Intel” Firmware Support Package

External Architecture Specification

November 2015

Version 1.1a

Document Number: 332394-002US

Introduction

You may not use or facilitate the use of this document in connection with any infringement or other legal analysis concerning Intel products
described herein. You agree to grant Intel a non-exclusive, royalty-free license to any patent claim thereafter drafted which includes subject matter
disclosed herein

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this document.

All information provided here is subject to change without notice. Contact your Intel representative to obtain the latest Intel product specifications
and roadmaps.

The products described may contain design defects or errors known as errata which may cause the product to deviate from published
specifications. Current characterized errata are available on request.

Copies of documents which have an order number and are referenced in this document may be obtained by calling 1-800-548-4725 or by visiting
http://www.intel.com/design/literature.htm :

Intel technologies’ features and benefits depend on system configuration and may require enabled hardware, software or service activation. Learn
more at http://www.intel.com/ or from the OEM or retailer.

No computer system can be absolutely secure.
Intel and the Intel logo are trademarks of Intel Corporation in the U.S. and/or other countries.
*Other names and brands may be claimed as the property of others.

Copyright © 2015, Intel Corporation. All rights reserved.

Firmware Support Package EAS v1.1a November 2015
2 Document Number: 332394-002US

http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/design/literature.htm
http://www.intel.com/

Introduction

Contents

November 2015

1 0 o LT3 T o O 7
1.1 PUTOSE .ttt s e bbbt n 7
1.2 Tl (=T aTo L= Yo ITAN U o 17T o TP 7
1.3 Related DOCUMENTS.....c.ceceerercesersesessssseses st ssssssssssssssssssssssssssssssssessssssssssssssssssssssssssaess 7
FSP OVEIVIEW eceeestseeeessssessesssssssssesssssssssssssssssssssssassssesssssssssessssssssesssssssssssssssssssesssssssssesssssssssesssssssssessnsane 8
2.1 [DICTSITo [T d o V1 Lo T=T0] 0] o Y7200 8
2.2 TECNNICAI OVEIVIBW ...ttt sssssssss s s s s ssssssesssssessssssssssss st essssssssssssssssenes 8
2.2.1 Data Structure DesCriPLiONSoiiiiiiiii e aeaas 8

FSP INTEGTATION ...ttt sss s s sss s st ssssss st sssssessssssssessssssssessssessssessssnssssssssssessessnsaneans 9
3.1 FSP DiStribution PACKAQEoerverereessessesessssssesssssssssssssssssssssssssssesssssssssssssssssssssssssssess 9
3.2 FSP IMage ID AnNd REVISION.... i eeeeeeseeseeseesessessesssesssesssesssesssesssssssssssssssssssssssssees 10
T Y0l [0 1V 11
FSP BIiNAIY FOMMAT.... s sssssessassssssssssssssssssssssssessssnsanes 12
5.1 FSP INTOrmMation tabIES .ttt sssessss s sssssssssssssaseans 12
5.1.1 FSP_INFO_HEADER.. e ee e 12

5.1.2 FSP_INFO_EXTENDED_HEADER....ci i eaeeea 14

5.1.3 Finding FSP_INFO_HEADER.......cuitiuii e, 14

514 FSP Description File e 16

5.1.5 FSP Patch Table (FSPP)ieeeiee e, 16
5.1.5.1 EXAMPIE arrcrctssescsstssesessaees 17

FSP INTEITACE (FSP AP et tsesesssssessessssssessssssssssssssssssssssssssssssssassssssssssssssesssssssssessssnsanes 18
6.1 Entry-Point Invocation ENVIFONMENT.......rcressessesesssssessssssssssssssssssssssssssasesns 18
6.2 Data StruCture CONVENTION ... ettt sesesess st sse s ssessssssssssssssssssssssssssssasens 18
6.3 Entry-Point Calling CONVENTION ... eeereeeereeseesesssesssesssesssesssesssesssesssssssssssssssssees 18
6.4 RETUIN STATUS COUE.....rercerercretssese et ssesss s ssss s sssss st sss s s ssssss s s ssssssssssssaseans 19
6.5 TEMPRAMINIT AP e 19
6.5.1 [(0] (0] 1Y/ o 1< P 19

6.5.2 P A A B S . .. e 19

6.5.3 Related DefinitioNS.oiiii e 20

6.5.4 RETUIN VAIUES ... e 20

6.5.5 DESCIIPLION ..t e 21

6.6 FSPINIT APttt tsesesss s sssss st sss st sss s s sss s ess s sns s saneans 22
6.6.1 [(0] (0] 1Y/ o 1< P 22

6.6.2 P A A B TS ... 22

6.6.3 Related DefinitioNS.o s 23
6.6.3.1 FSP_INIT_RT_BUFFER ... ssssssssessessnes 23

6.6.4 RETUIN ValUES ...eeeee e e et eaneeens 24

6.6.5 0T E o] 0 o] o 25

6.7 NOTITYPRASE AP ..eeeeeeeeeeereeseeseeses s ses s ssss s sss s sses s e st e s sesssess s sesssesssesssees 26
6.7.1 L (0] 0] 1Y/ 1= 26

Document Number: 332394-002US

Firmware Support Package EAS v1.1a
3

Introduction

6.7.2 Parameterso 26

6.7.3 Related DefinitioNS.ooiiii e 26

6.7.4 RETUIN VAIUES ... e 27

6.7.5 DESCIIPLION ..t e 27

6.8 FSPMEMOIY INIT APttt sss s st sssssssssssssssssssssssssssasssssssssaneans 27

6.8.1 [(0] (0] 1Y/ o 1< P 28

6.8.2 Parameterso 28

6.8.3 Related DefinitioNS.o s 28

6.8.4 RETUIN ValUES ...eeeee e et eaaeeens 29

6.8.5 0T E o] 0 o] o 29

6.9 TEMPRAMEXIT AP ..ot 30

6.9.1 L (0] 0 1Y/ 1= 30

6.9.2 Parameterso 30

6.9.3 RETUIN VAIUES ...t e 30

6.9.4 0T E o] o) o] o 31

6.10 FSPSIHCONTNIT AP oo 31

L0 O T A o 0) {0 1Y/ o 1 31

6.10.2 ParametersScouiiuiiiiiii 31

6.10.3 RetUIN VAlUES ... e 32

6.10.4 DESCIIPLION .. et e 32

7 LT O U 10 11) P 33
7.1 FSP_BOOTLOADER_TEMP_MEMORY_HOB ... ssessssessssessses 33

7.2 FSP_RESERVED_MEMORY_RESOURCE_HOB......onrreresessessessessssessessessesens 34

7.3 FSP_NON_VOLATILE_STORAGE_HOB.rressinsessessesessesesssssssssssssssssssessesesens 34

7.4 FSP_BOOTLOADER_TOLUM_HOB ... ssessssessssssssssssssessssssssssssses 35

7.5 EFI_PEI_GRAPHICS_INFO_HOBnresesessesssssssssssssessessssssssssssssssssssssssssssssens 35

8 FSP Configuration FIrMWAre FilE... s sssssesssssssssssssssssssssssssssssssssssaes 36
8.1 AVZ 24 D IESY =1 Lo F= 1o B 1= o £ P 37

8.2 UPD Standard FIelaS... st sssssssesssens 37

9 Other Host BootLoader CONSIAErationS..... s ssssssseessesesssssssssssssssssssesssssnes 38
9.1 POWeEr ManNagemMENT ... ssassnns 38

9.2 BUS ENUMEIATION ..ttt se st ss st sss s sss st st ss st ssessssssssssssssssssssssssnsssssasens 38

9.3 LY=o 1 | Y70 PP 38

10 APPENIX A — DAtA STIUCTUIESceeeeeeeeeeeeeeeseeeesssessesssessssssesssessesss 39
10.1 BOOT_MODBE...risisinsessssessessessesssssssssssssesssns 39

10.1.1 PiBOOIMOAE.N ...t 39

10.2 EFL _STATUS .ttt s s e ettt 40

10.2.1 UefiBaseTyPe.N o e e 40

10.3 EFI_PEI_GRAPHICS INFO_HOB ... sssssssssssssssssssssees 41

10.3.1 GraphicsInfoHOD.h ... 41

104 EF] _GUID sttt sttt sttt 41

10.4. 1 BaSE. N e 41

10.4.2 UefiBaseTyPe.n ... 41

10.5 EFI_MEMORY _TYPE it sssnsssses 42

10.5.1 UefiMUItiPhase.N ..o e 42

10.6 Hand Off BIOCK (HOB) ..ceerereeeeeeseesseesessseessesssans 43

Firmware Support Package EAS v1.1a November 2015

4

Document Number: 332394-002US

Introduction

11

Figures

Figure 1.
Figure 2.

Tables

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.
Table 7.
Table 8.
Table 9.
Table 10.
Table 11.

November 2015

10.6.1 PiHOb.h ...

10.7 Firmware Volume and Firmware Filesystem

10.7.1 PiFirmwareVolume.hcccoviiiiiiinn.n.
10.7.2 PiFirmwareFile.h......cccovveeiiiiiiiiiiinna..

APPENIX B — ACIONYMIS ... ceeereureesesesseessesessesssssesssssssseanss

BOOT FIOWS ...ttt s s esassesassessssees
Data STrUCTUIES ...

FSP_INFO_HEADER....ssissesssscsssssssssssssssssssssssess

FSP_INFO_EXTENDED_HEADER

FSPP — PatchData ENCOdiNGcccovemenrereesnensesreessensessessssneenns

Return Values - TempRamlInit API

Return Values - FSpINit APl

Return Values - NotifyPhase API
Return Values - FspMemorylnit API

Return Values - TempRamExit API
Return Values - FspSiliconInit API

VPD Standard FieldsS... e seseaas
UPD Standard FieldsS.. s sssessseens

Document Number: 332394-002US

Firmware Support Package EAS v1.1a
5

intel.

