ariancesRa
tios

Pointer to the  numeric table that contains an array of reduced explained variances
ratios.

noiseVaria
nce

Pointer to the  numeric table that contains noise variance.

NOTE By default, each numeric table specified by the collection elements is an object of the
HomogenNumericTable class, but you can define the result as an object of any class derived from
NumericTable, except for PackedSymmetricMatrix, PackedTriangularMatrix, and
CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• pca_metrics_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• PCAMetricsDenseBatch.java

Working with User-defined Quality Metrics

In addition to or instead of the metrics available in the library, you can use your own quality metrics. To do
this:
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1. Add your own implementation of the quality metrics algorithm and define Input and Result classes for
that algorithm.

2. Register this new algorithm in the inputAlgorithms collection of the quality metric set. Also register
the input objects for the new algorithm in the inputData collection of the quality metric set.

Use the unique key when registering the new algorithm and its input, and use the same key to obtain the
computed results.

Sorting

In oneDAL sorting is an algorithm to sort the observations by each feature (column) in the ascending order.

The result of the sorting algorithm applied to the matrix  is the matrix 

where the j-th column , , is the column , , sorted
in the ascending order.

Batch Processing

Algorithm Input

The sorting algorithm accepts the input described below. Pass the Input ID as a parameter to the methods
that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Sorting (Batch Processing)

Input ID Input

data Pointer to the  numeric table that contains the input data set.

This table can be an object of any class derived from NumericTable except
PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

Algorithm Parameters

The sorting algorithm has the following parameters:

Algorithm Parameters for Sorting (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The radix method for sorting a data set, the only method supported by the
algorithm.

Algorithm Output

The sorting algorithm function calculates the result described below. Pass the Result ID as a parameter to
the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Sorting (Batch Processing)

Result ID Result

sortedData Pointer to the  numeric table that stores the results of sorting.
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NOTE If the number of feature vectors is greater than or equal to , the library uses the quick sort
method instead of radix sort.

Examples
C++ (CPU)

Batch Processing:

• sorting_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• SortingDenseBatch.java

Python*

Batch Processing:

• sorting_batch.py

Normalization

Normalization is a set of algorithms intended to transform data before feeding it to some classes of
algorithms, for example, classifiers [James2013]. Normalization may improve computation accuracy and
efficiency. Different rules can be used to normalize data. In oneDAL, two techniques to normalize data are
implemented: z-score and min-max.

• Z-score
• Min-max

Z-score

Z-score normalization is an algorithm that produces data with each feature (column) having zero mean and
unit variance.

Details

Given a set X of n feature vectors  of dimension p, the

problem is to compute the matrix  of dimension  as following:

where:

•
 is the mean of j-th component of set , where 

• value of  depends omn a computation mode

oneDAL provides two modes for computing the result matrix. You can enable the mode by setting the flag
doScale to a certain position (for details, see Algorithm Parameters). The mode may include:
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• Centering only. In this case,  and no scaling is performed. After normalization, the mean of j-th

component of result set  will be zero.
•

Centering and scaling. In this case, , where  is the standard deviation of j-th component of

set . After normalization, the mean of j-th component of result set  will be zero and its
variance will get a value of one.

NOTE Some algorithms require normalization parameters (mean and variance) as an input. The
implementation of Z-score algorithm in oneDAL does not return these values by default. Enable this
option by setting the resultsToCompute flag. For details, see Algorithm Parameters.

Batch Processing

Algorithm Input

Z-score normalization algorithm accepts an input as described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Z-score (Batch Processing)

Input ID Input

data Pointer to the numeric table of size .

NOTE This table can be an object of any class derived from NumericTable.

Algorithm Parameters

Z-score normalization algorithm has the following parameters. Some of them are required only for specific
values of the computation method parameter method:

Algorithm Parameters for Z-score (Batch Processing)

Paramet
er

method Default
Value

Description

algorit
hmFPTyp
e

default
Dense or
sumDens
e

float The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

method Not
applicabl
e

default
Dense

Available computation methods:

defaultDense a performance-oriented method. Mean and
variance are computed by low order moments
algorithm. For details, see Batch Processing for
Moments of Low Order.

sumDense a method that uses the basic statistics associated
with the numeric table of pre-computed sums.
Returns an error if pre-computed sums are not
defined.
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Paramet
er

method Default
Value

Description

moments default
Dense

SharedP
tr<low_
order_m
oments:
:Batch<
algorith
mFPTyp
e,
low_ord
er_mom
ents::de
faultDen
se> >

Pointer to the low order moments algorithm that computes means
and standard deviations to be used for Z-score normalization with the
defaultDense method.

doScale default
Dense or
sumDens
e

true If true, the algorithm applies both centering and scaling. Otherwise,
the algorithm provides only centering.

results
ToCompu
te

default
Dense or
sumDens
e

Not
applicabl
e

Optional.

Pointer to the data collection containing the following key-value pairs
for Z-score:

• mean - means
• variance - variances

Provide one of these values to request a single characteristic or use
bitwise OR to request a combination of them.

Algorithm Output

Z-score normalization algorithm calculates the result as described below. Pass the Result ID as a parameter
to the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Z-score (Batch Processing)

Result ID Result

normalized
Data

Pointer to the  numeric table that stores the result of normalization.

NOTE By default, the result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

means Optional.

Pointer to the  numeric table that contains mean values for each feature.

If the function result is not requested through the resultsToCompute parameter, the
numeric table contains a NULL pointer.

variances Optional.
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Result ID Result

Pointer to the  numeric table that contains variance values for each feature.

If the function result is not requested through the resultsToCompute parameter, the
numeric table contains a NULL pointer. -

NOTE By default, each numeric table specified by the collection elements is an object of the
HomogenNumericTable class. You can also define the result as an object of any class derived from
NumericTable, except for PackedSymmetricMatrix, PackedTriangularMatrix, and
CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• zscore_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• ZScoreDenseBatch.java

Python*

Batch Processing:

• normalization_zscore_batch.py

Min-max

Min-max normalization is an algorithm to linearly scale the observations by each feature (column) into the

range .

Problem Statement

Given a set X of n feature vectors  of dimension p, the

problem is to compute the matrix  where the j-th column  is obtained

as a result of normalizing the column  of the original matrix as:

where:
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a and b are the parameters of the algorithm.

Batch Processing

Algorithm Input

The min-max normalization algorithm accepts the input described below. Pass the Input ID as a parameter
to the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Min-max (Batch Processing)

Input ID Input

data Pointer to the numeric table of size .

NOTE This table can be an object of any class derived from NumericTable.

Algorithm Parameters

The min-max normalization algorithm has the following parameters:

Algorithm Parameters for Min-max (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

lowerBou
nd

0.0 The lower bound of the range to which the normalization scales values of the
features.

upperBou
nd

1.0 The upper bound of the range to which the normalization scales values of the
features.

moments SharedPt
r<low_or
der_mom
ents::Bat
ch<algori
thmFPTy
pe,
low_orde
r_momen
ts::defaul
tDense>
>

Pointer to the low order moments algorithm that computes minimums and
maximums to be used for min-max normalization with the defaultDense
method. For more details, see Batch Processing for Moments of Low Order.

Algorithm Output

The min-max normalization algorithm calculates the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.
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Algorithm Output for Min-max (Batch Processing)

Result ID Result

normalized
Data

Pointer to the  numeric table that stores the result of normalization.

NOTE By default, the result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• minmax_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• MinMaxDenseBatch.java

Python*

Batch Processing:

• normalization_minmax_batch.py

Optimization Solvers

An optimization solver is an algorithm to solve an optimization problem, that is, to find the maximum or
minimum of an objective function in the presence of constraints on its variables. In oneDAL the optimization

solver represents the interface of algorithms that search for the argument  that minimizes the function

:

• Objective Function

• Computation
• Sum of Functions
• Mean Squared Error Algorithm
• Objective Function with Precomputed Characteristics Algorithm
• Logistic Loss
• Cross-entropy Loss

• Iterative Solver

• Computation
• Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm
• Stochastic Gradient Descent Algorithm
• Adaptive Subgradient Method
• Coordinate Descent Algorithm
• Stochastic Average Gradient Accelerated Method
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Objective Function

In oneDAL, the objective function represents an interface of objective functions ,

where  is a smooth and  is a non-smooth functions, that accepts input argument  and
returns:

•
The value of objective function, 

•
The value of , 

•
The gradient of :

•
The Hessian of :

• The objective function specific projection of proximal operator (see [MSE, Log-Loss, Cross-Entropy] for
details):

•
The objective function specific Lipschwitz constant, .

Objective functions

• Computation
• Sum of Functions
• Mean Squared Error Algorithm
• Objective Function with Precomputed Characteristics Algorithm
• Logistic Loss
• Cross-entropy Loss

NOTE On GPU, only Logistic Loss and Cross-entropy Loss are supported, Mean Squared Error
Algorithm is not supported.

Computation

Input
The objective function accepts the input described below. Pass the Input ID as a parameter to the methods
that provide input for your algorithm. For more details, see Algorithms.

Input for Objective Function Computaion

Input ID Input

argument A numeric table of size  with the input argument of the objective function.

Parameters
The objective function has the following parameters:
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Parameters for Objective Function Computaion

Parameter Default value Description

resultsToC
ompute

gradient The 64-bit integer flag that specifies which characteristics of the objective
function to compute.

Provide one of the following values to request a single characteristic or
use bitwise OR to request a combination of the characteristics:

value Value of the objective function

nonSmoothTerm
Value

Value of non-smooth term of the objective function

gradient Gradient of the smooth term of the objective function

hessian Hessian of smooth term of the objective function

proximalProjecti
on

Projection of proximal operator for non-smooth term
of the objective function

lipschitzConstan
t

Lipschitz constant of the smooth term of the
objective function

gradientOverCer
tainFeature

Certain component of gradient vector

hessianOverCert
ainFeature

Certain component of hessian diagonal

proximalProjecti
onOfCertainFeat
ure

Certain component of proximal projection

NOTE On GPU, resultsToCompute only computes value, gradient,
and hessian.

Output
The objective function calculates the result described below. Pass the Result ID as a parameter to the
methods that access the results of your algorithm. For more details, see Algorithms.

Output for Objective Function Computaion

Result ID Result

valueIdx A numeric table of size  with the value of the objective function in the given
argument.

nonSmoothT
ermValueId
x

A numeric table of size  with the value of the non-smooth term of the objective
function in the given argument.

gradientId
x

A numeric table of size  with the gradient of the smooth term of the objective
function in the given argument.
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hessianIdx A numeric table of size  with the Hessian of the smooth term of the objective
function in the given argument.

proximalPr
ojectionId
x

A numeric table of size  with the projection of proximal operator for non-smooth
term of the objective function in the given argument.

lipschitzC
onstantIdx

A numeric table of size  with Lipschitz constant of the smooth term of the
objective function.

gradientOv
erCertainF
eatureIdx

A numeric table of size  with certain component of gradient vector.

hessianOve
rCertainFe
atureIdx

A numeric table of size  with certain component of hessian diagonal.

proximalPr
ojectionOv
erCertainF
eatureIdx

A numeric table of size  with certain component of proximal projection.

NOTE

• If the function result is not requested through the resultsToCompute parameter, the respective
element of the result contains a NULL pointer.

• By default, each numeric table specified by the collection elements is an object of the
HomogenNumericTable class, but you can define the result as an object of any class derived from
NumericTable, except for PackedSymmetricMatrix, PackedTriangularMatrix, and CSRNumericTable.

•
Hessian matrix is computed for the objective function . For the objective functions

 with :math`p < 2` the library will stop computations and report the status on non-
availability of the computation of the Hessian.

• If Lipschitz constant constantOfLipschitz is not estimated explicitly, pointer to result numeric table
is required to be set to nullptr.

Sum of Functions

The sum of functions  is a function that has the form of a sum:

For given set of the indices , , , the value and the
gradient of the sum of functions in the argument  has the format:
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The set of the indices I is called a batch of indices.

Computation

Algorithm Input

The sum of functions algorithm accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Sum of Functions Computaion

Input ID Input

argument A numeric table of size  with the input argument of the objective function.

Algorithm Parameters

The sum of functions algorithm has the following parameters:

Algorithm Parameters for Sum of Functions Computaion

Paramete
r

Default
Value

Description

resultsT
oCompute

gradient The 64-bit integer flag that specifies which characteristics of the objective
function to compute.

Provide one of the following values to request a single characteristic or use
bitwise OR to request a combination of the characteristics:

value Value of the objective function

nonSmoothTermV
alue

Value of non-smooth term of the objective function

gradient Gradient of the smooth term of the objective function

hessian Hessian of smooth term of the objective function

proximalProjectio
n

Projection of proximal operator for non-smooth term of
the objective function

lipschitzConstant Lipschitz constant of the smooth term of the objective
function

gradientOverCert
ainFeature

Certain component of gradient vector

hessianOverCerta
inFeature

Certain component of hessian diagonal

proximalProjectio
nOfCertainFeatur
e

Certain component of proximal projection

Algorithm Output

For the output of the sum of functions algorithm, see Output for objective functions.

Mean Squared Error Algorithm
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NOTE Mean Squared Error Algorithm is not supported on GPU.

Details

Given , a set of feature vectors , and a set of respective

responses , the mean squared error (MSE) objective function  is a function that has the format:

In oneDAL implementation of the MSE, the  is represented as:

For a given set of the indices , , , , the value
and the gradient of the sum of functions in the argument x respectively have the format:

where

Computation

Algorithm Input

The mean squared error algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for MSE Computaion

Input ID Input

argument
A numeric table of size  with the input argument  of the objective function.
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data A numeric table of size  with the data .

dependentV
ariables

A numeric table of size  with dependent variables .

Optional Algorithm Input

The mean squared error algorithm accepts the optional input described below. Pass the Optional Input ID
as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Optional Algorithm Input for MSE Computaion

Input ID Input

weights Optional input. Pointer to the  numeric table with weights of samples. The input
can be an object of any class derived from NumericTable except for
PackedTriangularMatrix and PackedSymmetricMatrix.

By default, all weights are equal to 1.

gramMatrix Optional input. Pointer to the :mathL`p times p` numeric table with pre-computed Gram
matrix. The input can be an object of any class derived from NumericTable except for
PackedTriangularMatrix and PackedSymmetricMatrix.

By default, the table is set to empty numeric table.

Algorithm Parameters

The mean squared error algorithm has the following parameters. Some of them are required only for specific
values of the computation method parameter method:

Algorithm Parameters for MSE Computaion

Parameter Default
value

Description

penaltyL
1

0 The numeric table of size  with L1 regularized
coefficients.

penaltyL
2

0 The numeric table of size  with L2 regularized
coefficients.

intercep
tFlag

true Flag to indicate whether or not to compute the intercept.

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method.

numberOf
Terms

Not
applicable

The number of terms in the objective function.

batchIndic
es

Not
applicable

The numeric table of size , where m is the batch size, with a batch of
indices to be used to compute the function results. If no indices are provided,
the implementation uses all the terms in the computation.
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NOTE This parameter can be an object of any class derived from NumericTable
except for PackedTriangularMatrix and PackedSymmetricMatrix.

resultsT
oCompute

gradient The 64-bit integer flag that specifies which characteristics of the objective
function to compute.

Provide one of the following values to request a single characteristic or use
bitwise OR to request a combination of the characteristics:

value Value of the objective function

nonSmoothTermV
alue

Value of non-smooth term of the objective function

gradient Gradient of the smooth term of the objective function

hessian Hessian of smooth term of the objective function

proximalProjectio
n

Projection of proximal operator for non-smooth term of
the objective function

lipschitzConstant Lipschitz constant of the smooth term of the objective
function

Algorithm Output

For the output of the mean squared error algorithm, see Output for objective functions.

Examples
C++ (CPU)

• mse_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

• MSEDenseBatch.java

Objective Function with Precomputed Characteristics Algorithm

Objective function with precomputed characteristics gives an ability to provide the results of the objective
function precomputed with the user-defined algorithm.

Set an earlier computed value and/or gradient and/or Hessian by allocating the result object and setting the
characteristics of this result object. After that provide the modified result object to the algorithm for its
further use with the iterative solver.

For more details on iterative solvers, refer to Iterative Solver.

Logistic Loss

Logistic loss is an objective function being minimized in the process of logistic regression training when a
dependent variable takes only one of two values, 0 and 1.

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

354

https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/cpp/source/optimization_solvers/mse_dense_batch.cpp
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/java/com/intel/daal/examples/optimization_solvers/MSEDenseBatch.java


Details

Given n feature vectors  of np-dimensional

feature vectors, a vector of class labels , where  describes the class to which

the feature vector  belongs, the logistic loss objective function  has the following format

, where

•
 is defined as

with , , , 
•

For a given set of the indices , , :

• The value of the sum of functions has the format:

• The gradient of the sum of functions has the format:

where

For more details, see [Hastie2009].

Computation

Algorithm Input

The logistic loss algorithm accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Logitic Loss Computaion

Input ID Input

Intel® oneAPI Data Analytics Library (oneDAL)  1  

355



argument
A numeric table of size  with the input argument  of the objective function.

NOTE The sizes of the argument, gradient, and hessian numeric tables do not depend on

interceptFlag. When interceptFlag is set to false, the computation of  value is
skipped, but the sizes of the tables should remain the same.

data A numeric table of size  with the data .

NOTE This parameter can be an object of any class derived from NumericTable.

dependentV
ariables

A numeric table of size  with dependent variables .

NOTE This parameter can be an object of any class derived from NumericTable, except for
PackedTriangularMatrix , PackedSymmetricMatrix , and CSRNumericTable.

Algorithm Parameters

The logistic loss algorithm has the following parameters. Some of them are required only for specific values
of the computation method’s parameter method:

Algorithm Parameters for Logitic Loss Computaion

Parameter Default
value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method.

numberOf
Terms

Not
applicable

The number of terms in the objective function.

batchInd
ices

Not
applicable

The numeric table of size , where m is the batch size, with a batch of
indices to be used to compute the function results. If no indices are provided,
the implementation uses all the terms in the computation.

NOTE This parameter can be an object of any class derived from NumericTable
except PackedTriangularMatrix and PackedSymmetricMatrix .

resultsT
oCompute

gradient The 64-bit integer flag that specifies which characteristics of the objective
function to compute.

Provide one of the following values to request a single characteristic or use
bitwise OR to request a combination of the characteristics:

value Value of the objective function
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nonSmoothTermV
alue

Value of non-smooth term of the objective function

gradient Gradient of the smooth term of the objective function

hessian Hessian of smooth term of the objective function

proximalProjectio
n

Projection of proximal operator for non-smooth term of
the objective function

lipschitzConstant Lipschitz constant of the smooth term of the objective
function

intercep
tFlag

true
A flag that indicates a need to compute .

penaltyL
1

0 L1 regularization coefficient

penaltyL
2

0 L2 regularization coefficient

Algorithm Output

For the output of the logistic loss algorithm, see Output for objective functions.

Examples
C++ (CPU)

• sgd_log_loss_dense_batch.cpp

Cross-entropy Loss

Cross-entropy loss is an objective function minimized in the process of logistic regression training when a
dependent variable takes more than two values.

Details

Given n feature vectors  of np-dimensional

feature vectors, a vector of class labels , where  describes the class, to
which the feature vector  belongs, where T is the number of classes, optimization solver optimizes cross-

entropy loss objective function by argument , it is a matrix of size . The cross entropy loss

objective function  has the following format  where

•

, with  and

, , 
•

For a given set of indices , , , the value and the
gradient of the sum of functions in the argument X respectively have the format:
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where

Hessian matrix is a symmetric matrix of size , where 

, where  is the learning rate
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For more details, see [Hastie2009].

Computation

Algorithm Input

The cross entropy loss algorithm accepts the input described below. Pass the Input ID as a parameter to
the methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Cross-entropy Loss Computaion

Input ID Input

argument
A numeric table of size  with the input argument  of the objective
function.

NOTE The sizes of the argument, gradient, and hessian numeric tables do not depend on

interceptFlag. When interceptFlag is set to false, the computation of  value is
skipped, but the sizes of the tables should remain the same.

data A numeric table of size  with the data .

NOTE This parameter can be an object of any class derived from NumericTable.

dependentV
ariables

A numeric table of size  with dependent variables .

NOTE This parameter can be an object of any class derived from NumericTable, except for
PackedTriangularMatrix , PackedSymmetricMatrix , and CSRNumericTable.

Algorithm Parameters

The cross entropy loss algorithm has the following parameters. Some of them are required only for specific
values of the computation method’s parameter method:

Algorithm Parameters for Cross-entropy Loss Computaion

Parameter Default
value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method.

numberOf
Terms

Not
applicable

The number of terms in the objective function.
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batchInd
ices

Not
applicable

The numeric table of size , where m is the batch size, with a batch of
indices to be used to compute the function results. If no indices are provided,
the implementation uses all the terms in the computation.

NOTE This parameter can be an object of any class derived from NumericTable
except PackedTriangularMatrix and PackedSymmetricMatrix .

resultsT
oCompute

gradient The 64-bit integer flag that specifies which characteristics of the objective
function to compute.

Provide one of the following values to request a single characteristic or use
bitwise OR to request a combination of the characteristics:

value Value of the objective function

nonSmoothTermV
alue

Value of non-smooth term of the objective function

gradient Gradient of the smooth term of the objective function

hessian Hessian of smooth term of the objective function

proximalProjectio
n

Projection of proximal operator for non-smooth term of
the objective function

lipschitzConstant Lipschitz constant of the smooth term of the objective
function

gradientOverCert
ainFeature

Certain component of gradient vector

hessianOverCerta
inFeature

Certain component of hessian diagonal

proximalProjectio
nOfCertainFeatur
e

Certain component of proximal projection

intercep
tFlag

true
A flag that indicates a need to compute .

penaltyL
1

0 L1 regularization coefficient

penaltyL
2

0 L2 regularization coefficient

nClasses Not
applicable

The number of classes (different values of dependent variable)

Algorithm Output

For the output of the cross entropy loss algorithm, see Output for objective functions.

Examples
C++ (CPU)
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• lbfgs_cr_entr_loss_dense_batch.cpp

Python*

• lbfgs_cr_entr_loss_batch.py

Iterative Solver

The iterative solver provides an iterative method to minimize an objective function that can be represented
as a sum of functions in composite form

where:

•
, , where  is a convex, continuously differentiable

 (smooth) functions, 
•

 is a convex, non-differentiable (non-smooth) function

The Algorithmic Framework of an Iterative Solver

All solvers presented in the library follow a common algorithmic framework. Let  be a set of intrinsic
parameters of the iterative solver for updating the argument of the objective function. This set is the

algorithm-specific and can be empty. The solver determines the choice of .

To do the computations, iterate t from 1 until :

1.
Choose a set of indices without replacement , , , where
b is the batch size.

2.
Compute the gradient  where 

3. Convergence check:

Stop if  where U is an algorithm-specific vector (argument or gradient) and d is an
algorithm-specific power of Lebesgue space

4. Compute  using the algorithm-specific transformation T that updates the function’s argument:

5.
Update  where U is an algorithm-specific update of the set of intrinsic parameters.

The result of the solver is the argument  and a set of parameters  after the exit from the loop.

NOTE You can resume the computations to get a more precise estimate of the objective function

minimum. To do this, pass to the algorithm the results  and  of the previous run of the
optimization solver. By default, the solver does not return the set of intrinsic parameters. If you need
it, set the optionalResultRequired flag for the algorithm.

Iterative solvers

• Computation
• Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm
• Stochastic Gradient Descent Algorithm
• Adaptive Subgradient Method
• Coordinate Descent Algorithm
• Stochastic Average Gradient Accelerated Method
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Computation

Algorithm Input
The iterative solver algorithm accepts the input described below. Pass the Input ID as a parameter to the
methods that provide input for your algorithm. For more details, see Algorithms.

Algorithm Input for Iterative Solver Computaion

Input ID Input

inputArgum
ent

A numeric table of size  with the value of start argument .

optionalAr
gument

Object of the OptionalArgument class that contains a set of algorithm-specific intrinsic
parameters. For a detailed definition of the set, see the problem statement above and the
description of a specific algorithm.

Algorithm Parameters
The iterative solver algorithm has the following parameters:

Algorithm Parameters for Iterative Solver Computaion

Paramete
r

Default
Value

Description

function Not
applicable

Objective function represented as a sum of functions.

nIterati
ons

100 Maximum number of iterations of the algorithm.

accuracy
Threshol
d

Accuracy of the algorithm. The algorithm terminates when this accuracy is
achieved.

optional
ResultRe
quired

false Indicates whether the set of the intrinsic parameters should be returned by the
solver.

Algorithm Output
The iterative solver algorithm calculates the result described below. Pass the Result ID as a parameter to
the methods that access the results of your algorithm. For more details, see Algorithms.

Algorithm Output for Iterative Solver Computaion

Result ID Result

minimum A numeric table of size  with argument . By default, the result is an object of the
HomogenNumericTable class, but you can define the result as an object of any class
derived from NumericTable, except for PackedTriangularMatrix and
PackedSymmetricMatrix.
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Result ID Result

nIteration
s

A numeric table of size  with a 32-bit integer number of iterations done by the
algorithm. By default, the result is an object of the HomogenNumericTable class, but you
can define the result as an object of any class derived from NumericTable, except for
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

optionalRe
sult

Object of the OptionalArgument class that contains a set of algorithm-specific intrinsic
parameters. For a detailed definition of the set, see the problem statement above and the
description of a specific algorithm.

Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm

The limited-memory Broyden-Fletcher-Goldfarb-Shanno (LBFGS) algorithm [Byrd2015] follows the
algorithmic framework of an iterative solver with the algorithm-specific transformation T and set of intrinsic

parameters  defined for the memory parameter m, frequency of curvature estimates calculation L, and
step-length sequence , algorithm-specific vector U and power d of Lebesgue space defined as
follows:

Transformation

where H is an approximation of the inverse Hessian matrix computed from m correction pairs by the Hessian
Update Algorithm.

Convergence check: 

Intrinsic Parameters

For the LBFGS algorithm, the set of intrinsic parameters  includes the following:

•
Correction pairs 

• Correction index k in the buffer that stores correction pairs
• Index of last iteration t of the main loop from the previous run
•

Average value of arguments for the previous L iterations 
•

Average value of arguments for the last L iterations 

Below is the definition and update flow of the intrinsic parameters . The index is set and remains
zero for the first 2L-1 iterations of the main loop. Starting with iteration , the algorithm executes the
following steps for each of L iterations of the main loop:

1.

2.
Choose a set of indices without replacement: , ,

, .
3. Compute the sub-sampled Hessian
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at the point  for the objective function using Hessians of its terms

4.
Compute the correction pairs :

NOTE

• The set  of intrinsic parameters is updated once per L iterations of the major loop and remains
unchanged between iterations with the numbers that are multiples of L

• A cyclic buffer stores correction pairs. The algorithm fills the buffer with pairs one-by-one. Once the
buffer is full, it returns to the beginning and overwrites the previous correction pairs.

Hessian Update Algorithm
This algorithm computes the approximation of the inverse Hessian matrix from the set of correction pairs 
[Byrd2015].

For a given set of correction pairs , :

1.
Set 

2.
Iterate j from  until k:

a.

b.

3. Return H

Computation
The limited-memory BFGS algorithm is a special case of an iterative solver. For parameters, input, and output
of iterative solvers, see Computation.

Algorithm Input

In addition to the input of the iterative solver, the limited-memory BFGS algorithm accepts the following
optional input:
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Algorithm Input for Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Computaion

OptionalDa
taID

Input

correction
Pairs

A numeric table of size  where the rows represent correction pairs s and y. The

row correctionPairs[j], , is a correction vector , and the row

correctionPairs[j], , is a correction vector .

correction
Indices

A numeric table of size  with 32-bit integer indexes. The first value is the index of
correction pair t, the second value is the index of last iteration k from the previous run.

averageArg
umentLIter
ations

A numeric table of size , where row 0 represents average arguments for previous L
iterations, and row 1 represents average arguments for last L iterations. These values are
required to compute s correction vectors in the next step.

Algorithm Parameters

In addition to parameters of the iterative solver, the limited-memory BFGS algorithm has the following
parameters:

Algorithm Parameters for Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Computaion

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Performance-oriented computation method

batchIndices NULL The numeric table of size
 with 32-bit integer

indices of terms in the objective function to be used
in step 2 of the limited-memory BFGS algorithm. If
no indices are provided, the implementation
generates random indices.

NOTE This parameter can be an object of any class
derived from NumericTable, except for
PackedTriangularMatrix,
PackedSymmetricMatrix, and
CSRNumericTable.

batchSize 10 The number of observations to compute the
stochastic gradient. The implementation of the
algorithm ignores this parameter if the batchIndices
numeric table is provided.

If BatchSize equals the number of terms in the
objective function, no random sampling is
performed and all terms are used to calculate the
gradient.
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Parameter Default Value Description

correctionPa
irBatchSize

100 The number of observations to compute the sub-
sampled Hessian for correction pairs computation.
The implementation of the algorithm ignores this
parameter if the correctionPairIndices numeric table
is provided.

If correctionPairBatchSize equals the number
of terms in the objective function, no random
sampling is performed and all terms are used to
calculate the Hessian matrix.

correctionPa
irIndices

NULL The numeric table of size

with 32-bit integer indices to be used instead of
random values. If no indices are provided, the
implementation generates random indices.

NOTE This parameter can be an object of any class
derived from NumericTable, except for
PackedTriangularMatrix,
PackedSymmetricMatrix, and
CSRNumericTable.

NOTE If the algorithm runs with no optional input

data,  rows of the table
are used. Otherwise, it can use one more row,

 in total.

m 10 The memory parameter. The maximum number of
correction pairs that define the approximation of
the Hessian matrix.

L 10 The number of iterations between calculations of
the curvature estimates.

stepLengthSe
quence

A numeric table of size 
that contains the default step
length equal to 1.

The numeric table of size  or
. The contents of the table depend on its

size:

• : values of the

step-length sequence  for

.
• : the value of step length at each

iteration 
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Parameter Default Value Description

..note:

This parameter can be an object of any class 
derived from ``NumericTable``,
except for ``PackedTriangularMatrix``, 
``PackedSymmetricMatrix``, and 
``CSRNumericTable``.
The recommended data type for storing the step-
length sequence is the floating-point type, either
float or double, that the algorithm uses in
intermediate computations.

engine SharePtr< engines::
mt19937:: Batch>()

Pointer to the random number generator engine
that is used internally for random choosing terms
from the objective function.

Algorithm Output

In addition to the output of the iterative solver, the limited-memory BFGS algorithm calculates the following
optional results:

Algorithm Output for Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Computaion

OptionalDa
taID

Output

correction
Pairs

A numeric table of size  where the rows represent correction pairs s and y. The

row correctionPairs[j], , is a correction vector , and the row

correctionPairs[j], , is a correction vector .

correction
Indices

A numeric table of size  with 32-bit integer indexes. The first value is the index of
correction pair t, the second value is the index of last iteration k from the previous run.

averageArg
umentLIter
ations

A numeric table of size , where row 0 represents average arguments for previous L
iterations, and row 1 represents average arguments for last L iterations. These values are
required to compute s correction vectors in the next step.

Examples

C++ (CPU)

Batch Processing:

• lbfgs_dense_batch.cpp
• lbfgs_opt_res_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• LBFGSDenseBatch.java
• LBFGSOptResDenseBatch.java
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Python*

Batch Processing:

• lbfgs_cr_entr_loss_batch.py
• lbfgs_mse_batch.py

Stochastic Gradient Descent Algorithm

The stochastic gradient descent (SGD) algorithm is a special case of an iterative solver. See Iterative Solver
for more details.

Computation methods
The following computation methods are available in oneDAL for the stochastic gradient descent algorithm:

• Mini-batch method
• Default method (a special case of mini-batch used by default)
• Momentum method

Mini-batch method

The mini-batch method (miniBatch) of the stochastic gradient descent algorithm [Mu2014] follows the

algorithmic framework of an iterative solver with an empty set of intrinsic parameters of the algorithm ,

algorithm-specific transformation T defined for the learning rate sequence ,

conservative sequence  and the number of iterations in the internal loop L, algorithm-
specific vector U and power d of Lebesgue space defined as follows:

For l from 1 until L:

1.
Update the function argument: 

2.
Compute the gradient: 

Convergence check: 

Default method

The default method (defaultDense) is a particular case of the mini-batch method with the batch size ,

, and conservative sequence .

Momentum method

The momentum method (momentum) of the stochastic gradient descent algorithm [Rumelhart86] follows the

algorithmic framework of an iterative solver with the set of intrinsic parameters , algorithm-specific

transformation T defined for the learning rate sequence  and momentum parameter

, and algorithm-specific vector U and power d of Lebesgue space defined as follows:

1.

2.
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For the momentum method of the SGD algorithm, the set of intrinsic parameters  only contains the last
update vector .

Convergence check: 

Computation
The stochastic gradient descent algorithm is a special case of an iterative solver. For parameters, input, and
output of iterative solvers, see Computation.

Algorithm Parameters

In addition to parameters of the iterative solver, the stochastic gradient descent algorithm has the following
parameters. Some of them are required only for specific values of the computation method parameter
method:

Algorithm Parameters for Stochastic Gradient Descent Algorithm Computaion

Parameter method Default Value Description

algorithmFPT
ype

defaultDense
, miniBatch,
momentum

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method Not applicable defaultDense Available computation methods:

For CPU:

• defaultDense
• miniBatch
• momentum
For GPU:

• miniBatch

batchIndices defaultDense
, miniBatch,
momentum

Not applicable The numeric table with 32-bit integer indices of
terms in the objective function. The method
parameter determines the size of the numeric
table:

• defaultDense: nIterations x 1
• miniBatch and momentum: nIterations x

batchSize
If no indices are provided, the implementation
generates random indices.

batchSize miniBatch,``
momentum``

128 The number of batch indices to compute the
stochastic gradient.

If batchSize equals the number of terms in the
objective function, no random sampling is
performed, and all terms are used to calculate the
gradient.

The algorithm ignores this parameter if the
batchIndices parameter is provided.

For the defaultDense value of method, one term
is used to compute the gradient on each iteration.
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Parameter method Default Value Description

conservative
Sequence

miniBatch A numeric
table of size

 that
contains the
default
conservative
coefficient
equal to 1.

The numeric table of size  or
. The contents of the table depend on its

size:

• size = : values of the

conservative coefficient sequence  for

.
• size =  the value of conservative

coefficient at each iteration

.

innerNIterat
ions

miniBatch 5 The number of inner iterations for the miniBatch
method.

learningRate
Sequence

defaultDense
, miniBatch,
momentum

A numeric
table of size

 that
contains the
default step
length equal to
1.

The numeric table of size  or
. The contents of the table depend on its

size:

• size = : values of the learning

rate sequence  for

.
• size = : the value of learning rate at

each iteration .

momentum momentum 0.9 The momentum value.

engine defaultDense
, miniBatch,
momentum

SharePtr<
engines::
mt19937::
Batch>()

Pointer to the random number generator engine
that is used internally for generation of 32-bit
integer indices of terms in the objective function.

Examples
C++ (CPU)

Batch Processing:

• sgd_dense_batch.cpp
• sgd_mini_dense_batch.cpp
• sgd_moment_dense_batch.cpp
• sgd_moment_opt_res_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• SGDDenseBatch.java
• SGDMiniDenseBatch.java
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• SGDMomentDenseBatch.java
• SGDMomentOptResDenseBatch.java

Python*

Batch Processing:

• sgd_logistic_loss_batch.py
• sgd_mse_batch.py

Adaptive Subgradient Method

The adaptive subgradient method (AdaGrad) [Duchi2011] follows the algorithmic framework of an iterative

solver with the algorithm-specific transformation T, set of intrinsic parameters  defined for the learning
rate , and algorithm-specific vector U and power d of Lebesgue space defined as follows:

:

1.
, where  is the i-th coordinate of the gradient 

2.
, where

Convergence check: 

Computation
The adaptive subgradient (AdaGrad) method is a special case of an iterative solver. For parameters, input,
and output of iterative solvers, see Computation for Iterative Solver.

Algorithm Input

In addition to the input of the iterative solver, the AdaGrad method accepts the following optional input:

Algorithm Input for Adaptive Subgradient Method Computaion

OptionalDa
taID

Input

gradientSq
uareSum

A numeric table of size  with the values of . Each value is an accumulated sum of
squares of coordinate values of a corresponding gradient.

Algorithm Parameters

In addition to parameters of the iterative solver, the AdaGrad method has the following parameters:

Algorithm Parameters for Adaptive Subgradient Method Computaion

Parameter Default Value Description

algorithmFPType float The floating-point type that the algorithm uses for
intermediate computations. Can be float or double.
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Parameter Default Value Description

method defaultDense Default performance-oriented computation method.

batchIndices NULL A numeric table of size  for the
defaultDense method that represents 32-bit integer indices
of terms in the objective function. If no indices are provided,
the algorithm generates random indices.

batchSize 128 The number of batch indices to compute the stochastic
gradient.

If batchSize equals the number of terms in the objective
function, no random sampling is performed, and all terms are
used to calculate the gradient.

The algorithm ignores this parameter if the batchIndices
parameter is provided.

learningRate A numeric table of
size  that
contains the
default step length
equal to 0.01.

A numeric table of size  that contains the value of
learning rate .

NOTE This parameter can be an object of any class derived from
NumericTable, except for PackedTriangularMatrix,
PackedSymmetricMatrix, and CSRNumericTable.

degenerateCases
Threshold

Value  needed to avoid degenerate cases when computing
square roots.

engine SharePtr<
engines::
mt19937::
Batch>()

Pointer to the random number generator engine that is used
internally for generation of 32-bit integer indices of terms in
the objective function.

Algorithm Output

In addition to the output of the iterative solver, the AdaGrad method calculates the following optional result:

Algorithm Output for Adaptive Subgradient Method Computaion

OptionalDa
taID

Output

gradientSq
uareSum

A numeric table of size  with the values of . Each value is an accumulated sum of
squares of coordinate values of a corresponding gradient.

