

Document Number: 336212

Intel® QuickAssist Technology (Intel®

QAT) Software for Linux*

Getting Started Guide -- Customer Enabling Release

Revision 018

April 2025

2 Getting Started Guide

Legal Notices & Disclaimers

Performance varies by use, configuration and other factors. Learn more on Intel’s Performance Index site .

Performance results are based on testing as of dates shown in configurations and may not reflect all publicly
available updates. See backup for configuration details. No product or component can be absolutely secure.

Your costs and results may vary.

Intel technologies may require enabled hardware, software or service activation.

The products described may contain design defects or errors known as errata which may cause the product to
deviate from published specifications. Current characterized errata are available on request.

Code names are used by Intel to identify products, technologies, or services that are in development and not
publicly available. These are not “commercial” names and not intended to function as trademarks.

See Intel’s Legal Notices and Disclaimers .

© Intel Corporation. Intel, the Intel logo, Atom, Xeon, and other Intel marks are trademarks of Intel Corporation
or its subsidiaries. Other names and brands may be claimed as the property of others.

https://edc.intel.com/content/www/us/en/products/performance/benchmarks/overview/
https://www.intel.com/LegalNoticesAndDisclaimers

Getting Started Guide 3

Contents
1 Introduction .. 8

1.1 About This Manual ... 8
1.2 Additional Information on Software ... 9

1.2.1 Accessing Additional Content from My Intel® .. 9
1.2.2 Product Documentation ... 9

1.3 Related Software and Documentation ...10
1.4 Conventions and Terminology ...10
1.5 Software Overview .. 11

1.5.1 Features Implemented .. 11
1.5.2 List of Files in Release .. 11
1.5.3 Package Release Structure ... 11

2 Installing the Operating System ... 12
2.1 Acquiring CentOS* 7.. 12
2.2 Configure the BIOS ... 12
2.3 Installing CentOS* 7 ... 13
2.4 Updating Grub Configuration File .. 14
2.5 Configuring Linux* .. 14

2.5.1 Updating yum Configuration Files .. 14
2.5.1.1 /etc/yum.conf ... 15

2.6 System Security Considerations .. 15
3 Building and Installing Software ... 16

3.1 Unpacking the Software ... 16
3.2 Installation Overview .. 16

3.2.1 Installation Commands .. 17
3.2.2 Starting the Driver .. 18
3.2.3 Installation Procedure ... 20

3.2.3.1 Standard Installation Procedure ... 20
3.2.3.2 XEN Installation Procedure... 20
3.2.3.3 Platform Cross-Compilation Procedure ... 22

3.3 Starting/Stopping the Acceleration Software ... 26
3.4 Configuration Files ... 27

3.4.1 Configuration File Overview ... 27
3.4.2 Configuration Files and Virtualization .. 28

4 Sample Applications .. 29
4.1 Intel® QAT Accelerator Sample Application .. 29

4.1.1 Compiling the Acceleration Sample Code .. 29
4.1.2 Loading the Sample Code .. 29

4.1.2.1 The signOfLife Tests ... 31
4.1.3 Test Results ... 32

4.2 Intel® QAT API Sample Code .. 32
4.2.1 Compiling the Acceleration Functional Sample Code ... 32
4.2.2 Executing the Acceleration Functional Sample Code in User Space33

5 Installing, Building, and Running Yocto* ... 34

4 Getting Started Guide

5.1 Building the Yocto* SDK Image ... 34
5.2 Creating the Linux* Boot Disk ...36

5.2.1 Locating the hddimg ..36
5.2.2 Creating the Boot Disk... 37

5.3 Additional Information on Software ... 37
5.3.1 Loading the Sample Code ... 38

5.4 Upgrading Acceleration Software ... 38
6 Physical Function to Virtual Function Communications .. 40
Appendix A Avoiding Kernel Crashes with PCH Intel® SKUs ... 41

A.1 Recommended Procedures .. 41
A.1.1 Installing the Operating System ... 41
A.1.2 Operating System First Boot ... 42

A.2 Alternative Module Load Blocking Procedures .. 42
A.2.1 Grub Options .. 42
A.2.2 Changes to Configuration File .. 43

Tables

Table 1. Product Documentation and Software ... 9
Table 2. Terminology ..10
Table 3. Package Release Structure ... 11
Table 4. Compile Flag Options ... 18
Table 5. Staging Contents ... 23
Table 6. Sample Code Parameters ... 30

Getting Started Guide 5

Revision History

Document
Number

Revision
Number Description Revision Date

336212 018

Updates for Intel® QAT Getting Start Guide – Customer
Enabling Release include:

• Added Section 3.2.3.3 -- Platform Cross-
Compilation Procedure

April 2025

336212 017

Updates for Intel® QAT Getting Start Guide – Customer
Enabling Release include:

• Note added for “make -j” install commands may
cause compile issues on some distro’s

November 2024

336212 016

Updates for Intel® QAT Getting Start Guide – Customer
Enabling Release include:

• Notation added to Section 3.3 -- Starting/Stopping
the Acceleration Software for stopping services
prior to issuing a shutdown to avoid issues with some
OSs

July 2024

336212 015

Updates for Intel® QAT Getting Start Guide – Customer
Enabling Release include:

Table 4. Compile Flag Options

Added additional compile flag options:

• --enable-aux

• --enable-qat19-only

• --enable-icp-asan

Section 2.2 -- Configure the BIOS:

• Recommendation to enable OS Native support if

available to avoid certain fail signatures.

May 2024

336212 014

Updates for Intel® QAT Getting Start Guide – Customer
Enabling Release include:

Section 3.2.1 – Installation Commands

• Added required assembler from “yasm” to now
requiring “nasm”, depending on SDK rev. This is due
to EOL support for yasm.

November 2023

336212 013

Updates for Intel® QAT Getting Start Guide – Customer
Enabling Release include:

• Legal Notices & Disclaimers

• Section 1.1 – About This Manual

• Table 1 – Product Documentation and Software

• Section 3.1 – Unpacking the Software

• Table 4 – Compile Flag Options

• Section 3.2.1 – Installation Commands

• Section 3.2.2 – Starting the Driver

• Section 3.2.3 – Installation Procedure

March 2023

6 Getting Started Guide

Document
Number

Revision
Number Description Revision Date

• Section 3.2.3.1 – Standard Installation Procedure

• Section 3.4.1 – Configuration File Overview

• Section 3.4.2 – Configuration Files and Virtualization

• Section 4.1.1 – Compiling the Acceleration Sample
Code

• Section 4.1.2 – Loading the Sample Code

• Table 5 – Sample Code Parameters

• Section 5.4 – Upgrading Acceleration Software

336212 012

Updates for Intel® QAT Getting Start Guide – Customer
Enabling Release:

• Name change, now also supports 1.8 HW Gen

lookaside (non-inline) features

December 2022

336212 011

Updated the below sections:

• Section 3.3 Package Installation using Yum

removed, as it is outdated

• Section 3.4: Configuration Files completely revised

• Table 4. Compile Flag Options added, please

note new flag --enable-legacy-algorithms

September 2022

336212 010

Updated the below sections:

• Table 1. Product Documentation and Software

• Section 3.2.3 Installation Procedure

• Section 3.2.3.1 Standard Installation Procedure

• Section 3.2.3.2 XEN Installation Procedure

March 2022

336212 009

Updated the below sections:

• Section 1.5.3 Package Release Structure

• Section 2.4 Updating Grub Configuration File

• Section 3.2.3 Installation Procedure

• Section 4.2.1 Compiling the Acceleration Functional

Sample Code

September 2021

336212 008
• Updated package installation requirements

• Clarified hardware support
May 2021

336212 007 Minor edits to Appendix A July 2020

336212 006 Minor edits. June 2019

336212 005 Added instructions for installing software using yum. March 2019

336212 004 Updated configuration details. December 2018

336212 003
Updated information on build instructions and software
dependencies.

June 2018

Getting Started Guide 7

Document
Number

Revision
Number Description Revision Date

336212 002
Added support for Intel® Xeon® Processor D Family
devices.

August 2017

336212 001 Initial public release. July 2017

§

Introduction

8 Getting Started Guide

1 Introduction

1.1 About This Manual

This getting started guide documents the instructions to obtain, build, install and exercise the
Intel® QAT Software.

Additionally, this document includes brief instructions on configuring the supported
development board.

The software described in this document relates to a platform that includes one or more of the
following:

• Intel ® Communications Chipset 8925 to 8955 Series (formerly “Coleto Creek”)

• Intel ® C62x Chipset (formerly “Lewisburg”)

• Intel ® Atom® P6900 processor product family (formerly “Grand Ridge”)

• Intel® Xeon® processor product family (formerly “Granite Rapids-D”)

• Intel ® QAT Adapter 8960/ Intel ® QAT Adapter 8970 (formerly “Lewis Hill”)

• Intel ® Atom® C3000 processor product family (formerly “Denverton”)

• Intel ® Xeon® Processor D family (formerly “Broadwell-DE”)

• Intel ® Xeon® Processor D-2100 (formerly “Skylake-D”)

• Intel ® Xeon® Processor D1700-series (formerly “Ice Lake D”)

In this document, for convenience:

• Software package is used as a generic term for the Intel® QuickAssist Technology Software
for Hardware CE Version package.