Introduction

Revision History

Date

Revision

Description

November 2015

002

e Specification version 1.1a

e Section 2.2.1 — Added Data Structure Descriptions

e Section 5.1.1 and 6.6: Made Fsplnit API optional

e Section 5.1.5: Added FSP Patch Table (FSPP)

e Section 6.5.4: Added clarification for the return range

e Section 7.3: Updated to parse the FSP_NON_VOLATILE_STORAGE_HOB after
FspMemorylnit instead FspSiliconInit API

¢ Section 7.5: Updated EFI_PEI_GRAPHICS_INFO_HOB will not be produced in S3
boot path

o Section 8.2: Defined MemoryInitUpdOffset and SiliconInitUpdOffset in the UPD
standard fields

e Section 10: Added GitHub links to the sample files.
e Section 10.1.1: Added additional Boot Mode values

April 2015

001

e Specification version 1.1
¢ Added FspMemorylnit, TempRamExit and FspSiliconInit API
e Added FSP_INFO_EXTENDED_HEADER
e FSP_INFO_HEADER changes
— Updated HeaderRevision from 1 to 2
— Update ImageRevision format to Major.Minor.Rev.Build
— Define BITO for Display support in ImageAttribute
— Updated ApiEntryNum from 3 to 6
e Updated Boot Flow
e Added EFI_PEI_GRAPHICS_INFO_HOB

e Added FSP_INIT_RT_COMMON_BUFFER.BootLoaderTolumSize and
FSP_BOOTLOADER_TOLUM_HOB

o Added Data Structure definitions
e Added FSP description file information
¢ Added Microcode Region layout, HOB and other clarifications

April 2014

1.0

e Specification version 1.0
e Initial publication

Firmware Support Package EAS v1.1a

6

November 2015
Document Number: 332394-002US

Introduction

1 Introduction

1.1 Purpose

The purpose of this document is to describe the external architecture and interfaces
provided in the Intel’ Firmware Support Package (FSP).

1.2 Intended Audience

This document is targeted at all platform and system developers who need to consume
FSP binaries in their bootloader solutions. This includes, but is not limited to: system IA
firmware or BIOS developers, bootloader developers, system integrators, as well as end
users.

1.3 Related Documents

November 2015

Intel® Firmware Support Package (FSP) External Architecture Specification v1.0
http://www.intel.com/content/dam/www/public/us/en/documents/technical-
specifications/fsp-architecture-spec.pdf

Intel® Firmware Support Package (FSP) External Architecture Specification v1.1
http://www.intel.com/content/dam/www/public/us/en/documents/technical-
specifications/fsp-architecture-spec-v1-1.pdf

Unified Extensible Firmware Interface (UEFI) Specification located at
http://www.uefi.org/specifications

Platform Initialization (PI) Specification v1.4 located at
http://www.uefi.org/sites/default/files/resources/Pl_1_4.zip

Binary Configuration Tool (BCT) for Intel’ Firmware Support Package located at
http://www.intel.com/fsp.

Boot Specification File (BSF) Specification

§

Firmware Support Package EAS v1.1a

Document Number: 332394-002US 7

http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/fsp-architecture-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/fsp-architecture-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/fsp-architecture-spec-v1-1.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/technical-specifications/fsp-architecture-spec-v1-1.pdf
http://www.uefi.org/specifications
http://www.uefi.org/sites/default/files/resources/PI_1_4.zip
http://www.intel.com/fsp

i @ Fp Overview

FSP Overview

2.1 Design Philosophy
Intel recognizes that it holds the key programming information that is crucial for
initializing Intel silicon. Some key programming information is treated as proprietary
information and may only be available with legal agreements.
Intel” Firmware Support Package (Intel® FSP) is a binary distribution of necessary Intel
silicon initialization code. The first design goal of FSP is to provide ready access to the
key programming information that is not publicly available. The second design goal is
to abstract the complexities of Intel Silicon initialization and expose a limited number
of well-defined interfaces.
A fundamental design philosophy is to provide the ubiquitously required silicon
initialization code. As such, FSP will often provide only a subset of the product’s
features.

2.2 Technical Overview
The FSP provides chipset and processor initialization in a format that can easily be
incorporated into many existing bootloaders.
The FSP performs the necessary initialization steps as documented in the BIOS Writers
Guide (BWG) / BIOS Specification including initialization of the processor, memory
controller, chipset and certain bus interfaces, if necessary.
FSP is not a stand-alone bootloader; therefore it needs to be integrated into a
bootloader to carry out other functions such as:
e Initializing non-Intel components
e Bus enumeration and device discovery
e Industry standards

2.2.1 Data Structure Descriptions
All data strucutures defined in this specification conform to the “little endian” byte
order i.e., the low-order byte of a multibyte data items in memory is at the lowest
address, while the high-order byte is at the highest address.

8§
Firmware Support Package EAS v1.1a November 2015

8

Document Number: 332394-002US

FSP Integration -I n te l f@;>

3 FSP Integration

The FSP binary can be integrated into many different bootloaders and embedded OS.

Below are some required steps for the integration:
e Customizing

The FSP has some sets of configuration parameters that are part of the FSP binary
and can be customized by external tools provided by Intel.

e Rebasing

The FSP is not Position Independent Code (PIC) and the whole FSP has to be
rebased if it is placed at a location which is different from the preferred base
address specified during the FSP build.

e Placing

Once the FSP binary is ready for integration, the bootloader needs to be modified
to place this FSP binary at the specific base address identified above.

e Interfacing

The bootloader needs to add code to setup the operating environment for the FSP,
call the FSP with the correct parameters, and parse the FSP output to retrieve the
necessary information returned by the FSP.

3.1 FSP Distribution Package

The FSP distribution package contains the following:

e FSP Binary

e Integration Guide

e Vital Product Data (VPD)/Updatable Product Data (UPD) Data structure definitions
e Boot Settings File (BSF)

The FSP configuration utility called Binary Configuration Tool (BCT) will be available as
a separate package.

November 2015 Firmware Support Package EAS v1.1a
Document Number: 332394-002US 9

i n te | ® > FSP Integration

3.2 FSP Image ID and Revision

The FSP_INFO_HEADER structure contained within the FSP binary contains an Image
Identifier field and an Image Revision field that provide the identification and revision
information for the FSP binary. It is important to verify these fields while integrating
the FSP as the FSP configuration data could change over different FSP Image identifiers
and revisions.

Firmware Support Package EAS v1.1a November 2015
10 Document Number: 332394-002US

intel)

4 Boot Flows

FSP supports two boot flows. The first boot flow is simpler for the bootloader. The
second boot flow increases flexibility and control for the bootloader. This chapter
describes the boot flows using the Fsplnit API (Boot Flow 1) and FspMemoryinit,
TempRamExit and FspSiliconlnit APl (Boot Flow 2).

Boot Flow 2 is recommended for new bootloader implementations. Boot Flow 1 is
supported for existing bootloader implementations.

These two boot flows are mutually exclusive, i.e. a bootloader can choose one or the
other, but not both.

The figure below shows both boot flows from the reset vector to the OS hand-off for a
typical bootloader. The APIs are described in more detail in the following sections.

Figure 1. Boot Flows

Boot Flow 1

Switch to 32-bit Mode

Boot Flow 2

TempRaminit Switch to 32-bit Mode

November 2015

Find FSP_INFO_HEADER
Call to TempRaminit API

Pre Memory Init
Call Fspinit API
(Pass Continuation Func)

Continuation Func
(Parse FSP Return Data)

Bus and Device Init
Call NotifyPhase
(PostPciEnumeration)

Boot Device Init
Call NotifyPhase

(ReadyToBoot)
Load OS or other payload

Document Number: 332394-002US

- Load microcode
- Enable CAR

FspM

- Memon
TempRamExit
- Teardown CAR

- Memory, Chipset & CPU Init

=
=
=t
E
[
=
c
2
Lo}
el
w
m
[
=
|

m

=
o

h=]
17}

-
o
1]

=

'

MotifyPhase
- Complete Init
- Lock settings

" VPDIUPD Data
Intel FSP

Find FSP_INFO HEADER
Call to TempRaminit API

Pre Memory Init
Call FspMemorylinit API

Switch Stack &
Temp RAM migration
Call TempRamExit API

Call to FspSiliconInit API

Bus and Device Init
Call NotifyPhase
(PostPciEnumeration)

Boot Device Init
Call NotifyPhase

(ReadyToBoot)
Load OS or other payload

Firmware Support Package EAS v1.1a

11

i n te | ’ > FSP Binary Format

FSP Binary Format

The FSP is distributed in a binary format. The FSP binary contains:
a) FSP_INFO_HEADER structure providing information about FSP,
b) Initialization code and data needed by the Intel silicon supported, and a

c) Configuration region that allows the bootloader developer to customize some of
the settings.

5.1 FSP Information tables
The FSP binary must always have an FSP_INFO_HEADER table and may optionally
have additional tables as described below.
All FSP tables must have a 4-byte aligned base address and a size that is a multiple of 4
bytes.
All FSP tables must be placed back-to-back.
All FSP tables must begin with a DWORD signature followed by a DWORD length field.
A generic table search algorithm for additional tables can be implemented with a
signature search algorithm until a terminator signature ‘FSPP’ is found.
5.1.1 FSP_INFO_HEADER
The FSP_INFO_HEADER structure conveys the information required by the bootloader
to interface with the FSP binary.
Table 1. FSP_INFO_HEADER
Byte Size in Field Description
Offset Bytes
0 4 Signature ‘FSPH'. Signature for the FSP_INFO_HEADER.
4 4 HeaderLength Length of the header in bytes. The current value for this
field is 72.
8 3 Reserved Reserved bytes for future.
11 1 HeaderRevision Revision of the header. The current value for this field is 2.
Firmware Support Package EAS v1.1a November 2015

12

Document Number: 332394-002US

FSP Binary Format l n te l
Byte Size in Field Description
Offset Bytes

12 4 ImageRevision Revision of the FSP binary. Major.Minor.Revision.Build

The ImageRevision can be decoded as follows:
0:7 - Build Number
8:15 - Revision

16: 23 - Minor Version

24 :31 - Major Version

16 8 Imageld 8 ASCII character byte signature string that will help match
the FSP binary to a supported hardware configuration.
BootLoader should not assume null-terminated.

24 4 ImageSize Size of the entire FSP binary in bytes.

28 4 ImageBase FSP binary preferred base address. If the FSP binary is
located at the address different from the preferred address,
the FSP binary needs to be rebased.

32 4 ImageAttribute Attributes of the FSP binary.

o Bit 0: GRAPHICS_SUPPORT - Set to 1 when FSP supports
enabling Graphics Display.
e Bits 1:31 - Reserved for future use.

36 4 CfgRegionOffset Offset of the configuration region (VPD). This offset is
relative to the FSP binary base address.

40 4 CfgRegionSize Size of the configuration region (VPD).

44 4 ApiEntryNum Number of API entries this FSP supports. The current design
supports 6 API.

48 4 TempRamInitEntryOf | Offset for the API to setup a temporary stack till the memory

fset is initialized.

52 4 FsplnitEntryOffset Offset for the API to initialize the processor and the chipset
(SOCQ). FspInitEntry APl encapsulates the functionality of
FspMemorylnit, TempRamExit and FspSiliconInit API.