Examples
C++ (CPU)

• adagrad_dense_batch.cpp
• adagrad_opt_res_dense_batch.cpp

Java*
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NOTE There is no support for Java on GPU.

• AdagradDenseBatch.java
• AdagradOptResDenseBatch.java

Python*

• adagrad_mse_batch.py

Coordinate Descent Algorithm

The Coordinate Descent algorithm follows the algorithmic framework of iterative solver with one exception:
the default method (defaultDense) of Coordinate Descent algorithm is a case of the iterative solver method
with the batch equal to the number of observations in the training data set.

Details

The aet of intrinsic parameters  is empty. Algorithmic-specific transformation T, algorithm-specific vector
U, and power d of Lebesgue space[Adams2003] are defined as follows:

1. Define the index j to update the component of a coefficient as a remainder in the division of the number

of current iteration (t) by the number of features in the training data set (p): 

Alternatively, if selection parameter was set to random, generate j randomly.
2.

If stepLengthSequence was not provided by the user, compute the learning rate: 
(the diagonal element of the Hessian matrix)

3. Update the j-th component of vector :

Note: for example, if a non-smooth term , where p is the number of features in the
training data set, the objective function should compute prox operator as follows:

Convergence check is performed each p iterations:

• , 
• For , the infinity norm ( ) is defined as follows:

Computation
Coordinate Descent algorithm is a special case of an iterative solver. For parameters, input, and output of
iterative solvers, see Iterative Solver > Computation.
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Algorithm Parameters

In addition to the input of a iterative solver, Coordinate Descent algorithm accepts the following parameters:

Algorithm Parameters for Coordinate Descent Computaion

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented method.

engine SharePtr
<
engines::
mt19937:
:
Batch>()

Pointer to the random number generator engine that is used internally during
each iteration to choose a random component of the minimum result vector to
be updated.

positive false A boolean value. When set to true, it forces the coefficients to be positive.

selectio
n

cyclic Value that specifies the strategy of certain coordinate selection on each
iteration. Except for default cyclic value, Coordinate Descent also supports:

• random – on each iteration the index of coordinate is selected randomly by
the engine.

skipTheF
irstComp
onents

false A boolean value. When set to true, Coordinate Descent algorithm will skip the
first component from optimization.

Examples
C++ (CPU)

• cd_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

• CDDenseBatch.java

Stochastic Average Gradient Accelerated Method

The Stochastic Average Gradient Accelerated (SAGA) [Defazio2014] follows the algorithmic framework of an
iterative solver with one exception.

The default method (defaultDense) of SAGA algorithm is a particular case of the iterative solver method
with the batch size .

Details

Algorithmic-specific transformation T, the set of intrinsic parameters  defined for the learning rate , and
algorithm-specific vector U and power d of Lebesgue space are defined as follows:
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 is a matrix of the gradients of smooth terms at point , where

• t is defined by the number of iterations the solver runs
•

 stores the gradient of 

:

1.

2.

Update of the set of intrinsic parameters :

NOTE The algorithm enables automatic step-length selection if learning rate  was not provided by

the user. Automatic step-length will be computed as , where L is the Lipschitz constant
returned by objective function. If the objective function returns nullptr to numeric table with
lipschitzConstant Result ID, the library will use default step size 0.01.

Convergence checks:

• , 
•

, 

Computation
The stochastic average gradient (SAGA) algorithm is a special case of an iterative solver. For parameters,
input, and output of iterative solvers, see Iterative Solver > Computation.

Algorithm Input

In addition to the input of the iterative solver, the SAGA optimization solver has the following optional input:

Algorithm Input for Stochastic Average Gradient Accelerated Method Computaion

OptionalD
ataID

Default
Value

Description

gradient
Table

Not
applicable

A numeric table of size  which represents  matrix that contains

gradients of ,  at the initial point .

This input is optional: if the user does not provide the table of gradients for

, , the library will compute it inside the SAGA algorithm.
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NOTE This parameter can be an object of any class derived from NumericTable,
except for PackedTriangularMatrix, PackedSymmetricMatrix, and
CSRNumericTable.

Algorithm Parameters

In addition to parameters of the iterative solver, the SAGA optimization solver has the following parameters:

Algorithm Parameters for Stochastic Average Gradient Accelerated Method Computaion

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented method.

batchInd
ices

1 A numeric table of size  with 32-bit integer indices of terms
in the objective function. If no indices are provided, the implementation
generates random index on each iteration.

NOTE This parameter can be an object of any class derived from NumericTable,
except for PackedTriangularMatrix, PackedSymmetricMatrix, and
CSRNumericTable.

learning
RateSequ
ence

Not
applicable

The numeric table of size  or  that contains learning
rate for each iterations is first case, otherwise constant step length will be used
for all iterations. It is recommended to set diminishing learning rate sequence.

If learningRateSequence is not provided, the learning rate will be computed
automatically via constantOfLipschitz Result ID.

NOTE This parameter can be an object of any class derived from NumericTable,
except for PackedTriangularMatrix, PackedSymmetricMatrix, and
CSRNumericTable.

engine SharedPt
r<engine
s::mt199
37::Batch
<>

Pointer to the random number generator engine that is used internally for
generation of 32-bit integer index of term in the objective function.

Algorithm Output

In addition to the output of the iterative solver, the SAGA optimization solver calculates the following optional
result:
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Algorithm Output for Stochastic Average Gradient Accelerated Method Computaion

OptionalD
ataID

Default
Value

Description

gradient
Table

Not
applicable

A numeric table of size  that represents matrix  updated after all
iterations.

This parameter can be an object of any class derived from NumericTable,
except for PackedTriangularMatrix, PackedSymmetricMatrix, and
CSRNumericTable.

Examples
C++ (CPU)

Batch Processing:

• saga_dense_batch.cpp
• saga_logistic_loss_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• SAGADenseBatch.java
• SAGALogisticLossDenseBatch.java

Python*

Batch Processing:

• saga_batch.py

Training and Prediction

Training and prediction algorithms in Intel® oneAPI Data Analytics Library (oneDAL) include a range of
popular machine learning algorithms:

• Decision Forest
• Decision Trees
• Gradient Boosted Trees
• Stump
• Linear and Ridge Regressions
• LASSO and Elastic Net Regressions
• k-Nearest Neighbors (kNN) Classifier
• Implicit Alternating Least Squares
• Logistic Regression
• Naïve Bayes Classifier
• Support Vector Machine Classifier
• Multi-class Classifier
• Boosting

Unlike Analysis algorithms, which are intended to characterize the structure of data sets, machine learning
algorithms model the data. Modeling operates in two major stages:

• Training, when the algorithm estimates model parameters based on a training data set.
• Prediction or decision making, when the algorithm uses the trained model to predict the outcome

based on new data.
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Training is typically a lot more computationally complex problem than prediction. Therefore, certain end-to-
end analytics usage scenarios require that training and prediction phases are done on different devices, the
training is done on more powerful devices, while prediction is done on smaller devices. Because smaller
devices may have stricter memory footprint requirements, oneDAL separates Training, Prediction, and
respective Model in three different class hierarchies to minimize the footprint.

Training Alternative
An alternative to training your model with algorithms implemented in oneDAL is to build a trained model from

pre-calculated model parameters, for example, coefficients  for Linear Regression. This enables you to use
oneDAL only to get predictions based on the model parameters computed elsewhere.

The Model Builder class provides an interface for adding all the necessary parameters and building a trained
model ready for the prediction stage.

The following schema illustrates the use of Model Builder class:

The Model Builder class is implemented for the following algorithms:

• Linear Regression
• Support Vector Machine Classifier
• Multi-class Classifier
• Logistic Regression
• Regression Gradient Boosted Trees
• Classification Gradient Boosted Trees
• Classification Decision Forest

Decision Forest

NOTE Decision Forest is also available with oneAPI interfaces:

• Decision Forest Classification and Regression (DF)
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The library provides decision forest classification and regression algorithms based on an ensemble of tree-
structured classifiers, which are known as decision trees. Decision forest is built using the general technique
of bagging, a bootstrap aggregation, and a random choice of features.

Decision Tree is a binary tree graph. Its internal (split) nodes represent a decision function used to select the
child node at the prediction stage. Its leaf, or terminal, nodes represent the corresponding response values,
which are the result of the prediction from the tree. For more details, see [Breiman84] and [Breiman2001].

• Decision Forest
• Regression Decision Forest
• Classification Decision Forest

Decision Forest

Details

Given n feature vectors  of np-dimensional

feature vectors and n responses , the problem is to build a decision forest classification or
regression model.

Training Stage

Library uses the following algorithmic framework for the training stage. Let  be the set of
observations. Given a positive integer parameters, such as the number of trees B, the bootstrap parameter

, where f is a fraction of observations used for a training of one tree, and the number of features

per node m, the algorithm does the following for :

• Selects randomly with replacement the set  of N vectors from the set S. The set  is called a
bootstrap set.

• Trains a decision tree classifier  on  using parameter m for each tree.

Decision tree T is trained using the training set D of size N. Each node t in the tree corresponds to the subset

 of the training set D, with the root node being D itself. Its internal nodes t represent a binary test (split)

dividing their subset  in two subsets  and , corresponding to their children  and .

Inexact Histogram Computation Method

In inexact histogram method only a selected subset of splits is considered for computation of a best split.
This subset is computed for each feature at the initialization stage of the algorithm. After the set of splits is
computed, each value from initially provided data is substituted with the value of the corresponding bin. The
bins are continuous intervals between the selected splits.

Split Criteria

The metric for measuring the best split is called impurity, i(t). It generally reflects the homogeneity of

responses within the subset  in the node t. For the detailed definition of i(t) metrics, see the description of
a specific algorithm.

Let the impurity decrease in the node t be

Termination Criteria
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The library supports the following termination criteria of decision forest training:

Minimal number of
observations in a leaf node

Node t is not processed if  is smaller than the predefined value. Splits that
produce nodes with the number of observations smaller than that value are not
allowed.

Minimal number of
observations in a split
node

Node t is not processed if  is smaller than the predefined value. Splits that
produce nodes with the number of observations smaller than that value are not
allowed.

Minimum weighted
fraction of the sum total of
weights of all the input
observations required to
be at a leaf node

Node t is not processed if  is smaller than the predefined value. Splits that
produce nodes with the number of observations smaller than that value are not
allowed.

Maximal tree depth Node t is not processed if its depth in the tree reached the predefined value.

Impurity threshold Node t is not processed if its impurity is smaller than the predefined threshold.

Maximal number of leaf
nodes

Grow trees with positive maximal number of leaf nodes in a best-first fashion.
Best nodes are defined by relative reduction in impurity. If maximal number of
leaf nodes equals zero, then this criterion does not limit the number of leaf
nodes, and trees grow in a depth-first fashion.

Tree Building Strategies

Maximal number of leaf nodes defines the strategy of tree building: depth-first or best-first.

Depth-first Strategy

If maximal number of leaf nodes equals zero, a decision tree is built using depth-first strategy. In each
terminal node t, the following recursive procedure is applied:

• Stop if the termination criteria are met.
•

Choose randomly without replacement m feature indices .
• For each , find the best split  that partitions subset  and maximizes impurity decrease

.
• A node is a split if this split induces a decrease of the impurity greater than or equal to the predefined

value. Get the best split  that maximizes impurity decrease  in all  splits.
• Apply this procedure recursively to  and .

Best-first Strategy

If maximal number of leaf nodes is positive, a decision tree is built using best-first strategy. In each terminal
node t, the following steps are applied:

• Stop if the termination criteria are met.
•

Choose randomly without replacement m feature indices .
• For each , find the best split  that partitions subset  and maximizes impurity decrease

.

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

380



• A node is a split if this split induces a decrease of the impurity greater than or equal to the predefined
value and the number of split nodes is less or equal to . Get the best split  that

maximizes impurity decrease  in all  splits.
•

Put a node into a sorted array, where sort criterion is the improvement in impurity . The node
with maximal improvement is the first in the array. For a leaf node, the improvement in impurity is zero.

• Apply this procedure to  and  and grow a tree one by one getting the first element from the array
until the array is empty.

Random Numbers Generation

To create a bootstrap set and choose feature indices in the performant way, the training algorithm requires
the source of random numbers, capable to produce sequences of random numbers in parallel.

Initialization of the engine in the decision forest is based on the scheme below:

The state of the engine is updated once the training of the decision forest model is completed. The library
provides support to retrieve the instance of the engine with updated state that can be used in other
computations. The update of the state is engine-specific and depends on the parallelization technique used as
defined earlier:

• Family: the updated state is the set of states that represent individual engines in the family.
• Leapfrog: the updated state is the state of the sequence with the rightmost position on the sequence. The

example below demonstrates the idea for case of 2 subsequences (‘x’ and ‘o’) of the random number
sequence:

• SkipAhead: the updated state is the state of the independent sequence with the rightmost position on the
sequence. The example below demonstrates the idea for case of 2 subsequences (‘x’ and ‘o’) of the
random number sequence:

Prediction Stage

Given decision forest classifier and vectors , the problem is to calculate the responses for those
vectors. To solve the problem for each given query vector  , the algorithm finds the leaf node in a tree in
the forest that gives the response by that tree. The response of the forest is based on an aggregation of
responses from all trees in the forest. For the detailed definition, see the description of a specific algorithm.

Additional Characteristics Calculated by the Decision Forest

Decision forests can produce additional characteristics, such as an estimate of generalization error and an
importance measure (relative decisive power) of each of p features (variables).

Out-of-bag Error

The estimate of the generalization error based on the training data can be obtained and calculated as
follows:

•
For each tree  in the forest, trained on the bootstrap set , the set  is called the out-
of-bag (OOB) set.

•
Predict the data from  set by .

• For each vector  in the dataset X, predict its response  by the trees that contain  in their OOB set.
• Aggregate the out-of-bag predictions in all trees and calculate the OOB error of the decision forest.
• If OOB error value per each observation is required, then calculate the prediction error for .

For the detailed definition, see the description of a specific algorithm.

Variable Importance

There are two main types of variable importance measures:
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• Mean Decrease Impurity importance (MDI).

Importance of the j-th variable for predicting Y is the sum of weighted impurity decreases 

for all nodes t that use , averaged over all B trees in the forest:

where  is the fraction of observations reaching node t in the tree , and  is the index
of the variable used in split  .

• Mean Decrease Accuracy (MDA).

Importance of the j-th variable for predicting Y is the average increase in the OOB error over all trees in
the forest when the values of the j-th variable are randomly permuted in the OOB set. For that reason,
this latter measure is also known as permutation importance.

In more details, the library calculates MDA importance as follows:

•
Let  be the set of feature vectors where the j-th variable is randomly permuted over all
vectors in the set.

•
Let  be the OOB error calculated for  on its out-of-bag dataset .

•
Let  be the OOB error calculated for  using , and its out-of-bag dataset  is
permuted on the j-th variable. Then

•
 is the OOB error increase for the tree .

•
 is MDA importance.

•

, where  is the variance of 

Batch Processing
Decision forest classification and regression follows the general workflow described in Classification Usage
Model.

Training

At the training stage, decision forest regression has the following parameters:

Training Parameters for Decision Forest (Batch Processing)

Parameter Default Value Description

nTrees 100 The number of trees in the forest.

observations
PerTreeFract
ion

1 Fraction of the training set S used to form the
bootstrap set for a single tree training,

.
The observations are sampled randomly with
replacement.
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Parameter Default Value Description

featuresPerN
ode

0 The number of features tried as possible splits per
node. If the parameter is set to 0, the library uses

the square root of the number of features, , for

classification and  features for regression.

maxTreeDepth 0 Maximal tree depth. Default is 0 (unlimited).

DEPRECATED:
seed

777 The seed for random number generator, which is
used to choose the bootstrap set, split features in
every split node in a tree, and generate
permutation required in computations of MDA
variable importance.

NOTE This parameter is deprecated and will be
removed in future releases. Use engine instead.

engine SharePtr< engines:: mt2203::
Batch>()

Pointer to the random number generator engine.

The random numbers produced by this engine are
used to choose the bootstrap set, split features in
every split node in a tree, and generate
permutation required in computations of MDA
variable importance.

impurityThre
shold

0 The threshold value used as stopping criteria: if the
impurity value in the node is smaller than the
threshold, the node is not split anymore.

varImportanc
e

none The variable importance computation mode.

Possible values:

• none – variable importance is not calculated
• MDI - Mean Decrease of Impurity, also known as

the Gini importance or Mean Decrease Gini
• MDA_Raw - Mean Decrease of Accuracy

(permutation importance)
• MDA_Scaled - the MDA_Raw value scaled by its

standard deviation

resultsToCom
pute

0 The 64-bit integer flag that specifies which extra
characteristics of the decision forest to compute.
Provide one of the following values to request a
single characteristic or use bitwise OR to request a
combination of the characteristics:

• computeOutOfBagError
• computeOutOfBagErrorPerObservation

bootstrap true If true, the training set for a tree is a bootstrap of
the whole training set. If false, the whole training
set is used to build trees.
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Parameter Default Value Description

minObservati
onsInLeafNod
e

1 for classification, 5 for
regression

Minimum number of observations in the leaf node.

minObservati
onsInSplitNo
de

2 Minimum number of samples required to split an
internal node; it can be any non-negative number.

minWeightFra
ctionInLeafN
ode

0.0 Minimum weighted fraction of the sum total of
weights of all the input observations required to be
at a leaf node, from 0.0 to 0.5.

All observations have equal weights if the weights
of the observations are not provided.

minImpurityD
ecreaseInSpl
itNode

0.0 Minimum amount of impurity decrease required to
split a node; it can be any non-negative number.

maxLeafNodes 0 Grow trees with positive maximal number of leaf
nodes in a best-first fashion. Best nodes are
defined as relative reduction in impurity. If maximal
number of leaf nodes equals zero, then this
parameter does not limit the number of leaf nodes,
and trees grow in a depth-first fashion.

Output

In addition to regression or classifier output, decision forest calculates the result described below. Pass the
Result ID as a parameter to the methods that access the result of your algorithm.

Training Output for Decision Forest (Batch Processing)

Result ID Result

outOfBagEr
ror

A numeric table  containing out-of-bag error computed when the
computeOutOfBagErroroption option is on.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable.

variableIm
portance

A numeric table  that contains variable importance values for each feature. If you
set the varImportance parameter to none, the library returns a null pointer to the table.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable except
PackedTriangularMatrix and PackedSymmetricMatrix.
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Result ID Result

outOfBagEr
rorPerObse
rvation

A numeric table of size  that contains the computed out-of-bag error when the
computeOutOfBagErrorPerObservation option is enabled. The value -1 in the table
indicates that no OOB value was computed because this observation was not in OOB set
for any of the trees in the model (never left out during the bootstrap).

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable.

updatedEng
ine

Engine instance with state updated after computations.

Performance Considerations
To get the best performance of the decision forest variable importance computation, use the Mean Decrease
Impurity (MDI) rather than the Mean Decrease Accuracy (MDA) method.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Regression Decision Forest

Decision forest regression is a special case of the Decision Forest model.

Details
Given:

•
n feature vectors  of size p;

•
their non-negative sample weights ;

•
the vector of responses 

The problem is to build a decision forest regression model that minimizes the Mean-Square Error (MSE)
between the predicted and true value.

Training Stage

Decision forest regression follows the algorithmic framework of decision forest training algorithm based on
the mean-squared error (MSE) [Breiman84]. If sample weights are provided as input, the library uses a
weighted version of the algorithm.

MSE is an impurity metric (D is a set of observations that reach the node), calculated as follows:
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Decision Forest Regression: impurity calculations

Without sample weights With sample weights

, which is equivalent to the
number of elements in S

Prediction Stage

Given decision forest regression model and vectors , the problem is to calculate the responses
for those vectors. To solve the problem for each given query vector , the algorithm finds the leaf node in a
tree in the forest that gives the response by that tree as the mean of dependent variables. The forest
predicts the response as the mean of responses from trees.

Out-of-bag Error

Decision forest regression follows the algorithmic framework for calculating the decision forest out-of-bag
(OOB) error, where aggregation of the out-of-bag predictions in all trees and calculation of the OOB error of
the decision forest is done as follows:

• For each vector  in the dataset X, predict its response  as the mean of prediction from the trees that
contain  in their OOB set:

, where  and  is the result of prediction  by .
• Calculate the OOB error of the decision forest T as the Mean-Square Error (MSE):

• If OOB error value per each observation is required, then calculate the prediction error for :

Batch Processing
Decision forest regression follows the general workflow described in Decision Forest.

Training

For the description of the input and output, refer to Regression Usage Model.

In addition to the decision forest parameters described in Batch Processing, the training algorithm for
decision forest regression has the following parameters:

Training Parameters for Decision Forest Regression (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the decision forest regression.

For CPU:
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Paramete
r

Default
Value

Description

• defaultDense - default performance-oriented method
• hist - inexact histogram computation method

For GPU:

• hist - inexact histogram computation method

Output

In addition to the output of regression described in Regression Usage Model, decision forest regression
calculates the result of decision forest. For more details, refer to Batch Processing.

Prediction

For the description of the input and output, refer to Regression Usage Model.

In addition to the parameters of regression, decision forest regression has the following parameters at the
prediction stage:

Prediction Parameters for Decision Forest Regression (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the decision forest regression. The only
prediction method supported so far is the default dense method.

Examples

oneAPI DPC++

Batch Processing:

• dpc_df_reg_hist_batch.cpp

oneAPI C++

Batch Processing:

• cpp_df_reg_dense_batch.cpp

C++ (CPU)

Batch Processing:

• df_reg_default_dense_batch.cpp
• df_reg_hist_dense_batch.cpp
• df_reg_traverse_model.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• DfRegDefaultDenseBatch.java
• DfRegHistDenseBatch.java
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• DfRegTraverseModel.java

Python*

Batch Processing:

• decision_forest_regression_default_dense_batch.py
• decision_forest_regression_hist_batch.py
• decision_forest_regression_traverse_batch.py

Classification Decision Forest

Decision forest classifier is a special case of the Decision Forest model.

Details
Given:

•
n feature vectors  of size p;

•
their non-negative sample weights ;

•
the vector of class labels  that describes the class to which the feature vector 

belongs, where  and C is the number of classes.

The problem is to build a decision forest classifier.

Training Stage

Decision forest classifier follows the algorithmic framework of decision forest training with Gini impurity
metrics as impurity metrics [Breiman84]. If sample weights are provided as input, the library uses a
weighted version of the algorithm.

Gini index is an impurity metric, calculated as follows:

where

• D is a set of observations that reach the node;
•  is specified in the table below:

Decision Forest Classification: impurity calculations

Without sample weights With sample weights

 is the observed fraction of observations that
belong to class i in D

 is the observed weighted fraction of observations
that belong to class i in D:

Prediction Stage

Given decision forest classifier and vectors , the problem is to calculate the labels for those
vectors. To solve the problem for each given query vector , the algorithm finds the leaf node in a tree in
the forest that gives the classification response by that tree. The forest chooses the label y taking the
majority of trees in the forest voting for that label.
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Out-of-bag Error

Decision forest classifier follows the algorithmic framework for calculating the decision forest out-of-bag
(OOB) error, where aggregation of the out-of-bag predictions in all trees and calculation of the OOB error of
the decision forest is done as follows:

• For each vector  in the dataset X, predict its label  by having the majority of votes from the trees that
contain  in their OOB set, and vote for that label.

• Calculate the OOB error of the decision forest T as the average of misclassifications:

• If OOB error value per each observation is required, then calculate the prediction error for :

Variable Importance

The library computes Mean Decrease Impurity (MDI) importance measure, also known as the Gini importance
or Mean Decrease Gini, by using the Gini index as impurity metrics.

Usage of Training Alternative
To build a Decision Forest Classification model using methods of the Model Builder class of Decision Forest
Classification, complete the following steps:

• Create a Decision Forest Classification model builder using a constructor with the required number of
classes and trees.

• Create a decision tree and add nodes to it:

• Use the createTree method with the required number of nodes in a tree and a label of the class for
which the tree is created.

• Use the addSplitNode and addLeafNode methods to add split and leaf nodes to the created tree. See
the note below describing the decision tree structure.

• After you add all nodes to the current tree, proceed to creating the next one in the same way.
• Use the getModel method to get the trained Decision Forest Classification model after all trees have been

created.

NOTE Each tree consists of internal nodes (called non-leaf or split nodes) and external nodes (leaf
nodes). Each split node denotes a feature test that is a Boolean expression, for example, f <
featureValue or f = featureValue, where f is a feature and featureValue is a constant. The test
type depends on the feature type: continuous, categorical, or ordinal. For more information on the test
types, see Decision Tree.
The inducted decision tree is a binary tree, meaning that each non-leaf node has exactly two
branches: true and false. Each split node contains featureIndex, the index of the feature used for
the feature test in this node, and featureValue, the constant for the Boolean expression in the test.
Each leaf node contains a classLabel, the predicted class for this leaf. For more information on
decision trees, see Decision Tree.

Add nodes to the created tree in accordance with the pre-calculated structure of the tree. Check that
the leaf nodes do not have children nodes and that the splits have exactly two children.

Examples

C++ (CPU)

Intel® oneAPI Data Analytics Library (oneDAL)  1  

389



• df_cls_dense_batch_model_builder.cpp
• df_cls_traversed_model_builder.cpp

Java*

NOTE There is no support for Java on GPU.

• DfClsDenseBatchModelBuilder.java
• DfClsTraversedModelBuilder.java

Python*

• df_cls_dense_batch_model_builder.py
• df_cls_traversed_model_builder.py

Batch Processing
Decision forest classification follows the general workflow described in Decision Forest and Classification
Usage Model.

Training

In addition to the parameters of a classifier (see Classification Usage Model) and decision forest parameters
described in Batch Processing, the training algorithm for decision forest classification has the following
parameters:

Training Parameters for Decision Forest Classification (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the decision forest classification.

For CPU:

• defaultDense - default performance-oriented method
• hist - inexact histogram computation method

For GPU:

• hist - inexact histogram computation method

nClasses Not
applicable

The number of classes. A required parameter.

Output

Decision forest classification calculates the result of regression and decision forest. For more details, refer to 
Batch Processing and Classification Usage Model.

Prediction

For the description of the input and output, refer to Classification Usage Model.

In addition to the parameters of a classifier, decision forest classification has the following parameters at the
prediction stage:
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Prediction Parameters for Decision Forest Classification (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the decision forest classification. The only
prediction method supported so far is the default dense method.

nClasses Not
applicable

The number of classes. A required parameter.

votingMe
thod

weighted A flag that specifies which method is used to compute probabilities and class
labels:

weighted • Probability for each class is computed as a sample
mean of estimates across all trees, where each
estimate is the normalized number of training samples
for this class that were recorded in a particular leaf
node for current input.

• The algorithm returns the label for the class that gets
the maximal value in a sample mean.

unweighted • Probabilities are computed as normalized votes
distribution across all trees of the forest.

• The algorithm returns the label for the class that gets
the majority of votes across all trees of the forest.

Examples

oneAPI DPC++

Batch Processing:

• dpc_df_cls_hist_batch.cpp

oneAPI C++

Batch Processing:

• cpp_df_cls_dense_batch.cpp

C++ (CPU)

Batch Processing:

• df_cls_default_dense_batch.cpp
• df_cls_hist_dense_batch.cpp
• df_cls_traverse_model.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• DfClsDefaultDenseBatch.java
• DfClsHistDenseBatch.java
• DfClsTraverseModel.java
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Python*

Batch Processing:

• decision_forest_classification_default_dense_batch.py
• decision_forest_classification_hist_batch.py
• decision_forest_classification_traverse_batch.py

Decision Trees

• Decision Tree
• Regression Decision Tree
• Classification Decision Tree

Decision Tree

Decision trees partition the feature space into a set of hypercubes, and then fit a simple model in each
hypercube. The simple model can be a prediction model, which ignores all predictors and predicts the
majority (most frequent) class (or the mean of a dependent variable for regression), also known as 0-R or
constant classifier.

Decision tree induction forms a tree-like graph structure as shown in the figure below, where:

• Each internal (non-leaf) node denotes a test on features
• Each branch descending from node corresponds to an outcome of the test
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• Each external node (leaf) denotes the mentioned simple model

Decision Tree Structure

The test is a rule for partitioning of the feature space. The test depends on feature values. Each outcome of
the test represents an appropriate hypercube associated with both the test and one of descending branches.

If the test is a Boolean expression (for example,  or , where f is a feature and c is a constant
fitted during decision tree induction), the inducted decision tree is a binary tree, so its each non-leaf node
has exactly two branches (‘true’ and ‘false’) according to the result of the Boolean expression.

Prediction is performed by starting at the root node of the tree, testing features by the test specified by this
node, then moving down the tree branch corresponding to the outcome of the test for the given example.
This process is then repeated for the subtree rooted at the new node. The final result is the prediction of the
simple model at the leaf node.

Decision trees are often used in popular ensembles (e.g. boosting, bagging or decision forest).

Details

Given n feature vectors  of size p and the vector of
responses , the problem is to build a decision tree.
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Split Criteria

The library provides the decision tree classification algorithm based on split criteria Gini index [Breiman84]
and Information gain [Quinlan86], [Mitchell97]. See details in Classification Decision Tree.

The library also provides the decision tree regression algorithm based on the mean-squared error (MSE) 
[Breiman84]. See details in Regression Decision Tree.

Types of Tests

The library inducts decision trees with the following types of tests:

1.
For continuous features, the test has a form of , where  is a feature,

.

While enumerating all possible tests for each continuous feature, the constant can be any threshold as

midway between sequential values for sorted unique values of given feature  that reach the node.
2.

For categorical features, the test has a form of , where  is a feature,

.

While enumerating all possible tests for each categorical feature, the constant can be any value of given

feature  that reach the node.
3.

For ordinal features, the test has a form of  where  is a feature,

.

While enumerating all possible tests for each ordinal feature, the constant can be any unique value

except for the first one (in the ascending order) of given feature  that reach the node

Post-pruning

Optionally, the decision tree can be post-pruned using given m feature vectors

 of size p, a vector

of class labels  for classification or a vector of responses

 for regression. For more details about pruning, see [Quinlan87].

Pruned dataset can be some fraction of original training dataset (e.g. randomly chosen 30% of observations),
but in this case those observations must be excluded from the training dataset.

Training Stage

The library uses the following algorithmic framework for the training stage.

The decision tree grows recursively from the root node, which corresponds to the entire training dataset. This
process takes into account pre-pruning parameters: maximum tree depth and minimum number of
observations in the leaf node . For each feature, each possible test is examined to be the best one according
to the given split criterion. The best test is used to perform partition of the feature space into a set of
hypercubes, and each hypercube represents appropriate part of the training dataset to accomplish the
construction of each node at the next level in the decision tree.

After the decision tree is built, it can optionally be pruned by Reduced Error Pruning (REP) [Quinlan87] to
avoid overfitting. REP assumes that there is a separate pruning dataset, each observation in which is used to
get prediction by the original (unpruned) tree. For every non-leaf subtree, the change in mispredictions is
examined over the pruning dataset that would occur if this subtree was replaced by the best possible leaf:
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where

•  is the number of errors (for classification) and the mean-squared error (MSE) (for regression)
for a given subtree

•
 is the number of errors (for classification) and the MSE (for regression) for the best possible leaf,

which replaces the given subtree.

If the new tree gives an equal or fewer mispredictions ( ) and the subtree contains no subtree with
the same property, the subtree is replaced by the leaf. The process continues until any further replacements
increase mispredictions over the pruning dataset. The final tree is the most accurate subtree of the original
tree with respect to the pruning dataset and is the smallest tree with that accuracy.

The training procedure contains the following steps:

1. Grow the decision tree (subtree):

• If all observations contain the same class label (for classification) or same value of dependent
variable (for regression), or pre-pruning parameters disallow further decision tree growing, construct
a leaf node.

• Otherwise

• For each feature, sort given feature values and evaluate an appropriate split criterion for every
possible test (see Split Criteria and Types of Tests for details).

• Construct a node with a test corresponding to the best split criterion value.
• Partition observations according to outcomes of the found test and recursively grow a decision

subtree for each partition.
2. Post-prune the decision tree (see Post-pruning for details).

Prediction Stage

The library uses the following algorithmic framework for the prediction stage.

Given the decision tree and vectors , the problem is to calculate the responses for those vectors.

To solve the problem for each given vector , the algorithm examines  by tests in split nodes to find the
leaf node, which contains the prediction response.

Regression Decision Tree

Regression decision tree is a kind of decision trees described in Classification and Regression > Decision Tree.

Details
Given:

•
n feature vectors  of size p

•
The vector of responses  , where  describes the dependent variable for
independent variables .

The problem is to build a regression decision tree.

Split Criterion

The library provides the decision tree regression algorithm based on the mean-squared error (MSE) 
[Breiman84]:
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Where

•
 is the set of all possible outcomes of test 

•  is the subset of D, for which outcome of  is v, for example, .

The test used in the node is selected as . For binary decision tree with “true” and
“false” branches,

Training Stage

The regression decision tree follows the algorithmic framework of decision tree training described in Decision
Tree.

Prediction Stage

The regression decision tree follows the algorithmic framework of decision tree prediction described in 
Decision Tree.

Given the regression decision tree and vectors , the problem is to calculate the responses for
those vectors.

Batch Processing
Decision tree regression follows the general workflow described in Regression Usage Model.

Training

At the training stage, decision tree regression has the following parameters:

Training Parameters for Decision Forest Regression (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense The computation method used by the decision tree
regression. The only training method supported so
far is the default dense method.

pruning reducedErrorPruning Method to perform post-pruning. Available options
for the pruning parameter:

• reducedErrorPruning - reduced error pruning.
Provide dataForPruning and
dependentVariablesForPruning inputs, if you use
pruning.

• none - do not prune.

maxTreeDepth 0 Maximum tree depth. Zero value means unlimited
depth. Can be any non-negative number.

minObservati
onsInLeafNod
es

5 Minimum number of observations in the leaf node.
Can be any positive number.
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Parameter Default Value Description

pruningFract
ion

0.2 Fraction of observations from training dataset to be
used as observations for post-pruning via random
sampling. The rest observations (with fraction

 to be used to build a
decision tree). Can be any number in the interval
(0, 1). If pruning is not used, all observations are
used to build the decision tree regardless of this
parameter value.

engine SharedPtr<engines::mt19937
::Batch<> >()

Pointer to the random number engine to be used
for random sampling for reduced error post-
pruning.

Prediction

At the prediction stage, decision tree regression has the following parameters:

Prediction Parameters for Decision Forest Regression (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the decision tree regression. The only
training method supported so far is the default dense method.

Examples

C++ (CPU)

Batch Processing:

• dt_reg_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• DtRegDenseBatch.java

Python*

Batch Processing:

• decision_tree_regression_batch.py
• decision_tree_regression_traverse_batch.py

Classification Decision Tree

Classification decision tree is a kind of a decision tree described in Decision Tree.
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Details
Given:

•
n feature vectors  of size p

•
The vector of class labels  that describes the class to which the feature vector 

belongs, where  and C is the number of classes.

The problem is to build a decision tree classifier.

Split Criteria

The library provides the decision tree classification algorithm based on split criteria Gini index [Breiman84]
and Information gain [Quinlan86], [Mitchell97]:

1. Gini index

where

• D is a set of observations that reach the node
•  is the observed fraction of observations with class i in D

To find the best test using Gini index, each possible test is examined using

where

•
 is the set of all possible outcomes of test 

•  is the subset of D, for which outcome of  is v, for example 

The test to be used in the node is selected as . For binary decision tree

with ‘true’ and ‘false’ branches, 
2. Information gain

where

•
, D,  are defined above

•
, with  defined above in Gini index.

Similarly to Gini index, the test to be used in the node is selected as .

For binary decision tree with ‘true’ and ‘false’ branches, 

Training Stage

The classification decision tree follows the algorithmic framework of decision tree training described in 
Decision Tree.

Prediction Stage
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The classification decision tree follows the algorithmic framework of decision tree prediction described in 
Decision Tree.

Given decision tree and vectors , the problem is to calculate the responses for those vectors.

Batch Processing
Decision tree classification follows the general workflow described in Classification Usage Model.

Training

In addition to common input for a classifier, decision trees can accept the following inputs that are used for
post-pruning:

Training Input for Decision Tree Classification (Batch Processing)

Input ID Input

dataForPru
ning

Pointer to the  numeric table with the pruning data set. This table can be an object
of any class derived from NumericTable.

labelsForP
runing

Pointer to the  numeric table with class labels. This table can be an object of any
class derived from NumericTable except PackedSymmetricMatrix and
PackedTriangularMatrix.

At the training stage, decision tree classifier has the following parameters:

Training Parameters for Decision Tree Classification (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the decision tree classification. The only
training method supported so far is the default dense method.

nClasses Not
applicable

The number of classes. A required parameter.

splitCri
terion

infoGain Split criterion to choose the best test for split nodes. Available split criteria for
decision trees:

• gini - the Gini index
• infoGain - the information gain

pruning reducedE
rrorPrun
ing

Method to perform post-pruning. Available options for the pruning parameter:

• reducedErrorPruning - reduced error pruning. Provide dataForPruning
and labelsForPruning inputs, if you use pruning.

• none - do not prune.

maxTreeD
epth

0 Maximum tree depth. Zero value means unlimited depth. Can be any non-
negative number.

minObser
vationsI
nLeafNod
es

1 Minimum number of observations in the leaf node. Can be any positive number.
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Prediction

At the prediction stage, decision tree classifier has the following parameters:

Prediction Parameters for Decision Tree Classification (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the decision tree classification. The only
training method supported so far is the default dense method.

Examples

C++ (CPU)

Batch Processing:

• dt_cls_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• DtClsDenseBatch.java

Python*

Batch Processing:

• decision_tree_classification_batch.py
• decision_tree_classification_traverse_batch.py

Gradient Boosted Trees

The library provides gradient boosted trees classification and regression algorithms based on an ensemble of
regression (decision) trees trained using stochastic gradient boosting technique. Regression tree is a binary
tree graph. Its internal (split) nodes represent a decision function used to select following (child) node at
prediction stage. Its leaf (terminal) nodes represent the corresponding response values which are the result
of prediction from the tree. For more details, see Decision Tree [Breiman84].