• Acceleration drivers is used as a generic term for the software that allows the Intel®
QuickAssist Software Library APIs to access the Intel® QuickAssist Technology
Accelerator(s) integrated in the PCH and SoC.

Note: The software package also works on the Intel® Communications Chipset 8925 to 8955 Series.

Sections specific to all covered products include:

• Section 2.0, “Installing the Operating System”

• Section 3.0, “Building and Installing Software”

• Section 4.0, “Sample Applications”

Sections specific to the Intel® Atom® C3000 Processor Product Family SoC include:

• Section 5.0, “Installing, Building, and Running Yocto*”

Introduction

Getting Started Guide 9

1.2 Additional Information on Software

The software release package for Linux* has been validated with CentOS* 7 x86_64. It has also
been validated with Yocto* for the Intel® Atom® Processor 3000 SoC.

Collateral can be found on https://developer.intel.com/quickassist

1.2.1 Accessing Additional Content from My Intel®
1. In a web browser, go to My Intel.

2. Enter your login ID in the Login ID box. Check Remember my login ID only if you are not
using a shared computer. Click Submit.

Note: To acquire a new My Intel ® Business Applications & Tools, contact your Intel ® Field Sales
Representative.

3. Enter your password in the Password box. Click Submit.

4. Under the My Memberships heading, click on Developer.

a. Search for the Code Name of the appropriate device:
− For the Intel ® C62x Chipset PCH, enter the text Purley in the text box next to the

Magnifying Glass.
− For the Intel ® Atom® C3000 Processor Product Family SoC, enter the text

Denverton NS.

1.2.2 Product Documentation

Table 1 lists the documentation supporting this release. All documents can be accessed as
described in Section 1.2.1, “Accessing Additional Content from the Intel Business Portal".

Table 1. Product Documentation and Software

Document Title Document Number

Intel® QuickAssist Technology Software for Linux* CE Release Notes 336211

Intel® QuickAssist Technology Software for Linux* Release Notes
(Hardware Version 1.8 for In-line) 613775

Intel® QuickAssist Technology Software for Linux* - CE Programmer’s
Guide

336210

Intel® QuickAssist Technology Cryptographic API Reference Manual 330685

SoC Yocto* BSP - PV 565774

Intel® QuickAssist Technology API Programmer’s Guide 330684

Intel® QuickAssist Technology Data Compression API Reference Manual 330686

Intel® QuickAssist Technology - Performance Optimization Guide 330687

Using Intel® Virtualization Technology (Intel® VT) with Intel® QuickAssist
Technology Application Note 330689

Intel® QuickAssist Technology Software for FreeBSD* (Berkeley Software
Distribution) - Release Notes 621446

https://developer.intel.com/quickassist
https://www.intel.com/content/www/us/en/secure/my-intel/dashboard.html

Introduction

10 Getting Started Guide

1.3 Related Software and Documentation

Refer to the Development Kit User Guide for your hardware for additional information on the
development board including board layout, components, connectors, jumpers, headers, power
and environmental requirements, and pre-boot firmware.

Follow the directions in Section 1.2.1, “Accessing Additional Content from the Intel Business
Portal" to locate this collateral.

1.4 Conventions and Terminology

The following conventions are used in this manual:

• Courier font - code examples, command line entries, API names, parameters, filenames,
directory paths, and executables

• Bold text - graphical user interface entries and buttons

• Italic text – key terms and publication titles

 The following terms and acronyms are used in this manual:

Table 2. Terminology

Term Definition

API Application Programming Interface

BDF Bus Device Function

BIOS Basic Input/Output System

BMSM Broad Market Switch Mode

BOM Bill of Materials

BTS Base Transceiver System

CBC Cipher Block Chaining

CY Cryptography

DC Data Compression

DDK Driver Development Kit

GRUB Grand Unified Bootloader

Inline Intel® QAT 1.8 IPsec inline acceleration

Intel® QAT Intel® QuickAssist Technology

LTTng Linux* Trace Toolkit Next Generation

OS Operating System

PCH Platform Controller Hub

PCI Peripheral Component Interconnect

PF Physical Function

Introduction

Getting Started Guide 11

Term Definition

PKE Public Key Encryption

RDK Runtime Development Kit

SKU Stock Keeping Unit

SoC System-on-a-Chip

SRIOV Single Root-I/O Virtualization

VF Virtual Function

1.5 Software Overview

The software is described in the following topics:

• Section 1.5.1, “Features Implemented”

• Section 1.5.2, “List of Files in Release”

• Section 1.5.3, “Package Release Structure”

1.5.1 Features Implemented

Note: For feature details and limitations, if any, refer to the release notes.

1.5.2 List of Files in Release

A Bill of Materials (BOM) is included as a text file in the software package(s).

1.5.3 Package Release Structure

After unpacking the tar file, the directory should contain the following:

Table 3. Package Release Structure

Files/Directory Comments

QAT<version>.tar.gz Top-level Intel® QAT package

./filelist List of files in this package

./LICENSE.GPL License file

./versionfile Version file

./quickassist Top-level acceleration software directory

§

Installing the Operating System

12 Getting Started Guide

2 Installing the Operating System
This section describes the process of obtaining, installing, and configuring the operating
system (OS) on the development board.

Although this document describes how to install and configure CentOS* 7, Intel® QuickAssist
Technology can work with other Linux* distributions, such as Ubuntu* and Fedora*. Refer to
notes in Section 3.2.1 for specific installation commands.

2.1 Acquiring CentOS* 7

Note: CentOS* 7 is based on Red Hat Enterprise Linux* 7.3 (or later) and may also be referred to as
CentOS* 7.3. In general, using the latest version of CentOS* 6 or CentOS* 7 is recommended, though
it is possible that changes to the Linux* kernel in the most recent versions may break some
functionality for releases.

CentOS* 7 is a Linux* distribution built on free and open source software. The software
package from Intel® does not include a distribution of CentOS* or any other Linux* variant. The
software package includes Linux* device driver source developed by Intel®.

CentOS* 7 x86_64 can be obtained from: https://www.centos.org/download.

Note: This document is written with the CentOS* 7 DVD Install Media in mind. Using any Live Media
versions is not recommended.

2.2 Configure the BIOS

Update to the latest stable BIOS for your platform.

If the performance achieved from the acceleration software does not meet the advertised
capability, some BIOS changes (or other changes) may be required:

• Set the links to train to the highest possible speed, e.g., PCIe* Gen3 instead of PCIe* Gen2
or Gen1.

• Ensure that the link has trained to the expected width, e.g., x8 or x16.

• Disable some CPU power-saving features.

Performance numbers matching the expected performance may not be achievable for all
platform configurations or with the default configuration files. Refer to the Intel® QuickAssist
Technology - Performance Optimization Guide (Table 1) for more information on achieving
best performance.

In the BIOS setup, set the first boot device to be the DVD-ROM drive and the second boot
device to be the drive on which CentOS* 7 is to be installed.

It is recommended that OS Native AER support is enabled if available, to avoid certain fail
signatures.

Installing the Operating System

Getting Started Guide 13

2.3 Installing CentOS* 7

Note: If you encounter issues installing the operating system, refer to Appendix A, “Avoiding Kernel
Crashes with PCH Intel® SKUs” for a possible resolution.

For complete additional (and non-standard) CentOS* installation instructions, refer to the
online installation guide at: https://wiki.centos.org/HowTos

This section contains basic installation instructions. For the purposes of this getting started
guide, it is assumed that the installation is from a DVD image.

Note: If the hard drive already has an operating system, some of the following steps may be slightly
different.

1. When the development board starts, it should begin booting from the CentOS* 7
installation disc. If not, verify the Boot Order settings described in Section 2.2, “Configure
the BIOS”.

2. At the welcome prompt, select Test this Media & Install CentOS* 7 and click Enter.

3. Select OK to begin testing the installation media.

Note: It is recommended that the CentOS* 7 installation disc is verified prior to an installation of the
OS.

4. After verifying the CentOS* 7 installation disc(s), the graphical portion of the installation is
loaded. Click Next to continue the installation process.

5. Update DATE & TIME options if required, including the time zone, network time (if
desired).

6. SOFTWARE SELECTION. For the best evaluation experience and to avoid any build
issues with the acceleration software package, it is recommended to select “Development
and Creative Workstation” as the “Base Environment”. Select the following “Add-Ons for
Selected Environment” as well: “Additional Development”, “Development Tools”, and
“Platform Development”. Also select “Virtualization Hypervisor” if virtualization is
required (and supported by the acceleration software package).

7. Select INSTALLATION DESTINATION. If the correct target device is not selected, select
it. Click Done.

8. Select NETWORK & HOST NAME. In most cases, changing the Ethernet connection from
“OFF” to “ON” is desired. Also set the Host name, if required. Click Done. Ensure DHCP is
selected.