If the value is set to 0x00000000, then this API is not
supported. Instead use the boot flow 2 as described in Boot
Flows
56 4 NotifyPhaseEntryOff Offset for the API to inform the FSP about the different
set stages in the boot process.
60 4 FspMemoryInitEntry Offset for the API to initialize the Memory.
Offset

64 4 TempRamExitEntryO | Offset for the API to tear down the temporary memory.

ffset

68 4 FspSiliconlnitEntryOf | Offset for the API to initialize the processor and chipset.

fset
November 2015 Firmware Support Package EAS v1.1a

Document Number: 332394-002US

13

i n te | ’ > FSP Binary Format

5.1.2

Table 2.

5.1.3

FSP_INFO_EXTENDED_HEADER

The FSP_INFO_EXTENDED_HEADER structure conveys additional information about
the FSP binary. This allows FSP producers to provide additional information about the
FSP instantiation.

FSP_INFO_EXTENDED_HEADER

Byte Size in Field Description
Offset Bytes

0 4 Signature ‘FSPE'. Signature for the FSP_INFO_EXTENDED_HEADER.

4 4 Length Length of the table in bytes, including all additional FSP
producer defined data.

8 1 Revision FSP producer defined revision of the table.

9 1 Reserved Reserved for future use.

10 6 FspProducerld FSP producer identification string.

16 4 FspProducerRevision FSP producer implementation revision number. Larger
numbers are assumed to be newer revisions.

20 4 FspProducerDataSize Size of the FSP producer defined data (n) in bytes.

24 n FSP producer defined data of size (n) defined by
FspProducerDataSize.

Finding FSP_INFO_HEADER

The FSP binary follows the UEFI Platform Initialization Firmware Volume Specification
format. The Firmware Volume (FV) format is described in the Platform Initialization (Pl)
Specification - Volume 3: Shared Architectural Elements specification as referenced in
Section 1.3.

The FV is a way to organize/structure binary components and enables a standardized
way to parse the binary and handle the individual binary components that make up the
FV.

The FSP_INFO_HEADER structure is stored in a firmware file, called the
FSP_INFO_HEADER file and is placed as the first firmware file within the firmware
volume. All firmware files will have a GUID that can be used to identify the files,
including the FSP_INFO_HEADER file. The FSP_INFO_HEADER file GUID is
FSP_FFS_INFORMATION_FILE_GUID

#define FSP_FFS_INFORMATION_FILE_GUID \

{ 0x912740be, 0x2284, 0x4734, { Oxb9, 0x71, 0x84, Oxb0, 0x27,
0x35, Ox3f, Ox0c }};

Firmware Support Package EAS v1.1a November 2015

14

Document Number: 332394-002US

FSP Binary Format

The bootloader can find the offset of the FSP_INFO_HEADER within the FSP binary by

the following steps described below:

e Use EFI_FIRMWARE_VOLUME_HEADER to parse the FSP FV header and skip the

standard and extended FV header.

o The EFI_FFS_FILE_HEADER with the FSP_FFS_INFORMATION_FILE_GUID is

located at the 8-byte aligned offset following the FV header.
e The EFI_RAW_SECTION header follows the FFS File Header.

e Immediately following the EFI_RAW_SECTION header is the raw data. The format
of this data is defined in the FSP_INFO_HEADER and additional header structures.

A pictorial representation of the data structures that is parsed in the above flow is

provided below.
Figure 2. Data Structures

FSP Binary

Firmware Volume
Header

Firmware Volume
Extended Header

Firmware
File Header

8 Byte Alignment

Firmware File 1

Firmware
File Section
(Type RAW)

RAW Section
Header

RAW Data
has the FSP
INFO Header

Firmware Volume (FV)

Firmware File 2

Firmware File System (FFS)

More Firmware
Files

November 2015
Document Number: 332394-002US

Firmware Support Package EAS v1.1a

15

i n tel ’ > FSP Binary Format

5.1.4 FSP Description File

The FSP binary may optionally include an FSP description file. This file will provide
information about the FSP including information about different silicon revisions the
FSP supports. The contents of the FSP description file must be an ASCIl encoded text
string.

The file, if present, must have the following file GUID and be included in the FDF file as
shown below.

#define FSP_FFS_INFORMATION_FILE_GUID \

{ 0xd9093578, 0x08eb, 0x44df, { O0xb9, O0xd8, 0xd0, Oxcl, 0xd3,
0Oxd5, Ox5d, 0x96 }};

#

Description file

#

FILE RAW = D9093578-08EB-44DF-B9D8-D0C1D3D55D96 {
SECTION RAW = FspDescription/FspDescription.txt

}

5.1.5 FSP Patch Table (FSPP)

FSP Patch Table contains offsets inside the FSP binary which store absolute addresses
based on the FSP base. When the FSP is rebased the offsets listed in this table needs to
be patched accordingly.

typedef struct {

UINT32 Signature; ///< FSP Patch Table Signature “FSPP”
UINT16 Length; ///< Size including the PatchData
UINTS8 Revision; ///< Revision is set to 0x01

UINTS8 Reserved;
UINT32 PatchEntryNum; ///< Number of entries to Patch
UINT32 PatchData[]; ///< Patch Data

} FSP_PATCH_TABLE;

Firmware Support Package EAS v1.1a November 2015
16 Document Number: 332394-002US

FSP Binary Format

intel)

Table 3. FSPP - PatchData Encoding

BIT [23:00] Image OFFSET to patch

BIT [27:24] Patch type
0000: Patch DWORD at OFFSET with the delta of the new and old base.

NewValue = OldValue + (NewBase - OldBase)

1111: Same as 0000
Others: Reserved

BIT [28:30] Reserved

BIT [31] 0: The FSP image offset to patch is determined by Bits[23:0]
1: The FSP image offset to patch is calculated by (ImageSize — (0x1000000 - Bits[23:0]))
If the FSP image offset to patch is greater than the ImageSize in the FSP_INFO_HEADER,
then this patch entry should be ignored.

5.1.5.1 Example

Let's assume the FSP image size is 0x38000. And we need to rebase the FSP base from
OxFFFCO0O00 to OxFFFOO000. Below is an example of the typical implementation of the
FSP_PATCH_TABLE:

FSP_PATCH_TABLE mFspPatchTable =

{
0x50505346, ///< Signature (FSPP)
16, ///< Length;
0x01, ///< Revision;
0x00, ///< Reserved;
1, ///< PatchEntryNum;
OxFFFFFFFC ///< Patch FVBASE at end of FV
¥
¥

Looking closer at the patch table entry:

OXFFFFFFFC, ///< Patch FVBASE at end of FV

The image offset to patch in the FSP image is indicated by BIT[23:0], OXFFFFFC. Since
BIT[31] is 1, the actual FSP image offset to patch should be:

ImageSize

If the DWORD

- (0x1000000 — OxFFFFFC) = 0x38000 — 4 = 0x37FFC

at offset Ox37FFC in the original FSP image is OxFFFCO00O, then the new

value should be:

OldValue + (NewBase - OldBase) = OxFFFCO000 + (OxFFFO0O000 — OxFFFCO000) =
OxFFFO0000

Thus the DWORD at FSP image offset 0x37FFC should be patched to xFFFOO00O after

the rebasing.

November 2015
Document Number: 332394-002US

8

Firmware Support Package EAS v1.1a
17

i n te | ® > FSP Interface (FSP API)

FSP Interface (FSP API)

6.1

6.2

6.3

Entry-Point Invocation Environment

There are some requirements regarding the operating environment for FSP execution.
The bootloader is responsible to set up this operating environment before calling the
FSP API. These conditions have to be met before calling any entry point (otherwise, the
behavior is not determined). These conditions include:

e The system is in flat 32-bit mode.
e Both the code and data selectors should have full 4GB access range.
e Interrupts should be turned off.

e The FSP API should be called only by the system BSP, unless otherwise noted.

Other requirements needed by individual FSP API will be covered in the respective
sections.

Data Structure Convention

All data structure definitions should be packed using compiler provided directives such
as #pragma pack(1) to avoid alignment mismatch between the FSP and the
bootloader.

Entry-Point Calling Convention

All FSP APIs defined in the FSP_INFO_HEADER are 32-bit only. The FSP APl interface
is similar to the default C __cdecl convention. Like the default C __cdecl convention,
with the FSP API interface:

e All parameters are pushed onto the stack in right-to-left order before the APl is
called.

e The calling function needs to clean the stack up after the API returns.

e The return value is returned in the EAX register. All the other registers including
floating point registers are preserved, except as noted in the individual API
descriptions below or in Integration Guide.

There are, however, a couple of notable exceptions with the FSP API interface
convention. Refer to individual APl descriptions for any special notes and these
exceptions.

Firmware Support Package EAS v1.1a November 2015

18

Document Number: 332394-002US

FSP Interface (FSP API) : -l n te l @:>

6.4

6.5

6.5.1

6.5.2

November 2015

Return Status Code

All FSP API return a status code to indicate the API execution result. These return
status codes are defined in the Appendix A — Data Structures, Section 10.2

TempRamlInit API

This FSP APl is called soon after coming out of reset and before memory and stack are
available. This FSP API loads the microcode update, enables code caching for a region
specified by the bootloader and sets up a temporary stack to be used prior to main
memory being initialized.

To invoke this API, a hardcoded stack must be set up with the following values:

1. The return address where the TempRamlInit API returns control.

2. A pointer to the input parameter structure for this API.

The ESP register must be initialized to point to this hardcoded stack.

Since the stack may not be writeable, this API cannot be called using the “call”
instruction, but needs to be jumped to directly.

This API should be called only once after the system comes out the reset, and it must
be called before any other FSP API. Otherwise, unexpected results may occur.

The TempRamlnit API preserves the following general purpose registers EBX, EDI, ESI,
EBP and the following floating point registers MMO, MM1. The bootloader can use
these registers to save data across the TempRamlinit API call. No other registers are
preserved.

Prototype
typedef

EF1_STATUS
(EFIAPI *FSP_TEMP_RAM_INIT) (
IN FSP_TEMP_RAM_INIT_PARAMS *TempRamInitParamPtr

Parameters
TempRamInitParamPtr

Address pointer to the FSP_TEMP_RAM_INIT_PARAMS structure. The structure
definition is provided below under Related Definitions.

Firmware Support Package EAS v1.1a

Document Number: 332394-002US 19

i n te | ® > FSP Interface (FSP API)

6.5.3 Related Definitions
typedef struct {

UINT32 MicrocodeRegionBase,
UINT32 MicrocodeRegionLength,
UINT32 CodeRegionBase,

UINT32 CodeRegionLength

} FSP_TEMP_RAM_INIT_PARAMS;

MicrocodeRegionBase Base address of the microcode region. This
address must be 16 byte aligned.

MicrocodeRegionLength Length of the microcode region. The length
must be total size of all patches or OXFFFFFFFF
if auto size detection is desired.