• Gradient Boosted Trees
• Regression Gradient Boosted Trees
• Classification Gradient Boosted Trees

Gradient Boosted Trees

Details

Given n feature vectors  of np-dimensional

feature vectors and n responses , the problem is to build a gradient boosted trees
classification or regression model.

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

400

https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/cpp/source/decision_tree/dt_cls_dense_batch.cpp
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/java/com/intel/daal/examples/decision_tree/DtClsDenseBatch.java
https://github.com/intel/scikit-learn-intelex/tree/master/examples/daal4py/decision_tree_classification_batch.py
https://github.com/intel/scikit-learn-intelex/tree/master/examples/daal4py/decision_tree_classification_traverse_batch.py


The tree ensemble model uses M additive functions to predict the output

 where  is
the space of regression trees, T is the number of leaves in the tree, w is a leaf weights vector,  is a score
on i-th leaf. q(x) represents the structure of each tree that maps an observation to the corresponding leaf
index.

Training procedure is an iterative functional gradient descent algorithm which minimizes objective function
over function space by iteratively choosing a function (regression tree) that points in the negative gradient
direction. The objective function is

where l(f) is twice differentiable convex loss function and  is a regularization term
that penalizes the complexity of the model defined by the number of leaves T and the L2 norm of the weights

 for each tree,  and  are regularization parameters.

Training Stage

Library uses the second-order approximation of objective function

where ,  and following algorithmic framework for the training
stage.

Let  be the set of observations. Given the training parameters, such as the number of

iterations M, loss function l(f), regression tree training parameters, regularization parameters  and ,
shrinkage (learning rate) parameter , the algorithm does the following:

•
Find an initial guess , 

• For :

• Update  and , 
•

Grow a regression tree  that minimizes the objective function ,

where , , , .
•

Assign an optimal weight  to the leaf j, .
• Apply shrinkage parameter  to the tree leafs and add the tree to the model
•

Update 

The algorithm for growing the tree:

• Generate a bootstrap training set if required (stochastic gradient boosting) as follows: select randomly

without replacement  observations, where f is a fraction of observations used for training of
one tree.
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• Start from the tree with depth 0.
• For each leaf node in the tree:

• Choose a subset of feature for split finding if required (stochastic gradient boosting).
• Find the best split that maximizes the gain:

For more details, see [Chen2016].

The library supports the following termination criteria when growing the tree:

• Minimal number of observations in a leaf node. Node t is not processed if the subset of observations
is smaller than the predefined value. Splits that produce nodes with the number of observations smaller
than that value are not allowed.

• Maximal tree depth. Node t is not processed, if its depth in the tree reached the predefined value.
• Minimal split loss. Node t is not processed, if the best possible split is smaller than parameter .

Prediction Stage

Given a gradient boosted trees model and vectors , the problem is to calculate the responses
for those vectors. To solve the problem for each given query vector , the algorithm finds the leaf node in a
tree in the ensemble which gives the response by that tree. Resulting response is based on an aggregation of
responses from all trees in the ensemble. For detailed definition, see description of a specific algorithm.

Split Calculation Mode

The library supports two split calculation modes:

• exact - all possible split values are examined when searching for the best split for a feature.
• inexact - continuous features are bucketed into discrete bins and the possible splits are restricted by the

buckets borders only.

Batch Processing
Gradient boosted trees classification and regression follows the general workflow described in Classification
Usage Model and Regression Usage Model.

Training

For description of the input and output, refer to .

At the training stage, the gradient boosted trees batch algorithm has the following parameters:

Training Parameters for Gradient Boosted Trees (Batch Processing)

Parameter Default Value Description

splitMethod inexact Split computation mode.

Possible values:

• inexact - continuous features are bucketed into
discrete bins and the buckets borders are
examined only

• exact - all possible splits for a given feature are
examined
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Parameter Default Value Description

maxIteration
s

50 Maximal number of iterations when training the
model, defines maximal number of trees in the
model.

maxTreeDepth 6 Maximal tree depth. If the parameter is set to 0
then the depth is unlimited.

shrinkage 0.3 Learning rate of the boosting procedure. Scales the

contribution of each tree by a factor 

minSplitLoss 0 Loss regularization parameter. Minimal loss
reduction required to make a further partition on a

leaf node of the tree. Range: 

lambda 1 L2 regularization parameter on weights. Range:

observations
PerTreeFract
ion

1 Fraction of the training set S used for a single tree
training,

.
The observations are sampled randomly without
replacement.

featuresPerNod
e

0 The number of features tried as the possible splits
per node. If the parameter is set to 0, all features
are used.

minObservati
onsInLeafNod
e

5 Minimal number of observations in the leaf node.

memorySaving
Mode

false If true then use memory saving (but slower) mode.

engine SharePtr< engines::
mt19937:: Batch>()

Pointer to the random number generator.

maxBins 256 Used with inexact split method only. Maximal
number of discrete bins to bucket continuous
features. Increasing the number results in higher
computation costs

minBinSize 5 Used with inexact split method only. Minimal
number of observations in a bin.

Regression Gradient Boosted Trees

Gradient boosted trees regression is the special case of gradient boosted trees. For more details, see 
Gradient Boosted Trees.
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Details

Given n feature vectors  of :math`n` p-

dimensional feature vectors and a vector of dependent variables , the problem is to build
a gradient boosted trees regression model that minimizes the loss function based on the predicted and true
value.

Training Stage

Gradient boosted trees regression follows the algorithmic framework of gradient boosted trees training with
following loss

Prediction Stage

Given the gradient boosted trees regression model and vectors , the problem is to calculate
responses for those vectors. To solve the problem for each given feature vector , the algorithm finds the
leaf node in a tree in the ensemble, and the leaf node gives the tree response. The algorithm result is a sum
of responses of all the trees.

Usage of Training Alternative
To build a Gradient Boosted Trees Regression model using methods of the Model Builder class of Gradient
Boosted Tree Regression, complete the following steps:

• Create a Gradient Boosted Tree Regression model builder using a constructor with the required number of
classes and trees.

• Create a decision tree and add nodes to it:

• Use the createTree method with the required number of nodes in a tree and a label of the class for
which the tree is created.

• Use the addSplitNode and addLeafNode methods to add split and leaf nodes to the created tree. See
the note below describing the decision tree structure.

• After you add all nodes to the current tree, proceed to creating the next one in the same way.
• Use the getModel method to get the trained Gradient Boosted Trees Regression model after all trees have

been created.

NOTE Each tree consists of internal nodes (called non-leaf or split nodes) and external nodes (leaf
nodes). Each split node denotes a feature test that is a Boolean expression, for example, f <
featureValue or f = featureValue, where f is a feature and featureValue is a constant. The test
type depends on the feature type: continuous, categorical, or ordinal. For more information on the test
types, see Decision Tree.
The inducted decision tree is a binary tree, meaning that each non-leaf node has exactly two
branches: true and false. Each split node contains featureIndex, the index of the feature used for
the feature test in this node, and featureValue, the constant for the Boolean expression in the test.
Each leaf node contains a classLabel, the predicted class for this leaf. For more information on
decision trees, see Decision Tree.

Add nodes to the created tree in accordance with the pre-calculated structure of the tree. Check that
the leaf nodes do not have children nodes and that the splits have exactly two children.

Examples

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

404



C++ (CPU)

• gbt_reg_traversed_model_builder.cpp

Java*

NOTE There is no support for Java on GPU.

• GbtRegTraversedModelBuilder.java

Python*

• gbt_reg_traversed_model_builder.py

Batch Processing
Gradient boosted trees regression follows the general workflow described in Gradient Boosted Trees and 
Regression Usage Model.

Training

In addition to parameters of the gradient boosted trees described in Batch Processing, the gradient boosted
trees regression training algorithm has the following parameters:

Training Parameters for Gradient Boosted Trees Regression (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the gradient boosted trees regression. The
only training method supported so far is the default dense method.

loss squared Loss function type.

Prediction

In addition to the common regression parameters, the gradient boosted trees regression has the following
parameters at the prediction stage:

Prediction Parameters for Gradient Boosted Trees Regression (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the gradient boosted trees regression. The
only training method supported so far is the default dense method.

numItera
tions

0 An integer parameter that indicates how many trained iterations of the model
should be used in prediction. The default value 0 denotes no limit. All the
trained trees should be used.

Examples
C++ (CPU)
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Batch Processing:

• gbt_reg_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• GbtRegDenseBatch.java

Python* with DPC++ support

Batch Processing:

• gradient_boosted_regression_batch.py

Python*

Batch Processing:

• gradient_boosted_regression_batch.py
• gradient_boosted_regression_traverse_batch.py

Classification Gradient Boosted Trees

Gradient boosted trees classification is the special case of gradient boosted trees. For more details, see
Gradient Boosted Trees.

Details

Given n feature vectors  of n p-dimensional

feature vectors and a vector of class labels , where  and C is
the number of classes, which describes the class to which the feature vector  belongs, the problem is to
build a gradient boosted trees classifier.

Training Stage

Gradient boosted trees classification follows the algorithmic framework of gradient boosted trees training. For
a classification problem with K classes, K regression trees are constructed on each iteration, one for each
output class. The loss function is cross-entropy (multinomial deviance):

where 

Binary classification is a special case when single regression tree is trained on each iteration. The loss
function is

where 

Prediction Stage
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Given the gradient boosted trees classifier model and vectors , the problem is to calculate
labels for those vectors. To solve the problem for each given feature vector , the algorithm finds the leaf
node in a tree in the ensemble, and the leaf node gives the tree response. The algorithm computes a sum of
responses of all the trees for each class and chooses the label y corresponding to the class with the maximal
response value (highest class probability).

Usage of Training Alternative
To build a Gradient Boosted Trees Classification model using methods of the Model Builder class of Gradient
Boosted Tree Classification, complete the following steps:

• Create a Gradient Boosted Tree Classification model builder using a constructor with the required number
of classes and trees.

• Create a decision tree and add nodes to it:

• Use the createTree method with the required number of nodes in a tree and a label of the class for
which the tree is created.

• Use the addSplitNode and addLeafNode methods to add split and leaf nodes to the created tree. See
the note below describing the decision tree structure.

• After you add all nodes to the current tree, proceed to creating the next one in the same way.
• Use the getModel method to get the trained Gradient Boosted Trees Classification model after all trees

have been created.

NOTE Each tree consists of internal nodes (called non-leaf or split nodes) and external nodes (leaf
nodes). Each split node denotes a feature test that is a Boolean expression, for example, f <
featureValue or f = featureValue, where f is a feature and featureValue is a constant. The test
type depends on the feature type: continuous, categorical, or ordinal. For more information on the test
types, see Decision Tree.
The inducted decision tree is a binary tree, meaning that each non-leaf node has exactly two
branches: true and false. Each split node contains featureIndex, the index of the feature used for the
feature test in this node, and featureValue, the constant for the Boolean expression in the test. Each
leaf node contains a classLabel, the predicted class for this leaf. For more information on decision
trees, see Decision Tree.

Add nodes to the created tree in accordance with the pre-calculated structure of the tree. Check that
the leaf nodes do not have children nodes and that the splits have exactly two children.

Examples

C++ (CPU)

• gbt_cls_traversed_model_builder.cpp

Java*

NOTE There is no support for Java on GPU.

• GbtClsTraversedModelBuilder.java

Python*

• gbt_cls_traversed_model_builder.py
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Batch Processing
Gradient boosted trees classification follows the general workflow described in Gradient Boosted Trees and 
Classification Usage Model

Training

In addition to parameters of the gradient boosted trees described in Batch Processing, the gradient boosted
trees classification training algorithm has the following parameters:

Training Parameters for Gradient Boosted Trees Classification (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the gradient boosted trees regression. The
only training method supported so far is the default dense method.

nClasses Not
applicable

The number of classes. A required parameter.

loss crossEnt
ropy

Loss function type.

Prediction

In addition to the parameters of a classifier, the gradient boosted trees classifier has the following
parameters at the prediction stage:

Prediction Parameters for Gradient Boosted Trees Classification (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the gradient boosted trees regression. The
only training method supported so far is the default dense method.

nClasses Not
applicable

The number of classes. A required parameter.

numItera
tions

0 An integer parameter that indicates how many trained iterations of the model
should be used in prediction. The default value 0 denotes no limit. All the
trained trees should be used.

Examples
C++ (CPU)

Batch Processing:

• gbt_cls_dense_batch.cpp

Java*
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NOTE There is no support for Java on GPU.

Batch Processing:

• GbtClsDenseBatch.java

Python*

Batch Processing:

• gradient_boosted_classification_batch.py
• gradient_boosted_classification_traverse_batch.py

Stump

• Classification Stump

• Batch Processing
• Examples

• Regression Stump

• Batch Processing
• Examples

Classification Stump

A Classification Decision Stump is a model that consists of a one-level decision tree where the root is
connected to terminal nodes (leaves) [Friedman2017]. The library only supports stumps with two leaves. Two
methods of split criterion are available: gini and information gain. See Classification Decision Tree for details.

Batch Processing
A classification stump follows the general workflow described in Classification Usage Model.

Training

For a description of the input and output, refer to Classification Usage Model.

At the training stage, a classification decision stump has the following parameters:

Training Parameters for Classification Stump (Batch Processing)

Parameter Default Value Description

algorithmFPType float The floating-point type that the algorithm uses for
intermediate computations. Can be float or double.

method defaultDense Performance-oriented computation method, the only method
supported by the algorithm.

splitCriterion decision_tree::
classification:
:gini

Split criteria for classification stump. Two split criterion are
available:

• decision_tree::classification::gini
• decision_tree::classification::infoGain
See Classification Decision Tree chapter for details.

Intel® oneAPI Data Analytics Library (oneDAL)  1  

409

https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/java/com/intel/daal/examples/gbt/GbtClsDenseBatch.java
https://github.com/intel/scikit-learn-intelex/tree/master/examples/daal4py/gradient_boosted_classification_batch.py
https://github.com/intel/scikit-learn-intelex/tree/master/examples/daal4py/gradient_boosted_classification_traverse_batch.py


Parameter Default Value Description

varImportance none
NOTE Variable importance computation is not supported for
current version of the library.

nClasses 2 The number of classes.

Prediction

For a description of the input and output, refer to Classification Usage Model.

At the prediction stage, a classification stump has the following parameters:

Training Parameters for Classification Stump (Batch Processing)

Parameter Default Value Description

algorithmFPType float The floating-point type that the algorithm uses for
intermediate computations. Can be float or double.

method defaultDense Performance-oriented computation method, the only method
supported by the algorithm.

nClasses 2 The number of classes.

resultsToEvalua
te

classifier::com
puteClassLabels

The form of computed result:

• classifier::computeClassLabels – the result contains
the NumericTable of size  with predicted labels

• classifier::computeClassProbabilities – the result

contains the NumericTable of size  with
probabilities to belong to each class

Examples
C++ (CPU)

Batch Processing:

• stump_cls_gini_dense_batch.cpp
• stump_cls_infogain_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• StumpClsGiniDenseBatch.java
• StumpClsInfogainDenseBatch.java

Python*

Batch Processing:

• stump_classification_batch.py
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Regression Stump

A Regression Decision Stump is a model that consists of a one-level decision tree where the root is connected
to terminal nodes (leaves) [Friedman2017]. The library only supports stumps with two leaves based on
regression decision trees. The one method of split criteria is available: mse. See Regression Decision Tree for
details.

Batch Processing
A regression stump follows the general workflow described in Regression Usage Model.

Training

For a description of the input and output, refer to Regression Usage Model.

At the training stage, a regression decision stump has the following parameters:

Training Parameters for Regression Stump (Batch Processing)

Parameter Default Value Description

algorithmFPType float The floating-point type that the algorithm uses for
intermediate computations. Can be float or double.

method defaultDense Performance-oriented computation method, the only method
supported by the algorithm.

varImportance none
NOTE Variable importance computation is not supported for
current version of the library.

Prediction

For a description of the input and output, refer to Regression Usage Model.

At the prediction stage, a regression stump has the following parameters:

Prediction Parameters for Regression Stump (Batch Processing)

Parameter Default Value Description

algorithmFPType float The floating-point type that the algorithm uses for
intermediate computations. Can be float or double.

method defaultDense Performance-oriented computation method, the only method
supported by the algorithm.

Examples
C++ (CPU)

Batch Processing:

stump_reg_mse_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:
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StumpRegMseDenseBatch.java

Python*

Batch Processing:

• stump_regression_batch.py

Linear and Ridge Regressions

To learn the details of Linear and Ridge regressions, see the following chapters:

• Linear Regression
• Ridge Regression

The following chapter covers the details of the computation process:

• Linear and Ridge Regressions Computation

• Batch Processing
• Online Processing
• Distributed Processing
• Examples

Linear Regression

Linear regression is a method for modeling the relationship between a dependent variable (which may be a
vector) and one or more explanatory variables by fitting linear equations to observed data.

Details

Let  be a vector of input variables and  be the response. For each

, the linear regression model has the format [Hastie2009]:

Here , , are referred to as independent variables, and  are referred to as dependent
variables or responses.

Linear regression is called:

• Simple Linear Regression (if there is only one explanatory variable)
• Multiple Linear Regression (if the number of explanatory variables )

Training Stage

Let  be a set of training data, . The matrix X of size

 contains observations , ,  of independent variables.

To estimate the coefficients  one these methods can be used:

• Normal Equation system
• QR matrix decomposition

Prediction Stage

Linear regression based prediction is done for input vector  using the equation

 for each .
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Usage of Training Alternative
To build a Linear Regression model using methods of the Model Builder class of Linear Regression, complete
the following steps:

• Create a Linear Regression model builder using a constructor with the required number of responses and
features.

• Use the setBeta method to add the set of pre-calculated coefficients to the model. Specify random
access iterators to the first and the last element of the set of coefficients [ISO/IEC 14882:2011 §24.2.7]_.

NOTE If your set of coefficients does not contain an intercept, interceptFlag is automatically set to
False, and to True, otherwise.

• Use the getModel method to get the trained Linear Regression model.
• Use the getStatus method to check the status of the model building process. If

DAAL_NOTHROW_EXCEPTIONS macros is defined, the status report contains the list of errors that describe
the problems API encountered (in case of API runtime failure).

NOTE If after calling the getModel method you use the setBeta method to update coefficients, the

initial model will be automatically updated with the new  coefficients.

Examples

C++ (CPU)

• lin_reg_model_builder.cpp

Java*

NOTE There is no support for Java on GPU.

• LinRegModelBuilder.java

Python*

• lin_reg_model_builder.py

Ridge Regression

The ridge regression method is similar to the least squares procedure except that it penalizes the sizes of the
regression coefficients. Ridge regression is one of the most commonly used methods to overcome data
multicollinearity.

Details

Let  be a vector of input variables and  be the response. For each

, the ridge regression model has the form similar to the linear regression model [Hoerl70],
except that the coefficients are estimated by minimizing a different objective function [James2013]:

Here , , are referred to as independent variables, and  are referred to as dependent
variables or responses.
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Training Stage

Let  be a set of training data,

. The matrix X of size  contains observations , , , of
independent variables.

For each , , the ridge regression estimates  by minimizing the
objective function:

where  are ridge parameters [Hoerl70], [James2013].

Prediction Stage

Ridge regression based prediction is done for input vector  using the equation

 for each .

Linear and Ridge Regressions Computation

Batch Processing
Linear and ridge regressions in the batch processing mode follow the general workflow described in 
Regression Usage Model.

Training

For a description of the input and output, refer to Regression Usage Model.

The following table lists parameters of linear and ridge regressions at the training stage. Some of these
parameters or their values are specific to a linear or ridge regression algorithm.

Linear Regression

Training Parameters for Linear Regression (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for linear regression training:

• defaultDense - the normal equations method
• qrDense - the method based on QR decomposition

intercep
tFlag

true
A flag that indicates a need to compute .

Ridge Regression
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Training Parameters for Ridge Regression (Batch Processing)

Parameter Default Value Description

algorithmFPTy
pe

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or double.

method defaultDense Default computation method used by the ridge
regression. The only method supported at the training
stage is the normal equations method.

ridgeParamete
rs

A numeric table of size
 that contains the

default ridge parameter
equal to 1.

The numeric table of size  (k is the number of
dependent variables) or . The contents of the
table depend on its size:

•
: values of the ridge parameters 

for .
• : the value of the ridge parameter for

each dependent variable .

NOTE This parameter can be an object of any class derived
from NumericTable, except for
PackedTriangularMatrix,
PackedSymmetricMatrix, and CSRNumericTable.

interceptFlag true
A flag that indicates a need to compute .

Prediction

For a description of the input and output, refer to Regression Usage Model.

At the prediction stage, linear and ridge regressions have the following parameters:

Prediction Parameters for Linear and Ridge Regression (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Default performance-oriented computation method, the only method supported
by the regression based prediction.

Online Processing
You can use linear and ridge regression in the online processing mode only at the training stage.

This computation mode assumes that the data arrives in blocks .

Training

Linear and ridge regression training in the online processing mode follows the general workflow described in 
Regression Usage Model.
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Linear and ridge regression training in the online processing mode accepts the input described below. Pass
the Input ID as a parameter to the methods that provide input for your algorithm. For more details, see 
Algorithms.

Training Input for Linear and Ridge Regression (Online Processing)

Input ID Input

data Pointer to the  numeric table that represents the current, i-th, data block.

dependentV
ariables

Pointer to the  numeric table with responses associated with the current, i-th, data
block.

NOTE Both input tables can be an object of any class derived from NumericTable.

The following table lists parameters of linear and ridge regressions at the training stage in the online
processing mode.

Linear Regression

Training Parameters for Linear Regression (Online Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for linear regression training:

• defaultDense - the normal equations method
• qrDense - the method based on QR decomposition

intercep
tFlag

true
A flag that indicates a need to compute .

Ridge Regression

Training Parameters for Ridge Regression (Online Processing)

Parameter Default Value Description

algorithmFPTy
pe

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or double.

method defaultDense Default computation method used by the ridge
regression. The only method supported at the training
stage is the normal equations method.

ridgeParamete
rs

A numeric table of size
 that contains the

default ridge parameter
equal to 1.

The numeric table of size  (k is the number of
dependent variables) or . The contents of the
table depend on its size:

•
size = : values of the ridge parameters 

for .
• size = : the value of the ridge parameter for

each dependent variable .
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Parameter Default Value Description

NOTE This parameter can be an object of any class derived
from NumericTable, except for
PackedTriangularMatrix,
PackedSymmetricMatrix, and CSRNumericTable.

interceptFlag true
A flag that indicates a need to compute .

For a description of the output, refer to Regression Usage Model.

Distributed Processing
You can use linear and ridge regression in the distributed processing mode only at the training stage.

This computation mode assumes that the data set is split in nblocks blocks across computation nodes.

Training

Use the two-step computation schema for linear and ridge regression training in the distributed processing
mode, as illustrated below:

• Step 1 - on Local Nodes
• Step 2 - on Master Node

Algorithm parameters

The following table lists parameters of linear and ridge regressions at the training stage in the distributed
processing mode.

Linear Regression

Training Parameters for Linear Regression (Distributed Processing)

Paramete
r

Default
Value

Description

computeS
tep

Not
applicable

The parameter required to initialize the algorithm. Can be:

• step1Local - the first step, performed on local nodes
• step2Master - the second step, performed on a master node

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available methods for linear regression training:

• defaultDense - the normal equations method
• qrDense - the method based on QR decomposition

intercep
tFlag

true
A flag that indicates a need to compute .

Ridge Regression
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Training Parameters for Ridge Regression (Distributed Processing)

Parameter Default Value Description

computeStep Not applicable The parameter required to initialize the algorithm. Can
be:

• step1Local - the first step, performed on local
nodes

• step2Master - the second step, performed on a
master node

algorithmFPTy
pe

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or double.

method defaultDense Default computation method used by the ridge
regression. The only method supported at the training
stage is the normal equations method.

ridgeParamete
rs

A numeric table of size
 that contains the

default ridge parameter
equal to 1.

The numeric table of size  (k is the number of
dependent variables) or . The contents of the
table depend on its size:

•
size = : values of the ridge parameters 

for .
• size = : the value of the ridge parameter for

each dependent variable .

NOTE This parameter can be an object of any class derived
from NumericTable, except for
PackedTriangularMatrix,
PackedSymmetricMatrix, and CSRNumericTable.

interceptFlag true
A flag that indicates a need to compute .
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Step 1 - on Local Nodes

Linear and Ridge Regression Training: Distributed Processing, Step 1 - on Local Nodes

In this step, linear and ridge regression training accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.
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Training Input for Linear and Ridge Regression (Distributed Processing, Step 1)

Input ID Input

data Pointer to the  numeric table that represents the i-th data block on the local node.

dependentV
ariables

Pointer to the  numeric table with responses associated with the i-th data block.

NOTE Both input tables can be an object of any class derived from NumericTable.

In this step, linear and ridge regression training calculates the result described below. Pass the Result ID as
a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Training Output for Linear and Ridge Regression (Distributed Processing, Step 1)

Result ID Result

partialMod
el

Pointer to the partial linear regression model that corresponds to the i-th data block.

The result can only be an object of the Model class.
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Step 2 - on Master Node

Linear and Ridge Regression Training: Distributed Processing, Step 2 - on Master Node

In this step, linear and ridge regression training accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Training Input for Linear and Ridge Regression (Distributed Processing, Step 2)

Input ID Input

partialMod
els

A collection of partial models computed on local nodes in Step 1.

The collection contains objects of the Model class.

In this step, linear and ridge regression training calculates the result described below. Pass the Result ID as
a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Training Output for Linear and Ridge Regression (Distributed Processing, Step 2)

Result ID Result

model Pointer to the linear or ridge regression model being trained.

The result can only be an object of the Model class.
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Examples
C++ (CPU)

Batch Processing:

• lin_reg_norm_eq_dense_batch.cpp
• lin_reg_qr_dense_batch.cpp
• ridge_reg_norm_eq_dense_batch.cpp

Online Processing:

• lin_reg_norm_eq_dense_online.cpp
• lin_reg_qr_dense_online.cpp
• ridge_reg_norm_eq_dense_online.cpp

Distributed Processing:

• lin_reg_norm_eq_dense_distr.cpp
• lin_reg_qr_dense_distr.cpp
• ridge_reg_norm_eq_dense_distr.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• LinRegNormEqDenseBatch.java
• LinRegQRDenseBatch.java
• RidgeRegNormEqDenseBatch.java

Online Processing:

• LinRegNormEqDenseOnline.java
• LinRegQRDenseOnline.java
• RidgeRegNormEqDenseOnline.java

Distributed Processing:

• LinRegNormEqDenseDistr.java
• LinRegQRDenseDistr.java
• RidgeRegNormEqDenseDistr.java

Python* with DPC++ support

Batch Processing:

• linear_regression_batch.py

Python*

Batch Processing:

• linear_regression_batch.py
• ridge_regression_batch.py

Online Processing:

• linear_regression_streaming.py
• ridge_regression_streaming.py

Distributed Processing:

• linear_regression_spmd.py
• ridge_regression_spmd.py
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LASSO and Elastic Net Regressions

To learn the details of LASSO and Elastic regressions, see the following chapters:

• LASSO
• Elastic Net

The following chapter covers the details of the computation process:

• LASSO and Elastic Net Computation

Least Absolute Shrinkage and Selection Operator (LASSO)

Least Absolute Shrinkage and Selection Operator (LASSO) is a method for modeling relationship between a
dependent variable (which may be a vector) and one or more explanatory variables by fitting regularized

least squares model. Trained LASSO model can produce sparse coefficients due to the use of 
regularization term. LASSO regression is widely used in feature selection tasks. For example, in the field of
compressed sensing it is used to effectively identify relevant features associated with the dependent variable
from a few observations with a large number of features. LASSO regression is also used to overcome
multicollinearity of feature vectors in the training data set.

Details

Let  be a vector of input variables and  be the response. For each

, the LASSO model has the form similar to linear and ridge regression model [Hoerl70],

except that the coefficients are trained by minimizing a regularized by  penalty mean squared error (MSE)
objective function.

Here ,  are referred to as independent variables,  is referred to as dependent variable or

response and .

Training Stage

Let  be a set of training data (for

regression task, , and for feature selection p could be greater than n). The matrix X of size

 contains observations , ,  of independent variables.

For each , , the LASSO regression estimates  by minimizing the
objective function:

In the equation above, the first term is a mean squared error function and the second one is a regularization

term that penalizes the  norm of vector 

For more details, see [Hastie2009].

By default, Coordinate Descent iterative solver is used to minimize the objective function. SAGA solver is also
applicable for minimization.

Prediction Stage
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For input vector of independent variables , prediction based on LASSO regression is done using
the equation

where .

Elastic Net

Elastic Net is a method for modeling relationship between a dependent variable (which may be a vector) and
one or more explanatory variables by fitting regularized least squares model. Elastic Net regression model
has the special penalty, a sum of L1 and L2 regularizations, that takes advantage of both Ridge Regression
and LASSO algorithms. This penalty is particularly useful in a situation with many correlated predictor
variables [Friedman2010].

Details

Let  be a vector of input variables and  be the response. For each

, the Elastic Net model has the form similar to linear and ridge regression models [Hoerl70]
with one exception: the coefficients are estimated by minimizing mean squared error (MSE) objective

function that is regularized by  and  penalties.

Here , , are referred to as independent variables, , , is referred to as
dependent variable or response.

Training Stage

Let  be a set of training data (for

regression task, , and for feature selection p could be greater than n). The matrix X of size

 contains observations , ,  of independent variables.

For each , , the Elastic Net regression estimates  by minimizing the
objective function:

In the equation above, the first term is a mean squared error function, the second and the third are

regularization terms that penalize the  and  norms of vector , where , ,

.

For more details, see [Hastie2009] and [Friedman2010].

By default, Coordinate Descent iterative solver is used to minimize the objective function. SAGA solver is also
applicable for minimization.

Prediction Stage

Prediction based on Elastic Net regression is done for input vector  using the equation

 for each .
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LASSO and Elastic Net Computation

Batch Processing
LASSO and Elastic Net algorithms follow the general workflow described in Regression Usage Model.

Training

For a description of common input and output parameters, refer to Regression Usage Model. Both LASSO and
Elastic Net algorithms have the following input parameters in addition to the common input parameters:

Training Input for LASSO and Elastic Net (Batch Processing)

Input ID Input

weights Optional input.

Pointer to the  numeric table with weights of samples. The input can be an object
of any class derived from NumericTable except for PackedTriangularMatrix,
PackedSymmetricMatrix, and CSRNumericTable.

By default, all weights are equal to 1.

gramMatrix Optional input.

Pointer to the  numeric table with pre-computed Gram Matrix. The input can be
an object of any class derived from NumericTable except for CSRNumericTable.

By default, the table is set to an empty numeric table. It is used only when the number of
features is less than the number of observations.

Chosse the appropriate tab to see the parameters used in LASSO and Elastic Net batch training algorithms:

LASSO

Training Parameters for LASSO (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense The computation method used by the LASSO
regression. The only training method supported so
far is the default dense method.

interceptFla
g

True A flag that indicates whether or not to compute

lassoParamet
ers

A numeric table of size 
that contains the default LASSO
parameter equal to 0.1.

 coefficients: 

A numeric table of size  (where k is the
number of dependent variables) or . The
contents of the table depend on its size:

• For the table of size , use the values of

LASSO parameters  for .
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Parameter Default Value Description

• For the table of size , use the value of
LASSO parameter for each dependant variable

.

This parameter can be an object of any class
derived from NumericTable, except for
PackedTriangularMatrix, PackedSymmetricMatrix,
and CSRNumericTable.

optimization
Solver

Coordinate Descent solver Optimization procedure used at the training stage.

optResultToC
ompute

0 The 64-bit integer flag that specifies which extra
characteristics of the LASSO regression to compute.

Provide the following value to request a
characteristic:

• computeGramMatrix for Computation Gram
matrix

dataUseInCom
putation

doNotUse A flag that indicates a permission to overwrite input
data. Provide the following value to restrict or allow
modification of input data:

• doNotUse – restricts modification
• doUse – allows modification

Elastic Net

Training Parameters for Elastic Net (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense The computation method used by the Elastic Net
regression. The only training method supported so
far is the default dense method.

interceptFla
g

True A flag that indicates whether or not to compute

penaltyL1 A umeric table of size 
that contains the default Elastic
Net parameter equal to 0.5.

L1 regularization coefficient (penaltyL1 is  as
described in Elastic Net).

The numeric table of size  (where k is the
number of dependent variables) or . The
contents of the table depend on its size:

• For the table of size , the values of the

Elastic Net parameters  for .
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Parameter Default Value Description

• For the table of size , the values of the
Elastic Net parameter for each dependent

veriable .

This parameter can be an object of any class
derived from NumericTable, except for
PackedTriangularMatrix, PackedSymmetricMatrix,
and CSRNumericTable.

penaltyL2 A numeric table of size 
that contains the default Elastic
Net parameter equal to 0.5.

L2 regularization coefficient (penaltyL2 is  as
described in Elastic Net).

The numeric table of size  (where k is the
number of dependent variables) or . The
contents of the table depend on its size:

• For the table of size , the values of the

Elastic Net parameters  for .
• For the table of size , the values of the

Elastic Net parameter for each dependent

veriable .

This parameter can be an object of any class
derived from NumericTable, except for
PackedTriangularMatrix, PackedSymmetricMatrix,
and CSRNumericTable.

optimization
Solver

Coordinate Descent solver Optimization procedure used at the training stage.

optResultToC
ompute

0 The 64-bit integer flag that specifies which extra
characteristics of the Elastic Net regression to
compute.

Provide the following value to request a
characteristic:

• computeGramMatrix for computation of the
Gram Matrix

dataUseInCom
putation

doNotUse A flag that indicates a permission to overwrite input
data. Provide the following value to restrict or allow
modification of input data:

• doNotUse – restricts modification
• doUse – allows modification
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NOTE Common combinations of Elastic Net regularization parameters [Friedman2010] might be
computed as shown below:

• compromise between L1 (lasso penalty) and L2 (ridge-regression penalty) regularization:

• control full regularization:

In addition, both LASSO and Elastic Net algorithms have the following optional results:

Training Output for LASSO and Elastic Net (Batch Processing)

Result ID Result

gramMatrix Pointer to the computed Gram Matrix with size 

Prediction

For a description of the input and output, refer to Regression Usage Model.

At the prediction stage, LASSO and Elastic Net algorithms have the following parameters:

Prediction Parameters for LASSO and Elastic Net (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Default performance-oriented computation method, the only method supported
by the regression-based prediction.

Examples

LASSO

C++: lasso_reg_dense_batch.cpp

Java*: LassoRegDenseBatch.java

Elastic Net

C++: elastic_net_dense_batch.cpp

Java*: ElasticNetDenseBatch.java

Performance Considerations
For better performance when the number of samples is larger than the number of features in the training
data set, certain coordinates of gradient and Hessian are computed via the component of Gram matrix. When
the number of features is larger than the number of observations, the cost of each iteration via Gram matrix
depends on the number of features. In this case, computation is performed via residual update 
[Friedman2010].

To get the best overall performance for LASSO and Elastic Net training, do the following:

• If the number of features is less than the number of samples, use homogenous table.
• If the number of features is greater than the number of samples, use SOA layout rather than AOS layout.
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k-Nearest Neighbors (kNN) Classifier

NOTE k-Nearest Neighbors Classifier is also available with oneAPI interfaces:

• k-Nearest Neighbors Classification and Search (k-NN)

k-Nearest Neighbors (kNN) classification is a non-parametric classification algorithm. The model of the kNN
classifier is based on feature vectors and class labels from the training data set. This classifier induces the
class of the query vector from the labels of the feature vectors in the training data set to which the query
vector is similar. A similarity between feature vectors is determined by the type of distance (for example,
Euclidian) in a multidimensional feature space.

Details

Given n feature vectors  of size p and a vector of class

labels , where  and C is the number of classes, describes the
class to which the feature vector  belongs, the problem is to build a kNN classifier.

Given a positive integer parameter k and a test observation , the kNN classifier does the following:

1. Identifies the set  of the k feature vectors in the training data that are closest to  according to the
distance metric

2. Estimates the conditional probability for the class j as the fraction of vectors in  whose labels y are
equal to j

3. Assigns the class with the largest probability to the test observation 

On CPU, kNN classification might use K-D tree, a space-partitioning data structure, or Brute Force search to
find nearest neighbors, while on GPU only Brute Force search is available.

K-D tree

On CPU, the library provides kNN classification based on multidimensional binary search tree (K-D tree,
where D means the dimension and K means the number of dimensions in the feature space). For more
details, see [James2013], [Patwary2016].

oneDAL version of the kNN algorithm with K-D trees uses the PANDA algorithm [Patwary2016].

Each non-leaf node of a tree contains the identifier of a feature along which to split the feature space and an
appropriate feature value (a cut-point) that defines the splitting hyperplane to partition the feature space
into two parts. Each leaf node of the tree has an associated subset (a bucket) of elements of the training
data set. Feature vectors from any bucket belong to the region of the space defined by tree nodes on the
path from the root node to the respective leaf.

Brute Force

Brute Force kNN algorithm calculates the squared distances from each query feature vector to each reference
feature vector in the training data set. Then, for each query feature vector it selects k objects from the
training set that are closest to that query feature vector. For details, see [Li2015], [Verma2014].

Training Stage

Training using K-D Tree
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For each non-leaf node, the process of building a K-D tree involves the choice of the feature (that is,
dimension in the feature space) and the value for this feature (a cut-point) to split the feature space. This
procedure starts with the entire feature space for the root node of the tree, and for every next level of the
tree deals with ever smaller part of the feature space.

The PANDA algorithm constructs the K-D tree by choosing the dimension with the maximum variance for
splitting [Patwary2016].

Therefore, for each new non-leaf node of the tree, the algorithm computes the variance of values that belong
to the respective region of the space for each of the features and chooses the feature with the largest
variance. Due to high computational cost of this operation, PANDA uses a subset of feature values to
compute the variance.

PANDA uses a sampling heuristic to estimate the data distribution for the chosen feature and chooses the
median estimate as the cut-point.