9. Once all items on the INSTALLATION SUMMARY are configured, select Begin
Installation.

10. Set the root password and create a user. When creating a user, select “Make this user
administrator” to enable sudo. Select Done and wait for the installation to complete.

11. When the installation completes, the install DVD should be ejected. Remove the DVD and
select Reboot when prompted.

Note: If you encounter issues booting after installing the operating system, refer to Appendix A,
“Avoiding Kernel Crashes with PCH Intel® SKUs” for a possible resolution.

https://wiki.centos.org/HowTos

Installing the Operating System

14 Getting Started Guide

When the installation completes, continue with Section 2.4, “Updating Grub Configuration
File”.

2.4 Updating Grub Configuration File

This section details instructions on updating the Grand Unified Bootloader (grub)
configuration file.

Note: Root access is required to make grub changes.

If the acceleration software will be used with a virtualized (SR-IOV) environment update grub
to add intel_iommu=on to the boot options, using the following procedure:

1. Add “intel_iommu=on” to GRUB_CMDLINE_LINUX in grub file /etc/default/grub:

GRUB_CMDLINE_LINUX="resume=/dev/mapper/fedora-swap
rd.lvm.lv=fedora/root rd.lvm.lv=fedora/swap rhgb quiet
iomem=relaxed intel_iommu=on"

2. Find the grub.cfg file using:

find / -name “grub.cfg”

3. Execute the following based on grub.cfg file location:

 # grub2-mkconfig -o /<path_to_file>/grub.cfg

4. Reboot system:

shutdown -r now

Consult the following document for more information on using the acceleration software in a
virtualized environment: Using Intel® Virtualization Technology (Intel® VT) with Intel®
QuickAssist Technology Application Note (refer to Section 1.2.2, “Product Documentation”).

Note: Using the boot flag intel_iommu=on prevents using the QAT physical function (PF) on the
host. To use Intel® QAT on the host with this flag, refer to the virtualization app note cited above for the
instructions to use Intel® QAT virtual functions (VFs) on the host. access is required to make grub
changes.

2.5 Configuring Linux*

Once the operating system is installed, a few configuration items may need to be completed,
such as updating the yum configuration files. This section describes these items.

2.5.1 Updating yum Configuration Files

yum is an application that can be used to perform operating system updates. To use yum in a
corporate network, the following change may be required.

Installing the Operating System

Getting Started Guide 15

2.5.1.1 /etc/yum.conf

If the system needs to connect to the internet through a corporate firewall, yum needs to be
updated to use the proxy server. Add a line similar to the following in the /etc/ yum.conf file.
The line can be added to the end of the file. Contact your network administrator for details on
the proxy server, July 2020.

proxy=http://<proxy_server:portnum>

where <proxy_server:portnum> is replaced with your server information.

2.6 System Security Considerations

This section contains a high-level list of system security topics. Specific OS/filesystem topics
are outside of the scope of this document. For more information, refer to the programmer
guide for your platform, specifically the Secure Architecture Considerations section.

Securing your operating system is critical. Consider the following items:

Note: This is not an exhaustive list.

• Employing effective security policies and tools; for instance, SELinux* is configured
correctly and is active.

• Running and configuring the firewall(s).

• Preventing privilege escalation at boot (including recovery mode); for instance, set a grub
password. Additional details are described below.

• Removing unnecessary software packages.

• Patching software in a timely manner.

• Monitoring the system and the network.

• Configuring and disabling remote access, as appropriate.

• Disabling network boot.

• Requiring secure passwords.

• Encrypting files, up to full-disk encryption.

• Ensuring physical security of the system and the network.

• Using mlock to prevent swapping sensitive variables from RAM to disk.

• Zeroing out sensitive variables in RAM.

§

Building and Installing Software

16 Getting Started Guide

3 Building and Installing Software
This chapter provides details on building and installing the software.

3.1 Unpacking the Software

The software package comes in the form of a tarball. Refer to Section 1.2.1, “Accessing
Additional Content from the Intel Business Portal" for the software location.

The software package can also be installed under Linux* using yum. Refer to Section 3.3,
“Package Installation Using yum" for additional information.

The instructions in this document assume that you have super user privileges:

sudo su
<enter password for root>

1. Create a working directory for the software. This directory can be user defined, but for the
purposes of this document, a recommendation is provided:

mkdir /QAT && cd /QAT

Note: In this document, the working directory is assumed to be /QAT. This directory is the
ICP_ROOT.

2. Transfer the tarball to the development board using any preferred method, for example
USB memory stick, CDROM, or network transfer in the /QAT directory. Unpack the tarball
using the following command:

tar -zxof <QAT tarball name>

3. Restricting access to the files is recommended:

chmod -R o-rwx *

Result: The package is unpacked and the installation script and other items are created in the
/QAT directory. Refer to Section 1.5.3, “Package Release Structure”.

3.2 Installation Overview

The installation procedure handles a number of tasks that would otherwise have to be done
manually, including the following:

• Create the shared object (.so) files by building the source code.

• Copy the shared object (.so) files to the right directory (e.g., /lib or /lib64).

• Build adf_ctl and copy it to the right directories ($ICP_ROOT/build and /usr/ sbin).

• Copy the config files to /etc.

• Copy the firmware files to /lib/firmware.

Building and Installing Software

Getting Started Guide 17

• Copy the modules to the appropriate kernel source directory for loading by qat_service.

• Start the qat_service, which inserts the appropriate modules as required and runs adf_ctl to
bring up the devices.

• Set up the qat_service to run on future boots (copy to /etc/init.d, run chkconfig to add the
service).

On recent Linux* kernels, there is an upstreamed version of the Intel® QuickAssist Technology
driver, and it will interfere with the loading of the driver included with the software package
assumed in this document. The qat_service accounts for this by removing the upstreamed
kernel modules, but if qat_service is not used, errors may be displayed when trying to load the
driver.

3.2.1 Installation Commands

Note: If the OS was not installed with the correct software packages (refer to Section 2.3, “Installing
CentOS* 7”), build error messages appear during the acceleration install. If CentOS* was not installed
correctly, reinstall the OS and select the correct SOFTWARE SELECTION option as described in
Section 2.3, “Installing CentOS* 7”, or run the following commands:

yum -y groupinstall "Development Tools"
yum -y install pciutils
yum -y install libudev-devel
yum -y install kernel-devel-$(uname -r)
yum -y install gcc
yum -y install openssl-devel

Note: If you are installing Ubuntu*, run these commands instead:

apt-get update
apt-get install pciutils-dev
apt-get install g++
apt-get install pkg-config
apt-get install libssl-dev

Note: If you are installing a recent distribution of Fedora*, run these commands instead:

dnf groupinstall "Development Tools"
dnf install gcc-c++
dnf install systemd-devel
dnf install kernel-devel-`uname -r`
dnf install elfutils-devel
dnf install openssl-devel

Note: Installing nasm (v2.14+) or yasm, as well as the Netlink Protocol Library Suite, may be required
depending on your SDK package. For CentOS*, enabling the Power Tools repo may also be required.
For instance, to install yasm, nasm and libnl on CentOS* 7 or 8, use "yum install epel-release; yum
install yasm; yum install nasm; yum install libnl3-devel”.

Building and Installing Software

18 Getting Started Guide

3.2.2 Starting the Driver

To start the driver, use the qat_service, or rmmod the upstreamed modules (qat_*, intel_qat)
and insert the modules built with the software package assumed in this document before
starting the driver.

The acceleration software package supports the standard Linux* software installation process.

./configure [OPTION]... [VAR=VALUE]
make -j install

Note: Using the “-j” simultaneous job option may cause compile issues on some distro’s e.g. Fedora
40.

Run the following command to see the list of available options:

./configure --help

Note: If you are installing an Intel® C629 Series Chipset or any Intel® device that does not support
Public Key Encryption (PKE), enter the following configuration option:

./configure --enable-icp-dc-sym-only

This option enables the data compression and symmetric code services and disables
cryptographic services.

Note: To enable the Intel® QuickAssist API in Kernel space, enter the following configuration option:

./configure --enable-kapi (not supported for all 1.8 HW devices i.e. c4xxx)

Note: Current implementation of Intel® QuickAssist API for Kernel space only supports Symmetric
cryptography and Data compression services.

Table 4. Compile Flag Options

Compile Flag Description

--enable-icp-debug Enables debugging.
--enable-qat-uio Enables Userspace I/O.
--disable-option-checking Ignore unrecognized --enable/--with options.

--disable-FEATURE Do not include FEATURE (same as --enable-FEATURE=no).

--enable-FEATURE[=ARG] Include FEATURE [ARG=yes].

--enable-silent-rules Less verbose build output (undo: "make V=1").

--disable-silent-rules Verbose build output (undo: "make V=0").

--disable-param-check Disables parameters checking in the top-level APIs (used for
performance optimization).

--disable-dc-dyn Disables Dynamic compression support.

--disable-stats Disables statistic collection (used for performance
optimization).