CodeRegionBase Base address of the cacheable flash region.

CodeRegionLength Length of the cacheable flash region. A size of 0
indicates that no code caching is desired.

6.5.4 Return Values

If this function is successful, the FSP initializes the ECX and EDX registers to point to a
temporary but writeable memory range available to the bootloader. Register ECX
points to the start of this temporary memory range and EDX points to the end of the
range [ECX, EDX], where ECX is inclusive and EDX is exclusive in the range. The
bootloader is free to use the whole range described. Typically, the bootloader can
reload the ESP register to point to the end of this returned range so that it can be used
as a standard stack.

Note: This returned range is a sub-region of the whole temporary memory initialized. The
FSP maintains and consumes the remaining temporary memory. The bootloader must
not access the temporary memory beyond the returned boundary. The bootloader
must not assume that this range is initialized with zeros.

Table 4. Return Values - TempRamlInit API

EFI_SUCCESS Temporary RAM was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_NOT_FOUND A valid microcode was not loaded in the processor.
EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR Temp RAM initialization failed.

Firmware Support Package EAS v1.1a November 2015

20 Document Number: 332394-002US

FSP Interface (FSP API) : 'l n te | ® >

6.5.5

November 2015

Description

The entry to this function is in a stackless/memoryless environment. After the
bootloader completes its initial steps, it finds the address of the FSP_INFO_HEADER
and then from the FSP_INFO_HEADER finds the offset of the TempRamlInit function. It
then converts the offset to an absolute address by adding the base of the FSP binary
and jumps to the TempRaminit function as described in 6.3 Entry-Point Calling
Convention and 6.6 Fsplnit API

The temporary memory range returned by this API is intended to be primarily used by
the bootloader as a stack. After this stack is available, the bootloader can switch to
using C functions. This temporary stack should be used to do only the minimal
initialization that needs to be done before memory can be initialized by the next call
into the FSP.

The input parameter structure describes a microcode region. The microcode region
may have multiple microcode patches starting at a 16 byte boundary and packed
together one after the other. The FSP will attempt to load the latest revision of the
appropriate microcode patch based on CPUID and the microcode patch header
contents.

The microcode region may have a defined length or not. In either case, the FSP stops
looking for additional microcode patches if either:

e Avalid microcode header is not found on the subsequent 16 byte aligned address

e If the size of the microcode patch region is exceeded

The microcode region is required even if the hardware or bootloader load the
microcode patch before calling TempRaminit API.

The microcode region needs to remain in the same address across all FSP API calls.

The code caching region is optional. Valid code caching regions may be limited by the
FSP implementation or the hardware, as specified in the Integration Guide.

Firmware Support Package EAS v1.1a

Document Number: 332394-002US 21

i n te l ® > FSP Interface (FSP API)

6.6 Fsplnit API
This FSP APl is called after TempRaminit. This FSP APl initializes the memory, the
processor and the chipset to enable normal operation of these devices. This FSP API
accepts a pointer to a data structure that will be platform dependent and defined for
each FSP binary. This will be documented with each FSP release in the Integration
Guide.
The bootloader provides a continuation function as a parameter when calling Fsplnit.
After Fsplnit completes its execution, it does not return to the bootloader from where it
was called but instead returns control to the bootloader by calling the continuation
function which is passed to Fsplnit as an argument.
The FspMemorylnit, TempRamExit and FspSiliconlnit API provide an alternate method
to complete the silicon initialization and provides the bootloader the opportunity to get
control after system memory is available and before the temporary memory is torn
down.
This API should be called only once after the TempRamlInit API.
Use of this API is mutually exclusive to the FspMemorylnit, TempRamExit and
FspSilicon API.
When HeaderRevision in FSP_INFO_TABLE is >=2, this APl is optional. If this APl is
not implemented then the FsplnitEntryOffset in FSP_INFO_TABLE is 0x00000000.
6.6.1 Prototype
typedef
EF1_STATUS
(EFI1API *FSP_INIT) (
IN OUT FSP_INIT_PARAMS *FspInitParamPtr
):
6.6.2 Parameters
FsplnitParamPtr Address pointer to the FSP_INIT_PARAMS
structure.
Firmware Support Package EAS v1.1a November 2015
22 Document Number: 332394-002US

FSP Interface (FSP API) -l n te l ® >

6.6.3

6.6.3.1

November 2015

Related Definitions
typedef struct {

VOID *NvsBufferPtr;

VOID *RtBufferPtr;

CONTINUATION_PROC ContinuationFunc;
} FSP_INIT_PARAMS;

NvsBufferPtr Pointer to the non-volatile storage (NVS) data buffer.
If it is NULL, it indicates the NVS data is not available.

RtBufferPtr Pointer to the runtime data buffer
FSP_INIT_RT_BUFFER. This buffer contains FSP
configuration data that will be used during the platform
initialization. The detailed structure layout is described
in 6.6.3.1.

ContinuationFunc Pointer to a continuation function provided by the
bootloader.

typedef VOID (*CONTINUATION_PROC) (
IN EFI_STATUS Status,

IN VOID *HobListPtr
)
Status Status of the Fsplnit API.
HobListPtr Pointer to the HOB data structure defined in Section 10,

Appendix A — Data Structures.

FSP_INIT_RT_BUFFER

This structure contains a common configuration data structure
FSP_INIT_RT_COMMON_BUFFER defined below, followed by platform specific-data
that will be defined in the Integration Guide.
typedef struct {

FSP_INIT_RT_COMMON_BUFFER Common;

..... // Optional platform specific data structure

} FSP_INIT_RT_BUFFER;

Firmware Support Package EAS v1.1a

Document Number: 332394-002US 23

i n te | ® > FSP Interface (FSP API)

typedef struct {

UINT32 *StackTop;

UINT32 BootMode;

VOID *UpdDataRgnPtr;
UINT32 BootLoaderTolumSize;
UINT32 Reserved[6];

} FSP_INIT_RT_COMMON_BUFFER;

StackTop I_Doints to the desired bootl_oa_dgr_ stgck top location
in memory after memory is initialized.

BootMode Cur're'n't boot mode:. Po_ssible k_)it values '
definitions are defined in Section 10, Appendix A
- Data Structures.

UpdDataRgnPtr Pointer to an updatable platform configuration

data structure UPD_DATA_ REGION defined in
Integration Guide. This structure contains
options that can be overridden by the bootloader
at runtime. If this pointer is NULL, it indicates
the default built-in values in the FSP binary will
be used. Refer to Section 8, FSP Configuration
Firmware File for details.

BootLoaderTolumSi ze The size of memory to be reserved below the top
of low usable memory (TOLUM) for bootloader
usage. This is optional and value can be zero. If
non-zero, the size must be a multiple of 4KB.

Reserved Reserved fields. Must be set to 0.

6.6.4 Return Values

The Fsplnit API will preserve all the general purpose registers except EAX. The return
status will be passed back through the EAX register.

Firmware Support Package EAS v1.1a November 2015
24 Document Number: 332394-002US

FSP Interface (FSP API) : -l n te l >

Table 5.

6.6.5

November 2015

Return Values - Fsplnit API

EFI_SUCCESS FSP execution environment was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.

EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR FSP initialization failed.

Description

One important piece of data that will be part of the FSP_INIT_RT_BUFFER structure
is the StackTop. This passes the address of the stack top where the bootloader
wants to establish the stack after memory is initialized and available for use.

Note that the Fsplnit APl initializes the permanent memory and switches the stack from
the temporary memory to the permanent memory as specified by
FSP_INIT_RT_COMMON_BUFFER.StackTop. Sometimes switching the stack in a
function can cause some unexpected execution results because the compiler is not
aware of the stack change during runtime and the precompiled code may still refer to
the old stack for data and pointers. A stack switch therefore requires assembly code to
go patch the data for the new stack location, which may lead to compatibility issues. To
avoid such possible compatibility issues introduced by different compilers and to ease
the integration of FSP with a bootloader, the APl uses the ContinuationFunction
parameter to continue the bootloader execution flow rather than return as a normal C
function.

ContinuationFunc is a function entry point that will be jumped to at the end of the
Fsplnit API to transfer control back to the bootloader. FSP will setup the stack at
FSP_INIT_RT_COMMON_BUFFER.StackTop when calling
ContinuationFunction.The FSP needs to get some parameters from the
bootloader when it is initializing the silicon. These parameters are passed from the
bootloader to the FSP through the FSP_INIT_RT_BUFFER structure pointer. Refer
to the related FSP Integration Guide for the detailed structure definitions.

The FSP produces a series of data structures, called HOB, as it initializes the silicon
which provides information about the silicon configuration. This information is passed
to the bootloader ContinuationFunction through the HobListPtr. More details
are provided in Section 7, FSP Output in this document.

A set of parameters that the FSP may need to initialize memory under special
circumstances, such as during an S3 resume or during fast boot mode, are returned by
the FSP to the bootloader during a normal boot. The bootloader is expected to store
these parameters in a non-volatile memory such as SPI flash and return a pointer to
this structure (through NvsBufferPtr) when it is requesting the FSP to initialize the
silicon under these special circumstances. Refer to Section 7.3
FSP_NON_VOLATILE_STORAGE_HOB for the details on how to get the returned NVS
data from FSP.

Firmware Support Package EAS v1.1a

Document Number: 332394-002US 25

i n tel ® > FSP Interface (FSP API)

6.7 NotifyPhase API

This FSP APl is used to notify the FSP about the different phases in the boot process.
This allows the FSP to take appropriate actions as needed during different initialization
phases. The phases will be platform dependent and will be documented with the FSP
release. The current FSP supports two notify phases:

e Post PCl enumeration

e Ready To Boot

6.7.1 Prototype
typedef

EF1_STATUS
(EFIAPI *FSP_NOTIFY_PHASE) (
IN NOTIFY_PHASE_PARAMS *NotifyPhaseParamPtr

6.7.2 Parameters
NotifyPhaseParamPtr Address pointer to the NOTIFY_PHASE_PARAMS

6.7.3 Related Definitions
typedef enum {

EnumInitPhaseAfterPciEnumeration = 0x20,
0x40

EnumlnitPhaseReadyToBoot
} FSP_INIT_PHASE;

typedef struct {
FSP_INIT_PHASE Phase;
} NOTIFY_PHASE_PARAMS;

EnumlnitPhaseAfterPciEnumeration

This stage is notified when the bootloader completes the PCl enumeration and the
resource allocation for the PCl devices is complete. FSP will use it to do some specific
initialization for processor and chipset that requires PCl resource assignments to have
been completed.

This API must be called before executing 3" party code, including PCl Option ROM, for
secure design reasons.