PANDA generates new K-D tree levels until the number of feature vectors in a leaf node gets less or equal to
a predefined threshold. Once the threshold is reached, PANDA stops growing the tree and associates the
feature vectors with the bucket of the respective leaf node.

Training using Brute Force

During training with the Brute Force approach, the algorithm stores all feature vectors from the training data
set to calculate their distances to the query feature vectors.

Prediction Stage

Given kNN classifier and query vectors , the problem is to calculate the labels for those vectors.

Prediction using K-D Tree

To solve the problem for each given query vector , the algorithm traverses the K-D tree to find feature
vectors associated with a leaf node that are closest to . During the search, the algorithm limits exploration
of the nodes for which the distance between the query vector and respective part of the feature space is not

less than the distance from the  neighbor. This distance is progressively updated during the tree traverse.

Prediction using Brute Force

To solve the problem, the algorithm computes distances between vectors from training and testing sets:

. For example, if Euclidean distance is used,  would be the
following:

K training vectors with minimal distance to the testing vector are the nearest neighbors the algorithms
searches for.

Batch Processing
kNN classification follows the general workflow described in Classification Usage Model.

Training

For a description of the input and output, refer to Usage Model: Training and Prediction.

At the training stage, both Brute Force and K-D tree based kNN classifier have the following parameters:
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Training Parameters for k-Nearest Neighbors Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense The computation method used by kNN
classification. The only training method supported
so far is the default dense method.

nClasses 2 The number of classes.

dataUseInMod
el

doNotUse A parameter to enable/disable use of the input data
set in the kNN model. Possible values:

• doNotUse - the algorithm does not include the
input data and labels in the trained kNN model
but creates a copy of the input data set.

• doUse - the algorithm includes the input data
and labels in the trained kNN model.

K-D tree based kNN reorders feature vectors and
corresponding labels in the input data set or its
copy to improve performance at the prediction
stage.

If the value is doUse, do not deallocate the memory
for input data and labels.

engine SharePtr< engines::
mt19937:: Batch>()

Pointer to the random number generator engine
that is used internally to perform sampling needed
to choose dimensions and cut-points for the K-D
tree.

Prediction

For a description of the input and output, refer to Usage Model: Training and Prediction.

At the prediction stage, both Brute Force and K-D tree based kNN classifier have the following parameters:

Prediction Parameters for k-Nearest Neighbors Classifier (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used kNN classification. The only prediction method
supported so far is the default dense method.

nClasses 2 The number of classes.

k 1 The number of neighbors.

resultsT
oCompute

0 The 64-bit integer flag that specifies which extra characteristics of the kNN
algorithm to compute. Provide one of the following values to request a single
characteristic or use bitwise OR to request a combination of the characteristics:
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Paramete
r

Default
Value

Description

• computeIndicesOfNeighbors
• computeDistances

voteWeig
hts

voteUnif
orm

The voting method for prediction:

• voteUniform – Uniform weighting is used. All neighbors weight equally.
• voteDistance – Inverse-distance weighting is used. The closer to the

query point the neighbor is, the more it weights.

Output

In addition to classifier output, kNN calculates the results described below. Pass the Result ID as a
parameter to the methods that access the result of your algorithm.

Output for k-Nearest Neighbors Classifier (Batch Processing)

Result ID Result

indices A numeric table  containing indices of rows from training dataset that are nearest
neighbors computed when the computeIndicesOfNeigtbors option is on.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable.

distances A numeric table  containing distances to nearest neighbors computed when the
computeDistances option is on.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable.

Examples
oneAPI DPC++

Batch Processing:

• dpc_knn_cls_brute_force_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_knn_cls_kd_tree_dense_batch.cpp

C++ (CPU)

Batch Processing:

• kdtree_knn_dense_batch.cpp
• bf_knn_dense_batch.cpp

Java*
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NOTE There is no support for Java on GPU.

Batch Processing:

• KDTreeKNNDenseBatch.java
• BFKNNDenseBatch.java

Python* with DPC++ support

Batch Processing:

• bf_knn_classification_batch.py

Python*

Batch Processing:

• kdtree_knn_classification_batch.py
• bf_knn_classification_batch.py

Implicit Alternating Least Squares

The library provides the Implicit Alternating Least Squares (implicit ALS) algorithm [Fleischer2008], based on
collaborative filtering.

Details

Given the input dataset  of size , where m is the number of users and n is the number of
items, the problem is to train the Alternating Least Squares (ALS) model represented as two matrices: X of

size , and Y of size , where f is the number of factors. The matrices X and Y are the factors of
low-rank factorization of matrix R:

Initialization Stage

Initialization of the matrix Y can be done using the following method: for each 

 and  are independent random numbers uniformly distributed on the interval ,

.

Training Stage

The ALS model is trained using the implicit ALS algorithm [Hu2008] by minimizing the following cost
function:

where:

•  indicates the preference of user u of item i:

•  is the threshold used to define the preference values.  is the only threshold valu supported so far.
• ,  measures the confidence in observing 
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•  is the rate of confidence
•  is the element of the matrix R
•  is the parameter of the regularization
• ,  denote the number of ratings of user u and item i respectively

Prediction Stage

Prediction of Ratings

Given the trained ALS model and the matrix D that describes for which pairs of factors X and Y the rating
should be computed, the system calculates the matrix of recommended ratings Res:

, if , ; .

Initialization
For initialization, the following computation modes are available:

• Batch Processing
• Distributed Processing

Computation
The following computation modes are available:

• Batch Processing
• Distributed processing for training and prediction of ratings

Examples
C++ (CPU)

Batch Processing:

• impl_als_dense_batch.cpp
• impl_als_csr_batch.cpp

Distributed Processing:

• impl_als_csr_distr.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• ImplAlsDenseBatch.java
• ImplAlsCSRBatch.java

Distributed Processing:

• ImplAlsCSRDistr.java

Python*

Batch Processing:

• implicit_als_batch.py
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Performance Considerations
To get the best overall performance of the implicit ALS recommender:

• If input data is homogeneous, provide the input data and store results in homogeneous numeric tables of
the same type as specified in the algorithmFPType class template parameter.

• If input data is sparse, use CSR numeric tables.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Batch Processing

Input
Initialization of item factors for the implicit ALS algorithm accepts the input described below. Pass the Input
ID as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Input for Implicit Alternating Least Squares Initialization (Batch Processing)

Input ID Input

data Pointer to the  numeric table with the mining data.

The input can be an object of any class derived from NumericTable except
PackedTriangularMatrix and PackedSymmetricMatrix.

Parameters
Initialization of item factors for the implicit ALS algorithm has the following parameters:

Parameters for Implicit Alternating Least Squares Initialization (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Available computation methods:

• defaultDense - performance-oriented method
• fastCSR - performance-oriented method for

CSR numeric tables

nFactors 10 The total number of factors.

engine SharePtr< engines::
mt19937:: Batch>()

Pointer to the random number generator engine
that is used internally at the initialization step.

Output
Initialization of item factors for the implicit ALS algorithm calculates the result described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.
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Output for Implicit Alternating Least Squares Initialization (Batch Processing)

Result ID Result

model The model with initialized item factors. The result can only be an object of the Model class.

Distributed Processing

The distributed processing mode assumes that the data set R is split in nblocks blocks across computation
nodes.

Parameters
In the distributed processing mode, initialization of item factors for the implicit ALS algorithm has the
following parameters:

Parameters for Implicit Alternating Least Squares Initialization (Distributed Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method fastCSR Performance-oriented computation method for CSR
numeric tables, the only method supported by the
algorithm.

nFactors 10 The total number of factors.

fullNUsers 0 The total number of users m.

partition Not applicable A numeric table of size either  that
provides the number of input data parts or

, where nblocks is the
number of input data parts, and the i-th element
contains the offset of the transposed i-th data part
to be computed by the initialization algorithm.

engine SharePtr< engines::
mt19937:: Batch>()

Pointer to the random number generator engine
that is used internally at the initialization step.

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

436



To initialize the implicit ALS algorithm in the distributed processing mode, use the one-step process
illustrated by the following diagram for :
Implicit Alternating Least Squares Initialization: General Schema of Distributed Processing
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Step 1 - on Local Nodes
Implicit Alternating Least Squares Initialization: Distributed Processing, Step 1 - on Local Nodes
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Input

In the distributed processing mode, initialization of item factors for the implicit ALS algorithm accepts the
input described below. Pass the Input ID as a parameter to the methods that provide input for your
algorithm. For more details, see Algorithms.

Input for Implicit Alternating Least Squares Initialization (Distributed Processing, Step 1)

Input ID Input

dataColumn
Slice

An  numeric table with the part of the input data set. Each node holds  rows of

the full transposed input data set .

The input should be an object of CSRNumericTable class.

Output

In the distributed processing mode, initialization of item factors for the implicit ALS algorithm calculates the
results described below. Pass the Partial Result ID as a parameter to the methods that access the
results of your algorithm. Partial results that correspond to the outputOfInitForComputeStep3 and
offsets Partial Result IDs should be transferred to Step 3 of the distributed ALS training algorithm.

Output of Initialization for Computing Step 3 (outputOfInitForComputeStep3) is a key-value data
collection that maps components of the partial model on the i-th node to all local nodes. Keys in this data
collection are indices of the nodes and the value that corresponds to each key i is a numeric table that
contains indices of the factors of the items to be transferred to the i-th node on Step 3 of the distributed ALS
training algorithm.

User Offsets (offsets) is a key-value data collection, where the keys are indices of the nodes and the value
that correspond to the key i is a numeric table of size  that contains the value of the starting offset
of the user factors stored on the i-th node.

For more details, see Algorithms.

Output for Implicit Alternating Least Squares Initialization (Distributed Processing, Step 1)

Partial
Result ID

Result

partialMod
el

The model with initialized item factors. The result can only be an object of the
PartialModel class.

outputOfIn
itForCompu
teStep3

A key-value data collection that maps components of the partial model to the local nodes.

offsets A key-value data collection of size nblocks that holds the starting offsets of the factor
indices on each node.

outputOfSt
ep1ForStep
2

A key-value data collection of size nblocks that contains the parts of the input numeric

table: j -th element of this collection is a numeric table of size , where

 and the values  are defined by the partition
parameter.
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Step 2 - on Local Nodes
Implicit Alternating Least Squares Initialization: Distributed Processing, Step 2 - on Local Nodes
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Input

This step uses the results of the previous step.

Input for Implicit Alternating Least Squares Initialization (Distributed Processing, Step 3)

Input ID Input

inputOfSte
p2FromStep
1

A key-value data collection of size nblocks that contains the parts of the input data set: i -
th element of this collection is a numeric table of size . Each numeric table in the
collection should be an object of CSRNumericTable class.

Output

In this step, implicit ALS initialization calculates the partial results described below. Pass the Partial
Result ID as a parameter to the methods that access the results of your algorithm. Partial results that
correspond to the outputOfInitForComputeStep3 and offsets Partial Result IDs should be transferred to 
Step 3 of the distributed ALS training algorithm.

Output of Initialization for Computing Step 3 (outputOfInitForComputeStep3) is a key-value data
collection that maps components of the partial model on the i-th node to all local nodes. Keys in this data
collection are indices of the nodes and the value that corresponds to each key i is a numeric table that
contains indices of the user factors to be transferred to the i-th node on Step 3 of the distributed ALS training
algorithm.

Item Offsets (offsets) is a key-value data collection, where the keys are indices of the nodes and the value
that correspond to the key i is a numeric table of size  that contains the value of the starting offset
of the item factors stored on the i-th node.

For more details, see Algorithms.

Output for Implicit Alternating Least Squares Initialization (Distributed Processing, Step 2)

Partial
Result ID

Result

dataRowSli
ce

An  numeric table with the mining data. j-th node gets  rows of the full input
data set R.

outputOfIn
itForCompu
teStep3

A key-value data collection that maps components of the partial model to the local nodes.

offsets A key-value data collection of size nblocks that holds the starting offsets of the factor
indices on each node.

Batch Processing

Training
For a description of the input and output, refer to Recommendation Systems Usage Model.

At the training stage, the implicit ALS recommender has the following parameters:
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Training Parameters for Implicit Alternating Least Squares Computaion (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available computation methods:

• defaultDense - performance-oriented method
• fastCSR - performance-oriented method for CSR numeric tables

nFactors 10 The total number of factors.

maxItera
tions

5 The number of iterations.

alpha 40 The rate of confidence.

lambda 0.01 The parameter of the regularization.

preferen
ceThresh
old

0 Threshold used to define preference values. 0 is the only threshold supported
so far.

Prediction
For a description of the input and output, refer to Recommendation Systems Usage Model.

At the prediction stage, the implicit ALS recommender has the following parameters:

Prediction Parameters for Implicit Alternating Least Squares Computaion (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

Distributed Processing: Training

The distributed processing mode assumes that the data set is split in nblocks blocks across computation
nodes.

Algorithm Parameters
At the training stage, implicit ALS recommender in the distributed processing mode has the following
parameters:
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Training Parameters for Implicit Alternating Least Squares Computaion (Distributed Processing)

Paramete
r

Default
Value

Description

computeS
tep

Not
applicable

The parameter required to initialize the algorithm. Can be:

• step1Local - the first step, performed on local nodes
• step2Master - the second step, performed on a master node
• step3Local - the third step, performed on local nodes
• step4Local - the fourth step, performed on local nodes

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method fastCSR Performance-oriented computation method for CSR numeric tables, the only
method supported by the algorithm.

nFactors 10 The total number of factors.

maxItera
tions

5 The number of iterations.

alpha 40 The rate of confidence.

lambda 0.01 The parameter of the regularization.

preferen
ceThresh
old

0 Threshold used to define preference values. 0 is the only threshold supported
so far.

Computation Process
At each iteration, the implicit ALS training algorithm alternates between re-computing user factors (X) and
item factors (Y). These computations split each iteration into the following parts:

1. Re-compute all user factors using the input data sets and item factors computed previously.
2. Re-compute all item factors using input data sets in the transposed format and item factors computed

previously.
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Each part includes four steps executed either on local nodes or on the master node, as explained below and
illustrated by graphics for . The main loop of the implicit ALS training stage is executed on the
master node.
Implicit Alternating Least Squares Computaion: Part 1

Implicit Alternating Least Squares Computaion: Part 2
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Step 1 - on Local Nodes
This step works with the matrix:

•  in part 1 of the iteration
• X in part 2 of the iteration
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Parts of this matrix are used as input partial models.

Training with Implicit Alternating Least Squares: Distributed Processing, Step 1 - on Local Nodes
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In this step, implicit ALS recommender training accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Input for Implicit Alternating Least Squares Computaion (Distributed Processing, Step 1)

Input ID Input

partialMod
el

Partial model computed on the local node.

In this step, implicit ALS recommender training calculates the result described below. Pass the Result ID as
a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Output for Implicit Alternating Least Squares Computaion (Distributed Processing, Step 1)

Result ID Result

outputOfSt
ep1ForStep
2

Pointer to the  numeric table with the sum of numeric tables calculated in Step 1.
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Step 2 - on Master Node
This step uses local partial results from Step 1 as input.

Training with Implicit Alternating Least Squares: Distributed Processing, Step 2 - on Master Node
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In this step, implicit ALS recommender training accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Input for Implicit Alternating Least Squares Computaion (Distributed Processing, Step 2)

Input ID Input

inputOfSte
p2FromStep
1

A collection of numeric tables computed on local nodes in Step 1.

NOTE The collection may contain objects of any class derived from NumericTable except the
PackedTriangularMatrix class with the lowerPackedTriangularMatrix layout.

In this step, implicit ALS recommender training calculates the result described below. Pass the Result ID as
a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Output for Implicit Alternating Least Squares Computaion (Distributed Processing, Step 2)

Result ID Result

outputOfSt
ep2ForStep
4

Pointer to the  numeric table with merged cross-products.

Step 3 - on Local Nodes
On each node i, this step uses results of the previous steps and requires that you provide two extra matrices
Offset Table i and Input of Step 3 From Init i computed at the initialization stage of the algorithm.

The only element of the Offset Table i table refers to the:

• i-th element of the offsets collection from the step 2 of the distributed initialization algorithm in part 1
of the iteration

• i-th element of the offsets collection from the step 1 of the distributed initialization algorithm in part 2
of the iteration

The Input Of Step 3 From Init is a key-value data collection that refers to the
outputOfInitForComputeStep3 output of the initialization stage:

• Output of the step 1 of the distributed initialization algorithm in part 1 of the iteration
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• Output of the step 2 of the distributed initialization algorithm in part 2 of the iteration
Training with Implicit Alternating Least Squares: Distributed Processing, Step 3 - on Local Nodes
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In this step, implicit ALS recommender training accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Input for Implicit Alternating Least Squares Computaion (Distributed Processing, Step 3)

Input ID Input

partialMod
el

Partial model computed on the local node.

offset A numeric table of size  that holds the global index of the starting row of the input
partial model. A part of the key-value data collection offsets computed at the
initialization stage of the algorithm.

In this step, implicit ALS recommender training calculates the result described below. Pass the Result ID as
a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Output for Implicit Alternating Least Squares Computaion (Distributed Processing, Step 3)

Result ID Result

outputOfSt
ep3ForStep
4

A key-value data collection that contains partial models to be used in Step 4. Each element
of the collection contains an object of the PartialModel class.

Step 4 - on Local Nodes
This step uses the results of the previous steps and parts of the following matrix in the transposed format:

• X in part 1 of the iteration
•  in part 2 of the iteration
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The results of the step are the re-computed parts of this matrix.
Training with Implicit Alternating Least Squares: Distributed Processing, Step 4 - on Local Nodes
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In this step, implicit ALS recommender training accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Input for Implicit Alternating Least Squares Computaion (Distributed Processing, Step 4)

Input ID Input

partialMod
els

A key-value data collection with partial models that contain user factors/item factors
computed in Step 3. Each element of the collection contains an object of the
PartialModel class.

partialDat
a

Pointer to the CSR numeric table that holds the i-th part of the input data set, assuming
that the data is divided by users/items.

inputOfSte
p4FromStep
2

Pointer to the  numeric table computed in Step 2.

In this step, implicit ALS recommender training calculates the result described below. Pass the Result ID as
a parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Output for Implicit Alternating Least Squares Computaion (Distributed Processing, Step 4)

Result ID Result

outputOfSt
ep4ForStep
1

Pointer to the partial implicit ALS model that corresponds to the i-th data block. The partial
model stores user factors/item factors.

outputOfSt
ep4ForStep
3

Pointer to the partial implicit ALS model that corresponds to the i-th data block. The partial
model stores user factors/item factors.

Distributed Processing: Prediction of Ratings

The distributed processing mode assumes that the data set is split in nblocks blocks across computation
nodes.

Algorithm Parameters
At the prediction stage, implicit ALS recommender in the distributed processing mode has the following
parameters:

Prediction Parameters for Implicit Alternating Least Squares Computaion (Distributed Processing)

Paramete
r

Default
Value

Description

computeS
tep

Not
applicable

The parameter required to initialize the algorithm. Can be:

• step1Local - the first step, performed on local nodes

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Performance-oriented computation method, the only method supported by the
algorithm.

nFactors 10 The total number of factors.
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Use the one-step computation schema for implicit ALS recommender prediction in the distributed processing
mode, as explained below and illustrated by the graphic for :
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Step 1 - on Local Nodes

Prediction of rating uses partial models, which contain the parts of user factors  and

item factors  produced at the training stage. Each pair of partial models  is

used to compute a numeric table with ratings  that correspond to the user factors and item factors from
the input partial models.
Prediction with Implicit Alternating Least Squares: Distributed Processing, Step 1 - on Local
Nodes
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In this step, implicit ALS recommender-based prediction accepts the input described below. Pass the Input
ID as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Input for Implicit Alternating Least Squares Computaion (Distributed Processing, Step 1)

Input ID Input

usersParti
alModel

The partial model trained by the implicit ALS algorithm in the distributed processing mode.
Stores user factors that correspond to the i-th data block.

itemsParti
alModel

The partial model trained by the implicit ALS algorithm in the distributed processing mode.
Stores item factors that correspond to the j-th data block.

In this step, implicit ALS recommender-based prediction calculates the result described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm. For more details, see 
Algorithms.

Output for Implicit Alternating Least Squares Computaion (Distributed Processing, Step 1)

Result ID Result

prediction Pointer to the  numeric table with predicted ratings.

NOTE By default this table is an object of the HomogenNumericTable class, but you can
define it as an object of any class derived from NumericTable except
PackedTriangularMatrix, PackedSymmetricMatrix, and CSRNumericTable.

Logistic Regression

Logistic regression is a method for modeling the relationships between one or more explanatory variables
and a categorical variable by expressing the posterior statistical distribution of the categorical variable via
linear functions on observed data. If the categorical variable is binary, taking only two values, “0” and “1”,
the logistic regression is simple, otherwise, it is multinomial.

Details

Given n feature vectors of n p-dimensional feature vectors a vector of class labels , where

 and K is the number of classes, describes the class to which the feature vector
 belongs, the problem is to train a logistic regression model.

The logistic regression model is the set of vectors

 that gives the posterior probability

for a given feature vector  and class label  for each

. See [Hastie2009].

If the categorical variable is binary, the model is defined as a single vector  that
determines the posterior probability
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Training Stage

Training procedure is an iterative algorithm which minimizes objective function

where the first term is the negative log-likelihood of conditional Y given X, and the latter terms are

regularization ones that penalize the complexity of the model (large  values),  and  are non-negative

regularization parameters applied to L1 and L2 norm of vectors in .

For more details, see [Hastie2009], [Bishop2006].

For the objective function minimization the library supports the iterative algorithms defined by the interface
of daal::algorithms::iterative_solver. See Iterative Solver.

Prediction Stage

Given logistic regression model and vectors , the problem is to calculate the responses for those
vectors, and their probabilities and logarithms of probabilities if required. The computation is based on
formula (1) in multinomial case and on formula (2) in binary case.

Usage of Training Alternative
To build a Logistic Regression model using methods of the Model Builder class of Logistic Regression,
complete the following steps:

• Create a Logistic Regression model builder using a constructor with the required number of responses and
features.

• Use the setBeta method to add the set of pre-calculated coefficients to the model. Specify random
access iterators to the first and the last element of the set of coefficients [ISO/IEC 14882:2011 §24.2.7]_.

NOTE If your set of coefficients does not contain an intercept, interceptFlag is automatically set to
False, and to True, otherwise.

• Use the getModel method to get the trained Logistic Regression model.
• Use the getStatus method to check the status of the model building process. If

DAAL_NOTHROW_EXCEPTIONS macros is defined, the status report contains the list of errors that describe
the problems API encountered (in case of API runtime failure).

NOTE If after calling the getModel method you use the setBeta method to update coefficients, the

initial model will be automatically updated with the new  coefficients.

Examples

C++ (CPU)

• log_reg_model_builder.cpp
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Java*

NOTE There is no support for Java on GPU.

• LogRegModelBuilder.java

Python*

• log_reg_model_builder.py

Batch Processing
Logistic regression algorithm follows the general workflow described in Classification Usage Model.

Training

For a description of the input and output, refer to Classification Usage Model.

In addition to the parameters of classifier described in Classification Usage Model, the logistic regression
batch training algorithm has the following parameters:

Training Parameters for Logistic Regression (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by the logistic regression. The only training
method supported so far is the default dense method.

nClasses Not
applicable

The number of classes. A required parameter.

intercep
tFlag

True
A flag that indicates a need to compute 

penaltyL
1

0 L1 regularization coefficient

NOTE L1 regularization is not supported on GPU.

penaltyL
2

0 L2 regularization coefficient

optimiza
tionSolv
er

SGD solver All iterative solvers are available as optimization procedures to use at the
training stage:

• SGD (Stochastic Gradient Descent Algorithm)
• ADAGRAD (Adaptive Subgradient Method)
• LBFGS (Limited-Memory Broyden-Fletcher-Goldfarb-Shanno Algorithm)
• SAGA (Stochastic Average Gradient Accelerated Method)

Prediction

For a description of the input, refer to Classification Usage Model.

At the prediction stage logistic regression batch algorithm has the following parameters:
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Prediction Parameters for Logistic Regression (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

The computation method used by logistic regression. The only prediction
method supported so far is the default dense method.

nClasses Not
applicable

The number of classes. A required parameter.

resultsT
oCompute

computeC
lassesLa
bels

The 64-bit integer flag that specifies which extra characteristics of the logistic
regression to compute.

Provide one of the following values to request a single characteristic or use
bitwise OR to request a combination of the characteristics:

• computeClassesLabels for prediction
• computeClassesProbabilities for probabilities
• computeClassesLogProbabilities for logProbabilities

Output

In addition to classifier output, logistic regression prediction calculates the result described below. Pass the
Result ID as a parameter to the methods that access the results of your algorithm.

Prediction Output for Logistic Regression (Batch Processing)

Result ID Result

probabilit
ies

A numeric table of size  containing probabilities of classes computed
when computeClassesProbabilities option is enabled.

logProbabi
lities

A numeric table of size  containing logarithms of classes’ probabilities
computed when computeClassesLogProbabilities option is enabled.

NOTE Note that:

• If resultsToCompute does not contain computeClassesLabels, the prediction table is NULL.
• If resultsToCompute does not contain computeClassesProbabilities, the probabilities table is

NULL.
• If resultsToCompute does not contain computeClassesLogProbabilities, the logProbabilities

table is NULL.
• By default, each numeric table of this result is an object of the HomogenNumericTable class, but

you can define the result as an object of any class derived from NumericTable except for
PackedSymmetricMatrix and PackedTriangularMatrix.

Examples
C++ (CPU)

Batch Processing:

• log_reg_dense_batch.cpp
• log_reg_binary_dense_batch.cpp

Intel® oneAPI Data Analytics Library (oneDAL)  1  

459

https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/cpp/source/logistic_regression/log_reg_dense_batch.cpp
https://github.com/oneapi-src/oneDAL/tree/master/examples/daal/cpp/source/logistic_regression/log_reg_binary_dense_batch.cpp


Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• LogRegDenseBatch.java
• LogRegBinaryDenseBatch.java

Python* with DPC++ support

Batch Processing:

• log_reg_dense_batch.py
• log_reg_binary_dense_batch.py

Python*

Batch Processing:

• log_reg_dense_batch.py
• log_reg_binary_dense_batch.py

Naïve Bayes Classifier

Naïve Bayes is a set of simple and powerful classification methods often used for text classification, medical
diagnosis, and other classification problems. In spite of their main assumption about independence between
features, Naïve Bayes classifiers often work well when this assumption does not hold. An advantage of this
method is that it requires only a small amount of training data to estimate model parameters.

Details
The library provides Multinomial Naïve Bayes classifier [Renie03].

Let J be the number of classes, indexed . The integer-valued feature vector

, , contains scaled frequencies: the value of  is the number of times
the k-th feature is observed in the vector  (in terms of the document classification problem,  is the
number of occurrences of the word indexed k in the document . For a given data set (a set of n

documents), , the problem is to train a Naïve Bayes classifier.

Training Stage

The Training stage involves calculation of these parameters:

•

, where  is the number of occurrences of the feature k in the class j,

 is the total number of occurrences of all features in the class, the  (for example, ), and 
is the sum of all .

•
, where  is the prior class estimate.

Prediction Stage

Given a new feature vector , the classifier determines the class the vector belongs to:
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Computation
The following computation modes are available:

• Batch Processing
• Online Processing
• Distributed Processing

Examples
C++ (CPU)

Batch Processing:

• mn_naive_bayes_dense_batch.cpp
• mn_naive_bayes_csr_batch.cpp

Online Processing:

• mn_naive_bayes_dense_online.cpp
• mn_naive_bayes_csr_online.cpp

Distributed Processing:

• mn_naive_bayes_dense_distr.cpp
• mn_naive_bayes_csr_distr.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• MnNaiveBayesDenseBatch.java
• MnNaiveBayesCSRBatch.java

Online Processing:

• MnNaiveBayesDenseOnline.java
• MnNaiveBayesCSROnline.java

Distributed Processing:

• MnNaiveBayesDenseDistr.java
• MnNaiveBayesCSRDistr.java

Python*

Batch Processing:

• naive_bayes_batch.py

Online Processing:

• naive_bayes_streaming.py

Distributed Processing:

• naive_bayes_spmd.py

Performance Considerations

Training Stage

To get the best overall performance at the Naïve Bayes classifier training stage:
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• If input data is homogeneous:

• For the training data set, use a homogeneous numeric table of the same type as specified in the
algorithmFPType class template parameter.

• For class labels, use a homogeneous numeric table of type int.
• If input data is non-homogeneous, use AOS layout rather than SOA layout.

The training stage of the Naïve Bayes classifier algorithm is memory access bound in most cases. Therefore,
use efficient data layout whenever possible.

Prediction Stage

To get the best overall performance at the Naïve Bayes classifier prediction stage:

• For the working data set, use a homogeneous numeric table of the same type as specified in the
algorithmFPType class template parameter.

• For predicted labels, use a homogeneous numeric table of type int.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Batch Processing

Naïve Bayes classifier in the batch processing mode follows the general workflow described in Classification
Usage Model.

Training
At the training stage, Naïve Bayes classifier has the following parameters:

Training Parameters for Naïve Bayes Classifier (Batch Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available computation methods for the Naïve Bayes classifier:

• defaultDense - default performance-oriented method
• fastCSR - performance-oriented method for CSR numeric tables

nClasses Not
applicable

The number of classes. A required parameter.

priorCla
ssEstima
tes

Vector of size nClasses that contains prior class estimates. The default value
applies to each vector element.

alpha 1 Vector of size p that contains the imagined occurrences of features. The default
value applies to each vector element.

Prediction
At the prediction stage, Naïve Bayes classifier has the following parameters:
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Prediction Parameters for Naïve Bayes Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Performance-oriented computation method, the
only method supported by the algorithm.

nClasses Not applicable The number of classes. A required parameter.

Online Processing

You can use the Naïve Bayes classifier algorithm in the online processing mode only at the training stage.

This computation mode assumes that the data arrives in blocks .

Training
Naïve Bayes classifier training in the online processing mode follows the general workflow described in 
Classification Usage Model.

Naïve Bayes classifier in the online processing mode accepts the input described below. Pass the Input ID
as a parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Training Input for Naïve Bayes Classifier (Online Processing)

Input ID Input

data Pointer to the  numeric table that represents the current data block.

labels Pointer to the  numeric table with class labels associated with the current data
block.

NOTE These tables can be objects of any class derived from NumericTable.

Naïve Bayes classifier in the online processing mode has the following parameters:

Training Parameters for Naïve Bayes Classifier (Online Processing)

Paramete
r

Default
Value

Description

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available computation methods for the Naïve Bayes classifier:

• defaultDense - default performance-oriented method
• fastCSR - performance-oriented method for CSR numeric tables

nClasses Not
applicable

The number of classes. A required parameter.
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Paramete
r

Default
Value

Description

priorCla
ssEstima
tes

Vector of size nClasses that contains prior class estimates. The default value
applies to each vector element.

alpha 1 Vector of size p that contains the imagined occurrences of features. The default
value applies to each vector element.

For a description of the output, refer to Classification Usage Model.

Distributed Processing

You can use the Naïve Bayes classifier algorithm in the distributed processing mode only at the training
stage.

This computation mode assumes that the data set is split in nblocks blocks across computation nodes.

Training

Algorithm Parameters

At the training stage, Naïve Bayes classifier in the distributed processing mode has the following parameters:

Training Parameters for Naïve Bayes Classifier (Distributed Processing)

Paramete
r

Default
Valude

Description

computeS
tep

Not
applicable

The parameter required to initialize the algorithm. Can be:

• step1Local - the first step, performed on local nodes
• step2Master - the second step, performed on a master node

algorith
mFPType

float The floating-point type that the algorithm uses for intermediate computations.
Can be float or double.

method defaultD
ense

Available computation methods for the Naïve Bayes classifier:

• defaultDense - default performance-oriented method
• fastCSR - performance-oriented method for CSR numeric tables

nClasses Not
applicable

The number of classes. A required parameter.

priorCla
ssEstima
tes

Vector of size nClasses that contains prior class estimates. The default value
applies to each vector element.

alpha 1 Vector of size p that contains the imagined occurrences of features. The default
value applies to each vector element.

Use the two-step computation schema for Naïve Bayes classifier training in the distributed processing mode,
as illustrated below:
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Step 1 - on Local Nodes

Training with Naïve Bayes Classifier: Distributed Processing, Step 1 - on Local Nodes

In this step, Naïve Bayes classifier training accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.
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Training Input for Naïve Bayes Classifier (Distributed Processing, Step 1)

Input ID Input

data Pointer to the  numeric table that represents the current data block.

labels Pointer to the  numeric table with class labels associated with the current data
block.

NOTE These tables can be objects of any class derived from NumericTable.

In this step, Naïve Bayes classifier training calculates the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Training Output for Naïve Bayes Classifier (Distributed Processing, Step 1)

Result ID Result

partialMod
el

Pointer to the partial Naïve Bayes classifier model that corresponds to the i-th data block.

The result can only be an object of the Model class.
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Step 2 - on Master Node

Trainin with Naïve Bayes Classifier: Distributed Processing, Step 2 - on Master Node

In this step, Naïve Bayes classifier training accepts the input described below. Pass the Input ID as a
parameter to the methods that provide input for your algorithm. For more details, see Algorithms.

Training Input for Naïve Bayes Classifier (Distributed Processing, Step 2)

Input ID Input

partialMod
els

A collection of partial models computed on local nodes in Step 1.

The collection contains objects of the Model class.

In this step, Naïve Bayes classifier training calculates the result described below. Pass the Result ID as a
parameter to the methods that access the results of your algorithm. For more details, see Algorithms.

Training Output for Naïve Bayes Classifier (Distributed Processing, Step 2)

Result ID Result

model Pointer to the Naïve Bayes classifier model being trained.

The result can only be an object of the Model class.
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Support Vector Machine Classifier

NOTE Support Vector Machine Classifier is also available with oneAPI interfaces:

• Support Vector Machine Classifier and Regression (SVM)

Support Vector Machine (SVM) is among popular classification algorithms. It belongs to a family of
generalized linear classification problems. Because SVM covers binary classification problems only in the
multi-class case, SVM must be used in conjunction with multi-class classifier methods. SVM is a binary
classifier. For a multi-class case, use Multi-Class Classifier framework of the library.

Details

Given n feature vectors  of size p and a vector of class

labels , where  describes the class to which the feature vector  belongs,
the problem is to build a two-class Support Vector Machine (SVM) classifier.

Training Stage

oneDAL provides two methods to train the SVM model:

• Boser method [Boser92] - performance-oriented variant of Boser [Boser92] and Platt [Platt98] algorithms
• Thunder method [Wen2018]

The SVM model is trained to solve the quadratic optimization problem

with , , , where e is the vector of ones, C is the upper bound of the

coordinates of the vector , Q is a symmetric matrix of size  with , and

 is a kernel function.

Working subset of α updated on each iteration of the algorithm is based on the Working Set Selection (WSS)
3 scheme [Fan05]. The scheme can be optimized using one of these techniques or both:

• Cache: the implementation can allocate a predefined amount of memory to store intermediate results of
the kernel computation.

• Shrinking: the implementation can try to decrease the amount of kernel related computations (see 
[Joachims99]).

The solution of the problem defines the separating hyperplane and corresponding decision function

 where only those  that correspond to non-zero  appear in the
sum, and b is a bias. Each non-zero  is called a classification coefficient and the corresponding  is called
a support vector.

Prediction Stage

Given the SVM classifier and r feature vectors , the problem is to calculate the signed value of

the decision function , . The sign of the value defines the class of the feature vector,
and the absolute value of the function is a multiple of the distance between the feature vector and separating
hyperplane.
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Usage of Training Alternative
To build a Support Vector Machine (SVM) Classifier model using methods of the Model Builder class of SVM
Classifier, complete the following steps:

• Create an SVM Classifier model builder using a constructor with the required number of support vectors
and features.

• In any sequence:

• Use the setSupportVectors, setClassificationCoefficients, and setSupportIndices
methods to add pre-calculated support vectors, classification coefficients, and support indices
(optional), respectively, to the model. For each method specify random access iterators to the first and
the last element of the corresponding set of values [ISO/IEC 14882:2011 § 24.2.7]_.

• Use setBias to add a bias term to the model.
• Use the getModel method to get the trained SVM Classifier model.
• Use the getStatus method to check the status of the model building process. If

DAAL_NOTHROW_EXCEPTIONS macros is defined, the status report contains the list of errors that describe
the problems API encountered (in case of API runtime failure).

NOTE If after calling the getModel method you use the setBias, setSupportVectors,
setClassificationCoefficients, or setSupportIndices methods, coefficients, the initial model
will be automatically updated with the new set of parameters.

Examples

C++ (CPU)

• svm_two_class_model_builder.cpp

Java*

NOTE There is no support for Java on GPU.

• SVMTwoClassModelBuilder.java

Python*

• svm_two_class_model_builder.py

Batch Processing
SVM classifier follows the general workflow described in Classification Usage Model.

Training

For a description of the input and output, refer to Usage Model: Training and Prediction.

At the training stage, SVM classifier has the following parameters:

Training Parameters for Support Vector Machine Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPTy
pe

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or double.

method defaultDense The computation method used by the SVM classifier.
Available methods for the training stage:
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Parameter Default Value Description

For CPU:

• defaultDense – Boser method [Boser92]
• thunder - Thunder method [Wen2018]

For GPU:

• thunder - Thunder method [Wen2018]

nClasses 2 The number of classes.

C 1.0 The upper bound in conditions of the quadratic
optimization problem.

accuracyThres
hold

0.001 The training accuracy.

tau Tau parameter of the WSS scheme.

maxIterations 1000000 Maximal number of iterations for the algorithm.

cacheSize 8000000 The size of cache in bytes for storing values of the
kernel matrix. A non-zero value enables use of a cache
optimization technique.

doShrinking true A flag that enables use of a shrinking optimization
technique.

NOTE This parameter is only supported for
defaultDense method.

kernel Pointer to an object of the
KernelIface class

The kernel function. By default, the algorithm uses a
linear kernel.