Building and Installing Software

Getting Started Guide 19

Compile Flag Description

--disable-dc-strict-mode Disables strict mode for data compression.

--enable-icp-log-syslog Enables debugging messages to be outputted to the system
log instead of standard output.

--enable-icp-sriov Enables Single-root I/O (SR-IOV) Virtualization in the Intel®®

QAT driver (available options: host, guest).
--enable-icp-trace Enables tracing for the Cryptography API.

--enable-icp-dc-only Enables driver supports only compression service (can
optimize the size of build objects).

--enable-icp-dc-sym-only Enables drivers to support Data Compression and Symmetric
Crypto services only.

--enable-icp-dc-return
counters-on-error

Enables updates of consumed/produced results in case of
error during compression or decompression operations.

--enable-icp-hb-fail-sim Enable Heartbeat Failure Simulation.

--enable-inline Enables the Intel® QAT 1.8 IPsec inline acceleration feature.
--enable-bmsm Enables the Intel® QAT 1.8 IPsec BMSM feature.

--enable-lttng Enables the Intel® QAT 1.8 LTTng feature for inline in BTS
mode

--enable-qat-coexistence Enables legacy and upstream driver coexistence.

--enable-qat-lkcf Enables Intel® QAT registration with Linux* Kernel Crypto
Framework.

--enable-dc-error simulation Enables Data Compression Error Simulation.

--enable-kapi Enables Intel® QuickAssist API in Kernel space (not
supported for all 1.8 HW devices i.e. c4xxx).

--disable-stats Disables statistics collection.

--enable-legacy algorithms Enables legacy algorithms. See Intel® QAT Programmer’s
Guide 3.22 Access to Legacy Algorithms

--enable-icp-qat-dbg Enable QAT Debuggability.

--enable-qat-xen Enables building QAT for Xen system.

--enable-icp-without-thread Removes mutex and spin locks for single thread applications.

--enable-icp-thread-
specific-usdm

USDM allocates and handles memory specific to threads (for
multi-thread apps, allocated memory information will be
maintained separately for each thread).

--enable-128k-slab

Enables 128k slab allocator in USDM. It could improve
performance and reduce memory consumption for the large
number of threads when thread specific memory allocator is
enabled.

--enable-aux Enables AUX feature by default (required for Media offload)
– applicable on QAT2.2 SDK/HW

--enable-qat19-only Enables QAT1.9 HW only – applicable on QAT2.2 SDK/HW

--enable-icp-asan Enables address sanitization – available on CE v4.25+

Building and Installing Software

20 Getting Started Guide

Compile Flag Description
Note: This feature may have performance impacts and
should only be used for debug purposes.

3.2.3 Installation Procedure

When installing acceleration software on a system that had a previous or modified version of
the acceleration software installed, it is strongly recommended to uninstall the previous
acceleration software first, using the following command in the acceleration software package:

make uninstall && make clean && make distclean

3.2.3.1 Standard Installation Procedure
1. Open a Terminal Window and switch to superuser:

sudo su <enter root password>
cd /QAT

2. Enter the following commands to build and install the acceleration software and sample
code using default options:

./configure
make -j install
make -j samples-install

Note: Using the “-j” simultaneous job option may cause compile issues on some distro’s e.g. Fedora
40.

3.2.3.2 XEN Installation Procedure
1. Open a Terminal Window on DDK setup and switch to superuser:

su <enter root password>
cd /QAT

2. Enter the following commands to build the driver:

./configure --enable-qat-xen
make

3. Copy output “build” directory containing firmware and kernel modules to the XEN host
server – typically copied to the XEN /root directory:

scp -r build <xen_ip_address>:/<xen_path>/

4. Log into the XEN server and copy over firmware modules:

ssh <user>@<xen_ip_address>
su <enter root password>

cd <xen_path>/build

cp -a *.bin /lib/firmware

5. Remove any existing drivers and load new XEN required drivers:

Building and Installing Software

Getting Started Guide 21

modprobe uio

modprobe authenc

rmmod intel_qat

insmod intel_qat.ko

For Intel® C62X CHIPSET:

rmmod qat_c62x
insmod qat_c62x.ko
cp <xen_path>/build/c6xx_dev0.conf.xen /etc/c6xx_dev0.conf

For Intel® Communication Chipset 8925 T0 8955 Series:

rmmod qat_dh895xcc
insmod qat_dh895xcc.ko
cp <xen_path>/build/dh895xcc_dev0.conf.xen /etc/dh895xcc_dev0.conf

Note: XEN supports only crypto services, so ensure that ServiceProfile is set as “CRYPTO”,
ServicesEnabled is set to “cy” and NumberDcInstances is set to “0” in device config files for both PF
and VF devices (including the guest operating system):

6. Emulate VFs:

./adf_ctl restart

 # echo 1 > /sys/bus/pci/devices/<PF_DEVICE>/sriov_numvfs

7. At this point, the QAT VFs can be mapped to FreeBSD guest operating systems.

Note: For selecting the correct QAT driver for use in the guest operating systems using FreeBSD,
consult the Intel® QuickAssist Technology Software for Free Berkeley Software Distribution (refer to
Section 1.2.2, “Product Documentation”).

Note: When configuring the QAT driver in the guest operation systems, ensure “enable-icp-
sriov=guest” is selected. For further details using guest operating systems, consult the Intel®

Virtualization Technology (Intel® VT) with Intel® QuickAssist Technology Application Note (refer to
Section 1.2.2, “Product Documentation”).

Note: To build 64-bit kernel components and 32-bit user-space components, run the make install
command with the following build parameter:

make ICP_ARCH_USER=i686 install

Note: After building/installing the acceleration software, secure the build output files by either
deleting them or setting permissions according to your needs.

Note: The messages "Can't read private key" can be safely ignored. These are generated because
the modules are not signed by the private key of OS distribution.

8. Once the Acceleration Software is installed, it is recommended to verify that the
acceleration software kernel object is loaded and ready to use:

lsmod | grep qa

Building and Installing Software

22 Getting Started Guide

Depending on the specific hardware present, this command returns something similar to the
following:

lsmod | grep qa

qat_c62x 18061 0
intel_qat 214941 2 usdm_drv,qat_c62x
uio 19338 1 intel_qat

Not all modules are required, depending on the specific hardware present. If the acceleration
software is not installed, all of these modules are typically not present.

Note: If the ./configure command would have been run with option --enable-kapi, the QuickAssist
API Kernel module would be loaded as part of the installation and the console command # lsmod |
grep qa would return something similar to:

lsmod | grep qa
qat_api 561152 0
qat_c62x 20480 0
intel_qat 225280 3 qat_c62x,qat_api,usdm_drv
authenc 16384 1 intel_qat
dh_generic 16384 1 intel_qat
uio 20480 1 intel_qat

The Kernel module qat_api exports the Intel® QuickAssist APIs as symbols allowing a Kernel
space application to use them.

Applications need to make use of the static library (libqat.a) or the shared object (libqat_s.so).
If the installation procedure described in this chapter is not used, the shared object needs to be
copied manually, or other steps (e.g., setting LD_LIBRARY_PATH) need to be taken to link to
this file.

Check /var/log/messages or dmesg to make sure that the acceleration service started.
Warning messages related to Invalid core affinity can be addressed by modifying the
configuration files so that no core numbers are referenced beyond the core count of the
system. Refer to Section 3.5, “Configuration Files” for more detail.

Once the installation/building is complete, proceed to Section 4.0, “Sample Applications” to
execute applications that exercise the software.

3.2.3.3 Platform Cross-Compilation Procedure

The following describes procedures for using a build server to compile the Intel® QuickAssist
SDK driver package, followed by deploying the required modules onto a target server and
subsequently enabling the Intel® QuickAssist device.

Note: Applies to Intel® QuickAssist CE driver package v4.28 or later

Prerequisites:

• Copy the kernel headers from the target host to the build host – these are typically located in
/lib/modules/$(uname -r)/build.

Steps performed on build host:

Building and Installing Software

Getting Started Guide 23

1. Create a working directory for the software. This directory can be user defined, but for the
purposes of this document a recommendation is provided:

mkdir /QAT && cd /QAT

Note: In this document, the working directory is assumed to be /QAT. This directory is the ICP_ROOT.

2. Transfer the tarball to the development board using any preferred method, for example,
the USB memory stick, CDROM, or network transfer in the /QAT directory.