Firmware Support Package EAS v1.1a November 2015
26 Document Number: 332394-002US

FSP Interface (FSP API) : -l n te l >

On the S3 resume path this APl must be called before the bootloader hand-off to the

OS resume vector.
EnumlnitPhaseReadyToBoot

This stage is notified just before the bootloader hand-off to the OS loader. FSP will use
it to do some specific initialization for processor and chipset that is required before
control is transferred to the OS.

On the S3 resume path this APl must be called after
EnumlinitPhaseAfterPciEnumeration notification and before the bootloader hand-off to
the OS resume vector.

6.7.4 Return Values
The NotifyPhase API will preserve all the general purpose registers except EAX. The
return status will be passed back through the EAX register.

Table 6. Return Values - NotifyPhase API

EFI_SUCCESS The notification was handled successfully.
EFI_UNSUPPORTED The notification was not called in the proper order.
EFI_INVALID_PARAMETER The notification code is invalid.

6.7.5 Description
The FSP will lock the configuration registers to enhance security as required by the
BWG / BIOS Specification when it is notified that the bootloader is ready to transfer
control to the operating system.
Therefore, this API should only be called after the Fsplnit or FspSiliconInit APl and each
notification code should be called only once in the predefined order. For example, the
EnumlnitPhaseAfterPciEnumeration notification needs to be called before
the EnumlnitPhaseReadyToBoot notification. Once the
EnumlnitPhaseReadyToBoot is notified, the whole FSP flow is considered to be
completed and the results of any further FSP API calls are undefined.

6.8 FspMemorylnit API
This FSP APl is called after TempRamiInit and initializes the memory. This FSP API
accepts a pointer to a data structure that will be platform-dependent and defined for
each FSP binary. This will be documented in Integration Guide with each FSP release.
FspMemorylnit APl initializes the memory subsystem, initializes the pointer to the
HoblListPtr, and returns to the bootloader from where it was called. Since the system
memory has been initialized in this API, the bootloader must migrate it's stack and data
from temporary memory to system memory after this API.

November 2015 Firmware Support Package EAS v1.1a

Document Number: 332394-002US 27

i n te | ® > FSP Interface (FSP API)

FspMemorylnit, TempRamExit and FspSiliconInit APl provide an alternate method to
complete the silicon initialization and provides bootloader an opportunity to get
control after system memory is available and before the temporary memory is torn
down.

This APl must not be called if Fsplnit APl has been called.

6.8.1 Prototype
typedef

EF1_STATUS
(EFI1API *FSP_MEMORY_INIT) (
IN OUT FSP_MEMORY_INIT_PARAMS *FspMemorylnitParamPtr

);

6.8.2 Parameters

FspMemorylnitParamPtr Address pointer to the
FSP_MEMORY_INIT_PARAMS structure.

6.8.3 Related Definitions
typedef struct {

VOID *NvsBufferPtr;

VOID *RtBufferPtr;

VOID **HobListPtr;

} FSP_MEMORY_INIT_PARAMS;

NvsBufferPtr Pointer to the non-volatile storage (NVS) data buffer.
If it is NULL it indicates the NVS data is not available.

RtBufferPtr Pointer to the runtime data buffer
FSP_INIT_RT_BUFFER. This buffer contains various
FSP configuration data that will be used during the
platform initialization. The detailed structure layout is
described in 6.6.3.1.

HobListPtr Pointer to receive the address of the HOB list as
defined in the 10, Appendix A — Data Structures

Firmware Support Package EAS v1.1a November 2015
28 Document Number: 332394-002US

FSP Interface (FSP API) : -l n te l >

6.8.4 Return Values
The FspMemorylnit APl will preserve all the general purpose registers except EAX. The
return status will be passed back through the EAX register.

Table 7. Return Values - FspMemorylnit API

EFI_SUCCESS FSP execution environment was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR FSP memory initialization failed.

6.8.5 Description
FspMemorylnit API will use the FSP_INIT_RT_COMMON_BUFFER structure as its
RtBufferPtr parameter, but field FSP_INIT_RT_COMMON_BUFFER.StackTop will
not be used and must be initialized to O.
The FSP needs to get some parameters from the bootloader when it is initializing the
silicon. These parameters are passed from the bootloader to the FSP through the
FSP_INIT_RT_COMMON_BUFFER structure pointer.
A set of parameters that the FSP may need to initialize memory under special
circumstances, such as during an S3 resume or during fast boot mode, are returned by
the FSP to the bootloader during a normal boot. The bootloader is expected to store
these parameters in a non-volatile memory such as SPI flash and return a pointer to
this structure (through NvsBufferPtr) when it is requesting the FSP to initialize the
silicon under these special circumstances. Refer to section 7.3
FSP_NON_VOLATILE_STORAGE_HOB for the details on how to get the returned
NVS data from FSP.
This APl should be called only once after the TempRaminit API. This APl will produce a
HOB list and update the HObL i SEPtr parameter. The HOB list will contain a number
of Memory Resource Descriptor HOB which the bootloader can use to understand the
system memory map. The bootloader should not expect a complete HOB list after the
FSP returns from this API. It is recommended for the bootloader to save this HobListPtr
returned from this APl and parse the full HOB list after the FspSiliconInit API.
When this API returns, the bootloader data and stack are still in temporary memory.
This API must NOT tear down the temporary memory. Temporary memory setup by
TempRaminit API will be torn down by TempRamEXxit API. It is the responsibility of the
bootloader to
e Migrate any data from temporary memory to system memory
e Setup a new stack in system memory

November 2015 Firmware Support Package EAS v1.1a

Document Number: 332394-002US 29

n te | ® > FSP Interface (FSP API)

6.9 TempRamEXxit API
This FSP APl is called after FspMemorylnit API. This FSP API tears down the temporary
memory set up by TempRaminit API. This FSP APl accepts a pointer to a data structure
that will be platform dependent and defined for each FSP binary. This will be
documented in the Integration Guide.
FspMemorylnit, TempRamExit and FspSiliconInit APl provide an alternate method to
complete the silicon initialization and provides bootloader an opportunity to get
control after system memory is available and before the temporary memory is torn
down.
This APl must not be called if Fsplnit APl has been called.
6.9.1 Prototype
typedef
EF1_STATUS
(EFI1API *FSP_TEMP_RAM_EXIT) (
IN OUT VOID *TempRamExitParamPtr
):
6.9.2 Parameters
TempRamExitParamPtr Pointer to the TempRamEXxit parameters structure.
This structure is normally defined in the
Integration Guide. If it is not defined in the
Integration Guide, pass NULL.
6.9.3 Return Values
The TempRamExit API will preserve all the general purpose registers except EAX. The
return status will be passed back through the EAX register.
Table 8. Return Values - TempRamEXxit API
EFI_SUCCESS FSP execution environment was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR Temporary memory exit.
Firmware Support Package EAS v1.1a November 2015
30 Document Number: 332394-002US

FSP Interface (FSP API) -l n te l >

6.9.4

6.10

6.10.1

6.10.2

November 2015

Description
This API should be called only once after the FspMemorylinit API.

This API tears down the temporary memory area set up in the cache and returns the
cache to normal mode of operation. After the cache is returned to normal mode of
operation, any data that was in the temporary memory is destroyed. It is therefore
expected that the bootloader migrates any data that it might have had in the temporary
memory area and also set up a stack in the system memory before calling
TempRamExit API.

After the TempRamEXxit APl returns, the bootloader is expected to set up the BSP
MTRRs to enable caching. The bootloader can collect the system memory map
information by parsing the HOB data structures and use this to set up the MTRR and
enable caching.

FspMemorylnit, TempRamExit and FspSiliconlnit API provide an alternate method to
complete the silicon initialization and provides bootloader an opportunity to get
control after system memory is available and before the temporary memory is torn
down.

FspSiliconlnit API

This FSP APl is called after TempRamExit APIl. FspMemorylnit, TempRamExit and
FspSiliconlnit API provide an alternate method to complete the silicon initialization.

This APl must not be called if Fsplnit APl has been called.

Prototype
typedef

EFI_STATUS
(EFIAPI *FSP_SILICON_INIT) (
IN OUT VOID *FspSiliconlnitParamPtr

Parameters

FspSiliconInitParamPtr Pointer to the Silicon Init parameters structure.
This structure is normally defined in the
Integration Guide. If it is not defined in the
Integration Guide, pass NULL.

Firmware Support Package EAS v1.1a

Document Number: 332394-002US 31

i n te | ® > FSP Interface (FSP API)

6.10.3 Return Values
The FspSiliconlnit APl will preserve all the general purpose registers except EAX. The
return status will be passed back through the EAX register.

Table 9. Return Values - FspSiliconlnit API

EFI_SUCCESS FSP execution environment was initialized successfully.
EFI_INVALID_PARAMETER Input parameters are invalid.
EFI_UNSUPPORTED The FSP calling conditions were not met.
EFI_DEVICE_ERROR FSP silicon initialization failed.

6.10.4 Description
This APl should be called only once after the TempRamEXxit API.
This FSP APl initializes the processor and the chipset including the 10 controllers in the
chipset to enable normal operation of these devices. This FSP APl accepts a pointer to
a data structure that will be platform dependent and defined for each FSP binary. This
will be documented in the Integration Guide.
This APl adds HOBs to the HobListPtr to pass more information to the bootloader. To
obtain the additional information, the bootloader must parse the HOB list again after
the FSP returns from this API.

8
Firmware Support Package EAS v1.1a November 2015

32

Document Number: 332394-002US

FSP Output

intel)

FSP Output

7.1

November 2015

The FSP builds a series of data structures called the Hand Off Blocks (HOBs). These
data structures conform to the HOB format as described in the Platform Initialization
(Pl) Specification - Volume 3: Shared Architectural Elements specification as referenced
in Related Documents. The user of the FSP binary is strongly encouraged to go through
the specification mentioned above to understand the HOB details and create a simple
infrastructure to parse the HOB list, because the same infrastructure can be reused with
different FSP across different platforms.

The bootloader developer must decide on how to consume the information passed
through the HOB produced by the FSP. The PI Specification defines a number of HOB
and most of this information may not be relevant to a particular bootloader. For
example, to generate system memory map, bootloader needs to parse the resource
descriptor HOBs produced by Fsplnit and FspMemorylnit API.

In addition to the PI Specification defined HOB, the FSP produces a number of FSP
architecturally defined GUID type HOB. The sections below describes the GUID and the
structure of these FSP defined HOB.

Additional platform specific HOB may be defined in the Integration Guide.

FSP_BOOTLOADER_TEMP_MEMORY_HOB

As described in the Fsplnit API, the system memory is initialized and the whole
temporary memory is destroyed during this API call. However, the subregion of the
temporary memory returned in the TempRamlInit APl may still contain bootloader
specific data which might be useful to the bootloader after the Fsplnit call.