Prediction

For a description of the input and output, refer to Usage Model: Training and Prediction.

At the prediction stage, SVM classifier has the following parameters:

Prediction Parameters for Support Vector Machine Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPTy
pe

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or double.

method defaultDense Performance-oriented computation method, the only
prediction method supported by the algorithm.

nClasses 2 The number of classes.

kernel Pointer to object of the
KernelIface class

The kernel function. By default, the algorithm uses a
linear kernel.

Examples
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oneAPI DPC++

Batch Processing:

• dpc_svm_two_class_thunder_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_svm_two_class_smo_dense_batch.cpp
• cpp_svm_two_class_thunder_dense_batch.cpp

C++ (CPU)

Batch Processing:

• svm_two_class_boser_dense_batch.cpp
• svm_two_class_boser_csr_batch.cpp
• svm_two_class_thunder_dense_batch.cpp
• svm_two_class_thunder_csr_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• SVMTwoClassBoserDenseBatch.java
• SVMTwoClassBoserCSRBatch.java
• SVMTwoClassThunderDenseBatch.java
• SVMTwoClassThunderCSRBatch.java

Python* with DPC++ support

Batch Processing:

• svm_batch.py

Python*

Batch Processing:

• svm_batch.py

Performance Considerations
For the best performance of the SVM classifier, use homogeneous numeric tables if your input data set is
homogeneous or SOA numeric tables otherwise.

Performance of the SVM algorithm greatly depends on the cache size cacheSize. Larger cache size typically
results in greater performance. For the best SVM algorithm performance, use cacheSize equal to

. However, avoid setting the cache size to a larger value than the

number of bytes required to store  data elements because the algorithm does not fully utilize the cache in
this case.

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201
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Multi-class Classifier

While some classification algorithms naturally permit the use of more than two classes, some algorithms,
such as Support Vector Machines (SVM), are by nature solving a two-class problem only. These two-class (or
binary) classifiers can be turned into multi-class classifiers by using different strategies, such as One-Against-
Rest or One-Against-One.

oneDAL implements a Multi-Class Classifier using the One-Against-One strategy.

Multi-class classifiers, such as SVM, are based on two-class classifiers, which are integral components of the
models trained with the corresponding multi-class classifier algorithms.

Details

Given n feature vectors  of size p, the number of

classes K, and a vector of class labels , where , the problem is
to build a multi-class classifier using a two-class (binary) classifier, such as a two-class SVM.

Training Stage

The model is trained with the One-Against-One method that uses the binary classification described in 

[Hsu02] as follows: For each pair of classes , train a binary classifier, such as SVM. The total number of

such binary classifiers is .

Prediction Stage

Given a new feature vector , the classifier determines the class to which the vector belongs.

oneDAL provides two methods for class label prediction:

• Wu method. According to the algorithm 2 for computation of the class probabilities described in [Wu04].
The library returns the index of the class with the largest probability.

• Vote-based method. If the binary classifier predicts the feature vector to be in i-th class, the number of
votes for the class i is increased by one, otherwise the vote is given to the j-th class. If two classes have
equal numbers of votes, the class with the smallest index is selected.

Usage of Training Alternative
To build a Multi-class Classifier model using methods of the Model Builder class of Multi-class Classifier,
complete the following steps:

• Create a Multi-class Classifier model builder using a constructor with the required number of features and
classes.

• Use the setTwoClassClassifierModel method for each pair of classes to add the pre-trained two-class
classifiers to the model. In the parameters to the method specify the classes’ indices and the pointer to
the pre-trained two-class classifier for this pair of classes. You need to do this for each pair of classes,
because the One-Against-One strategy is used.

• Use the getModel method to get the trained Multi-class Classifier model.
• Use the getStatus method to check the status of the model building process. If

DAAL_NOTHROW_EXCEPTIONS macros is defined, the status report contains the list of errors that describe
the problems API encountered (in case of API runtime failure).

Examples

oneAPI C++

Batch Processing
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• cpp_svm_two_class_thunder_dense_batch.cpp

C++ (CPU)

Batch Processing

• svm_multi_class_model_builder.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing

• SVMMultiClassModelBuilder.java

Python*

svm_multi_class_model_builder.py

Batch Processing
Multi-class classifier follows the general workflow described in Classification Usage Model.

Training

At the training stage, a multi-class classifier has the following parameters:

Training Parameters for Multi-class Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense The computation method used by the multi-class
classifier. The only training method supported so far
is One-Against-One.

training Pointer to an object of the SVM
training class

Pointer to the training algorithm of the two-class
classifier. By default, the SVM two-class classifier is
used.

nClasses Not applicable The number of classes. A required parameter.

Prediction

At the prediction stage, a multi-class classifier has the following parameters:

Prediction Parameters for Multi-class Classifier (Batch Processing)

Parameter Method Default Value Description

algorithmFPT
ype

defaultDense
or voteBased

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

pmethod Not applicable defaultDense Available methods for multi-class classifier
prediction stage:
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Parameter Method Default Value Description

• defaultDense - the method described in 
[Wu04]

• voteBased - the method based on the votes
obtained from two-class classifiers.

tmethod defaultDense
or voteBased

training::one
AgainstOne

The computation method that was used to train the
multi-class classifier model.

prediction defaultDense
or voteBased

Pointer to an
object of the
SVM prediction
class

Pointer to the prediction algorithm of the two-class
classifier. By default, the SVM two-class classifier is
used.

nClasses defaultDense
or voteBased

Not applicable The number of classes. A required parameter.

maxIteration
s

defaultDense 100 The maximal number of iterations for the
algorithm.

accuracyThre
shold

defaultDense 1.0e-12 The prediction accuracy.

resultsToEva
luate

voteBased computeClass
Labels

The 64-bit integer flag that specifies which extra
characteristics of the decision function to compute.

Provide one of the following values to request a
single characteristic or use bitwise OR to request a
combination of the characteristics:

• computeClassLabels for prediction
• computeDecisionFunction for

decisionFunction

Output

In addition to classifier output, multiclass classifier calculates the result described below. Pass the Result ID
as a parameter to the methods that access the result of your algorithm. For more details, see Algorithms.

Output for Multi-class Classifier (Batch Processing)

Result ID Result

decisionFu
nction A numeric table of size  containing the results of the decision function

computed for all binary models when the computeDecisionFunction option is enabled.

NOTE If resultsToEvaluate does not contain computeDecisionFunction, the result of
decisionFunction table is NULL.
By default, each numeric table of this result is an object of the HomogenNumericTable class, but you
can define the result as an object of any class derived from NumericTable except for
PackedSymmetricMatrix and PackedTriangularMatrix.

Examples
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C++ (CPU)

Batch Processing:

• svm_multi_class_boser_csr_batch.cpp
• svm_multi_class_boser_dense_batch.cpp
• svm_multi_class_thunder_csr_batch.cpp
• svm_multi_class_thunder_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• SVMMultiClassBoserCSRBatch.java
• SVMMultiClassBoserDenseBatch.java
• SVMMultiClassThunderCSRBatch.java
• SVMMultiClassThunderDenseBatch.java

Python*

Batch Processing:

• svm_multiclass_batch.py

Boosting

Boosting is a set of algorithms intended to build a strong classifier from an ensemble of weighted weak
learners by iterative re-weighting according to some accuracy measure for weak learners. A weak learner is a
classification or regression algorithm that has only slightly better performance than random guessing. Weak
learners are usually very simple and fast, and they focus on classification of very specific features.

Boosting algorithms include LogitBoost, BrownBoost, AdaBoost, and others. A Decision Stump classifier is
one of the popular weak learners.

In oneDAL, a weak learner is:

• Classification algorithm for AdaBoost and BrownBoost
• Regression algorithm for LogitBoost

Weak learners support training of the boosting model for weighted datasets.

oneDAL boosting algorithms pass pointers to weak learner training and prediction objects through the
parameters of boosting algorithms. Use the getNumberOfWeakLearners() method to determine the number
of weak learners trained.

You can implement your own weak learners by deriving from the appropriate interface classes:

• Classification for AdaBoost and BrownBoost
• Regression for LogitBoost

NOTE When defining your own weak learners to use with boosting classifiers, make sure the
prediction component of your weak learner returns:

•
The number from  in case of binary classification.

•
Class label from  for nClasses > 2.

• Some boosting algorithms like SAMME.R AdaBoost that require probabilities of classes. For
description of each boosting algorithm, refer to a corresponding section in this document.

• AdaBoost Classifier
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• AdaBoost Multiclass Classifier
• BrownBoost Classifier
• LogitBoost Classifier

AdaBoost Classifier

AdaBoost (short for “Adaptive Boosting”) is a popular boosting classification algorithm. AdaBoost algorithm
performs well on a variety of data sets except some noisy data [Freund99].

AdaBoost is a binary classifier. For a multi-class case, use Multi-class Classifier framework of the library.

Details

Given n feature vectors  of size p and a vector of class

labels , where  describes the class to which the feature vector 
belongs, and a weak learner algorithm, the problem is to build an AdaBoost classifier.

Training Stage

The following scheme shows the major steps of the algorithm:

1.
Initialize weights  for .

2. For :

a.
Train the weak learner  using weights 

b. Choose a confidence value .
c.

Update , where  is a normalization factor.
3. Output the final hypothesis:

Prediction Stage

Given the AdaBoost classifier and r feature vectors , the problem is to calculate the final class:

Batch Processing
AdaBoost classifier follows the general workflow described in Classification Usage Model.

Training

For a description of the input and output, refer to Classification Usage Model.

At the training stage, an AdaBoost classifier has the following parameters:
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Training Parameters for AdaBoost Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense The computation method used by the AdaBoost
classifier. The only training method supported so far
is the Y. Freund’s method.

weakLearnerT
raining

Pointer to an object of the stump
training class

Pointer to the training algorithm of the weak
learner. By default, a stump weak learner is used.

weakLearnerP
rediction

Pointer to an object of the stump
prediction class

Pointer to the prediction algorithm of the weak
learner. By default, a stump weak learner is used.

accuracyThre
shold

0.01 AdaBoost training accuracy.

maxIteration
s

100 The maximal number of iterations for the
algorithm.

Prediction

For a description of the input and output, refer to Classification Usage Model.

At the prediction stage, an AdaBoost classifier has the following parameters:

Prediction Parameters for AdaBoost Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Performance-oriented computation method, the
only method supported by the AdaBoost classifier
at the prediction stage.

weakLearnerP
rediction

Pointer to an object of the stump
prediction class

Pointer to the prediction algorithm of the weak
learner. By default, a stump weak learner is used.

Examples
C++ (CPU)

Batch Processing:

• adaboost_dense_batch.cpp

Python*

• adaboost_batch.py

AdaBoost Multiclass Classifier

AdaBoost (short for “Adaptive Boosting”) is a popular boosting classification algorithm. The AdaBoost
algorithm performs well on a variety of data sets except some noisy data ([Friedman98], [Zhu2005]). The
library supports two methods for the algorithms:
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• SAMME, or Stagewise Additive Modeling using a Multi-class Exponential loss function [Zhu2005]
• SAMME.R, which is a modification of SAMME method for Real-valued returned probabilities from weak

learner

Details

Given n feature vectors  of size p, a vector of class

labels  where  in case of binary classification and

, where C is a number of classes, describes the class t the feature vector 

belongs to, and  is a weak learner algorithm, the problem is to build an AdaBoost classifier.

Training Stage
SAMME method

The following scheme shows the major steps of the SAMME algorithm:

1.
Initialize weights  for 

2. For :

•
Train the weak learner  using weights .

•
Choose a confidence value , where

•
Update , where  is a normalization factor.

3. Output the final hypothesis:

NOTE SAMME algorithm in case of binary classification is equal to the AdaBoost algorithm from 
[Friedman98].

SAMME.R method

The following scheme shows the major steps of the SAMME.R algorithm:

1.
Initialize weights  for 

2. For :

•
Train the weak learner  using weights .

• Receive the weighed class probability estimates from weak learner:

•
For , set :
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•
For , update :

where  is a normalization factor, , 
3. Output the final hypothesis:

Prediction Stage

SAMME method

Given the AdaBoost classifier and r feature vectors , the problem is to calculate the final class
H(x):

SAMME.R method

Given the AdaBoost classifier and r feature vectors , the problem is to calculate the final class
H(x):

where  is as defined above in Training Stage.

Batch Processing
AdaBoost classifier follows the general workflow described in Classification Usage Model.

Training

For a description of the input and output, refer to Classification Usage Model. At the training stage, an
AdaBoost classifier has the following parameters:

Training Parameters for AdaBoost Multiclass Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.
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Parameter Default Value Description

method defaultDense Available methods for computation of the AdaBoost
algorithm:

• samme - uses the classifier that returns labels as
weak learner

• sammeR - uses the classifier that returns
probabilities of belonging to class as weak
learner

• defaultDense is equal to samme method

weakLearnerT
raining

Pointer to an object of the
classification stump training class

Pointer to the training algorithm of the weak
learner. By default, a classification stump weak
learner is used.

weakLearnerP
rediction

Pointer to an object of the
classification stump prediction
class

Pointer to the prediction algorithm of the weak
learner. By default, a classification stump weak
learner is used.

accuracyThre
shold

0.01 AdaBoost training accuracy.

maxIteration
s

100 The maximal number of iterations for the
algorithm.

learningRate 1.0 Multiplier for each classifier to shrink its
contribution.

nClasses 2 The number of classes.

resultsToCom
pute

0 The 64-bit integer flag that specifies which extra
characteristics of AdaBoost to compute. Current
version of the library only provides the following
option: computeWeakLearnersErrors

Output

In addition to classifier output, AdaBoost calculates the result described below. Pass the Result ID as a
parameter to the methods that access the result of your algorithm. For more details, see Algorithms.

Training Output for AdaBoost Multiclass Classifier (Batch Processing)

Result ID Result

weakLearne
rsErrors

A numeric table  containing weak learner’s classification errors
computed when the computeWeakLearnersErrors option is on.

NOTE By default, this result is an object of the HomogenNumericTable class, but you can
define the result as an object of any class derived from NumericTable.

Prediction

For a description of the input and output, refer to Classification Usage Model. At the prediction stage, an
AdaBoost classifier has the following parameters:
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Prediction Parameters for AdaBoost Multiclass Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense Performance-oriented computation method, the
only method supported by the AdaBoost classifier
at the prediction stage.

weakLearnerP
rediction

Pointer to an object of the
classification stump prediction
class

Pointer to the prediction algorithm of the weak
learner. By default, a classification stump weak
learner is used.

nClasses 2 The number of classes.

Examples
C++ (CPU)

Batch Processing:

• adaboost_samme_two_class_batch.cpp
• adaboost_sammer_two_class_batch.cpp
• adaboost_samme_multi_class_batch.cpp
• adaboost_sammer_multi_class_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• AdaBoostSammeTwoClassBatch.java
• AdaBoostSammerTwoClassBatch.java
• AdaBoostSammeMultiClassBatch.java
• AdaBoostSammerMultiClassBatch.java

BrownBoost Classifier

BrownBoost is a boosting classification algorithm. It is more robust to noisy data sets than other boosting
classification algorithms [Freund99].

BrownBoost is a binary classifier. For a multi-class case, use Multi-class Classifier framework of the library.

Details

Given n feature vectors  of size p and a vector of class

labels , where  describes the class to which the feature vector 
belongs, and a weak learner algorithm, the problem is to build a two-class BrownBoost classifier.

Training Stage

The model is trained using the Freund method [Freund01] as follows:

1.
Calculate , where:
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•
 is an inverse error function,

•
 is a target classification error of the algorithm defined as 

•

•
 is the error function,

•
 is a hypothesis formulated by the i-th weak learner, ,

•  is the weight of the hypothesis.
2.

Set initial prediction values: .
3. Set “remaining timing”: .
4. Do for  until 

a.
With each feature vector and its label of positive weight, associate .

b. Call the weak learner with the distribution defined by normalizing Lmath:W_i(x, y) to receive a

hypothesis .
c. Solve the differential equation

with given boundary conditions  and  to find  and  such that

either  or , where  is a
given small constant needed to avoid degenerate cases.

d.
Update the prediction values: .

e. Update “remaining time”: .

End do

The result of the model training is the array of M weak learners .

Prediction Stage

Given the BrownBoost classifier and r feature vectors , the problem is to calculate the final

classification confidence, a number from the interval , using the rule:

Batch Processing
BrownBoost classifier follows the general workflow described in Classification Usage Model.

Training

For a description of the input and output, refer to Classification Usage Model.

At the training stage, a BrownBoost classifier has the following parameters:

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

482



Training Parameters for BrownBoost Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense The computation method used by the BrownBoost
classifier. The only training method supported so far
is the Y. Freund’s method.

nClasses 2 The number of classes.

weakLearnerT
raining

DEPRECATED: Pointer to an
object of the weak learner
training class

USE INSTEAD: Pointer to an
object of the classification stump
training class

DEPRECATED: Pointer to the training algorithm of
the weak learner. By default, a stump weak learner
is used.

USE INSTEAD: Pointer to the classifier training
algorithm. Be default, a classification stump with
gini split criterion is used.

weakLearnerP
rediction

DEPRECATED: Pointer to an
object of the weak learner
prediction class

USE INSTEAD: Pointer to an
object of the classification stump
prediction class

DEPRECATED: Pointer to the prediction algorithm
of the weak learner. By default, a stump weak
learner is used.

USE INSTEAD: Pointer to the classifier prediction
algorithm. Be default, a classification stump with
gini split criterion is used.

accuracyThre
shold

0.01 BrownBoost training accuracy .

maxIteration
s

100 The maximal number of iterations for the
BrownBoost algorithm.

newtonRaphso
nAccuracyThr
eshold

Accuracy threshold of the Newton-Raphson method
used underneath the BrownBoost algorithm.

newtonRaphso
nMaxIteratio
ns

100 The maximal number of Newton-Raphson iterations
in the algorithm.

degenerateCa
sesThreshold

The threshold used to avoid degenerate cases.

Prediction

For a description of the input and output, refer to Classification Usage Model.

At the prediction stage, a BrownBoost classifier has the following parameters:

Prediction Parameters for BrownBoost Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.
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Parameter Default Value Description

method defaultDense Performance-oriented computation method, the
only method supported by the BrownBoost
classifier.

nClasses 2 The number of classes.

weakLearnerP
rediction

DEPRECATED: Pointer to an
object of the weak learner
prediction class

USE INSTEAD: Pointer to an
object of the classification stump
prediction class

DEPRECATED: Pointer to the prediction algorithm
of the weak learner. By default, a stump weak
learner is used.

USE INSTEAD: Pointer to the classifier prediction
algorithm. Be default, a classification stump with
gini split criterion is used.

accuracyThre
shold

0.01 BrownBoost training accuracy .

Examples
C++ (CPU)

Batch Processing:

• brownboost_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• BrownBoostDenseBatch.java

Python*

Batch Processing:

• brownboost_batch.py

LogitBoost Classifier

LogitBoost is a boosting classification algorithm. LogitBoost and AdaBoost are close to each other in the
sense that both perform an additive logistic regression. The difference is that AdaBoost minimizes the
exponential loss, whereas LogitBoost minimizes the logistic loss.

LogitBoost within oneDAL implements a multi-class classifier.

Details

Given n feature vectors  of size p and a vector of class

labels , where  describes the class to which the feature
vector  belongs and J is the number of classes, the problem is to build a multi-class LogitBoost classifier.

Training Stage

The LogitBoost model is trained using the Friedman method [Friedman00].
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Let  is the indicator that the i-th feature vector belongs to class j. The scheme below,
which uses the stump weak learner, shows the major steps of the algorithm:

1.
Start with weights , , , , .

2. For :

Do

For 

Do

1.Compute working responses and weights in the j-th class:

2.
Fit the function  by a weighted least-squares regression of  to  with

weights  using the stump-based approach.

End do

End do

The result of the model training is a set of M stumps.

Prediction Stage

Given the LogitBoost classifier and r feature vectors , the problem is to calculate the labels

 of the classes to which the feature vectors belong.

Batch Processing
LogitBoost classifier follows the general workflow described in Classification Usage Model.

Training

For a description of the input and output, refer to Classification Usage Model.

At the training stage, a LogitBoost classifier has the following parameters:
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Training Parameters for LogitBoost Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.

method defaultDense The computation method used by the LogitBoost
classifier. The only training method supported so far
is the Friedman method.

weakLearnerT
raining

DEPRECATED: Pointer to an
object of the stump training
class.

USE INSTEAD: Pointer to an
object of the regression stump
training class.

DEPRECATED: Pointer to the training algorithm of
the weak learner. By default, a stump weak learner
is used.

USE INSTEAD: Pointer to the regression training
algorithm. By default, a regression stump with mse
split criterion is used.

weakLearnerP
rediction

DEPRECATED: Pointer to an
object of the stump prediction
class.

USE INSTEAD: Pointer to an
object of the regression stump
prediction class.

DEPRECATED: Pointer to the prediction algorithm
of the weak learner. By default, a stump weak
learner is used.

USE INSTEAD: Pointer to the regression prediction
algorithm. By default, a regression stump with mse
split criterion is used.

accuracyThre
shold

0.01 LogitBoost training accuracy.

maxIteration
s

100 The maximal number of iterations for the
LogitBoost algorithm.

nClasses Not applicable The number of classes, a required parameter.

weightsDegen
erateCasesTh
reshold

The threshold to avoid degenerate cases when

calculating weights .

responsesDeg
enerateCases
Threshold

The threshold to avoid degenerate cases when

calculating responses .

Prediction

For a description of the input and output, refer to Classification Usage Model.

At the prediction stage, a LogitBoost classifier has the following parameters:

Prediction Parameters for LogitBoost Classifier (Batch Processing)

Parameter Default Value Description

algorithmFPT
ype

float The floating-point type that the algorithm uses for
intermediate computations. Can be float or
double.
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Parameter Default Value Description

method defaultDense Performance-oriented computation method, the
only method supported by the LogitBoost classifier
at the prediction stage.

weakLearnerP
rediction

DEPRECATED: Pointer to an
object of the stump prediction
class.

USE INSTEAD: Pointer to an
object of the regression stump
prediction class.

DEPRECATED: Pointer to the prediction algorithm
of the weak learner. By default, a stump weak
learner is used.

USE INSTEAD: Pointer to the regression prediction
algorithm. By default, a regression stump with mse
split criterion is used.

nClasses Not applicable The number of classes, a required parameter.

NOTE The algorithm terminates if it achieves the specified accuracy or reaches the specified maximal
number of iterations. To determine the actual number of iterations performed, call the
getNumberOfWeakLearners() method of the LogitBoostModel class and divide it by nClasses.

Examples
C++ (CPU)

Batch Processing:

• logitboost_dense_batch.cpp

Java*

NOTE There is no support for Java on GPU.

Batch Processing:

• LogitBoostDenseBatch.java

Python*

Batch Processing:

• logitboost_batch.py

Services

Classes and utilities included in the Services component of the Intel® oneAPI Data Analytics Library (oneDAL)
are subdivided into the following groups according to their purpose:

• Extracting Version Information
• Handling Errors
• Managing Memory
• Managing the Computational Environment
• Providing a Callback for the Host Application

Extracting Version Information
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The Services component provides methods that enable you to extract information about the version of
oneDAL. You can get the following information about the installed version of the library from the fields of the
LibraryVersionInfo structure:

Field Name Description

majorVersion Major version of the library

minorVersion Minor version of the library

updateVersion Update version of the library

productStatus Status of the library: alpha, beta, or product

build Build number

name Library name

processor Processor optimization

Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Examples
C++: services/library_version_info.cpp

Java*: services/LibraryVersionInfoExample.java

Handling Errors

oneDAL provides classes and methods to handle exceptions or errors that can occur during library operation.

The methods of the library return the following computation set status:

• Success - no errors detected
• Warning - recoverable errors detected
• Failure - unrecoverable errors detected

In oneDAL C++ interfaces, the base class for error handling is Status. If the execution of the library methods
provided by the Algorithm or Data Management classes is unsuccessful, the Status object returned by the
respective routines contains the list of errors and/or warnings extended with additional details about the
error conditions. The class includes the list of the following methods for error processing:

• ok() - checks whether the Status object contains any unrecoverable errors.
• add() - adds information about the error, such as the error identifier or the pointer to the error.
• getDescription() - returns the detailed description of the errors contained in the object.
• clear() - removes information about the errors from the object.

The error class in oneDAL C++ interfaces is Error. This class contains an error message and details of the
issue. For example, an Error object can store the number of the row in the NumericTable that caused the
issue or a message that an SQL database generated to describe the reasons of an unsuccessful query. A
single Error object can store the error description and an arbitrary number of details of various types: integer
or double values or strings.

The class includes the list of the following methods for error processing:

• id() - returns the identifier of the error.
• setId() - sets the identifier of the error.
• description() - returns the detailed description of the error.
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• add[Int|Double|String]Detail() adds data type-based details to the error.
• create() - creates an instance of the Error class with the given set of arguments.

By default, the compute() method of the library algorithms throws run-time exception when error is
detected. To prevent throwing any exceptions, call the computeNoThrow() method.

Service methods of the algorithms, such as setResult() and setPartialResult(), do not throw
exceptions and return the status of the respective operation.

The methods of the Data Management classes do not throw exceptions and return the status of the
respective operation.

oneDAL Java* interfaces handle errors by throwing Java exceptions.

Examples
C++:

• error_handling/error_handling_nothrow.cpp
• error_handling/error_handling_throw.cpp

Java*: error_handling/ErrorHandling.java

Managing Memory

To improve performance of your application that calls oneDAL, align your arrays on 64-byte boundaries and
ensure that the leading dimensions of the arrays are divisible by 64. For that purpose oneDAL provides
daal_malloc() and daal_free() functions to allocate and deallocate memory.

To allocate memory, call daal_malloc() with the specified size of the buffer to be allocated and the
alignment of the buffer, which must be a power of 2. If the specified alignment is not a power of 2, the
library uses the 32-byte alignment.

To deallocate memory allocated earlier by the daal_malloc() function, call the daal_free() function and
set a pointer to the buffer to be freed.

Managing the Computational Environment

oneDAL provides the Environment class to manage settings of the computational environment in which the
application that uses the library runs. The methods of this class enable you to specify the number of threads
for the application to use or to check the type of the processor running the application. The Environment
class is a singleton, which ensures that only one instance of the class is available in the oneDAL based
application. To access the instance of the class, call the getInstance() method which returns a pointer to
the instance. Once you get the instance of the class, you can use it for multiple purposes:

• Detect the processor type. To do this, call the getCpuId() method.
• Enable dispatching for new Intel® Architecture Processors. To do this, call the enableInstructionsSet()

method. For example, to select the version for Intel® Xeon Phi™ processors based on Intel® Advanced
Vector Extensions 512 (Intel® AVX-512) with support of AVX512_4FMAPS and AVX512_4VNNIW
instruction groups, pass the avx512_mic_e1 parameter to the method.

• Restrict dispatching to the required code path. To do this, call the setCpuId() method.
• Detect and modify the number of threads used by the oneDAL based application. To do this, call the

getNumberOfThreads() or setNumberOfThreads() method, respectively.
• Specify the single-threaded of multi-threaded mode for oneDAL on Windows. To do this, call to the

setDynamicLibraryThreadingTypeOnWindows() method.
• Enable thread pinning. To do this, call the enableThreadPinning() method. This method performs

binding of the threads that are used to parallelize algorithms of the library to physical processing units for
possible performance improvement. Improper use of the method can result in degradation of the
application performance depending on the system (machine) topology, application, and operating system.
By default, the method is disabled.
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Product and Performance Information

Performance varies by use, configuration and other factors. Learn more at www.Intel.com/
PerformanceIndex.

Notice revision #20201201

Examples
C++: set_number_of_threads/set_number_of_threads.cpp

Java*: set_number_of_threads/SetNumberOfThreads.java

Providing a Callback for the Host Application

oneDAL provides a possibility for the host application to register a callback interface to be called by the
library, e.g. for the purposes of computation interruption. It is done by means of an abstract interface for the
host application of the library HostAppIface. In order to use it, the application should define an instance of
the class derived from the abstract interface and set its pointer to an instance of Algorithm class.

Following methods of the Algorithm class are used:

Algorithm class methods

Name Description

setHostApp(const
services::HostAppIf
acePtr& pHost)

Set pHost as the callback interface

hostApp() Get current value of the callback interface set on the Algorithm

HostAppIface class includes following methods:

HostAppIface class Methods

Name Description

isCancelled() Enables computation cancelling. The method is called by the owning algorithm
when computation is in progress. If the method returns true then computation
stops and returns ErrorUserCancelled status. Since the method can be called
from parallel threads when running with oneDAL threaded version, it is
application responsibility to make its implementation thread-safe. It is not
recommended for this method to throw exceptions.

Currently HostAppIface is supported in C++ only, cancelling is available with limited number of algorithms as
follows: decision forest, gradient boosted trees.
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C++ API
• Data Management

• Array
• Accessors
• Data Sources
• Graphs
• Graph Service
• Tables

• Algorithms

• Clustering
• Covariance
• Decomposition
• Ensembles
• Graph
• Kernel Functions
• Nearest Neighbors (kNN)
• Pairwise Distances
• Statistics
• Support Vector Machines

• Distributed Model: Single Process Multiple Data

• Distributed SPMD model
• Communicators

Data Management

Refer to Developer Guide: Data Management.

• Array

• Programming interface
• Usage example

• Accessors

• Column accessor

• Usage example
• Programming interface

• Row accessor

• Usage example
• Programming interface

• Data Sources

• CSV data source
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• Programming Interface
• Reading oneapi::dal::read<Object>(...)

• Args
• Operation

• Usage example
• Graphs

• Programming interface

• Graph
• Graph traits

• Undirected adjacency vector graph

• Programming interface
• Directed adjacency vector graph

• Programming interface
• Graph Service

• Programming interface

• Related types
• Graph service functions
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Array

Refer to Developer Guide: Array.

Programming interface
All types and functions in this section are declared in the oneapi::dal namespace and be available via
inclusion of the oneapi/dal/array.hpp header file.

All the array class methods can be divided into several groups:

1. Constructors that are used to create an array from external, mutable or immutable memory.
2. Constructors and assignment operators that are used to create an array that shares its data with

another one.
3. The group of reset() methods that are used to re-assign an array to another external memory block.
4. The group of reset() methods that are used to re-assign an array to an internally allocated memory

block.
5. The methods that are used to access the data.
6. Static methods that provide simplified ways to create an array either from external memory or by

allocating it within a new object.

template<typenameT>classarray
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Template Parameters T – The type of the memory block elements within the array. T can represent any
type.

Public Static Methods

staticarray<T>empty(std::int64_tcount)

Allocates a new memory block for mutable data, does not initialize it, creates a new array instance by
passing a pointer to the memory block. The array owns the memory block (for details, see data ownership
requirements).

Parameters count – The number of elements of type Data to allocate memory for.

Preconditions count>0

template<typenameK>staticarray<T>full(std::int64_tcount, K&&element)

Allocates a new memory block for mutable data, fills it with a scalar value, creates a new array instance by
passing a pointer to the memory block. The array owns the memory block (for details, see data ownership
requirements).

Parameters • count – The number of elements of type T to allocate memory for.
• element – The value that is used to fill a memory block.

Preconditions count>0
Elements of type T are constructible from the Element type.

staticarray<T>zeros(std::int64_tcount)

Allocates a new memory block on mutable data, fills it with zeros, creates a new array instance by passing a
pointer to the memory block. The array owns the memory block (for details, see data ownership
requirements).

Parameters count – The number of elements of type Data to allocate memory for.

Preconditions count>0

template<typenameY>staticarray<T>wrap(Y*data, std::int64_tcount)

Creates a new array instance by passing the pointer to externally-allocated memory block for mutable data.
It is the responsibility of the calling application to free the memory block as the array does not free it when
the reference count is zero.

Parameters • data – The pointer to externally-allocated memory block.
• count – The number of elements of type Data in the memory block.

Preconditions data!=nullptrcount>0

Constructors

array()

Creates a new instance of the class without memory allocation: mutable_data and data pointers should be
set to nullptr, count should be zero; the pointer to the ownership structure should be set to nullptr.
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array(constarray<T>&other)

Creates a new array instance that shares an ownership with other on its memory block.

array(array<T>&&other)

Moves data, mutable_data pointers, count, and pointer to the ownership structure in other to the new
array instance.

template<typenameDeleter>array(T*data, std::int64_tcount, Deleter&&deleter)

Creates a new array instance which owns a memory block of externally-allocated mutable data. The
ownership structure is created for a block, the input deleter is assigned to it.

Template Parameters Deleter – The type of a deleter used to free the Data. The deleter provides void
operator()(Data*) member function.

Parameters • data – The pointer to externally-allocated memory block.
• count – The number of elements of type Data in the memory block.
• deleter – The object used to free Data.

template<typenameConstDeleter>array(constT*data, std::int64_tcount, ConstDeleter&&deleter)

Creates a new array instance which owns a memory block of externally-allocated immutable data. The
ownership structure is created for a block, the input deleter is assigned to it.

Template Parameters ConstDeleter – The type of a deleter used to free the Data. The deleter
implements void operator()(const Data*) member function.

Parameters • data – The pointer to externally-allocated memory block.
• count – The number of elements of type Data in the Data.
• deleter – The object used to free Data.

array(conststd::shared_ptr<T>&data, std::int64_tcount)

Creates a new array instance that shares ownership with the user-provided shared pointer.

Parameters • data – The shared pointer to externally-allocated memory block.
• count – The number of elements of type Data in the memory block.

array(conststd::shared_ptr<constT>&data, std::int64_tcount)

Creates a new array instance that shares ownership with the user-provided shared pointer.

Parameters • data – The shared pointer to externally-allocated memory block.
• count – The number of elements of type Data in the memory block.

template<typenameY,typenameK>array(constarray<Y>&ref, K*data, std::int64_tcount)

An aliasing constructor: creates a new array instance that stores Data pointer, assigns the pointer to the
ownership structure of ref to the new instance. Array returns Data pointer as its mutable or immutable
block depending on the Data type.

Template Parameters • Y – The type of elements in the referenced array.
• K – Either T or  type.

Parameters • ref – The array which shares ownership structure with created one.
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• data – Mutable or immutable unmanaged pointer hold by created array.
• count – The number of elements of type T in the Data.

Preconditions std::is_same_v<data,constT>||std::is_same_v<data,T>

Public Methods

array<T>operator=(constarray<T>&other)

Replaces the data, mutable_data pointers, count, and pointer to the ownership structure in the array
instance by the values in other.

Postconditions data==other.datamutable_data==other.mutable_datacount==other.cou
nt

array<T>operator=(array<T>&&other)

Swaps the values of data, mutable_data pointers, count, and pointer to the ownership structure in the
array instance and other.

T*get_mutable_data()const

The pointer to the memory block holding mutable data.

Preconditions has_mutable_data()==true, othewise throws domain_error

constT*get_data()constnoexcept

The pointer to the memory block holding immutable data.

boolhas_mutable_data()constnoexcept

Returns whether array contains mutable_data or not.

array&need_mutable_data()

Returns mutable_data, if array contains it. Otherwise, allocates a memory block for mutable data and fills it
with the data stored at data. Creates the ownership structure for allocated memory block and stores the
pointer.

Postconditions has_mutable_data()==true

std::int64_tget_count()constnoexcept

The number of elements of type T in a memory block.

std::int64_tget_size()constnoexcept

The size of memory block in bytes.

voidreset()

Resets ownership structure pointer to nullptr, sets count to zero, data and mutable_data to nullptr.

voidreset(std::int64_tcount)

Allocates a new memory block for mutable data, does not initialize it, creates ownership structure for this
block, assigns the structure inside the array. The array owns allocated memory block.
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Parameters count – The number of elements of type Data to allocate memory for.

template<typenameDeleter>voidreset(T*data, std::int64_tcount, Deleter&&deleter)

Creates the ownership structure for memory block of externally-allocated mutable data, assigns input
deleter object to it, sets data and mutable_data pointers to this block.

Template Parameters Deleter – The type of a deleter used to free the Data. The deleter implements
void operator()(Data*) member function.

Parameters • data – The mutable memory block pointer to be assigned inside the array.
• count – The number of elements of type Data into the block.
• deleter – The object used to free Data.

template<typenameConstDeleter>voidreset(constT*data, std::int64_tcount, 
ConstDeleter&&deleter)

Creates the ownership structure for memory block of externally-allocated immutable data, assigns input
deleter object to it, sets data pointer to this block.

Template Parameters ConstDeleter – The type of a deleter used to free. The deleter implements void
operator()(const Data*)` member function.

Parameters • data – The immutable memory block pointer to be assigned inside the array.
• count – The number of elements of type Data into the block.
• deleter – The object used to free Data.

template<typenameY>voidreset(constarray<Y>&ref, T*data, std::int64_tcount)

Initializes data and mutable_data with data pointer, count with input count value, initializes the pointer to
ownership structure with the one from ref. Array returns Data pointer as its mutable block.

Template Parameters Y – The type of elements in the referenced array.

Parameters • ref – The array which is used to share ownership structure with current one.
• data – Mutable unmanaged pointer to be assigned to the array.
• count – The number of elements of type T in the Data.

template<typenameY>voidreset(constarray<Y>&ref, constT*data, std::int64_tcount)

Initializes data with data pointer, count with input count value, initializes the pointer to ownership structure
with the one from ref. Array returns Data pointer as its immutable block.

Template Parameters Y – The type of elements in the referenced array.