3. Unpack the tarball using the following command:

tar -zxof <QAT tarball name>

4. Restricting access to the files is recommended:

chmod -R o-rwx *

5. Prepare the environment:

• Define the ICP_ROOT QAT working directory e.g.:

export ICP_ROOT=/QAT

• Define the location of the target kernel headers e.g.:

export TARGET_HEADERS=/home/user/target_headers_dir

• Specify the destination for the redirected QAT installation e.g.:

export QAT_STAGING=/home/user/qat_staging

6. Configure, build and install QAT:

• Run the configuration script providing the KERNEL_SOURCE_ROOT:

 # ./configure KERNEL_SOURCE_ROOT=$TARGET_HEADERS

• Install the QAT package with installation redirection. Ensure both DESTDIR and
INSTALL_MOD_PATH are specified:

 # make install DESTDIR=$QAT_STAGING INSTALL_MOD_PATH=$QAT_STAGING

• Optionally, install the QAT sample code:

make samples-install DESTDIR=$QAT_STAGING
INSTALL_MOD_PATH=$QAT_STAGING

7. Verify staging directory contents using table below:

Table 5. Staging Contents

Location Description

$QAT_STAGING/lib/firmware/qat*.bin QAT Firmware for all supported 1.x devices
$QAT_STAGING/lib/modules/<kernel_versi
on>/updates/drivers/crypto/qat/qat_*/*
.ko

QAT kernel modules for all supported 1.x
devices

Building and Installing Software

24 Getting Started Guide

Location Description

$QAT_STAGING/lib/modules/<kernel_versi
on>/kernel/drivers/qat_api.ko QAT kernel API driver

$QAT_STAGING/lib/modules/<kernel_versi
on>/kernel/drivers/usdm_drv.ko QAT memory driver

$QAT_STAGING/etc/init.d/qat_service
$QAT_STAGING/etc/init.d/qat_service_vf
s [optional]

QAT service script to manage the PF/VF

$QAT_STAGING/etc/default/qat Configuration file for the QAT service
$QAT_STAGING/usr/local/lib/libusdm_drv
_s.so User-space shared library for QAT API

$QAT_STAGING/etc/ld.so.conf.d/qat.conf Configuration file for ldconfig
$QAT_STAGING/etc/udev/rules.d/00-
qat.rules QAT rules file for Udev

$QAT_STAGING/usr/local/bin/adf_ctl Control application for QAT HW
$QAT_STAGING/usr/local/bin/cpa_sample_
code [optional] User-space sample code binary

$QAT_STAGING/usr/local/bin/cpa_sample_
code.ko Kernel-space sample code

$QAT_STAGING/lib/firmware/calgary
[optional]
$QAT_STAGING/lib/firmware/canterbury
[optional]
$QAT_STAGING/lib/firmware/calgary32
[optional]

Input text files used by QAT sample code

Steps performed on target host:

1. Prepare the environment:

• Copy the entire staging directory from the build to the target host e.g. $QAT_STAGING
directory

• Blacklist QAT in-tree modules.

2. Install QAT software – example provided uses qat_c4xxx device:

Backup existing FW before copying the new files

[optional] sudo mv /lib/firmware/qat_c4xxx.bin /lib/firmware/qat_fw_backup/

[optional] sudo mv /lib/firmware/qat_c4xxx_mmp.bin /lib/firmware/qat_fw_backup/

Note: Original file permissions should be preserved throughout the entire deployment process.

sudo cp $QAT_STAGING/lib/firmware/qat_c4xxx.bin /lib/firmware/

sudo cp $QAT_STAGING/lib/firmware/qat_c4xxx_mmp.bin /lib/firmware/

sudo cp $QAT_STAGING/lib/modules/$(uname -
r)/updates/drivers/crypto/qat/qat_common/intel_qat.ko /lib/modules/$(uname -
r)/updates/drivers/crypto/qat/qat_common/

sudo cp $QAT_STAGING/lib/modules/$(uname -
r)/updates/drivers/crypto/qat/qat_c4xxx/qat_c4xxx.ko /lib/modules/$(uname -
r)/updates/drivers/crypto/qat/qat_c4xxx/

sudo cp $QAT_STAGING/lib/modules/$(uname -r)/kernel/drivers/qat_api.ko
/lib/modules/$(uname -r)/kernel/drivers/

Building and Installing Software

Getting Started Guide 25

sudo cp $QAT_STAGING/lib/modules/$(uname -r)/kernel/drivers/usdm_drv.ko
/lib/modules/$(uname -r)/kernel/drivers/

sudo cp $QAT_STAGING/etc/init.d/qat_service /etc/init.d/
sudo cp $QAT_STAGING/etc/default/qat /etc/default/

sudo cp $QAT_STAGING/usr/local/lib/libqat_s.so /usr/local/lib/

sudo cp $QAT_STAGING/usr/local/lib/libusdm_drv_s.so /usr/local/lib/

sudo cp $QAT_STAGING/etc/ld.so.conf.d/qat.conf /etc/ld.so.conf.d/

sudo cp $QAT_STAGING/etc/udev/rules.d/00-qat.rules /etc/udev/rules.d/

sudo cp $QAT_STAGING/usr/local/bin/adf_ctl /usr/local/bin/

Install QAT sample code and dependencies

[optional] sudo cp $QAT_STAGING/usr/local/bin/cpa_sample_code /usr/local/bin/

[optional] sudo cp $QAT_STAGING/usr/local/bin/cpa_sample_code.ko /usr/local/bin/

[optional] sudo cp $QAT_STAGING/lib/firmware/calgary /lib/firmware/

[optional] sudo cp $QAT_STAGING/lib/firmware/calgary32 /lib/firmware/

[optional] sudo cp $QAT_STAGING/lib/firmware/canterbury /lib/firmware/

3. Configure the target host.

Note: The build host does not have information about the Intel® QuickAssist hardware available on
target host or the operating system it is running. Users must configure the OS and load the
appropriate QAT configuration files. Default configuration files for all QAT 1.x devices can be found in
the unpacked tarball at $ICP_ROOT/quickassist/utilities/adf_ctl/conf_files/.

4. Minimal OS configuration example:

• Generate a list of module dependencies and map files for the Linux Kernel:

depmod -a

• Configure dynamic linker run-time bindings:

ldconfig

• Register and start the QAT service (an example for systemd based hosts):
− Manually copy the QAT unit file from the build host to the target host. The unit file

is located in the unpacked tarball at
$ICP_ROOT/quickassist/build_system/build_files/qat.service and should be
placed in /usr/lib/systemd/system/.

− Enable and start the service:

 # systemctl enable qat

 # systemctl daemon-reload

systemctl start qat

Note: Additional configurations may be required for specific use cases, as described in other
sections of this document. 

Uninstallation:

 Build Host:

Building and Installing Software

26 Getting Started Guide

To uninstall QAT files from the staging directory without affecting build host's system
directories, use:

make uninstall DESTDIR=$QAT_STAGING INSTALL_MOD_PATH=$QAT_STAGING

 

Target Host:

Uninstallation can be done manually by reversing the changes done during the manual
installation process.

Alternatively, a fresh QAT package can be copied to the target host and the following
command can be used to remove the QAT software automatically:

./configure && make uninstall

3.3 Starting/Stopping the Acceleration Software

When the acceleration software is installed, a script file titled qat_service is installed in the
/etc/init.d directory.

The script file can be used to start and stop the acceleration software. To start the software,
issue the following command:

service qat_service start

Note: If the service qat_service start command fails, verify the following:

• The software is installed.

• Acceleration software is already running.

• For the Intel® C62x Chipset or Intel® Xeon® Processor D Family SoC, verify the device is
enumerated properly using the lspci command:

lspci -d 8086:37c8

• For the Intel® Atom® C3000 Processor SoC, verify the device is enumerated properly using
the lspci command:

lspci -d 8086:19e2

• For the Intel® Xeon® Processor D Family SoC, verify the device is enumerated properly using
the lspci command:

lspci -d 8086:6f54

To stop the software, issue the following command:

service qat_service stop

To stop the software and remove the kernel driver, issue the following command:

service qat_service shutdown

Note: Services should be stopped using # service qat_service stop prior to shutdown to avoid
issues on some OSs e.g. Ubuntu.

Building and Installing Software

Getting Started Guide 27

When the acceleration software is installed, it is set to load automatically when the operating
system loads.

3.4 Configuration Files

Note: This section on configuration files is only a brief overview. For more details, refer to the
Programmer's Guide for your platform for complete information on the configuration files. Usually this
is in Chapter 4: Configuration File.

3.4.1 Configuration File Overview
• The software package includes multiple types of platform-specific default configuration

files. Depending on your installation options and SKU, a valid configuration file is copied to
the /etc directory. If your system has more than one type of hardware device or SKU, verify
that the correct configuration files were copied.

• The files are processed when the system boots. If changes are made to the configuration
file, the Acceleration software must be stopped and restarted for the changes to take
effect. Refer to Section 3.2.3, “Installation Procedure” on for detailed instructions.

• There is a single configuration file for each QAT endpoint, including virtual functions (VFs,
see below).