Before destroying the temporary memory, the FSP copies the subregion into a HOB in
permanent memory and adds that to the HOB list. The bootloader can use this HOB to
access the data saved in the temporary memory after Fsplnit API if necessary. If the
bootloader does not care about the previous data, this HOB can be ignored.

This HOB follows the EFI_HOB_GUID_TYPE format with the name GUID defined as
below:

#define FSP_BOOTLOADER_TEMP_MEMORY_HOB_GUID \

{ Oxbbcff46c, O0xc8d3, 0x4113, { 0x89, 0x85, Oxb9, O0xd4, Oxf3,
Oxb3, Oxf6, Ox4e }};

This HOB is only published and applicable when using Fspinit API.

Firmware Support Package EAS v1.1a

Document Number: 332394-002US 33

i nte | > FSP Output

7.2 FSP_RESERVED_MEMORY_RESOURCE_HOB
The FSP reserves some memory for its internal use and a descriptor for this memory
region used by the FSP is passed back through a HOB. This is a generic resource HOB,
but the owner field of the HOB identifies the owner as FSP. This FSP reserved memory
region must be preserved by the bootloader and must be reported as reserved
memory to the OS.
This HOB follows the EFI_HOB_RESOURCE_DESCRIPTOR format with the owner GUID
defined as below.
#define FSP_RESERVED_MEMORY_RESOURCE_HOB_GUID \
{ 0x69a79759, 0x1373, 0x4367, { Oxa6, Oxc4, Oxc7, Oxf5, Ox9e,
Oxfd, 0x98, Ox6e }}
This HOB is valid after Fsplnit or FspMemorylnit API.

7.3 FSP_NON_VOLATILE_STORAGE_HOB
The Non-Volatile Storage (NVS) HOB provides a mechanism for FSP to request the
bootloader to save the platform configuration data into non-volatile storage so that it
can be reused in special cases, such as S3 resume.
This HOB follows the EF1_HOB_GUID_TYPE format with the name GUID defined as
below:
#define FSP_NON_VOLATILE_STORAGE_HOB GUID \
{ 0x72lacf02, 0x4d77, Ox4c2a, { Oxb3, Oxdc, 0x27, Oxb, Ox7b,
Oxa9, Oxe4, OxbO }}
The bootloader needs to parse the HOB list to see if such a GUID HOB exists after
returning from the Fsplnit or FspMemorylnit API. If it exists, the bootloader should
extract the data portion from the HOB structure and then save it into a platform-
specific NVS device, such as flash, EEPROM, etc. On the following boot flow the
bootloader should load the data block back from the NVS device to temporary memory
and populate the buffer pointer into FSP_INIT_PARAMS.NvsBufferPtr or
FSP_MEMORY_INIT_PARAMS.NvsBufferPtr field before calling into the Fsplnit or
FspMemorylnit API, respectively. If the NVS device is memory mapped, the bootloader
can initialize the buffer pointer directly to the buffer.
This HOB must be parsed after Fspinit or FspMemorylnit API.

Firmware Support Package EAS v1.1a November 2015

34

Document Number: 332394-002US

FSP Output

7.4

7.5

November 2015

(inteD)

FSP_BOOTLOADER_TOLUM_HOB

The FSP can reserve some memory below "top of low usable memory" for bootloader
usage. The size of this region is determined by
FSP_INIT_RT_COMMON_BUFFER.BootLoaderTolumSize. The FSP reserved memory
region will be placed below this region.

This HOB will only be published when the
FSP_INIT_RT_COMMON_BUFFER.BootLoaderTolumSize is valid and non zero.

This HOB follows the EF1_HOB_RESOURCE_DESCRIPTOR format with the owner GUID
defined as below:

#define FSP_BOOTLOADER_TOLUM_HOB_GUID \

{ Ox73Ff4f56, Oxaa8e, 0x4451, { Oxb3, 0x16, 0x36, 0x35, 0x36,
0x67, Oxad, O0x44 }}

This HOB is valid after Fsplnit or FspMemorylnit API.

EFI_PEI_GRAPHICS_INFO_HOB

If BITO (GRAPHICS_SUPPORT) of the ImageAttribute field in the FSP_INFO_HEADER is
set, the FSP includes graphics initialization capabilities. To complete the initialization
of the graphics system, FSP may need some platform specific configuration data which
would be documented in the Integration Guide.

When graphics capability is included in FSP and enabled as documented in Integration
Guide, FSP produces a EFI_PEI_GRAPHICS_INFO_HOB as described in the PI
Specification as referenced in 1.3, which provides information about the graphics mode
and framebuffer.

#define EFI_PEI_GRAPHICS_INFO_HOB_GUID \

{ 0x39f62cce, 0x6825, 0x4669, { Oxbb, 0x56, 0x54, Oxla, Oxba,
0x75, Ox3a, 0x07 }}

It is to be noted that the FrameBufferAddress address in
EFI_PEI_GRAPHICS_INFO_HOB will reflect the value assigned by the FSP. A
bootloader consuming this HOB should be aware that a generic PCl enumeration logic
could reprogram the temporary resources assigned by the FSP and it is the
responsibility of the bootloader to update its internal data structures with the new
framebuffer address after the enumeration is complete.

This HOB is valid after Fsplnit or FspSiliconlnit API. This HOB is not produced in S3
boot path i.e., when FSP_INIT_RT_COMMON_BUFFER.BootMode is set to
BOOT_ON_S3_RESUME.

Firmware Support Package EAS v1.1a

Document Number: 332394-002US 35

n te | i > FSP Configuration Firmware File

FSP Configuration Firmware File

The FSP binary contains a configurable data region which will be used by the FSP
during initialization.

The configurable data region has two sets of data:
e VPD -Vital Product Data, which can only be configured statically,

e UPD - Updatable Product Data, which can be configured statically for default
values, but also can be overwritten during boot at runtime.

Both the VPD and the UPD parameters can be statically customized using a separate
tool. There will be a Boot Setting File (BSF) provided along with FSP binary to describe
the configuration options within the FSP.

In addition to static configuration, the UPD data can be overridden by the bootloader
during runtime. The UPD data is organized as a structure. The Fsplnit() and
FspMemorylnit() APl parameter includes an
FSP_INIT_RT_COMMON_BUFFER.UpdDataRgnPtr pointer which can be initialized to
point to the UPD data structure. If this pointer is initialized to NULL when calling the
Fsplnit() or FspMemoryinit() API, the FSP will use the default built-in UPD configuration
data in the FSP binary. However, if the bootloader wishes to override any of the UPD
parameters, it has to copy the whole UPD structure from flash to memory, override the
parameters and initialize the FSP_INIT_RT_COMMON_BUFFER.UpdDataRgnPtr pointer
to the address of the UPD structure with updated data in memory and call Fsplnit() or
FspMemorylnit() APl. The FSP will use this data structure instead of the default
configuration region data for platform initialization. The UPD data structure pointed by
pointer FSP_INIT_RT_COMMON_BUFFER.UpdDataRgnPtr is a project specific
structure. Please refer to 8.2 and the Integration Guide for the details of this structure.

Both the VPD and the UPD structure definitions will be provided as part of the FSP
distribution package. To update these configuration options statically using the BCT, a
BSF file will be required. This file contains the detailed information on all configurable
options, including description, help information, valid value range and the default value.
The BSF file will also be provided with the FSP distribution package.

Firmware Support Package EAS v1.1a November 2015

36

Document Number: 332394-002US

FSP Configuration Firmware File

intel.

8.1 VPD Standard Fields

The first few fields of the VPD Region are standard for all FSP implementations as
documented below.

Table 10. VPD Standard Fields

Offset Field

0x00 - 0x07 VPD Region Signature. FSP specific signature described in the Integration Guide.
This field is used by BCT to verify if .bsf is valid for FSP binary.
If the HeaderRevision field in the FSP_INFO_HEADER is > 1, then this signature
should match the 8 byte Image Id in the FSP_INFO_HEADER.

0x08 - 0x0B Image Revision. Should match the revision in the FSP_INFO_HEADER

0x0C — OxOF UPD Region offset

0x10-0x13 UPD Region size

Ox14 - Ox1F Reserved

8.2 UPD Standard Fields

The first few fields of the UPD Region are standard for all FSP implementations as

documented below.

Table 11. UPD Standard Fields

Offset Field
0x00 - 0x07 UPD Region Signature.FSP specific signature described in the Integration Guide.
This field is used by BCT to verify if .BSF is valid for FSP binary.
0x08 Revision
0x09 — OxOF ReservedUpdO[7]
0x10-0x13 MemorylnitUpdOffset
0x14 -0x17 SiliconInitUpdOffset
0x18 — Ox1F ReservedUpd1

November 2015
Document Number: 332394-002US

Firmware Support Package EAS v1.1a

37

intel)

Other Host BootLoader Considerations

Other Host BootLoader Considerations

9.1

9.2

9.3

Firmware Support Package EAS v1.1a

38

Power Management

FSP does not provide power management functions besides making power
management features available to the host bootloader. ACPI is an independent
component of the bootloader, and it will not be included in the FSP.

Bus Enumeration

FSP will initialize the processor and the chipset to a state that all bus topology can be
discovered by the host bootloader. However, it is the responsibility of the bootloader
to enumerate the bus topology.

Security

FSP will follow the BWG / BIOS Specification to set the necessary registers for security
concerns. However, some security features, such as secure boot, are not necessarily
covered by the FSP.

Examples include, but are not limited to, SMM, discrete TPM, measured boot, verified,
and authenticated boot.

November 2015
Document Number: 332394-002US

®
Appendix A - Data Structures l n te l

10 Appendix A - Data Structures

The declarations/definitions provided here were derived from the EDK2 source
available for download at https://github.com/tianocore/edk2. The GitHub links point to
the latest version of the files and may be newer than the version seen in this document.