Parameters • ref – The array which is used to share ownership structure with current one.
• data – Immutable unmanaged pointer to be assigned to the array.
• count – The number of elements of type T in the Data.

constT&operator[](std::int64_tindex)constnoexcept

Provides a read-only access to the elements of array. Does not perform boundary checks.
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Usage example
The following listing provides a brief introduction to the array API and an example of basic usage scenario:

#include <sycl/sycl.hpp>
#include <iostream>
#include <string>
#include "oneapi/dal/array.hpp"

using namespace oneapi;

void print_property(const std::string& description, const auto& property) {
   std::cout << description << ": " << property << std::endl;
}

int main() {
   sycl::queue queue { sycl::default_selector() };

   constexpr std::int64_t data_count = 4;
   const float data[] = { 1.0f, 2.0f, 3.0f, 4.0f };

   // Creating an array from immutable user-defined memory
   auto arr_data = dal::array<float>::wrap(data, data_count);

   // Creating an array from internally allocated memory filled by ones
   auto arr_ones = dal::array<float>::full(queue, data_count, 1.0f);

   print_property("Is arr_data mutable", arr_data.has_mutable_data()); // false
   print_property("Is arr_ones mutable", arr_ones.has_mutable_data()); // true

   // Creating new array from arr_data without data copy - they share ownership information.
   dal::array<float> arr_mdata = arr_data;

   print_property("arr_mdata elements count", arr_mdata.get_count()); // equal to data_count
   print_property("Is arr_mdata mutable", arr_mdata.has_mutable_data()); // false

   /// Copying data inside arr_mdata to new mutable memory block.
   /// arr_data still refers to the original data pointer.
   arr_mdata.need_mutable_data(queue);

   print_property("Is arr_data mutable", arr_data.has_mutable_data()); // false
   print_property("Is arr_mdata mutable", arr_mdata.has_mutable_data()); // true

   queue.submit([&](sycl::handler& cgh){
      auto mdata = arr_mdata.get_mutable_data();
      auto cones = arr_ones.get_data();
      cgh.parallel_for<class array_addition>(sycl::range<1>(data_count), [=](sycl::id<1> idx) {
         mdata[idx[0]] += cones[idx[0]];
      });
   }).wait();

   std::cout << "arr_mdata values: ";
   for(std::int64_t i = 0; i < arr_mdata.get_count(); i++) {
      std::cout << arr_mdata[i] << ", ";
   }
   std::cout << std::endl;

   return 0;
}
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Accessors

The requirements for accessors and accessor types are defined in Developer Guide: Accessors.

• Column accessor

• Usage example
• Programming interface

• Row accessor

• Usage example
• Programming interface

Column accessor

The column_accessor class provides a read-only access to the column values of the table as 
contiguoushomogeneous array.

Usage example

#include <sycl/sycl.hpp>
#include <iostream>

#include "oneapi/dal/table/homogen.hpp"
#include "oneapi/dal/table/column_accessor.hpp"

using namespace oneapi;

int main() {
   sycl::queue queue { sycl::default_selector() };

   constexpr float host_data[] = {
      1.0f, 1.5f, 2.0f,
      2.1f, 3.2f, 3.7f,
      4.0f, 4.9f, 5.0f,
      5.2f, 6.1f, 6.2f
   };

   constexpr std::int64_t row_count = 4;
   constexpr std::int64_t column_count = 3;

   auto shared_data = sycl::malloc_shared<float>(row_count * column_count, queue);
   auto event = queue.memcpy(shared_data, host_data, sizeof(float) * row_count * column_count);
   auto t = dal::homogen_table::wrap(queue, data, row_count, column_count, { event });

   // Accessing whole elements in a first column
   dal::column_accessor<const float> acc { t };

   auto block = acc.pull(queue, 0);
   for(std::int64_t i = 0; i < block.get_count(); i++) {
      std::cout << block[i] << ", ";
   }
   std::cout << std::endl;

   sycl::free(shared_data, queue);
   return 0;
}
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Programming interface
All types and functions in this section are declared in the oneapi::dal namespace and be available via
inclusion of the oneapi/dal/table/column_accessor.hpp header file.

template<typenameT>classcolumn_accessor

Template Parameters T – The type of data values in blocks returned by the accessor. Should be const-
qualified for read-only access. An accessor supports at least float, double, and
std::int32_t.

Constructors

template<typenameU=T,std::enable_if_t<std::is_const_v<U>,int>=0>column_accessor(consttab
le&table)

Creates a read-only accessor object from the table. Available only for const-qualified T.

column_accessor(constdetail::table_builder&builder)

Public Methods

dal::array<data_t>pull(std::int64_tcolumn_index, constrange&row_range={0,-1})const

Provides access to the column values of the table. The method returns an array that directly points to the
memory within the table if it is possible. In that case, the array refers to the memory as to immutable data.
Otherwise, the new memory block is allocated, the data from the table rows is converted and copied into this
block. In this case, the array refers to the block as to mutable data.

Parameters • column_index – The index of the column from which the data is returned by
the accessor.

• row_range – The range of rows that should be read in the column_index
block.

Preconditions row_range are within the range of [0, obj.row_count).
column_index is within the range of [0, obj.column_count).

T*pull(dal::array<data_t>&block, std::int64_tcolumn_index,
constrange&row_range={0,-1})const

Provides access to the column values of the table. The method returns an array that directly points to the
memory within the table if it is possible. In that case, the array refers to the memory as to immutable data.
Otherwise, the new memory block is allocated, the data from the table rows is converted and copied into this
block. In this case, the array refers to the block as to mutable data. The method updates the block array.

Parameters • block – The block which memory is reused (if it is possible) to obtain the data
from the table. The block memory is reset either when its size is not big
enough, or when it contains immutable data, or when direct memory from the
table can be used. If the block is reset to use a direct memory pointer from
the object, it refers to this pointer as to immutable memory block.

• column_index – The index of the column from which the data is returned by
the accessor.

• row_range – The range of rows that should be read in the column_index
block.

Preconditions row_range are within the range of [0, obj.row_count).
column_index is within the range of [0, obj.column_count).
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template<typenameU=T,std::enable_if_t<!
std::is_const_v<U>,int>=0>voidpush(constdal::array<data_t>&block, std::int64_tcolumn_index,
constrange&row_range={0,-1})

Row accessor

The row_accessor class provides a read-only access to the rows of the table as contiguoushomogeneous
array.

Usage example

#include <sycl/sycl.hpp>
#include <iostream>

#include "oneapi/dal/table/homogen.hpp"
#include "oneapi/dal/table/row_accessor.hpp"

using namespace oneapi;

int main() {
   sycl::queue queue { sycl::default_selector() };

   constexpr float host_data[] = {
      1.0f, 1.5f, 2.0f,
      2.1f, 3.2f, 3.7f,
      4.0f, 4.9f, 5.0f,
      5.2f, 6.1f, 6.2f
   };

   constexpr std::int64_t row_count = 4;
   constexpr std::int64_t column_count = 3;

   auto shared_data = sycl::malloc_shared<float>(row_count * column_count, queue);
   auto event = queue.memcpy(shared_data, host_data, sizeof(float) * row_count * column_count);
   auto t = dal::homogen_table::wrap(queue, data, row_count, column_count, { event });

   // Accessing second and third rows of the table
   dal::row_accessor<const float> acc { t };

   auto block = acc.pull(queue, {1, 3});
   for(std::int64_t i = 0; i < block.get_count(); i++) {
      std::cout << block[i] << ", ";
   }
   std::cout << std::endl;

   sycl::free(shared_data, queue);
   return 0;
}

Programming interface
All types and functions in this section are declared in the oneapi::dal namespace and be available via
inclusion of the oneapi/dal/table/row_accessor.hpp header file.

template<typenameT>classrow_accessor
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Template Parameters T – The type of data values in blocks returned by the accessor. Should be const-
qualified for read-only access. An accessor supports at least float, double, and
std::int32_t.

Constructors

template<typenameU=T,std::enable_if_t<std::is_const_v<U>,int>=0>row_accessor(consttable&
table)

Creates a read-only accessor object from the table. Available only for const-qualified T.

row_accessor(constdetail::table_builder&builder)

Public Methods

dal::array<data_t>pull(constrange&row_range={0,-1})const

Provides access to the rows of the table. The method returns an array that directly points to the memory
within the table if it is possible. In that case, the array refers to the memory as to immutable data.
Otherwise, the new memory block is allocated, the data from the table rows is converted and copied into this
block. In this case, the array refers to the block as to mutable data.

Parameters row_range – The range of rows that data is returned from the accessor.

Preconditions row_range are within the range of [0, obj.row_count).

T*pull(dal::array<data_t>&block, constrange&row_range={0,-1})const

Provides access to the rows of the table. The method returns an array that directly points to the memory
within the table if it is possible. In that case, the array refers to the memory as to immutable data.
Otherwise, the new memory block is allocated, the data from the table rows is converted and copied into this
block. In this case, the array refers to the block as to mutable data. The method updates the block array.

Parameters • block – The block which memory is reused (if it is possible) to obtain the data
from the table. The block memory is reset either when its size is not big
enough, or when it contains immutable data, or when direct memory from the
table can be used. If the block is reset to use a direct memory pointer from
the object, it refers to this pointer as to immutable memory block.

• row_range – The range of rows that data is returned from the accessor.

Preconditions rows are within the range of [0, obj.row_count).

template<typenameU=T,std::enable_if_t<!
std::is_const_v<U>,int>=0>voidpush(constdal::array<data_t>&block,
constrange&row_range={0,-1})

Data Sources

• CSV data source

• Programming Interface
• Reading oneapi::dal::read<Object>(...)

• Args
• Operation

• Usage example
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CSV data source

Refer to Developer Guide: CSV data source.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::csv namespace and be available
via inclusion of the oneapi/dal/io/csv.hpp header file.

enum class read_options : std::uint64_t {
   none = 0,
   parse_header = 1 << 0
};

constexpr char default_delimiter = ',';
constexpr read_options default_read_options = read_options::none;

class data_source {
public:
   data_source(const char *file_name,
               char delimiter = default_delimiter,
               read_options opts = default_read_options);

   data_source(const std::string &file_name,
               char delimiter = default_delimiter,
               read_options opts = default_read_options);

   std::string get_file_name() const;
   char get_delimiter() const;
   read_options get_read_options() const;
};

classdata_source

data_source(constchar*file_name, chardelimiter=default_delimiter,
read_optionsopts=default_read_options)

Creates a new instance of a CSV data source with the given file_name, delimiter and read options opts
flag.

data_source(conststd::string&file_name, chardelimiter=default_delimiter,
read_optionsopts=default_read_options)

Creates a new instance of a CSV data source with the given file_name, delimiter and read options opts
flag.

std::stringfile_name=""

A string that contains the name of the file with the dataset to read.

Getter std::string get_filename() const

chardelimiter=default_delimiter

A character that represents the delimiter between separate features in the input file.

Getter char get_delimter() const
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read_optionsoptions=default_read_options

Value that stores read options to be applied during reading of the input file. Enabled parse_header option
indicates that the first line in the input file is processed as a header record with features names.

Getter read_options get_read_options() const

Reading oneapi::dal::read<Object>(...)

Args

template <typename Object>
class read_args {
public:
   read_args();
};

template<typenameObject>classread_args

read_args()

Creates args for the read operation with the default attribute values.

Operation

oneapi::dal::table is the only supported value of the Object template parameter for read operation with
CSV data source.

template<typenameObject,typenameDataSource>Objectread(constDataSource&ds)

Template Parameters • Object – oneDAL object type that is produced as a result of reading from the
data source.

• DataSource – CSV data source csv::data_source.

Usage example

using namespace oneapi;

const auto data_source = dal::csv::data_source("data.csv", ',');

const auto table = dal::read<dal::table>(data_source);

Graphs

Refer to Developer Guide: Graphs.

Programming interface
All types and functions in this section are declared in the oneapi::dal::preview namespace and are
available via inclusion of the oneapi/dal/graph/common.hpp header file.

Graph

The graph concept is represented by the types with the _graph suffix and all of them are reference-counted:

1. The instance stores pointers to the graph topology and attributes of vertices and edges.
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2. The reference count indicates how many graph objects refer to the same implementation.
3. The graph increments the reference count for it to be equal to the number of graph objects sharing the

same implementation.
4. The graph decrements the reference count when the graph goes out of the scope. If the reference

count is zero, the graph frees its implementation.

The graph types are defined as templated classes:

template <typename VertexValue,
          typename EdgeValue,
          typename GraphValue,
          typename IndexType,
          typename Allocator>
class [graph_name]_graph;

Type name Description Supported types

VertexValue The type of the vertex attribute values Empty value

EdgeValue The type of the edge attribute values std::int32, double, Empty value

GraphValue The type of the graph attribute value Empty value

IndexType The type of the vertex indices std::int32

Allocator The type of a graph allocator C++17 (ISO/IEC 14882:2017) compliant
allocator

Empty value tag structure is used to define the absence of a specified attribute of a graph.

structempty_value

Graph class contains the default and the move constructor as well as the move assignment operator. The
graph is accessed using the service functions.

graph_type method Description

Default constructor Constructs an empty graph object

Move constructor Creates a new graph instance and moves the implementation from
another instance into this one

Move assignment Swaps the implementation of this object and another one

Graph traits

Graph traits is a data type that defines the data model and a set of types associated with the graph. Graph
traits are used by processing and service functionality.

Type graph_traits is specialized for each graph by following the pattern below.

template <typename G>
struct graph_traits {
   using graph_type = ...;
   using allocator_type = ...;
   ...
};

The full list of types defined in graph_traits<G> is in the table below:
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Type,
graph_traits<G>
::

Description Undirected
Adjacency Vector
Graph

Directed
Adjacency Vector
Graph

graph_type The type of the graph G undirected_adja
cency_vector_gr
aph<VertexValue
, EdgeValue,
GraphValue,
IndexType,
Allocator>

directed_adjace
ncy_vector_grap
h<VertexValue,
EdgeValue,
GraphValue,
IndexType,
Allocator>

allocator_type The type of the allocator of the graph G Allocator[1] Allocator[1]

graph_user_valu
e_type

The type of the attribute of the graph G GraphValue[1] GraphValue[1]

const_graph_use
r_value_type

The constant type of the attribute of the
graph G

const
GraphValue[1]

const
GraphValue[1]

vertex_type The type of the vertices in the graph G IndexType[1] IndexType[1]

vertex_iterator The type of the vertex iterator in the
graph G

vertex_type* vertex_type*

const_vertex_it
erator

The constant type of the vertex iterator
in the graph G

const
vertex_type*

const
vertex_type*

vertex_size_typ
e

The type of the vertex indices in the
graph G

std::int64_t std::int64_t

vertex_user_val
ue_type

The type of the vertex attribute of the
graph G

VertexValue[1] VertexValue[1]

edge_type The type of edges in the graph G std::int64_t std::int64_t

edge_iterator The type of the edge iterator in the
graph G

Not available Not available

const_edge_iter
ator

The constant type of the edge iterator in
the graph G

Not available Not available

edge_size_type The type of the edge indices in the graph
G

std::int64_t std::int64_t

edge_user_value
_type

The type of edge attribute EdgeValue[1] EdgeValue[1]

vertex_edge_siz
e_type

The type of the vertex neighbors indices std::int64_t Not available

vertex_outward_
edge_size_type

The type of the vertex outward
neighbors indices

Not available std::int64_t

vertex_edge_ite
rator_type

The type of the vertex neighbors iterator IndexType*[1] Not available
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Type,
graph_traits<G>
::

Description Undirected
Adjacency Vector
Graph

Directed
Adjacency Vector
Graph

const_vertex_ed
ge_iterator_typ
e

The type of the vertex neighbors
constant iterator

const
IndexType*[1]

Not available

vertex_outward_
edge_iterator_t
ype

The type of the vertex outward
neighbors iterator

Not available IndexType*[1]

const_vertex_ou
tward_edge_iter
ator_type

The type of the vertex outward
neighbors constant iterator

Not available const
IndexType*[1]

vertex_edge_ran
ge

The type of the range of vertex
neighbors

std::pair<Index
Type*,
IndexType*>[1]

Not available

const_vertex_ed
ge_range

The type of the constant range of vertex
neighbors

std::pair<Index
Type*,
IndexType*>[1]

Not available

vertex_outward_
edge_range

The type of the range of vertex outward
neighbors

Not available std::pair<Index
Type*,
IndexType*>[1]

const_vertex_ou
tward_edge_rang
e

The type of the constant range of vertex
outward neighbors

Not available std::pair<Index
Type*,
IndexType*>[1]

[1] VertexValue, EdgeValue, GraphValue, IndexType, Allocator – template parameters of graph G.

This section describes API of the specified graph types.

• Undirected adjacency vector graph

• Programming interface
• Directed adjacency vector graph

• Programming interface

Undirected adjacency vector graph

Refer to Developer Guide: Undirected adjacency vector graph.

Programming interface
All types and functions in this section are declared in the oneapi::dal::preview namespace and are
available via inclusion of the oneapi/dal/graph/undirected_adjacency_vector_graph.hpp header file.

template<typenameVertexValue=empty_value,typenameEdgeValue=empty_value,typenameGrap
hValue=empty_value,typenameIndexType=std::int32_t,typenameAllocator=std::allocator<char>
>classundirected_adjacency_vector_graph
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Template Parameters • VertexValue – The type of the vertex attribute values.
• EdgeValue – The type of the edge attribute values.
• GraphValue – The type of the graph attribute value.
• IndexType – The type of the vertex indices.
• Allocator – The type of a graph allocator.

Constructors

undirected_adjacency_vector_graph()

Constructs an empty graph.

~undirected_adjacency_vector_graph()=default

Destructs the graph.

undirected_adjacency_vector_graph(undirected_adjacency_vector_graph&&other)=default

Creates a new graph instance and moves the implementation from another instance into this one.

Public Methods

undirected_adjacency_vector_graph&operator=(undirected_adjacency_vector_graph&&other)

Swaps the implementation of this object and another one.

Directed adjacency vector graph

Refer to Developer Guide: Directed adjacency vector graph.

Programming interface
All types and functions in this section are declared in the oneapi::dal::preview namespace and are
available via inclusion of the oneapi/dal/graph/directed_adjacency_vector_graph.hpp header file.

template<typenameVertexValue=empty_value,typenameEdgeValue=empty_value,typenameGrap
hValue=empty_value,typenameIndexType=std::int32_t,typenameAllocator=std::allocator<char>
>classdirected_adjacency_vector_graph

Template Parameters • VertexValue – The type of the vertex attribute values.
• EdgeValue – The type of the edge attribute values.
• GraphValue – The type of the graph attribute value.
• IndexType – The type of the vertex indices.
• Allocator – The type of a graph allocator.

Constructors

directed_adjacency_vector_graph()

Constructs an empty graph.

~directed_adjacency_vector_graph()=default

Destructs the graph.

directed_adjacency_vector_graph(directed_adjacency_vector_graph&&other)=default

Creates a new graph instance and moves the implementation from another instance into this one.

Public Methods
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directed_adjacency_vector_graph&operator=(directed_adjacency_vector_graph&&other)

Swaps the implementation of this object and another one.

Graph Service

Programming interface
All types and functions in this section are declared in the oneapi::dal::preview namespace and are
available via inclusion of the oneapi/dal/graph/service_functions.hpp header file.

The graph service is a set of functions that allow you to get access to the elements and characteristics of the 
graph, such as vertex degree or edge attribute.

Graph service functions are defined as function templates with Graph as a template parameter. Graph service
functions introduce aliases to graph_traits as shown below.

Related types

Aliases is a way to access graph types using shorter notation.

Alias Value

graph_allocator<G> graph_traits<G>::allocator_type

graph_user_value_type<G> graph_traits<G>::graph_user_value_type

vertex_user_value_type<G> graph_traits<G>::vertex_user_value_type

edge_user_value_type<G> graph_traits<G>::edge_user_value_type

vertex_type<G> graph_traits<G>::vertex_type

vertex_size_type<G> graph_traits<G>::vertex_size_type

edge_size_type<G> graph_traits<G>::edge_size_type

vertex_edge_size_type<G> graph_traits<G>::vertex_edge_size_type

vertex_outward_edge_size_type<G> graph_traits<G>::vertex_outward_edge_size_type

vertex_edge_iterator_type<G> graph_traits<G>::vertex_edge_iterator_type

const_vertex_edge_iterator_type<
G>

graph_traits<G>::const_vertex_edge_iterator_type

vertex_edge_range_type<G> graph_traits<G>::vertex_edge_range_type

const_vertex_edge_range_type<G> graph_traits<G>::const_vertex_edge_range_type

const_vertex_outward_edge_range_
type<G>

graph_traits<G>::const_vertex_outward_edge_range_t
ype

Graph service functions
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Any service function has the following pattern:

template <typename Graph>
return_type<Graph> get_[graph_element](const Graph& g, ...);

template<typenameGraph>constexprautoget_vertex_count(constGraph&g)noexcept-
>vertex_size_type<Graph>

Returns the number of vertices in the graph.

Template Parameters Graph – Type of the graph.

Parameters g – Input graph object.

template<typenameGraph>constexprautoget_edge_count(constGraph&g)noexcept-
>edge_size_type<Graph>

Returns the number of edges in the graph.

Template Parameters Graph – Type of the graph.

Parameters g – Input graph object.

template<typenameGraph>constexprautoget_vertex_degree(constGraph&g,
vertex_type<Graph>u)->vertex_edge_size_type<Graph>

Returns the degree for the specified vertex.

Template Parameters Graph – Type of the graph.

Parameters • g – Input graph object.
• u – Vertex index.

template<typenameGraph>constexprautoget_vertex_neighbors(constGraph&g,
vertex_type<Graph>u)->const_vertex_edge_range_type<Graph>

Returns the range of the vertex neighbors for the specified vertex.

Template Parameters Graph – Type of the graph.

Parameters • g – Input graph object.
• u – Vertex index.

template<typenameGraph>constexprautoget_vertex_outward_degree(constGraph&g,
vertex_type<Graph>u)->vertex_outward_edge_size_type<Graph>

Returns the outward degree for the specified vertex.

Template Parameters Graph – Type of the graph.

Parameters • g – Input graph object.
• u – Vertex index.

template<typenameGraph>constexprautoget_vertex_outward_neighbors(constGraph&g,
vertex_type<Graph>u)->const_vertex_outward_edge_range_type<Graph>

Returns the range of the vertex outward neighbors for the specified vertex.

Template Parameters Graph – Type of the graph.
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Parameters • g – Input graph object.
• u – Vertex index.

template<typenameGraph>constexprautoget_edge_value(constGraph&g, vertex_type<Graph>u,
vertex_type<Graph>v)->constedge_user_value_type<Graph>&

Returns the value of an edge (u, v).

Template Parameters Graph – Type of the graph.

Parameters • u – Source vertex index.
• v – Destination vertex index.

Usage example

using graph_type = ...;
const my_graph_type g = ...;
std::cout << "The number of vertices: " << oneapi::dal::preview::get_vertex_count(g) << 
std::endl;
std::cout << "The number of edges: " << oneapi::dal::preview::get_edge_count(g) << std::endl;

Service functions for supported graphs
This section contains description of service functions supported for the specified graph types.

Service function Valid graph concepts

get_vertex_count undirected graph, directed graph

get_edge_count undirected graph, directed graph

get_vertex_degree undirected graph

get_vertex_outward_degree directed graph

get_vertex_neighbors undirected graph

get_vertex_outward_neighbors directed graph

get_edge_value undirected graph, directed graph

• Undirected adjacency vector graph service
• Directed adjacency vector graph service

Undirected adjacency vector graph service

This section describes graph service functions for Undirected adjacency vector graph.

Service function Description

get_vertex_count Get the number of vertices in the graph

get_edge_count Get the number of edges in the graph

get_vertex_degree Get the degree for the specified vertex

get_vertex_neighbors Get the range of the vertex neighbors for the specified vertex
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Directed adjacency vector graph service

This section describes graph service functions for Directed adjacency vector graph.

Service function Description

get_vertex_count Get the number of vertices in the graph

get_edge_count Get the number of edges in the graph

get_vertex_outward_degree Get the outward degree for the specified vertex

get_vertex_outward_neighbor
s

Get the range of the outward neighbors for the specified vertex

get_edge_value Get the value of an edge represented as source and destination vertices

Tables

Refer to Developer Guide: Tables.

Programming interface
All types and functions in this section are declared in the oneapi::dal namespace and be available via
inclusion of the oneapi/dal/table/common.hpp header file.

Table

A base implementation of the table concept. The table type and all of its subtypes are reference-counted:

1. The instance stores a pointer to table implementation that holds all property values and data
2. The reference count indicating how many table objects refer to the same implementation.
3. The table increments the reference count for it to be equal to the number of table objects sharing the

same implementation.
4. The table decrements the reference count when the table goes out of the scope. If the reference count

is zero, the table frees its implementation.

classtable

Constructors

table()

An empty table constructor: creates the table instance with zero number of rows and columns.

table(consttable&)=default

Creates a new table instance that shares the implementation with another one.

table(table&&)

Creates a new table instance and moves implementation from another one into it.

Public Methods

table&operator=(consttable&)=default

Replaces the implementation by another one.

table&operator=(table&&)

Swaps the implementation of this object and another one.
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boolhas_data()constnoexcept

Indicates whether a table contains non-zero number of rows and columns.

std::int64_tget_column_count()const

The number of columns in the table.

std::int64_tget_row_count()const

The number of rows in the table.

consttable_metadata&get_metadata()const

The metadata object that holds additional information about the data within the table.

std::int64_tget_kind()const

The runtime id of the table type. Each table sub-type has its unique kind. An empty table has a unique kind
value as well.

data_layoutget_data_layout()const

The layout of the data within the table.

Table metadata

An implementation of the table metadata concept. Holds additional information about data within the table.
The objects of table_metadata are reference-counted.

classtable_metadata

Constructors

table_metadata()

Creates the metadata instance without information about the features. The feature_count should be set to
zero. The data_type and feature_type properties should not be initialized.

table_metadata(constdal::array<data_type>&dtypes, constdal::array<feature_type>&ftypes)

Creates the metadata instance from external information about the data types and the feature types.

Parameters • dtypes – The data types of the features. Assigned into the data_type
property.

• ftypes – The feature types. Assigned into the feature_type property.

Preconditions dtypes.get_count()==ftypes.get_count()

Public Methods

std::int64_tget_feature_count()const

The number of features that metadata contains information about.

constfeature_type&get_feature_type(std::int64_tfeature_index)const

Feature types in the metadata object. Should be within the range [0, feature_count).

constdata_type&get_data_type(std::int64_tfeature_index)const

Data types of the features in the metadata object. Should be within the range [0, feature_count).
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Data layout

An implementation of the data layout concept.

enum class data_layout { unknown, row_major, column_major };

data_layout::unknown Represents the data layout that is undefined or unknown at this moment.

data_layout::row_major The data block elements are stored in raw-major layout.

data_layout::column_maj
or

The data block elements are stored in column_major layout.

Feature type

An implementation of the logical data types.

enum class feature_type { nominal, ordinal, interval, ratio };

feature_type::nominal Represents the type of Nominal feature.

feature_type::ordinal Represents the type of Ordinal feature.

feature_type::interval Represents the type of Interval feature.

feature_type::ratio Represents the type of Ratio feature.

• Homogeneous table

• Programming interface

Homogeneous table

Refer to Developer Guide: Homogeneous table.

Programming interface
All types and functions in this section are declared in the oneapi::dal namespace and be available via
inclusion of the oneapi/dal/table/homogen.hpp header file.

classhomogen_table

Public Static Methods

staticstd::int64_tkind()

Returns the unique id of homogen_table class.

template<typenameData>statichomogen_tablewrap(constData*data_pointer,
std::int64_trow_count, std::int64_tcolumn_count, data_layoutlayout=data_layout::row_major)

Creates a new homogen_table instance from externally-defined data block. Table object refers to the data
but does not own it. The responsibility to free the data remains on the user side. The data should point to
the data_pointer memory block.
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Template Parameters Data – The type of elements in the data block that will be stored into the table.
The table initializes data types of metadata with this data type. The feature types
should be set to default values for Data type: contiguous for floating-point,
ordinal for integer types. The Data type should be at least float, double or
std::int32_t.

Parameters • data_pointer – The pointer to a homogeneous data block.
• row_count – The number of rows in the table.
• column_count – The number of columns in the table.
• layout – The layout of the data. Should be data_layout::row_major or

data_layout::column_major.

template<typenameData>statichomogen_tablewrap(constdal::array<Data>&data,
std::int64_trow_count, std::int64_tcolumn_count, data_layoutlayout=data_layout::row_major)

Creates a new homogen_table instance from an array. The created table shares data ownership with the
given array.

Template Parameters Data – The type of elements in the data block that will be stored into the table.
The table initializes data types of metadata with this data type. The feature types
should be set to default values for Data type: contiguous for floating-point,
ordinal for integer types. The Data type should be at least float, double or
std::int32_t.

Parameters • data – The array that stores a homogeneous data block.
• row_count – The number of rows in the table.
• column_count – The number of columns in the table.
• layout – The layout of the data. Should be data_layout::row_major or

data_layout::column_major.

Constructors

homogen_table()

Creates a new homogen_table instance with zero number of rows and columns.

homogen_table(consttable&other)

Casts an object of the base table type to a homogen table. If cast is not possible, the operation is equivalent
to a default constructor call.

template<typenameData,typenameConstDeleter>homogen_table(constData*data_pointer,
std::int64_trow_count, std::int64_tcolumn_count, ConstDeleter&&data_deleter,
data_layoutlayout=data_layout::row_major)

Creates a new homogen_table instance from externally-defined data block. Table object owns the data
pointer. The data should point to the data_pointer memory block.

Template Parameters • Data – The type of elements in the data block that will be stored into the
table. The Data type should be at least float, double or std::int32_t.

• ConstDeleter – The type of a deleter called on data_pointer when the last
table that refers it is out of the scope.

Parameters • data_pointer – The pointer to a homogeneous data block.
• row_count – The number of rows in the table.
• column_count – The number of columns in the table.
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• data_deleter – The deleter that is called on the data_pointer when the last
table that refers it is out of the scope.

• layout – The layout of the data. Should be data_layout::row_major or
data_layout::column_major.

Public Methods

template<typenameData>constData*get_data()const

Returns the data pointer cast to the Data type. No checks are performed that this type is the actual type of
the data within the table. If table has no data, returns nullptr.

constvoid*get_data()const

The pointer to the data block within the table. Should be equal to nullptr when row_count==0 and
column_count==0.

std::int64_tget_kind()const

The unique id of the homogen table type.

Algorithms

Refer to Developer Guide for mathematical descriptions of the algorithms.

• Clustering

• DBSCAN
• K-Means
• K-Means initialization

• Covariance

• Covariance
• Decomposition

• Principal Components Analysis (PCA)
• Ensembles

• Decision Forest Classification and Regression (DF)
• Graph

• Subgraph Isomorphism
• Connected Components

• Kernel Functions

• Linear kernel
• Polynomial kernel
• Radial Basis Function (RBF) kernel
• Sigmoid kernel

• Nearest Neighbors (kNN)

• k-Nearest Neighbors Classification (k-NN)
• Pairwise Distances

• Minkowski distance
• Chebyshev distance
• Cosine distance

• Statistics

• Basic Statistics
• Support Vector Machines

• Support Vector Machine Classifier (SVM)
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Clustering

This chapter describes programming interfaces of the clustering algorithms implemented in oneDAL:

• DBSCAN
• K-Means
• K-Means initialization

DBSCAN

Density-based spatial clustering of applications with noise (DBSCAN) is a data clustering algorithm proposed
in [Ester96]. It is a density-based clustering non-parametric algorithm: given a set of observations in some
space, it groups together observations that are closely packed together (observations with many nearby
neighbors), marking as outliers observations that lie alone in low-density regions (whose nearest neighbors
are too far away).

Operation Computational methods Progra
mming
Interfac
e

Compute Default method comput
e(…)

compute_inp
ut

compute_resul
t

Mathematical formulation
Refer to Developer Guide: DBSCAN.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::dbscan namespace and are
available via inclusion of the oneapi/dal/algo/dbscan.hpp header file.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::brute_force.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::clustering.

Constructors

descriptor(doubleepsilon, std::int64_tmin_observations)

Creates a new instance of the class with the given epsilon, min_observations.

Properties

doubleepsilon

The distance epsilon for neighbor search.
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Getter & Setter double get_epsilon() constauto & set_epsilon(double value)

Invariants epsilon>=0.0

boolmem_save_mode

The flag for memory saving mode.

Getter & Setter bool get_mem_save_mode() constauto & set_mem_save_mode(bool
value)

std::int64_tmin_observations

The number of neighbors.

Getter & Setter std::int64_t get_min_observations() constauto &
set_min_observations(std::int64_t value)

result_option_idresult_options

Choose which results should be computed and returned.

Getter & Setter result_option_id get_result_options() constauto &
set_result_options(const result_option_id &value)

Method tags

structbrute_force

usingby_default=brute_force

Task tags

structclustering

Tag-type that parameterizes entities used for solving clustering problem.

usingby_default=clustering

Alias tag-type for the clustering task.

Computation compute(...)

Input

template<typenameTask=task::by_default>classcompute_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors

compute_input(consttable&data={}, consttable&weights={})

Creates a new instance of the class with the given data and weights.
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Properties

consttable&data

An  table with the data to be clustered, where each row stores one feature vector.

Getter & Setter const table & get_data() constauto & set_data(const table &data)

consttable&weights

A single column table with the weights, where each row stores one weight per observation.

Getter & Setter const table & get_weights() constauto & set_weights(const table
&weights)

Result

template<typenameTask=task::by_default>classcompute_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors

compute_result()

Creates a new instance of the class with the default property values.

Properties

consttable&responses

An  table with the responses  assigned to the samples  in the input data. Default value: table{}.

Getter & Setter const table & get_responses() constauto & set_responses(const
table &value)

consttable&core_flags

An  table with the core flags  assigned to the samples  in the input data.

Getter & Setter const table & get_core_flags() constauto & set_core_flags(const
table &value)

constresult_option_id&result_options

Result options that indicates availability of the properties. Default value: default_result_options<Task>.

Getter & Setter const result_option_id & get_result_options() constauto &
set_result_options(const result_option_id &value)

consttable&core_observations

An  table with the core observations in the input data.  is a number of core observations.
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Getter & Setter const table & get_core_observations() constauto &
set_core_observations(const table &value)

consttable&core_observation_indices

An  table with the indices of core observations in the input data.  is a number of core observations.

Getter & Setter const table & get_core_observation_indices() constauto &
set_core_observation_indices(const table &value)

std::int64_tcluster_count

The number of clusters found by the algorithm.

Getter & Setter std::int64_t get_cluster_count() constauto &
set_cluster_count(std::int64_t value)

Invariants cluster_count>=0

Operation

template<typenameDescriptor>dbscan::compute_resultcompute(constDescriptor&desc,
constdbscan::compute_input&input)

Parameters • desc – DBSCAN algorithm descriptor dbscan::descriptor
• input – Input data for the compute operation

Preconditions input.data.has_data==true!input.weights.has_data||
input.weights.row_count==input.data.row_count&&input.weights.colum
n_count==1

Usage example

Compute

void run_compute(const table& data,
                           const table& weights) {
   double epsilon = 1.0;
   std::int64_t max_observations = 5;
   const auto dbscan_desc = kmeans::descriptor<float>{epsilon, max_observations}
      .set_result_options(dal::dbscan::result_options::responses);

   const auto result = compute(dbscan_desc, data, weights);

   print_table("responses", result.get_responses());
}

Examples
oneAPI DPC++

Batch Processing:

• dpc_dbscan_brute_force_batch.cpp
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oneAPI C++

Batch Processing:

• cpp_dbscan_brute_force_batch.cpp

Python* with DPC++ support

Batch Processing:

• dbscan_batch.py

K-Means

The K-Means algorithm solves clustering problem by partitioning n feature vectors into k clusters minimizing
some criterion. Each cluster is characterized by a representative point, called a centroid.

Operation Computational methods Progra
mming
Interfac
e

Training Lloyd’s train(…) train_input train_result

Inference Lloyd’s infer(…) infer_input infer_result

Mathematical formulation
Refer to Developer Guide: K-Means.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::kmeans namespace and be
available via inclusion of the oneapi/dal/algo/kmeans.hpp header file.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::lloyd_dense.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::clustering.

Constructors

descriptor(std::int64_tcluster_count=2)

Creates a new instance of the class with the given cluster_count.

Properties

std::int64_tmax_iteration_count

The maximum number of iterations T. Default value: 100.
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Getter & Setter std::int64_t get_max_iteration_count() constauto &
set_max_iteration_count(std::int64_t value)

Invariants max_iteration_count>=0

std::int64_tcluster_count

The number of clusters k. Default value: 2.

Getter & Setter std::int64_t get_cluster_count() constauto &
set_cluster_count(std::int64_t value)

Invariants cluster_count>0

doubleaccuracy_threshold

The threshold  for the stop condition. Default value: 0.0.

Getter & Setter double get_accuracy_threshold() constauto &
set_accuracy_threshold(double value)

Invariants accuracy_threshold>=0.0

Method tags

structlloyd_dense

Tag-type that denotes Lloyd’s computational method.

usingby_default=lloyd_dense

Alias tag-type for Lloyd’s computational method.

Task tags

structclustering

Tag-type that parameterizes entities used for solving clustering problem.

usingby_default=clustering

Alias tag-type for the clustering task.

Model

template<typenameTask=task::by_default>classmodel

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors

model()

Creates a new instance of the class with the default property values.

Public Methods
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std::int64_tget_cluster_count()const

Number of clusters k in the trained model.

Properties

consttable&centroids

A  table with the cluster centroids. Each row of the table stores one centroid. Default value: table{}.

Getter & Setter const table & get_centroids() constauto & set_centroids(const
table &value)

Training train(...)

Input

template<typenameTask=task::by_default>classtrain_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors

train_input(consttable&data)

train_input(consttable&data, consttable&initial_centroids)

Creates a new instance of the class with the given data and initial_centroids.

Properties

consttable&data

An  table with the data to be clustered, where each row stores one feature vector.

Getter & Setter const table & get_data() constauto & set_data(const table &data)

consttable&initial_centroids

A  table with the initial centroids, where each row stores one centroid.

Getter & Setter const table & get_initial_centroids() constauto &
set_initial_centroids(const table &data)

Result

template<typenameTask=task::by_default>classtrain_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors

train_result()

Creates a new instance of the class with the default property values.
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Properties

consttable&responses

An  table with the responses  assigned to the samples  in the input data, . Default
value: table{}.

Getter & Setter const table & get_responses() constauto & set_responses(const
table &value)

std::int64_titeration_count

The number of iterations performed by the algorithm. Default value: 0.