• Configuration files are placed in the /etc/ directory and terminate with a .conf file
extension. Examples:

− /etc/dh895xcc_dev0.conf (first configuration file for Intel® Communications
Chipset 8925 to 8955 Series devices)

− /etc/c6xx_dev0.conf (first configuration file for Intel® C62x Chipset or Intel®
Xeon® Processor D Family SoC)

− /etc/c3xxx_dev0.conf (first configuration file for Intel® Atom® C3000 Processor
SoC)

Users may need to confirm the main sections in the configuration file(s), including:

• [GENERAL]

• # Kernel Instances Section

• # User Process Instance Section ([SSL] by default, but may be renamed)

In particular:

• Ensure ServicesEnabled is appropriate for the device and application (generally
cryptography and/or compression)

• ServicesProfile may disable/enable features for your device and use case

• Confirm the following for both [KERNEL] and [SSL] sections:
− NumberCyInstances
− NumberDcInstances

This is only an overview on configuration files. For detailed information, refer to the
Programmer's Guide for your platform. Usually this is Chapter 4: Acceleration Driver
Configuration File.

Building and Installing Software

28 Getting Started Guide

3.4.2 Configuration Files and Virtualization

Virtual Function (VF) configuration filenames are usually off-by-one from the qat_dev#, as
numbering begins after all PFs. With one PF device as qat_dev0, for example, VF qat_dev_5
will use configuration file c4xxx_vf_dev6.conf :

• /etc/c4xxx_vf_dev0.conf (VF qat_qat_dev1)

• /etc/c4xxx_vf_dev6.conf (VF qat_qat_dev5)

Tips:

• Ensure none of the VFs are requesting services i.e., cy or dc, which are not enabled in the PF
config file.

For more information on Virtualization, refer to our Virtualization Guide, Document # 330689, at
https://cdrdv2.intel.com/v1/dl/getContent/709210.

§

https://cdrdv2.intel.com/v1/dl/getContent/709210

Sample Applications

Getting Started Guide 29

4 Sample Applications
This chapter describes the sample code that can be executed on the target platform along
with instructions on their usage.

4.1 Intel® QAT Accelerator Sample Application

The software package contains a set of sample tests that exercise acceleration functionality.
This section describes the steps required to build and execute the sample tests.

The sample application is provided for the user space.

4.1.1 Compiling the Acceleration Sample Code

Note: These instructions assume the software package was untarred in the /QAT directory and the
kernel source files were placed in the directory specified in this guide.

1. Open a Terminal Window and switch to superuser:

sudo su
<enter root password>

Note: For details on running user space applications as non-root user, refer to the “Running
Applications as Non-Root User” section in the applicable programmer guide (refer to Section 1.2.2,
“Product Documentation”).

2. Switch to the /QAT directory and compile the installation samples:

cd /QAT
make -j samples-install

Note: Using the “-j” simultaneous job option may cause compile issues on some distro’s e.g. Fedora
40.

This compiles the acceleration sample code for user space; refer to section 4.2 for more
details. It also compiles the memory mapping driver used with the user space application.

Proceed to “Running the chained hash and compression test code requires:” for instructions
on executing the tests.

4.1.2 Loading the Sample Code

Note: In user space, before launching the cpa_sample_code application, the environmental variable
LD_LIBRARY_PATH may need to be set to the path where libqat_s.so is located. This may be
/usr/local/lib or /QAT/build.

The acceleration kernel module must be installed, and the software must be started before
attempting to execute the sample code. The module can be verified by running the following

Sample Applications

30 Getting Started Guide

commands:

lsmod | grep "qa"
service qat_service status

The typical output is similar to the following:

service qat_service status Checking status of all devices.
There is 3 QAT acceleration device(s) in the system:
qat_dev0 - type: c6xx, inst_id: 0, bsf: 88:00.0, #accel: 5 #engines: 10
state: up qat_dev1 - type: c6xx, inst_id: 1, bsf: 8a:00.0, #accel: 5
#engines: 10 state: up qat_dev2 - type: c6xx, inst_id: 2, bsf: 8c:00.0,
#accel: 5 #engines: 10 state: up

Note: If the module is not returned from the first command, refer to Section 3.2.3, “Installation
Procedure” for additional information on starting the Acceleration software.

In user space, the sample code is executed with the command:

./build/ cpa_sample_code

In Kernel space the sample code is executed with the command:

insmod ./build/cpa_sample_code.ko

Note: The output of the cpa_sample_code application is available in dmesg.

Should the user decide to run the sample code more than once, unload the cpa_sample_code
module as follows before rerunning it:

rmmod cpa_sample_code

The application allows the run-time parameters listed below.

Table 6. Sample Code Parameters

Parameter
Supported

in User
Space

Supported
in Kernel

Space
Description

cyNumBuffers=w Yes Yes
The number of buffers submitted for each
iteration. (default=20)

cySymLoops=x Yes Yes
The number of iterations of all symmetric code
tests. (default=5000)

cyAsymLoops=y Yes No
The number of iterations of all asymmetric
code tests. (default=5000)

runTests=1 Yes Yes Run symmetric code tests.

runTests=2 Yes No Run the RSA test code.

runTests=4 Yes No Run the DSA test code.

runTests=8 Yes No Run the ECDSA test code.

runTests=16 Yes No Run the Diffie-Hellman code tests.

Sample Applications

Getting Started Guide 31

Parameter
Supported

in User
Space

Supported
in Kernel

Space
Description

runTests=32 Yes Yes Run the compression code tests.

runTests=63 Yes Yes
Run all tests except the chained hash and
compression tests. (default)

runTests=128 Yes Yes Run chained hash and compression test code.

runStateful=1 Yes Yes
Enable stateful compression tests. Applies
when compression code tests are run.

signOfLife=1 Yes Yes

Indicates shorter test run that verifies the
acceleration software is working. This
parameter executes a subset of sample tests.
Details are included in “Running the chained
hash and compression test code requires:”.
(default=0)

getLatency=1 Yes No

Measures the processing time for the request
being processed. Requires
NumberCyInstances=1 and
NumberDcInstances=1 to be configured in
[SSL] section of the driver configuration file.

getOffloadCost
=1 Yes No

Measures the average number of cycles spent
for single- request offloading. Requires
NumberCyInstances=1 and
NumberDcInstances=1 to be configured in
[SSL] section of the driver configuration file.

Note: Running the chained hash and compression test code requires the following:

• Updating the configuration file to set ServicesProfile = COMPRESSION

• Restarting qat_service

• Possibly setting ServicesEnabled to dc or dc;sym.

4.1.2.1 The signOfLife Tests

The signOfLife parameter is used to specify that a subset of the sample tests is executed
with smaller iteration counts. The signOfLife test provides a quick test to verify that the
acceleration software and hardware are set up correctly.

Note: If the signOfLife parameter is not specified, the full run of tests can take a significant amount of
time to complete.

4.1.2.1.1 User Space

After building the sample code with the installation script, the user space application is located
at:

$ICP_ROOT/build

Sample Applications

32 Getting Started Guide

Then, run the following commands:

cd $ICP_ROOT/build/
export LD_LIBRARY_PATH=`pwd`
./cpa_sample_code signOfLife=1

4.1.2.1.2 Kernel Space

After building the sample code with the installation script, the kernel space application is
located at:

$ICP_ROOT/build

Then run the following commands:

cd $ICP_ROOT/build/
insmod ./cpa_sample_code.ko signOfLife=1

On a second terminal window, run dmesg to view the output of the cpa_sample_code Kernel
application.

4.1.3 Test Results

When running the application, the results are printed to the terminal window in which the
application is launched.

Here is an example of the log messages created during the test:

Algorithm Chaining - AES256-CBC HMAC-SHA512 Number of threads 2
Total Submissions 20
Total Responses 20
Packet Size 512

A similar pattern is repeated for each of the tests.

4.2 Intel® QAT API Sample Code

The software package contains sample code that demonstrates how to use the Intel® QAT
APIs and build the structures required for various use cases.

For more details, refer to the Intel® QuickAssist Technology API Programmer’s Guide (refer to
the listing in Table 1).

4.2.1 Compiling the Acceleration Functional Sample Code

The acceleration functional sample code can be compiled manually.

Note: These instructions assume the software package has been untarred to the /QAT directory and
the kernel source files were placed in the directory specified in this guide.

Sample Applications

Getting Started Guide 33

1. The following environment variable must be set to build the modules:

export ICP_ROOT=<QATdir>

where <QATdir> is /QAT or the directory where the package was untarred.

2. Compile for the user space using the following commands:

cd
$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/function
al
make all

Result: The generated Linux* kernel objects and sample applications are located at:
$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/functional/b
uild

4.2.2 Executing the Acceleration Functional Sample Code in User Space

To execute the acceleration functional sample code in user space, use the following
commands:

cd
$ICP_ROOT/quickassist/lookaside/access_layer/src/sample_code/function
al/ build
”./hash_file_sample

Note: The hash_file_sample is one of the functional user space applications. Launch the other user
space applications similarly.

§

Installing, Building, and Running Yocto*

34 Getting Started Guide

5 Installing, Building, and Running
Yocto*
The Yocto Project* is an open-source collaboration project focused on embedded Linux*.
Yocto* includes a set of tools to build a custom Linux* distribution. The process to create your
custom Linux* distribution using Yocto* involves creating your own image on a software
development workstation. The steps in Section 5.1, “Building the Yocto* SDK Image” should
be done on a software development workstation, not the Harcuvar CRB.