10.1 BOOT_MODE
10.1.1 PiBootMode.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiBootMode.h
#define BOOT_WITH_FULL_CONFIGURATION 0x00
#define BOOT_WITH_MINIMAL_CONFIGURATION 0x01
#define BOOT_ASSUMING_NO_CONFIGURATION_CHANGES 0x02
#define BOOT_ON_S4 RESUME 0x05
#define BOOT_ON_S3 RESUME Ox11
#define BOOT_ON_FLASH UPDATE 0x12
#define BOOT_IN_RECOVERY_MODE 0x20
November 2015 Firmware Support Package EAS v1.1a

Document Number: 332394-002US 39

https://github.com/tianocore/edk2
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiBootMode.h

intel)

EFI_STATUS

10.2

10.2.1

UefiBaseType.h

Appendix A - Data Structures

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

typedef

EF1_SUCCESS
EF1_INVALID_PARAMETER
EF1_UNSUPPORTED
EF1_NOT_READY
EF1_DEVICE_ERROR
EF1_OUT_OF RESOURCES
EF1_VOLUME_CORRUPTED
EF1_NOT_FOUND
EF1_TIMEOUT

EF1_ABORTED
EF1_INCOMPATIBLE_VERSION
EF1_SECURITY_VIOLATION
EFI_CRC_ERROR

UINT64

Firmware Support Package EAS v1.1a

40

0x00000000
0x80000002
0x80000003
0x80000006
0x80000007
0x80000009
0x8000000A
0x8000000E
0x80000012
0x80000015
0x80000019
0x8000001A
0x8000001B

EFI_PHYSICAL_ADDRESS;

November 2015

Document Number: 332394-002US

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h

Appendix A - Data Structures 'l n te l ® >

10.3

10.3.1

10.4

10.4.1

10.4.2

November 2015

EFI_PEl_GRAPHICS_INFO_HOB

GraphicsinfoHob.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsinfoHo
b.h
typedef struct {
EFI1_PHYSICAL_ADDRESS FrameBufferBase;
UINT32 FrameBufferSize;
EF1_GRAPHICS _OUTPUT_MODE_INFORMATION GraphicsMode;
} EF1_PEI_GRAPHICS INFO_HOB;

EFl_GUID

Base.h

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Base.h
typedef struct {

UINT32 Datal;

UINT16 Data2;

UINT16 Data3;

UINT8 Data4[8];
} GUID;

UefiBaseType.h

https://github.com/tianocore/edk2/blob/master/MdePka/Include/Uefi/UefiBaseType.h
typedef GUID EFI1_GUID;

Firmware Support Package EAS v1.1a

Document Number: 332394-002US 41

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Guid/GraphicsInfoHob.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Base.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiBaseType.h

intel)

10.5 EFI_MEMORY_TYPE

10.5.1 UefiMultiPhase.h

Appendix A - Data Structures

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiMultiPhase.h

/77

/// Enumeration of memory types.

/77
typedef enum {

EfiReservedMemoryType,
EfiLoaderCode,
EfiLoaderData,
EfiBootServicesCode,
EfiBootServicesData,
EfiRuntimeServicesCode,
EFfiRuntimeServicesData,
EfiConventionalMemory,
EfiUnusableMemory,
EFfiACPIReclaimMemory,
EFIACPIMemoryNVS,
EfiMemoryMappedlO,
EfiMemoryMappedlOPortSpace,
EfiPalCode,
EfiMaxMemoryType

} EFI_MEMORY_TYPE;

Firmware Support Package EAS v1.1a

42

November 2015
Document Number: 332394-002US

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Uefi/UefiMultiPhase.h

®
Appendix A - Data Structures l n te l

10.6 Hand Off Block (HOB)

10.6.1 PiHob.h

https://qgithub.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiHob.h
typedef UINT32 EFI_RESOURCE_TYPE;
typedef UINT32 EFI_RESOURCE_ATTRIBUTE_TYPE;

//

// Value of ResourceType in EFl_HOB_RESOURCE_DESCRIPTOR.
//

#define EFI_RESOURCE_SYSTEM_MEMORY 0x00000000
#define EF1_RESOURCE_MEMORY_MAPPED 10 0x00000001
#define EFI1_RESOURCE_I10 0x00000002
#define EFI_RESOURCE_FIRMWARE DEVICE 0x00000003
#define EFI_RESOURCE_MEMORY_MAPPED_I10_PORT 0x00000004
#define EFI_RESOURCE_MEMORY_RESERVED 0x00000005
#define EF1_RESOURCE_ 10 RESERVED 0x00000006
#define EFI_RESOURCE_MAX_MEMORY_TYPE 0x00000007
//

// These types can be ORed together as needed.
// The first three enumerations describe settings

//

#define EFI_RESOURCE_ATTRIBUTE_PRESENT 0x00000001
#define EFI_RESOURCE_ATTRIBUTE_INITIALIZED 0x00000002
#define EFI_RESOURCE_ATTRIBUTE_TESTED 0x00000004
//

// The rest of the settings describe capabilities

//

#define EFI_RESOURCE_ATTRIBUTE_SINGLE_BIT_ECC 0x00000008
#define EFI_RESOURCE_ATTRIBUTE_MULTIPLE_BIT_ECC 0x00000010
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_1 0x00000020
#define EFI_RESOURCE_ATTRIBUTE_ECC_RESERVED_ 2 0x00000040
#define EFI1_RESOURCE_ATTRIBUTE_READ PROTECTED 0x00000080
#define EF1_RESOURCE_ATTRIBUTE_WRITE_PROTECTED 0x00000100
#define EFI_RESOURCE_ATTRIBUTE_EXECUTION_PROTECTED 0x00000200
#define EFI_RESOURCE_ATTRIBUTE_UNCACHEABLE 0x00000400
#define EFI_RESOURCE_ATTRIBUTE_WRITE_COMBINEABLE 0x00000800

#define EFI_RESOURCE_ATTRIBUTE_WRITE_THROUGH_CACHEABLE 0x00001000
#define EFI_RESOURCE_ATTRIBUTE_WRITE_BACK_CACHEABLE 0x00002000

#define EFI_RESOURCE_ATTRIBUTE_16_BIT_10 0x00004000
#define EFI_RESOURCE_ATTRIBUTE_32_BIT_10 0x00008000
#define EFI_RESOURCE_ATTRIBUTE_64 BIT_10 0x00010000
#define EFI_RESOURCE_ATTRIBUTE_UNCACHED EXPORTED 0x00020000
November 2015 Firmware Support Package EAS v1.1a

Document Number: 332394-002US 43

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiHob.h

i n tel ®) Appendix A - Data Structures

//

// HobType of EFI_HOB_GENERIC_HEADER.

/7/

#define EFI_HOB_TYPE_MEMORY_ALLOCATION 0x0002
#define EFI_HOB_TYPE_RESOURCE_DESCRIPTOR 0x0003

#define EFI_HOB_TYPE_GUID_EXTENSION 0x0004
#define EFI_HOB_TYPE_UNUSED OXFFFE
#define EFI_HOB_TYPE_END OF HOB_LIST OXFFFF
77/

/// Describes the format and size of the data inside the HOB.
/// All HOBs must contain this generic HOB header.
//7/
typedef struct {
UINT16 HobType;
UINT16 HobLength;
UINT32 Reserved;
} EFI1_HOB_GENERIC_HEADER;

/77
/// Describes various attributes of logical memory allocation.
//7/
typedef struct {
EFI1_GUID Name;
EF1_PHYSICAL_ADDRESS MemoryBaseAddress;
UINT64 MemoryLength;
EF1_MEMORY_TYPE MemoryType;
UINTS8 Reserved[4];

} EF1_HOB_MEMORY_ALLOCATION_HEADER;

/7/7/
/// Describes all memory ranges used during the HOB producer
/// phase that exist outside the HOB list. This HOB type
/// describes how memory is used, not the physical attributes
/// of memory.
///
typedef struct {
EFI_HOB_GENERIC_HEADER Header;
EFI_HOB_MEMORY_ALLOCATION_HEADER AllocDescriptor;
} EFI_HOB_MEMORY_ALLOCATION;

Firmware Support Package EAS v1.1a November 2015
44 Document Number: 332394-002US

Appendix A - Data Structures : 'l n te l ® >

//7/

/// Describes the resource properties of all fixed,

/// nonrelocatable resource ranges found on the processor
/// host bus during the HOB producer phase.

///

typedef struct {
EFI_HOB_GENERIC_HEADER Header;
EFI_GUID owner;
EFI_RESOURCE_TYPE ResourceType;
EFI_RESOURCE_ATTRIBUTE_TYPE ResourceAttribute;
EF1_PHYSICAL_ADDRESS PhysicalStart;
UINT64 ResourcelLength;

} EFI_HOB_RESOURCE_DESCRIPTOR;

//7/
/// Allows writers of executable content in the HOB producer
/// phase to maintain and manage HOBs with specific GUID.
///
typedef struct {

EFI_HOB_GENERIC_HEADER Header;

EF1_GUID Name;
} EFI_HOB GUID_TYPE;

///

/// Union of all the possible HOB Types.

///

typedef union {
EF1_HOB_GENERIC_HEADER *Header ;
EFI_HOB_MEMORY_ALLOCATION *MemoryAllocation;
EF1_HOB_RESOURCE_DESCRIPTOR *ResourceDescriptor;
EF1_HOB_GUID_TYPE *Guid;
UINTS8 *Raw;

} EF1_PEI_HOB_POINTERS;

November 2015 Firmware Support Package EAS v1.1a
Document Number: 332394-002US 45

i n tel ®) Appendix A - Data Structures

10.7 Firmware Volume and Firmware Filesystem
Please refer to PiFirmwareVolume.h and PiFirmwareFile.h from EDK2 project for
original source.

10.7.1 PiFirmwareVolume.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareVolume
.h
///

/// EF1_FV_FILE_ATTRIBUTES

///

typedef UINT32 EFI_FV_FILE_ATTRIBUTES;

///

/// type of EFl FVB attribute

///

typedef UINT32 EFI_FVB_ATTRIBUTES 2;

typedef struct {
UINT32 NumBlocks;
UINT32 Length;

} EFI_FV_BLOCK_MAP_ENTRY;

///

/// Describes the features and layout of the firmware volume.

///

typedef struct {
UINTS8 ZeroVector[16];
EFI_GUID FileSystemGuid;
UINT64 FvLength;
UINT32 Signature;
EFI_FVB_ATTRIBUTES_ 2 Attributes;
UINT16 HeaderLength;
UINT16 Checksum;
UINT16 ExtHeaderOffset;
UINTS8 Reserved[1];
UINT8 Revision;
EFI_FV_BLOCK_MAP_ENTRY BlockMap[1];

} EFI_FIRMWARE_VOLUME_HEADER;

#define EFI1_FVH_SIGNATURE SIGNATURE 32 (*_", "F", "V", "H")

///

/// Firmware Volume Header Revision definition

///

#define EFI_FVH_REVISION 0x02

Firmware Support Package EAS v1.1a November 2015

46

Document Number: 332394-002US

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareVolume.h
https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareVolume.h

Appendix A - Data Structures

10.7.2

November 2015

/777

/// Extension header pointed by ExtHeaderOffset of volume header.