Getter & Setter std::int64_t get_iteration_count() constauto &
set_iteration_count(std::int64_t value)

Invariants iteration_count>=0

doubleobjective_function_value

The value of the objective function , where C is model.centroids.

Getter & Setter double get_objective_function_value() constauto &
set_objective_function_value(double value)

Invariants objective_function_value>=0.0

consttable&labels

An  table with the labels  assigned to the samples  in the input data, . Default
value: table{}.

Getter & Setter const table & get_labels() constauto & set_labels(const table
&value)

constmodel<Task>&model

The trained K-means model. Default value: model<Task>{}.

Getter & Setter const model< Task > & get_model() constauto & set_model(const
model< Task > &value)

Operation

template<typenameDescriptor>kmeans::train_resulttrain(constDescriptor&desc,
constkmeans::train_input&input)

Parameters • desc – K-Means algorithm descriptor kmeans::descriptor
• input – Input data for the training operation
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Preconditions input.data.has_data==trueinput.initial_centroids.row_count==desc.clus
ter_countinput.initial_centroids.column_count==input.data.column_cou
nt

Postconditions result.labels.row_count==input.data.row_countresult.labels.column_co
unt==1result.labels[i]>=0result.labels[i]<desc.cluster_countresult.itera
tion_count<=desc.max_iteration_countresult.model.centroids.row_coun
t==desc.cluster_countresult.model.centroids.column_count==input.dat
a.column_count

Inference infer(...)

Input

template<typenameTask=task::by_default>classinfer_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors

infer_input(constmodel<Task>&trained_model, consttable&data)

Creates a new instance of the class with the given model and data.

Properties

consttable&data

The trained K-Means model. Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &value)

constmodel<Task>&model

An  table with the data to be assigned to the clusters, where each row stores one feature vector.
Default value: model<Task>{}.

Getter & Setter const model< Task > & get_model() constauto & set_model(const
model< Task > &value)

Result

template<typenameTask=task::by_default>classinfer_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::clustering.

Constructors

infer_result()

Creates a new instance of the class with the default property values.

Properties
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consttable&labels

An  table with assignments labels to feature vectors in the input data. Default value: table{}.

Getter & Setter const table & get_labels() constauto & set_labels(const table
&value)

doubleobjective_function_value

The value of the objective function , where C is defined by the corresponding 
infer_input::model::centroids. Default value: 0.0.

Getter & Setter double get_objective_function_value() constauto &
set_objective_function_value(double value)

Invariants objective_function_value>=0.0

consttable&responses

An  table with assignments responses to feature vectors in the input data. Default value: table{}.

Getter & Setter const table & get_responses() constauto & set_responses(const
table &value)

Operation

template<typenameDescriptor>kmeans::infer_resultinfer(constDescriptor&desc,
constkmeans::infer_input&input)

Parameters • desc – K-Means algorithm descriptor kmeans::descriptor
• input – Input data for the inference operation

Preconditions input.data.has_data==trueinput.model.centroids.has_data==trueinput.
model.centroids.row_count==desc.cluster_countinput.model.centroids.c
olumn_count==input.data.column_count

Postconditions result.labels.row_count==input.data.row_countresult.labels.column_co
unt==1result.labels[i]>=0result.labels[i]<desc.cluster_count

Usage example

Training

kmeans::model<> run_training(const table& data,
                           const table& initial_centroids) {
   const auto kmeans_desc = kmeans::descriptor<float>{}
      .set_cluster_count(10)
      .set_max_iteration_count(50)
      .set_accuracy_threshold(1e-4);

   const auto result = train(kmeans_desc, data, initial_centroids);

   print_table("labels", result.get_labels());
   print_table("centroids", result.get_model().get_centroids());
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   print_value("objective", result.get_objective_function_value());

   return result.get_model();
}

Inference

table run_inference(const kmeans::model<>& model,
                  const table& new_data) {
   const auto kmeans_desc = kmeans::descriptor<float>{}
      .set_cluster_count(model.get_cluster_count());

   const auto result = infer(kmeans_desc, model, new_data);

   print_table("labels", result.get_labels());
}

Examples
oneAPI DPC++

Batch Processing:

• dpc_kmeans_lloyd_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_kmeans_lloyd_dense_batch.cpp

Python* with DPC++ support

Batch Processing:

• kmeans_batch.py

K-Means initialization

The K-Means initialization algorithm receives n feature vectors as input and chooses k initial centroids. After
initialization, K-Means algorithm uses the initialization result to partition input data into k clusters.

Operation Computational methods Progra
mming
Interfac
e

Computing Dense comput
e(…)

compute_inp
ut

compute_resul
t

Mathematical formulation
Refer to Developer Guide: K-Means Initialization.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::kmeans_init namespace and be
available via inclusion of the oneapi/dal/algo/kmeans_init.hpp header file.

Descriptor
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template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of K-Means Initialization
algorithm.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::init.

Constructors

descriptor(std::int64_tcluster_count=2)

Creates a new instance of the class with the given cluster_count.

Properties

auto&seed

Getter & Setter template <typename M = Method, typename None =
detail::v1::enable_if_not_default_dense<M>> auto & get_seed()
consttemplate <typename M = Method, typename None =
detail::v1::enable_if_not_default_dense<M>> auto &
set_seed(std::int64_t value)

std::int64_tcluster_count

The number of clusters k. Default value: 2.

Getter & Setter std::int64_t get_cluster_count() constauto &
set_cluster_count(std::int64_t value)

Invariants cluster_count>0

Method tags

structdense

Tag-type that denotes dense computational method.

structparallel_plus_dense

structplus_plus_dense

structrandom_dense

usingby_default=dense

Task tags

structinit

Tag-type that parameterizes entities used for obtaining the initial K-Means centroids.

usingby_default=init

Alias tag-type for the initialization task.
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Computing compute(...)

Input

template<typenameTask=task::by_default>classcompute_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be task::init.

Constructors

compute_input(consttable&data)

Creates a new instance of the class with the given data.

Properties

consttable&data

An  table with the data to be clustered, where each row stores one feature vector. Default value:
table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &data)

Result

template<typenameTask=task::by_default>classcompute_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
oneapi::dal::kmeans::task::clustering.

Constructors

compute_result()

Creates a new instance of the class with the default property values.

Properties

consttable&centroids

A  table with the initial centroids. Each row of the table stores one centroid. Default value: table{}.

Getter & Setter const table & get_centroids() constauto & set_centroids(const
table &value)

Operation

template<typenameDescriptor>kmeans_init::compute_resultcompute(constDescriptor&desc,
constkmeans_init::compute_input&input)

Parameters • desc – K-Means algorithm descriptor kmeans_init::descriptor
• input – Input data for the computing operation

Preconditions input.data.has_data==trueinput.data.row_count==desc.cluster_count
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Postconditions result.centroids.has_data==trueresult.centroids.row_count==desc.clust
er_countresult.centroids.column_count==input.data.column_count

Examples
oneAPI DPC++

Batch Processing:

• dpc_kmeans_init_dense.cpp

oneAPI C++

Batch Processing:

• cpp_kmeans_init_dense.cpp

Covariance

This chapter describes programming interfaces of the covariance algorithm implemented in oneDAL:

• Covariance

Covariance

Covariance algorithm computes the following set of quantitative dataset characteristics:

• means
• covariance
• correlation

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation
Refer to Developer Guide: Covariance.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::covariance namespace and are
available via inclusion of the oneapi/dal/algo/covariance.hpp header file.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::dense.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors
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descriptor()=default

Creates a new instance of the class with the default property values.

Properties

result_option_idresult_options

Choose which results should be computed and returned.

Getter & Setter result_option_id get_result_options() constauto &
set_result_options(const result_option_id &value)

Method tags

structdense

Tag-type that denotes dense computational method.

usingby_default=dense

Alias tag-type for the dense computational method.

Task tags

structcompute

Tag-type that parameterizes entities that are used to compute statistics.

usingby_default=compute

Alias tag-type for the compute task.

Training compute(...)

Input

template<typenameTask=task::by_default>classcompute_input

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_input(consttable&data)

Creates a new instance of the class with the given data property value.

Properties

consttable&data

An  table with the training data, where each row stores one feature vector. Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &value)

Result

template<typenameTask=task::by_default>classcompute_result
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Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_result()

Creates a new instance of the class with the default property values.

Properties

consttable&cor_matrix

The correlation matrix. Default value: table{}.

Getter & Setter const table & get_cor_matrix() constauto & set_cor_matrix(const
table &value)

consttable&cov_matrix

The covariance matrix. Default value: table{}.

Getter & Setter const table & get_cov_matrix() constauto & set_cov_matrix(const
table &value)

consttable&means

Means. Default value: table{}.

Getter & Setter const table & get_means() constauto & set_means(const table
&value)

constresult_option_id&result_options

Result options that indicates availability of the properties. Default value: default_result_options<Task>.

Getter & Setter const result_option_id & get_result_options() constauto &
set_result_options(const result_option_id &value)

Operation

template<typenameDescriptor>covariance::compute_resultcompute(constDescriptor&desc,
constcovariance::compute_input&input)

Parameters • desc – Covariance algorithm descriptor covariance::descriptor
• input – Input data for the computing operation

Preconditions input.data.is_empty==false

Decomposition

This chapter describes programming interfaces of the decomposition algorithms implemented in oneDAL:

• Principal Components Analysis (PCA)
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Principal Components Analysis (PCA)

Principal Component Analysis (PCA) is an algorithm for exploratory data analysis and dimensionality
reduction. PCA transforms a set of feature vectors of possibly correlated features to a new set of
uncorrelated features, called principal components. Principal components are the directions of the largest
variance, that is, the directions where the data is mostly spread out.

Operation Computational
methods

Programming
Interface

Training Covariance SVD train(…) train_input train_result

Inference Covariance SVD infer(…) infer_input infer_result

Mathematical formulation
Refer to Developer Guide: Principal Components Analysis.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::pca namespace and be available
via inclusion of the oneapi/dal/algo/pca.hpp header file.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::cov or method::svd.

• Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors

descriptor(std::int64_tcomponent_count=0)

Creates a new instance of the class with the given component_count property value.

Properties

std::int64_tcomponent_count

The number of principal components . If it is zero, the algorithm computes the eigenvectors for all features,
. Default value: 0.

Getter & Setter std::int64_t get_component_count() constauto &
set_component_count(std::int64_t value)

Invariants component_count>=0

booldeterministic

Specifies whether the algorithm applies the sign-flip technique. If it is true, the directions of the eigenvectors
must be deterministic. Default value: true.
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Getter & Setter bool get_deterministic() constauto & set_deterministic(bool
value)

result_option_idresult_options

Choose which results should be computed and returned.

Getter & Setter result_option_id get_result_options() constauto &
set_result_options(const result_option_id &value)

Method tags

structcov

Tag-type that denotes Covariance computational method.

structprecomputed

structsvd

Tag-type that denotes SVD computational method.

usingby_default=cov

Alias tag-type for Covariance computational method.

Task tags

structdim_reduction

Tag-type that parameterizes entities used for solving dimensionality reduction problem.

usingby_default=dim_reduction

Alias tag-type for dimensionality reduction task.

Model

template<typenameTask=task::by_default>classmodel

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors

model()

Creates a new instance of the class with the default property values.

Properties

consttable&eigenvectors

An  table with the eigenvectors. Each row contains one eigenvector. Default value: table{}.

Getter & Setter const table & get_eigenvectors() constauto &
set_eigenvectors(const table &value)
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Training train(...)

Input

template<typenameTask=task::by_default>classtrain_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors

train_input(consttable&data)

Creates a new instance of the class with the given data property value.

Properties

consttable&data

An  table with the training data, where each row stores one feature vector. Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &data)

Result

template<typenameTask=task::by_default>classtrain_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors

train_result()

Creates a new instance of the class with the default property values.

Public Methods

consttable&get_eigenvectors()const

An  table with the eigenvectors. Each row contains one eigenvector.

Properties

consttable&eigenvalues

A  table that contains the eigenvalues for for the first r features. Default value: table{}.

Getter & Setter const table & get_eigenvalues() constauto & set_eigenvalues(const
table &value)

constresult_option_id&result_options

Result options that indicates availability of the properties. Default value: default_result_options<Task>.

Getter & Setter const result_option_id & get_result_options() constauto &
set_result_options(const result_option_id &value)
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consttable&means

A  table that contains the mean values for the first r features. Default value: table{}.

Getter & Setter const table & get_means() constauto & set_means(const table
&value)

consttable&variances

A  table that contains the variances for the first r features. Default value: table{}.

Getter & Setter const table & get_variances() constauto & set_variances(const
table &value)

constmodel<Task>&model

The trained PCA model. Default value: model<Task>{}.

Getter & Setter const model< Task > & get_model() constauto & set_model(const
model< Task > &value)

Operation

template<typenameDescriptor>pca::train_resulttrain(constDescriptor&desc,
constpca::train_input&input)

Parameters • desc – PCA algorithm descriptor pca::descriptor
• input – Input data for the training operation

Preconditions input.data.has_data==trueinput.data.column_count>=desc.component_
count

Postconditions result.means.row_count==1result.means.column_count==desc.compon
ent_countresult.variances.row_count==1result.variances.column_count
==desc.component_countresult.variances[i]>=0.0result.eigenvalues.ro
w_count==1result.eigenvalues.column_count==desc.component_countr
esult.model.eigenvectors.row_count==1result.model.eigenvectors.colu
mn_count==desc.component_count

Inference infer(...)

Input

template<typenameTask=task::by_default>classinfer_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors

infer_input(constmodel<Task>&trained_model, consttable&data)

Creates a new instance of the class with the given model and data property values.
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Properties

consttable&data

The dataset for inference . Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &value)

constmodel<Task>&model

The trained PCA model. Default value: model<Task>{}.

Getter & Setter const model< Task > & get_model() constauto & set_model(const
model< Task > &value)

Result

template<typenameTask=task::by_default>classinfer_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::dim_reduction.

Constructors

infer_result()

Creates a new instance of the class with the default property values.

Properties

consttable&transformed_data

An  table that contains data projected to the r principal components. Default value: table{}.

Getter & Setter const table & get_transformed_data() constauto &
set_transformed_data(const table &value)

Operation

template<typenameDescriptor>pca::infer_resultinfer(constDescriptor&desc,
constpca::infer_input&input)

Parameters • desc – PCA algorithm descriptor pca::descriptor
• input – Input data for the inference operation

Preconditions input.data.has_data==trueinput.model.eigenvectors.row_count==desc.
component_countinput.model.eigenvectors.column_count==input.data.c
olumn_count

Postconditions result.transformed_data.row_count==input.data.row_countresult.transf
ormed_data.column_count==desc.component_count

Usage example
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Training

pca::model<> run_training(const table& data) {
   const auto pca_desc = pca::descriptor<float>{}
      .set_component_count(5)
      .set_deterministic(true);

   const auto result = train(pca_desc, data);

   print_table("means", result.get_means());
   print_table("variances", result.get_variances());
   print_table("eigenvalues", result.get_eigenvalues());
   print_table("eigenvectors", result.get_eigenvectors());

   return result.get_model();
}

Inference

table run_inference(const pca::model<>& model,
                  const table& new_data) {
   const auto pca_desc = pca::descriptor<float>{}
      .set_component_count(model.get_component_count());

   const auto result = infer(pca_desc, model, new_data);

   print_table("labels", result.get_transformed_data());
}

Examples
oneAPI DPC++

Batch Processing:

• dpc_pca_cor_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_pca_dense_batch.cpp

Python* with DPC++ support

Batch Processing:

• pca_batch.py

Ensembles

This chapter describes programming interfaces of the ensemble algorithms implemented in oneDAL:

• Decision Forest Classification and Regression (DF)

Decision Forest Classification and Regression (DF)

Decision Forest (DF) classification and regression algorithms are based on an ensemble of tree-structured
classifiers, which are known as decision trees. Decision forest is built using the general technique of bagging,
a bootstrap aggregation, and a random choice of features. For more details, see [Breiman84] and 
[Breiman2001].
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Operation Computational
methods

Programming
Interface

Training Dense Hist train(…) train_input train_result

Inference Dense Hist infer(…) infer_input infer_result

Mathematical formulation
Refer to Developer Guide: Decision Forest Classification and Regression.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::decision_forest namespace and
are available via inclusion of the oneapi/dal/algo/decision_forest.hpp header file.

Enum classes

error_metric_mode

error_metric_mode::none Do not compute error metric.

error_metric_mode::out_o
f_bag_error

Train produces  table with cumulative prediction error for out of bag
observations.

error_metric_mode::out_o
f_bag_error_per_observati
on

Train produces  table with prediction error for out-of-bag observations.

variable_importance_mode

variable_importance_mod
e::none

Do not compute variable importance.

variable_importance_mod
e::mdi

Mean Decrease Impurity. Computed as the sum of weighted impurity decreases
for all nodes where the variable is used, averaged over all trees in the forest.

variable_importance_mod
e::mda_raw

Mean Decrease Accuracy (permutation importance). For each tree, the prediction
error on the out-of-bag portion of the data is computed (error rate for
classification, MSE for regression). The same is done after permuting each
predictor variable. The difference between the two are then averaged over all
trees.

variable_importance_mod
e::mda_scaled

Mean Decrease Accuracy (permutation importance). This is MDA_Raw value
scaled by its standard deviation.

infer_mode

infer_mode::class_labels Infer produces a “math:n times 1 table with the predicted labels.

infer_mode::class_respon
ses

deprecated

infer_mode::class_probabi
lities

Infer produces  table with the predicted class probabilities for each
observation.

voting_mode

voting_mode::weighted The final prediction is combined through a weighted majority voting.

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

542



voting_mode::unweighted The final prediction is combined through a simple majority voting.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::dense or method::hist.

• Task – Tag-type that specifies type of the problem to solve. Can be
task::classification or task::regression.

Constructors

descriptor()=default

Creates a new instance of the class with the default property values.

Properties

error_metric_modeerror_metric_mode

The error metric mode. Default value: error_metric_mode::none.

Getter & Setter error_metric_mode get_error_metric_mode() constauto &
set_error_metric_mode(error_metric_mode value)

std::int64_tmax_bins

The maximal number of discrete bins to bucket continuous features. Used with method::hist split-finding
method only. Increasing the number results in higher computation costs. Default value: 256.

Getter & Setter std::int64_t get_max_bins() constauto & set_max_bins(std::int64_t
value)

Invariants max_bins>1

std::int64_tmax_tree_depth

The maximal depth of the tree. If 0, then nodes are expanded until all leaves are pure or until all leaves
contain less or equal to min observations in leaf node samples. Default value: 0.

Getter & Setter std::int64_t get_max_tree_depth() constauto &
set_max_tree_depth(std::int64_t value)

std::int64_tseed

Seed for the random numbers generator used by the algorithm.

Getter & Setter std::int64_t get_seed() constauto & set_seed(std::int64_t value)

Invariants tree_count>0
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doubleimpurity_threshold

The impurity threshold, a node will be split if this split induces a decrease of the impurity greater than or
equal to the input value. Default value: 0.0.

Getter & Setter double get_impurity_threshold() constauto &
set_impurity_threshold(double value)

Invariants impurity_threshold>=0.0

variable_importance_modevariable_importance_mode

The variable importance mode. Default value: variable_importance_mode::none.

Getter & Setter variable_importance_mode get_variable_importance_mode() constauto
& set_variable_importance_mode(variable_importance_mode value)

boolbootstrap

The bootstrap mode, if true, the training set for a tree is a bootstrap of the whole training set, if False, the
whole dataset is used to build each tree. Default value: true.

Getter & Setter bool get_bootstrap() constauto & set_bootstrap(bool value)

std::int64_tmin_bin_size

The minimal number of observations in a bin. Used with method::hist split-finding method only. Default
value: 5.

Getter & Setter std::int64_t get_min_bin_size() constauto &
set_min_bin_size(std::int64_t value)

Invariants min_bin_size>0

std::int64_ttree_count

The number of trees in the forest. Default value: 100.

Getter & Setter std::int64_t get_tree_count() constauto &
set_tree_count(std::int64_t value)

Invariants tree_count>0

doublemin_impurity_decrease_in_split_node

The min impurity decrease in a split node is a threshold for stopping the tree growth early. A node will be
split if its impurity is above the threshold, otherwise it is a leaf. Default value: 0.0.

Getter & Setter double get_min_impurity_decrease_in_split_node() constauto &
set_min_impurity_decrease_in_split_node(double value)

Invariants min_impurity_decrease_in_split_node>=0.0

std::int64_tmin_observations_in_leaf_node
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The minimal number of observations in a leaf node. Default value: 1 for classification, 5 for regression.

Getter & Setter std::int64_t get_min_observations_in_leaf_node() constauto &
set_min_observations_in_leaf_node(std::int64_t value)

Invariants min_observations_in_leaf_node>0

voting_modevoting_mode

The voting mode. Used with task::classification only.

Getter & Setter template <typename T = Task, typename None =
detail::enable_if_classification_t<T>> voting_mode
get_voting_mode() consttemplate <typename T = Task, typename None
= detail::enable_if_classification_t<T>> auto &
set_voting_mode(voting_mode value)

doubleobservations_per_tree_fraction

The fraction of observations per tree. Default value: 1.0.

Getter & Setter double get_observations_per_tree_fraction() constauto &
set_observations_per_tree_fraction(double value)

Invariants observations_per_tree_fraction>0.0observations_per_tree_fraction<=1.
0

infer_modeinfer_mode

The infer mode. Used with task::classification only.

Getter & Setter template <typename T = Task, typename None =
detail::enable_if_classification_t<T>> infer_mode
get_infer_mode() consttemplate <typename T = Task, typename None
= detail::enable_if_classification_t<T>> auto &
set_infer_mode(infer_mode value)

std::int64_tmin_observations_in_split_node

The minimal number of observations in a split node. Default value: 2.

Getter & Setter std::int64_t get_min_observations_in_split_node() constauto &
set_min_observations_in_split_node(std::int64_t value)

Invariants min_observations_in_split_node>1

std::int64_tclass_count

The class count. Used with task::classification only. Default value: 2.
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Getter & Setter template <typename T = Task, typename None =
detail::enable_if_classification_t<T>> std::int64_t
get_class_count() consttemplate <typename T = Task, typename None
= detail::enable_if_classification_t<T>> auto &
set_class_count(std::int64_t value)

boolmemory_saving_mode

The memory saving mode. Default value: false.

Getter & Setter bool get_memory_saving_mode() constauto &
set_memory_saving_mode(bool value)

std::int64_tfeatures_per_node

The number of features to consider when looking for the best split for a node. Default value:
task::classification ? sqrt(p) : p/3, where p is the total number of features.

Getter & Setter std::int64_t get_features_per_node() constauto &
set_features_per_node(std::int64_t value)

doublemin_weight_fraction_in_leaf_node

The min weight fraction in a leaf node. The minimum weighted fraction of the total sum of weights (of all
input observations) required to be at a leaf node. Default value: 0.0.

Getter & Setter double get_min_weight_fraction_in_leaf_node() constauto &
set_min_weight_fraction_in_leaf_node(double value)

Invariants min_weight_fraction_in_leaf_node>=0.0min_weight_fraction_in_leaf_n
ode<=0.5

std::int64_tmax_leaf_nodes

The maximal number of the leaf nodes. If 0, the number of leaf nodes is not limited. Default value: 0.

Getter & Setter std::int64_t get_max_leaf_nodes() constauto &
set_max_leaf_nodes(std::int64_t value)

Method tags

structdense

Tag-type that denotes dense computational method.

structhist

Tag-type that denotes hist computational method.

usingby_default=dense

Alias tag-type for dense computational method.

Task tags
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structclassification

Tag-type that parameterizes entities used for solving classification problem.

structregression

Tag-type that parameterizes entities used for solving regression problem.

usingby_default=classification

Alias tag-type for classification task.

Model

template<typenameTask=task::by_default>classmodel

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::classification or task::regression.

Constructors

model()

Creates a new instance of the class with the default property values.

Public Methods

std::int64_tget_tree_count()const

The number of trees in the forest.

template<typenameT=Task,typenameNone=detail::enable_if_classification_t<T>>std::int64_tge
t_class_count()const

The class count. Used with oneapi::dal::decision_forest::task::classification only.

template<typenameVisitor>voidtraverse_depth_first(std::int64_ttree_idx, Visitor&&visitor)const

Performs Depth First Traversal of i-th tree.

Parameters • tree_idx – Index of the tree to traverse.
• visitor – This functor gets notified when tree nodes are visited, via

corresponding operators: bool operator()(const
decision_forest::split_node_info<Task>&) bool operator()(const
decision_forest::leaf_node_info<Task>&).

template<typenameVisitor>voidtraverse_breadth_first(std::int64_ttree_idx, 
Visitor&&visitor)const

Performs Breadth First Traversal of i-th tree.

Parameters • tree_idx – Index of the tree to traverse.
• visitor – This functor gets notified when tree nodes are visited, via

corresponding operators: bool operator()(const
decision_forest::split_node_info<Task>&) bool operator()(const
decision_forest::leaf_node_info<Task>&).

Training train(...)

Input
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template<typenameTask=task::by_default>classtrain_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification or task::regression.

Constructors

train_input(consttable&data, consttable&responses, consttable&weights=table{})

Creates a new instance of the class with the given data, responses and weights property values.

Properties

consttable&data

The training set . Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &value)

consttable&weights

The vector of weights  for the training set . Default value: table{}.

Getter & Setter const table & get_weights() constauto & set_weights(const table
&value)

consttable&responses

Vector of responses  for the training set . Default value: table{}.

Getter & Setter const table & get_responses() constauto & set_responses(const
table &value)

consttable&labels

Vector of labels  for the training set . Default value: table{}.

Getter & Setter const table & get_labels() constauto & set_labels(const table
&value)

Result

template<typenameTask=task::by_default>classtrain_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification or task::regression.

Constructors

train_result()

Creates a new instance of the class with the default property values.

Properties

consttable&oob_err
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A  table containing cumulative out-of-bag error value. Computed when error_metric_mode set with
error_metric_mode::out_of_bag_error. Default value: table{}.

Getter & Setter const table & get_oob_err() constauto & set_oob_err(const table
&value)

constmodel<Task>&model

The trained Decision Forest model. Default value: model<Task>{}.

Getter & Setter const model< Task > & get_model() constauto & set_model(const
model< Task > &value)

consttable&var_importance

A  table containing variable importance value for each feature. Computed when
variable_importance_mode!=variable_importance_mode::none. Default value: table{}.

Getter & Setter const table & get_var_importance() constauto &
set_var_importance(const table &value)

consttable&oob_err_per_observation

A  table containing out-of-bag error value per observation. Computed when error_metric_mode set
with error_metric_mode::out_of_bag_error_per_observation. Default value: table{}.

Getter & Setter const table & get_oob_err_per_observation() constauto &
set_oob_err_per_observation(const table &value)

Operation

template<typenameDescriptor>decision_forest::train_resulttrain(constDescriptor&desc,
constdecision_forest::train_input&input)

Parameters • desc – Decision Forest algorithm descriptor decision_forest::descriptor.
• input – Input data for the training operation

Preconditions input.data.is_empty==falseinput.labels.is_empty==falseinput.labels.col
umn_count==1input.data.row_count==input.labels.row_countdesc.get_
bootstrap()==true||
(desc.get_bootstrap()==false&&desc.get_variable_importance_mode()!
=variable_importance_mode::mda_raw&&desc.get_variable_importance
_mode()!
=variable_importance_mode::mda_scaled)desc.get_bootstrap()==true|
|
(desc.get_bootstrap()==false&&desc.get_error_metric_mode()==error
_metric_mode::none)

Inference infer(...)

Input
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template<typenameTask=task::by_default>classinfer_input

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::classification or task::regression.

Constructors

infer_input(constmodel<Task>&trained_model, consttable&data)

Creates a new instance of the class with the given model and data property values.

Properties

consttable&data

The dataset for inference . Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &value)

constmodel<Task>&model

The trained Decision Forest model. Default value: model<Task>{}.

Getter & Setter const model< Task > & get_model() constauto & set_model(const
model< Task > &value)

Result

template<typenameTask=task::by_default>classinfer_result

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::classification or task::regression.

Constructors

infer_result()

Creates a new instance of the class with the default property values.

Properties

consttable&labels

The  table with the predicted labels. Default value: table{}.

Getter & Setter const table & get_labels() constauto & set_labels(const table
&value)

consttable&probabilities

A  table with the predicted class probabilities for each observation.

Getter & Setter template <typename T = Task, typename None =
detail::enable_if_classification_t<T>> const table &
get_probabilities() consttemplate <typename T = Task, typename
None = detail::enable_if_classification_t<T>> auto &
set_probabilities(const table &value)

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

550



consttable&responses

The  table with the predicted responses. Default value: table{}.

Getter & Setter const table & get_responses() constauto & set_responses(const
table &value)

Operation

template<typenameDescriptor>decision_forest::infer_resultinfer(constDescriptor&desc,
constdecision_forest::infer_input&input)

Parameters • desc – Decision Forest algorithm descriptor decision_forest::descriptor.
• input – Input data for the inference operation

Preconditions input.data.is_empty==false

Graph

This chapter describes programming interfaces of the graph algorithms implemented in oneDAL:

• Subgraph Isomorphism
• Connected Components

Subgraph Isomorphism

Subgraph Isomorphism algorithm receives a target graph G and a pattern graph H as input and searches the
target graph for subgraphs that are isomorphic to the pattern graph. The algorithm returns the mappings of
the pattern graph vertices onto the target graph vertices.

Operation Computational methods Programm
ing
Interface

Computing fast graph_matc
hing(…)

graph_matching_i
nput

graph_matching_
result

Mathematical formulation
Refer to Developer Guide: Subgraph Isomorphism.

Programming Interface
All types and functions in this section are declared in the
oneapi::dal::preview::subgraph_isomorphism namespace and available via inclusion of the
oneapi/dal/algo/subgraph_isomorphism.hpp header file.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault,typenameAllocator=std::allocator<char>>classdescriptor

Template Parameters • Float – This parameter is not used for Subgraph Isomorphism algorithm.
• Method – Tag-type that specifies the implementation of the algorithm. Can

be method::fast.
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• Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

• Allocator – Custom allocator for all memory management inside the
algorithm.

Constructors

descriptor(Allocatorallocator=std::allocator<char>())

Public Methods

Allocatorget_allocator()const

Returns a copy of the allocator used in the algorithm for internal memory management.

Properties

std::int64_tmax_match_count

The maximum number of matchings to search in Subgraph Isomorphism computation.

Getter & Setter std::int64_t get_max_match_count() constauto &
set_max_match_count(std::int64_t max_match_count)

boolsemantic_match

The flag that specifies if semantic search is required in Subgraph Isomorphism computation. If true, vertex
labels are considered.

Getter & Setter bool get_semantic_match() constauto & set_semantic_match(bool
semantic_match)

kindkind

The kind of subgraph to be isomorphic to the pattern graph. Can be kind::induced or kind::non_induced.

Getter & Setter kind get_kind() constauto & set_kind(kind value)

Method tags

structfast

Tag-type that denotes fast computational method.

usingby_default=fast

Alias tag-type for fast computational method.

Task tags

structcompute

Tag-type that parameterizes entities that are used for Subgraph Isomorphism algorithm.

usingby_default=compute

Alias tag-type for the compute task.

Enum classes
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enumclasskind

kind::induced Search for an induced subgraph isomorphic to the pattern graph. All existing and
non-existing edges in a subgraph are considered.

kind::non_induced Search for a non-induced subgraph isomorphic to the pattern graph. Only
existing edges in a subgraph are considered.

Computing preview::graph_matching(...)

Input

template<typenameGraph,typenameTask=task::compute>classgraph_matching_input

Template Parameters • Graph – The type of the input graph.
• Task – Tag-type that specifies the type of the problem to solve. Can be

task::compute.

Constructors

graph_matching_input(constGraph&target_graph, constGraph&pattern_graph)

Constructs the algorithm input initialized with the target and pattern graphs.

Parameters • target_graph – The input target (bigger) graph.
• pattern_graph – The input pattern (smaller) graph.

Properties

constGraph&pattern_graph

Returns the constant reference to the input pattern graph.

Getter & Setter const Graph & get_pattern_graph() constconst auto &
set_pattern_graph(const Graph &pattern_graph)

constGraph&target_graph

Returns the constant reference to the input target graph.

Getter & Setter const Graph & get_target_graph() constconst auto &
set_target_graph(const Graph &target_graph)

Result

template<typenameTask=task::by_default>classgraph_matching_result

Constructors

graph_matching_result()

Constructs the empty result.

Properties

consttable&vertex_match
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Returns the table of size [match_count x pattern_vertex_count] with matchings of the pattern graph in the
target graph. Each row of the table contain ids of vertices in target graph sorted by pattern vertex ids. I.e. j-
th element of i-th row contain id of target graph vertex which was matched with j-th vertex of pattern graph
in i-th match.

Getter & Setter const table & get_vertex_match() constauto &
set_vertex_match(const table &value)

std::int64_tmatch_count

The number pattern matches in the target graph.

Getter & Setter std::int64_t get_match_count() constauto &
set_match_count(std::int64_t value)

Operation

template<typenameGraph,typenameDescriptor>subgraph_isomorphism::graph_matching_resultp
review::graph_matching(constDescriptor&desc, constGraph&target, constGraph&pattern)

Parameters • desc – Subgraph Isomorphism algorithm descriptor
subgraph_isomorphism::descriptor

• target – Target (big) graph
• pattern – Pattern (small) graph

Examples
oneAPI C++

Batch Processing:

• cpp_subgraph_isomorphism_batch.cpp

Connected Components

Connected components algorithm receives an undirected graph G as an input and searches for connected
components in G. For each vertex in G, the algorithm returns the label of the component this vertex belongs
to. The result of the algorithm is a set of labels for all vertices in G.

Operation Computational methods Programm
ing
Interface

Computing afforest vertex_part
itioning(…)

vertex_partitionin
g_input

vertex_partitionin
g_result

Mathematical formulation
Refer to Developer Guide: Connected Components.

Programming Interface
All types and functions in this section are declared in the
oneapi::dal::preview::connected_components namespace and available via inclusion of the
oneapi/dal/algo/connected_components.hpp header file.

Descriptor
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template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault,typenameAllocator=std::allocator<char>>classdescriptor

Template Parameters • Float – This parameter is not used for Connected Components algorithm.
• Method – Tag-type that specifies the implementation of the algorithm. Can

be method::afforest.
• Task – Tag-type that specifies the type of the problem to solve. Can be

task::vertex_partitioning.
• Allocator – Custom allocator for all memory management inside the

algorithm.

Constructors

descriptor(constAllocator&allocator=std::allocator<char>())

Public Methods

Allocatorget_allocator()const

Returns a copy of the allocator used in the algorithm for internal memory management.

Method tags

structafforest

Tag-type that denotes Afforest computational method.

usingby_default=afforest

Alias tag-type for Afforest computational method.

Task tags

structvertex_partitioning

Tag-type that parameterizes entities that are used for Connected Components algorithm.

usingby_default=vertex_partitioning

Alias tag-type for the vertex partitioning task.

Computing preview::vertex_partitioning(...)

Input

template<typenameGraph,typenameTask=task::by_default>classvertex_partitioning_input

Template Parameters Graph – Type of the input graph.

Constructors

vertex_partitioning_input(constGraph&g)

Constructs the algorithm input initialized with the graph.

Parameters g – The input graph.

Properties

constGraph&graph
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Returns the constant reference to the input graph.

Getter & Setter const Graph & get_graph() constauto & set_graph(const Graph &g)

Result

template<typenameTask=task::by_default>classvertex_partitioning_result

Constructors

vertex_partitioning_result()

Constructs the empty result.

Properties

consttable&labels

The table of size [vertex_count x 1] with computed component ids for each vertex.

Getter & Setter const table & get_labels() constauto & set_labels(const table
&value)

std::int64_tcomponent_count

The number of connected components.

Getter & Setter std::int64_t get_component_count() constauto &
set_component_count(std::int64_t value)

Operation

template<typenameGraph,typenameDescriptor>connected_components::vertex_partitioning_res
ultpreview::vertex_partitioning(constDescriptor&desc, constGraph&g)

Parameters • desc – Connected Components algorithm descriptor
connected_components::descriptor

• g – Input graph

Examples
oneAPI C++

Batch Processing:

• cpp_connected_components_batch.cpp

Kernel Functions

This chapter describes programming interfaces of the kernel functions implemented in oneDAL:

• Linear kernel
• Polynomial kernel
• Radial Basis Function (RBF) kernel
• Sigmoid kernel

Linear kernel
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The linear kernel is the simplest kernel function for pattern analysis.

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation
Refer to Developer Guide: Linear kernel.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::linear_kernel namespace and
are available via inclusion of the oneapi/dal/algo/linear_kernel.hpp header file.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::dense.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

descriptor()=default

Creates a new instance of the class with the default property values.

Properties

doubleshift

The coefficient  of the linear kernel. Default value: 0.0.

Getter & Setter double get_shift() constauto & set_shift(double value)

doublescale

The coefficient  of the linear kernel. Default value: 1.0.

Getter & Setter double get_scale() constauto & set_scale(double value)

Method tags

structdense

usingby_default=dense

Alias tag-type for the dense method.

Task tags
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structcompute

Tag-type that parameterizes entities that are used to compute statistics, distance, and so on.

usingby_default=compute

Alias tag-type for the compute task.

Training compute(...)

Input

template<typenameTask=task::by_default>classcompute_input

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_input(consttable&x, consttable&y)

Creates a new instance of the class with the given x and y.

Properties

consttable&y

An  table with the data y, where each row stores one feature vector. Default value: table{}.

Getter & Setter const table & get_y() constauto & set_y(const table &data)

consttable&x

An  table with the data x, where each row stores one feature vector. Default value: table{}.

Getter & Setter const table & get_x() constauto & set_x(const table &data)

Result

template<typenameTask=task::by_default>classcompute_result

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_result()

Creates a new instance of the class with the default property values.

Properties

consttable&values

A  table with the result kernel functions. Default value: table{}.