The steps to build and copy the image on Ubuntu* 14.04 are included here. If using a different
Linux* distribution, consult the Yocto Project* website -https://www.yoctoproject.org) for
more information and documentation, including:

• Yocto* Quick Start Guide: http://www.yoctoproject.org/docs/latest/yocto-project-
qs/yocto-project-qs.html

• Git repository: http://git.yoctoproject.org/cgit/cgit.cgi/meta-intel/

Note: The pre-built image has a Time-Limited-Kernel (TLK), which means that the image is
restricted to a 10-day uptime and the image will be auto-rebooted after that time. TLK is added to
encourage end-users to build their own image for production.

5.1 Building the Yocto* SDK Image

Follow the instructions below to create the Yocto* SDK image. A pre-built image Yocto* SDK
image is provided in the Electronic Design Kit (document number 565762). (refer to listing in
Table 1, “Product Documentation and Software”). If using the pre-built image, proceed to
Section 5.2, “Creating the Linux* Boot Disk” for instructions on creating OS boot image.

Note: If you are upgrading the acceleration drivers, proceed to Section 5.4, “Upgrading Acceleration
Software”.

Prerequisites: The build process using sato consumes about 100 GB of disk space. Therefore,
at least 200 GB of free disk space is recommended.

Note: If script build errors appear to be syntax errors, it is likely that the script is being passed to the
wrong shell. Many Yocto* scripts call /bin/sh, which may be symbolically linked to /bin/dash. To
resolve the problem, remove /bin/sh (“sudo rm /bin/ sh“) and link to bash instead (“sudo ln -s /bin/bash
/bin/sh”).

1. Install Ubuntu* 14.04 (64-bit).

Note: Always execute the following instructions as a non-root user.

2. If required, add the following proxy settings for your network environment to
/etc/environment:
https_proxy=’https://<proxy_server>:<proxy_port>/’
http_proxy=’http://<proxy_server>:<proxy_port>/’
ftp_proxy=’http://<proxy_server>:<proxy_port>/’
GIT_PROXY_COMMAND=/usr/bin/git_proxy_command

https://www.yoctoproject.org/
http://www.yoctoproject.org/docs/latest/yocto-project-%20qs/yocto-project-qs.html
http://www.yoctoproject.org/docs/latest/yocto-project-%20qs/yocto-project-qs.html
http://git.yoctoproject.org/cgit/cgit.cgi/meta-intel/

Installing, Building, and Running Yocto*

Getting Started Guide 35

Configure ssh configuration file for proxy settings. Add following lines to ~/.ssh/
config:
host *
ProxyCommand connect-proxy -s %h %p

Create the /usr/bin/git_proxy_command file and add the following lines:

#!/bin/sh
connect-proxy -s $@

Change the git_proxy_command file to be executable:

sudo chmod +x /usr/bin/git_proxy_command

Log out of the current user account and login, to allow the environment changes to take
effect.

3. Update apt-get:

sudo apt-get -y update

4. Install the required software components:

sudo apt-get -y install gawk wget git-core diffstat unzip texinfo \
build-essential chrpath libsdl1.2-dev xterm socat connect-proxy

Note: If the apt-get command fails completely, try it again, since the specific mirror selected may not
have transferred the files correctly.

5. Download the BSP (document number 565774) and copy this file to the
/home/<userid> directory on the build system. Then change that directory.

6. Decompress and extract the archived package. For example:

<package_name> = harcuvar_PV
tar xzvf <package_name>.tar.gz

The <package_name> package consists of setup folder and setup scripts. The setup
script has test logic to check if your build system can access the Internet.

The setup folder consists of BSP-related patches inside setup/patchset/bsp,
setup/patchset/meta:

cd <package_name>
chmod +x setup.sh setup/combo-layer # ./setup.sh

7. Verify that the following directory structure is present, at a minimum:

pwd: ~/<package_name>
|-- bitbake
|
|-- meta-intel
| |
| |--meta-isg
|--meta-openembedded
|--meta-virtualization
|--meta-yocto

8. Run the script to build the environment essentials:

cd ~/<package_name>
source oe-init-build-env build

Installing, Building, and Running Yocto*

36 Getting Started Guide

This also changes the current working directory to /<package_name>/build.

Note: Be sure to source the file while in /poky since the build directory is created based on the
current working directory.

9. By default, the 64-bit version of the OS is built. If the 32-bit OS is required, edit the file
~/<package_name>/build/conf/local.conf and update the MACHINE line as
follows: MACHINE ?= "intel-core2-32".

10. Build the SDK image by running the commands:

cd ~/<package_name>/build
bitbake core-image-sato-sdk

Note: The bitbake cannot run as a root user. Note the following:

• If build errors appear to be script errors such as the one shown in the following example,
verify that /bin/sh is linked to /bin/bash as described in Step 7.

[: 128: cmdline: unexpected operator |

• If the build fails and bitbake command needs to be executed again, repeat Step 7 to source
oe-init-build-env.

Log files (including errors and warnings) for the build are included in the
~/<package_name>/build/tmp/log directory.

• Warning messages may be observed during the build process. These can be safely ignored.

• If an error is returned stating bitbake is not installed, verify that you sourced the

oe-init-build-env file in ~/<package_name> as described in Step 7.

• The command may take several hours to complete, depending on the particular software
development machine and network speed.

11. Verify that the hddimg is created in ~/<package_name>/build/tmp/deploy/
images/<intel-corei7-64 | intel-core2-32>. The 64-bit version is titled core-
image-sato-sdk-intel-corei7-64.hddimg.

5.2 Creating the Linux* Boot Disk

Note: If you are upgrading the acceleration drivers, proceed to Section 5.4, “Upgrading Acceleration
Software”.

5.2.1 Locating the hddimg

If creating your own hddimg via the process in Section 5.1, “Building the Yocto* SDK Image”,
your hddimg is located in ~/<package_name>/build/tmp/ deploy/images/<intel-
corei7-64 | intel-core2-32>.

Installing, Building, and Running Yocto*

Getting Started Guide 37

5.2.2 Creating the Boot Disk

Note: Special care must be taken when creating the boot disk, since any misidentification of the
target disk can overwrite critical data. Back up your data if there is any doubt about which disk you will
be writing to in the following steps.

A script file is included in the Yocto* BSP for creating the disk image. The script is called
mkefidisk.sh and is located in the following directory:
~/<package_name>/scripts/contrib

Usage is:
mkefidisk.sh HOST_DEVICE image.hddimg TARGET_DEVICE

where:

HOST_DEVICE => Device to install image to.

TARGET_DEVICE => Name of the device as target device sees it. This would likely be
/dev/sds.

1. Identify the device name for your HOST_DEVICE. This is the drive the Yocto* image is
being installed to. Study the output of one or more of the following commands to give
confidence as to which disk is which:
sudo parted -l # df -h
cat /proc/partitions

2. Launch the mkefidisk.sh script using the HOST_DEVICE identified in Step 1, the hard
drive image created in Section 5.1 or pre-built image, and the TARGET_DEVICE (likely
/dev/sda). The following commands show the command for building the target image to
the /dev/sdb drive with the 64-bit image created in Section 5.1.
cd ~<package_name>
sudo ./scripts/contrib/mkefidisk.sh /dev/sdb
./build/tmp/deploy/images/ intel-corei7-64/core-image-sato-sdk-intel-
corei7-64.hddimg /dev/sda

Answer “y” when prompted to prepare the EFI image on the HOST_DEVICE (/dev/ sdb
in this example).

During the process, an error dialog may appear that states Unable to open a folder for 3.3
GB Volume or Unable to open a folder for ROOT. These errors can be safely ignored. Click
OK to close the error dialog.

When the image preparation is complete, the following message appears:
Installation completed successfully

3. Power down the build system when the image preparation is complete. Insert the newly
created SATA drive or USB stick into the target system and boot to the Yocto* OS.

5.3 Additional Information on Software

Note: If you are upgrading the acceleration drivers, proceed to Section 5.4, “Upgrading Acceleration
Software”.

The software package contains a set of sample tests that exercises acceleration functionality.
This section describes the steps required to build and execute the sample tests.

Installing, Building, and Running Yocto*

38 Getting Started Guide

The sample application is provided for the user space.

5.3.1 Loading the Sample Code

The acceleration kernel module must be installed, and the software must be started before
attempting to execute the sample code. This can be verified by running the following
commands:

lsmod | grep "qa"
/etc/init.d/qat_service status

Typical output is similar to the following:

~# /etc/init.d/qat_service status Checking status of all devices. There
is 1 QAT acceleration device(s) in the system:
qat_dev0 - type: c3xxx, inst_id: 0, bsf: 01:00:0, #accel: 2 #engines: 6
state: up

Install the memory driver:

insmod /lib/modules/4.1.8-yocto-standard/updates/drivers/crypto/qat/
usdm_drv.ko

The sample application is executed by launching the application for user space. The
application is located in the /usr/bin directory. Section 4.1.2, “Loading the Sample Code”
includes a list of run-time parameters for the application. To execute the sign of life test, use
the following command:

./cpa_sample_code signOfLife=1

5.4 Upgrading Acceleration Software

This section describes the steps required to update the existing Yocto* image with the
updated acceleration software. It enables usage of the newer acceleration software package
without rebuilding the target image.