//7/
typedef struct {
EF1_GUID FvName;
UINT32 ExtHeaderSize;
} EFI_FIRMWARE_VOLUME_EXT_ HEADER;

///
/// Entry struture for describing
///
typedef struct {
UINT16 ExtEntrySize;
UINT16 ExtEntryType;
} EFI_FIRMWARE_VOLUME_EXT_ENTRY;

#define EFI_FV_EXT TYPE_OEM_TYPE

/77

FV extension header

0x01

/// This extension header provides a mapping between a GUID

/// and an OEM file type.
//7/
typedef struct {

EFI_FIRMWARE_VOLUME_EXT_ENTRY Hdr;

UINT32 TypeMask;

} EFI_FIRMWARE_VOLUME_EXT_ENTRY_OEM_TYPE;

#define EFI_FV_EXT_TYPE_GUID_TYPE

/777

0x0002

/// This extension header EFI_FIRMWARE_VOLUME_EXT_ENTRY_GUID_TYPE
/// provides a vendor specific GUID FormatType type which
/// includes a length and a successive series of data bytes.

//7/

typedef struct {
EFI1_FIRMWARE_VOLUME_EXT_ENTRY
EF1_GUID

Hdr;
FormatType;

} EFI_FIRMWARE_VOLUME_EXT_ENTRY_GUID_TYPE;

PiFirmwareFile.h

https://qgithub.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareFile.h

/777

/// Used to verify the integrity of the file.

///
typedef union {
struct {
UINTS8 Header;
UINT8 File;
} Checksum;
UINT16 Checksuml6;
} EF1_FFS_INTEGRITY_CHECK;

Document Number: 332394-002US

Firmware Support Package EAS v1.1a
47

https://github.com/tianocore/edk2/blob/master/MdePkg/Include/Pi/PiFirmwareFile.h

ntel)

/777

Appendix A - Data Structures

/// FFS_FIXED _CHECKSUM is the checksum value used when the
/// FFS_ATTRIB_CHECKSUM attribute bit is clear.

/77
#define FFS_FIXED_CHECKSUM OxAA

typedef UINT8 EFI_FV_FILETYPE;
typedef UINT8 EFI_FFS_FILE_ATTRIBUTES;
typedef UINT8 EFI_FFS_FILE_STATE;

//7/

/// File Types Definitions

//7/

#define EFI_FV_FILETYPE_FREEFORM

/77

/// FFS File Attributes.

/77

#define FFS_ATTRIB_LARGE FILE
#define FFS_ATTRIB_FIXED

#define FFS_ATTRIB_DATA ALIGNMENT

#define FFS_ATTRIB_CHECKSUM
//7/

/// FFS File State Bits.
//7/

#define EF1_FILE_HEADER_CONSTRUCTION
#define EFI_FILE_HEADER_VALID
#define EFI_FILE_DATA VALID

#define EFI_FILE_MARKED FOR_UPDATE
#define EFI_FILE_DELETED

#define EFI_FILE_HEADER_INVALID

/77

0x02

0x01
0x04
0x38
0x40

0x01
0x02
0x04
0x08
0x10
0x20

/// Each file begins with the header that describe the

/// contents and state of the files.

/77

typedef struct {
EFI1_GUID Name;
EFI_FFS_INTEGRITY_CHECK IntegrityCheck;
EFI_FV_FILETYPE Type;
EFI_FFS_FILE_ATTRIBUTES Attributes;
UINT8 Size[3];
EFI_FFS_FILE_STATE State;

} EFI_FFS_FILE_HEADER;

Firmware Support Package EAS v1.1a

48

November 2015
Document Number: 332394-002US

®
Appendix A - Data Structures l n te l

November 2015

typedef struct {

EFI_GUID Name;
EF1_FFS_INTEGRITY_CHECK IntegrityCheck;
EF1_FV_FILETYPE Type;
EF1_FFS_FILE_ATTRIBUTES Attributes;
UINTS8 Size[3];
EF1_FFS_FILE_STATE State;

UINT32 ExtendedSize;

} EF1_FFS_FILE_HEADER2;

#define IS_FFS_FILE2(FfsFileHeaderPtr) \
(((((EF1_FFS_FILE_HEADER *) (UINTN) FfsFileHeaderPtr)-
>Attributes) & FFS_ATTRIB_LARGE_FILE) == FFS_ATTRIB_LARGE_FILE)

#define FFS_FILE_SI1ZE(FfsFileHeaderPtr) \
((UINT32) (*((UINT32 *) ((EFI_FFS_FILE_HEADER *) (UINTN)
FfsFileHeaderPtr)->Size) & OxOOFFfFffr))

#define FFS_FILE2_SI1ZE(FfsFileHeaderPtr) \
(((EFI1_FFS_FILE_HEADER2 *) (UINTN) FfsFileHeaderPtr)-
>ExtendedSize)

typedef UINT8 EFI_SECTION_TYPE;

#define EFI_SECTION_RAW 0x19
//7/
/// Common section header.
/77
typedef struct {
UINT8 Size[3];

EF1_SECTION_TYPE Type;
} EFI_COMMON_SECTION_HEADER;

typedef struct {

UINT8 Size[3]:
EFI_SECTION_TYPE Type;
UINT32 ExtendedSize;
} EF1_COMMON_SECTION_HEADER2;
///
/// The leaf section which contains an array of zero or more
/// bytes.
///

typedef EFI_COMMON_SECTION_HEADER EFI_RAW_SECTION;
typedef EFI_COMMON_SECTION_HEADER2 EFI_RAW_SECTION2;

Firmware Support Package EAS v1.1a

Document Number: 332394-002US

49

‘ i n tel ®) Appendix A - Data Structures

#define IS _SECTION2(SectionHeaderPtr) \
((UINT32) (*(QUINT32 *) ((EFI_COMMON_SECTION_HEADER *)
(UINTN) SectionHeaderPtr)->Size) & OXOOFFFFff) == OxXOOFFFfff)

#define SECTION_SIZE(SectionHeaderPtr) \
((UINT32) (*(QUINT32 *) ((EFI_COMMON_SECTION_HEADER *)
(UINTN) SectionHeaderPtr)->Size) & OXOOFFfffr))

#define SECTION2_SIZE(SectionHeaderPtr) \
(((EFI1_COMMON_SECTION_HEADER2 *) (UINTN) SectionHeaderPtr)-
>ExtendedSize)

Firmware Support Package EAS v1.1a November 2015
50 Document Number: 332394-002US

Appendix B - Acronyms

11

Appendix B — Acronyms

November 2015

Document Number: 332394-002US

ACPI Advanced Configuration and Power Interface
BCT Binary Configuration Tool

BIOS Basic Input Output System

BSP Boot Strap Processor

BSF Boot Setting File

BWG BIOS Writer's Guide a.k.a. BIOS Specification a.k.a. IA FW Specification
FDF Flash Description File

FSP Firmware Support Package(s)

FSP API Firmware Support Package Interface(s)
FV Firmware Volume

GUI Graphical User Interface

GUID Globally Unique IDentifier(s)

HOB Hand Off Block(s)

Pl Platform Initialization

PIC Position Independent Code

RAM Random Access Memory

ROM Read Only Memory

SMM System Management Mode

SOC System-On-Chip(s)

TOLUM Top of low usable memory

TPM Trusted Platform Module

UEFI Unified Extensible Firmware Interface
UPD Updatable Product Data

VPD Vital Product Data

Firmware Support Package EAS v1.1a
51

	Intel® Firmware Support Package-External Architecture Specification
	Contents
	Revision History

	1 Introduction
	1.1 Purpose
	1.2 Intended Audience
	1.3 Related Documents

	2 FSP Overview
	2.1 Design Philosophy
	2.2 Technical Overview
	2.2.1 Data Structure Descriptions

	3 FSP Integration
	3.1 FSP Distribution Package
	3.2 FSP Image ID and Revision

	4 Boot Flows
	5 FSP Binary Format
	5.1 FSP Information tables
	5.1.1 FSP_INFO_HEADER
	5.1.2 FSP_INFO_EXTENDED_HEADER
	5.1.3 Finding FSP_INFO_HEADER
	5.1.4 FSP Description File
	5.1.5 FSP Patch Table (FSPP)
	5.1.5.1 Example

	6 FSP Interface (FSP API)
	6.1 Entry-Point Invocation Environment
	6.2 Data Structure Convention
	6.3 Entry-Point Calling Convention
	6.4 Return Status Code
	6.5 TempRamInit API
	6.5.1 Prototype
	6.5.2 Parameters
	6.5.3 Related Definitions
	6.5.4 Return Values
	6.5.5 Description

	6.6 FspInit API
	6.6.1 Prototype
	6.6.2 Parameters
	6.6.3 Related Definitions
	6.6.3.1 FSP_INIT_RT_BUFFER

	6.6.4 Return Values
	6.6.5 Description

	6.7 NotifyPhase API
	6.7.1 Prototype
	6.7.2 Parameters
	6.7.3 Related Definitions
	6.7.4 Return Values
	6.7.5 Description

	6.8 FspMemoryInit API
	6.8.1 Prototype
	6.8.2 Parameters
	6.8.3 Related Definitions
	6.8.4 Return Values
	6.8.5 Description

	6.9 TempRamExit API
	6.9.1 Prototype
	6.9.2 Parameters
	6.9.3 Return Values
	6.9.4 Description

	6.10 FspSiliconInit API
	6.10.1 Prototype
	6.10.2 Parameters
	6.10.3 Return Values
	6.10.4 Description

	7 FSP Output
	7.1 FSP_BOOTLOADER_TEMP_MEMORY_HOB
	7.2 FSP_RESERVED_MEMORY_RESOURCE_HOB
	7.3 FSP_NON_VOLATILE_STORAGE_HOB
	7.4 FSP_BOOTLOADER_TOLUM_HOB
	7.5 EFI_PEI_GRAPHICS_INFO_HOB

	8 FSP Configuration Firmware File
	8.1 VPD Standard Fields
	8.2 UPD Standard Fields

	9 Other Host BootLoader Considerations
	9.1 Power Management
	9.2 Bus Enumeration
	9.3 Security

	10 Appendix A – Data Structures
	10.1 BOOT_MODE
	10.1.1 PiBootMode.h

	10.2 EFI_STATUS
	10.2.1 UefiBaseType.h

	10.3 EFI_PEI_GRAPHICS_INFO_HOB
	10.3.1 GraphicsInfoHob.h

	10.4 EFI_GUID
	10.4.1 Base.h
	10.4.2 UefiBaseType.h

	10.5 EFI_MEMORY_TYPE
	10.5.1 UefiMultiPhase.h

	10.6 Hand Off Block (HOB)
	10.6.1 PiHob.h

	10.7 Firmware Volume and Firmware Filesystem
	10.7.1 PiFirmwareVolume.h
	10.7.2 PiFirmwareFile.h

	11 Appendix B – Acronyms