Getter & Setter const table & get_values() constauto & set_values(const table
&value)
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Operation

template<typenameDescriptor>linear_kernel::compute_resultcompute(constDescriptor&desc,
constlinear_kernel::compute_input&input)

Parameters • desc – Linear Kernel algorithm descriptor linear_kernel::descriptor.
• input – Input data for the computing operation

Preconditions input.data.is_empty==false

Polynomial kernel

The Polynomial kernel is a popular kernel function used in kernelized learning algorithms. It represents the
similarity of training samples in a feature space of polynomials of the original data and allows to fit non-linear
models.

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation
Refer to Developer Guide: Polynomial kernel.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::polynomial_kernel namespace
and are available via inclusion of the oneapi/dal/algo/polynomial_kernel.hpp header file.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::dense.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

descriptor()=default

Creates a new instance of the class with the default property values.

Properties

doubleshift

The coefficient  of the polynomial kernel. Default value: 0.0.

Getter & Setter double get_shift() constauto & set_shift(double value)
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std::int64_tdegree

The degree  of the polynomial kernel. Default value: 3.

Getter & Setter std::int64_t get_degree() constauto & set_degree(std::int64_t
value)

doublescale

The coefficient  of the polynomial kernel. Default value: 1.0.

Getter & Setter double get_scale() constauto & set_scale(double value)

Method tags

structdense

usingby_default=dense

Alias tag-type for the dense method.

Task tags

structcompute

Tag-type that parameterizes entities that are used to compute statistics, distance, and so on.

usingby_default=compute

Alias tag-type for the compute task.

Training compute(...)

Input

template<typenameTask=task::by_default>classcompute_input

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_input(consttable&x, consttable&y)

Creates a new instance of the class with the given x and y.

Properties

consttable&y

An  table with the data y, where each row stores one feature vector. Default value: table{}.

Getter & Setter const table & get_y() constauto & set_y(const table &data)

consttable&x

An  table with the data x, where each row stores one feature vector. Default value: table{}.
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Getter & Setter const table & get_x() constauto & set_x(const table &data)

Result

template<typenameTask=task::by_default>classcompute_result

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_result()

Creates a new instance of the class with the default property values.

Properties

consttable&values

A  table with the result kernel functions. Default value: table{}.

Getter & Setter const table & get_values() constauto & set_values(const table
&value)

Operation

template<typenameDescriptor>polynomial_kernel::compute_resultcompute(constDescriptor&des
c, constpolynomial_kernel::compute_input&input)

Parameters • desc – Polynomial Kernel algorithm descriptor
polynomial_kernel::descriptor

• input – Input data for the computing operation

Preconditions input.x.is_empty==falseinput.y.is_empty==falseinput.x.column_count=
=input.y.column_count

Postconditions result.values.has_data==trueresult.values.row_count==input.x.row_co
untresult.values.column_count==input.y.row_count

Radial Basis Function (RBF) kernel

The Radial Basis Function (RBF) kernel is a popular kernel function used in kernelized learning algorithms.

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation
Refer to Developer Guide: Radial Basis Function (RBF) kernel.
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Programming Interface
All types and functions in this section are declared in the oneapi::dal::rbf_kernel namespace and are
available via inclusion of the oneapi/dal/algo/rbf_kernel.hpp header file.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::dense.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

descriptor()=default

Creates a new instance of the class with the default property values.

Properties

doublesigma

The coefficient  of the RBF kernel. Default value: 1.0.

Getter & Setter double get_sigma() constauto & set_sigma(double value)

Method tags

structdense

usingby_default=dense

Task tags

structcompute

Tag-type that parameterizes entities that are used to compute statistics, distance, and so on.

usingby_default=compute

Alias tag-type for the dense method.

Training compute(...)

Input

template<typenameTask=task::by_default>classcompute_input

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_input(consttable&x, consttable&y)

  1  Intel® oneAPI Data Analytics Library Developer Guide and Reference

562



Creates a new instance of the class with the given x and y.

Properties

consttable&y

An  table with the data y, where each row stores one feature vector. Default value: table{}.

Getter & Setter const table & get_y() constauto & set_y(const table &data)

consttable&x

An  table with the data x, where each row stores one feature vector. Default value: table{}.

Getter & Setter const table & get_x() constauto & set_x(const table &data)

Result

template<typenameTask=task::by_default>classcompute_result

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_result()

Creates a new instance of the class with the default property values.

Properties

consttable&values

A  table with the result kernel functions. Default value: table{}.

Getter & Setter const table & get_values() constauto & set_values(const table
&value)

Operation

template<typenameDescriptor>rbf_kernel::compute_resultcompute(constDescriptor&desc,
constrbf_kernel::compute_input&input)

Parameters • desc – RBF Kernel algorithm descriptor rbf_kernel::descriptor.
• input – Input data for the computing operation

Preconditions input.data.is_empty==false

Sigmoid kernel

The Sigmoid kernel is a popular kernel function used in kernelized learning algorithms.

Operation Computational
methods

Programmi
ng
Interface

Intel® oneAPI Data Analytics Library (oneDAL)  1  

563



dense dense compute(…) compute_input compute_result

Mathematical formulation
Refer to Developer Guide: Sigmoid kernel.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::sigmoid_kernel namespace and
are available via inclusion of the oneapi/dal/algo/sigmoid_kernel.hpp header file.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies the implementation of the algorithm. Can
be method::dense.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

descriptor()=default

Creates a new instance of the class with the default property values.

Properties

doubleshift

The coefficient  of the sigmoid kernel. Default value: 0.0.

Getter & Setter double get_shift() constauto & set_shift(double value)

doublescale

The coefficient  of the sigmoid kernel. Default value: 1.0.

Getter & Setter double get_scale() constauto & set_scale(double value)

Method tags

structdense

usingby_default=dense

Alias tag-type for the dense method.

Task tags

structcompute

Tag-type that parameterizes entities that are used to compute statistics, distance, and so on.

usingby_default=compute
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Alias tag-type for the compute task.

Training compute(...)

Input

template<typenameTask=task::by_default>classcompute_input

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_input(consttable&x, consttable&y)

Creates a new instance of the class with the given x and y.

Properties

consttable&y

An  table with the data y, where each row stores one feature vector. Default value: table{}.

Getter & Setter const table & get_y() constauto & set_y(const table &data)

consttable&x

An  table with the data x, where each row stores one feature vector. Default value: table{}.

Getter & Setter const table & get_x() constauto & set_x(const table &data)

Result

template<typenameTask=task::by_default>classcompute_result

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_result()

Creates a new instance of the class with the default property values.

Properties

consttable&values

An  table with the result kernel functions. Default value: table{}.

Getter & Setter const table & get_values() constauto & set_values(const table
&value)

Operation

template<typenameDescriptor>sigmoid_kernel::compute_resultcompute(constDescriptor&desc,
constsigmoid_kernel::compute_input&input)
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Parameters • desc – Sigmoid Kernel algorithm descriptor sigmoid_kernel::descriptor
• input – Input data for the computing operation

Preconditions input.x.is_empty==falseinput.y.is_empty==falseinput.x.column_count=
=input.y.column_count

Postconditions result.values.has_data==trueresult.values.row_count==input.x.row_co
untresult.values.column_count==input.y.row_count

Nearest Neighbors (kNN)

This chapter describes programming interfaces of the nearest neighbors algorithms implemented in oneDAL:

• k-Nearest Neighbors Classification (k-NN)

k-Nearest Neighbors Classification (k-NN)

k-NN classification and search algorithms are based on finding the k nearest observations to the training set.
For classification, the problem is to infer the class of a new feature vector by computing the majority vote of
its k nearest observations from the training set. For search, the problem is to infer k nearest observations
from the training set to a new feature vector. The nearest observations are computed based on the chosen
distance metric.

Operation Computational
methods

Programming
Interface

Training Brute-force k-d tree train(…) train_input train_result

Inference Brute-force k-d tree infer(…) infer_input infer_result

Mathematical formulation
Refer to Developer Guide: k-Nearest Neighbors Classification.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::knn namespace and be available
via inclusion of the oneapi/dal/algo/knn.hpp header file.

Enum classes

enumclassvoting_mode

voting_mode::uniform Uniform weights for neighbors for prediction voting.

voting_mode::distance Weight neighbors by the inverse of their distance.

Result options

classresult_option_id

Public Methods

constexprresult_option_id()=default

constexprresult_option_id(constresult_option_id_base&base)
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Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault,typenameDistance=oneapi::dal::minkowski_distance::descriptor<Float>>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::brute_force or method::kd_tree.

• Task – Tag-type that specifies type of the problem to solve. Can be
task::classification, task::regression, or task::search.

• Distance – The descriptor of the distance used for computations. Can be
minkowski_distance::descriptor or chebyshev_distance::descriptor.

Constructors

descriptor(std::int64_tclass_count, std::int64_tneighbor_count)

Creates a new instance of the class with the given class_count and neighbor_count property values.

template<typenameM=Method,typenameNone=detail::enable_if_brute_force_t<M>>descriptor(s
td::int64_tclass_count, std::int64_tneighbor_count, constdistance_t&distance)

Creates a new instance of the class with the given class_count, neighbor_count and distance property
values. Used with method::brute_force only.

template<typenameT=Task,typenameNone=detail::enable_if_not_classification_t<T>>descriptor
(std::int64_tneighbor_count)

Creates a new instance of the class with the given neighbor_count property value. Used with task::search
and task::regression only.

template<typenameT=Task,typenameNone=detail::enable_if_not_classification_t<T>>descriptor
(std::int64_tneighbor_count, constdistance_t&distance)

Creates a new instance of the class with the given neighbor_count and distance property values. Used
with task::search and task::regression only.

Properties

voting_modevoting_mode

The voting mode.

Getter & Setter voting_mode get_voting_mode() constauto &
set_voting_mode(voting_mode value)

result_option_idresult_options

Choose which results should be computed and returned.

Getter & Setter result_option_id get_result_options() constauto &
set_result_options(const result_option_id &value)

constdistance_t&distance

Choose distance type for calculations. Used with method::brute_force only.
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Getter & Setter template <typename M = Method, typename None =
detail::enable_if_brute_force_t<M>> const distance_t &
get_distance() consttemplate <typename M = Method, typename None
= detail::enable_if_brute_force_t<M>> auto & set_distance(const
distance_t &dist)

std::int64_tclass_count

The number of classes c.

Getter & Setter std::int64_t get_class_count() constauto &
set_class_count(std::int64_t value)

Invariants class_count>1

std::int64_tneighbor_count

The number of neighbors k.

Getter & Setter std::int64_t get_neighbor_count() constauto &
set_neighbor_count(std::int64_t value)

Invariants neighbor_count>0

Method tags

structbrute_force

Tag-type that denotes brute-force computational method.

structkd_tree

Tag-type that denotes k-d tree computational method.

usingby_default=brute_force

Alias tag-type for brute-force computational method.

Task tags

structclassification

Tag-type that parameterizes entities used for solving classification problem.

structregression

Tag-type that parameterizes entities used for solving the regression problem.

structsearch

Tag-type that parameterizes entities used for solving the search problem.

usingby_default=classification

Alias tag-type for classification task.

Model
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template<typenameTask=task::by_default>classmodel

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification, task::search and task::regression.

Constructors

model()

Creates a new instance of the class with the default property values.

Training train(...)

Input

template<typenameTask=task::by_default>classtrain_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification or task::search.

Constructors

train_input(consttable&data, consttable&responses)

Creates a new instance of the class with the given data and responses property values.

train_input(consttable&data)

Properties

consttable&data

The training set X. Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &data)

consttable&responses

Vector of responses y for the training set X. Default value: table{}.

Getter & Setter const table & get_responses() consttemplate <typename T = Task,
typename None = detail::enable_if_classification_t<T>> auto &
set_responses(const table &responses)

consttable&labels

Vector of labels y for the training set X. Default value: table{}.

Getter & Setter const table & get_labels() consttemplate <typename T = Task,
typename None = detail::enable_if_classification_t<T>> auto &
set_labels(const table &value)

Result

template<typenameTask=task::by_default>classtrain_result
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Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification or task::search.

Constructors

train_result()

Creates a new instance of the class with the default property values.

Properties

constmodel<Task>&model

The trained k-NN model. Default value: model<Task>{}.

Getter & Setter const model< Task > & get_model() constauto & set_model(const
model< Task > &value)

Operation

template<typenameDescriptor>knn::train_resulttrain(constDescriptor&desc,
constknn::train_input&input)

Parameters • desc – k-NN algorithm descriptor knn::descriptor
• input – Input data for the training operation

Preconditions input.data.has_data==trueinput.labels.has_data==trueinput.data.row_c
ount==input.labels.row_countinput.labels.column_count==1input.labels
[i]>=0input.labels[i]<desc.class_count

Inference infer(...)

Input

template<typenameTask=task::by_default>classinfer_input

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification or task::search.

Constructors

infer_input(consttable&data, constmodel<Task>&model)

Creates a new instance of the class with the given model and data property values.

Properties

consttable&data

The dataset for inference . Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &data)

constmodel<Task>&model

The trained k-NN model. Default value: model<Task>{}.
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Getter & Setter const model< Task > & get_model() constauto & set_model(const
model< Task > &m)

Result

template<typenameTask=task::by_default>classinfer_result

Template Parameters Task – Tag-type that specifies type of the problem to solve. Can be
task::classification or task::search.

Constructors

infer_result()

Creates a new instance of the class with the default property values.

Properties

consttable&responses

The predicted responses. Default value: table{}.

Getter & Setter const table & get_responses() consttemplate <typename T = Task,
typename None = detail::enable_if_not_search_t<T>> auto &
set_responses(const table &value)

consttable&indices

Indices of nearest neighbors. Default value: table{}.

Getter & Setter const table & get_indices() constauto & set_indices(const table
&value)

constresult_option_id&result_options

Result options that indicates availability of the properties.

Getter & Setter const result_option_id & get_result_options() constauto &
set_result_options(const result_option_id &value)

consttable&distances

Distances to nearest neighbors. Default value: table{}.

Getter & Setter const table & get_distances() constauto & set_distances(const
table &value)

consttable&labels

The predicted labels. Default value: table{}.

Getter & Setter const table & get_labels() consttemplate <typename T = Task,
typename None = detail::enable_if_classification_t<T>> auto &
set_labels(const table &value)
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Operation

template<typenameDescriptor>knn::infer_resultinfer(constDescriptor&desc,
constknn::infer_input&input)

Parameters • desc – k-NN algorithm descriptor knn::descriptor
• input – Input data for the inference operation

Preconditions input.data.has_data==true

Postconditions result.labels.row_count==input.data.row_countresult.labels.column_co
unt==1result.labels[i]>=0result.labels[i]<desc.class_count

Usage example

Training

knn::model<> run_training(const table& data,
                        const table& labels) {
   const std::int64_t class_count = 10;
   const std::int64_t neighbor_count = 5;
   const auto knn_desc = knn::descriptor<float>{class_count, neighbor_count};

   const auto result = train(knn_desc, data, labels);

   return result.get_model();
}

Inference

table run_inference(const knn::model<>& model,
                  const table& new_data) {
   const std::int64_t class_count = 10;
   const std::int64_t neighbor_count = 5;
   const auto knn_desc = knn::descriptor<float>{class_count, neighbor_count};

   const auto result = infer(knn_desc, model, new_data);

   print_table("labels", result.get_labels());
}

Examples
oneAPI DPC++

Batch Processing:

• dpc_knn_cls_brute_force_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_knn_cls_brute_force_dense_batch.cpp
• cpp_knn_cls_kd_tree_dense_batch.cpp
• cpp_knn_search_brute_force_dense_batch.cpp

Python* with DPC++ support

Batch Processing:
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• bf_knn_classification_batch.py

Pairwise Distances

This chapter describes programming interfaces of the pairwise distances implemented in oneDAL:

• Minkowski distance
• Chebyshev distance
• Cosine distance

Minkowski distance

The Minkowski distances are the set of distance metrics with different degree  and are widely used
for distance computation in different algorithms. The most commonly used distance metric, Euclidean

distance, is also a Minkowski distance with .

Operation Computational methods

dense dense

Mathematical formulation
Refer to Developer Guide: Minkowski distance.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::minkowski_distance namespace.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an the implementation of the algorithm.
Can be method::dense.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

descriptor()=default

Creates a new instance of the class with the default property values.

descriptor(doubledegree)

Creates a new instance of the class with the external property values.

Properties

doubledegree

The coefficient  of the Minkowski distance. Default value: 2.0.

Getter & Setter double get_degree() constauto & set_degree(double value)
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Method tags

structdense

usingby_default=dense

Alias tag-type for the dense method.

Task tags

structcompute

Tag-type that parameterizes entities that are used to compute distances.

usingby_default=compute

Alias tag-type for the compute task.

Chebyshev distance

The Chebyshev distance equals the limit of Minkowski distance metric with .

Operation Computational methods

dense dense

Mathematical formulation
Refer to Developer Guide: Chebyshev distance.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::chebyshev_distance namespace.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an the implementation of the algorithm.
Can be method::dense.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

descriptor()=default

Creates a new instance of the class with the default property values.

Method tags

structdense

usingby_default=dense

Alias tag-type for the dense method.
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Task tags

structcompute

Tag-type that parameterizes entities that are used to compute distances.

usingby_default=compute

Alias tag-type for the compute task.

Cosine distance

The Cosine distance is a measure of distance between two non-zero vectors of an inner product space.

Operation Computational methods

dense dense

Mathematical formulation
Refer to Developer Guide: Minkowski distance.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::cosine_distance namespace.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies the implementation of the algorithm. Can
be method::dense.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

descriptor()=default

Creates a new instance of the class with the default property values.

Method tags

structdense

usingby_default=dense

Alias tag-type for the dense method.

Task tags

structcompute

Tag-type that parameterizes entities that are used to compute distances.

usingby_default=compute
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Alias tag-type for the compute task.

Statistics

This chapter describes programming interfaces of the basic statistics algorithm implemented in oneDAL:

• Basic Statistics

Basic Statistics

Basic statistics algorithm computes the following set of quantitative dataset characteristics:

• minimums/maximums
• sums
• means
• sums of squares
• sums of squared differences from the means
• second order raw moments
• variances
• standard deviations
• variations

Operation Computational
methods

Programmi
ng
Interface

dense dense compute(…) compute_input compute_result

Mathematical formulation
Refer to Developer Guide: Basic statistics.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::basic_statistics namespace
and are available via inclusion of the oneapi/dal/algo/basic_statistics.hpp header file.

Descriptor

template<typenameFloat=detail::descriptor_base<>::float_t,typenameMethod=detail::descriptor
_base<>::method_t,typenameTask=detail::descriptor_base<>::task_t>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::dense.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Properties

result_option_idresult_options

Choose which results should be computed and returned.

Getter & Setter result_option_id get_result_options() constauto &
set_result_options(const result_option_id &value)
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Method tags

structdense

Tag-type that denotes dense computational method.

usingby_default=dense

Alias tag-type for dense computational method.

Task tags

structcompute

Tag-type that parameterizes entities that are used to compute statistics.

usingby_default=compute

Alias tag-type for the compute task.

Training compute(...)

Input

template<typenameTask=task::by_default>classcompute_input

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors

compute_input(consttable&data)

Creates a new instance of the class with the given data property value.

compute_input(consttable&data, consttable&weights)

Properties

consttable&data

An  table with the training data, where each row stores one feature vector. Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &data)

consttable&weights

Getter & Setter const table & get_weights() constauto & set_weights(const table
&weights)

Result

template<typenameTask=task::by_default>classcompute_result

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::compute.

Constructors
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compute_result()

Creates a new instance of the class with the default property values.

Properties

consttable&sum

A  table, where element  is the sum result for feature . Default value: table{}.

Getter & Setter const table & get_sum() constauto & set_sum(const table &value)

consttable&variance

A  table, where element  is the variance result for feature . Default value: table{}.

Getter & Setter const table & get_variance() constauto & set_variance(const table
&value)

constresult_option_id&result_options

Result options that indicates availability of the properties. Default value: full set of.

Getter & Setter const result_option_id & get_result_options() constauto &
set_result_options(const result_option_id &value)

consttable&second_order_raw_moment

A  table, where element  is the second_order_raw_moment result for feature . Default value:
table{}.

Getter & Setter const table & get_second_order_raw_moment() constauto &
set_second_order_raw_moment(const table &value)

consttable&max

A  table, where element  is the maximum result for feature . Default value: table{}.

Getter & Setter const table & get_max() constauto & set_max(const table &value)

consttable&standard_deviation

A  table, where element  is the standard_deviation result for feature . Default value: table{}.

Getter & Setter const table & get_standard_deviation() constauto &
set_standard_deviation(const table &value)

consttable&min

A  table, where element  is the minimum result for feature . Default value: table{}.

Getter & Setter const table & get_min() constauto & set_min(const table &value)
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consttable&sum_squares_centered

A  table, where element  is the sum_squares_centered result for feature . Default value: table{}.

Getter & Setter const table & get_sum_squares_centered() constauto &
set_sum_squares_centered(const table &value)

consttable&variation

A  table, where element  is the variation result for feature . Default value: table{}.

Getter & Setter const table & get_variation() constauto & set_variation(const
table &value)

consttable&sum_squares

A  table, where element  is the sum_squares result for feature . Default value: table{}.

Getter & Setter const table & get_sum_squares() constauto & set_sum_squares(const
table &value)

consttable&mean

A  table, where element  is the mean result for feature . Default value: table{}.

Getter & Setter const table & get_mean() constauto & set_mean(const table &value)

Operation

template<typenameDescriptor>basic_statistics::compute_resultcompute(constDescriptor&desc,
constbasic_statistics::compute_input&input)

Parameters • desc – Basic statistics algorithm descriptor basic_statistics::descriptor
• input – Input data for the computing operation

Preconditions input.data.is_empty==false

Support Vector Machines

This chapter describes programming interfaces of the support vector machines implemented in oneDAL:

• Support Vector Machine Classifier (SVM)

Support Vector Machine Classifier (SVM)

Support Vector Machine (SVM) classification and regression are among popular algorithms. It belongs to a
family of generalized linear classification problems.

Operation Computational
methods

Programming
Interface

Training SMO Thunder train(…) train_input train_result
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Inference SMO Thunder infer(…) infer_input infer_result

Mathematical formulation
Refer to Developer Guide: Support Vector Machine Classifier.

Programming Interface
All types and functions in this section are declared in the oneapi::dal::svm namespace and are available
via inclusion of the oneapi/dal/algo/svm.hpp header file.

Descriptor

template<typenameFloat=float,typenameMethod=method::by_default,typenameTask=task::by_d
efault,typenameKernel=linear_kernel::descriptor<Float>>classdescriptor

Template Parameters • Float – The floating-point type that the algorithm uses for intermediate
computations. Can be float or double.

• Method – Tag-type that specifies an implementation of algorithm. Can be
method::thunder or method::smo.

• Task – Tag-type that specifies the type of the problem to solve. Can be
task::classification, task::nu_classification, task::regression, or
task::nu_regression.

Constructors

descriptor(constKernel&kernel=kernel_t{})

Creates a new instance of the class with the given descriptor of the kernel function.

Properties

std::int64_tmax_iteration_count

The maximum number of iterations . Default value: 100000.

Getter & Setter std::int64_t get_max_iteration_count() constauto &
set_max_iteration_count(std::int64_t value)

Invariants max_iteration_count>=0

doubleepsilon

The epsilon. Used with task::regression only. Default value: 0.1.

Getter & Setter template <typename T = Task, typename None =
detail::enable_if_epsilon_available_t<T>> double get_epsilon()
consttemplate <typename T = Task, typename None =
detail::enable_if_epsilon_available_t<T>> auto &
set_epsilon(double value)

Invariants epsilon>=0

doublecache_size

The size of cache (in megabytes) for storing the values of the kernel matrix. Default value: 200.0.
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Getter & Setter double get_cache_size() constauto & set_cache_size(double value)

Invariants cache_size>=0.0

doublenu

The nu. Used with task::nu_classification and task::nu_regression. Default value: 0.5.

Getter & Setter template <typename T = Task, typename None =
detail::enable_if_nu_task_t<T>> double get_nu() consttemplate
<typename T = Task, typename None =
detail::enable_if_nu_task_t<T>> auto & set_nu(double value)

Invariants 0<nu<=1

doublec

The upper bound  in constraints of the quadratic optimization problem. Used with task::classification,
task::regression, and task::nu_regression. Default value: 1.0.

Getter & Setter template <typename T = Task, typename None =
detail::enable_if_c_available_t<T>> double get_c() consttemplate
<typename T = Task, typename None =
detail::enable_if_c_available_t<T>> auto & set_c(double value)

Invariants c>0

constKernel&kernel

The descriptor of kernel function . Can be linear_kernel::descriptor or
polynomial_kernel::descriptor or rbf_kernel::descriptor or sigmoid_kernel::descriptor.

Getter & Setter const Kernel & get_kernel() constauto & set_kernel(const Kernel
&kernel)

std::int64_tclass_count

The number of classes. Used with task::classification and task::nu_classification. Default value: 2.

Getter & Setter template <typename T = Task, typename None =
detail::enable_if_classification_t<T>> std::int64_t
get_class_count() consttemplate <typename T = Task, typename None
= detail::enable_if_classification_t<T>> auto &
set_class_count(std::int64_t value)

Invariants class_count>=2

doubleaccuracy_threshold

The threshold  for the stop condition. Default value: 0.0.
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Getter & Setter double get_accuracy_threshold() constauto &
set_accuracy_threshold(double value)

Invariants accuracy_threshold>=0.0

boolshrinking

A flag that enables the use of a shrinking optimization technique. Used with method::smo split-finding
method only. Default value: true.

Getter & Setter bool get_shrinking() constauto & set_shrinking(bool value)

doubletau

The threshold parameter  for computing the quadratic coefficient. Default value: 1e-6.

Getter & Setter double get_tau() constauto & set_tau(double value)

Invariants tau>0.0

Method tags

structsmo

Tag-type that denotes SMO computational method.

structthunder

Tag-type that denotes Thunder computational method.

usingby_default=thunder

Alias tag-type for Thunder computational method.

Task tags

structclassification

Tag-type that parameterizes entities that are used for solving classification problem.

structnu_classification

Tag-type that parameterizes entities that are used for solving nu-classification problem.

structnu_regression

Tag-type that parameterizes entities used for solving nu-regression problem.

structregression

Tag-type that parameterizes entities used for solving regression problem.

usingby_default=classification

Alias tag-type for classification task.

Model

template<typenameTask=task::by_default>classmodel
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Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
task::classification, task::nu_classification, task::regression, or
task::nu_regression.

Constructors

model()

Creates a new instance of the class with the default property values.

Public Methods

std::int64_tget_support_vector_count()const

The number of support vectors.

Properties

consttable&biases

A  table for task::classification and task::nu_classification
and a  table for task::regression and task::nu_regression containing constants in decision function.

Getter & Setter const table & get_biases() constauto & set_biases(const table
&value)

std::int64_tfirst_class_response

The first unique value in class responses. Used with task::classification and task::nu_classification.

Getter & Setter std::int64_t get_first_class_response() consttemplate <typename T
= Task, typename None = detail::enable_if_classification_t<T>>
auto & set_first_class_response(std::int64_t value)

std::int64_tfirst_class_label

The first unique value in class labels. Used with task::classification and task::nu_classification.

Getter & Setter std::int64_t get_first_class_label() consttemplate <typename T =
Task, typename None = detail::enable_if_classification_t<T>> auto
& set_first_class_label(std::int64_t value)

consttable&support_vectors

A  table containing support vectors. Where  - number of support vectors. Default value:
table{}.

Getter & Setter const table & get_support_vectors() constauto &
set_support_vectors(const table &value)

consttable&coeffs

A  table for task::classification and task::nu_classification and a 
table for task::regression and task::nu_regression containing coefficients of Lagrange multiplier. Default
value: table{}.
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Getter & Setter const table & get_coeffs() constauto & set_coeffs(const table
&value)

std::int64_tsecond_class_response

The second unique value in class responses. Used with task::classification and task::nu_classification.

Getter & Setter std::int64_t get_second_class_response() consttemplate <typename
T = Task, typename None = detail::enable_if_classification_t<T>>
auto & set_second_class_response(std::int64_t value)

doublebias

The bias. Default value: 0.0.

Getter & Setter double get_bias() constauto & set_bias(double value)

std::int64_tsecond_class_label

The second unique value in class labels. Used with task::classification and task::nu_classification.

Getter & Setter std::int64_t get_second_class_label() consttemplate <typename T =
Task, typename None = detail::enable_if_classification_t<T>> auto
& set_second_class_label(std::int64_t value)

Training train(...)

Input

template<typenameTask=task::by_default>classtrain_input

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
oneapi::dal::svm::task::classification,
oneapi::dal::svm::task::nu_classification,
oneapi::dal::svm::task::regression, or
oneapi::dal::svm::task::nu_regression.

Constructors

train_input(consttable&data, consttable&responses, consttable&weights=table{})

Creates a new instance of the class with the given data, responses and weights.

Properties

consttable&data

The training set . Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &value)

consttable&weights

The vector of weights  for the training set . Default value: table{}.
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Getter & Setter const table & get_weights() constauto & set_weights(const table
&value)

consttable&responses

The vector of responses  for the training set . Default value: table{}.

Getter & Setter const table & get_responses() constauto & set_responses(const
table &value)

consttable&labels

The vector of labels  for the training set . Default value: table{}.

Getter & Setter const table & get_labels() constauto & set_labels(const table
&value)

Result

template<typenameTask=task::by_default>classtrain_result

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
oneapi::dal::svm::task::classification,
oneapi::dal::svm::task::nu_classification,
oneapi::dal::svm::task::regression, or
oneapi::dal::svm::task::nu_regression.

Constructors

train_result()

Creates a new instance of the class with the default property values.

Public Methods

std::int64_tget_support_vector_count()const

The number of support vectors.

Properties

consttable&biases

A  table for task::classification and task::classification and
 table for task::regression and task::nu_regression containing constants in decision function.

Getter & Setter const table & get_biases() constauto & set_biases(const table
&value)

consttable&support_vectors

A  table containing support vectors, where  is the number of support vectors. Default value:
table{}.
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Getter & Setter const table & get_support_vectors() constauto &
set_support_vectors(const table &value)

consttable&coeffs

A  table for task::classification and task::classification and  table for
task::regression and task::nu_regression containing coefficients of Lagrange multiplier. Default value:
table{}.

Getter & Setter const table & get_coeffs() constauto & set_coeffs(const table
&value)

consttable&support_indices

A  table containing support indices. Default value: table{}.

Getter & Setter const table & get_support_indices() constauto &
set_support_indices(const table &value)

doublebias

The bias. Default value: 0.0.

Getter & Setter double get_bias() constauto & set_bias(double value)

constmodel<Task>&model

The trained SVM model. Default value: model<Task>{}.

Getter & Setter const model< Task > & get_model() constauto & set_model(const
model< Task > &value)

Operation

template<typenameDescriptor>svm::train_resulttrain(constDescriptor&desc,
constsvm::train_input&input)

Parameters • desc – SVM algorithm descriptor svm::descriptor.
• input – Input data for the training operation

Preconditions input.data.is_empty==falseinput.labels.is_empty==falseinput.labels.col
umn_count==1input.data.row_count==input.labels.row_count

Inference infer(...)

Input

template<typenameTask=task::by_default>classinfer_input
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Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
oneapi::dal::svm::task::classification,
oneapi::dal::svm::task::nu_classification,
oneapi::dal::svm::task::regression, or
oneapi::dal::svm::task::nu_regression.

Constructors

infer_input(constmodel<Task>&trained_model, consttable&data)

Creates a new instance of the class with the given model and data property values.

Properties

consttable&data

The dataset for inference . Default value: table{}.

Getter & Setter const table & get_data() constauto & set_data(const table &value)

constmodel<Task>&model

The trained SVM model. Default value: model<Task>{}.

Getter & Setter const model< Task > & get_model() constauto & set_model(const
model< Task > &value)

Result

template<typenameTask=task::by_default>classinfer_result

Template Parameters Task – Tag-type that specifies the type of the problem to solve. Can be
oneapi::dal::svm::task::classification,
oneapi::dal::svm::task::nu_classification,
oneapi::dal::svm::task::regression, or
oneapi::dal::svm::task::nu_regression.

Constructors

infer_result()

Creates a new instance of the class with the default property values.

Properties

consttable&labels

The  table with the predicted labels. Default value: table{}.

Getter & Setter const table & get_labels() constauto & set_labels(const table
&value)

consttable&decision_function

The  table with the predicted class. Used with oneapi::dal::svm::task::classification and
oneapi::dal::svm::task::nu_classification. decision function for each observation. Default value:
table{}.
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Getter & Setter const table & get_decision_function() consttemplate <typename T =
Task, typename None = detail::enable_if_classification_t<T>> auto
& set_decision_function(const table &value)

consttable&responses

The  table with the predicted responses. Default value: table{}.

Getter & Setter const table & get_responses() constauto & set_responses(const
table &value)

Operation

template<typenameDescriptor>svm::infer_resultinfer(constDescriptor&desc,
constsvm::infer_input&input)

Parameters • desc – SVM algorithm descriptor svm::descriptor.
• input – Input data for the inference operation

Preconditions input.data.is_empty==false

Examples
oneAPI DPC++

Batch Processing:

• dpc_svm_two_class_thunder_dense_batch.cpp

oneAPI C++

Batch Processing:

• cpp_svm_two_class_smo_dense_batch.cpp
• cpp_svm_two_class_thunder_dense_batch.cpp
• cpp_svm_reg_thunder_dense_batch.cpp
• cpp_svm_multi_class_thunder_dense_batch.cpp
• cpp_svm_nu_cls_thunder_dense_batch.cpp
• cpp_svm_nu_reg_thunder_dense_batch.cpp

Python* with DPC++ support

Batch Processing:

• svm_batch.py

Distributed Model: Single Process Multiple Data

Refer to Developer Guide: SPMD distributed model.

• Distributed SPMD model

• Programming interface
• Usage example

• Communicators

• Programming interface

• Communicator
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• USM and non-USM memory usage
• Request
• Reducion operations

Distributed SPMD model

Refer to Developer Guide: SPMD.

Programming interface
All types and functions in this section are declared in the oneapi::dal::spmd::preview namespace and
are available via inclusion of the header file from specified backend.

SPMD distributed model consists of the following components:

1. Additional train, infer, and compute methods that accept communicator object as the first
parameter. Those methods are expected to be called on all ranks to start distributed simulations.

2. The communicator class that contains methods to perform collective operations among all ranks.
3. Free functions to create a communicator using a specified communicator backend. Available backends

are ccl and mpi.

Usage example
The following listings provide a brief introduction on how to create a particular communicator.

MPI backend

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/kmeans.hpp"
#include "oneapi/dal/spmd/mpi/communicator.hpp"

kmeans::model<> run_training(const table& data,
                           const table& initial_centroids) {
   const auto kmeans_desc = kmeans::descriptor<float>{}
      .set_cluster_count(10)
      .set_max_iteration_count(50)
      .set_accuracy_threshold(1e-4);

   auto comm = dal::preview::spmd::make_communicator<dal::preview::spmd::backend::mpi>(queue);
   auto rank_id = comm.get_rank();

   const auto result_train = dal::preview::train(comm, kmeans_desc, local_input);

   if(rank_id == 0) {
      print_table("centroids", result.get_model().get_centroids());
      print_value("objective", result.get_objective_function_value());
   }
   return result.get_model();
}

CCL backend

#ifndef ONEDAL_DATA_PARALLEL
#define ONEDAL_DATA_PARALLEL
#endif

#include "oneapi/dal/algo/kmeans.hpp"
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#include "oneapi/dal/spmd/ccl/communicator.hpp"

kmeans::model<> run_training(const table& data,
                           const table& initial_centroids) {
   const auto kmeans_desc = kmeans::descriptor<float>{}
      .set_cluster_count(10)
      .set_max_iteration_count(50)
      .set_accuracy_threshold(1e-4);

   auto comm = dal::preview::spmd::make_communicator<dal::preview::spmd::backend::ccl>(queue);
   auto rank_id = comm.get_rank();

   const auto result_train = dal::preview::train(comm, kmeans_desc, local_input);

   if(rank_id == 0) {
      print_table("centroids", result.get_model().get_centroids());
      print_value("objective", result.get_objective_function_value());
   }
   return result.get_model();
}

Communicators

Programming interface
All types and functions in this section are declared in the oneapi::dal::spmd::preview namespace and
are available via inclusion of the header file from specified backend.

Communicator

A base implementation of the communicator concept. The communicator type and all of its subtypes are 
reference-counted:

1. The instance stores a pointer to the communicator implementation that holds all property values and
data.

2. The reference count indicates how many communicator objects refer to the same implementation.
3. The communicator increments the reference count for it to be equal to the number of communicator

objects sharing the same implementation.
4. The communicator decrements the reference count when the communicator goes out of the scope. If

the reference count is zero, the communicator frees its implementation.

USM and non-USM memory usage

There are two types of memory access:

• USM memory access (both USM and non-USM pointers can be used)
• Host, or non-USM, memory access (only non-USM pointers can be used)

Use one of the following tags to select a memory access type:

device_memory_access::n
one

Assumes only non-USM pointers are used for a collective operation.

device_memory_access::u
sm

Both USM and non-USM can be used. Pointer type is controlled by the use of
sycl::queue object as a first parameter for collective operations. The use of
sycl::queue object is obligatory for USM pointers.

Request
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Request is an object to control asynchronous communication.

Reducion operations

The following reduction operations are supported:

• Max
• Min
• Sum

Notices and Disclaimers
Performance varies by use, configuration and other factors. Learn more at www.Intel.com/PerformanceIndex.

No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.
© Intel Corporation. Intel, the Intel logo, and other Intel marks are trademarks of Intel Corporation or its
subsidiaries. Other names and brands may be claimed as the property of others.

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this
document.

The products described may contain design defects or errors known as errata which may cause the product
to deviate from published specifications. Current characterized errata are available on request.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of
merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from
course of performance, course of dealing, or usage in trade.
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