1. Perform the following commands to install kernel header files:

cd /usr/src/kernel/
make oldconfig && make modules_prepare && make scripts
ln -s /usr/src/kernel /lib/modules/4.4.13-yocto-standard/build

2. Create a working directory for the software. This directory can be user defined, but for the
purposes of this document a recommendation is provided:

mkdir /QAT && cd /QAT

Note: In this document, the working directory is assumed to be /QAT. This directory is the ICP_ROOT.
3. Transfer the tarball to the development board using any preferred method, for example,

the USB memory stick, CDROM, or network transfer in the /QAT directory.

Installing, Building, and Running Yocto*

Getting Started Guide 39

Unpack the tarball using the following command:

tar -zxof <QAT tarball name>

4. Restricting access to the files is recommended:

chmod -R o-rwx *

5. Uninstall the existing acceleration software using the command:

make uninstall && make clean && make distclean

6. Install the acceleration software and acceleration sample code using the following
commands:

./configure
make -j install
make -j samples-install

Note: Using the “-j” simultaneous job option may cause compile issues on some distro’s e.g. Fedora
40.

7. Execute sample code:

cd build
export LD_LIBRARY_PATH=/usr/lib64
./cpa_sample_code

Refer to Section 4.1.2, “Loading the Sample Code” for list of run-time parameters for the
application.

§

Physical Function to Virtual Function
Communications

40 Getting Started Guide

6 Physical Function to Virtual Function
Communications
In a virtualized environment, a Physical Function (PF) device driver runs on the host and Virtual
Function (VF) drivers on the guests. The PF driver initializes the device and loads firmware.

The PF driver communicates with the VF drivers to exchange information and state.
Information communicated to the VF driver includes:

• Device capabilities. Capabilities may be filtered by fuses, soft straps, or firmware.

• Driver compatibility. Different driver versions may be running on host and guest. Driver
versions may not always be compatible. New features may be developed which, when
enabled on the PF, introduce an incompatibility with older VF drivers. If the drivers are
incompatible, the VF driver does not complete initialization.

• Event notification. Events, such as errors, which are detected on the PF may need to send
notifications to the VFs.

§

Avoiding Kernel Crashes with PCH Intel® SKUs

Getting Started Guide 41

Appendix A Avoiding Kernel Crashes with
PCH Intel® SKUs

Note: Some Linux* versions, including RHEL/ CentOS* 7.3, will not boot/install with PCH Intel® QAT
SKUs (E/M/T/L). This is due to a software driver bug in the in-kernel drivers for Intel® QAT. Pre-QS
SKUs and 1G/2/4 SKUs are not affected.

Note: Intel® is committed to moving away from non-inclusive terms such as 'blacklist' and will do so at
the soonest possible opportunity, governed by dependencies on other software, such as modprobe.

To avoid the problem, change the grub boot options to block the loading of the Intel® in-kernel
driver for PCH (qat_c62x) at installation time and for future boots until the driver is updated
and/or the in-kernel qat_c62x.ko file is deleted.

Note: These instructions may not cover the case in which the kernel source is updated. Before updating
the kernel, be sure to understand if kernel crashes may result due to this in- kernel Intel® QAT issue.

Note: Before uninstalling an Intel® QAT package, ensure that the package will not restore an in-kernel
qat_c62x.ko file that has the issue.

Note: This issue is present approximately from the Linux* kernel 4.5 to kernel 4.9 and derivations
thereof. The fixes are documented here:

• https://patchwork.kernel.org/patch/9485107/

• https://patchwork.kernel.org/patch/9485109/

Note: Some Linux* kernels after 4.9 may also experience kernel crashes with qat_c62x.ko
or other qat modules. Follow the same recommended procedures described below.

A.1 Recommended Procedures

A.1.1 Installing the Operating System
Follow these instructions to safely install the operating system:

1. Boot platform from installation source (DVD, CD, USB)

2. Select “Install CentOS* Linux* v7.3” (or equivalent) menu from the GRUB list (but don’t
press Enter).

3. Enter the grub options edit mode. This may be done by pressing Tab or e.

4. Add modprobe.blacklist=qat_c62x to the boot options. If you are not sure where
exactly to make the edit, you can just find the word quiet and change it to
modprobe.blacklist=qat_c62x.

5. Press Enter to boot.

6. Continue with installation process. The platform reboots when installation is complete.

https://patchwork.kernel.org/patch/9485107/
https://patchwork.kernel.org/patch/9485109/

Avoiding Kernel Crashes with PCH Intel® SKUs

42 Getting Started Guide

A.1.2 Operating System First Boot
At the next reboot select the kernel you want to boot from the GRUB list (but don’t press
Enter).

1. Press e.

2. Append to the kernel command line modprobe.blacklist=qat_c62x (line that starts
with linuxefi or perhaps linux16). If you are not sure where exactly to make the edit,
you can just find the word quiet and change it to modprobe.blacklist=qat_c62x.

3. Press Ctrl+x to boot.

Note: If you still see a kernel crash including the keywords qat or adf, refer to Section A.2,
“Alternative Module Load Blocking Procedures" for additional ideas to reach a command prompt.

Upon reaching the command prompt, remove the in-kernel qat_c62x.ko file that can lead to a
kernel crash when inserted into the kernel:

rm /usr/lib/modules/`uname -
r`/kernel/drivers/crypto/qat/qat_c62x/qat_c62x.ko

This prevents the offending module from being reloaded in all cases except the case in which a
new kernel is loaded.

Reboot and verify that no kernel crash is observed.

shutdown -r now

A.2 Alternative Module Load Blocking Procedures
Depending on your operating system and environment, some alternative methods of module
load blocking can be attempted or utilized in order to get to a command prompt or for avoiding
the kernel crash in the long term.

Note: Some methods may have unintended consequences (e.g. out-of-kernel QuickAssist packages
may not install).

A.2.1 Grub Options
Try these options one at a time:

qat_c62x.blacklist=yes

rdblacklist=qat_c62x

module_blacklist=qat_c62x

Avoiding Kernel Crashes with PCH Intel® SKUs

Getting Started Guide 43

A.2.2 Changes to Configuration File
Append the following to /lib/modprobe.d/dist-blacklist.conf after booting into rescue mode:

blacklist intel_qat

blacklist qat_c62x

blacklist qat_dh895xcc

§

	1 Introduction
	1.1 About This Manual
	1.2 Additional Information on Software
	1.2.1 Accessing Additional Content from My Intel®
	1.2.2 Product Documentation

	1.3 Related Software and Documentation
	1.4 Conventions and Terminology
	1.5 Software Overview
	1.5.1 Features Implemented
	1.5.2 List of Files in Release
	1.5.3 Package Release Structure

	2 Installing the Operating System
	2.1 Acquiring CentOS* 7
	2.2 Configure the BIOS
	2.3 Installing CentOS* 7
	2.4 Updating Grub Configuration File
	2.5 Configuring Linux*
	2.5.1 Updating yum Configuration Files
	2.5.1.1 /etc/yum.conf

	2.6 System Security Considerations

	3 Building and Installing Software
	3.1 Unpacking the Software
	3.2 Installation Overview
	3.2.1 Installation Commands
	3.2.2 Starting the Driver
	3.2.3 Installation Procedure
	3.2.3.1 Standard Installation Procedure
	3.2.3.2 XEN Installation Procedure
	3.2.3.3 Platform Cross-Compilation Procedure

	3.3 Starting/Stopping the Acceleration Software
	3.4 Configuration Files
	3.4.1 Configuration File Overview
	3.4.2 Configuration Files and Virtualization

	4 Sample Applications
	4.1 Intel® QAT Accelerator Sample Application
	4.1.1 Compiling the Acceleration Sample Code
	4.1.2 Loading the Sample Code
	4.1.2.1 The signOfLife Tests
	4.1.2.1.1 User Space
	4.1.2.1.2 Kernel Space

	4.1.3 Test Results

	4.2 Intel® QAT API Sample Code
	4.2.1 Compiling the Acceleration Functional Sample Code
	4.2.2 Executing the Acceleration Functional Sample Code in User Space

	5 Installing, Building, and Running Yocto*
	5.1 Building the Yocto* SDK Image
	5.2 Creating the Linux* Boot Disk
	5.2.1 Locating the hddimg
	5.2.2 Creating the Boot Disk

	5.3 Additional Information on Software
	5.3.1 Loading the Sample Code

	5.4 Upgrading Acceleration Software

	6 Physical Function to Virtual Function Communications
	Appendix A Avoiding Kernel Crashes with PCH Intel® SKUs
	A.1 Recommended Procedures
	A.1.1 Installing the Operating System
	A.1.2 Operating System First Boot
	A.2 Alternative Module Load Blocking Procedures
	A.2.1 Grub Options
	A.2.2 Changes to Configuration File

